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Abstract

No-conspiracy is the requirement that measurement settings should be probabilistically
independent of the elements of reality responsible for the measurement outcomes. In this
paper we investigate what role no-conspiracy generally plays in a physical theory; how it
in�uences the semantical role of the event types of the theory; and how it relates to such
other concepts as separability, compatibility and locality.
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1 Introduction

As the old bon mot has it, in experiment man and nature shake hands. This portrayal of
experimentation as the celebration of a good pact between two business men highlights two
features of experimentation, namely that both man and nature are equally contributing to its
success and that both parties are independent. This independence is the topic of the present
paper.

In the foundations of quantum mechanics probably the most signi�cant research project has
been for decades to precisely identify and conceptually analyze those assumptions that go into
the derivation of the Bell inequalities and can be made responsible for their violation in the EPR
scenario. Locality, factorization, Common Cause Principle, determinism�these were the main
concepts and principles on the table. There was, however, one additional premise which, though
being indispensable in the derivation of the Bell inequalities, remained much more obscure than
the others concerning its status, meaning and relation to the other premises.

The palpable evidence for this embarrassment around this assumption is that there has not
even been coined a name for it. It has been referred to by many names such as �conspiratorial
entanglement� (Bell, 1981), �hidden autonomy� (Van Fraassen, 1982), �independence assumption�
(Price 1996), �free will assumption� (Tumulka, 2007), �measurement independence� (Sanpedro,
2013) and�probably in its most well-known form��no-conspiracy� (Hofer-Szabó, Rédei and
Szabó, 1999; Placek and Wro«ski, 2009). This latter is the phrase we are going to use in this
paper.
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The fact that no-conspiracy has been used by so many names attests that there is a wide range
of topics which it can be related to. It has been explicitly addressed by Bell in his 1981 paper and
its rejection has been quali�ed as �even more mind boggling than one in which causal chains go
faster than light.� (Bell, 1981, p. 57) Into the philosophy of physics no-conspiracy made its way
via Van Fraassen's 1982 careful analysis of the assumptions leading to the Bell inequalities. Ever
since these two in�uential papers no-conspiracy has been given much attention in the philosophy
of science. A topic gaining probably the greatest philosophical interest was how no-conspiracy is
related to free will. The �rst to identify conspiracy as a lack of free will was Bell (1981) himself
and has been followed by many others (Price 1996; Conway and Kochen, 2006; Tumulka, 2007).

The present paper does not concern any of the topics mentioned above: neither free will,
nor EPR, nor Bell inequalities. It investigates no-conspiracy at a general level. Our aim is to
investigate what role no-conspiracy plays in a physical theory. To this aim in Section 2 we will
�rst unfold a general scheme of the ontology of a physical theory. We will discern two event
types making the ontology: measurement event types and elements of reality. Measurement
event types can be of two types: measurement settings and measurement outcomes. We will
clarify how measurement settings and measurement outcomes provide semantics for a physical
theory. To illustrate the general scheme we introduce a toy model in Section 3 which will then be
used throughout the paper. No-conspiracy enters in Section 4. Here we show how the presence
of no-conspiracy deprives measurement settings and measurement outcomes of their semantical
role and directs them into pragmatics. In Section 5 some examples will be given for situations
when no-conspiracy is violated. In Section 6, 7, and 8 we will investigate in turn the relationship
of no-conspiracy to separability, compatibility, and locality. We conclude in Section 9.

This paper is written in the down-to-earth physicalist philosophical style of László E. Szabó
to whom I dedicate it.

2 The ontology of experiment

A physical theory is a formal system plus a semantics connecting the formal system to the
world. The formal system consists of a formal language with some logical axioms and derivation
rules, some mathematical and physical axioms. The semantics provides an interpretation for the
formalism; it connects the formal system to reality. Though sometimes downplayed or identi�ed
with pragmatics, semantics makes an indispensable part of a physical theory. A formal system
in itself is not yet a physical theory (Szabó, 2011).

The semantics settles the ontology of the theory. This can be done in many ways but every
semantics has to minimally �x the ontological types or categories out there in the world and
provide some means to decide when a certain token falls in the category of a given type making a
certain sentence of the theory true. The types and tokens which we will be interested in here are
event types and token events. The ontology of a physical theory is an event algebra constructed
from these event types.

Physical theories are veri�ed by experiments. The rough picture of an experiment is the
following. An experimenter performs a procedure by setting a measurement apparatus in a cer-
tain way, obtaining a measurement outcome and repeating this procedure many times. The two
essential ontological categories of an experiment are the measurement settings and the measure-

ment outcomes. These categories are event types just as the other ontological types of the theory.
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The token events are the runs of the experiment. Measurement settings and measurement out-
comes do not appear directly in the textbook form of a theory but they are indispensable part of
the semantics (not of pragmatics!): without them the theory cannot be linked to reality. More
than that, these two types are the only types an experimenter has direct empirical access to.
Everything else posited by the theory has to ultimately boil down to some relations between
these observable categories. To be more speci�c, any deductive or inductive relation between
the ontological types of the theory has to be accounted for in terms of correlations between the
token events falling in the category of measurement settings and measurement outcomes. The
empiricist thesis is that one has no other access to physical reality than via observation.

