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Abstract

In the framework of operational theories, introduced by Rob Spekkens (2005) as a gener-
alization of quantum mechanics, one standardly assumes operational equivalence, the iden-
tification of measurement having the same distribution of outcomes in every preparation.
From the Bridgmannian perspective of operationalism, this identification is unwarranted.
Strict operationalism identifies observables not with operators but with measurement pro-
cedures. In this paper, we explore how operational theories without operational equivalence
look like. We analyze these Bridgmannian theories with respect to the possible ontological
models, contextuality, signaling, causal structure, fine-tuning and many other features.

Keywords: operational theory, operational equivalence, contextuality, causal models, faith-
fulness

1 Introduction

On strict operationalism, concepts should be defined by empirical operations. In this tradition,
going back to Percy Bridgman (1927) and the Vienna Circle (Schlick, 1930), two concepts which
are defined by different operational procedures cannot be the same. Using Bridgman’s example,
length measured by a ruler and length measured by light signals are different concepts, and
true science should use different names to discern them. As times passed, philosophy of science
(and also Bridgman himself) has gradually drifted away from strict operationalism and revealed
various theoretical, semantic, pragmatic and common sense criteria for identifying concepts with
different operational basis (Chang, 2019). In the case of physical magnitudes or observables, the
standard way was to check whether the two measurements defining the two observables have
the same outcome in their common domain. If the length of medium sized objects agree when
measured by ruler or measured by light signals, then—at least in this common domain—one is
justified in using one length concept instead of two. But for this comparison at least one of the two
conditions needs to hold: (i) either the two measurements should be performed simultaneously
on each system; (ii) or we need a precise enough preparation procedure which guarantees that
the same system at different times is indeed in the same state and hence the measurements can
be performed one after another. This second happens in classical physics where systems can be
prepared in eigenstates providing definite results for every measurement. We prepare a system
in a given eigenstate, perform the one measurement, prepare the system again in the previous
eigenstate (or take a copy of it), perform the other measurement and compare the outcomes.
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If the preparation procedure, however, is not as fine-grained as to yield eigenstates for every
measurement, as is the case in quantum mechanics, it remains only the first option to identify
observables lying behind different measurement procedures: to measure them simultaneously
and check that the outcomes match in every single run.

But what if the two measurement procedures cannot be performed at the same time? Strictly
speaking, in this case we are not entitled to identify the two observables. Still, in quantum
mechanics this is what happens. Observables are identified not by measurement processes but
by self-adjoint operators. An operator, however, specifies only the distribution of outcomes in
a given state and not the outcome itself. Consequently, two different measurements which are
represented by the same self-adjoint operator that is which provide the same outcome statistics
in every quantum state are taken to measure the same observable even if the two measurements
cannot be simultaneously performed in the above experimental-operational sense. From the
Bridgmannian perspective, this identification is physically unjustified. The mere statistical match
of outcomes of two measurements which cannot be performed at the same time on the same
system does not guarantee that the two measurement would give the same outcome run-by-run
and hence that they measure the same observable.

The identification of measurements represented by the same self-adjoint operator in quan-
tum mechanics is often referred to as operational equivalence. It is introduced inductively and
successively into an operational theory: one starts with a set of measurements and preparations
and identifies measurements which provide the same outcome statistics in all preparations. Note,
that this identification is relative to the set of available preparations; a new preparation proce-
dure can break down operational equivalence if it discerns the measurement with respect to their
outcome statistics.

Operational equivalence is sometimes expressed in the form that observables are not as-
sociated with measurement procedures, as in Bridgman, but with operators. So instead of one
measurement–one observable we have one operator–one observable. Let me refer to the first iden-
tification of observables as Bridgmannian and to the second as standard (standard in quantum
mechanics). Schematically:

Bridgmannian Standard

Operator: O O
↙ ↘ ↓

Observable: O1 O2 O
↓ ↓ ↙ ↘

Measurement: M1 M2 M1 M2

Although from the Bridgemannian perspective, the standard position is unsatisfactory, it has
its own arguments. If all that quantum mechanics can predict, is the distribution of outcomes,
and if there are no preparations which would discern two measurements with respect to the
outcome distribution, then why would one like to discern the two measurements? They measure
the same observables, like gas thermometer and alcohol thermometer measure the same temper-
ature, and any difference in the concrete realization of the measurements is just of secondary
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importance.
The standard position remains consistent as long as we remain at the level of quantum

theory. But at the moment when we try to extend the ontology by hidden states, the identifi-
cation of different measurements represented by the same operator becomes problematic. The
Kochen-Specker theorems highlight just this fact. It is instructive to see how Kochen-Specker
theorems are interpreted on the standard approach. On this account, the lesson of the Kochen-
Specker theorems is that the value of certain observables associated with operators depends on
the measurement with which it is measured or co-measured. This fact is commonly referred to
as contextuality or “ontological contextuality” (Redhead, 1989) if not only the value but also
the observables themselves depend on which measurement they are measured by. But note, that
from the Bridgmannian perspective, there is nothing contextual in this fact; it simply shows that
we were too quick to identify observables measured by different measurements when we relied
simply on the match of the outcome statistics.

In this paper, I will revisit the Bridgmannian view of operationalism and investigate how far we
get when we do not identify operationally equivalent measurements. To this goal, I will use the
framework of operational theories and ontological models introduced by Rob Spekkens (2005).
This framework is general enough to embrace classical, quantum, super-quantum theories, and
to analyze contextuality, causal structure and many other important features across the differ-
ent theories. Operational theories come together with measurements and sets of simultaneous
measurements. In the Bridgmannian spirit, I will identify measurements by sets of laboratory
instructions and simultaneous measurements by the conjunction of such sets of instructions. In
quantum mechanics, a set of simultaneous measurements is often replaced by one single oper-
ationally equivalent (“global”) measurement which is represented by the same operator as the
simultaneous measurements. In our Bridgmannian approach, however, this replacement leads
to another operational theory with different measurements and different sets of simultaneous
measurements. In the paper, I will construct to every operational theory another theory where
no two measurements can be measured simultaneously, still the marginalizations of some of these
new measurements are operationally equivalent. I will call this construction trivialization. With
this construction in hand, I show the following:

1. The trivialization of an operational theory can be nicely represented graph theoretically as
taking the line graph of the graph representing the original theory.

