|▲□▶▲圖▶▲≣▶▲≣▶ | 差||| 釣ぬの

• A weak model \mathfrak{M} is a class of *soas* satisfying some minimal coherence conditions.

• A weak model \mathfrak{M} is a class of *soas* satisfying some minimal coherence conditions.

.

• \mathfrak{M} is T-closed if $(True_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models p)$.

- A weak model \mathfrak{M} is a class of *soas* satisfying some minimal coherence conditions.
- \mathfrak{M} is T-closed if $(True_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models p)$.
- \mathfrak{M} is N-closed if $(False_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models \overline{p})$

- A weak model \mathfrak{M} is a class of *soas* satisfying some minimal coherence conditions.
- \mathfrak{M} is T-closed if $(True_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models p)$.
- \mathfrak{M} is N-closed if $(False_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models \overline{p})$
 - From left to right: witnessing condition.

- A weak model \mathfrak{M} is a class of *soas* satisfying some minimal coherence conditions.
- \mathfrak{M} is T-closed if $(True_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models p)$.
- \mathfrak{M} is N-closed if $(False_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models \overline{p})$
 - From left to right: witnessing condition.
- \mathfrak{M} is an *asc* model if it is both T- and N-closed.

- A weak model \mathfrak{M} is a class of *soas* satisfying some minimal coherence conditions.
- \mathfrak{M} is T-closed if $(True_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models p)$.
- \mathfrak{M} is N-closed if $(False_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models \overline{p})$
 - From left to right: witnessing condition.
- \mathfrak{M} is an *asc* model if it is both T- and N-closed.
- Closure Theorem: If M is a weak model satisfying the witnessing condition (a closable weak, *cw* model), then there is a(n unique) smallest *asc* weak model M^{*} such that M^{*} ⊇ M.

- A weak model \mathfrak{M} is a class of *soas* satisfying some minimal coherence conditions.
- \mathfrak{M} is T-closed if $(True_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models p)$.
- \mathfrak{M} is N-closed if $(False_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models \overline{p})$
 - From left to right: witnessing condition.
- \mathfrak{M} is an *asc* model if it is both T- and N-closed.
- Closure Theorem: If M is a weak model satisfying the witnessing condition (a closable weak, *cw* model), then there is a(n unique) smallest *asc* weak model M^{*} such that M^{*} ⊇ M.
- *Asc* models are called simply models (of the world). A model is maximal if it is not the proper part of some other model.

- A weak model \mathfrak{M} is a class of *soas* satisfying some minimal coherence conditions.
- \mathfrak{M} is T-closed if $(True_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models p)$.
- \mathfrak{M} is N-closed if $(False_{\mathfrak{M}}(p) \text{ iff } \mathfrak{M} \models \overline{p})$
 - From left to right: witnessing condition.
- \mathfrak{M} is an *asc* model if it is both T- and N-closed.
- Closure Theorem: If M is a weak model satisfying the witnessing condition (a closable weak, *cw* model), then there is a(n unique) smallest *asc* weak model M^{*} such that M^{*} ⊇ M.
- *Asc* models are called simply models (of the world). A model is maximal if it is not the proper part of some other model.
- Every *cw* model can be expanded to a maximal model (not uniquely).

• At a Kripkean fixed point, we don't need to extend the interpretation of the truth- and the falsity-predicate any more because the required semantical facts are in the model now. This is exactly the same as the closure conditions required for the *asc* models.

- At a Kripkean fixed point, we don't need to extend the interpretation of the truth- and the falsity-predicate any more because the required semantical facts are in the model now. This is exactly the same as the closure conditions required for the *asc* models.
- An \mathfrak{M} containing no semantical facts at all satisfies vacuously the conditions for *cw* models. It corresponds to the special case of Kripke's sequences beginning with the pair $< \emptyset$, $\emptyset >$ and leading to the least fixed point.

- At a Kripkean fixed point, we don't need to extend the interpretation of the truth- and the falsity-predicate any more because the required semantical facts are in the model now. This is exactly the same as the closure conditions required for the *asc* models.
- An 𝔐 containing no semantical facts at all satisfies vacuously the conditions for *cw* models. It corresponds to the special case of Kripke's sequences beginning with the pair < Ø, Ø > and leading to the least fixed point.
- The least fixed point $\langle T_{\infty}, F_{\infty} \rangle$ constructed by Kripke is by and far the same as the minimal model constructed from an \mathfrak{M} containing no semantical facts in the proof of the Closure theorem.

