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M makes true resp. false the proposition p (notation: M |= p resp.
M 6|= p) iff (there is a) resp. (there is no) situation s ⊆M such that
s |= p.
p is true resp. false in M (notation:TrueM(p) resp. FalseM(p)) iff M
contains < Tr, p, 1> resp. < Tr, p, 0>.
Remark: the phrase ’makes false’ is a bit misleading because the
other three (’makes true’, ’is true’, ’is false’) mean that M contains
some facts but ’makes false’ means only that some facts are missing
from M.
M is a weak model iff (it is coherent and (if it contains a
semantical fact < Tr, p, t> then the "non-semantical" [or better to
say "less semantical"] facts in M support it. I.e., M makes p true
resp. false.))
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The Liar in the Russellian framework

Remember: the Russellian Liar is the proposition f for which
f = [Fa f] = [Tr f]

f is made false by any weak model but it is not false in any of
them.

Proof: strictly parallel with the (or some) usual argument for
the Liar paradox.
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The T-scheme

The sentence ’...’ is true iff ... .

The proposition p is true iff the facts are so as p says.
The proposition p is false, i.e. p is true iff the facts are not so as p
says.
In total semantics, the above two are equivalent. In partial
systems, it may happen that neither p nor p is made true by the
facts and therefore "p is false" and "p is true" is not the same.

A weak model M is T-closed if (TrueM(p) iff M |= p )

M is F-closed if (FalseM(p) iff M 6|= p )

In both cases, left to right is contained in the weak model-property.
Right to left: if the facts support a semantical fact, then it is
contained in the model.
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The import of the Liar

There are no F-closed weak models.

The Liar proposition f is made false by any weak model. Hence,
in an F-closed weak model f should be false, in contradiction
to our previous claim that it is not false in any weak model.

Therefore there are no weak models that are both T-and
F-closed (semantically closed in Tarski’s terminology).
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Almost semantically closed models

A weak model is N-closed if (FalseM(p) iff M |= p).

We may read the relation M |= p as: "M makes p provably false".
If an N-closed weak model M makes p provably false, then p is false
in M. This is weaker than the condition for F-closed weak models.
If p is false in M, then M should make p provably false. This is
stronger than the corresponding part of the weak model property.
It is called the witnessing condition.

M is an almost semantically closed (short: asc) weak model if
it is T- and N-closed.
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Properties of asc models

Let M be an asc weak model.

M |= [Tr p] iff M |= p.

M |= [Fa p] iff M |= p.

M |= [Fa[Fa p]] iff M |= p.

M |= [Tr(
∧

X)] iff for each p ∈ X, M |= p.

M |= [Tr(
∨

X)] iff for some p ∈ X, M |= p.

M |= [Fa(
∧

X)] iff for some p ∈ X, M |= [Fa p].

M |= [Fa[
∨

X)] iff for each p ∈ X, M |= [Fa p].
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The Closure Theorem

If M is a weak model satisfying the witnessing condition, then
there is a smallest asc weak model M∗ such that M∗ ⊇M.

The idea of the proof:
We extend M step by step by semantical facts that are demanded
by the asc conditions. We have to show that every step yields
another weak model that satisfies the witnessing condition.
Obviously, every model should be contained in any asc weak model
containing M. Then take the union of the steps. It is an asc model
containing M and every member of it must be a member of an asc
weak model containing M.
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Corollary: A weak model is contained in an asc model iff it is
contained in a weak model that satisfies the witnessing
condition. (A weak model that satisfies the witnessing
condition is called cw (closable weak) model.

Asc models are called hereafter simply models of the world.
Maximal model: a model that is not proper part of any other
model.

Corollary: Every cw model can be expanded to a maximal
model.
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