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Chapter 1

THE FREGE–HUSSERL TRIAD
AND FUNCTOR–ARGUMENT
DECOMPOSITION

Abstract The purpose of the present chapter is to outline the theoretical lim-
its of the most general system based on functor–argument decomposi-
tion. The Frege–Husserl triad (the context principle, the principle of
compositionality and the category principle) constitutes the most im-
portant theoretical (linguistic and logical–philosophical) presupposition
pertaining to general type theoretical languages and their total or par-
tial compositional semantics. We prove some theorems which make the
consequences of the Frege–Husserl triad explicit, and after defining the
notion of semantic categories in the spirit of Husserl we characterize
Tarskian and Husserlian models both in total and partial semantics.

Keywords: The context principle, the principle of compositionality, the category
principle

1. Background: The Frege–Husserl triad

More than 125 years ago a booklet written by a hardly thirty–year old

logician/ philosopher was published. This proved to be a turning point

in the history of logic and philosophy. Something began and brand

new horizons opened up for thinkers. This booklet is Gottlob Frege’s

Begriffsschrift, a formula language of pure thought modelled on that of

arithmetic1, which occupies a special place in philosophical (and not only

in philosophical) culture. 20th (and 21st)–century logic, philosophy of

1See Preface and Part I in Beaney, 1997.
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2 FUNCTOR–ARGUMENT DECOMPOSITION

logic and theoretical linguistics could not exist in their present style of

the art without Frege’s work.

In Frege’s view, one of the most important inventions of Begriffsschrift

is replacing traditional subject–predicate decomposition by functor–ar-

gument decomposition. He wrote the following:

“The very invention of this Begriffsschrift, it seems to me, has advanced logic.
. . . [L]ogic hitherto has always followed ordinary language and grammar too
closely. In particular, I believe that the replacement of the concept subject
and predicate by argument and function will prove itself in the long run. It
is easy to see how taking a content as a function of an argument gives rise to
concept formation. . . . The distinction between subject and predicate finds
no place in my representation of a judgement.”2 Frege, 1997, pp. 51, 53

Are we aware of the significance of this step? How can we survey and

evaluate its consequences? It had generally been accepted before Frege

that grammatical structures constituted logical structures, moreover, all

logical structures had to prove to be grammatical ones.

Having replaced (traditional) grammatical structures by structures

relying on functor–argument decomposition, the essential question from

the logical point of view is the following: Is there a theoretical limit

of functor–argument decomposition. This limit can be found in the

semantic mirror of functor–argument decomposition, i.e. in the semantic

rules set by Frege and Husserl. Frege and Husserl formulated three

principles which any model–theoretic approach to sense (meaning) has

to be obey. The so called Frege–Husserl triad3 consists of the following

three principles:

(a) the context principle,

(b) the principle of compositionality,

(c) the category principle.

2I use the expression ‘functor’ instead of ‘function’ in order to differentiate an incomplete
expression of a language from its semantic value.
3On the philosophical role of the Frege–Husserl triad see, for example, Werning, 2004.
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The first two principles go back to Frege, the third one is due to

Husserl. Generally speaking, the first one derives the sense (meaning) of

an expression from the senses (meanings) of the expressions whose part

it is, the second one proposes a connection between the sense (meaning)

of a complex expression and the senses (meanings) of its ‘parts’, and

the third one puts forward the requirement of resemblance between the

systems of syntactic and semantic categories. It has to be noted here

that there is no theoretical hierarchy concerning the principles, they

exist side by side, each of them presupposes the others.

2. The first component of the triad:
The context principle

From the semantic point of view, Frege’s context principle4 or as W.

Hodges puts it5 Frege’s Dictum can be considered as a general leading

idea. In The Foundation of Arithmetic Frege wrote the following, which

is usually quoted as the context principle:
“never to ask for the meaning of a word in isolation, but only in the context
of a proposition;” Frege, 1980, p. x

“It is enough if the proposition taken as a whole has sense; it is this that
confers on its parts also their content.” Frege, 1980, p. 71

According to the context principle an expression has meaning (sense)

only in the sentence in which it occurs. If a sentence is meaningful,

then it makes its own parts meaningful, it gives senses (meanings) to

them. The principle can only work if the existence of sentence senses

(meanings) is presupposed. From a theoretical point of view this means

that sentence senses (meanings) cannot be derived from ‘other senses

(meanings)’, they constitute the core elements of the semantic system,

and so they have to be introduced into the theory via definition. At the

same time, in an abstract semantic theory sentence senses (meanings)

4Janssen remarks that many philosophers understand the principle of compositionality as
the principle of contextuality. Janssen, 2001, p. 115 We try to differentiate the two principles
clearly by the roles they play in the general theory.
5See Hodges, 2001a.
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do not have to be characterized in advance at all, it is enough to pick

out, to determine some entities as possible sentence senses (meanings).

3. The second component of the triad:
The principle of compositionality

What is compositionality, what is meant by compositionality? Gener-

ally, it links the syntactic way in which an expression is composed (‘the

realm of expressions’) to the semantic way in which its sense (meaning)

is determined (’the realm of meanings’). Each of the following four for-

mulations appears as the principle of compositionality. Different names

(used in Szabo, 2000) for different versions are appropriate to indicate

small differences among them.

The Principle of Compositionality (in a wide sense): The meaning of a

complex expression is determined by the meanings of its constituents

and by its structure. Szabo, 2000, p. 475

The Function Principle: The meaning of a complex expression is a

function of the meaning of its constituents and of its structure. Szabo,

2000, p. 484

The Building Principle: The meaning of a complex expression is built

up from the meaning of its constituents. Szabo, 2000, p. 488

The Substitutivity Principle: If two expressions have the same mean-

ing, then substitution of one for the other in a third expression does

not change the meaning of the third expression. Szabo, 2000, p. 490

First of all, it must be noted that the principle of compositionality

(and each of its versions) is usually referred to as ‘Frege’s principle’ (or

‘Fregean principle’). Philosophers and logicians dealing with Frege have

been discussing for many decades whether Frege accepted the principle

of compositionality (or at least one of its versions), and if he did, to what
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extent. I do not want to go into the details here, hence I will mention

only two attitudes, that of Hans Rott and Jeffrey Pelletier:

“The principle is certainly very Fregean in spirit . . . However, as Janssen,
1997, p. 421 points out, Frege does not seem to have stated compositionality
as a principle in any of his writings.” Rott, 2000, p. 625

“Frege may have believed the principle of semantic compositionality, although
there is no straightforward evidence for it and in any case it does not play
any central role in any writing of his, not even in the ‘argument form creativ-
ity/understandability’ citations.” Pelletier, 2001, p. 111

Secondly, it must be pointed out that there is a very extensive sci-

entific discussion about the compositionality of natural language.6 The

place and role of the principle of compositionality in linguistics is quite

controversial. It is regarded as a methodological principle, or a basic

linguistic–philosophical law, or supervenience7. Nevertheless, structures

which are relevant from the logical point of view (i.e. logical structures)

must have been created in a compositional way.8

4. The third component of the triad:
The category principle

In the second volume of Logical investigation Husserl theorized about

the realm of meaning and set forth some very important rules connect-

ing the spheres of meanings and forms.9 The category principle plays a

crucial role in logical semantics and in linguistics, for example, it con-

sidered to be a corner–stone of categorial grammar10 and turns up in

many contemporary linguistic theories.

Husserl’s starting point was the following:

6See for example the thematic issue of Journal of Logic, Language and Information 10 (2001)
on compositionality.
7See, for example, Partee, 1984 and Szabo, 2000.
8In Mihálydeák, 2006 I deal with the logical role of compositionality especially in two–
component logical semantics.
9See Investigation IV, The distinction between independent and non–independent meanings
and the idea of pure grammar, especially paragraph 10 Husserl, 1970, pp. 510–513. Some
consequences of Husserl’s view (the most important one for us is the category principle) can
be applied with or without accepting his philosophy as a whole.
10See, for example, Bar-Hillel, 1950.
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“. . . one of the most fundamental facts in the realm of meaning: that mean-
ings are subject to a priori laws regulating their combination into new mean-
ings.” Husserl, 1970, pp. 510

To show the generality of a priori laws he introduced a very important

concept, the concept of semantic categories:
“Meanings only fit together in antecedently definite ways, composing other
significantly unified meanings, while other possibilities of combination are ex-
cluded by laws, and yield only a heap of meanings, never a single meaning. . . .
The impossibility attaches, to be more precise, not to what is singular in the
meanings to be combined but to the essential kinds, the semantic categories,
that they fall under.” Husserl, 1970, pp. 510

With the help of the original notion of semantic categories (as essen-

tial kinds of meanings) one can grasp a very general feature of meanings,

namely, the capacity of determining the possible ways of combining dif-

ferent meanings. Hence the rules of the game of how different meanings

are to be combined can be set. Therefore, in its original sense, a semantic

category is a set of meanings, not a set of expressions. We can generate

a special classification in the realm of expressions corresponding to the

system of semantic categories, and so we can speak about the semantic

categories of expressions as well. Generally speaking, two expressions

belong to the same semantic category if they form meaningful expres-

sions when we combine them with the same expressions. In what follows

I will use ‘semantic category’ in the latter sense, i.e. I will speak about

the semantic category of expressions.

In the light of these considerations, the category principle can be for-

mulated as follows:

Synonymous expressions belong to the same semantic category.

Having introduced the notion of semantic categories and proposed

the category principle, Husserl puts forward a very important common

research enterprise for logic and linguistics:
“Hence arises the great task equally fundamental for logic and grammar, of
setting forth the a priori constitution of the realm of meaning, of investigating
the a priori system of the formal structures which leave open all material
specificity of meaning in a ‘form–theory of meanings’.” Husserl, 1970, p. 513



Chapter 2

GENERAL FORMAL SYSTEMS

Abstract In this chapter functor–argument decomposition and compositional se-
mantics, which relies on it, are considered, and some theorems are
put forward which make explicit the theoretical (linguistic and logi-
cal philosophical) presuppositions of general type–theoretical languages
and their total or partial semantics explicit.

Keywords: Compositionality, type theory, semantic category, partial semantics

One of the most general theoretical representations of functor–argu-

ment decomposition is the well–known type theory (or the different sys-

tems of type–theoretical language and/or logic). Type theory has a

number of linguistic–philosophical, logical–philosophical and logical ad-

vantages1, some of these are given below.

(a) Functor–argument decomposition constitutes its theoretical base,

hence, it is suitable for representing the most general composi-

tional formal system.

(b) The use of types provides conceptual clarity.

(c) The framework of types provides a rich, highly–structured system

of semantic values that is extremely useful in formalization.

