Quantum mechanics without operational equivalence

Gábor Hofer-Szabó

Research Centre for the Humanities, Budapest Munich Center for Mathematical Philosophy, München

Main messages

Ontological models for quantum mechanics can be different with respect to causal structure, contextuality, fine-tuning, etc. when operators are realized by different measurements

Outline

- I. Operational theories and ontological models
- II. The Bridgmannian perspective
- III. Trivialization: removing simultaneous measurements

Operational theories and ontological models

• Operational theory:

- $\{P, P'...\}$: preparations
- $\{M, M'...\}$: measurements
- $\{X, X'...\}$: outcomes

$$\{p(X|M \wedge P) : \text{ for all } M, P\}$$

- Ontological (hidden variable) model:
 - $\{\Lambda, \Lambda'...\}$: ontic (hidden) states

$$\{p(\Lambda|P): \text{ for all } P\}$$

 $\{p(X|M \wedge \Lambda): \text{ for all } M, \Lambda\}$

Operational theories and ontological models

$$p(X|M \wedge P) = \sum_{\Lambda} p(X|M \wedge \Lambda) p(\Lambda|P)$$

An operational theory

• Measurements:

$$\left\{\underbrace{A_0,\ A_1,\ B_0,\ B_1}_{\text{Basic}},\ \underbrace{A_0 \land B_0,\ A_0 \land B_1,\ A_1 \land B_0,\ A_1 \land B_1}_{\text{Simultaneous}}\right\}$$

• Outcomes: X, Y = 0, 1

An operational theory: the PR box

An ontological model: the PR box

Causal structure of the PR box

- CHSH inequality
- Contextuality
- Fine-tuning

Three operational theories

Three ontological models

Causal structure of the models

- CHSH inequality
- Contextuality
- Fine-tuning

• Representation:

$$p(X|M \wedge P) = \text{Tr}(\boldsymbol{\rho} \mathbf{P})$$

- $\{P, P'...\}$ \longrightarrow $\{\rho, \rho'...\}$: density operators
- $\{M, M'...\} \longrightarrow \{\mathbf{O}, \mathbf{O}'...\}$: self-adjoint operators
- $\{X, X'...\}$ \longrightarrow $\{\mathbf{P}, \mathbf{P}'...\}$: spectral projections

Operational equivalence

- $M_1 \sim M_2$ if $p(X|M_1 \wedge P) = p(X|M_2 \wedge P)$ for all P
- Then M_1 and M_2 are represented by the same operator:

$$p(X|M_1 \wedge P) = p(X|M_2 \wedge P) = \text{Tr}(\boldsymbol{\rho} \mathbf{P})$$

Percy Bridgman (1882-1961)

Bridgman's question

When do two measurements measure the same observable?

Observables

Project

- Keep the operators, change the measurements
- Replace measurements by operationally equivalent measurements
- Remove simultaneous measurements
- Show that the new operational theory is different with respect to the causal structure, contextuality, fine-tuning, etc.

Replace the simultaneous measurements by operationally equivalent new basic measurements

 The old basic basic measurements will be operationally equivalent to certain marginalizations of the new basic measurements

Non-trivial theory
$$\longrightarrow$$
 Trivial theory $\{A_0, A_1, B_0, B_1, A_0 \wedge B_0 \longrightarrow \{C_{00}, C_{01}, C_{10}, C_{11}\}$
 $A_0 \wedge B_1, A_1 \wedge B_0, A_1 \wedge B_1\}$ $C_{00}^{(1)} \sim C_{01}^{(1)} \sim A_0$

$$C_{10}^{(1)} \sim C_{11}^{(1)} \sim A_1$$

$$C_{00}^{(2)} \sim C_{10}^{(2)} \sim B_0$$

$$C_{01}^{(2)} \sim C_{11}^{(2)} \sim B_1$$

The GHZ and the Peres-Mermin graph

The GHZ and the Peres-Mermin line graph

Three operational theories

Three ontological models

Causal structure of the models

- CHSH inequality
- Contextuality
- Fine-tuning

$$p(X, Y|A, B, P_{\text{epr}}) = \langle \Psi_s | (\mathbf{X}^{\mathbf{A}} \otimes \mathbf{Y}^{\mathbf{B}}) \Psi_s \rangle$$

Observables

Operator: $\mathbf{A_0} \otimes \mathbf{B_0}$ \checkmark \searrow Measurement: $A_0 \wedge B_0 \sim C_{00}$

 $A_0 \wedge B_0$: Measure the linear polarization of the left photon along a transverse axis a_0 and measure the linear polarization of the right photon along a transverse axis b_0

 C_{00} : Perform a global polarization measurement on the photon pair with four outcomes corresponding to the four eigenvectors of $\mathbf{A_0} \otimes \mathbf{B_0}$ in $H_2 \otimes H_2$

Conclusions

The realization of an operator in quantum mechanics by different measurements can give rise to different ontological models with respect to contextuality, causal structure, fine-tuning, etc.

More on that ...

• Gábor Hofer-Szabó, "Quantum mechanics without operational equivalence" (in preparation).

Trivialization of a simple theory

$$\begin{array}{cccc} \textbf{Non-trivial theory} & \longrightarrow & \textbf{Trivial theory} \\ \{M_1, M_2, M_3, M_1 \wedge M_2, M_1 \wedge M_3\} & \longrightarrow & \{M_{12}, M_{13}\} \\ & & & M_{12} \sim M_1 \wedge M_2 \\ & & & M_{13} \sim M_1 \wedge M_3 \\ & & & M_{12}^{(1)} \sim M_{13}^{(1)} \sim M_1 \end{array}$$

Noncontextuality

An ontological model for QM is **noncontextual** if

• every ontic state determines the probability distribution of outcomes of every measurement independently of what other measurements are simultaneously performed (simultaneous noncontextuality)

• any two measurements which are represented by the same self-adjoint operator have the same probability distribution of outcomes in every ontic state (measurement noncontextuality)

Noncontextuality

• Simultaneous noncontextuality:

$$p(X|M \wedge \Lambda) = p(X|M \wedge M' \wedge \Lambda)$$
 for all Λ

• Measurement noncontextuality:

If
$$p(X|M \wedge P) = p(X'|M' \wedge P)$$
 for all P
then $p(X|M \wedge \Lambda) = p(X'|M' \wedge \Lambda)$ for all Λ