Von Neumann’s work on Hilbert space quantum mechanics

It is mainly through the work of von Neumann that we think today

of quantum mechanics as

non-commutative probability theory

This is explained in the lecture by recalling:
e (Classical probability theory

e Hilbert space quantum mechanics as non-commutative
probability theory
(Hilbert lattice of projections, quantum states as o additive
measures on Hilbert lattice, Gleason’s theorem, linear operators as

non-commutative random variables)

e Von Neumann’s contribution to the theory




Classical probability theory

classical measure space
set

Boolean algebra

o-additive measure

counting measure

integrable functions
probability measure

given by density function g
w.r.t. counting measure y

probability measure space




Hilbert space Quantum Mechanics

non-commutative probability theory

classical probability theory = quantum probability theory
replace

Boolean algebra S Hilbert lattice P(H)

probability measure p quantum state ¢ on P(H)

random variables linear operators

(bounded measurable functions) (bounded linear operators)




(B,V, A, 1) is a Boolean algebra if it is an orthocomplemented
distributive lattice with respect to the lattice operations V, A and
A — A+ orthocomplementation

Distributivity:

AV(BANC)=(AVB)AN(AVvC(C) forall A B,C

Stone’s Theorem : A Boolean algebra is always isomorphic with a
Boolean algebra of subsets of a set X
with respect to the set theoretical operations

ANB NB
AV B AUB
A+ X\ A




Hilbert lattice
(P(H),V,A, L)
P(H) = set of all closed linear subspaces of a Hilbert space ‘H
|
P(H) = set of all projections on a Hilbert space ‘H
Lattice operations V, A, L defined by:

ANB
closure of (A+B):{§+n:£€A,nEB}}

& eHr:({&m=0Vnec A}




Crucial difference between Boolean algebra and Hilbert lattice
(between classical physics and quantum physics):
A Hilbert lattice is not distributive, only orthomodular:

Orthomodularity:

If A<B and A+ <C then AV(BAC)=(AVB)A(AVC)

Failure of distributivity

0

non commutativity of product of projections

Proposition : If A, B are projections from a distributive sublattice

of P(H) iff AB=BA

Hence the terminology:

non-commutative = non-distributive = non-classical = quantum




Non-commutative probability measures

Definition ¢: P(H) — [0, 1] is a quantum probability measure
(or quantum state ) if

(1) 9(0) =0 o(I) =1

2) $(Vidi) = X, 6(Ai) i [AiLA; (& A < AF) (i £ )]

A quantum state is a o-additive map from P(H) into [0, 1]

¢ is a complete analogue of a classical probability measure




Theorem (Gleason):  If ¢ is a quantum state then there exists a
positive, trace class operator p with Tr(p) = 1 such that

¢(A) =Tr(pA) = Z<‘£i7 pAE;) (1)

1

and conversely, if p is a positive, trace class operator such that
Tr(p) =1 then (1) defines a quantum state ¢

T'r is defined by

Tr(Q) =) (&, Q%)  {&} orthonormal basis in M

1

p is the analogue of the probability density function
T'r is the analogue of the counting measure




Gleason’s theorem shows: ¢ can be extended

from projections P(H) to bounded operators B(H)
Analogy: classical measure can be extended

from characteristic functions to integrable functions
The extension process is called: theory of integration
Conclusion: Gleason’s theorem is a theorem in non-commutative

integration

Recovering the standard notion of (vector) state as used in physics:

If p = P¢ = projection to £ € H (state vector) then

Tr(pQ) = Y (&, QP:&i) = (£, QP:E) = (€,QE)

1

(£,Q¢) = the usual expectation value of observable @) in state £
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Linear operators as non-commutative analogues of classical random variables

In the definition of random variable f: X — IR only the inverse function
f~1 plays a role:

Definition f: X — IR is a random variable if f~'(d) € S
(for all d € B(IR) = Boolean algebra of Borel sets of IR)

A (real valued) random variable f~' is thus a Boolean algebra
homomorphism from the Boolean algebra of Borel sets of real numbers
into the Boolean algebra S

fTuB(R)—S

The quantum analogue of real valued random variable is the Boolean
algebra homomorphism from the Boolean algebra of Borel sets of real
numbers into the Hilbert lattice P(H):

Q:B(R) — P(H)

Such a @ is called (understandably) a projection valued measure
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Theorem (Spectral Theorem, von Neumann): There is a one-to-one
correspondence between selfadjoint linear operators on a Hilbert

space ‘H and projection valued measures

Definition () is a selfadjoint operator on H if () = Q~
(where QQ* is the adjoint of Q)

Definition If @) is densely defined with domain D(Q) then there
exists (uniquely) the adjoint Q* of @), an operator with domain
D(Q*) such that

& Qn =(Q¢n  £€DQ"), neDQQ)
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Definition :

Definition:

(22 is an extension of )1 if

D(Q1) € D(Q2)

and

Q1€ = Q28 £ € D(Qh)
(Notation Q1 C Q2)

() is symmetric if Q C Q*

maximal symmetric if it is symmetric and

there exists no symmetric operator Q' extending Q

closed if
if &, — & and Q&, — n then
¢ € D(Q) and D¢ =1
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Proposition: If @) is selfadjoint, then
e its spectrum is a subset of the real numbers

e () is maximal symmetric (but not conversely!)

e () is closed

Proposition (Hellinger-Toeplitz Theorem) An everywhere defined

closed operator is bounded

Corollary: A selfadjoint unbounded operator is not everywhere
defined

All sorts of very tricky mathematical problems emerge if an
operator is not everywhere defined — major difficulty in quantum
mechanics and occurs frequently because the differential operators

are not everywhere defined!