General idea: determine the *soas* that a model must contain in order to make a proposition true.

General idea: determine the *soas* that a model must contain in order to make a proposition true.

General idea: determine the *soas* that a model must contain in order to make a proposition true.

A witnessing function w is a partial function from propositions to situations (subsets of SOA) with the following constraints (p is a member of dom(w):

• If p = [a H c], then $\langle H, a, c, 1 \rangle \in w(p)$ and similarly for the negation.

General idea: determine the *soas* that a model must contain in order to make a proposition true.

- If p = [a H c], then $\langle H, a, c, 1 \rangle \in w(p)$ and similarly for the negation.
- If *p* = [*a Bel q*], then < *Bel*, *a*, *q*, 1 >∈ *w*(*p*) and similarly for the negation.

General idea: determine the *soas* that a model must contain in order to make a proposition true.

- If *p* = [*a H c*], then < *H*, *a*, *c*, 1 >∈ *w*(*p*) and similarly for the negation.
- If *p* = [*a Bel q*], then < *Bel*, *a*, *q*, 1 >∈ *w*(*p*) and similarly for the negation.
- If $p = [\bigwedge P]$, then $P \subseteq dom(w)$ and for each $q \in P$, $w(q) \subseteq w(p)$.

General idea: determine the *soas* that a model must contain in order to make a proposition true.

- If *p* = [*a H c*], then < *H*, *a*, *c*, 1 >∈ *w*(*p*) and similarly for the negation.
- If *p* = [*a Bel q*], then < *Bel*, *a*, *q*, 1 >∈ *w*(*p*) and similarly for the negation.
- If $p = [\bigwedge P]$, then $P \subseteq dom(w)$ and for each $q \in P$, $w(q) \subseteq w(p)$.
- If $p = [\bigvee P]$, then for some $q \in P \cap dom(w)$, $w(q) \subseteq w(p)$.

General idea: determine the *soas* that a model must contain in order to make a proposition true.

- If *p* = [*a H c*], then < *H*, *a*, *c*, 1 >∈ *w*(*p*) and similarly for the negation.
- If *p* = [*a Bel q*], then < *Bel*, *a*, *q*, 1 >∈ *w*(*p*) and similarly for the negation.
- If $p = [\bigwedge P]$, then $P \subseteq dom(w)$ and for each $q \in P$, $w(q) \subseteq w(p)$.
- If $p = [\bigvee P]$, then for some $q \in P \cap dom(w)$, $w(q) \subseteq w(p)$.
- If p = [Tr q], then $q \in dom(w)$ and $w(q) \cup \{ < Tr, p, 1 > \} \subseteq w(p)$.

General idea: determine the *soas* that a model must contain in order to make a proposition true.

A witnessing function w is a partial function from propositions to situations (subsets of SOA) with the following constraints (p is a member of dom(w):

- If *p* = [*a H c*], then < *H*, *a*, *c*, 1 >∈ *w*(*p*) and similarly for the negation.
- If *p* = [*a Bel q*], then < *Bel*, *a*, *q*, 1 >∈ *w*(*p*) and similarly for the negation.
- If $p = [\bigwedge P]$, then $P \subseteq dom(w)$ and for each $q \in P$, $w(q) \subseteq w(p)$.

イロト イポト イヨト イヨト

- If $p = [\bigvee P]$, then for some $q \in P \cap dom(w)$, $w(q) \subseteq w(p)$.
- If p = [Tr q], then $q \in dom(w)$ and $w(q) \cup \{ < Tr, p, 1 > \} \subseteq w(p)$.
- If p = [Fa q], then $\overline{q} \in dom(w)$ and $w(\overline{q}) \cup \{ < Tr, q, 0 > \} \subseteq w(p)$.

- * ロ * * @ * * ヨ * * ヨ * * ラ * の * の

• The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *p* is <u>consistent</u> if it is in the domain of some coherent witnessing function.

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *p* is <u>consistent</u> if it is in the domain of some coherent witnessing function.
- *p* is consistent with M₀ if it is in the domain of some witnessing function coherent with M₀.

