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o A weak model 9 is a class of soas satisfying some minimal
coherence conditions.

o M is T-closed if (Truegy(p) iff M =p ).

@ M is N-closed if (Falseqy(p) iff M = p)

e From left to right: witnessing condition.

@ 1 is an asc model if it is both T- and N-closed.

@ Closure Theorem: If 91 is a weak model satisfying the
witnessing condition (a closable weak, cw model), then there
is a(n unique) smallest asc weak model 9t* such that 91* 2 1.

@ Asc models are called simply models (of the world). A model
is maximal if it is not the proper part of some other model.

@ Every cw model can be expanded to a maximal model (not
uniquely).
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@ At a Kripkean fixed point, we don’t need to extend the
interpretation of the truth- and the falsity-predicate any more
because the required semantical facts are in the model now.
This is exactly the same as the closure conditions required for
the asc models.

@ An 91 containing no semantical facts at all satisfies vacuously
the conditions for cw models. It corresponds to the special
case of Kripke’s sequences beginning with the pair < 0, § >
and leading to the least fixed point.

@ The least fixed point < T, Fo, > constructed by Kripke is by
and far the same as the minimal model constructed from an
9 containing no semantical facts in the proof of the Closure
theorem.
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General idea: determine the soas that a model must contain in
order to make a proposition true.

A witnessing function w is a partial function from propositions to
situations (subsets of SOA) with the following constraints (p is a
member of dom(w):

o If p=[aHc],then <H, a, ¢, 1 > w(p) and similarly for the
negation.

@ If p=[a Bel q], then < Bel, a, q, 1 >€ w(p) and similarly for
the negation.

e If p=[/\P], then P C dom(w) and for each q € P, w(q) S w(p).
e If p=[\/P], then for some q € Pndom(w), w(q) € w(p).
e If p=[Tr q], then q € dom(w) and
w(q) U{<Tr, p, 1>} S w(p).
e If p =[Fa q], then q € dom(w) and
w(@QU{<Tr, g, 0>} Cw(p).
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Witnessing functions 2.

@ The witnessing function w is coherent if
M = J{w(p)Ip € dom(w)} is coherent.

@ w is coherent with M if 9 = My U | J{w(p)Ip € dom(w)} is
coherent.

@ p is consistent if it is in the domain of some coherent
witnessing function.

@ p is consistent with 91, if it is in the domain of some
witnessing function coherent with 9t,.

Examples:
@ Witnessing function for t = [Tr t]: w(t) = {< Tr, t, 1 >}.
@ Witnessing function for t: w(t) = {< Tr, t, 0>}
e Witnessing function for f = [Fa f]: f € dom(w); ~
<Tr, f, 0>€w(f); w(f) Sw(f); <Tr, f, 1 >ew(f).
No such coherent witnessing function. The same for f.
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@ A proposition p is consistent (with a model 90,) iff there is a
model 9t(2 M,) such that p is true in M.
From right to left: We have a model 9t and need a witnessing
function w. Let w(q) = 9 for every q that is true in 9.
From left to right: We have a w and need an 9. Let us extend
wtow’: W ([Trp]) =w(p)U{< Tr, p, 1 >}. It is a witnessing
function compatible with 9, again. The union of the range of
w’ is a cw-model and by the Closure theorem, it can be
extended to a model.

@ Exc. 37, 38 (p. 91/105), 42, 43 (p.101/115) : homework. We
return to them next week.
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@ A proposition p is paradoxical in 91 if there is no maximal
model 9t 2 9 such that p has a truth value in 91.

@ p is classical if it is not paradoxical in any model.

@ p is contingently paradoxical if it is paradoxical in some but
not in every model. Propositions paradoxical in every model
are called intrinsically paradoxical.

Examples:

The proposition p = [a H A#] V [Fa p] is true in models containing
< H, a, A&, 1> and paradoxical in the others.

An earlier example was that both t and t have coherent witnessing
functions. Therefore, there are models where t is true and other
models where t is true. In a maximal model, one of these two must
hold. Hence the Truth-teller is classical. But every cw-model
containing no semantical facts can be extended both to a maximal
model where t is true and to another one where it is false.
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<M is a cw-model, p is a classical proposition.

@ p is grounded over 9 if it has a truth value in the smallest
model containing 1.

@ p has a determinate truth value over 9t if it has the same
truth value in every maximal model containing 1.
If p is grounded, then it has a determinate truth value but nut
vice versa.

Examples:

If 9t contains some non-semantical facts, e.g. < H, a, K, 1>,
then the corresponding proposition (¢ = [H a K<]) is grounded
over M. [Fa q] is grounded, too, etc.

If 91 contains no semantical facts, then t has no determinate truth
value over it.

The proposition [Tr t]V [Fa t] has a determinate truth value, but it
is not grounded (under the same conditions).