Vi

Definition: If @) is a symmetric operator then n™ and n~ defined

below are called the defect indices of T

nt dim _Range(Q + i[)-

dim _Ra,nge(Q — i])_
Theorem|[von Neumann, 1928]:

e A symmetric operator () is maximal symmetric if and only if

one of its defect indices is zero

e () is selfadjoint if and only if both of its defect indices are zero
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There is a very tight formal structural correspondence between

concepts in classical probability theory and quantum probability

theory, an analogy that goes beyond the correspondence mentioned

sofar:

p

(4 counting measure
probability density

random variable

The correspondence is summarized in the next 3 slides
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Classical

probability theory

Quantum

probability theory

(X, S, 1)

classical measure space

(H,P(H),Tr)
Hilbert space QM

S Boolean algebra

P(H) orthomodular lattice

(4 counting measure

Tr functional

LY(X, p)

integrable functions

T (H)

trace class operators




L1

L™= (X, p)
essentially bounded functions

(bounded) random variables

B(H)
bounded operators

(bounded) observables

ge L' (X,p),g>0, [gdu=1

probability density
S35 A py(A) = [ xagdp € [0,1]

peT(H), p>0,Tr(p) =1
density matrix ((normal) state)

P(H) > A— Tr(pA) € [0,1]

J9fdu, g € L'(X, )
expectation value of f € L™ (X, u)
with respect to p,

Tr(pA), p € T(H)
expectation value of A € B(H)

in state p
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L'(X, 1) Banach space
gl = [ lgldp

7 (H) Banach space
lollzr = Tr(]|pl)

L°°(X, 1) Banach space

| flloo = ess.sup. f

B(H) Banach space
1A]] = supyej<i || AL]|

LY (X, pn)* = L®(X, i) duality
b€ LM(X, )"

o(9) = [ fodp
for some f € L™ (X, u)

T(H)* = B(H) duality
peT”

¢(p) = Tr(pA)

for some A € B('H)

L>®(X,p)" D LY (X, )

L®(X,p) > f— [gfdu, g € Li(X, p)

| - ||co-cont. functional

B(H)* D T(H)
B(H) > A— Tr(pA)

| - || (op.norm) cont. functional
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Interpretation of classical probability theory 4+ analogy between classical

and quantum probability theory suggests the following physical

interpretation of the mathematical formalism of Hilbert space quantum

mechanics (H, P(H), B(H), p):




0¢

set of random quantum events

pure state

state vector £ describes physical states
states = probability measures
represent ensembles

represents indecomposable ensemble

peT

(mixed state)

representation of general physical state

(decomposable ensemble)

() selfadjoint operator

spectrum of )

Tr(pQ)

physical quantity (observable)

possible values of ()
expectation value (average) of observable

in state (ensemble) p
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Von Neumann’s contribution to establishing Hilbert space QM:

e Creating the notion of abstract Hilbert space

(generalized from [* and L?)

e Isolating the set of projections as a crucial entity BUT
— von Neumann never defined orthomodularity explicitly
— he analyzed lattice theoretic properties of projections only
after he had abandoned Hilbert space quantum mechanics
(1935-1936) in favor of operator algebraic approach (see later)
— von Neumann saw conceptual problems with interpreting
P(H) as algebraic structure representing random events (see
later)

Introducing the notion of density operator
(first as statistical operator (a not normalized positive operator

U), later as trace-one operator)




GG

Introducing the trace functional as counting measure (“a priori

probability” )

Introducing the notion of projection valued measure
(Spektralschar)

Proving Spectral Theorem

Analyzing unbounded operators, clarifying the difference
between selfadjoint, symmetric and maximal symmetric

operators
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Major works of von Neumann containing his results on the

mathematical foundations of quantum mechanics:
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Von Neumann on his book on the mathematical foundations of

quantum mechanics:

The subject-matter is partly physical-mathematical, partly, however, a
very involved conceptual critique of the logical foundations of various

disciplines (theory of probability, thermodynamics, classical mechanics,

classical statistical mechanics, quantum mechanics). This

philosophical-epistemological discussion has to be continuously tied in
and quite critically synchronised with the parallel mathematical-physical
discussion. It is, by the way, one of the essential justifications of the
book, which gives it a content not covered in other treatises, written by
physicists or by mathematicians, on quantum mechanics.”

(von Neumann to Cirker, October 3, 1949)
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Uniqueness of Schrodinger representation of

Heisenberg’s commutation relation :

QP — PQ =1 (on a dense subset of H)

Difficulty: @ and P cannot be bounded
=

All the usual domain problems arise

A specific example of @, P satisfying (?77)

is the Schrodinger representation defined by

Q) (@) =af(x)  (Pf)(x)=—if'(x) f€L*(R,p)

Are there other examples?

()
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First trick in

can be viewed as the infinitesimal form of a commutation relation
and, accordingly, it can be reformulated in terms of the one
parameter groups U, V of unitary operators determined by @, P as

infinitesimal generators:

U(a)V(b) =V (b)U(a) a,be R (6)