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.

伺 ト イ ヨ ト イ ヨ ト

- *p* is <u>consistent</u> if it is in the domain of some coherent witnessing function.
- *p* is consistent with M₀ if it is in the domain of some witnessing function coherent with M₀.

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *p* is <u>consistent</u> if it is in the domain of some coherent witnessing function.
- *p* is consistent with M₀ if it is in the domain of some witnessing function coherent with M₀.

Examples:

• Witnessing function for *t* = [*Tr t*]:

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *p* is <u>consistent</u> if it is in the domain of some coherent witnessing function.
- *p* is consistent with M₀ if it is in the domain of some witnessing function coherent with M₀.

Examples:

• Witnessing function for t = [Tr t]: $w(t) = \{ < Tr, t, 1 > \}$.

伺下 イヨト イヨト

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *p* is <u>consistent</u> if it is in the domain of some coherent witnessing function.
- *p* is consistent with M₀ if it is in the domain of some witnessing function coherent with M₀.

- Witnessing function for t = [Tr t]: $w(t) = \{ < Tr, t, 1 > \}$.
- Witnessing function for \overline{t} :

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *p* is <u>consistent</u> if it is in the domain of some coherent witnessing function.
- *p* is consistent with M₀ if it is in the domain of some witnessing function coherent with M₀.

- Witnessing function for t = [Tr t]: $w(t) = \{ < Tr, t, 1 > \}$.
- Witnessing function for \overline{t} : $w(\overline{t}) = \{ < Tr, t, 0 > \}$

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *p* is <u>consistent</u> if it is in the domain of some coherent witnessing function.
- *p* is consistent with M₀ if it is in the domain of some witnessing function coherent with M₀.

- Witnessing function for t = [Tr t]: $w(t) = \{ < Tr, t, 1 > \}$.
- Witnessing function for \overline{t} : $w(\overline{t}) = \{ < Tr, t, 0 > \}$
- Witnessing function for *f* = [*Fa f*]:

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *p* is <u>consistent</u> if it is in the domain of some coherent witnessing function.
- *p* is consistent with M₀ if it is in the domain of some witnessing function coherent with M₀.

- Witnessing function for t = [Tr t]: $w(t) = \{ < Tr, t, 1 > \}$.
- Witnessing function for \overline{t} : $w(\overline{t}) = \{ < Tr, t, 0 > \}$
- Witnessing function for $f = [Fa f]: \overline{f} \in dom(w);$

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *p* is <u>consistent</u> if it is in the domain of some coherent witnessing function.
- *p* is consistent with M₀ if it is in the domain of some witnessing function coherent with M₀.

- Witnessing function for t = [Tr t]: $w(t) = \{ < Tr, t, 1 > \}$.
- Witnessing function for \bar{t} : $w(\bar{t}) = \{ < Tr, t, 0 > \}$
- Witnessing function for $f = [Fa f]: \overline{f} \in dom(w);$ $< Tr, f, 0 > \in w(f);$

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *p* is <u>consistent</u> if it is in the domain of some coherent witnessing function.
- *p* is consistent with M₀ if it is in the domain of some witnessing function coherent with M₀.

- Witnessing function for t = [Tr t]: $w(t) = \{ < Tr, t, 1 > \}$.
- Witnessing function for \bar{t} : $w(\bar{t}) = \{ < Tr, t, 0 > \}$
- Witnessing function for $f = [Fa f]: \overline{f} \in dom(w);$ $< Tr, f, 0 > \in w(f); w(\overline{f}) \subseteq w(f);$

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *p* is <u>consistent</u> if it is in the domain of some coherent witnessing function.
- *p* is consistent with M₀ if it is in the domain of some witnessing function coherent with M₀.

- Witnessing function for t = [Tr t]: $w(t) = \{ < Tr, t, 1 > \}$.
- Witnessing function for \bar{t} : $w(\bar{t}) = \{ < Tr, t, 0 > \}$
- Witnessing function for f = [Fa f]: $\overline{f} \in dom(w)$; $< Tr, f, 0 > \in w(f); w(\overline{f}) \subseteq w(f); < Tr, f, 1 > \in w(\overline{f}).$

Witnessing functions 2.