Correlations between measurement settings and measurement outcomes can be accounted
for in terms of probabilities. The probability of an outcome type is simply the long-run relative

frequency of those runs of the experiment which fall in that type if the experiment is repeated
appropriately many times. Similarly, the probability of an outcome given a certain measurement
setting is simply the number of those runs which fall in both the type of the outcome and
the setting divided by the number of those runs which fall in the type of the setting. More
importantly, any probability assignment to any ontological type to which we have no direct
empirical access must be based on type assignments to the individual runs of the experiment in
the long-run frequency sense: the probability of a given type is p only if the relative frequency
of the individual runs falling in the type in question is p. Probability supervenes on the Humean
mosaic of token events.

In order to account for the observable measurement outcomes physical theories typically
introduce a further, not directly accessible event type, which we will call elements of reality.
Elements of reality come in two sorts: they can either determine the measurement outcomes for
sure for a given measurement setting, or they can �x only the probability of the measurement
outcomes. We will call the �rst event type property and the second event type propensity.
Whereas measurement outcomes are clearly causally in�uenced by and therefore probabilistically
dependent on the elements of reality, it is not a priori clear what the relation between the
measurement settings and the elements of reality should be. This is what we are going to
analyze in what comes.

3 A toy model

Let us make these abstract considerations more concrete on a simple model. (For a general
scheme of a physical theory see the Appendix.) Consider a box containing colored dice (Szabó,
2008). Let us try to develop a physical theory of this system. Whatever theory we develop, the
semantics of the theory has to minimally specify the measurement settings and measurement
outcomes. These are the categories which are directly accessible for an experimenter. Suppose
that the measurement settings are the following:

a1: drawing a dice from the box and checking its color
a2: drawing a dice from the box, throwing it and checking the number on its upper face

Suppose furthermore that the measurement outcomes are

Ai
1: the color of the dice is black (A1

1) or white (A2
1)

Aj
2: the number on the upper face of the dice is j (j = 1 . . . 6)
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So the semantics of the theory posits the following event types: the event type of measurement
settings a with two subcategories a1 and a2, and the event type of measurement outcomes A
with two plus six sub-subcategories Ai

1 and A
j
2.

As the experimenter is repeating the experiment, the token events that is the runs falling
in the di�erent event types are accumulating giving rise to a probabilistic description of the
experiment. She can calculate for example the conditional probability of obtaining a black dice
on the condition that she had performed the color measurement:

p(A1
1|a1) =

#(A1
1 ∧ a1)

#(a1)

This probability is empirically accessible: one just reads o� from the relative frequency of the
measurement outcomes and measurement settings.

The experimenter can of course try to enrich her theory and introduce a new ontological
category into her theory. The motivation behind this move is to obtain an answer to the question:
�Why was the outcome of the color measurement black in a certain run of the experiment?� A
natural answer to this question is to say: �Because the die itself was black.� This answer
amounts to introducing a third event type into our ontology, which we will call property. What
is a property?

The de�ning feature of the property black is the following: whenever a dice with the property
black is subjected to a color measurement, the outcome will always be black. Denote the property
black by α1

1 and the property white by α2
1. (So our notation is the following: we use lower case

Latin letter for the measurement settings (a); capital Latin letters for the measurement outcomes
(A); and Greek letters for the elements of reality (α).) The property black is an event type and
each token event that is each run of the experiment can be characterized by either falling into
this event type or not. Therefore, one can also meaningfully speak about the probability of
the property black, p(α1

1), as the long-run relative frequency of those runs of the experiment
which fall into the event type α1

1. Consequently, one can also express the de�ning feature of the
property black and white in terms of probabilities as follows:

p(Ai
1|a1 ∧ αk

1) = δik i, k = 1, 2 (1)

That is in each run of the experiment when the dice was black and the color has been measured,
the outcome was black and never white; and in each run of the experiment when the dice was
white and the color has been measured, the outcome was white and never black. A property is
nothing but an event type which, if instantiated and measured in a certain run of experiment,
brings with it a de�nite outcome.

Let us now go over to the case of throwing the dice and ask a similar question to that of
the color measurement: �Why does the outcome six come up with a certain probability in the
experiment?� Here the natural answer is this: �Because the dice has a certain mass distribution.�
This leads us to introducing another event type which we will call propensity.

Suppose that the box is containing dice with two di�erent mass distributions. Denote them by
α1
2 and α

2
2. Here the lower index 2 indicates that the measurement setting is of the second type,

namely checking the upper face of the dice (and not the color), and the upper index discerns the
two mass distributions. The mass distinction α1

2 is again an event type just as α1
1, the property

black was. In every single run of the experiment it is either instantiated or not that is each dice
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has either the mass distribution α1
2 or not. Hence one can speak about the probability p(α1

2)
as the relative frequency of those runs which fall into the event type α1

2. If a dice with mass
distribution α1

2 is drawn from the box and thrown, then let the probability of its coming up j be
denoted by qj1. Similarly, if a dice with mass distribution α2

2 is drawn from the box and thrown,
then the probability of coming up j is qj2. This means that the mass distribution of a given
dice �xes the probability of the dice coming up with a certain face upon throwing. In terms of
probabilities this can be expressed as follows:

p(Aj
2|a2 ∧ α

l
2) = qjl j = 1 . . . 6, l = 1, 2 (2)

where
∑

j q
jl = 1 for l = 1, 2.

