Von Neumann's work on Hilbert space quantum mechanics

It is mainly through the work of von Neumann that we think today of quantum mechanics as

non-commutative probability theory

This is explained in the lecture by recalling:

• Classical probability theory

 \vdash

• Hilbert space quantum mechanics as non-commutative probability theory

(Hilbert lattice of projections, quantum states as σ additive measures on Hilbert lattice, Gleason's theorem, linear operators as non-commutative random variables)

• Von Neumann's contribution to the theory

Classical probability theory
classical measure space
set
Boolean algebra
σ -additive measure
counting measure
integrable functions
probability measure
given by density function g
w.r.t. counting measure μ
probability measure space

ນ

Hilbert space Quantum Mechanics || non-commutative probability theory

classical probability theory

 \Rightarrow quantum probability theory replace

Boolean algebra Sprobability measure prandom variables (bounded measurable functions) by Hilbert lattice $\mathcal{P}(\mathcal{H})$ by quantum state ϕ on $\mathcal{P}(\mathcal{H})$ by linear operators

by (bounded linear operators)

 $(\mathcal{B}, \lor, \land, \bot)$ is a Boolean algebra if it is an orthocomplemented distributive lattice with respect to the lattice operations \lor, \land and $A \mapsto A^{\bot}$ orthocomplementation

Distributivity:

 $A \lor (B \land C) = (A \lor B) \land (A \lor C)$ for all A, B, C

Stone's Theorem : A Boolean algebra is always isomorphic with a Boolean algebra of subsets of a set X with respect to the set theoretical operations

 $A \wedge B = \cap B$ $A \vee B = A \cup B$ $A^{\perp} = X \setminus A$

Hilbert lattice $(\mathcal{P}(\mathcal{H}), \lor, \land, \bot)$ $\mathcal{P}(\mathcal{H}) = \text{set of all closed linear subspaces of a Hilbert space } \mathcal{H}$ || $\mathcal{P}(\mathcal{H}) = \text{set of all projections on a Hilbert space } \mathcal{H}$ Lattice operations \lor, \land, \bot defined by:

$$\begin{array}{lcl} A \wedge B &=& A \cap B \\ A \vee B &=& closure \ of \left[(A + B) = \{\xi + \eta : \xi \in A, \eta \in B\} \right] \\ A^{\perp} &=& \{\xi \in \mathcal{H} : \langle \xi, \eta \rangle = 0 \ \forall \eta \in A\} \end{array}$$

СЛ

Crucial difference between Boolean algebra and Hilbert lattice (between classical physics and quantum physics): A Hilbert lattice is not distributive, only orthomodular: Orthomodularity:

If $A \leq B$ and $A^{\perp} \leq C$ then $A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)$

Failure of distributivity

 \uparrow

non commutativity of product of projections

Proposition : If A, B are projections from a distributive sublattice of $\mathcal{P}(\mathcal{H})$ iff AB=BA

Hence the terminology:

non-commutative = non-distributive = non-classical = quantum

Non-commutative probability measures

Definition $\phi: \mathcal{P}(\mathcal{H}) \to [0, 1]$ is a quantum probability measure (or quantum state) if (1) $\phi(0) = 0$ $\phi(I) = 1$ (2) $\phi(\lor_i A_i) = \sum_i \phi(A_i)$ if $\left[A_i \bot A_j \iff A_i \le A_j^{\bot}\right) (i \ne j)$

A quantum state is a σ -additive map from $\mathcal{P}(\mathcal{H})$ into [0, 1] ϕ is a complete analogue of a classical probability measure

Theorem (Gleason): If ϕ is a quantum state then there exists a positive, trace class operator ρ with $Tr(\rho) = 1$ such that

$$\phi(A) = Tr(\rho A) = \sum_{i} \langle \xi_i, \rho A \xi_i \rangle \tag{1}$$

and conversely, if ρ is a positive, trace class operator such that $Tr(\rho) = 1$ then (1) defines a quantum state ϕ

Tr is defined by

$$Tr(Q) = \sum_{i} \langle \xi_i, Q\xi_i \rangle \qquad \{\xi_i\}$$
 orthonormal basis in \mathcal{H}