- The witnessing function *w* is <u>coherent</u> if $\mathfrak{M} = \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *w* is coherent with \mathfrak{M}_0 if $\mathfrak{M} = \mathfrak{M}_0 \cup \bigcup \{w(p) | p \in dom(w)\}$ is coherent.
- *p* is <u>consistent</u> if it is in the domain of some coherent witnessing function.
- *p* is consistent with M₀ if it is in the domain of some witnessing function coherent with M₀.

Examples:

- Witnessing function for t = [Tr t]: $w(t) = \{ < Tr, t, 1 > \}$.
- Witnessing function for \overline{t} : $w(\overline{t}) = \{ < Tr, t, 0 > \}$
- Witnessing function for f = [Fa f]: $\overline{f} \in dom(w)$; $< Tr, f, 0 > \in w(f); w(\overline{f}) \subseteq w(f); < Tr, f, 1 > \in w(\overline{f})$. No such coherent witnessing function. The same for \overline{f} .

▲□▶▲圖▶▲圖▶▲圖▶ = ● ● ●

A proposition *p* is consistent (with a model 𝔐₀) iff there is a model 𝔐(⊇ 𝔐₀) such that *p* is true in 𝔐.

A proposition *p* is consistent (with a model 𝔐₀) iff there is a model 𝔐(⊇ 𝔐₀) such that *p* is true in 𝔐.
 From right to left: We have a model 𝔐 and need a witnessing function *w*. Let *w*(*q*) = 𝔐 for every *q* that is true in 𝔐.

A proposition *p* is consistent (with a model M₀) iff there is a model M(⊇ M₀) such that *p* is true in M.
From right to left: We have a model M and need a witnessing function *w*. Let w(q) = M for every *q* that is true in M.
From left to right: We have a *w* and need an M. Let us extend *w* to w': w'([Tr p]) = w(p) ∪ {< Tr, p, 1 >}. It is a witnessing function compatible with M₀ again. The union of the range of w' is a *cw*-model and by the Closure theorem, it can be extended to a model.

- A proposition *p* is consistent (with a model 𝔅₀) iff there is a model 𝔅(⊇𝔅₀) such that *p* is true in 𝔅.
 From right to left: We have a model 𝔅 and need a witnessing function *w*. Let *w*(*q*) = 𝔅 for every *q* that is true in 𝔅.
 From left to right: We have a *w* and need an 𝔅. Let us extend *w* to *w*': *w*'([*Tr p*]) = *w*(*p*) ∪ {< *Tr*, *p*, 1 >}. It is a witnessing function compatible with 𝔅₀ again. The union of the range of *w*' is a *cw*-model and by the Closure theorem, it can be extended to a model.
- Exc. 37, 38 (p. 91/105), 42, 43 (p.101/115) : homework. We return to them next week.

- * ロ * * 御 * * 国 * * 国 * * 国 * * の < @

A proposition *p* is paradoxical in 𝔐 if there is no maximal model 𝔅 ⊇ 𝔅 such that *p* has a truth value in 𝔅.

- A proposition *p* is paradoxical in 𝔐 if there is no maximal model 𝔅 ⊇ 𝔅 such that *p* has a truth value in 𝔅.
- *p* is classical if it is not paradoxical in any model.

- A proposition *p* is paradoxical in 𝔐 if there is no maximal model 𝔅 ⊇ 𝔅 such that *p* has a truth value in 𝔅.
- *p* is classical if it is not paradoxical in any model.
- *p* is contingently paradoxical if it is paradoxical in some but not in every model. Propositions paradoxical in every model are called intrinsically paradoxical.

- A proposition *p* is paradoxical in 𝔐 if there is no maximal model 𝔅 ⊇ 𝔅 such that *p* has a truth value in 𝔅.
- *p* is classical if it is not paradoxical in any model.
- *p* is contingently paradoxical if it is paradoxical in some but not in every model. Propositions paradoxical in every model are called intrinsically paradoxical.

Examples:

The proposition $p = [a H A \spadesuit] \lor [Fa p]$ is true in models containing $\langle H, a, A \spadesuit, 1 \rangle$ and paradoxical in the others.

- A proposition *p* is paradoxical in 𝔐 if there is no maximal model 𝔅 ⊇ 𝔅 such that *p* has a truth value in 𝔅.
- *p* is classical if it is not paradoxical in any model.
- *p* is contingently paradoxical if it is paradoxical in some but not in every model. Propositions paradoxical in every model are called intrinsically paradoxical.