1See, for example, Thomason, 1999 and Thomason, 2001.
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(d) The underlying logical architecture2 is simple, and in special cases

it can be considered as a natural generalization of first–order logic.

Generally, syntactic categories have to be distinguished from seman-

tic ones. At the same time, our formal systems satisfy the following

fundamental principle of formal type–theoretical semantics:
The mirror principle: “Associated with every syntactic category C is a coun-
terpart semantic category C∗, whose mathematical type ‘mirrors’ the gram-
matical type of C. And, in particular, every expression of syntactic category
C is interpreted by an object of semantic domain C∗.”Dunn and Hardegree,
2001, p. 142

On the basis of the mirror principle we will speak about types in what

follows, and we will use types to define and denote different syntactic

categories and the corresponding sets of possible semantic values.

1. General type–theoretical languages

First of all, the system of types has to be defined. The definition is

usually an inductive one.3 In its background, there are some linguistic

(and logical) philosophical commitments. The system of types relies on

primitive type(s). Therefore, we need to specify the set of primitive

types.

Generally there is only one requirement: the symbol o must be a

primitive type. From the philosophical point of view the main reason

for this is that the symbol o is taken as the type of the most funda-

mental expressions of our formal language. Expressions of type o are

called formulae. Formulae directly correspond to a special sort of con-

ceptual content or information. More specifically formulae are structures

of complete information or closed (and whole) conceptual content. In a

given interpretation, formulae are intended to carry complete informa-

tion which is usually called proposition in the literature. Considering

natural language interpreted formulae can be linked to different classes

2It goes back to A. Church (see Church, 1940).
3For the nature of inductive definition see, for example, Ruzsa, 1997.
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of declarative sentences of natural language that have the same sense,

or express the same meaning in a given non–formal interpretation.

There is another, mainly semantic reason for declaring type o to be

primitive. According to the context principle, an expression has sense

(meaning) only in the sentence in which it occurs. Sometimes we need

more than one primitive types (usually individual names constitute an-

other primitive type). The main difference between primitive and non-

primitive types is that the semantic domains of primitive types have

to be given via definition, while the domains of non-primitive types are

derived from those. Non-primitive types are usually called functor types.

Definition 2.1. Let PT be an arbitrary set of symbols, the set of prim-

itive types, such that o ∈ PT . The set TY PEPT is defined inductively

as follows:

1 PT ⊆ TY PEPT ;

2 α, β ∈ TY PEPT ⇒ 〈α, β〉 ∈ TY PEPT .

Remark 2.2. From the syntactic point of view o is the type of formulae,

and from the semantic point of view the type of their possible semantic.

〈α, β〉 is the type of functors which, when they are filled in with an

argument of type α, yield an expression of type β in syntax (in the

formal language), and it stands for the type of functions from objects of

type α to objects of type β in semantics.

Type–theoretical languages are the most general with respect to func-

tor–argument decomposition. In type–theoretical languages there are

only two syntactic operations: filling in a functor with an argument and

lambda abstraction. The latter provides a way of creating a functor from

an expression.

Definition 2.3. A type–theoretical language is an ordered quadruple

L = 〈LC, V ar,Con,Cat〉
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satisfying the following conditions:

1 LC is the set of theoretical constants.4 LC = {λ, (, )}
2 V ar = ∪α∈TY PEPT

V ar(α), where V ar(α) is a denumerably infi-

nite sets of symbols5.

3 Con = ∪α∈TY PEPT
Con(α), where Con(α) is a denumerably set

of symbols.6

4 All mentioned sets of symbols are assumed to be pairwise disjoint

sets.

5 Cat = ∪α∈TY PEPT
Cat(α), where the sets Cat(α) are defined by

the inductive rules (a). . . (c) as follows7:

(a) V ar(α) ∪ Con(α) ⊆ Cat(α);

(b) C ∈ Cat(〈α, β〉), B ∈ Cat(α) ⇒ ‘C(B)’ ∈ Cat(β);

(c) A ∈ Cat(β), τ ∈ V ar(α) ⇒ ‘(λτA)’ ∈ Cat(〈α, β〉);

Definition 2.4.

(a) Let L be a type-theoretical language and A ∈ Cat. Then a sub-

term of A is defined inductively as follows:

i if A ∈ Cat, then A is a subterm of A;

ii if A = ‘C(D)’, then C and D are subterms of A;

iii if A = ‘(λτC)’, then C is a subterm of A;

iv if B is a subterm of A and C is a subterm of B, then C is a

subterm of A.

4In this definition “λ” is the usual lambda operator that goes back to A. Church ( Church,
1940) and represents lambda abstraction. A theoretical constant has the same semantic value
(or sense) in every interpretation as a logical constant in a logical system.
5V ar(α) is the set of variables of type α.
6Con is the set of non–theoretical symbols of L. The semantic value of an expression be-
longing to the set Con is given by an interpretation. (In a logical system Con is the set of
nonlogical constants.)
7Cat is the set of all well–formed expressions of L. A given set Cat(α) is the α–category of
L (α ∈ TY PEPT ).
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(b) A variable τ is a free variable of A ∈ Cat if there is an occurrence

of τ in A which is not in a subterm (λτC) of A.

(c) V (A) = {τ : τ ∈ V ar and τ is a free variable of A}. If V (A) = ∅,
then the expression A is closed. A is open if it is not closed.

(d) B (∈ Cat(γ)) is substitutable for the variable τ (∈ V ar(γ)) in A if

no free variables of B become bound by the substitution. Let AB
τ

denote the term obtained from A by replacing all free occurrences

of τ by B.

(e) If A ∈ Cat and B,C ∈ Cat(γ), then A[C ↓B] (∈ Cat) is obtained

by replacing a subterm occurrence (i.e. an occurrence which is

not preceded immediately by λ) of B by C.

2. General type–theoretical semantics

The functor–argument frame is the compositional mirror of type–theo-

retical languages. (From the mathematical point of view a type–theo-

retical language is homomorph to the functor–argument frame.) It can

be said that the functor–argument frame gives possible semantic values.

Definition 2.5. A total functor–argument frame F is the system of sets

〈DomF (γ)〉γ∈TY PEPT

such that

(a) If γ ∈ PT , then DomF (γ) is an arbitrary nonempty set.

(b) DomF (〈α, β〉) = DomF (β)DomF (α) for all 〈α, β〉 ∈ TY PEPT .8

Definition 2.6. A partial functor–argument frame PF is the system of

sets

〈DomPF (γ)〉γ∈TY PEPT

such that

8If D1, D2 are sets, then DD1
2 is a function set, i.e. DD1

2 =def {f : D1 �→ D2}
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(a) if γ ∈ PT , then DomPF (γ) is an arbitrary set with a distin-

guished member Θγ , which is called the null entity of type γ,

such that DomPF (γ) \ {Θγ} 
= ∅;
(b) DomPF (〈α, β〉) = DomPF (β)DomPF (α) for all 〈α, β〉 ∈ TY PEPT

and Θ〈α,β〉 = g where g ∈ DomPF (〈α, β〉) and g(u) = Θβ for all

u ∈ DomPF (α).

Interpretive functions and assignments associate the constants and

variables of type–theoretical languages with their semantic values. In

a model, which consists of a frame, an interpretive function and an

assignment, semantic rules can be defined which determine the semantic

values of compound expressions with respect to the given model.

Definition 2.7. A (total or partial) model M on G is an ordered triple

〈G, �, v〉

where

(a) G is a (total or partial) functor–argument frame;

(b) �, v are functions with domains Con and V ar, respectively9 such

that

i if a ∈ Con(α), then �(a) ∈ DomG(α);

ii if τ ∈ V ar(α), then v(τ) ∈ DomG(α).

Remark 2.8.

(a) A model M on G is total or partial if G is a total or partial

functor–argument frame, respectively.

(b) If M = 〈F, �, v〉 is a total model on F , then

DomM(α) = DomF (α).

9� is an interpretive function, v is an assignment.
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(c) If PM = 〈PF, �, v〉 is a partial model on PF , then

DomPM (α) = DomPF (α) \ {Θα}.

(d) If M (= 〈G, �, v〉) is a total or partial model, ξ ∈ V ar(γ) and

u ∈ DomG(γ), then the model Mu
ξ (= 〈G, �, v[ξ : u]〉) is like M

except that v[ξ : u](ξ) = u.

Definition 2.9. A total or partial model M (= 〈G, �, v〉) assigns each

expression A of type α a semantic value [[A]]M on the basis of the se-

mantic rules:

(a) if a ∈ Con(γ), then [[a]]M = �(a);

(b) if ξ ∈ V ar(γ), then [[ξ]]M = v(ξ);

(c) if A ∈ Cat(〈α, β〉) and B ∈ Cat(α), then

[[A(B)]]M = [[A]]M ([[B]]M );

(d) if A is an expression of type β and ξ ∈ V ar(α), then [[λξA]]M =

g, where g is a function from DomG(α) to DomG(β) such that

g(u) = [[A]]Mu
τ

for all u ∈ DomG(α).

Proposition 2.10. If M is a total model and A ∈ Cat(α), then [[A]]M ∈
DomM(α). If M is a partial model, then [[A]]M ∈ DomM(α) ∪ {Θα}.
Definition 2.11. If M is a total or partial model, then A is meaningful

with respect to M , in symbols A ∈ CatMmf , if A ∈ Cat(α) for some type

α and [[A]]M ∈ DomM (α).

Remark 2.12. If M is a total model, then all A ∈ Cat are meaningful,

i.e. there is no difference between the notion of well–formedness and

that of meaningfulness. Only in the case of partial models is there a real

difference between the two notions.

Theorem 2.13. If A ∈ Cat, M1 = 〈G, �, v1〉 and M2 = 〈G, �, v2〉 are

two (total or partial) models of L with the same frame G and interpretive

function �, and v1(τ) = v2(τ) for all τ ∈ V (A), then [[A]]M1 = [[A]]M2 .
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Proof 2.14. The proof can be obtained by structural induction based on

Definition 2.3. It is trivial in the case of 5a and 5b. Turning to 5c, since

v1[τ : u](ξ) = v2[τ : u](ξ) for all ξ ∈ V (λτA) ∪ {τ} (⊇ V (A)), we get

that [[(λτA)]]M1(u) = [[A]]M1
u
τ

= [[A]]M2
u
τ

= [[(λτA)]]M2(u) for all u.