 ρ is the analogue of the probability density function Tr is the analogue of the counting measure

 ∞

Gleason's theorem shows: ϕ can be extended from projections $\mathcal{P}(\mathcal{H})$ to bounded operators $\mathcal{B}(\mathcal{H})$ Analogy: classical measure can be extended from characteristic functions to integrable functions The extension process is called: theory of integration Conclusion: Gleason's theorem is a theorem in non-commutative integration

Recovering the standard notion of (vector) state as used in physics: If $\rho = P_{\xi}$ = projection to $\xi \in \mathcal{H}$ (state vector) then

$$Tr(\rho Q) = \sum_{i} \langle \xi_i, QP_{\xi}\xi_i \rangle = \langle \xi, QP_{\xi}\xi \rangle = \langle \xi, Q\xi \rangle$$

 $\langle \xi, Q\xi \rangle =$ the usual expectation value of observable Q in state ξ

Linear operators as non-commutative analogues of classical random variables In the definition of random variable $f: X \to \mathbb{R}$ only the inverse function f^{-1} plays a role:

Definition $f: X \to \mathbb{R}$ is a random variable if $f^{-1}(d) \in S$ (for all $d \in \mathcal{B}(\mathbb{R})$ = Boolean algebra of Borel sets of \mathbb{R})

A (real valued) random variable f^{-1} is thus a Boolean algebra homomorphism from the Boolean algebra of Borel sets of real numbers into the Boolean algebra S

 $f^{-1}: \mathcal{B}(\mathbb{R}) \to \mathcal{S}$

The quantum analogue of real valued random variable is the Boolean algebra homomorphism from the Boolean algebra of Borel sets of real numbers into the Hilbert lattice $\mathcal{P}(\mathcal{H})$:

 $Q: \mathcal{B}(\mathbb{R}) \to \mathcal{P}(\mathcal{H})$

Such a Q is called (understandably) a projection valued measure

Theorem (Spectral Theorem, von Neumann): There is a one-to-one correspondence between selfadjoint linear operators on a Hilbert space \mathcal{H} and projection valued measures

Definition Q is a selfadjoint operator on \mathcal{H} if $Q = Q^*$ (where Q^* is the adjoint of Q)

Definition If Q is densely defined with domain D(Q) then there exists (uniquely) the adjoint Q^* of Q, an operator with domain $D(Q^*)$ such that

$$\langle \xi, Q\eta \rangle = \langle Q^*\xi, \eta \rangle \qquad \xi \in \mathcal{D}(Q^*), \quad \eta \in \mathcal{D}(Q)$$

Definition : Q_2 is an extension of Q_1 if

 $D(Q_1) \subseteq D(Q_2)$ and

 $Q_1\xi = Q_2\xi \qquad \xi \in D(Q_1)$

(Notation $Q_1 \subseteq Q_2$)

 $\begin{array}{lll} \mbox{Definition:} & Q \mbox{ is } & {\rm symmetric if } Q \subseteq Q^* \\ & {\rm maximal \ symmetric \ if \ it \ is \ symmetric \ and} \\ & {\rm there \ exists \ no \ symmetric \ operator \ } Q' \ extending \ Q} \\ & {\rm closed \ if} \\ & {\rm if \ } \xi_n \to \xi \ {\rm and} \ Q \xi_n \to \eta \ {\rm then} \\ & {\rm \xi} \in D(Q) \ {\rm and} \ D \xi = \eta \\ \end{array}$

Proposition: If Q is selfadjoint, then

- its spectrum is a subset of the real numbers
- Q is maximal symmetric (but not conversely!)
- Q is closed

Proposition (Hellinger-Toeplitz Theorem) An everywhere defined closed operator is bounded

Corollary: A selfadjoint unbounded operator is not everywhere defined

All sorts of very tricky mathematical problems emerge if an operator is not everywhere defined – major difficulty in quantum mechanics and occurs frequently because the differential operators are not everywhere defined! Definition: If Q is a symmetric operator then n^+ and n^- defined below are called the defect indices of T:

$$n^{+} = \dim \left[Range(Q + iI) \right]^{\perp}$$
(2)
$$n^{-} = \dim \left[Range(Q - iI) \right]^{\perp}$$
(3)