2. On the example of three non-disturbing (no-signaling) operational theories—a classical
theory, the EPR-Bell scenario, and the Popescu-Rorhlich box, I will show how the most
important features (such as contextuality, causal structure, etc.) of the ontological model
change when we replace an operational theory with a new, trivialized theory.

3. We will discern two different and logically independent concepts of contextuality, simulta-
neous contextuality and measurement contextuality, and show that the trivialization can
alter the ontological models with respect to the former but not to the latter.

4. We argue that the physical realization of the very same set of operators in quantum me-
chanics by different measurements can give rise to completely different ontological models
with regard to simultaneous contextuality, causal structure and fine-tuning.
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2 Operational theories

An operational theory is a theory which specifies the probability of the outcomes of certain mea-
surements performed on a physical system which was previously prepared in certain states. Let
P = {P1, P2, . . . } be set of preparations of the system, M ={M1,M2, . . . } the set of measure-
ments which can be performed on the system, and let X ={X1, X2, . . . } be the set of outcomes
of the measurement.1 Let P,M, and X be random variables running over the preparations,
measurements and outcomes, respectively, assigning to every event its index. (Sometimes, we
will refer with “P = 1” to the preparation P1, with “M = 2” to the measurementM2, etc.) Using
these random variables, an operational theory is simply a set of conditional probabilities of the
outcomes given the various measurements and preparations, that is

p(X|M,P ) (1)

where P,M, and X run over the whole set P,M, and X , respectively.
Two measurements M1 and M2 are simultaneously measurable, if they can be performed on

the same system at the same time. Simultaneous measurability is an empirical question. Oper-
ationally, one identifies measurements by sets of laboratory instructions. The spin measurement
of an electron, for example, is given by the detailed description of the path of the electron, the
position of the Stern-Gerlach magnets and detectors, etc. As a consequence of this characteri-
zation of measurements by sets of laboratory instructions, two measurements M1 and M2 will
be simultaneously measurable if and only if there is a measurement which can be identified by
the conjunction of the sets of instructions characterizing M1 and M2. We call this measurement
the simultaneous measurement of M1 and M2 and denote it by M1 ∧M2 (which is again a mea-
surement inM). If M1 and M2 are not simultaneously measurable, we write M1 ∧M2 = ∅. If a
measurement in an operational theory is not a simultaneous measurement of two or more other
measurements, then we call it a basic measurement.

An important consequence of defining measurements by sets of instructions is that we do not
identify two measurements if they are operationally equivalent. Two measurements M1 and M2

are called operationally equivalent and denoted by M1 ∼ M2 if they yield the same probability
distribution of outcomes in every preparation2 of the system, that is if

p(X|M1, P ) = p(X|M2, P ) (2)

Being operationally equivalent does not mean that the two measurements are defined by the
same set of instructions. Consequently, the simultaneous measurement of M1 and M2 will not
be any measurement which is operationally equivalent to M1 ∧M2. If it exists, M1 ∧M2 will be
the measurement defined by the conjunction of the instructions definingM1 and the instructions
defining M2.

A maximal set of measurements which can be performed simultaneously on a system in
an operational theory is called a context. M1 and M2 are in the same context if and only if

1Without loss of generality, we can assume that all measurements have the same number of outcomes. If not,
we just add null-outcomes to the outcome set of some measurements.

2Which are again identified by sets of laboratory instructions.
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M1 ∧ M2 ∈ M. The set of all contexts is a compatibility structure of the theory. If in an
operational theory there are no two measurements which can be simultaneously measured, then
the compatibility structure is the empty set. We also refer to such operational theories as trivial.

We call an operational theory non-disturbing3 if no conditional probability depends on
whether the measurements are performed alone or along with simultaneous measurements, that
is:

p(X|M,P ) = p(X|M,M ′, P ) (3)

for any value pairs of the random variables M and M ′ for which the preimages are in the same
context. Otherwise, the operational theory is called disturbing. Obviously, trivial operational
theories are non-disturbing. If you want, you can always redefine measurements in a disturbing
operational theory to make the theory non-disturbing. If two measurements M1 and M2 inM
disturb one another, one can simply drop them from the theory and keep only M1 ∧M2 as a
kind of fine-grained measurement.

Next, we introduce a graph theoretical representation of operational theories borrowed from the
literature on the Kochen-Specker theorems (Kochen and Specker, 1967). In Figure 1, we depicted

Figure 1: The GHZ graph and Peres-Mermin graph

the graph of two Kochen-Specker theorems, the GHZ theorem (Greenberger et al., 1990) on the
left and the Peres-Mermin square (Peres, 1990; Mermin, 1993) on the right. The vertices of the
graph represent self-adjoint operators and a subset of vertices is connected by a (hyper)edge4 if
and only if the corresponding operators are pairwise commutating. In the GHZ graph one has
10 operators and 5 commuting subsets; in the Peres-Mermin graph one has 9 operators and 6
commuting subsets. The (hyper)graph of most of the Kochen-Specker theorems is linear : each
pair of hyperedges intersects in at most one vertex.

In this paper, we take over this graphic representation and use it in the framework of the
operational theories but with a different meaning. Vertices will represent here basic measurements
and (hyper)edges will represent sets of simultaneous measurements, that is contexts. In this
interpretation, the above GHZ graph represents a non-trivial operational theory with 10 basic
measurement arranged in 5 contexts and the Peres-Mermin graph represents a non-trivial theory

3Or no-signaling, if the measurements are spacelike separated.
4A hyperedge can connect more than two vertices.
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with 9 basic measurement and 6 contexts. The (hyper)graph of both theory is linear: each basic
measurement is featuring in exactly two contexts.

