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Abstract

Reichenbach’s principle of a probabilistic common cause of probabilistic correlations is formulated in
terms of relativistic quantum field theory and the problem is raised whether correlations in relativistic
quantum field theory between events represented by projections in local observable algebras A(V7) and
A(V2) pertaining to spacelike separated spacetime regions Vi and Vs can be explained by finding a
probabilistic common cause of the correlation in Reichenbach’s sense. While this problem remains open,
it is shown that if all superluminal correlations predicted by the vacuum state between events in A(V7)
and A(V2) have a genuinely probabilistic common cause, then the local algebras A(V;) and A(V2) must
be statistically independent in the sense of C*-independence.

1 Introduction

As a consequence of violation of Bell’s inequality in algebraic relativistic quantum field theory (ARQFT)
[16], [17], [18], [19] [20], [23] (see [22] and [21] for reviews) ARQFT predicts superluminal correlations, i.e.
correlaions between events represented by projections belonging to von Neumann algebras that pertain
to spacelike separated spacetime regions. Unless one takes the position that correlations need not be
explained at all, a position taken by Van Fraassen for example [25], one would like to say either of the
following

1. There exists a direct causal connection between the correlated events

2. There exists a probabilistic common cause of the correlation

In fact, in the case of superluminal correlations one would not like to say 1. — and consider it true,
too, since spacelike separated events are not supposed to causally influence each other. Yet, option 1.
is not a priori impossible, for it can happen that ARQFT does not comply with the no-action-at-a-
distance principle, despite the fact that this theory was constructed precisely with the aim of creating a
quantum theory that complies with the no-action-at-a-distance principle. However, to claim that there
is (or that there is not) causal connection between spacelike separated events, one has to specify “causal
connection” in terms of ARQFT precisely enough to be able to prove absence/presence of a causal link.
There exist reasonable (and apparently different [10]) definitions (of absence) of a causal link between
projections as events, such as Stochastic Einstein Locality [6], [9], its strengthening called Stochastic
Haag Locality [8] and counterfactual probabilistic causal connection [2], [11]. While there remain some
open questions concerning the status in ARQFT of these (and of different versions [3] of these) notions
of prohibition of superluminal causal link, results have been obtained showing that ARQFT is free from
a direct superluminal causal connection between spacelike events in the sense of most of these definitions
— despite presence of superluminal correlations in the theory. These negative results on 1. leave one
with option 2. The aim of this paper is to investigate this option 2. More precisely, we wish to specify
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Reichenbach’s notion of a probabilistic common cause [13] in terms of ARQFT in order to raise the
problem of whether superluminal correlations predicted by ARQFT can be causally explained in field
theory in the sense of Reichenbach’s probabilistic theory of common cause suitably adapted to ARQFT.
In what follows, first we summarize briefly Reichenbach’s common cause principle, and in particular his
notion of “screening off” (section 2). We shall distinguish two types of screening off: the strong one, in
which the causing event actually implies both of the correlated events; and the genuinely probabilistic
case, in which the probabilistic cause does not entail any of the correlated events. In section 3 the
basic notions of ARQFT will be recalled, together with results showing the existence of superluminal
correlations. This is followed in section 4 by a definition of Reichenbach’s principle of common cause in
ARQFT. We wish to stress that we are not able to give an answer to the apparently difficult question
(Problem in section 4) of whether the superluminal correlations predicted by ARQFT have a probabilistic
common cause in general. It is shown in section 4, however, that if each single superluminal correlation
predicted by the vacuum state between events in A(V;) and A(V,) has a genuinely probabilistic common
cause, then the local algebras A(V;) and A(V>) must be statistically independent in the sense of C*-
independence. In view of the recent results on the statistical independence of algebras [4] it follows then
that the existence of truly probabilistic common causes entails that the algebras satisfy a number of
equivalent independence conditions (see the concluding remarks in section 5).