Theorem[von Neumann, 1928]:

- A symmetric operator Q is maximal symmetric if and only if one of its defect indices is zero
- Q is selfadjoint if and only if both of its defect indices are zero

There is a very tight formal structural correspondence between concepts in classical probability theory and quantum probability theory, an analogy that goes beyond the correspondence mentioned sofar:

 $p \longleftrightarrow \phi$

 $\mu \text{ counting measure} \quad \longleftrightarrow \quad Tr$

- probability density $\iff \rho$
 - random variable $\iff Q$

The correspondence is summarized in the next 3 slides

Classical	Quantum
probability theory	probability theory
(X, \mathcal{S}, μ)	$(\mathcal{H}, \mathcal{P}(\mathcal{H}), Tr)$
classical measure space	Hilbert space QM
${\mathcal S}$ Boolean algebra	$\mathcal{P}(\mathcal{H})$ orthomodular lattice
$\mu \text{ counting measure}$	Tr functional
$L^1(X,\mu)$	$\mathcal{T}(\mathcal{H})$

$L^\infty(X,\mu)$	$\mathcal{B}(\mathcal{H})$
essentially bounded functions	bounded operators
(bounded) random variables	(bounded) observables
$g \in L^1(X,\mu), g \ge 0, \int g \mathrm{d}\mu = 1$	$\rho \in \mathcal{T}(\mathcal{H}), \ \rho \geq 0, \ Tr(\rho) = 1$
probability density	density matrix ((normal) state)
$\mathcal{S} \ni A \mapsto p_g(A) = \int \chi_A g \mathrm{d}\mu \in [0, 1]$	$\mathcal{P}(\mathcal{H}) \ni A \mapsto Tr(\rho A) \in [0,1]$
$\int g f \mathrm{d} \mu, \ g \in L^1(X,\mu)$	$Tr(\rho A), \ \rho \in \mathcal{T}(\mathcal{H})$
expectation value of $f \in L^{\infty}(X, \mu)$	expectation value of $A \in \mathcal{B}(\mathcal{H})$
with respect to p_g	in state ρ

$L^1(X,\mu)$ Banach space	$\mathcal{T}(\mathcal{H})$ Banach space
$\ g\ _1 = \int g \mathrm{d} \mu$	$\ \rho\ _{Tr} = Tr(\rho)$
$L^{\infty}(X,\mu)$ Banach space	$\mathcal{B}(\mathcal{H})$ Banach space
$\ f\ _{\infty} = ess.sup.f$	$\ A\ = \sup_{\ \xi\ \le 1} \ A\xi\ $
$L^1(X,\mu)^* = L^{\infty}(X,\mu)$ duality	$\mathcal{T}(\mathcal{H})^* = \mathcal{B}(\mathcal{H})$ duality
$\phi \in L^1(X,\mu)^*$	$\phi\in \mathcal{T}^*$
$\phi(g) = \int f g \mathrm{d} \mu$	$\phi(\rho) = Tr(\rho A)$
for some $f \in L^{\infty}(X, \mu)$	for some $A \in \mathcal{B}(\mathcal{H})$
$L^{\infty}(X,\mu)^* \supset L^1(X,\mu)$	$\mathcal{B}(\mathcal{H})^* \supset \mathcal{T}(\mathcal{H})$
$L^{\infty}(X,\mu) \ni f \mapsto \int gf d\mu, \ g \in L_1(X,\mu)$	$\mathcal{B}(\mathcal{H}) \ni A \mapsto Tr(\rho A)$
$\ \cdot\ _{\infty}$ -cont. functional	$\ \cdot\ $ (op.norm) cont. functional

Interpretation of classical probability theory + analogy between classical and quantum probability theory suggests the following physical interpretation of the mathematical formalism of Hilbert space quantum mechanics $(\mathcal{H}, \mathcal{P}(\mathcal{H}), \mathcal{B}(\mathcal{H}), \rho)$:

$\mathcal{P}(\mathcal{H})$	set of random quantum events
$\xi\in\mathcal{H}$	state vector ξ describes physical states
	states = probability measures
	represent ensembles
pure state	represents indecomposable ensemble
$\rho\in \mathcal{T}$	representation of general physical state
(mixed state)	(decomposable ensemble)
Q selfadjoint operator	physical quantity (observable)
spectrum of Q	possible values of Q
Tr(ho Q)	expectation value (average) of observable
	in state (ensemble) ρ

Von Neumann's contribution to establishing Hilbert space QM:

- Creating the notion of abstract Hilbert space (generalized from l^2 and L^2)
- Isolating the set of projections as a crucial entity BUT

 von Neumann never defined orthomodularity explicitly
 he analyzed lattice theoretic properties of projections only
 after he had abandoned Hilbert space quantum mechanics
 (1935-1936) in favor of operator algebraic approach (see later)
 von Neumann saw conceptual problems with interpreting
 \$\mathcal{P}(\mathcal{H})\$ as algebraic structure representing random events (see later)
- Introducing the notion of density operator

 (first as statistical operator (a not normalized positive operator U), later as trace-one operator)

- Introducing the trace functional as counting measure ("a priori probability")
- Introducing the notion of projection valued measure (Spektralschar)
- Proving Spectral Theorem
- Analyzing unbounded operators, clarifying the difference between selfadjoint, symmetric and maximal symmetric operators

Major works of von Neumann containing his results on the mathematical foundations of quantum mechanics:

References

- [1] D. Hilbert, L. Nordheim, J. von Neumann: Über die Grundlagen der Quantenmechanik (1926)
 Mathematische Annalen 98 (1927) 1-30
- [2] J. von Neumann: Mathematische Begründung der Quantenmechanik
 Göttinger Nachrichten (1927) 1-57
- [3] J. von Neumann: Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik
 Göttinger Nachrichten (1927) 245-272

- [4] J. von Neumann: Thermodynamik quantenmechanischer Gesamtheiten
 Göttinger Nachrichten (1927) 245-272
- [5] J. von Neumann: Allgemeine Eigenwertstheorie Hermitescher Funktionalopertoren Mathematische Annalen 102 (1927) 49-131
- [6] J. von Neumann: Die Eindeutigkeit des Schrödingerschen Operatoren
 Mathematische Annalen 104 (1931) 570-578
- [7] J. von Neumann: Mathematische Grundlagen der Quantenmechanik
 (Dover Publications, New York, 1943) (first American Edition; first edition: Springer Verlag, Heidelberg, 1932; first English translation: Princeton University Press, Princeton, 1955.)

Von Neumann on his book on the mathematical foundations of quantum mechanics:

The subject-matter is partly physical-mathematical, partly, however, a very involved conceptual critique of the logical foundations of various disciplines (theory of probability, thermodynamics, classical mechanics, classical statistical mechanics, quantum mechanics). This philosophical-epistemological discussion has to be continuously tied in and quite critically synchronised with the parallel mathematical-physical discussion. It is, by the way, one of the essential justifications of the book, which gives it a content not covered in other treatises, written by physicists or by mathematicians, on quantum mechanics."

(von Neumann to Cirker, October 3, 1949)

Uniqueness of Schrödinger representation of Heisenberg's commutation relation :

QP - PQ = I (on a dense subset of \mathcal{H}) (4)

Difficulty: Q and P cannot be bounded

\Rightarrow

All the usual domain problems arise

A specific example of Q, P satisfying (??) is the Schrödinger representation defined by

$$(Qf)(x) = xf(x)$$
 $(Pf)(x) = -if'(x)$ $f \in L^2(\mathbb{R}, \mu)$ (5)

Are there other examples?

First trick in

can be viewed as the infinitesimal form of a commutation relation and, accordingly, it can be reformulated in terms of the one parameter groups U, V of unitary operators determined by Q, P as infinitesimal generators:

$$U(a)V(b) = e^{iab}V(b)U(a) \quad a, b \in \mathbb{R}$$
(6)