Examples:

The proposition $p = [a H A] \lor [Fa p]$ is true in models containing $\langle H, a, A \rangle$, 1 > and paradoxical in the others. An earlier example was that both *t* and \bar{t} have coherent witnessing functions. Therefore, there are models where *t* is true and other models where \bar{t} is true. In a maximal model, one of these two must hold. Hence the Truth-teller is classical. But every *cw*-model containing no semantical facts can be extended both to a maximal model where *t* is true and to another one where it is false.

▶ ▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● � � �

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

 $\mathfrak M$ is a $cw\text{-model},\,p$ is a classical proposition.

 $\mathfrak M$ is a $cw\text{-model},\,p$ is a classical proposition.

• *p* is grounded over \mathfrak{M} if it has a truth value in the smallest model containing \mathfrak{M} .

 $\mathfrak M$ is a *cw*-model, *p* is a classical proposition.

- *p* is grounded over \mathfrak{M} if it has a truth value in the smallest model containing \mathfrak{M} .
- *p* has a determinate truth value over M if it has the same truth value in every maximal model containing M.
 f p is grounded, then it has a determinate truth value but nut vice versa.

 $\mathfrak M$ is a *cw*-model, *p* is a classical proposition.

- *p* is grounded over \mathfrak{M} if it has a truth value in the smallest model containing \mathfrak{M} .
- *p* has a determinate truth value over M if it has the same truth value in every maximal model containing M.
 If *p* is grounded, then it has a determinate truth value but nut vice versa.

 $\mathfrak M$ is a *cw*-model, *p* is a classical proposition.

- *p* is grounded over \mathfrak{M} if it has a truth value in the smallest model containing \mathfrak{M} .
- *p* has a determinate truth value over M if it has the same truth value in every maximal model containing M.
 If *p* is grounded, then it has a determinate truth value but nut vice versa.

Examples:

 $\mathfrak M$ is a *cw*-model, *p* is a classical proposition.

- *p* is grounded over \mathfrak{M} if it has a truth value in the smallest model containing \mathfrak{M} .
- *p* has a determinate truth value over *M* if it has the same truth value in every maximal model containing *M*.
 If *p* is grounded, then it has a determinate truth value but nut vice versa.

Examples:

If \mathfrak{M} contains some non-semantical facts, e.g. $\langle H, a, K \diamondsuit, 1 \rangle$, then the corresponding proposition ($q = [H \ a \ K \diamondsuit]$) is grounded over \mathfrak{M} . [*Fa* q] is grounded, too, etc.

 $\mathfrak M$ is a *cw*-model, *p* is a classical proposition.

- *p* is grounded over \mathfrak{M} if it has a truth value in the smallest model containing \mathfrak{M} .
- *p* has a determinate truth value over *M* if it has the same truth value in every maximal model containing *M*.
 If *p* is grounded, then it has a determinate truth value but nut vice versa.

Examples:

If \mathfrak{M} contains some non-semantical facts, e.g. $\langle H, a, K \diamondsuit, 1 \rangle$, then the corresponding proposition ($q = [H \ a \ K \diamondsuit]$) is grounded over \mathfrak{M} . [*Fa q*] is grounded, too, etc.

If \mathfrak{M} contains no semantical facts, then *t* has no determinate truth value over it.

 $\mathfrak M$ is a cw-model, p is a classical proposition.

- *p* is grounded over \mathfrak{M} if it has a truth value in the smallest model containing \mathfrak{M} .
- *p* has a determinate truth value over *M* if it has the same truth value in every maximal model containing *M*.
 If *p* is grounded, then it has a determinate truth value but nut vice versa.

Examples:

If \mathfrak{M} contains some non-semantical facts, e.g. $\langle H, a, K \diamondsuit, 1 \rangle$, then the corresponding proposition ($q = [H \ a \ K \diamondsuit]$) is grounded over \mathfrak{M} . [*Fa q*] is grounded, too, etc.

If \mathfrak{M} contains no semantical facts, then *t* has no determinate truth value over it.

The proposition $[Tr t] \lor [Fa t]$ has a determinate truth value, but it is not grounded (under the same conditions).