Metaphysically, the new event type α2 is the propensity of the dice to come up with a certain
face in the second type of measurement setting. Note that the propensity here is not something
which the notion of probability should be reduced to as in the literature on the interpretations
of probability. Here propensity is an event type and probability is simply long-run relative
frequency. Their relation is the following: the probability of a certain outcome type is �xed for
a certain measurement setting and a certain propensity.

Also observe that a property mathematically di�ers from a propensity only in that the qjl-s
�xing the conditional probabilities are all either 0 or 1 for the properties, whereas they can be
any number between 0 and 1 for the propensities. Being black �xes the measurement outcomes
for the color measurement, whereas having mass distribution α1

2 �xes only the probability of
obtaining a six. The de�ning equation (1) of properties is a special case of the de�ning equation
(2) of propensities.

To sum up, in our �theory of dice� we have two measurement event types, the event type
of measurement settings and measurement outcomes. Beyond these we can introduce into our
ontology two elements of reality for explanatory purposes, the event type of properties, α1, with
two subcategories α1

1 (black) and α2
1 (white); and the event type of propensities, α2, with two

subcategories α1
2 (�rst mass distribution) and α2

2 (second mass distribution). From now on we
will coin the term measurement event type for measurement settings and measurement outcomes
and element of reality for properties and propensities. The event algebra of the theory will be
composed as the Boolean combination of the measurement event types and elements of reality.
This algebra will be built up from 2 · (2 · 6) · (2 · 2) atomic events associated to the di�erent com-
binations of measurement settings, measurement outcomes, properties and propensities. Each
run of the experiment will instantiate an element of this algebra. Probabilities enter the theory
by simply counting how many runs are instantiating certain elements of the algebra.

4 No-conspiracy

So far, so good. But physics is a procedure to move from the observable to the unobservable.
Do we have any means to infer from the �rst two event types to the second two? Can we say
something about properties and propensities based on measurement settings and measurement
outcomes?

Here is a su�cient condition which entitles us to such an inference. Suppose that the elements
of reality, though causally responsible for the measurement outcomes, are causally independent
of the measurement settings. Common cause aside, this means that the elements of reality are
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also probabilistically independent of the measurement settings. In case of the properties this
means that

p(a1 ∧ αk
1) = p(a1) p(α

k
1) k = 1, 2 (3)

in case of the propensities:

p(a2 ∧ αl
2) = p(a2) p(α

l
2) l = 1, 2 (4)

Putting them together they read as follows:

p(a1 ∧ a2 ∧ αk
1 ∧ αl

2) = p(a1 ∧ a2) p(αk
1 ∧ αl

2) k, l = 1, 2 (5)

Let us call requirement (5) no-conspiracy. Obviously, (3)-(4) are special cases of (5).
No-conspiracy does us a great service: we can reproduce the observable probabilities of the

theory in terms of the probabilities of the elements of reality. For example the conditional
probability p(A1

1|a1) of obtaining a black dice upon color measurement turns out to be just the
probability p(α1

1) of the property black:

p(A1
1|a1) =

p(A1
1 ∧ a1)
p(a1)

=

∑
k p(A

1
1 ∧ a1 ∧ αk

1)

p(a1)
=

∑
k p(A

1
1|a1 ∧ αk

1)p(a1 ∧ αk
1)

p(a1)

=

∑
k p(A

1
1|a1 ∧ αk

1)p(a1)p(α
k
1)

p(a1)
=

∑
k

p(A1
1|a1 ∧ αk

1)p(α
k
1)

=
∑
k

δ1kp(α
k
1) = p(α1

1) (6)

where we used only the theorem of total probability, the de�ning feature (1) of a property and
no-conspiracy (3).

By similar reasoning we can reproduce the conditional probability p(A6
2|a2) of obtaining the

outcome six upon �upper face� measurement in terms of weighted averages of the probability of
propensities p(αl

2):

p(A6
2|a2) = q61 p(α1

2) + q62 p(α2
2) (7)

Equations (6) and (7) are of central importance. They explain why in the text book form of
a physical theory one need not speak about measurement settings and measurement outcomes.
If no-conspiracy holds, then all the conditional probabilities of the measurement event types
(settings and outcomes) are mirrored in the probabilities of the elements of reality (properties
and propensities). Consequently, the deductive and inductive relations between the measurement
event types also reveal similar relations between the elements of reality. For example, observing
the relation that the probability of a dice coming up six is higher than that of being black

p(A6
2|a2) > p(A1

1|a1) (8)

reveals the unobservable fact that

q61 p(α1
2) + q62 p(α2

2) > p(α1
1) (9)
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More than that, the relations between measurement settings and measurement outcomes do not
just reveal the hidden relations between the unobservable categories but by the same move they
also become super�uous. If the role of these �surface� relations is simply to re�ect the deep hidden
structural relationships of the unobservable categories with which real physics is concerned�
then why one would care about them? Why one would care about measurement settings and
measurement outcomes if one can also speak about the �real stu�� directly? Measurement
settings and measurement outcomes belong only to pragmatics not semantics.