3 Ontological models

The role of an ontological model (hidden variable model) is to account for the conditional prob-
abilities of an operational theory in terms of underlying realistic entities of the measured system
called ontic states (hidden variables, elements of reality, beables). Let the set of ontic states be
L={Λ1,Λ2, . . . } and the random variable L over is Λ. An ontological model specifies a probability
distribution over the ontic states associated with each preparation:

p(Λ|P ) (4)

and a set of response functions that is a set of conditional probabilities associated with every
measurement and every ontic state:

p(X|M,Λ) (5)

again with the obvious normalizations. Assuming the independence of the probability distribu-
tions from the measurements, called no-conspiracy :

p(Λ|M,P ) = p(Λ|P ) (6)

and the independence of the response functions from the preparations in which the ontic states
are featuring, called λ-sufficiency :

p(X|M,P,Λ) = p(X|M,Λ) (7)

and using the theorem of total probability, one can recover the operational theory from the
ontological model in terms of the probability distributions and response functions:

p(X|M,P ) =
∑

Λ

p(X|M,Λ) p(Λ|P ) (8)

An ontological model is called outcome-deterministic (value-definite) if

p(X|M,Λ) ∈ {0, 1} (9)

otherwise it is called outcome-indeterministic.

Next, we define two different and logically independent concepts of noncontextuality (see Hofer-
Szabó, 2021a, b, c). First, an ontological model is called simultaneous noncontextual if every
ontic state determines the probability of the outcomes of every measurement independently of
what other measurements are simultaneously performed, that is

p(X|Mi,Λ) = p(X|Mi ∧Mj ,Λ) (10)
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for any value pairs of measurements Mi,Mj ∈ M which are in the same context; otherwise the
model is called simultaneous contextual. Simultaneous noncontextuality is a kind of inference to
the best explanation for why an operational theory is non-disturbing: if the ontological model
for an operational theory is noncontextual in the sense of (10), then—assuming no-conspiracy
(6) and λ-sufficiency (7)—one can show that the operational theory is non-disturbing (3).

Second, an ontological model is called measurement noncontextual if any two operationally
equivalent measurements, that is Mi,Mj ∈ M which have the same probability distribution of
outcomes in every preparation

p(X|Mi, P ) = p(X|Mj , P ) (11)

also have the same probability distribution of outcomes in every ontic state

p(X|Mi,Λ) = p(X|Mj ,Λ) (12)

Otherwise the model is called measurement contextual. Measurement noncontextuality is again a
kind of inference to the best explanation; in this case the explanation of operational equivalence:
(12)—together with no-conspiracy (6) and λ-sufficiency (7)—implies (11).

In quantum mechanics where operationally equivalent measurements M1 ∼ M2 are repre-
sented by the same operator O, measurement noncontextuality is just the requirement that the
response functions of an ontological model should depend only on the operator and not on which
specific measurement is realizing the operator, that is

p(X|M1,Λ) = p(X|M2,Λ) = p(X|O,Λ)

Note, that trivial operational theories are trivially simultaneously noncontextual (since there
are no simultaneous measurements) but they still can be measurement contextual. Also note that
although simultaneous noncontextuality and measurement noncontextuality are different and
logically independent notions, in case of non-disturbing theories measurement noncontextuality
implies simultaneous noncontextuality: if Mj does not disturb Mi, then (11) holds for Mi and
Mi ∧Mj , but then, due to measurement noncontextuality, also (12), which is just simultaneous
noncontextuality (10).

4 Trivialization

In this paper, I will investigate operational theories in pairs where the one theory has a non-
trivial and the other theory a trivial compatibility structure. More precisely, I will construct from
a non-trivial operational theory a trivial one by simply replacing each context of simultaneous
measurements by a basic measurement (while preserving the preparations). This replacement
goes along the following lines: Take a context in the non-trivial theory, that is a maximal set
of simultaneous measurements {M1,M2, . . . ,Mk} and replace it by one single measurement,
denoted by M12...k with outcome set of the form X (1) ×X (2) × ...×X (k). Schematically,

Context: {M1,M2, . . . ,Mk} −→ Basic measurement:M12...k (13)
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Furthermore, require that M12...k be operationally equivalent to the simultaneous measurement
M1 ∧M2 ∧ · · · ∧Mk. If the non-trivial operational theory is non-disturbing, then it also follows
that for all preparations the outcome distribution for the simultaneous measurement of every
subset of the context is recovered as a marginal of the outcome distribution of M12...k .

An example might help. Suppose the measurements of a non-trivial theory are

M ={M1,M2,M3,M1 ∧M2,M1 ∧M3}

that is the compatibility structure is
{
{M1,M2}, {M1,M3}

}
. Then the measurements of the

new, trivial theory will beM′ = {M12,M13} with the following operational equivalences:

M12 ∼M1 ∧M2, M13 ∼M1 ∧M3,
∑

2

M12 ∼
∑

3

M13 ∼M1

where
∑

2M12 denotes that we cluster the outcomes of M12 only according to the first index.
Note that even though M12 is indexed by two indices, it is just as a basic measurement

in the new operational theory as M1 and M2 was in the old theory. The only reason why we
use these multiple indices is to be able to relate M12 to M1 and M2 simply by marginalization
and operational equivalence. We could have indexed M12 also using only one single index and
then relate it to M1 and M2 by different functions: These functions, however, can be quite
complicated. Again, M12 is not necessarily a composite measurement such as the simultaneous
measurement M1 ∧M2. it well can be a simple measurement. One need not think of M12 as
being two measurements performed on two different subsystems, as in the usual spin measurement
scenarios in quantum mechanics. M12 can be also be a simple measurement on a localized system.

Now, having replaced each set of simultaneous measurements with a basic measurement, the
new operational theory will be trivial: no two measurements can be simultaneously measured.
If we represent this new operational theory by a graph, this graph will have only vertices but
no edges. The first two graphs in Figure 2 show the graph of our above mini operational theory
and the trivialized new theory.

Figure 2: The graph and line graph of our mini operational theory

We could stop at this point but then some information would be lost in the new operational
theory, namely, that certain marginalizations of the new measurements are operationally equiva-
lent. To preserve this information, we add (hyper)edges to the graph of the new theory with the
following meaning : we draw an (hyper)edge between a set of vertices in the trivial theory, if the
contexts they represented in the non-trivial theory had at least one common basic measurement,
or equivalently, if the corresponding basic measurements have operationally equivalent marginal-
izations in the trivial theory. For example, the graph of our mini operational will get an edge (see
the third graph in Figure 2) because the marginalization ofM12 andM13 are operationally equiv-
alent to one another (both being operationally equivalent to M1). Note that the (hyper)edges in
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the graph of the non-trivial and trivial theories mean different things: in the non-trivial opera-
tional theory they meant simultaneous measurability, while in the trivial operational theory they
mean having operationally equivalent marginalizations. To express this different interpretations
of the edges, we use continuous line in the non-trivial operational theories and broken line in the
trivial ones.

