
Von Neumann’s work on Hilbert space quantum mechanics

It is mainly through the work of von Neumann that we think today

of quantum mechanics as

non-commutative probability theory

This is explained in the lecture by recalling:

• Classical probability theory

• Hilbert space quantum mechanics as non-commutative

probability theory

(Hilbert lattice of projections, quantum states as σ additive

measures on Hilbert lattice, Gleason’s theorem, linear operators as

non-commutative random variables)

• Von Neumann’s contribution to the theory
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Classical probability theory

(X,S, µ) classical measure space

X set

S Boolean algebra

µ:S → IR+ ∪∞ σ-additive measure

counting measure

L1(X, µ) integrable functions

pg(A) =
∫

χAgdµ probability measure

g ∈ L1(X, µ) given by density function g

w.r.t. counting measure µ

(X,S, pg) probability measure space
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Hilbert space Quantum Mechanics

‖

non-commutative probability theory

classical probability theory ⇒ quantum probability theory

replace

Boolean algebra S by Hilbert lattice P(H)

probability measure p by quantum state φ on P(H)

random variables by linear operators

(bounded measurable functions) by (bounded linear operators)
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(B,∨,∧,⊥) is a Boolean algebra if it is an orthocomplemented

distributive lattice with respect to the lattice operations ∨, ∧ and

A 7→ A⊥ orthocomplementation

Distributivity:

A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C) for all A, B, C

Stone’s Theorem : A Boolean algebra is always isomorphic with a

Boolean algebra of subsets of a set X

with respect to the set theoretical operations

A ∧B = ∩B

A ∨B = A ∪B

A⊥ = X \A
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Hilbert lattice

(P(H),∨,∧,⊥)

P(H) = set of all closed linear subspaces of a Hilbert space H

||

P(H) = set of all projections on a Hilbert space H

Lattice operations ∨,∧,⊥ defined by:

A ∧B = A ∩B

A ∨B = closure of
[

(A + B) = {ξ + η : ξ ∈ A, η ∈ B}
]

A⊥ = {ξ ∈ H : 〈ξ, η〉 = 0 ∀η ∈ A}
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Crucial difference between Boolean algebra and Hilbert lattice

(between classical physics and quantum physics):

A Hilbert lattice is not distributive, only orthomodular:

Orthomodularity:

If A ≤ B and A⊥ ≤ C then A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C)

Failure of distributivity

m

non commutativity of product of projections

Proposition : If A, B are projections from a distributive sublattice

of P(H) iff AB=BA

Hence the terminology:

non-commutative = non-distributive = non-classical = quantum
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Non-commutative probability measures

Definition φ:P(H)→ [0, 1] is a quantum probability measure

(or quantum state ) if

(1) φ(0) = 0 φ(I) = 1

(2) φ(∨iAi) =
∑

i φ(Ai) if
[

Ai⊥Aj (⇔ Ai ≤ A⊥

j ) (i 6= j)
]

A quantum state is a σ-additive map from P(H) into [0, 1]

φ is a complete analogue of a classical probability measure
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Theorem (Gleason): If φ is a quantum state then there exists a

positive, trace class operator ρ with Tr(ρ) = 1 such that

φ(A) = Tr(ρA) =
∑

i

〈ξi, ρAξi〉 (1)

and conversely, if ρ is a positive, trace class operator such that

Tr(ρ) = 1 then (1) defines a quantum state φ

Tr is defined by

Tr(Q) =
∑

i

〈ξi, Qξi〉 {ξi} orthonormal basis in H

ρ is the analogue of the probability density function

Tr is the analogue of the counting measure
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Gleason’s theorem shows: φ can be extended

from projections P(H) to bounded operators B(H)

Analogy: classical measure can be extended

from characteristic functions to integrable functions

The extension process is called: theory of integration

Conclusion: Gleason’s theorem is a theorem in non-commutative

integration

Recovering the standard notion of (vector) state as used in physics:

If ρ = Pξ = projection to ξ ∈ H (state vector) then

Tr(ρQ) =
∑

i

〈ξi, QPξξi〉 = 〈ξ, QPξξ〉 = 〈ξ, Qξ〉

〈ξ, Qξ〉 = the usual expectation value of observable Q in state ξ
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Linear operators as non-commutative analogues of classical random variables

In the definition of random variable f : X → IR only the inverse function

f−1 plays a role:

Definition f : X → IR is a random variable if f−1(d) ∈ S

(for all d ∈ B(IR) = Boolean algebra of Borel sets of IR)

A (real valued) random variable f−1 is thus a Boolean algebra

homomorphism from the Boolean algebra of Borel sets of real numbers

into the Boolean algebra S

f
−1:B(IR) → S

The quantum analogue of real valued random variable is the Boolean

algebra homomorphism from the Boolean algebra of Borel sets of real

numbers into the Hilbert lattice P(H):

Q:B(IR) → P(H)

Such a Q is called (understandably) a projection valued measure
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Theorem (Spectral Theorem, von Neumann): There is a one-to-one

correspondence between selfadjoint linear operators on a Hilbert

space H and projection valued measures

Definition Q is a selfadjoint operator on H if Q = Q∗

(where Q∗ is the adjoint of Q)

Definition If Q is densely defined with domain D(Q) then there

exists (uniquely) the adjoint Q∗ of Q, an operator with domain

D(Q∗) such that

〈ξ, Qη〉 = 〈Q∗ξ, η〉 ξ ∈ D(Q∗), η ∈ D(Q)
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Definition : Q2 is an extension of Q1 if

D(Q1) ⊆ D(Q2)

and

Q1ξ = Q2ξ ξ ∈ D(Q1)

(Notation Q1 ⊆ Q2)

Definition: Q is symmetric if Q ⊆ Q∗

maximal symmetric if it is symmetric and

there exists no symmetric operator Q′ extending Q

closed if

if ξn → ξ and Qξn → η then

ξ ∈ D(Q) and Dξ = η
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Proposition: If Q is selfadjoint, then

• its spectrum is a subset of the real numbers

• Q is maximal symmetric (but not conversely!)

• Q is closed

Proposition (Hellinger-Toeplitz Theorem) An everywhere defined

closed operator is bounded

Corollary: A selfadjoint unbounded operator is not everywhere

defined

All sorts of very tricky mathematical problems emerge if an

operator is not everywhere defined – major difficulty in quantum

mechanics and occurs frequently because the differential operators

are not everywhere defined!
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Definition: If Q is a symmetric operator then n+ and n− defined

below are called the defect indices of T :

n+ = dim
[

Range(Q + iI)
]⊥

(2)

n− = dim
[

Range(Q− iI)
]⊥

(3)

Theorem[von Neumann, 1928]:

• A symmetric operator Q is maximal symmetric if and only if

one of its defect indices is zero

• Q is selfadjoint if and only if both of its defect indices are zero
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There is a very tight formal structural correspondence between

concepts in classical probability theory and quantum probability

theory, an analogy that goes beyond the correspondence mentioned

sofar:

p ←→ φ

µ counting measure ←→ Tr

probability density ←→ ρ

random variable ←→ Q

The correspondence is summarized in the next 3 slides
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Classical Quantum

probability theory probability theory

(X,S, µ) (H,P(H), T r)

classical measure space Hilbert space QM

S Boolean algebra P(H) orthomodular lattice

µ counting measure Tr functional

L1(X, µ) T (H)

integrable functions trace class operators
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L∞(X, µ) B(H)

essentially bounded functions bounded operators

(bounded) random variables (bounded) observables

g ∈ L1(X, µ), g ≥ 0,
∫

gdµ = 1 ρ ∈ T (H), ρ ≥ 0, Tr(ρ) = 1

probability density density matrix ((normal) state)

S 3 A 7→ pg(A) =
∫

χAgdµ ∈ [0, 1] P(H) 3 A 7→ Tr(ρA) ∈ [0, 1]