This is the way how no-conspiracy overshadows the semantical role of measurement settings
and measurement outcomes. If no-conspiracy holds, then the very categories which lend empirical
meaning to the theory turn to be (seem to be) super�uous.

But does no-conspiracy always hold? What if it does not? In this case the inference from the
measurement event types to the elements of reality via (6) and (7) is not possible. But does
it make any knowledge of the unobservable categories impossible? Is no-conspiracy a kind of
Kantian �condition of the possibility of experience�?

Some seem to think so. In his famous 'cat' paper Schrödinger (1935) likens the free measure-
ment choice of the EPR experiment to a situation when a class of students are asked a set of
question such that each student may be asked any of questions. If the answer to the questions are
all correct, then one can conclude, so Schrödinger, that all students know all answers. Analyzing
Schrödinger's example Maudlin (2014) writes the following:

�Recall Schrödinger's class of identically prepared students. We are told they can all
answer any of a set of questions correctly, but each can only answer one, and then
forgets the answers to the rest. It's an odd idea, but we can still test it: we ask
the questions at random, and �nd that we always get the right answer. Of course it
is possible that each student only knows the answer to one question, which always
happens to be the very one we ask! But that would require a massive coincidence,
on a scale that would undercut the whole scienti�c method. Or else we are being
manipulated: somehow we are led to ask a given question only of the rare student
who knows the answer. So we switch our method of choice, handing it over to a
random number generator, or the throw of dice, or to be determined by the amount
of rainfall in Paraguay. But maybe all of these have been somehow rigged too! Of
course, such a purely abstract proposal cannot be refuted, but besides being insane, it
too would undercut scienti�c method. All scienti�c interpretations of our observations
presuppose that they have not have been manipulated in such a way.� (Maudlin, 2014
p. 23)

In short, the independence of the measurement choices and the elements of reality is a precon-
dition of pursuing science per se. But is it so?

5 When no-conspiracy does not hold

Consider the following examples:

Example 1. Suppose that the black painting on the dice is not durable enough: if you just touch
the dice, the color black is wearing o� it and it turns white.
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Example 2. Suppose that each dice is �lled with a high viscosity �uid which can stream and
swirl inside the dice. By every throw of the dice the �uid is put in motion which changes the
mass distribution of the dice and hence the propensity of the outcome at that very throw.

Example 3 is special case of Example 2. Suppose again that the dice are �lled with a �uid which
can stream inside it until the dice is landing on the table. But when the dice touches the table,
all the �uid �ows�due to the heavy shaking, say�to the that side of the dice which is the closest
to the table and �freezes out� there. Consequently, the dice will come up with the opposite face.

The above three examples are all illustrating a situation when no-conspiracy is violated. In the
�rst example the property α1

1 (black) has turned into another property α2
1 (white) as a result of

the measurement setting a1 (drawing a dice from the box). In the second example the propensity
α1
2 (�rst mass distribution) has turned into another propensity α2

2 (second mass distribution) as
a result of the measurement setting a2 (tossing a dice). Finally, in the third example we �nd
a change of category. Recall that properties and propensities di�ered only in whether they
determined the outcome for sure or only up to a certain probability. In the third example there
was some non-trivial probability for the di�erent faces of the dice to come up before the throw.
After landing the table, however, the dice could come up only with a given face. That means
that here a propensity (one sort of mass distribution) has been turned into a property (a special
mass distribution exactly �xing the outcome) as a result of the measurement setting a2 (tossing
a dice). In each case no-conspiracy is violated. (For the relevance of these examples to the
interpretations of quantum mechanics see (Gömöri and Hofer-Szabó, 2016).)

In all the above examples the violation of no-conspiracy was due to a causal connection
between the measurement settings and the elements of reality. So let us �rst clarify what we
mean by a causal connection between two event types, say, the drawing of a dice, a1, and the
property black, α1

1. It means that these two event types are causally related in a tokenwise

manner. In other words, there is a pairing of token events instantiating the two types such that
for each pair of token events the one instantiating a1 is the cause of the other instantiating α1

1,
or vica versa. But how to create pairs?

Consider a certain run of the experiment which instantiates a1 ∧ α1
1. Up to now we treated

this run of the experiment as one single run in which one performed a color measurement and the
property of the dice which has been drawn was black. How can the color measurement cause the
property black in this single run? If this run of the experiment is taken as one single token event,
then there can be no tokenwise causal connection; simply because we have only one token. In
order to have a causal connection, one needs to decompose the one single run of the experiment
instantiating a1 ∧ α1

1 into a pair of token events such that the one token event instantiates a1
and the other token event instantiates α1

1. In order to speak about a tokenwise causal relation,
one token event is not enough. One (but not the only) possibility to perform this decomposition
is to say that the �rst token event occurred here and the other token event occurred over there.
Localization is a typical method for individuation. We come back to the question of localization
in Section 8.