2 Reichenbach’s common cause principle

Let A and B be two events and p(A4) and p(B) be their probabilities. If the joint probability p(AB) of
A and B is greater than the product of the single probabilities, i.e. if

p(AB) > p(A)p(B) (1)

then the events A and B are said to be correlated. According to Reichenbach ([13], Section 19), a
probabilistic common cause explanation of a correlation like (1) means finding a third event C' (cause)
such that the following (independent) conditions hold:

P(AB|C) = p(A|C)p(B|C) 2)
p(ABICT) = p(A|CH)p(BICT) (3)
p(AIC) > p(A|Ch) (4)
p(BIC) > p(B|CY) (5)

where p(X]Y") denotes here the conditional probability of X on condition Y, and it is assumed that none
of the probabilities p(X), (X = A, B, C) is equal to zero.

Reichenbach shows that conditions (2)-(5) imply (1), if one assumes that the conditional probabilities
are defined in the standard way as p(A4|C) = p(AC)/p(C) etc. Condition (2) has become known as
“screening off”, it expresses “... the fact that relative to the cause C' the events A and B are mutually
independent” ([13] p. 159); that is to say the common cause event C “screens off” the correlation in the
sense that conditionalizing the probability measure p by C, the conditioned probability p(e|C) renders
the two events A and B statistically independent. One way to interpret the screening off condition (2) is
to re-write it as

P(A|BC) = p(A[C) (6)
p(BIAC) = p(B|C) (7)

Conditions (6)-(7) can be read as saying that “knowing the cause C already yields enough information
to predict the probability of the event A(B), information on B(A) is redundant”.

Notice that there exist two opposite ways the screening off condition (2) can be satisfied: (i) It can
happen that, in addition to being a probabilistic common cause, the event C' (thought of as an element in
a Boolean algebra) is contained both in A and in B, C C A, C' C B, and, as another extreme, (ii) it can
also happen that C is a probabilistic cause that is contained neither in A nor in B. Case (i) means that
the event C' is not simply a probabilistic common cause but a cause that necessarily entails the events A
and B, and the screening off condition (2) holds then in a trivial way. Given a correlation between A
and B, if a probabilistic common cause C can be found such that (in addition to the conditions (2)-(5))
C C A and C C B also is the case, then we say that the correlation can be screened off in the strong
sense. We refer to the situation (ii) by calling C a truly (genuinely) probabilistic common cause.



3 Superluminal correlations in quantum field theory

Recall that A is a quasilocal C*-algebra of relativistic quantum field theory if A is the uniform closure of
anet {A(V)} of (strictly) local C*-algebras A(V') (with common unit) associated with the open, bounded
subsets V' of the Minkowski space M, where the net has the following properties:

(i) isotony: if V; is contained in V3, then A(V}) is a subalgebra of A(V3);

(ii) microcausality: if V; is spacelike separated from V5, then every element of A(V;) commutes with
every element of A(13);

(iii) relativistic covariance: there is a representation « of the identity-connected component P of the
Poincaré group by automorphisms on A such that a(g)A(V) = A(gV) for all V and g € P;

Part of the axioms of relativistic quantum field theory is also the assumption of existence of at least one
physical representation of the quasilocal C*-algebra A, which means mathematically that one postulates
the existence of an a-invariant state ¢p (vacuum state) such that

(iv) the spectrum condition holds in the corresponding cyclic (GNS) representation (Ho, Qo, o).

In this representation one can identify the local algebras representing the observables with the von
Neumann algebras mo(A(V))"”. One then has a net of von Neumann algebras having the properties
(i)-(iv). In what follows we assume that {A(V)} is a net of von Neumann algebras having properties
(i)-(iv), and it also is assumed that the net is in fact an irreducible vacuum representation of a net of
local C*-algebras. (For these axioms, see [5] and [7].)