∫

gfdµ, g ∈ L1(X, µ) Tr(ρA), ρ ∈ T (H)

expectation value of f ∈ L∞(X, µ) expectation value of A ∈ B(H)

with respect to pg in state ρ
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L1(X, µ) Banach space T (H) Banach space

‖g‖1 =
∫

|g|dµ ‖ρ‖Tr = Tr(|ρ|)

L∞(X, µ) Banach space B(H) Banach space

‖f‖∞ = ess.sup.f ‖A‖ = sup‖ξ‖≤1‖Aξ‖

L1(X, µ)∗ = L∞(X, µ) duality T (H)∗ = B(H) duality

φ ∈ L1(X, µ)∗ φ ∈ T ∗

φ(g) =
∫

fgdµ φ(ρ) = Tr(ρA)

for some f ∈ L∞(X, µ) for some A ∈ B(H)

L∞(X, µ)∗ ⊃ L1(X, µ) B(H)∗ ⊃ T (H)

L∞(X, µ) 3 f 7→
∫

gfdµ, g ∈ L1(X, µ) B(H) 3 A 7→ Tr(ρA)

‖ · ‖∞-cont. functional ‖ · ‖ (op.norm) cont. functional
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Interpretation of classical probability theory + analogy between classical

and quantum probability theory suggests the following physical

interpretation of the mathematical formalism of Hilbert space quantum

mechanics (H,P(H),B(H), ρ):
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P(H) set of random quantum events

ξ ∈ H state vector ξ describes physical states

states = probability measures

represent ensembles

pure state represents indecomposable ensemble

ρ ∈ T representation of general physical state

(mixed state) (decomposable ensemble)

Q selfadjoint operator physical quantity (observable)

spectrum of Q possible values of Q

Tr(ρQ) expectation value (average) of observable

in state (ensemble) ρ
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Von Neumann’s contribution to establishing Hilbert space QM:

• Creating the notion of abstract Hilbert space

(generalized from l2 and L2)

• Isolating the set of projections as a crucial entity BUT

– von Neumann never defined orthomodularity explicitly

– he analyzed lattice theoretic properties of projections only

after he had abandoned Hilbert space quantum mechanics

(1935-1936) in favor of operator algebraic approach (see later)

– von Neumann saw conceptual problems with interpreting

P(H) as algebraic structure representing random events (see

later)

• Introducing the notion of density operator

(first as statistical operator (a not normalized positive operator

U), later as trace-one operator)
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• Introducing the trace functional as counting measure (“a priori

probability”)

• Introducing the notion of projection valued measure

(Spektralschar)

• Proving Spectral Theorem

• Analyzing unbounded operators, clarifying the difference

between selfadjoint, symmetric and maximal symmetric

operators

2
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Major works of von Neumann containing his results on the

mathematical foundations of quantum mechanics:
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Von Neumann on his book on the mathematical foundations of

quantum mechanics:

The subject-matter is partly physical-mathematical, partly, however, a

very involved conceptual critique of the logical foundations of various

disciplines (theory of probability, thermodynamics, classical mechanics,

classical statistical mechanics, quantum mechanics). This

philosophical-epistemological discussion has to be continuously tied in

and quite critically synchronised with the parallel mathematical-physical

discussion. It is, by the way, one of the essential justifications of the

book, which gives it a content not covered in other treatises, written by

physicists or by mathematicians, on quantum mechanics.”

(von Neumann to Cirker, October 3, 1949)
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Uniqueness of Schrödinger representation of

Heisenberg’s commutation relation :

QP − PQ = I (on a dense subset of H) (4)

Difficulty: Q and P cannot be bounded

⇒

All the usual domain problems arise

A specific example of Q, P satisfying (??)

is the Schrödinger representation defined by

(Qf)(x) = xf(x) (Pf)(x) = −if ′(x) f ∈ L2(IR, µ) (5)

Are there other examples?
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First trick in

can be viewed as the infinitesimal form of a commutation relation

and, accordingly, it can be reformulated in terms of the one

parameter groups U, V of unitary operators determined by Q, P as

infinitesimal generators:

U(a)V (b) = eiabV (b)U(a) a, b ∈ IR (6)
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