With this notion of causal in�uence in hand let us go back now to above three examples. One
can well see that in all the three examples the causal in�uence is directed from the measurement
settings to the elements of reality. However, this is not the only option. No-conspiracy can
fail also due to an opposite causal direction when the elements of reality causally in�uence the
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measurement settings. The next example is of this type.

Example 4. Suppose that the black dice are slightly electrifying your hand when you touch them
in the box; hence you rather draw white balls.

A next example for the violation of no-conspiracy is a common causal connection between the
elements of reality and the measurement settings. It is a combination of example 1 and 4.

Example 5. Suppose again that the black dice are electrically charged. Touching them is un-
pleasant so you rather draw white balls; and if you still draw one, the black painting is wearing
o� and the dice turns to white.

Finally, there is a further way to violate no-conspiracy which is not related to causation. Two
events can be correlating even if they are not causally related: if they are logically not indepen-
dent. This leads us to the problem of contextuality.

A little re�ection on the de�nition of property and propensity can convince us that (1) and
(2) say nothing about whether the elements of reality and the measurement settings are logically
independent or not. It can well be the case that by specifying the measurement setting we partly
specify also the elements of reality. Consider the following example.

Example 6. Let α1
2(x, p) denote the following property of the dice: the mass distribution of the

dice is of the �rst type and the initial conditions of the toss is (x, p). Similarly, let a2(x, p) denote
the measurement setting which does not just state the fact that the dice has been thrown but
also speci�es the initial conditions (x, p) of the toss.

The element of reality α1
2(x, p) is obviously a property since together with the toss a2 it determines

the upper face for sure. But now instead of a2 we took a �ner description of the measurement
settings, namely a2(x, p). Obviously,

p(Aj
2|a2(x, p) ∧ α

1
2(x, p)) (10)

is either 0 or 1 for any j and (x, p). Hence α1
2(x, p) is a property with respect to also the new

measurement setting a2(x, p).
However, no-conspiracy does not hold simply because the measurement settings and the

elements of reality are not logically independent. The measurement setting plays a constitutive
role in determining the element of reality. If you toss the dice with a certain initial condition,
then you also (partly) specify the elements of reality, namely that the dice started with that
speci�c initial condition.

To sum up, even if the elements of reality and the measurement settings are causally detached,
still they can violate no-conspiracy if the measurement settings contribute to the de�nition of
the elements of reality. A �double counting� of some conditions, as in the case of the initial
conditions (x, p), cannot be excluded a priori.

Be the above examples as suggestive as they may, they should not be taken too seriously. Prop-
erties and propensities are per de�nitionem elements of reality whereas mass distribution is an
observable event type. One can directly test whether the mass distribution of a given dice de-
pends on its throwing; good dice are those for which it does not. Therefore, the dependence of
the mass distribution of the dice upon its throwing is not a violation of no-conspiracy in the strict
sense, but rather the dependence of the outcome of one measurement on another measurement.
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Still, disregarding for a moment the observable status of the mass distribution and replacing it
by an unobservable propensity, the above examples illustrate that the dependence of the mea-
surement settings on the unobservable categories is well conceivable and cannot be excluded a
priori.

But then, under which circumstances can we adopt no-conspiracy in our physical theory, and
when are we forced to abandon it? In the upcoming three Sections we investigate three concepts
in turn which can qualify the decision. The �rst is separability, the second is compatibility, and
the third is locality.

6 Separability

Niels Bohr's notorious insistence on the use of classical concepts in the description of quantum
phenomena is one of the hallmarks of his philosophy. In his contribution to the 1949 Einstein
Festschrift Bohr writes:

It is decisive to recognize that, however far the phenomena transcend the scope
of classical physical explanation, the account of all evidence must be expressed in
classical terms. The argument is simply that by the word �experiment� we refer to a
situation where we can tell others what we have done and what we have learned and
that, therefore, the account of the experimental arrangement and of the results of the
observations must be expressed in unambiguous language with suitable application
of the terminology of classical physics. (Bohr 1949, p. 209).

Many Bohr scholars have made signi�cant e�orts to understand the meaning and role of Bohr's
doctrine on the primacy of classical concepts. Camilleri and Schlosshauer (2015) argue that
Bohr's doctrine is primarily a general epistemological thesis articulating the epistemology of
experiment rather than a special interpretation of quantum mechanics (for this see also (Zinker-
nagel, 2015)). The epistemological problem according to Bohr is that whereas the very notion
of experiment presupposes that the measured objects possess a de�nite state which is indepen-
dent from the state of the measurement apparatus, quantum mechanics makes this distinction
between object and apparatus ambiguous by treating the two as a single, composite, entangled
system:

. . . the impossibility of subdividing the individual quantum e�ects and of separating
the behaviour of the objects from their interaction with the measuring instruments
serving to de�ne the conditions under which the phenomena appear implies an am-
biguity in assigning conventional attributes to atomic objects which calls for a recon-
sideration of our attitude towards the problem of physical explanation. (Bohr 1948,
p. 317).