Let V7 and V5 be two spacelike separated spacetime regions and A € A(V;) and B € A(V3) be two
projections. If ¢ is a state on the quasilocal algebra A, then it can happen very well that

¢(AB) > ¢(A)p(B) (8)

If (8) is the case, then we say that there is superluminal correlation between A and B in state ¢.

A typical example of superluminal correlation is the one predicted by the vacuum state ¢o: If Vi and
V5, are two spacelike separated tangent double cone regions, or two spacelike separated complementary
wedge regions in the Minkowski spacetime, then

$o(AB) > ¢o(A)do(B) 9)

for some projections A € A(V7), B € A(V%).

The existence of such A, B is a consequence of the fact that the vacuum state violates Bell’s inequality
for the said regions in “every” field theory; that is to say, the Bell correlation (o, A(V1), A(V3)) defined
below by (11) takes on its maximal value (v/2), so the Bell correlation violates Bell’s inequality, which in
this notation reads:

Bell’s inequality: B(¢o, A(V1), A(V2)) <1 (10)
B(go, A(V1), A(V2)) = sup—r1<x,,v;<1¢0(X1(Y1 + Y2) + Xo(Y7 — Y2)) (11)

(The supremum in (11) is taken over selfadjoint contractions in the respective algebras: X; € A(V1),Y; €
A(V2). For further details and for a review of the precise statements concerning Bell’s inequality in
ARQFT see [22] and [21].) Since a product state satisfies Bell’s inequality, ¢y cannot be a product state
across the algebras A(V1), A(V2), i.e. there exist selfadjoint contractions X € A(V7),Y € A(V3) such
that ¢o(XY) # ¢o(X)do(Y), which implies that ¢o(P1Ps) # ¢o(P1)do(P) for some spectral projections
Pi,P; of X and Y respectively, hence either ¢o(PyPs) > ¢o(P1)do(P2) or ¢o(Pi-Ps) > ¢o(Pi-)do(P)
holds.

4 Do superluminal correlations have a probabilistic common
cause?
We wish to raise the problem whether the correlations of the type (8) can be explained by finding a

common cause in Reichenbach’s sense. To make this problem precise we have to adopt Reichenbach’s
notion of common cause to the situation in ARQFT. This is done in the next definition.



Definition: Let V; and V5 be two spacelike separated (open, bounded) spacetime regions, BLC'(V;) and
BLC(V3) be their backward light cones, and {A(V)} be a net of local algebras satisfying the standard
axioms. We say that the pair of algebras A(V;).A(V%) satisfies (Reichenbach’s) Screening off Principle iff
for any state ¢ over the quasilocal algebra 4 and for any pair of projections A € A(Vy) B € A(V3) we
have the following: if ¢(AB) > ¢(A)p(B) then there exists a projection C' in the von Neumann algebra
A(V) that is associated with a region V lying within the intersection BLC(Vy) N BLC(V3) such that
#(C) # 0 # ¢(C*) and C satisfies the following conditions:

(i) C commutes with both A and B
(ii) the conditions below (analogous to (2), (3), (4) and (5)) hold:

$(ABC) _ ¢(AC) ¢(BC) (12)
o(0) o(C) #(C)
$(ABCH) _ $(ACH) ¢(BCH) (13)
o(CL) — H(CL) ¢(Ch)
H(AC) P(ACH)
o(0) 7 e (14)
#(BC) $(BCH) (15)

5C) T p(C)

We say that the Screening off Principle holds in ARQFT iff for every pair of spacelike separated space-
time regions Vi, Va the Screening off Principle holds for the pair A(V;)A(V2). Just like in the case of
Reichenbach’s formulation, one can distinguish the strong and genuinely probabilistic versions of proba-
bilistic common cause in ARQFT and one can speak accordingly of the Screening off Principle holding
in ARQFT in the strong and genuinely probabilistic sense.