Proposition 2.15. If A ∈ Cat is a closed expression, then [[A]]M is in-

dependent from v i.e [[A]]M = [[A]]Mu
τ

for all τ ∈ V ar(γ) and u ∈
DomF (γ).10

In order to prove the law of lambda–conversion 2.21 first we have to

consider the law of replacement 2.17 and Lemma 2.20. The first one says

that in semantics semantic values are only taken into consideration and

no attention is payed to the expression itself — apart from its type —

whose semantic value is given. It does not matter how a semantic value is

determined, or which form of the compound expression gets the semantic

value. This property is expressed in the law of replacement by means of

universal replacement of expressions belonging to the same type with the

same semantic value. From the logical–philosophical point of view, the

law of replacement is a special type–theoretical formulation of a version

of the principle of compositionality which is called the substitutivity

principle:

The Substitutivity Principle: “If two expressions have the same meaning,
then substitution of one for the other in a third expression does not change
the meaning of the third expression.” Szabo, 2000, p. 490

It must be emphasized here that the law of replacement can only be

considered as a restricted version of the substitutivity principle, the un-

restricted form of the substitutivity principle holds only in Husserlian

models, which have been discussed in Section 2. The next definition in-

troduces the notion of 1–compositionality. 1–compositional systems fulfil

a restricted version of the substitutivity principle, and Corollary 2.19 of

10In the case of closed expressions we can handle models as ordered pairs of frames and
interpretive functions.
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law of replacement 2.17 says that our general system is compositional in

the sense of 1–compositionality.

Definition 2.16. Let M be a model of L. We say that M is 1–

compositional if for all well–formed expressions A,B,C (A,B,C ∈ Cat)

and variable τ (τ ∈ V ar) such that (λτC)(A), (λτC)(B) ∈ CatMmf the

following holds:

[[A]]M = [[B]]M ⇒ [[(λτC)(A)]]M = [[(λτC)(B)]]M

Theorem 2.17 (Law of replacement). If A ∈ Cat, B,C ∈ Cat(γ), and

M is a (total or partial) model of L, then

[[B]]M = [[C]]M ⇒ [[A]]M = [[A[C ↓B]]]M .

Proof 2.18. The proof can be obtained by structural induction based on

Definition 2.3. It is trivial in the case of 5a.

Considering 5b: If A = ‘A1(A2)’, then

A[C ↓B] = ‘A1[C ↓B](A2)’ or A[C ↓B] = ‘A1(A2[C ↓B])’.

Since [[A1]]M = [[A1[C ↓B]]]M and [[A2]]M = [[A2[C ↓B]]]M , we can get in

the first case that

[[A]]M = [[A1]]M ([[A2]]M ) = [[A1[C ↓B]]]M ([[A2]]M ) =

= [[A1[C ↓B](A2)]]M = [[A[C ↓B]]]M
and in the second case that

[[A]]M = [[A1]]M ([[A2]]M ) = [[A1]]M ([[A2[C ↓B]]]M ) =

= [[A1(A2[C ↓B])]]M = [[A[C ↓B]]]M .

Turning to 5c: If A = ‘(λτA′)’, τ ∈ V ar(γ), then A[C ↓B] = λτA′[C ↓
B].

Due to structural induction we have [[A′]]Mu
τ

= [[A′[C ↓ B]]]Mu
τ

for all

u ∈ Dom(γ), so

[[A]]M (u) = [[λτA′]](u) = [[A′]]Mu
τ

= [[A′[C ↓B]]]Mu
τ

=

= [[λτA′[C ↓B]]]M (u) = [[A[C ↓B]]]M (u)

for all u ∈ Dom(γ).

Corollary 2.19. If M is a (total or partial) model of L, then M is 1–

compositional.
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Lemma 2.20. If B is substitutable for variable τ in A, M is a (total or

partial) model, and [[B]]M = u, then [[AB
τ ]]M = [[A]]Mu

τ
.

Theorem 2.21 (Lambda–conversion law). If A ∈ Cat, τ ∈ V ar(β),

B ∈ Cat(β) and B is substitutable for τ in A, then [[(λτA)(B)]]M =

[[AB
τ ]]M for all (total or partial) models M .

Proof 2.22. [[(λτA)(B)]]M = [[(λτA)]]M ([[B]]M ) = [[(λτA)]]M (u) =

= [[A]]Mu
τ

= [[AB
τ ]]M if [[B]]M = u.

3. Properties of total and partial models

Let us turn now to the characterization of different, total or par-

tial models. The most important question is the following: What is

the relation between semantics relying on different (partial or total)

frames? In order to compare and combine different models we have

to introduce some notion first. In the following definitions let L (=

〈LC, V ar,Con,Cat〉) be a type–theoretical language and M (= 〈G, �, v〉)
its total or partial model.

Definition 2.23.

(a) If ≈ is an equivalence relation on the set Cat′ (⊆ Cat), then ≈ is

a synonymy for L. The set Cat′ is the field of synonymy ≈.

(b) Syntactic synonymy for L is the synonymy ∼=L generated by the

syntax of L, i.e. A∼=L B if and only if there is a type γ such that

A,B ∈ Cat(γ).

(c) Synonymy generated by a model M is a synonymy ≈M for L with

the field CatMmf such that A≈M B ⇔ [[A]]M = [[B]]M .

(d) Closed synonymy (or c–synonymy) generated by a model M is a

synonymy ≈Mc for L with the field {A : A ∈ Cat,A is closed} ∩
CatMmf such that A≈Mc B ⇔ [[A]]M = [[B]]M .

(e) A synonymy ≈ for L is semantic if there is a model M of L such

that ≈M equals ≈.
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The next proposition shows that in a general type–theoretical compo-

sitional framework syntactic synonymy can be treated as a degenerate

semantic synonymy.

Proposition 2.24. The syntactic synonymy for L is semantic (in a degen-

erate sense).

Proof 2.25. Let M be a total model of L such that every semantic do-

main of M has only one member and these domains are pairwise disjoint

sets. In this case M is degenerate in the sense that it makes no semantic

difference between expressions belonging to the same type. A∼=L B ⇔
there is a γ ∈ TY PEPT such that A,B ∈ Cat(γ) ⇔ [[A]]M , [[B]]M ∈
DomM(γ) ⇔ [[A]]M = [[B]]M ⇔ A≈M B.

Remark 2.26. In what follows a model of L which generates the syn-

onymy ∼=L will be denoted by ML and will be called ‘syntactic’ model.

Definition 2.27.

(a) Two models M1, M2 of a language L are said to be equivalent

(closed equivalent, c–equivalent) if ≈M1 equals ≈M2 (≈M1c equals

≈M2c), i.e. their generated synonymies (c–synonymies) are equiv-

alent.

(b) Given two synonymies ≈ and ≈′ for L we say that ≈ is compatible

with ≈′ if for all expressions A,B (∈ Cat) in the field of both

synonymies A≈B ⇔ A≈′B

(c) Given two synonymies ≈ and ≈′ for L we say that ≈ is closed com-

patible with (or c–compatible with) ≈′ if for all closed expressions

A,B(∈ Cat) in the field of both synonymies A≈B ⇔ A≈′B

(d) We say that two models M1,M2 of L are compatible (closed com-

patible) if their generated synonymies ≈M1, ≈M2 are compatible

(c–compatible).

Proposition 2.28. If M1,M2 are equivalent models of L, then M1 and

M2 are compatible and c–compatible.
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Proposition 2.29. If M1,M2 are equivalent models of L, then M1 and

M2 are c–equivalent.

Proposition 2.30. If M (= 〈G, �, v〉) is a model of L, τ ∈ V ar(γ) and

u ∈ DomG, then the models M and Mu
τ are c–equivalent.

Proof 2.31. The proof is immediate from Proposition 2.15.

Proposition 2.32. If two models of L, M1,M2, are compatible, then M1

and M2 are c–compatible.

Proposition 2.33. Let two models of L, M1 and M2 be total. M1 and

M2 are compatible if and only if M1 and M2 are equivalent.

Proof 2.34. To verify Proposition 2.28 we have to prove only that if

the total models M1 and M2 are compatible, then they are equivalent.

Since M1 and M2 are total models, CatM1
mf = Cat = CatM2

mf and so for

all A,B ∈ Cat A≈M1 B ⇔ A≈M2 B.

In order to investigate the relation between total and partial semantic

systems, we need a ‘total’ or ‘pseudo partial’ part of a partial frame PF ,

which will be denoted by PF t.

Definition 2.35. Let PF be a partial frame. The total part PF t of the

partial frame PF is the system of sets

〈Domt
PF (γ)〉γ∈TY PEPT

for which the following hold:

(a) if γ ∈ PT , then Domt
PF (γ) = DomPF (γ) \ {Θγ};

(b) if γ = 〈α, β〉 then Domt
PF (γ) ⊆ DomPF (γ) such that for all f ∈

Domt
PF (〈α, β〉), f(u) ∈ Domt

PF (β) if u ∈ Domt
PF (α); f(u) = Θβ

otherwise.

Remark 2.36.

(a) For the sake of brevity we will use the notation ‘Domt
F ’ in the case

of total frame F . Obviously, in this case Domt
F (γ) = DomF (γ)

for all γ ∈ TY PEPT .
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(b) If M (= 〈G, �, v〉) is a total or partial model, then Domt
M(γ) =

Domt
G(γ) for all γ ∈ TY PEPT .

Definition 2.37. An expression A of type γ is total with respect to M

if [[A]]M ∈ Domt
M (γ).

Proposition 2.38.
(a) If a non–logical constant A of a primitive type is meaningful with

respect to a model M of L, then A is total, i.e. if A ∈ Con(γ)

where γ ∈ PT , and A ∈ CatMmf , then [[A]]M ∈ Domt
M (γ).

(b) If A ∈ Cat(〈α, β〉) and B ∈ Cat(α) are total with respect to M ,

then A(B) is total with respect to M .

Definition 2.39.
(a) If ≈, ≈′ are synonymies for L, we say that ≈′ extends ≈ (or it is

an extension of ≈) if the field of ≈′ includes that of ≈ and the

two synonymies are compatible.

(b) If M1,M2 are models of L, we say that M2 extends M1 (or that

it is an extension of M1) if [[A]]M2 = [[A]]M1 for all A ∈ CatM1
mf .

(c) If M1,M2 are models of L, the notation M2 ≥ M1 will indicate

that ≈M2⊇≈M1.

Remark 2.40. If M2 ≥ M1, then the domain of M2 includes that of M1,

but within the latter domain M1 may make more distinctions than M2.

Proposition 2.41. The models M1 and M2 of L are equivalent if and only

if both M2 ≥ M1 and M1 ≥ M2 hold.

Proposition 2.42. If M2 extends M1, then M2 ≥ M1. (In this case M2

makes exactly the same distinctions in the field of M1 as M1 does.)

Proposition 2.43. A total model is maximal in the sense that all of its

extensions are equivalent to it.
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Proof 2.44. Let M be a total model of L and M ′ an extension of M .