If entanglement between object and apparatus is the obstacle to an unambiguous description
of quantum phenomena, then such a description in classical terms can be realized when the
subsystems are not entangled, that is when they are separable. This is exactly Don Howard's
(1994) suggestion for the reconstruction of Bohr's doctrine on classical concepts:

. . . for Bohr, classical concepts are necessary because they embody the assumption of
instrument-object separability, and that such separability must be assumed, in spite
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of its denial by quantum mechanics, in order to secure an unambiguous and thus
objective description of quantum phenomena. (Howard 1994, p. 209).

Howard's suggestion to analyze classical description in terms of separability boils down to the
requirement to reproduce the statistical predictions of a given quantum phenomenon in terms
of an �appropriate mixture.� The state of a composite system is called separable, if it is a
mixture that is a convex sum of product states of the components. Since product states represent
probabilistically independent components, a mixture is simply a convex combination of these
states expressing a classical probabilistic correlation between the components. The devise of
mixtures gives rise to a classical, ignorance interpretation of the statistics of the phenomenon
under investigation. This analysis via the notion of an �appropriate mixture� has been picked
up for example by Halvorson and Clifton (2002) who provide an elegant analysis of the EPR
experiment from Bohr's perspective along the lines suggested by Howard.

But how separability as a reconstruction of Bohr's demand on classicality relates to no-
conspiracy as a kind of independence principle between measurement settings and the elements
of reality attributed to the system? Clearly, separability is a broader concept than no-conspiracy:
separability simply requires that the relation between the measurement settings and elements of
reality should be expressed as a mixture of probabilistic independences; whereas no-conspiracy
requires that the two should be probabilistically independent. In our toy model for example
separability requires the probability of the color measuring and the system's possessing the
property black to be the following:

p(a1 ∧ α1
1) = λ1 p(a1) p(α

1
1) + λ1 p(a1) p(∼α1

1) + λ3 p(∼a1) p(α1
1) + λ4 p(∼a1) p(∼α1

1) (11)

with any λi ∈ [0, 1] and
∑4

i=1 λi = 1; whereas no-conspiracy requires that

p(a1 ∧ α1
1) = p(a1) p(α

1
1) (12)

But observe that separability (11) does not give any restriction in our case; it simply means
that p is a classical probability which we already knew since we took probabilities to be relative
frequencies.

All the six examples in the previous Section, though violating no-conspiracy, are completely
classical; they provide an unambiguous description of how the unobservable properties or propen-
sities change upon throwing the dice. They even provide a mechanism for the causal dependence.
In Example 1 for instance when upon drawing the black color is wearing o� the dice, obviously

p(a2 ∧ α1
1) 6= p(a2) p(α

1
1) (13)

Drawing the dice and being black will not be probabilistically independent due to the causal
relation between the two event types.

Thus, the �unambiguous language� requires only to attribute some properties to the system
which stand in some classical probabilistic relation to the measurement settings but it does not
require them to be probabilistically independent of one another. Hence, separability as a weaker
requirement than no-conspiracy cannot be used to back the latter. (In addition, according to
Howard even the demand on classicality as separability is too restrictive from perspective of a
general epistemology of experiment.)
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7 Compatibility

Now, let us go over to our second concept which is compatibility of the measurement settings. Up
to now we have considered measurement settings only separately. Let us see now what happens
when we perform a joint measurement.

Again, consider our toy model and suppose that we perform the measurement a1 ∧ a2 that is
we are drawing a dice from the box, throwing it and checking its color and also the number on
its upper face. Suppose that after performing both measurements we disregard the upper face
and consider only the color. Suppose that we observe that the probability of the outcome black
in this joint measurement is not the same as in the measurement a1. That is we �nd that

p(A1
1|a1 ∧ a2) 6= p(A1

1|a1) (14)

Let us call (14) incompatibility of the two measurements.
What is incompatibility a sign of?
First, observe that the condition a1 on the right hand side of (14) does not mean that we

performed only a1�this would be a1∧∼ a2. The condition a1 means that we consider all the
runs in which a1 has been performed, irrespectively whether a2 has been performed or not�that
is a1 = (a1 ∧ a2)∨ (a1∧∼a2). So what (14) expresses is that whether we perform a2 or not does
count in measuring a1.

One can take here two positions towards incompatibility. I will call the �rst the purist or
Bridgmanian strategy and the second the stubborn strategy. According to the purist strategy
if the probability of the outcome of a given measurement can vary depending whether another
measurement is performed or not, then this measurement is not yet well de�ned.

Consider the following example.1 How would you set up a measurement which tests whether
a given piece of wood is combustible? Well, just burn it and check what happens. How would
you set up a measurement which tests whether this piece of wood is �oating? Well, throw it
in water and check what happens. But obviously, the two measurements are incompatible; you
cannot burn the piece of wood while in water. So the correct de�nition of the �rst measurement
is this: keep the piece of wood dry, burn it and check what happens. Similarly, you should not
burn the piece of wood along with throwing it in water�unless you want to test whether the
ash is �oating.

So the purist attitude towards (14) is that a1 in itself is not yet a well de�ned measurement
procedure since the probability of the outcomes depends on whether a2 is performed or not. So
instead of taking two measurement settings a1 and a2 we should take three measurement settings,
a1 ∧ a2, a1∧ ∼ a2, and∼ a1 ∧ a2 (the fourth one, ∼ a1∧ ∼ a2, is that we do nothing). By this
move we eliminate the incompatibility from our measurements since the four new measurements
are logically mutually excluding; they cannot be co-performed and hence disturb one another.
Generally, the purist strategy is to take the the conjunctions of incompatible measurements until
they become either compatible or logically excluding.