The Screening off Principle as specified above differs slightly from Reichenbach’s in two respects:
First, since ARQFT is a non-commutative theory, one has to require explicitly the commutativity of
the events involved — unless one is willing to expand Reichenbach’s scheme and replace it by a theory
of “non-commutative screening off”, involving non-commutative conditionalization, which we do not
wish to consider here. (See the paper [24] for an analysis of some technical difficulties concerning the
generalization of Reichenbach’s scheme to non-distributive event structures.) Second, the common cause
event C is required in the above definition to lie in the common causal past of the two correlated events.
This latter condition was not part of Reichenbach’s original theory. It could not be because that theory
was not formulated within the framework of Minkowski spacetime. But it is clear that as soon as one is
in a theory, where there is an underlying causal structure to consider, like in ARQFT, the condition that
C be causally not disconnected from either A or B must be required, otherwise one could hardly talk
about a common cause explanation in relativistic sense.

We are now in the position to ask

Problem: Does ARQFT satisfy the Screening off Principle?

As we have indicated already, we are not able to answer this question, nor do we know of any result
that would give a partial answer, positive or negative. What will be seen below is that the existence
of a genuinely probabilistic common cause of every vacuum correlation entails C*-independence of the
algebras involved. To show this we recall first the relevant definitions.

Two C*-subalgebras A, As of the C*-algebra C are called C*-independent, if for any state ¢; on
A; and for any state ¢2 on As there is a state ¢ on C such that ¢(4) = ¢1(A) and ¢(B) = ¢2(B)
(A € A, B € Ay). The C*-independence of the pair (A;,.42) means that no preparation in any state of
the system described by A; can exclude any preparation of the system described by A>. That is to say,
any two partial states ¢; and ¢» can be prepared by the same preparation procedure. Algebras pertaining
to (regular shaped) spacelike separated spacetime regions are C*-independent (see precise statements in
[22]); in particular algebras over spacelike separated tangent double cones are C*-independent. A closely
related notion of independence is W*-independence: Two von Neumann subalgebras A7, Ms of the von
Neumann algebra A are called W *-independent, if for any normal state ¢; on N and for any normal state
¢ on N> there is a normal state ¢ on A such that ¢(A) = ¢;(A) and ¢(B) = ¢»(B) (A € N1,B € Ns).
The two von Neumann subalgebras Ap, N> are called W*-independent in the product sense if they are



W*-independent and ¢ can be chosen such that ¢(AB) = ¢(A)d(B) (A € N1,B € N3). The ordered
pair (N7, N2) of von Neumann subalgebras of the von Neumann lagebra A is called strictly local if for
any projection A € A7 and any normal state ¢» on N> there exists a normal state ¢ on N that extends
¢oand such that ¢(A) = 1. (For the origin and a detailed analysis of the interrelation of these and other
statistical independence notions see the review [21] and the references therein.)

Proposition: Let V}, V> be two open, bounded spacelike separated spacetime regions and A(V7), A(Vz)
be the two von Neumann algebras in a net of von Neumann algebras satisfying the standard conditions. If
each single correlation between projections of A(V;), A(V2) predicted by the vacuum state has a genuinely
probabilistic common cause explanation in the sense described in the Definition, then the two algebras
A1), A(Vz) are C*-independent.

Proof: The statement is an easy consequence of the powerful, non-trivial Schlieder-Roos and Reeh-
Schlieder theorems. The Schlieder-Roos theorem [15], [14] says that if A; and A mutually commute (i.e.
XY =YX forall X € 4,Y € Ay) then C*-independence of A;, As is equivalent to the following condi-
tion (“Schlieder property”): XY # 0 whenever 0 # X € A;,0 #Y € A, (recently Florig and Summers
have proved that the Schlieder-Roos theorem remains valid without assuming mutual commutativity of
the algebras; see the Proposition 3 in [4]). The Reeh-Schlieder theorem says that the vacuum vector
Qo is both cyclic and separating for any local algebra belonging to a region V' with non-empty causal
complement; in other words, no non-zero positive element in A(V) can annihilate the vacuum vector: if
0<X e A(V) and XQp = 0 then X = 0. By the Schlieder-Roos theorem it is enough to show that
the assumptions in the proposition imply the Schlieder property. Using ideas from [15], Summers shows
in [21] that to prove the Schlieder property, it is enough to prove it for projections only (for a quick
argument also see [12]); so let A € A(V;), B € A(V2) be arbitrary non-zero projections. We must show
that AB # 0. Consider now the vacuum state X — (Qg, XQg) = ¢o(X). One of the following three
equations holds.