This construction can be nicely represented graph theoretically by simply taking the line
graphs of the (hyper)graph of the non-trivial operational theory. A line graph L(G) is constructed
from a graph G such that for each (hyper)edge in G we make a vertex in L(G) and for every two
(hyper)edges in G that have a vertex in common, we make an edge between their corresponding
vertices in L(G). The line graphs of the GHZ graph and Peres-Mermin graph, for example, are
depicted in Figure 3. The number of the vertices and edges flip in both line graphs: the line

Figure 3: The line graphs of the GHZ graph and Peres-Mermin graph

graph of the GHZ graph contains 5 vertices and 10 edges, the line graph of the Peres-Mermin
graph contains 6 vertices and 9 edges. Since both the GHZ graph and Peres-Mermin graph are
linear, their line graphs contain only edges but no hyperedges.

To sum up, in the graph G of the non-trivial operational theory, vertices represent the old
basic measurements and (hyper)edges represented contexts that is sets of simultaneous measure-
ments. In the line graph L(G) of the trivialized theory, vertices represent the new basic mea-
surements but—since there are no simultaneous measurements— the (hyper)edges mean some-
thing else: they connect vertices representing measurements which have operationally equivalent
marginalizations.

5 Three operational theories with non-trivial compatibility struc-
ture

In this Section, we consider three non-trivial operational theories each with the same four basic
measurements A0, A1, B0, B1 such that A0, A1 have binary outcomes X0, X1 and B0, B1 have
binary outcomes Y0, Y1. The compatibility structure of all three theories is{

{A0, B0}, {A0, B1}, {A1, B0}, {A1, B1}
}

Consequently, the graph (and line graph, see next section) depicted in Figure 4 is the same for
all three operational theories. Since the graph is linear, the line graph contains only edges and
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no hyperedges.

Figure 4: The graph and line graph of the three operational theories

Let A be a random variable over the measurements {A0, A1} and B a random variable over the
measurements over the measurements {B0, B1}. Similarly, let X and Y be random variables over
the outcomes {X0, X1} and {Y0, Y1}, respectively, such that A,B,X, Y = 0, 1. The operational
theories differ in the preparations. Each theory has only one preparation: the first one PCL, the
second PEPR, and the third PPR. We refer to the operational theories as a classical operational
theory, the EPR-Bell situation, and the Popescu-Rorhlich (PR) box (Popescu and Rohrlich,
1994), respectively.

The three operational theories can be characterized by the following conditional probabilities:

p(X|A,P ) = p(Y |B,P ) =
1

2
(14)

p(X,Y |A,B, PCL) =

{
1
2 if X ⊕ Y = 0

0 otherwise
(15)

p(X,Y |A,B, PEPR) =


3
8 if X ⊕ Y = 0 and A ·B = 0
1
8 if X ⊕ Y = 1 and A ·B = 0
1
2 if X ⊕ Y = 0 and A ·B = 1

0 if X ⊕ Y = 1 and A ·B = 1

(16)

p(X,Y |A,B, PPR) =

{
1
2 if X ⊕ Y = A ·B
0 otherwise

(17)

where P is a variable over P = {PCL, PEPR, PPR} and ⊕ is the sum modulo 2. We come back to
the quantum mechanical representation of the EPR-Bell situation in Section 7.

All three operational theories are non-disturbing:

p(X|A,P ) = p(X|A,B, P ) =
1

2
(18)

p(Y |B,P ) = p(Y |A,B, P ) =
1

2
(19)

The CHSH expression (Clauser, Horne, Shimony, and Holt, 1969)

CHSHP = 〈A0, B0〉P + 〈A0, B1〉P + 〈A1, B0〉P − 〈A1, B1〉P (20)
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where

〈A,B〉P = p(X ⊕ Y = 0|A,B, P )− p(X ⊕ Y = 1|A,B, P )

is 2 for the classical theory, satisfying the CHSH inequality, |CHSHP | 6 2; it is 2.5 for the EPR-
Bell situation, violating (not maximally) the CHSH inequality; and 4 for the PR box which is
beyond the Tsirelson bound 2

√
2.

Next, we construct an ontological model for each operational theory. The exact probabilistic
specification of the models in terms of distributions and response functions is given in the Ap-
pendix. From our perspective, however, it will be more instructive to look at the bundle diagrams
(see Abramsky et al., 2017; Abramsky & Brandenburger, 2011) of the models depicted in Figure
5.
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Figure 5: Bundle diagrams of the ontological models for the operational theories with non-trivial
compatibility structure

First, look at the “cuboid” of the classical model on the left. The quadrangle at the bottom is
the base space of the bundle, actually the graph of the operational theory “laid down”. It consists
of four vertices representing the four measurements A0, A1, B0, B1 such that two measurements
are connected if and only if they are in the same context. The vertical broken lines are the fibers
of the bundle. The two vertices on a given fiber at different heights denoted by 0 and 1 represent
the outcomes of the corresponding measurements: X = 0, 1 for A = 0, 1 and Y = 0, 1 for
B = 0, 1. Now, there are two quadrangles in the figure, one connecting the upper vertices of the
adjacent fibers and one connecting the lower vertices. Each quadrangle represents the response
functions of the model for a given ontic state. The green and continuous upper quadrangle
belongs to the ontic state Λ1. In this ontic state the outcome of each measurement is 1. (The
outcome of A0, A1 is X1 and the outcome of B0, B1 is Y1.) The red and broken lower quadrangle
belongs to the ontic state Λ0 for which each outcome is 0. The model is outcome-deterministic. It
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also fixes the outcomes of the simultaneous measurements in the different contexts such that no
outcome of any measurement in any ontic state depends on whether a simultaneous measurement
is also performed. Thus, the model is simultaneous noncontextual. Moreover, the model is also
measurement noncontextual: in both ontic state the outcome of any two operationally equivalent
measurements is the same. Setting the probability of both ontic states to 1

2 , the operational
theory can be recovered.