We call this strategy Bridgmanian since it is in tune with Bridgman's ideas on the correct
de�nition of measurement unfolded for example in The Logic of Modern Physics:

Implied in this recognition of the possibility of new experience beyond our present
range, is the recognition that no element of a physical situation, no matter how

1This example is due to Márton Gömöri.
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apparently irrelevant or trivial, may be dismissed as without e�ect on the �nal result
until proved to be without e�ect by actual experiment. (Bridgman 1958, p. 3)

Returning to no-conspiracy, the Bridgmanian strategy makes all co-measurable measurements
compatible with one another. Therefore, the problem of incompatibility disappears and we are
back to our single case measurement scenario. The purist strategy teaches nothing new about
no-conspiracy.

Let us go over to the stubborn strategy. I call it stubborn since it keeps a1 and a2 as the correct
measurement settings in spite of their incompatibility (14)? What does then (14) say about
no-conspiracy?

This is a point where we need to go one step further concerning the relation between measure-
ment event types and elements of reality. We need to specify how the elements of reality behave
when jointly measured. Therefore suppose that the following relation also holds (in addition to
(1) and (2)):

p(Ai
1 ∧A

j
2|a1 ∧ a2 ∧ α

k
1 ∧ αl

2) = δik q
jl i, k, l = 1, 2; j = 1 . . . 6 (15)

Requirement (15) expresses a kind of non-disturbance relation between the measurements which
can be better seen if we sum up �rst for i then for j:

p(Ai
1|a1 ∧ a2 ∧ αk

1 ∧ αl
2) = δik = p(Ai

1|a1 ∧ αk
1) (16)

p(Aj
2|a1 ∧ a2 ∧ α

k
1 ∧ αl

2) = qjl = p(Aj
2|a2 ∧ α

l
2) (17)

(Here the second equation in both rows are due to the de�ning equation (1) of the property and
(2) of the propensity, respectively.) (16) and (17) express that the probability of an outcome
conditioned on an element of reality and a measurement setting does not change by further
conditioning it on other elements of reality or measurement settings. From (16) (where the
element of reality is a property) it also follows that

p(Ai
1|a1 ∧ a2 ∧ αk

1) = p(Ai
1|a1 ∧ αk

1 ∧ αl
2) = p(Ai

1|a1 ∧ αk
1) (18)

Now, suppose that no-conspiracy also holds that is

p(a1 ∧ a2 ∧ αk
1 ∧ αl

2) = p(a1 ∧ a2) p(αk
1 ∧ αl

2) k, l = 1, 2 (19)

From (15) and (19) it is easy to show (via a derivation similar to (6)) that

p(A1
1|a1 ∧ a2) = p(A1

1|a1) (20)

in contradiction to incompatibility (14). This means that if we observe incompatibility between
the measurements, then we have to abandon either the non-disturbance of the measurement
procedures (15) or no-conspiracy (19).

So in case of the stubborn strategy compatibility of the measurement settings is a good sign
of that both non-disturbance and no-conspiracy hold; and incompatibility is a good sign of that
either the one or the other is violated. Whether to blame the one or the other is a question for
further investigation.
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8 Locality

No-conspiracy is a probabilistic independence relation between the measurement settings and
the elements of reality. What

p(a1 ∧ α1
1) = p(a1) p(α

1
1) (21)

is expressing is that the relative frequency of those runs of the experiment which instantiate
the event type �the color has been measured and the dice was black� is equal to the product
of the relative frequencies of those runs which instantiate these event types �the color has been
measured� and �the dice was black� separately.

Now, probabilistic independence is a sign of causal independence and correlation is a sign
of causal connection. Due to Reichenbach's Common Cause Principle, if two event types are
correlated, then there is either a direct or a common causal relation between them. Vica versa

(assuming that causal e�ects do not cancel each other) if two event types are probabilistically
independent, then there is neither a direct nor a common causal relation between them. Hence,
no-conspiracy can be ensured if causal relations between the measurement settings and the
elements of reality can be excluded.

Can we exclude causal connections? Do locality considerations help us in that? Is there a
spatiotemporal arrangement of the event types in question such that one can safely say that all
possible causal connections between the measurement settings and the elements of reality are
shielded o�? As one expects, the answer to this question is no.

Recall what we said about the causal connection in Section 5. Two event types are causally
related if there is a pairing of token events instantiating the two types such that for each pair
the one token is the cause of the other; or�in case of a common cause�there is a third token
instantiating a third event type which is the common cause of both.

Consider a certain run of the experiment which instantiates a1 ∧ α1
1. This means that in

this run one performed a color measurement and the property of the dice was black. As said
in Section 5 in order to meaningfully raise the question of a causal connection, one needs �rst
to decompose this one single run into a pair of token events. Suppose we individuate the two
token events by localizing the �rst token event at one spacetime locus and the other token event
at another one. Localization is a typical method for individuation. If the color measurement
and the dice with property black are localized in di�erent regions of the spacetime, then one can
meaningfully ask whether they are in tokenwise causal connection or not.

