$\mathfrak M$ is a subclass of SOA.

 ${\mathfrak M}$ is a subclass of SOA.

 \mathfrak{M} makes true resp. false the proposition p (notation: $\mathfrak{M} \models p$ resp. $\mathfrak{M} \not\models p$) iff (there is a) resp. (there is no) situation $s \subseteq \mathfrak{M}$ such that $s \models p$. $\mathfrak M$ is a subclass of SOA.

 \mathfrak{M} makes true resp. false the proposition p (notation: $\mathfrak{M} \models p$ resp. $\mathfrak{M} \not\models p$) iff (there is a) resp. (there is no) situation $s \subseteq \mathfrak{M}$ such that $s \models p$.

<u>*p*</u> is true resp. false in \mathfrak{M} (notation: $True_{\mathfrak{M}}(p)$ resp. $False_{\mathfrak{M}}(p)$) iff \mathfrak{M} contains < Tr, p, 1 >resp. < Tr, p, 0 >.

伺下 イヨト イヨト

 \mathfrak{M} is a subclass of *SOA*.

 \mathfrak{M} makes true resp. false the proposition p (notation: $\mathfrak{M} \models p$ resp. $\mathfrak{M} \not\models p$) iff (there is a) resp. (there is no) situation $s \subseteq \mathfrak{M}$ such that $s \models p$.

<u>*p*</u> is true resp. false in \mathfrak{M} (notation: $True_{\mathfrak{M}}(p)$ resp. $False_{\mathfrak{M}}(p)$) iff \mathfrak{M} contains < Tr, p, 1 >resp. < Tr, p, 0 >.

Remark: the phrase 'makes false' is a bit misleading because the other three ('makes true', 'is true', 'is false') mean that \mathfrak{M} contains some facts but 'makes false' means only that some facts are missing from \mathfrak{M} .

 \mathfrak{M} is a subclass of SOA.

 \mathfrak{M} makes true resp. false the proposition p (notation: $\mathfrak{M} \models p$ resp. $\mathfrak{M} \not\models p$) iff (there is a) resp. (there is no) situation $s \subseteq \mathfrak{M}$ such that $s \models p$.

<u>*p*</u> is true resp. false in \mathfrak{M} (notation: $True_{\mathfrak{M}}(p)$ resp. $False_{\mathfrak{M}}(p)$) iff \mathfrak{M} contains < Tr, p, 1 >resp. < Tr, p, 0 >.

Remark: the phrase 'makes false' is a bit misleading because the other three ('makes true', 'is true', 'is false') mean that \mathfrak{M} contains some facts but 'makes false' means only that some facts are missing from \mathfrak{M} .

 \mathfrak{M} is a <u>weak model</u> iff (it is coherent and (if it contains a semantical fact < *Tr*, *p*, *t* > then the "non-semantical" [or better to say "less semantical"] facts in \mathfrak{M} support it. I.e., \mathfrak{M} makes *p* true resp. false.))

The Liar in the Russellian framework

- * ロ * * @ * * ヨ * * ヨ * * ラ * の * の

Remember: the Russellian Liar is the proposition *f* for which $f = [Fa f] = [\overline{Tr f}]$

Remember: the Russellian Liar is the proposition *f* for which $f = [Fa f] = [\overline{Tr f}]$

• *f* is made false by any weak model but it is not false in any of them.

Remember: the Russellian Liar is the proposition *f* for which $f = [Fa f] = [\overline{Tr f}]$

- *f* is made false by any weak model but it is not false in any of them.
- Proof: strictly parallel with the (or some) usual argument for the Liar paradox.

The sentence '...' is true iff The proposition p is true iff the facts are so as p says.

The proposition *p* is true iff the facts are so as *p* says. The proposition *p* is false, i.e. \overline{p} is true iff the facts are not so as *p* says.

The proposition *p* is true iff the facts are so as *p* says.

The proposition *p* is false, i.e. \overline{p} is true iff the facts are not so as *p* says.

In total semantics, the above two are equivalent. In partial systems, it may happen that neither p nor \overline{p} is made true by the facts and therefore "p is false" and " \overline{p} is true" is not the same.

The proposition *p* is true iff the facts are so as *p* says.

The proposition *p* is false, i.e. \overline{p} is true iff the facts are not so as *p* says.