Let us now go over to the bundle diagram of the PR-box on the right of Figure 5. Again,
we have two ontic states Λ1 and Λ0 but the green and red lines do not close now. They are
discontinuous at the fibre of B1. To avoid ambiguity with respect to the outcome of B1, we put a
dot at the one end of both discontinuous lines. This dot indicates the outcome of B1 if measured
alone and not together with A0 or A1 (when the outcome of B1 is indicated by the value of the
appropriate segment of the green or red lines connecting the fibre of B1 with the fibre of A0 or
A1). Thus, the model is outcome deterministic. However, it is simultaneous contextual:

δY,Λ = p(Y |B1,Λ) 6= p(Y |A1 ∧B1,Λ) = δY⊕1,Λ (21)

That is performing the measurement B1 in the “green” ontic state, Λ1, together with A1, the
outcome of B1 will be Y0, while performing B1 together with A0, the outcome will be Y1; and
vice versa for the “red” ontic state, Λ0. Note that the model cannot be made simultaneously
noncontextual even at the price of giving up outcome determinism: set p(Y |B1,Λ) as you wish,
it cannot agree with both p(Y |A0 ∧ B1,Λ) and p(Y |A1 ∧ B1,Λ) since they are different. Since
simultaneous contextuality implies measurement contextuality for non-disturbing theories, the
model for the PR-box will also be measurement contextual. Indeed,

p(Y |B1, PPR) = p(X|A1 ∧B1, PPR) (22)

despite the fact that inequality (21) holds. We can recover the PR-box theory again by setting
the probability of both ontic states to 1

2 .
Finally, the bundle diagram in the middle of Figure 5 represents an ontological model for the

EPR-Bell scenario. Here we have four ontic states portrayed by lines of different color and style.
The “green” and “red” ontic states are outcome deterministic and noncontextual in both senses.
The “blue” and “brown” ontic states, however, are outcome deterministic but simultaneous and
hence measurement contextual: their lines do not close on the fibre of B1. This means that in
these ontic states the outcome of B1 will be different when measured alone and when co-measured
with A0 or A1. The dots at one end of the lines indicate the outcomes the outcome of B1 when
measured alone. By setting the probability of the two noncontextual ontic states to 3

8 and the
probability of the two contextual ontic states to 1

8 , the probabilities of the EPR-Bell scenario
can be recovered (see Appendix).

To sum up, we constructed three outcome-deterministic ontological models for the three
operational theories such that the model for the classical theory is noncontextual (in both senses)
and the models for other two theories are contextual (again, in both senses). This is in tune with
the satisfaction and violation of the CHSH inequality for the different theories.
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6 Three operational theories with trivial compatibility structure

The three operational theories in the previous Section were non-trivial, they had a non-trivial
compatibility structure. Let us now “trivialize” them in the way outlined in Section 2. This means
that we introduce four new measurements associated with the four old contexts (i, j = 0, 1):

Context: {Ai, Bj} −→ Basic measurement:Cij (23)

Thus, the new set of measurements is C =
{
C00, C01, C10, C11

}
with trivial compatibility struc-

ture, each measurement having the same outcome space Z=
{
Z00, Z01, Z10, Z11

}
. Let C be a

random variable over C assigning to every measurement its index pair. Similarly, let Z be a
random variable over Z assigning to every outcome its index pair. Both C and Z can be ex-
pressed as Cartesian products: C = C1 ×C2 and Z = Z1 × Z2 where C1 and Z1 assign to every
measurement or outcome its first index and C2 and Z2 assign the second index.

The following marginalizations of the new basic measurements are operationally equivalent
and also equivalent to the old basic measurements:

∑
2

C00 ∼
∑

2

C01 ∼ A0,
∑

2

C10 ∼
∑

2

C11 ∼ A1∑
1

C00 ∼
∑

1

C10 ∼ B0,
∑

1

C01 ∼
∑

1

C11 ∼ B1

The line graph of the trivial theory is depicted on the right side of Figure 4.
The three trivial operational theory can be characterized by the following conditional prob-

abilities:

p(Z|C,PCL) =

{
1
2 if Z ⊕ Z2 = 0

0 otherwise
(24)

p(Z|C,PEPR) =


3
8 if Z ⊕ Z2 = 0 and C · C2 = 0
1
8 if Z ⊕ Z2 = 1 and C · C2 = 0
1
2 if Z ⊕ Z2 = 0 and C · C2 = 1

0 if Z ⊕ Z2 = 1 and C · C2 = 1

(25)

p(Z|C,PPR) =

{
1
2 if Z ⊕ Z2 = C1 · C2

0 otherwise
(26)

Observe that the probabilistic description of trivial operational theory is formally analogous
with the non-theory of the previous section: we obtain equations (15)-(17) from (24)-(26) by
simply replacing C1, C2, Z1, Z2 with A, B, X, Y , respectively. The measurements and outcomes,
however, are different in the two theories.

All three operational theories are non-disturbing in a trivial sense: there are no simultaneous
measurements. Therefore, the CHSH inequalities cannot be defined. Again, one can construct
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an ontological model for each operational theory. The distribution of ontic states is the same as
in the models for the non-trivial theories. The response functions are obtained from those of the
non-trivial theory by simply replacing A, B, X, Y with C1, C2, Z1, Z2. All this is specified in
the Appendix and visualized in Figure 6. As can be seen, the lines representing the outcomes of

Classical PR−boxEPR−Bell
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Figure 6: Bundle diagrams of the ontological models for the operational theories with non-trivial
compatibility structure

simultaneous measurements have disappeared. Each basic measurement has a definite outcome
in every ontic state denoted by a dot at the appropriate height on the fibre corresponding to the
measurement. In the classical theory and in the PR box there are two ontic states (“green” and
“red”), in the EPR-Bell scenario there are four ontic states (“green”, “red”, “blue” and “brown”).
All three models are outcome-deterministic and simultaneously non-contextual since there are
no simultaneous measurement. But the non-classical (EPR and PR) models are measurement
contextual. Certain marginalizations of the measurements, for example,

∑
1C01 and

∑
1C11 are

operationally equivalent. Still, both the “blue” and “brown” ontic states in the EPR model and
“green” and “red” ontic states in the PR model assign different outcomes for them. This shows,
that measurement noncontextuality is a stronger concept than simultaneous noncontextuality.

