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@ Val(| ) is the solution p € ParPROP of the equation

p =Valy(p,q;,q;, ---)
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@ The context ¢ assigns the value g; € Prop to the demonstrative
that;.
@ The sentence ¢ expresses the following proposition in the
context ¢ :
Exp(¢p,c) = Val(¢)(q1,92, ---9n)

@ What if the sentences @1, 1, ..., refer to each other
(through propositional connectives)?
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o If we have a sequence of sentences @1, ¢,, ...(,,, we want that
the proposition expressed by ¢; should be assigned to that;,
etc. (and arbitrary propositions may be assigned to
demonstratives with indexes greater than n).

@ A context for the sequence 1, @4, ..., is a function that
assigns g; to that; for every i < n and arbitrary
(non-parametric) propositions to every i > n. Let us denote
the function doing this assignment for i > n by ¢ and its
extension for the indexes i < n by (q;,qs, ---q,,¢). This latter
one is a context in the previous sense

@ By the Solution Lemma, there is an unique sequence of
propositions q;, (s, ...q,, such that for everyi <n

Exp(¢;,(41,92, --qn>€)) = q;
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A situation s makes true (models) ( |=) an atomic proposition
iff the witnessing soa is in s.

It can be uniquely extended for compound propositions.

The dual is a soa is the soa with the other i.
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A model 901 is a class of soas.

@ 91 makes true resp. false the proposition p (I |=p/9M |~ p) if
there is resp. there is no situation s € 9t such that s |= p.

@ p is true resp. false in M iff < Tr,p,1 >/< Tr,p,0 > M.

@ 90 is coherent iff it does not contain a soa and its dual
together.

o 9 is a weak model iff (it is coherent and if a proposition p is
true resp. false in 99t the 9t makes p true resp. false).