In that case M, M ′ are compatible and on the basis Proposition 2.33 it

follows that they are also equivalent.

Proposition 2.45. A total model M of L is minimal in the sense that

there is no total model M ′ such that M extends M ′ and M and M ′ are

not equivalent.

Corollary 2.46. If a total model M extends M ′ in a way that M and M ′

are not equivalent, then M ′ is a partial model of L.



Chapter 3

TARSKIAN AND HUSSERLIAN MODELS
IN GENERAL
TYPE–THEORETICAL SEMANTICS

Abstract After introducing the notion of semantic categories in the spirit of
Husserl we characterize Tarskian and Husserlian models both in total
and partial semantics. Characteristic theorems (stating the necessary
and sufficient conditions) for these will also be proved.

Keywords: Semantic category, Tarskian model, Husserlian model, partial semantics

1. Tarskian models

In Section 3 of Chapter 2 the properties of models were investigated by

means of their generated synonymies. Syntactic synonymy was defined,

and it was shown that it is a degenerate semantic synonymy. Both sorts

of synonymy (syntactic and semantic) are generated by formal systems of

type-theoretical languages and its semantics. In his well–known paper

( Tarski, 1983) Tarski introduced a new classification, which plays a

crucial role in the formal models of natural language. The classification

and therefore the associated synonymy is located — at least in some

cases — between syntactic synonymy on the one hand and synonymies

generated by non–degenerate models of our language on the other hand.

Definition 3.1. If L is a type–theoretical language, M is a model of L

and A,B are well–formed expressions (or grammatical terms, i.e. A,B ∈
Cat), then we say that A,B belong to the same semantic category with

21
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respect to M (they have the same M–category), in symbols A∼M B, if

for every expression C (∈ Cat) and a variable τ (∈ V ar)

(λτC)(A) ∈ CatMmf ⇔ (λτC)(B) ∈ CatMmf .

In a very general sense the next proposition has been mentioned by

Tarski. In the present framework it is as follows:

Proposition 3.2. If M is a (total or partial) model of L, then ∼M is a

synonymy with the field of Cat.

Proof 3.3. The proof immediately follows from Definition 3.1.

Theorem 3.4. A ∼M B ⇒ A ∼=L B (and so ∼=L⊇∼M), where M is a

(total or partial) model of L.

Proof 3.5. The proof is indirect. Suppose that A∼M B and A �L B.

Then there are α, β ∈ TY PEPT such that α 
= β and A ∈ Cat(α), B ∈
Cat(β). If τ ∈ V ar(o), then (λττ) ∈ CatMmf . If ξ ∈ V ar(α), then

(λξ(λττ))(A) ∈ Cat(〈o, o〉) and by means of Lambda–conversion law 2.21

[[(λξ(λττ))(A)]]M = [[(λττ)Aξ ]]M = [[(λττ)]]M and so (λξ(λττ))(A) ∈
CatMmf . At the same time (λξ(λττ))(B) /∈ Cat and so (λξ(λττ))(B) /∈
CatMmf . Therefore A�M B.

Corollary 3.6. If A,B are well–formed but not meaningful expressions

with respect to a partial model M , i.e. A,B ∈ Cat \ CatMmf , then

A∼M B ⇔ A∼=L B

With the hel of the notion of semantic category Tarski laid down a very

important principle called the first principle of the theory of semantic

categories1, which, as he says, is very natural “from the standpoint of

ordinary usage of language” Tarski, 1983, p. 216. In our terminology

the informal version of the principle is as follows:

The first principle of the theory of semantic categories: Two expression of
our language have the same semantic category if there is an expression of our

1Its original version can be found in Tarski, 1983, p. 216.



Tarskian and Husserlian models 23

language such that it produces meaningful expressions when combined with
them.2

The following definition specifies the formal version of the first prin-

ciple of the theory of semantic categories, and introduces the notion of

a Tarskian model:

Definition 3.7. We say that a model M of L is Tarskian if it is the

case that if there is a meaningful expression C and a variable τ such

that (λτC)(A) and (λτC)(B) are both meaningful, then A and B have

the same M–category.

Remark 3.8. A model M of L is Tarskian if and only if it fulfills Tarski’s

first principle of the theory of semantic categories.

Theorem 3.9 (Characteristic theorem of Tarskian models). The model

M of L is Tarskian, if and only if the synonymies ∼M and ∼=L are

equivalent, i.e. ∼M equals ∼=L.

Proof 3.10. First we prove that if M is Tarskian, then the synonymies

∼M and ∼=L are equivalent.

Relying on Theorem 3.4, since the field of ∼M equals the field of ∼=L, we

have to prove only that A∼=L B ⇒ A∼M B. If A∼=L B, then there is a

type α such that A,B ∈ Cat(α). If ξ ∈ V ar(α) and τ ∈ V ar(o), then

(λξ(λττ))(A), (λξ(λττ))(B) ∈ CatMmf . Since M is Tarskian, A∼M B.

Secondly we prove that if the synonymies ∼M and ∼=L are equivalent

then M is Tarskian.

Let A, B be arbitrary expressions, and suppose that there is an expres-

sion C and a variable τ , such that (λτC)(A) ∈ CatMmf and (λτC)(B) ∈
CatMmf . Since CatMmf ⊆ Cat, A∼=L B and so A∼M B.

Remark 3.11. The Characteristic theorem of Tarskian

models 3.9 says that all Tarskian models of L have the same system

2A version of the principle is quoted by Hodges Hodges, 2001b, p. 11.
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of semantic categories and this system is equivalent to the system of

syntactic categories.

Proposition 3.12. If a model M of L is total, then the synonymies ∼M

and ∼=L are equivalent, i.e. ∼M equals ∼=L.

Proof 3.13. Making use of Theorem 3.4, since the field of ∼M equals the

field of ∼=L, we have to prove only that A∼=L B ⇒ A∼M B. If A∼=L B,

then there is a type α such that A,B ∈ Cat(α). Let C ∈ Cat and

τ ∈ V ar. Since M is a total model, Cat = CatMmf and so (λτC)(A) ∈
CatMmf ⇔ τ ∈ V ar(α) ⇔ (λτC)(B) ∈ CatMmf . Therefore A∼M B.

Theorem 3.14. If M is a total model of L, then M is Tarskian.

Proof 3.15. The proof directly follows from Proposition 3.12 and Theo-

rem 3.9.

Corollary 3.16. Non–Tarskian models are partial.

Proof 3.17. The proof immediately follows from Theorem 3.14.

2. Husserlian models

In Section 1 we dealt with the relation between syntactic and semantic

categories. The next step is to investigate the bridge between the system

of semantic categories and the classification generated by the equivalence

relation ≈M .

Definition 3.18.

(a) Let M1,M2 be models. We say that M1 and its generated syn-

onymy ≈M1 are M2–Husserlian if A ≈M1 B ⇒ A ∼M2 B for all

A,B ∈ Cat.

(b) We say that a model M of L is Husserlian if it is M–Husserlian.

(That is A≈M B ⇒ A∼M B for all A,B ∈ Cat.)

(c) We say that a model M (= 〈G, �, v〉) of L is strictly Husserlian

if M ′ (= 〈G, �, v′〉) is Husserlian for all assignments v′.
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(d) We say that the generated synonymy ≈M of a model M is Husser-

lian (strictly Husserlian) if the model M is Husserlian (strictly

Husserlian).

The notion of Husserlian models creates a connection between gener-

ated synonymy and M–category. It requires that two expressions with

the same semantic value with respect to M have to belong to the same

M–category, hence, by means of Theorem 3.4 they have to have the

same type. More precisely:

Proposition 3.19. If a model M of L is Husserlian and A≈M B for some

(A,B ∈ Cat), then A ∼=L B, i.e. there is a γ ∈ TY PEPT such that

A,B ∈ Cat(γ).

Proof 3.20. The proof immediately follows from Definition 3.18 and

Theorem 3.4.

Corollary 3.21. If a model M of L is Husserlian, then ∼=L⊇≈M , i.e.

ML ≥ M .

Corollary 3.22. Let M1,M2 be models of L. If M1 is M2–Husserlian,

then it is ML–Husserlian.

Theorem 3.23. Let M be a Tarskian model of L. The model M is

Husserlian if and only if ∼=L⊇≈M , i.e. ML ≥ M .

Proof 3.24. The proof directly follows from Corollary 3.21 and Propo-

sition 3.12.

Corollary 3.25. Let M be a total model of L. M is Husserlian if and

only if ∼=L⊇≈M , i.e. ML ≥ M .

Law of replacement 2.17 says that an expression can substitute for

another one without changing the semantic value of the compound ex-

pression if the semantic value of the first expression equals that of the

second one. In the law there is a special condition which is usually

regarded as not too important. This condition requires that the two
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expressions in question have to belong to the same syntactic category.

Without this supposition, the law of replacement holds only in Husser-

lian models. That is the reason why I said earlier that Law of replace-

ment 2.17 is only a restricted version of the substitutivity principle [see

in Chapter 2], a version of the principle of compositionality. Its unre-

stricted type–theoretical formulation is the following Husserlian law of

replacement.

Theorem 3.26 (Husserlian law of replacement). If A,B,C ∈ Cat and

M is a Husserlian model of L, then

[[B]]M = [[C]]M ⇒ [[A]]M = [[A[C ↓B]]]M

Proof 3.27. The proof is immediate from Proposition 3.19 and Law of

replacement 2.17.

Theorem 3.28 (Conversion of Husserlian law of replacement). If for

all A,B,C ∈ Cat

[[B]]M = [[C]]M ⇒ [[A]]M = [[A[C ↓B]]]M ,

then M is a Husserlian model of L.

Proof 3.29. The proof is indirect. Suppose that the model M is not

Husserlian. Then there are B,C ∈ Cat such that B ≈M C ([[B]]M =

[[C]]M ) and B �M C. Therefore there is some D ∈ Cat, τ ∈ V ar, such

that (λτD)(B) ∈ CatMmf and (λτD)(C) /∈ CatMmf . In consequence of

Law of replacement 2.17, it is impossible that B, C ∈ Cat(γ) for some

γ ∈ TY PEPT , since on the contrary [[(λτD)(B)]]M = [[(λτD)(C)]]M
holds. Therefore, there are α, β ∈ TY PEPT such that α 
= β and

B ∈ Cat(α), C ∈ Cat(β). Let A = ‘(λξξ)(B)’, where ξ ∈ V ar(α).

A ∈ Cat and A[C ↓B] /∈ Cat, hence [[A]]M 
= [[A[C ↓B]]]M .