(Q0, ABQo) > (0, AQ0){(Qo, BQo) (16)
(Q0,ABQo) = (Qo, AQ0)(Q0, BQo) (17)
(Q0, ABQo) < (0, AQ0){(Qo, BQo) (18)

The right hand sides of all of the above equations is strictly positive by the Reeh-Schlieder theorem,
therefore if either (16) or (17) is the case then (Qg, ABQg) > 0, and so AB # 0. If equation (18) is the
case, then one checks easily that

(Qo, AT BQ) > (Qo, AL (Qo, BQo) (19)

By assumption there is a genuinely probabilistic common cause of the correlation (19), i.e. there exists
a C projection in a local algebra A(V), V C BLC(Vy) N BLC(V2) such that C' commutes with both A
and B, C ¢ A+, C ¢ B and such that

(Q0, AL BCQy) _ (Qo, A CQp) (Q, BOQy) (20)
(Qo,CQ) (Q0,C)  (Qo,C)
(Q0,A-BCQ0) (R, ALCH00) (R0, BCQ) (21)
(Qo, CLQp) (Qo,C+0)  (Qo,C+ )
(0, ALCQy) S (Q0, AC+Qy) (22)
(Q0,CQo) (Q0,CQo)
(Q0, BCQy) S (Q0, BC*Qy) (23)
(Q0,CQo) (Q0,CQ)
By an elementary rewriting of (20) one can verify easily that the following also holds:
(Q, ABCQ)  (Qo, ACQp) (Qo, BCQ) (24)

<Qoa CQO) B (Qo, CQO> <907 CQO>

(Qo, BCQp) is non-zero by (23), hence, if (Qy, ACp) is shown to be non-zero, then the right hand side
of (24) is not equal to zero, and the proof is then complete. If (Q, ACQg) were equal to zero then (since
AC is a projector, hence non negative) AC' = 0 would follow by the Reeh-Schlieder Theorem, but AC' = 0
implies C C A, which can not be the case, since C' was assumed to be a genuinely probabilistic common
cause of the correlation (19).



5 Concluding remarks

Statistical independence is a property that is typically expected to hold for local algebras pertaining to
spacelike separated, i.e. causally disconnected spacetime regions. The Screening off Principle, on the
other hand, involves causally connected regions/algebras. The Proposition connects the two notions, and
it shows that C*-independence of spacelike separated algebras is necessary for the Screening off Principle
(in the genuinely probabilistic sense) to hold in ARQFT. (It s also clear from the proof that Proposition
remains valid by replacing the vacuum state by any other faithful state.) It has been proved recently
that in the context of ARQFT C*-independence, W*-independence and strict locality are equivalent [4].
It follows then that validity of the Screening off Principle in ARQFT (in the probabilistic sense) implies
both W*-independence and strict locality of the local algebras confined in spacelike separated spacetime
regions. However, the proof of the Proposition also indicates that C*-independence (hence also W*-
independence and strict locality) is unlikely to be sufficient for the Screening off Principle to hold: One
of the properties of the probabilistic common cause, namely that the common cause C' belongs to the
common causal past of the correlated events, was not used in inferring the C*-independence property.