In total semantics, the above two are equivalent. In partial systems, it may happen that neither p nor \overline{p} is made true by the facts and therefore "p is false" and " \overline{p} is true" is not the same.

• A weak model \mathfrak{M} is <u>T-closed</u> if $(True_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models p)$

The proposition *p* is true iff the facts are so as *p* says.

The proposition *p* is false, i.e. \overline{p} is true iff the facts are not so as *p* says.

In total semantics, the above two are equivalent. In partial systems, it may happen that neither p nor \overline{p} is made true by the facts and therefore "p is false" and " \overline{p} is true" is not the same.

• A weak model \mathfrak{M} is <u>T-closed</u> if $(True_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models p)$

• \mathfrak{M} is <u>F-closed</u> if (*False*_{\mathfrak{M}}(*p*) iff $\mathfrak{M} \not\models p$)

The proposition *p* is true iff the facts are so as *p* says.

The proposition *p* is false, i.e. \overline{p} is true iff the facts are not so as *p* says.

In total semantics, the above two are equivalent. In partial systems, it may happen that neither p nor \overline{p} is made true by the facts and therefore "p is false" and " \overline{p} is true" is not the same.

- A weak model \mathfrak{M} is <u>T-closed</u> if $(True_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models p)$
- \mathfrak{M} is <u>F-closed</u> if (*False*_{\mathfrak{M}}(*p*) iff $\mathfrak{M} \not\models p$)

In both cases, left to right is contained in the weak model-property. Right to left: if the facts support a semantical fact, then it is contained in the model.

The import of the Liar

- イロト (日) (三) (三) (三) (3) (3)

• There are no F-closed weak models.

• There are no F-closed weak models.

• The Liar proposition *f* is made false by any weak model. Hence, in an F-closed weak model *f* should be false, in contradiction to our previous claim that it is not false in any weak model.

- There are no F-closed weak models.
 - The Liar proposition *f* is made false by any weak model. Hence, in an F-closed weak model *f* should be false, in contradiction to our previous claim that it is not false in any weak model.
- Therefore there are no weak models that are both T-and F-closed (semantically closed in Tarski's terminology).

Almost semantically closed models

- イロト 4 団 ト 4 国 ト 4 国 - のへの

Almost semantically closed models

• A weak model is <u>N-closed</u> if $(False_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models \overline{p})$.

• A weak model is <u>N-closed</u> if $(False_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models \overline{p})$. We may read the relation $\mathfrak{M} \models \overline{p}$ as: " \mathfrak{M} makes *p* provably false".

Almost semantically closed models

• A weak model is <u>N-closed</u> if $(False_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models \overline{p})$.

We may read the relation $\mathfrak{M} \models \overline{p}$ as: " \mathfrak{M} makes *p* provably false". If an N-closed weak model \mathfrak{M} makes *p* provably false, then *p* is false in \mathfrak{M} . This is weaker than the condition for F-closed weak models.

Almost semantically closed models

• A weak model is <u>N-closed</u> if $(False_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models \overline{p})$.

We may read the relation $\mathfrak{M} \models \overline{p}$ as: " \mathfrak{M} makes p provably false". If an N-closed weak model \mathfrak{M} makes p provably false, then p is false in \mathfrak{M} . This is weaker than the condition for F-closed weak models. If p is false in \mathfrak{M} , then \mathfrak{M} should make p provably false. This is stronger than the corresponding part of the weak model property. It is called the witnessing condition.

• A weak model is <u>N-closed</u> if $(False_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models \overline{p})$.

We may read the relation $\mathfrak{M} \models \overline{p}$ as: " \mathfrak{M} makes *p* provably false". If an N-closed weak model \mathfrak{M} makes *p* provably false, then *p* is false in \mathfrak{M} . This is weaker than the condition for F-closed weak models. If *p* is false in \mathfrak{M} , then \mathfrak{M} should make *p* provably false. This is stronger than the corresponding part of the weak model property. It is called the witnessing condition.

• \mathfrak{M} is an almost semantically closed (short: *asc*) weak model if it is T- and N-closed.

• $\mathfrak{M} \models [Tr p]$ iff $\mathfrak{M} \models p$.

A > < > >

- $\mathfrak{M} \models [Tr p]$ iff $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Fa p]$ iff $\mathfrak{M} \models \overline{p}$.