7 The causal structure of the ontological models

Let us turn now to the causal structure of the ontological models. Since these models provide in-
formation only about the probabilistic relations of the events and not about their spatiotemporal
or other relations, the reconstruction of the causal structure will rely solely on these probabilistic
information. The machinery to deduce causal relations from probabilistic relations is known
as causal discovery algorithms and was introduced in (Pearl, 2009; Spirtes, Glymour, Scheines,
2001). These algorithms do not make use of the full probabilistic setting, they use only the con-
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ditional and unconditional independence relations to construct a causal graph. A causal graph is
a directed acyclic graph (DAG),5 where the vertices represent random variables and the directed
edges represent causal relevance between these variables. For a variable X, the set of vertices
that have directed edges in X is called the parents of X, denoted by Par(X), and the set of
vertices that are endpoints of a directed paths from X is called the descendants of X, denoted
by Des(X). A set V of random variables (on a classical probability space) is said to satisfy the
Causal Markov Condition relative to a causal graph G if for any X ∈ V and Y /∈ Des(X):

p(X|Par(X), Y ) = p(X|Par(X))

That is, conditioning on its parents any random variable will be probabilistically independent
from any of its non-descendants.

Now, causal discovery algorithms take as input a set of conditional and unconditional in-
dependence relations among random variables and provide a causal graph G as output which
returns these independence relations if the Causal Markov Condition is applied to the graph.6

Here we do not enter into the details of these algorithms; rather we simply list the indepen-
dence relations of the ontological models of the non-trivial and trivial operational theory and the
corresponding causal graphs.7

The conditional independence relations in the ontological models of our three non-trivial
theories are the following:

p(X|A,B) = p(X|A) (27)
p(Y |A,B) = p(Y |B) (28)

p(X|A, Y,Λ) = p(X|A,Λ) (29)
p(Y |X,B,Λ) = p(Y |B,Λ) (30)
p(X|A,B,Λ) = p(X|A,Λ) (31)

p(Y |A,B,Λ)
(CL)
= p(Y |B,Λ) (32)

The first two relations are just the non-disturbance equations (18)-(19), the subsequent re-
lations follow from the appropriate response functions (42)-(44), (47)-(49), and (52)-(54) of the
models specified in the Appendix. The first five conditional independence relations (27)-(31)
hold for all the three models but the last relation (32) holds only for the classical model.

The causal graphs which return the independences for the three models are depicted in Figure
7. These graphs are minimal in the sense that no subgraph can return all the independence
relations. Applying the Causal Markov Condition to the graphs, one obtains also an extra

5Note that these causal graphs are different from the graphs and line graphs used in the previous Sections to
represent compatibility structure and common marginalization.

6More precisely, the independence relations are returned if all those graphical criteria are applied to the graph
which can be derived from the Causal Markov Condition plus the semi-graphoid axioms. These criteria are
captured by the so-called d-separation criterion (see Pearl, 2009, Ch. 1).

7For the application of the causal discovery algorithm for the EPR-Bell scenario, see (Suarez and SanPedro,
2009; Wood and Spekkens, 2015).
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Figure 7: Causal structure of the ontological models with non-trivial compatibility structure

unconditional independence relation among the exogenous variables (that is variables which
have no parents):

p(A,B,Λ) = p(A)p(B)p(Λ) (33)

These relations are not specified in the model but are consistent with it. They are a special case
of the no-conspiracy condition (6).

Observe that there is an edge in the graph of the non-classical models connecting A and Y .
This edge represents the causal influence responsible for simultaneous contextuality: the value
of Y causally depends not only on the value of X and Λ but also on the value of Y . If A and Y
are spacelike separated, this edge represents a non-local causal influence. Note again, however,
that in constructing the graphs, we relied only on the probabilistic features of the models and
not on the spatiotemporal localizations of the events—in strong contrast to the usual EPR-Bell
analysis.

A further difference between the classical and non-classical models concerns fine-tuning. To
see this, first recall that any joint probability distribution of the random variables which is
compatible with the corresponding causal graph in Figure 7 is of the form

p(X,Y,A,B,Λ)
(CL)
= p(X|A,Λ)p(Y |B,Λ)p(A)p(B)p(Λ) (34)

for the classical model and of the form

p(X,Y,A,B,Λ)
(EPR, PR)

= p(X|A,Λ)p(Y |A,B,Λ)p(A)p(B)p(Λ) (35)

for the non-classical models. In both equations, the conditional probabilities (the response
functions) are called causal parameters and the unconditional probabilities are called statistical
parameter (where p(Λ) is just a short hand for p(Λ|P )). By manipulating these parameters,
one obtains all the joint distributions compatible with the causal graphs. Since causal discovery
algorithms are sensitive only to the independence relations and not to the full joint probability
distribution, the question arises, whether these independence relations are robust enough against
the perturbation of the causal-statistical parameters, that is whether they continue to hold when
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these parameters are not those specified in the Appendix but take on other values. If so, the
graph is said to be faithful, if not, it is said to be fine-tuned.

Now, for the classical model all the conditional independences (27)-(32) can be derived from
the joint probability distribution equation (34) plus the theorem of total probability. This means
that the conditional independences hold for any choice of the parameters. Thus, the classical
model is faithful. The crucial step in the derivation of the conditional independences is the
factorization

p(X,Y |A,B,Λ)
(CL)
= p(X|A,Λ)p(Y |B,Λ)

By summing up for the different variables, one recovers the different conditional independences
(27)-(32). In the non-classical models, however, instead of the factorization one has

p(X,Y |A,B,Λ)
(EPR, PR)

= p(X|A,Λ)p(Y |A,B,Λ)

and hence summing up does not recover (32) and the non-disturbance (28). And indeed, for a
non-zero measure of the choice of the parameters, these conditional independences will fail to
hold. Therefore, the non-classical models are fine-tuned.

