
Repeat some definitions and facts

A weak model M is a class of soas satisfying some minimal
coherence conditions.

M is T-closed if (TrueM(p) iff M |= p ).
M is N-closed if (FalseM(p) iff M |= p)

From left to right: witnessing condition.

M is an asc model if it is both T- and N-closed.

Closure Theorem: If M is a weak model satisfying the
witnessing condition (a closable weak, cw model), then there
is a(n unique) smallest asc weak model M∗ such that M∗ ⊇M.

Asc models are called simply models (of the world). A model
is maximal if it is not the proper part of some other model.

Every cw model can be expanded to a maximal model (not
uniquely).
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Parallels with the Kripkean account

At a Kripkean fixed point, we don’t need to extend the
interpretation of the truth- and the falsity-predicate any more
because the required semantical facts are in the model now.
This is exactly the same as the closure conditions required for
the asc models.

An M containing no semantical facts at all satisfies vacuously
the conditions for cw models. It corresponds to the special
case of Kripke’s sequences beginning with the pair < ;, ;>
and leading to the least fixed point.

The least fixed point < T∞, F∞ > constructed by Kripke is by
and far the same as the minimal model constructed from an
M containing no semantical facts in the proof of the Closure
theorem.
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Witnessing functions

General idea: determine the soas that a model must contain in
order to make a proposition true.

A witnessing function w is a partial function from propositions to
situations (subsets of SOA) with the following constraints (p is a
member of dom(w):

If p= [a H c], then < H, a, c, 1>∈ w(p) and similarly for the
negation.

If p= [a Bel q], then < Bel, a, q, 1>∈ w(p) and similarly for
the negation.

If p= [
∧

P], then P ⊆ dom(w) and for each q ∈ P, w(q) ⊆ w(p).

If p= [
∨

P], then for some q ∈ P∩ dom(w), w(q) ⊆ w(p).

If p= [Tr q], then q ∈ dom(w) and
w(q)∪ {< Tr, p, 1>} ⊆ w(p).

If p= [Fa q], then q ∈ dom(w) and
w(q)∪ {< Tr, q, 0>} ⊆ w(p).
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Witnessing functions 2.

The witnessing function w is coherent if
M=
⋃

{w(p)|p ∈ dom(w)} is coherent.

w is coherent with M0 if M=M0 ∪
⋃

{w(p)|p ∈ dom(w)} is
coherent.

p is consistent if it is in the domain of some coherent
witnessing function.

p is consistent with M0 if it is in the domain of some
witnessing function coherent with M0.

Examples:

Witnessing function for t= [Tr t]:

w(t) = {< Tr, t, 1>}

.

Witnessing function for t:

w(t) = {< Tr, t, 0>}

Witnessing function for f = [Fa f]:

f ∈ dom(w);
< Tr, f , 0>∈ w(f); w(f) ⊆ w(f); < Tr, f , 1>∈ w(f).
No such coherent witnessing function. The same for f

.
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Model existence theorem

A proposition p is consistent (with a model M0) iff there is a
model M(⊇M0) such that p is true in M.

From right to left: We have a model M and need a witnessing
function w. Let w(q) =M for every q that is true in M.
From left to right: We have a w and need an M. Let us extend
w to w′: w′([Tr p]) = w(p)∪ {< Tr, p, 1>}. It is a witnessing
function compatible with M0 again. The union of the range of
w′ is a cw-model and by the Closure theorem, it can be
extended to a model.

Exc. 37, 38 (p. 91/105), 42, 43 (p.101/115) : homework. We
return to them next week.
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Paradoxical and classical propositions

A proposition p is paradoxical in M if there is no maximal
model N ⊇M such that p has a truth value in N.

p is classical if it is not paradoxical in any model.

p is contingently paradoxical if it is paradoxical in some but
not in every model. Propositions paradoxical in every model
are called intrinsically paradoxical.

Examples:
The proposition p= [a H A♠]∨ [Fa p] is true in models containing
< H, a, A♠, 1> and paradoxical in the others.
An earlier example was that both t and t have coherent witnessing
functions. Therefore, there are models where t is true and other
models where t is true. In a maximal model, one of these two must
hold. Hence the Truth-teller is classical. But every cw-model
containing no semantical facts can be extended both to a maximal
model where t is true and to another one where it is false.
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Classify the classical propositions

M is a cw-model, p is a classical proposition.

p is grounded over M if it has a truth value in the smallest
model containing M.

p has a determinate truth value over M if it has the same
truth value in every maximal model containing M.

I

f p is grounded, then it has a determinate truth value but nut
vice versa.

Examples:
If M contains some non-semantical facts, e.g. < H, a, K♦, 1>,
then the corresponding proposition (q= [H a K♦]) is grounded
over M. [Fa q] is grounded, too, etc.
If M contains no semantical facts, then t has no determinate truth
value over it.
The proposition [Tr t]∨ [Fa t] has a determinate truth value, but it
is not grounded (under the same conditions).
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