- $\mathfrak{M} \models [Tr p]$ iff $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Fa \ p]$ iff $\mathfrak{M} \models \overline{p}$.
- $\mathfrak{M} \models [Fa[Fa p]]$ iff $\mathfrak{M} \models p$.

- $\mathfrak{M} \models [Tr p]$ iff $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Fa p]$ iff $\mathfrak{M} \models \overline{p}$.
- $\mathfrak{M} \models [Fa[Fa p]]$ iff $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Tr(\bigwedge X)]$ iff for each $p \in X$, $\mathfrak{M} \models p$.

- $\mathfrak{M} \models [Tr p]$ iff $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Fa p]$ iff $\mathfrak{M} \models \overline{p}$.
- $\mathfrak{M} \models [Fa[Fa p]]$ iff $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Tr(\bigwedge X)]$ iff for each $p \in X$, $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Tr(\bigvee X)]$ iff for some $p \in X$, $\mathfrak{M} \models p$.

- $\mathfrak{M} \models [Tr p]$ iff $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Fa \ p]$ iff $\mathfrak{M} \models \overline{p}$.
- $\mathfrak{M} \models [Fa[Fa p]]$ iff $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Tr(\bigwedge X)]$ iff for each $p \in X$, $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Tr(\bigvee X)]$ iff for some $p \in X$, $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Fa(\bigwedge X)]$ iff for some $p \in X$, $\mathfrak{M} \models [Fa p]$.

- $\mathfrak{M} \models [Tr p]$ iff $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Fa \ p]$ iff $\mathfrak{M} \models \overline{p}$.
- $\mathfrak{M} \models [Fa[Fa p]]$ iff $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Tr(\bigwedge X)]$ iff for each $p \in X$, $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Tr(\bigvee X)]$ iff for some $p \in X$, $\mathfrak{M} \models p$.
- $\mathfrak{M} \models [Fa(\bigwedge X)]$ iff for some $p \in X$, $\mathfrak{M} \models [Fa p]$.
- $\mathfrak{M} \models [Fa[\bigvee X)]$ iff for each $p \in X$, $\mathfrak{M} \models [Fa p]$.

If \mathfrak{M} is a weak model satisfying the witnessing condition, then there is a smallest *asc* weak model \mathfrak{M}^* such that $\mathfrak{M}^* \supseteq \mathfrak{M}$. If \mathfrak{M} is a weak model satisfying the witnessing condition, then there is a smallest *asc* weak model \mathfrak{M}^* such that $\mathfrak{M}^* \supseteq \mathfrak{M}$. The idea of the proof:

We extend \mathfrak{M} step by step by semantical facts that are demanded by the *asc* conditions. We have to show that every step yields another weak model that satisfies the witnessing condition. Obviously, every model should be contained in any *asc* weak model containing \mathfrak{M} . Then take the union of the steps. It is an *asc* model containing \mathfrak{M} and every member of it must be a member of an *asc* weak model containing \mathfrak{M} .

・ロト・日本・日本・日本・日本

• Corollary: A weak model is contained in an *asc* model iff it is contained in a weak model that satisfies the witnessing condition. (A weak model that satisfies the witnessing condition is called *cw* (closable weak) model.

- Corollary: A weak model is contained in an *asc* model iff it is contained in a weak model that satisfies the witnessing condition. (A weak model that satisfies the witnessing condition is called *cw* (closable weak) model.
- *Asc* models are called hereafter simply <u>models</u> of the world. <u>Maximal</u> model: a model that is not proper part of any other model.

- Corollary: A weak model is contained in an *asc* model iff it is contained in a weak model that satisfies the witnessing condition. (A weak model that satisfies the witnessing condition is called *cw* (closable weak) model.
- *Asc* models are called hereafter simply <u>models</u> of the world. <u>Maximal</u> model: a model that is not proper part of any other model.

- Corollary: A weak model is contained in an *asc* model iff it is contained in a weak model that satisfies the witnessing condition. (A weak model that satisfies the witnessing condition is called *cw* (closable weak) model.
- *Asc* models are called hereafter simply <u>models</u> of the world. <u>Maximal</u> model: a model that is not proper part of any other model.
- Corollary: Every *cw* model can be expanded to a maximal model.