These facts are in tune with Cavalcanti’s (2018) theorem on bipartite Bell scenarios stating
that every causal model for a non-disturbing operational theory violating the CHSH inequality
requires fine-tuning. Cavalcanti’s result points out a deep connection between simultaneous
contextuality of the model and fine tuning of the corresponding graph. At the end of his paper,
he asks whether also measurement noncontextuality can be understood as arising from the no-
fine-tuning condition. To answer Cavalcanti’s question, let us now turn to the causal structure of
the ontological models of the trivial theory . In these models there are no conditional independence
relations, except that among the exogenous variables:

p(C,Λ) = p(C)p(Λ) (36)

which is again consistent with the models. The causal graph which is compatible with (36) is de-
picted in Figure 8. Note, that the graph is the same for all three models. The four measurements

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Λ

Z

C

Figure 8: Causal structure of the ontological models with trivial compatibility structure

cannot be simultaneously performed, therefore the models are (trivially) simultaneously noncon-
textual. The models are also faithful since any choice of the parameters in the joint probability
distribution equation

17



p(Z,C,Λ) = p(Z|C,Λ)p(C)p(Λ) (37)

compatible with the graph in Figure 8 will return the same independence relations, that is (36).
Thus, the answer to Cavalcanti’s question is no. Both the models of the non-trivial and trivial
non-classical operational theories are measurement contextual, still the causal graph is fine-tuned
for the former and faithful for the latter. Fine-tuning relates to simultaneous contextuality but
not to measurement contextuality.

To sum up, the causal graph of the classical and non-classical models of the non-trivial
operational theory are different; the graph of the non-classical models is fine-tuned and contains
an edge representing simultaneous contextuality. This difference between the graphs collapses
upon trivializing the theories; the graph of all three models will be the same and will be trivial
and faithful.

Quantum mechanics

Quantum mechanics is an operational theory in a special linear algebraic representation. There-
fore, it is instructive to see the quantum mechanics represents the EPR-Bell scenario and see
how this relates to the Bridgmannian and the standard identification of observables. The prob-
abilities of the both the non-trivial operational theory (14) and (16) and the trivial operational
theory (25) are generated quantum mechanically as follows:

〈Ψs|(XA ⊗ I)Ψs〉 = p(X|A,PEPR) (38)
〈Ψs|(I⊗YB)Ψs〉 = p(Y |B,PEPR) (39)

〈Ψs|(XA ⊗YB)Ψs〉 = p(X,Y |A,B, PEPR) (40)

where |Ψs〉 is the singlet state representing the preparation PEPR in the Hilbert space H2 ⊗H2;
I is the unit operator in H2; and XA and YB scroll over eight projections

X0
A0 , X1

A0 , X0
A1 , X1

A1

Y0
B0 , Y1

B0 , Y0
B1 , Y1

B1

corresponding to eight unit vectors |XA〉 and |Y B〉 in H2 such that

|〈XA|Y B〉|2 =


3
4 if X ⊕ Y = 0 and A ·B = 0
1
4 if X ⊕ Y = 1 and A ·B = 0

1 if X ⊕ Y = 0 and A ·B = 1

0 if X ⊕ Y = 1 and A ·B = 1

The operators representing the four measurements are:

A0 = X0
A0 −X1

A0 , A1 = X0
A1 −X1

A1

B0 = Y0
B0 −Y1

B0 , B1 = Y0
B1 −Y1

B1
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with eigenvalues ±1.
The operators, however, represent different measurements in the non-trivial and trivial oper-

ational theory. Consider, for example, the quantum optical realization of the EPR-Bell scenario.
In both operational theories, one prepares an ensemble of photon pairs in singlet state and per-
forms certain polarization measurements on the pairs. In the non-trivial theory, however, one has
four local measurements: two linear polarization measurements on the left photon, A0 and A1,
and two linear polarization measurements on the right photon, B0 and B1. These measurements
are the following:

A0 : Measure the linear polarization of the left photon along a given transverse axis a0 (with
outcome +1 if the photon passes the polarizer and −1 if not)

A1 : Measure the linear polarization of the left photon along a transverse axis a1 at 60◦ from
the axis a0

B0 : Measure the linear polarization of the right photon along a transverse axis b0 at 60◦ from
the axis both a0 and a1

B1 : Measure the linear polarization of the right photon along the transverse axis b1 = a1

The polarization measurements on the left subsystem can be simultaneously performed with
the polarization measurements on the right subsystem realizing the simultaneous measurements
A0∧B0, A0∧B1, A1∧B0, and A1∧B1. The local measurements do not disturb one another, still
the ontological model constructed above is simultaneous contextual: performing measurement
A0 or A1 causally influences the outcomes of B0 and B1. Since the the events A and Y are
spacelike separated, this is a clear violation of local causality.

In the trivial operational theory, however, one has different measurements. Here one has four
global measurements, each with four outcomes represented by four orthogonal unit vectors in
H2 ⊗H2:

C00 : Perform a global polarization measurement on the photon pair with four outcomes corre-
sponding to the basis

{
|XA0

0 〉 ⊗ |Y
B0

0 〉 , |X
A0
0 〉 ⊗ |Y

B0
1 〉 , |X

A0
1 〉 ⊗ |Y

B0
0 〉 , |X

A0
1 〉 ⊗ |Y

B0
1 〉

}
C01 : Perform a global polarization measurement on the photon pair with four outcomes corre-

sponding to the basis
{
|XA0

0 〉 ⊗ |Y
B1

0 〉 , |X
A0
0 〉 ⊗ |Y

B1
1 〉 , |X

A0
1 〉 ⊗ |Y

B1
0 〉 , |X

A0
1 〉 ⊗ |Y

B1
1 〉

}
C10 : Perform a global polarization measurement on the photon pair with four outcomes corre-

sponding to the basis
{
|XA1

0 〉 ⊗ |Y
B0

0 〉 , |X
A1
0 〉 ⊗ |Y

B0
1 〉 , |X

A1
1 〉 ⊗ |Y

B0
0 〉 , |X

A1
1 〉 ⊗ |Y

B0
1 〉

}
C11 : Perform a global polarization measurement on the photon pair with four outcomes corre-

sponding to the basis
{
|XA1

0 〉 ⊗ |Y
B1

0 〉 , |X
A1
0 〉 ⊗ |Y

B1
1 〉 , |X

A1
1 〉 ⊗ |Y

B1
0 〉 , |X

A1
1 〉 ⊗ |Y

B1
1 〉

}
Note that these global polarization measurement require a complicated arrangement of beam
splitters, polarizing beam splitters, wave plates, photo detectors and other non-linear optical
devices (Mattle et al., 1996; Lütkenhaus et al., 1999; Weihs and Zeilinger 2001). What is
important, is that C00 is not simply performing a linear polarization measurement on the left
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photon along axis a0 and performing a linear polarization measurement on the right photon
along a given transverse axis b0. In other words, C00 is not the same measurement as A0 ∧ B0.
They are operationally equivalent but not the same. Consequently,