Since the Screening off Principle appears to be stronger than C*-independence, a natural question
is, whether it implies stronger independence conditions. It is known [4] that W*-independence in the
product sense (hence also the so-called “split property”, see [21] for the definition) is a strictly stronger
independence condition than W*-independence. If W*-independence in the product sense or the split
property could be inferred from the Screening off Principle, then one could conclude that the Screening
off Principle does not hold in general, since it is known that the split property fails for tangent spacetime
regions (see [20]). It is not known, whether the Screening off Principle implies any of the stronger
statistical independence conditions. Most pressing would be to know, however, whether the Screening off
Principle can hold at all, at least for some pairs of spacelike separated regions.

In a recent paper Belnap and Szabd have proved that the non-probabilistic superluminal correlations
occurring in the Greenberger-Horne-Zeilinger (GHZ) situation do not have a non-probabilistic common
common cause [1]. The results on the violation of Bell’s inequality in ARQFT imply that the “same” is
true also in the present case: If for a given state ¢ there exists a single, common probabilistic common
cause C' (in the sense of Definition) of all correlations predicted by ¢, then the C-conditioned state ¢(e|C')
is a product state across the algebras A(V7), A(V2). Since a product state satisfies Bell’s inequality,
and since for tangent spacelike separated wedge and double cone regions every normal state maximally
violates Bell’s inequality [20], there exists no normal state over local algebras in the said regions such
that the correlations predicted by it have a common common cause. But the assumption that all the
superluminal correlations predicted by a given state in ARQFT have a common common cause, seems
totally unwarranted. Not only isn’t there anything in the Reichenbachian notion of common cause that
would justify this assumption, the common cause principle doesn’t even seem to contain any hint as to how
the different common causes C48", CA"-B" | of different correlated pairs (A", B"); (A",B") ... (possibly
containing even incompatible elements) might be related to each other. This dependence of the common
cause on the pair of the correlated events and the unrelatedness of the causes of correlations of different
event-pairs not only simply blocks the inference from the assumption of existence of common causes to
the value of the Bell correlation, but it makes unclear in which state one should check the value of the
Bell correlation: given a state, the vacuum ¢q say, and assuming that there exist probabilistic common
causes C4"B' CA"B" _ of all the correlated pairs (A", B"); (A",B") ... we have the conditioned states
do(8|CA B, o (e|CA"B") ... Which of these states should satisfy Bell’s inequality (10)? In fact we
know (since all these states are normal) that each violates Bell’s inequality (10) (for complementary
wedges and spacelike separated tangent double cones). But why shouldn’t they — assuming only (12)-
(15) to hold with A’, B',C"; A", B",C" ...?7 In short, under the present specification of Bell’s inequality
and Reichenbachian common cause, it is impossible to give meaning to the claim “Bell’s inequality is
implied by Reichenbach’s common cause principle”; hence, on the present interpretation, violation of
Bell’s inequality does not imply the impossibility of Reichenbachian common causes of superluminal
correlations. Whether such (not common) Reichenbachian probabilistic common causes exist in ARQFT
remains an open question, just like in the case of the non-probabilistic GHZ correlations.

It should be noted that this conclusion remains valid also in connection with Bell’s inequality in
standard, non-relativistic quantum mechanics. If the notion of common cause is specified in Reichenbach’s
spirit as a non-common common cause, i.e. if it is not assumed that different correlated event pairs in
the standard Bell-Bohm setting have the same common cause, then the usual Bell’s inequality cannot
be derived from the assumption of existence of common causes of correlations: The standard arguments



in support of the claim that “Bell’s inequality is implied by Reichenbach’s common cause principle” (for
instance the proof given by Van Fraassen [26]) assume (more or less tacitly) and make essential use of the
assumption that each single hidden variable (interpreted as common cause) screens off all correlations,
i.e. that the hidden variable is a common “common cause”. While this assumption might be justifiable in
a hidden variable framework, the justification must involve considerations that go beyond Reichenbach’s
notion of a statistical common cause.
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