Definition 3.30. A model M of L fulfils the substitutivity principle if

for all A,B,C ∈ Cat

[[B]]M = [[C]]M ⇒ [[A]]M = [[A[C ↓B]]]M .
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The next theorem shows that the substitutivity principle is a strong

version of the principle of compositionality. In our theoretical frame-

work all models are compositional, but a model fulfils the substitutivity

principle if and only if it is Husserlian.

Theorem 3.31 (Characteristic theorem of Husserlian models). A model

M of L is Husserlian if and only if it fulfils the substitutivity principle.

Proof 3.32. The proof derives from Husserlian law of replacement 3.26,

and Conversion of Husserlian law of replacement 3.28.

Definition 3.33. A model M of L is strongly compositional if it fulfils

the substitutivity principle.

Remark 3.34. Characteristic theorem of Husserlian models 3.31 says

that the property of being strongly compositional is equivalent to be-

ing Husserlian.

Corollary 3.35. If M is a Tarskian model of L and ∼=L⊇≈M , then it

fulfills the substitutivity principle.

Theorem 3.36. A model M of L is strictly Husserlian if and only if

the sets DomM(γ) (γ ∈ PT ) are pairwise disjoint sets.

Proof 3.37. I have to point out that the sets DomM (γ) (γ ∈ PT ) are

pairwise disjoint sets if and only if the sets DomM (γ) (γ ∈ TY PEPT )

are pairwise disjoint sets.

First we prove that if M (= 〈G, �, v〉) is strictly Husserlian, then the

sets DomM (γ) (γ ∈ TY PEPT ) are pairwise disjoint sets. The proof is

indirect. Suppose that M is strictly Husserlian and there is a semantic

value u such that u ∈ DomM (α) ∩ DomM (β) where α 
= β. Let τ1 ∈
V ar(α), τ2 ∈ V ar(β) and v′ be an assignment such that v′(τ1) = u =

v′(τ2). If M ′ = 〈G, �, v′〉, then [[τ1]]M ′ = [[τ2]]M ′ but τ1 �L τ2 and as a

result of Proposition 3.19, M ′ is not Husserlian. So M is not strictly

Husserlian.
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Second, it is enough to prove that if M is a model of L and the

sets DomM (γ) (γ ∈ TY PEPT ) are pairwise disjoint sets, then M is

Husserlian. The proof is indirect. Suppose that A ≈M B and A �M B

where A,B ∈ CatMmf . Then A �L B, and so there are α, β ∈ TY PEPT

such that A ∈ Cat(α), B ∈ Cat(β) and α 
= β. By means of Proposi-

tion 2.10 [[A]]M ∈ DomM(α), [[B]]M ∈ DomM (β). Since [[A]]M = [[B]]M ,

DomM (α) ∩ DomM (β) 
= ∅.

Definition 3.38. A (total or partial) frame G is strictly Husserlian if

the sets DomG(γ) (γ ∈ PT ) are pairwise disjoint sets.

Corollary 3.39. If M is a model on a strictly Husserlian frame then the

model M of L is strictly Husserlian.

Corollary 3.40. The degenerate model ML, which generates the syntactic

synonymy ∼=L, is strictly Husserlian, hence the synonymy ∼=L is also

strictly Husserlian.

Theorem 3.41. A model M is Husserlian if and only if there is a strictly

Husserlian model M ′ such that M ′ ≥ M .

Proof 3.42. Deriving from Corollary 3.40 the model ML is strictly

Husserlian. If M is Husserlian then by Corollary 3.21 ML ≥ M .

Let M ′ be a strictly Husserlian model such that M ′ ≥ M . Then by

Corollary 3.21 ML ≥ M ′ and so ML ≥ M . This means that if A≈M B,

then A ∼=L B, i.e. there is γ ∈ TY PEPT such that A,B ∈ Cat(γ).

Therefore, (λτC)(A) ∈ Cat if and only if (λτC)(B) ∈ Cat for any C ∈
Cat and τ ∈ V ar. By means of Law of replacement 2.17 [[(λτC)(A)]]M =

[[(λτC)(B)]]M , hence (λτC)(A) ∈ CatMmf ⇔ (λτC)(B) ∈ CatMmf , i.e.

A∼M B.

3. Extensions of models

Definition 3.43. Let M and M ′ be models of L and suppose that M ′

is an extension of M .
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(a) We say that M ′ is a cofinal extension of M if every expression in

CatM
′

mf is a subterm of an expression in CatMmf .

(b) We say that M ′ is an end–extension of M if every expression in

CatM
′

mf that is a subterm of an expression in CatMmf is already

incldedin CatMmf .

Definition 3.44. Let M and M ′ be models of L. M is partially 1–

compositional over M ′ if for all A,B,C ∈ Cat and τ ∈ V ar

A≈M B and (λτC)(A), (λτC)(B) ∈ CatM
′

mf ⇒ (λτC)(A)≈M ′ (λτC)(B)

Proposition 3.45. Every model M of L is partially 1–compositional over

ML.

Definition 3.46. Let M and M ′ be models of L. M is fully abstract

over M ′ if for all A,B ∈ Cat such that A≈/MB there is an expression

C (∈ Cat) and a variable τ (∈ V ar) such that either exactly one of

(λτC)(A) and (λτC)(B) is meaningful with respect to M ′ (i.e. in the

field of ≈M ′ , in the set CatM
′

mf ), or both are and (λτC)(A)≈/M ′(λτC)(B).

Remark 3.47. Definition 3.46 requires that for all non–synonym pairs of

well-formed expressions A,B (with respect to M) there is a well–formed

functor of the form (λτC) that enables us to distinguish A from B in

the model M ′.

The next proposition shows that the system of types and thus the

syntax of type–theoretical languages play a specific role in the formal

construction of models, at least in the following sense: the differences

built into the types of expressions can be expressed semantically (i.e.

they appear in every model).

Proposition 3.48. The syntactic model ML is fully abstract over every

model M .

Proof 3.49. If A≈/ML
B, where A,B ∈ Cat, then A and B have different

types, say α and β, respectively. Let C be the expression ‘(λξξ)’, where
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ξ ∈ V ar(o). Since (λξξ) ∈ CatMmf , we have (λτ(λξξ))(A) ∈ CatMmf ,

where τ ∈ V ar(α), but (λτ(λξξ))(B) /∈ Cat and so (λτ(λξξ))(B) /∈
CatMmf .



Chapter 4

A CRUCIAL STEP
FROM GENERAL SEMANTICS
TO LOGICAL SEMANTICS:
IDENTITY ON OBJECT LEVEL

Abstract In functor–argument language identity does not appear to be a theoret-
ical constant. Nevertheless the use of identity is unavoidable on meta
level in order to express the properties of defined semantics. The main
question of this chapter is that how the theoretical constant of identity
can be introduced into functor–argument language and its semantics.

Keywords: Identity, classical connectives, conservative generalizations of classical
conectives

In Chapter 3 the relation between a type–theoretical language and its

semantics was investigated. First we defined the most general version of

type–theoretical languages, and afterwards we introduced the notion of

total and partial model. The mirror principle played a fundamental role

in our approach. The most important question was to investigate the

way type–theoretical syntax marks the semantic system, i.e. whether the

semantic system is independent to some extent or whether it can only

only a deformed and dim mirror of syntactic structure. The general

investigation showed that the mirror is really dim, it may even deform

the shapes.

In general type–theoretical semantics we used the meta–level identity

of semantic values order to define semantic synonymy, semantic category,

Tarskian and Husserlian semantics. Without the meta–level identity of

semantic values we cannot say really anything about the behaviour of

31



32 FUNCTOR–ARGUMENT DECOMPOSITION

the system. Identity sentences (sentences containing identity as the main

theoretical constant) express very important facts about the semantic

system: if an identity sentence holds (on the meta–level), then the two

expressions appearing in the components cannot be distinguished in the

semantic system in the sense that if something holds for one of them, it

will hold for the other one as well.

Now we have to face the following theoretical question: is there any

possibility to embed meta–level identity into general type–theoretical

languages? With the help of object–level identity the properties of our

general system can be expressed in our object language. Since we are

interested in the most general theoretical presuppositions of functor–

argument decomposition and semantic compositionality, we have to be

very careful and take only short steps. The general construction provides

us a separate way to introduce identity (which will express that the

semantic values of two expressions coincide).

1. Type–theoretical languages with identity

First we have to define the system of types. We have to give only the

set of primitive types: let PT= be an arbitrary set of symbols such that

o ∈ PT and o= ∈ PT . By Definition 2.1, we obtain the set TY PE=,

the set of types of type–theoretical languages with identity. o=(∈ PT )

is the type of identity sentences.

Type–theoretical languages with identity can be defined easily. We

have to modify the definition of the set LC, the set of theoretical con-

stants, and introduce a new rule for identity:

Definition 4.1. A type–theoretical language with identity is a type–

theoretical language (L= = 〈LC=, V ar,Con,Cat〉) satisfying the follow-

ing conditions:

(a) LC= = {λ,=, (, )} (= LC ∪ {=});
(b) Con(o=) = ∅
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(c) When defining the set Cat we need to add the following rule to

the original definition 2.3:

A,B ∈ Cat ⇒ ‘(A = B)’ ∈ Cat(o=).

Remark 4.2. Cat(o=) is the set of identity sentences. Con(o=) = ∅, ie.

primitive identity sentences are superfluous.

2. General type–theoretical semantics for
languages with identity sentences

To define total and partial functor–argument frame we have to spec-

ify the set of possible values of identity sentences. From a theoretical

point of view this is the initial stage where truth values appear. In Über

Sinn und Bedeutung Frege emphasized that according to Begriffsschrift

identity sentences belong to our language, identity is in–language, i.e.

identity sentences are about our language, our signs and not about the

world outside of our language, the objects of the world.1 In our recon-

struction we have not said anything about truth and falsity, true and

false do not appear as possible semantic values of sentences. At this

stage we cannot avoid true and false as semantic values, but they will

only be the possible semantic values of identity sentences. Generally,

sentences (members of the set Cat(o)) have only undetermined possible

semantic values (possible senses).

A total functor–argument frame F= for type–theoretical languages

with identity L= is a total functor–argument frame such that

DomF=(o=) = {0, 1}.

A partial functor–argument frame PF= for type–theoretical languages

with identity L= is a partial functor–argument frame such that

DomPF=(o=) = {0, 1, 2},

and Θ(o=) = 2.

1Problems concerning this approach are dealt with in Chapter 5.
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Interpretive functions and assignments are as in the general case. In

a model, which consists of a frame, an interpretive function and an

assignment, only one new semantic rule is required, but total and partial

cases need to be distinguished:

Let M (= 〈F=, �, v〉) be a total model.