Suppose now that the two token events are spacelike separated. Does it tell us something
about their causal relation? No. Even if they are spacelike separated, they can still be causally
related to one another both in a direct and also in a common causal way. As for direct causal
connection, just note that in order to produce a measurement outcome these two token events
need to interact somewhere in spacetime. Hence even is they are spacelike separated at a certain
moment, they will not be so at the moment of bringing about the outcome. Therefore their direct
causal e�ect on one another cannot be excluded based on the fact that at a certain time they
were localized in a spacelike separated way. The situation is similar or even worse in case of a
common cause. Even if the two token events are spacelike separated, there well can be a common
cause in their common past causally in�uencing both. To sum up, locality considerations do not
help is in excluding causal mechanisms and hence to ensure no-conspiracy.
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9 Conclusions

In this paper we have argued for the following.
A physical theory is a formal system plus a semantics connecting the formal system to the

world. The semantics has to minimally specify what event types inhabit the world. Event types
can be of two sorts: measurement event types and elements of reality. Typically we have direct
access to the former but not to the latter. There are two measurement event types: measurement
settings and measurement outcomes and there are also two elements of reality: properties and
propensities. The probability of an event type is understood as simply the long-run relative
frequency of the token events instantiating the event type in question. In an experiment the
token events are the runs of the experiment.

No-conspiracy is the requirement that elements of reality should be probabilistically indepen-
dent of the measurement settings. There is no a priori guarantee that no-conspiracy does hold.
If it does, probabilistic relations between the measurement event types mirrors only the relations
between the elements of reality. This licenses physics to incorrectly forget about measurement
settings and measurement outcomes and to talk directly about elements of reality.

No-conspiracy can be naturally related to the concepts of separability, compatibility and
locality. However, none of them brings us closer to no-conspiracy. Separability is a weaker
concept than no-conspiracy, so one cannot back the latter by the former. Compatibility of
measurement settings is empty in case of a purist strategy and only a partial motivatation in
case of the stubborn strategy. Finally, locality cannot be used to support no-conspiracy at all.

Neither being an analytic nor a transcendental truth, all we can do is to check no-conspiracy
on a case-by-case basis. Life is hard.

Appendix

Here we provide a general mathematical picture of a physical theory.
Let ai (i = 1 . . . I) be the measurement settings in a given theory and let Aji

i (ji = 1 . . . Ji)
denote the jth outcome of the ith measurement. Suppose furthermore that there is an element
of reality αki

i (ki = 1 . . .Ki) (either a property or a propensity) associated to each measurement
setting ai such that

p(Aji
i |ai ∧ α

ki
i ) = qjikii (22)

where
∑Ji

ji=1 q
jiki
i = 1 for any i = 1 . . . I and ki = 1 . . .Ki. For a given i ∈ I the element of

reality αki
i is a property i� Ji = Ki and q

jiki
i = δjiki . Otherwise α

ki
i is a propensity.

Suppose that the elements of reality are related nicely to the measurement event types not
only in case of a single measurement but also in case of a joint measurement. (Note the the
word �single� does not mean that the other measurements are not performed; it means rather
that it is not taken into consideration whether they are performed or not.) Therefore, select I ′

measurement settings out of the possible I and let now the index i run from 1 to I ′. What we
require is that for any such selection (among them the no-selection) the following should hold:

p(Aj1
1 ∧ . . . ∧A

jI′
I′ |a1 ∧ . . . ∧ aI′ ∧ α

k1
1 ∧ . . . ∧ α

kI′
I′ ) = qj1k11 × · · · × qjI′kI′I′ (23)
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Now, the elements of reality {αki
i } are said to satisfy no-conspiracy i�

p(a1 ∧ . . . ∧ aI ∧ αk1
1 ∧ . . . ∧ α

kI
I ) = p(a1 ∧ . . . ∧ aI) p(αk1

1 ∧ . . . ∧ α
kI
I ) (24)

from which it follows that they also satisfy no-conspiracy for all selections, among them

p(ai ∧ αki
i ) = p(ai) p(α

ki
i ) (25)

By means of (23) and no-conspiracy (24) one can transform for any selection the probabilistic
relations among the measurement event types into probabilistic relations among elements of
reality as follows:

p(Aj1
1 ∧ . . . ∧A

jI′
I′ |a1 ∧ . . . ∧ aI′) =

∑
k1...kI′

qj1k11 × · · · × qjI′kI′I′ p(αk1
1 ∧ . . . ∧ α

kI′
I′ ) (26)

Speci�cally, if all the event types {αki
i } are properties, then (26) reads as

p(Aj1
1 ∧ . . . ∧A

jI′
I′ |a1 ∧ . . . ∧ aI′) = p(αj1

1 ∧ . . . ∧ α
jI′
I′ ) (27)

and in the special case of a single measurement as

p(Aji
i |ai) = p(αji

i ) (28)

for all i = 1 . . . I. (26) shows that the probability of the outcomes conditioned on the measure-
ment settings is mirrored in the probability of the properties.
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