∑
2C00 will not be the same

as A0; they will be only operationally equivalent.
This new operational theory has a trivial compatibility structure: C01 and C11 cannot be

performed simultaneously, that is, they cannot be performed on the same pair of photons. Con-
sequently, any ontological model for the theory is (trivially) simultaneously noncontextual. But
the model we provided will be measurement contextual: some ontic states will provide different
outcomes for the C01 and C11 contrary to the fact that

∑
1C01 and

∑
1C11 are operationally

equivalent. Note, however, that measurement contextuality does not lead to the violation of local
causality.

In the Introduction, we discerned the Bridgmannian and the standard identification of ob-
servables. In the first case, we identified observables with operators, in the second, with mea-
surements. Applying this distinction to the EPR-Bell scenario, one gets the following schema:

Bridgmannian Standard

Operator: A0 A0

↙ ↘ ↓
Observable: O1 O2 O

↓ ↓ ↙ ↘
Measurement: A0

∑
2C00 A0

∑
2C00

The local and global measurements are represented by the same operator in quantum me-
chanics. But do they measure the same observable? According to the standard interpretation
yes; according to the Brigdmannian interpretation: no.

Conclusions

Quantum mechanics, at least in the minimalist interpretation, is an operational theory in a
special linear algebraic representation. A distinctive feature of this theory is operational equiva-
lence, the representation of different (and not necessarily simultaneous) measurements providing
the same outcome statistics in every preparation by the same self-adjoint operator (or POVM).
From the perspective of strict operationalism, the identity of the representation of such mea-
surements does not mean the identity of the measured observables. In this paper, I intended
to explore some of the consequences of abandoning operational equivalence in quantum theory
and in general operational theories. We saw, how some of the main properties of the underly-
ing ontological models will change if some measurements are replaced with other operationally
equivalent measurements. To illustrate this change, we took the example of the EPR-Bell sce-
nario and compared the ontological models of the non-trivial and the trivial operational theories
realizing the EPR-Bell scenario by local and global measurements, respectively. The EPR-Bell
situation, however, was not peculiar whatsoever, we could have equally well used the GHZ or
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the Peres-Mermin case to this goal. The four commuting operators in the horizontal line of the
GHZ pentagram

σz ⊗ σz ⊗ σz σz ⊗ σx ⊗ σx σx ⊗ σz ⊗ σx σx ⊗ σx ⊗ σz

or the three commuting operators in the third column of the Peres-Mermin square

σz ⊗ σz σy ⊗ σy σx ⊗ σx

can also be represented both by local measurements on individual photons (represented by the
graphs in the Figure 1) and also by complicated global GHZ or Bell state measurements on
photon pairs or triples (represented by the linegraphs in the Figure 3). These local and global
measurements are different and so are the ontological models. All ontological models will be
measurement contextual, but those for global measurements will be simultaneously noncontextual
and will have a trivial causal structure. All these results point in the same direction which is also
the main message of this paper: Operationally equivalent families of measurements represented by
the same operators in quantum mechanics can give rise to ontological models with highly different
features. Thus, to study these models, it is not enough to simply investigate quantum mechanics
at an abstract mathematical level; we also need to take into consideration the measurements
represented by the operators. This is the lesson that we can learn from Bridgman.

Appendix

Three outcome-deterministic ontological model for the three operational theories with non-trivial
compatibility structure:

Classical theory.

• Set of ontic states: L = {Λ0,Λ1}

• Random variable on L : Λ = 0, 1

• Probability distribution:

p(Λ|PCL) =
1

2
(41)

• Response functions of the non-trivial theory:

p(X|A,Λ) = δX,Λ (42)
p(Y |B,Λ) = δY,Λ (43)

p(X,Y |A,B,Λ) = δX,Λ · δY,Λ (44)

where δ is the Kronecker delta function.

• Response functions of the trivial theory:

p(Z|C,Λ) = δZ1,Λ · δZ2,Λ (45)
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The EPR-Bell scenario.

• Set of ontic states: L × L where L = {Λ0,Λ1}

• Random variable on L × L : Λ1 × Λ2 with Λ1,Λ2 = 0, 1

• Probability distribution:

p(Λ1,Λ2|PEPR) =

{
1
8 if Λ1 ⊕ Λ2 = 1
3
8 otherwise

(46)

• Response functions of the non-trivial theory:

p(X|A,Λ1,Λ2) = δX,Λ1 (47)
p(Y |B,Λ1,Λ2) = δY,Λ2 (48)

p(X,Y |A,B,Λ1,Λ2) = δX,Λ1 · (δY⊕(A·B),Λ2
· δΛ1⊕Λ2,1 + δY,Λ2 · δΛ1⊕Λ2,0) (49)

• Response functions of the trivial theory:

p(Z|C,Λ) = δZ1,Λ1 · (δZ2⊕(C1·C2),Λ2
· δΛ1⊕Λ2,1 + δZ2,Λ2 · δΛ1⊕Λ2,0) (50)

PR box.

• Set of ontic states: L = {Λ0,Λ1}

• Random variable on L : Λ = 0, 1

• Probability distribution:

p(Λ|PPR) =
1

2
(51)

• Response functions of the non-trivial theory:

p(X|A,Λ) = δX,Λ (52)
p(Y |B,Λ) = δY,Λ (53)

p(X,Y |A,B,Λ) = δX,Λ · δY⊕(A·B),Λ (54)

• Response functions of the trivial theory:

p(Z|C,Λ) = δZ1,Λ · δZ2⊕(C1·C2),Λ (55)
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