– If A,B ∈ Cat, then [[(A = B)]]M =
{

1, ha [[A]]M = [[B]]M ;
0, otherwise.

Let M (= 〈PF=, �, v〉) be a partial model.

– If A ∈ Cat(α), B ∈ Cat(β), then

[[(A = B)]]M =

⎧⎪⎪⎨
⎪⎪⎩

1, if [[A]]M 
= Θ(α), [[B]]M 
= Θ(β)
and [[A]]M = [[B]]M ;

2, if [[A]]M = Θ(α) or [[B]]M = Θ(β);
0, otherwise.

In the most important case (in the case of identity sentences) the

semantic rule of identity is the following:

If A,B ∈ Cat(o=), then

[[(A = B)]]M =

⎧⎨
⎩

1, if [[A]]M = [[B]]M 
= 2;
2, if [[A]]M = 2 or [[B]]M = 2;
0, otherwise.

3. ‘Classical’ logical connectives for identity
sentences

The classical logical connectives for identity sentences can be in-

troduced into type–theoretical languages with identity via definitions.

There is no need to give different definitions for total and partial cases,

classical logical connectives and their partial versions can be derived in

the same way. In partial models the connectives inherit the semantic

value gap (see for example Bochvar’s internal connectives), and so they

are conservative generalizations of classical connectives.

The symbols ‘↑’ (Verum), ‘↓’ (Falsum), and ‘¬’ (Negation) are to be

introduced as follows:
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(a) ↑=def “(λpp) = (λpp)”;

(b) ↓=def “(λpp) = (λp ↑)”;
(c) ¬ =def “λp(p =↓)”.

where p ∈ V ar(o=).

Remark 4.3. It is obvious that if M is a total model and PM is a partial

model, then

(a) [[↑]]M = [[↑]]PM = 1;

(b) [[↓]]M = [[↓]]PM = 0;

(c) if A ∈ Cat(o=), then

[[¬A]]M = 1 − [[A]]M ;

[[¬A]]PM =
{

1 − [[A]]PM , if [[A]]PM 
= 2;
2, otherwise.

To get the definition of conjunction of identity sentences we need

universal quantification at least over type o=(o=), but we cannot use

the customary definition (that works over any type)

∀ =def “λP (P = λx ↑)” (P ∈ V ar(o=(α)), x ∈ V ar(α))

since it yields ‘too strong’ universal quantification in partial case.

In both (total and partial) cases the following definitions can be used:

If P ∈ V ar(o=(α)), x ∈ V ar(α), then

∀ =def “λP (P = λx(P (x) = P (x)))”

We have got the following semantic rules:

If M is a total model, and F ∈ Cat(o=(α)), then

[[∀(F )]]M =
{

0, if there is a u ∈ DomM (α) such that [[F ]]M (u) = 0;
1, otherwise.

If PM is a partial model, and F ∈ Cat(o=(α)), then

[[∀(F )]]M =

⎧⎨
⎩

2, if [[F ]]PM = Θ(α)
0, if there is a u ∈ DomM (α) such that [[F ]]M (u) = 0;
1, otherwise.
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The definition of conjunction can be the following in both cases:

If p, q ∈ V ar(o=), f ∈ V ar(o=(o=)), then

∧ =def “(λp(λq∀f(p = ((p = q) = (f(p) = f(q))))”

If A,B ∈ Cat(o=), f ∈ V ar(o=(o=)) and f has no free occurrences

in A and B, we have the following contextual definition:

(A ∧ B) =def ∧(A)(B) = “∀f(A = ((A = B) = (f(A) = f(B))))”

The semantic rule of conjunction is as below:

If M is a total model, and A,B ∈ Cat(o=), then

[[(A ∧ B)]]PM =
{

1, if [[A]]PM = [[B]]PM = 1;
0, otherwise.

If PM is a partial model, and A,B ∈ Cat(o=), then

[[(A ∧ B)]]PM =

⎧⎨
⎩

2 if [[A]]PM = 2 or [[B]]PM = 2;
1 if [[A]]PM = [[B]]PM = 1;
0 otherwise.

By means of negation and conjunction other connectives can be de-

fined:

disjunction: (A ∨ B) =def ¬(¬A ∧ ¬B);

implication: (A ⊃ B) =def ¬(A ∧ ¬B).

The corresponding semantic rules are interesting only in the partial

case:

If PM is a partial model, and A,B ∈ Cat(o=), then

[[(A ∨ B)]]PM =

⎧⎨
⎩

2, if [[A]]PM = 2 or [[B]]PM = 2;
0, if [[A]]PM = [[B]]PM = 0;
1, otherwise.

[[(A ⊃ B)]]PM =

⎧⎨
⎩

2, if [[A]]PM = 2 or [[B]]PM = 2;
0, if [[A]]PM = 1 and [[B]]PM = 0;
1, otherwise.



Chapter 5

COMPOSITIONALITY
FROM THE LOGICAL–PHILOSOPHICAL
POINT OF VIEW

Abstract The most general questions to be adressed are the following: 1. what
is the role of compositionality in modern logic? 2. how does it work in
two–component logical semantics? We analyze the possible appearances
of the principle of compositionality in two–component logical semantics.
Finally, some of the most fundamental notions of intensional logical
semantics are given while maintaining the priority of compositionality
concerning sense.

Keywords: Compositionality, logical semantics, two–component semantics, exten-
sionality, intensionality.

In the previous chapters we surveyed several theoretical consequences

of functor–argument decomposition. Functor–argument decomposition

is the only way in which structures can be constructed. Relying on

the principle of compositionality, type–theoretical semantics gives a set-

theoretical representation of the possible system of semantic values, but

this constitutes only the bare bones of the scheme. In Chapter 4 a

small step was taken towards logical systems. Before turning to two–

component logical semantics we have to return to the principle of com-

positionality. We have expressions (identity sentences) with semantic

values which look like truth values, but for example we do not know

anything precise about the possible values of sentences. Senses (or mean-

ings) are fundamental and primary semantic values, but can we charac-
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terize them in a more detailed fashion? The following straightforward

questions arise here:

Can the possible semantic values of identity sentences be considered

to be a specific type of senses or do they constitute a new type of

semantic values?

Is there any relation between the possible semantic values of sentences

and that of identity sentences?

In Chapter 1 we gave a short overview of the principle of composition-

ality (primarily taking into account natural languages). Now we focus

on the logical role of the principle of compositionality.

1. Compositionality and two–component
semantics

Before Frege the grammatical structure of a natural language expres-

sion coincided with its logical structure. It was Frege who put an end

to this practice. According to Frege the grammatical structure may

only appear as one of the possible logical structures, but an expression

(or in a more sophisticated way, the expressed conceptual content) may

have, and usually does have logical structures that are different from the

grammatical structure of the expression.

In figure 5.1 the afore-mentioned situation is represented, where no

distinction is made between grammatical structure and logical structure.

Here, the principle of compositionality holds and works on the level of

natural language. Logical structures originate from natural language

directly, based only on the compositionality of natural language. Re-

ceived logical laws get meaning through associated structures and com-

positionally joined natural language meanings. Therefore, there is no

separate room for the (either informal/pretheoretic or formal) principle

of compositionality concerning the logical features of natural language

expressions. Natural language compositionality acts not only on the
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Figure 5.1. Situation before Frege

level of natural language but on the level of logical investigation as well,

as logical compositionality. It produces the main patterns of logical

structures. The logical system is imprisoned, at least in some sense, in

natural language.

The situation after Frege’s very famous words in Begriffsschrift

changed significantly. In figure 5.2 there a special box appears for infor-

mal compositionality (of information/conceptual content). What does

that mean exactly? In order to answer this question we have to define

the notion semantic value, and specify what kinds of semantic values

we have. Obviously, truth values play a crucial role in the system of
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Figure 5.2. The autonomy of grammatical and logical structures
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logically relevant semantic values. It can be said — according to Frege’s

Begriffsschrift —, that the system of semantic values, which is in the

informal background, is dominated by truth values in the sense that we

derive the semantic values of functors from the set of truth values and

the set of objects.1

In his semantic writings2 Frege recognized that a more flexible system

of semantic values was needed to explain, for example, the origin of in-

formation content of identity statements. In his most famous semantic

paper, Über Sinn und Bedeutung (Frege, 1952c) he introduced an ex-

tensive version of two–component semantics, he differentiated sense and

reference (or Sinn and Bedeutung).3

Taking the principle of compositionality seriously two questions may

arise:

1 How should we modify the principle of compositionality (of the in-

formal level)?

2 How does functor–argument decomposition which yields the main

logical structures cooperate with the system of semantic values of

two–component semantics?

If we try to answer the first question, we have to take into consid-

eration the fact that many philosophers duplicate the principle and at-

tribute both of these principles (which concern the reference and the

sense of compound or complex expressions, respectively) to Frege. “Cru-

cial to Frege’s theory are a pair of principles concerning the referent and

1As it is well–known, Frege considers sentences as a special type of names, and he puts the
possible semantic values of sentences, i.e. truth values, into the set of possible semantic values
of names, i.e. the set of objects. This unification proved problematic later, and therefore the
development of logical semantics has not followed Frege in that aspect.
2For example: Frege, 1952a; Frege, 1952c; Frege, 1952b
3There is no standard terminology for different semantic values. In the literature many
pairs appear: sense–reference, meaning–reference, sense–meaning, sense–nominatum, sense–
denotatum, meaning–denotatum, intension–extension, intension–factual value. While on the
informal level I use sense and reference, on the formal level I will use intension and extension.



42 FUNCTOR–ARGUMENT DECOMPOSITION

sense of complex expressions. These are the Principle of Composition-

ality (Interchange) of Reference and the analogous Principle of Compo-

sitionality (Interchange) of Sense. They hold that the referent or sense

of a complex is a function only of the referents or senses, respectively,

of the constituent expression.”4 Carnap was the first to attribute both

versions of the principle explicitly to Frege. He wrote the following in

his fundamental semantic book, Meaning and Necessity :

“Frege Principles of Interchangeability:

. . . First principle . . . the nominatum of the whole expression is a func-

tion of the nominata of the names occurring in it.

. . . Second principle . . . the sense of the whole expression is a function

of the senses of the names occurring in it.”5

Now let us turn to the second question, i.e. the behaviour of functor–

argument decomposition in the case of the two principles of composi-

tionality. One may think that there is no problem at all, there are two

different principles of compositionality, and we can use them to deter-

mine the logically relevant semantic values. But which of these principles

do we have to take into consideration, and how? In logical investigations

we are interested in the truth value of a sentence, i.e. in its reference.

The reference can be determined by means of the first principle concern-

ing reference, and the function which occurs in it asks for the reference

of the arguments. Frege recognized that in some cases the reference

of the whole expression cannot be determined by means of the refer-

ences of its parts. Sometimes we need to take into consideration not

only the reference of an argument but also its sense. However, at first

glance this contradicts the principle of compositionality concerning ref-

erence. How did Frege try to get rid of the problematic situation? As

it is well–known he differentiated between direct occurrence form indi-

4Salmon, 1994, p. 112, quoted by Pelletier, 2001, p. 88.
5Carnap, 1947, p. 121, quoted by Pelletier, 2001, p. 89. The principles are similar to the
function principle, which is the second version of the principle of compositionality.
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rect occurrence, ordinary (as he called it direct or customary) reference

from indirect (oblique) reference and he said that if the occurrence of an

argument is indirect, then its reference is its ordinary sense.

Let us focus now on functors. The output of the function included in

the principle of compositionality concerning reference is the reference of

the whole expression. We have seen that the reference of an expression

might depend on either the reference or the sense of its arguments. Thus

two types of functors can be differentiated:

1 If a given expression occurs directly in an expression, then the given

expression can be considered to be an argument and the remaining

part of the whole expression, is the functor. In that case the functor

affects the ordinary reference of the given expression.

2 If a given expression occurs indirectly in an other expression, then

the functor (the remaining part of the whole expression) affects the

indirect reference (i.e. the ordinary sense) of the given expression.

We can say that the latter type of functors affect the (ordinary) sense

of their arguments. Since reference is attached to reference, everything

seems to be governed by the first principle. However, indirect reference

is ordinary sense, and in order to get ordinary sense the second principle

should be applied. Thus, the second principle is needed to determine the

reference of the whole expression since in certain cases indirect reference

is crucial to determine the reference of the whole expression. So we need

the second principle not only in those cases when we are interested in the

sense of the whole expression, but also when we want to determine its

ordinary reference. Frege could not avoid maling use of both principles,

but he did not mention how to apply the second one, how to derive the

sense of the whole expression and what the connection is between the

two principles.
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At this point we can differentiate two main types of functors and in-

troduce the notions of Fregean intensional and Fregean extensional func-

tors, which will prove very useful later on. Let a functor be extensional

or intensional in the Fregean sense if the occurrence of its argument is

direct or indirect, respectively. Obviously, a functor is extensional in the

Fregean sense if and only if it is not intensional in the Fregean sense.6 We

have to note that all functors in Frege’s semantic theory (called Fregean

functors) affect the reference of their argument and their outputs are

usually of a given type of reference.

This subtle distinction between direct and indirect occurrence has a

very problematic consequence: the reference (and therefore the sense) of

an expression depends on the context in which it occurs and, obviously,

we have to determine not only the indirect reference of an argument,

but also its indirect sense. In the Fregean approach reference cannot

be identified with sense, thus we have to speak about the sense of an

expression occurring in an indirect context and this can be taken to be

the sense of the expression’s ordinary sense (etc.).

The next question to be adressed is how the problem mentioned

above, the one connected with context–dependence (or more precisely

occurrence–dependence) of the type of reference can be avoided. It must

be emphasized here that the problem itself is not the context–dependence

of reference. The real problem is that when we deal with a typical fixed

situation (where the ordinary reference and the ordinary sense are given)

in some cases the ordinary reference is the reference, while in other cases

the indirect reference i.e. the ordinary sense is the reference.

Carnap recognized this problem in Frege’s approach, and tried to

follow another method. He characterized the differences between his

and Frege’s approach as follows:

6That type of definition of the Fregean intensional and extensional functors is not usual.
Generally the notion of extensional functor is defined first, and non–extensional functors are
considered to be intensional ones; the defined functors are not always Fregean.
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“A decisive difference between our method and Frege’s consists in the fact
that our concepts, in distinction to Frege’s, are independent of the context.
An expression in a well–construed language system always has the same ex-
tension and the same intension: but [in Frege’s theory] in some context it has
its ordinary nominatum and its ordinary sense, in other contexts its oblique
nominatum and its oblique sense.”7

The definitions of Fregean intensional and extensional functors ap-

parently need to be modified only slightly to get definitions applicable

to Carnap’s approach. We only have to transfer the sensitivity of the

type of semantic value from occurrences to functors. The result is that

the functors which affect the reference of their arguments in order to

get the reference of the output (of the whole expression) are extensional,

and the functors which are not extensional and affect the senses of their

arguments are intensional. Now it seems to be the case that the problem

of context–dependence (or occurrence–dependence) is solved. We may

also realize that the notion of extensional functor corresponds to the

first principle of compositionality concerning reference; however, that of

intensional functors does not correspond to the second principle con-

cerning sense, since an intensional functor produces not the intension

but the reference of its output.

Is there any way to embed the second principle in this picture? Ii my

opinion this is desirable, since the second principle is more fundamental

than the first one. Sense is the most fundamental semantic value. In

order to belong to a natural language, in order to be an expression of a

given language, the expression has to be meaningful. Adopting Kripke’s

treatment of names, only proper names can form exceptions, namely

proper names may be expressions of a given natural language without

having sense. (Usually nobody wants to ‘understand’ a proper name,

everybody wants to use it for referring to something.) It can be said that

except for proper names there is no expression in any natural language

which has reference but no sense, since meaningfulness is the crucial

7 Carnap, 1947, p. 125
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characteristic of an expression that belongs to a given language. In

two–component semantics an expression may have sense without having

reference, but we cannot understand an expression which has reference

but no sense.

Relying on the two principles of compositionality we can say that

the reference (nominatum) of a functor is the function which derives us

the reference (nominatum) of the whole expression from the references

(nominata) of different arguments, and that the sense of a functor is the

function which provides the sense of the whole expression from the senses

of different arguments. Thus we can conclude that every expression has

sense, but what about its reference? The reference of an extensional

functor is given by the first principle of compositionality directly, but we

have to suppose that the reference of the argument is defined. However,

in the case of intensional functors the notion of reference cannot be

defined, since there is no function which would give the reference of

the output from the reference of the input. What happens when an

argument of an extensional functor is an intensional one? To solve this

problem we have to permit semantic value gaps, hence the sense of a

functor will be not a total but a partial function. Therefore, the sense of

an extensional functor would be a partial function on the possible senses

of its arguments that is not defined when the argument is the sense of

intensional functor8.

2. Conclusion

From the logical philosophical point of view, introducing functor–

argument decomposition and accepting its dominance result in informal

compositionality of conceptual content which differs from composition-

ality in natural language. In two–component logical semantics two dif-

ferent principles have to be represented. We have showed that the first

8Consider for instance the functor ‘Peter believes . . . ’ and ‘ Peter does not believe . . . ’.
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principle of compositionality concerning reference may work in the case

of extensional functors. The second one concerning sense is more gen-

eral than the first one, it holds for all functors. In intensional logical

semantics both principles are needed. It is clear that for maintaining

the priority of the second principle we have to admit semantic partiality

into our system to introduce the extensional–intensional differentiation.

In figure 5.3 a new box appears (at least in comparison with figure 5.2),

the box of logical semantics. In order to embed the two principles of com-

positionality in our system, to represent them formally, and to differen-

tiate extensionality and intensionality we have to create a whole system

of logically relevant semantic values. As it is well–known, possible word

semantics has great potential to treat intensionality (and extensionality)

in logical semantics. Nevertheless, there are some theoretical differences

with respect to the role of the two principles of compositionality, which

appear not only in the logical–philosophical background but in the for-

mal system as well.
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Figure 5.3. The place of logical (formal) semantics



Chapter 6

GENERAL LOGICAL SYSTEMS OF
FUNCTOR–ARGUMENT
DECOMPOSITION

Abstract We consider general logical systems of functor–argument decomposition.
The defined notion of contexts as introduced here plays a crucial role
in defining central logical notions such as satisfiability, consequence re-
lations and validity. We outline the most important possibilities which
in turn lead to different logical systems.

Keywords: Context, logically relevant frame, extensionality, intensionality, inten-
sional logic, partial logic

It is needless to say that a type theoretical language with its possible

models does not constitute a logical system, since the notion of functor–

argument frame is too universal, logically relevant semantic values can-

not appear in it. Therefore, there is no real opportunity to give the

notion of logically valid inferences, consequence relations. However, at

the same time there are many different possible ways to modify functor–

argument frames in order to get logical systems. In the construction of

logical systems I will show one of the most general such ways which is

especially relevant from the logical–philosophical point of view.

1. The most elementary cases

A type–theoretical language with identity is closer to constituting a

logical system than a type-theoretical language without identity since

in the former some semantic values (of identity sentences) appear which
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look like logically relevant semantic values. From a theoretical point

of view it is not problematic to define a very simple logical system for

identity sentences. The received system would be very similar to classical

propositional logic (in the total case), and to propositional logic allowing

truth value gaps (in the partial case). These cases are so simple that we

will not deal with them.

As it was mentioned in Chapter 4 the proper question is what can be

said about the semantic values of sentences in the light of the possible

semantic values of identity sentences. If we try to follow a very sim-

ple method, we can embed identity sentences into the set of sentences

(i.e. we can suppose that Cat(o=) ⊂ Cat(o)). If we focus on the total

case, then in the semantic definition of total frames we may introduce a

stronger condition: D(o) = D(o=), (i.e. for example in this case there

are only two possible semantic values for a sentence: 0 or 1, in other

words it may be true or false). On the one hand this means that in syn-

tax there is no need to differentiate sentences from identity sentences,

we can avoid introducing o=, the type of identity sentences, and on the

other hand, that in semantics the senses (meanings) of sentences can

appear only in a very restricted manner: formulae may have 0 or 1 as

semantic values. It is obvious that the received systems will be different

versions of the logical system which is usually called extensional (type–

theoretical) logic. The decision concerning the possible semantic values

of sentences outlined above dominates the whole system and it has seri-

ous consequences. More specifically ‘real’ senses of sentences disappear

and only one aspect of sense can be handled: whether a sentence with a

given sense is true or false in a fixed context. The received system can

be used to represent well-known extensional properties.
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2. Context as a bridge between different sorts of
semantic values

The next step is to introduce the notion of context. This step is very

important, since it provide a real possibility to represent sentential sense

which differs significantly from the ‘extensional sense’. (At first we will

only deal with sentences.) As it was emphasized many times in previous

chapters senses are the primary semantic values. They have many dif-

ferent roles, but one of these is especially important: If a sentence has

any other semantic value besides sense, then its sense has to determine

the other semantic value. Semantic values of identity sentences are ap-

propriate candidates for other semantic values of sentences. Therefore,

if a sentence in general may have the same semantic value as an identity

sentence, then the sense of the sentence has to determine it.

How can the sense of a sentence determine its other semantic value?

The answer for this question can be found in those situations when we

need these values or when we use them, and so it is very straightforward:

only in the case of uttering the given sentence are we interested this

other value of the sentence. A sentence utterance can only be grasped in

connection with utterances of other sentences. From a theoretical point

of view, usually a set of utterances of given sentences is considered to be

a simple representation of context.

How can we represent a context? The natural (and usual) way is

to provide those sentences which are true in the context in question

(or to specify which sentences are true, which are false and which are

irrelevant). Obviously, this depends on the senses of the given sentences,

hence the precise formulation is the following: a context is a special

representation which is based on a set of senses of the relevant sentences,

and which also includes specifying the truth values of those sentences.

In a formal model, the main component of a context is a function from

the set of senses of sentences to the set of semantic values of identity



52 FUNCTOR–ARGUMENT DECOMPOSITION

sentences (i.e. to the set of possible truth values). Up to this point we

have dealt with sentences only, but, as expected, there is no theoretical

difference with respect to the behaviour of expressions of other primitive

types. Expressions of primitive types other than the type of sentences

play a similar and crucial role in constructing the notion of context

as sentences. (Almost the same can be said about these expression as

about sentences, however, there is no such aid that could be compared to

the one provided by identity sentences.) In order to define the general

notion of context we have to specify the sets of ‘secondary’ semantic

values of expressions in the case of every primitive type. We will call

‘secondary’ semantic values extensions (or factual values using Ruzsa’s

original terminology). The set of extensions of a given primitive type γ

will be denoted by Dext(γ).

Definition 6.1. A system of extensions of primitive type(s) is the sys-

tem of sets

〈Dext(γ)〉γ∈PT

such that

(a) Dext(o) = {0, 1, 2}, Θext
o = 2 (Θext

o the extensional null entity of

type o);

(b) if γ ∈ PT and γ 
= o, then Dext(γ) is an arbitrary set with a

distinguished member Θext
γ , which is called the extensional null

entity of type γ;

Definition 6.2. Let G (= 〈Dom(γ)〉γ∈TY PEPT
) be a (total or partial)

frame, and SE (= 〈Dext(γ)〉γ∈PT ) be a system of extensions of primitive

type(s). A contextual function for the frame G relying on the system of

extensions SE is a function CG such that

(a) the domain of the function CG is ∪γ∈PTDom(γ);

(b) if u ∈ Dom(γ), then CG(u) ∈ Dext(γ) (γ ∈ PT ).
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In logically relevant cases not only a frame is needed, but also a con-

text for the frame. The the next definition introduces the notion of a

context for a frame.

Definition 6.3. A (total or partial) context for a frame G is an ordered

triple

〈G,SE,CG〉

where

(a) G (= 〈Dom(γ)〉γ∈TY PEPT
) is a (total or partial) frame;

(b) SE (= 〈Dext(γ)〉γ∈PT ) is a system of extensions of primitive

type(s);

(c) CG is a contextual function for the frame G relying on the system

of extensions SE.

In Definition 2.7 we introduced a general notion of models. By means

of the notion of a context for a frame the notion of logically relevant

models can be introduced.

Definition 6.4. A logically relevant (total or partial) model [MC ] is an

ordered triple

〈CFF, �, v〉

where

(a) CFF (= 〈G,SE,CG〉) is a (total or partial) context for the frame

G;

(b) �, v are functions as in Definition 2.7.

If we define central logical notions as satisfiability, unsatisfiability,

consequence relation and validity by means of context sensitive frames

and logically relevant (total or partial) models, we get very strong no-

tions.
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Definition 6.5. Let Γ be a set of formulae, i.e. Γ ⊂ Cat(o) and A a

formula, i.e. A ∈ Cat(o).

(a) Γ is satisfiable if there is a logically relevant model MC such that

CG([[A]]MC
) = 1 for all A ∈ Γ, where MC = 〈CFF, �, v〉 and

CFF = 〈G,SE,CG〉
(b) The set Γ is unsatisfiable if it is not satisfiable.

(c) A is a logical consequence of Γ (Γ � A) if the set, Γ ∪ {¬A} is

unsatisfiable.

(d) A is valid (� A) if ∅ � A.

(e) A is irrefutable if there is no logically relevant model MC such

that CG([[A]]MC
) = 0.

Logically relevant intensional models provide a new level where dif-

ferent features of sense can be represented. The main idea is that the

possible context can be determined in logically relevant intensional mod-

els.

Definition 6.6. Let 〈G, �, v〉 be a (total or partial) model, and SE

be a system of extensions, Ci
G be a contextual function from G to SE

for i ∈ I, where I is an arbitrary nonempty set. A logically relevant

intensional (total or partial) model [M int
C ] is the set of ordered triples

{〈CFFi, �, v〉 : i ∈ I}

where CFFi = 〈G,SE,Ci
G〉 is a (total or partial) context for the frame

G.

By means of logically relevant intensional models a great number of

‘classical’ intensional features can be represented. For example, exten-

sionality can be represented on two different levels: as extensionality in

a context, and as extensionality in a logically relevant intensional model.
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3. An example: ‘classical’ intensional logic

In this section we will show how to reconsider ‘classical’ intensional

logic in the light of our general investigation. At the same time one can

recognize the theoretical sources of our notion of context, and one can

imagine its various theoretical role.

Following the traditional method, we may suppose that only two sym-

bols belong to the set of primitive types, type o, i.e. the type of formulae

as it appears in Definition 2.1, and type ι, the type of individual names.

The system of types generated by o and ι as primitive types will be de-

noted by TY PEFr. In what follows we can suppose that our language

is a type–theoretical language based on TY PEFr.

The next question is how to define frames relying on the standard

method, which proceeds from extensions to intensions. From a general

point of view, sense is the primary semantic value, hence we have to

define the frame of logically relevant senses, i.e. the frame of intensions.

Following the method of possible world semantics we can say that the

intension of a formula is the rule that determines whether the formula

expresses a true or a false statement in a given situation (world). This

rule can represent the truth conditions of a formula. The intension of

an individual name is the rule which determines its reference in a given

situation (world).

An intensional functor–argument frame is a functor–argument frame

such that

The set of primitive types contains type ι, the type of individual

names, and type o, the type of formulae.

The rules mentioned above, which serve as intensions, are functions

from the set of indices to the set of objects or truth values in the case

of primitive types, and from the semantic domain of the input to the

semantic domain of the output otherwise.
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Definition 6.7. By an intensional functor–argument frame Fint let us

mean an ordered triple

Fint = 〈U, I,Dint〉

satisfying the following conditions:

1 Dint(o) = {0, 1}I ;

2 Dint(ι) = U I ;

3 Dint(〈α, β〉) = Dint(β)Dint(α) for all 〈α, β〉 ∈ TY PEFr

M �i A means that the function, which is the semantic value of

formula A (A ∈ Cat(o)) with respect to M , is 1 at i, i.e. [[A]]M (i) =

1. Using intensional functor–argument frames we can introduce one

of the simplest notions of logical consequence. Obviously it has to be

presupposed that 0 and 1 have special logical roles or logical “meanings”.

1 indicates that a sentence has the property preserved by the intended

notion of consequence relation. For the sake of simplicity we can say

that 1 and 0 correspond to truth and falsity, respectively. I have to

emphasize that there is no need to say anything about the nature of

truth values here.

Definition 6.8. 〈F, �, v, i〉 is said to be a true intensional representation

of Γ (⊆ Cat(o)) if

1 F (= 〈U, I,Dint〉) is an intensional functor–argument frame;

2 〈F, �, v〉 (= M) is a model on F ;

3 i ∈ I;

4 M �i A for all A ∈ Γ.

Definition 6.9. Suppose that Γ ⊆ Cat(o) and A ∈ Cat(o). A is a

strong semantic consequence of Γ (Γ � A) if A is true, i.e. M �i A in

every true intensional representation of Γ.
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In the framework outlined above the semantic value of any formula

is a sentence intension, and we can speak about truth and falsity, since

sentence intensions are functions from indices to truth values. Therefore,

sentences (and individual names) have two different sorts of semantic

value. In the first place they have intensions (corresponding to their

informal senses) and in the seocnd place formulae have truth values

(and individual names have reference) at a given index. However, only

intensions of compound type expressions are present. A natural question

arises here: is there any connection between the truth values of two

formulae if one of them involves the other as a subformula? From a

general point of view the answer is ‘no’ or at least ‘it depends’. However,

in special cases we may recognize some deterministic connection between

the semantic values in question. In order to get the whole picture we

will use the well–known family of extensional semantic values.

Definition 6.10. By an extensional functor–argument frame Fext let us

mean an ordered pair

Fext = 〈U,Dext〉

satisfying the following conditions:

1 U is an arbitrary non–empty set;

2 Dext(ι) = U ;

3 Dext(o) = {0, 1};

4 Dext(〈α, β〉) = Dext(β)Dext(α) for all 〈α, β〉 ∈ TY PEFr

Remark 6.11. The difference between intensional and extensional func-

tor–argument frames is manifested only in the definitions of domains

of primitive types. In extensional cases, where M is a model on an

extensional functor–argument frame, if A ∈ Cat(o), then M � A means

that [[A]]M = 1.
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Definition 6.12. A model M = 〈F, �, v〉 on F is said to be a true

extensional representation of Γ (⊆ Cat(o)) if

1 F is an extensional functor–argument frame;

2 M � A for all A ∈ Γ.

Definition 6.13. Suppose that Γ ⊆ Cat(o) and A ∈ Cat(o). A is a

strong semantic consequence of Γ (Γ � A) if A is true with respect to

M i.e. M � A in every true extensional representation M of Γ.

We have a type–theoretical language, and two different notions of

frames, intensional and extensional. Both contain logically relevant se-

mantic values at least for sentences and individual names. The semantic

values of compound type expressions are generated from the semantic

values of primitive type expression by the principle of contextuality.
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Mihálydeák, T. (2006). The logical-philosophical basis of logical systems. In Dietz,
K., editor, My Fulbright Experience, pages 111–120. Budapest.

Partee, B. (1984). Compositionality. In Landman, F. and Veltman, F., editors, Vari-
eties of Formal Semantics, pages 281–312. Foris, Dordrecht.

Pelletier, F. J. (2001). Did Frege believe Frege’s principle? Journal of Logic, Language
and Information, 10:87–114.

Rott, H. (2000). Words in contexts: Fregean elucidations. Linguistics and Philosophy,
23:621–641.

Ruzsa, I. (1997). Introduction to metalogic. Áron Publishers, Budapest.
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