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Frege’'s Grundlagen definition of numbers

‘Having the same cardinality’ (equinumerosity, Fquinum) is an
equivalence relation between concepts, defined by the right-hand
side of Hume’s principle:
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‘Having the same cardinality’ (equinumerosity, Fquinum) is an
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side of Hume’s principle:

Equinum(F,G) < gef
Ib([1 — 1](b) AVa(F(x) = G(b(x))) A
Vy(G(y) — Jz(F(z) Ab(z) =y)))
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variable G)
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Frege’'s Grundlagen definition of numbers

‘Having the same cardinality’ (equinumerosity, Fquinum) is an
equivalence relation between concepts, defined by the right-hand
side of Hume’s principle:

Equinum(F,G) < gef
Ib([1 — 1](b) AVa(F(x) = G(b(x))) A
Vy(G(y) — Jz(F(z) Ab(z) =y)))

Let 7 H () be the extension of the concept H. Definition of the
number belonging to the concept F:

Nz : F(x) =4e¢ G(Equinum(F,G))

Equinum(F,G) is a concept of second grade (for fixed ' and
variable G)

This is roughly the same as saying that the number belonging to
F' is its equivalence class for equinumerosity.
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Num(n) <>gey IF(Nx : F(z) = n) (n_is a number)
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Numbers, natural (finite) numbers

Num(n) <>gey IF(Nx : F(z) = n) (n_is a number)

This is the answer to the Julius Caesar-problem. But it also
covers infinite numbers.
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Num(n) <>gey IF(Nx : F(z) = n) (n_is a number)

This is the answer to the Julius Caesar-problem. But it also
covers infinite numbers.

0=gef Nz : (x # x)
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Numbers, natural (finite) numbers

Num(n) <>gey IF(Nx : F(z) = n) (n_is a number)

This is the answer to the Julius Caesar-problem. But it also
covers infinite numbers.

0=gef Nz : (x # x)

ISucc(m,n) <>gef
JF3y(Nz : F(x) =nAF(y) ANz : (F(x) Nx #y) =m)
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Numbers, natural (finite) numbers

Num(n) <>gey IF(Nx : F(z) = n) (n_is a number)

This is the answer to the Julius Caesar-problem. But it also
covers infinite numbers.

0=gef Nz : (x # x)

ISucc(m,n) <>gef
JF3y(Nz : F(x) =nAF(y) ANz : (F(x) Nx #y) =m)

1 =gef No: (x=0)
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Numbers, natural (finite) numbers

Num(n) <>gey IF(Nx : F(z) = n) (n_is a number)

This is the answer to the Julius Caesar-problem. But it also
covers infinite numbers.

0=gef Nz : (x # x)

ISucc(m,n) <>gef
JF3y(Nz : F(x) =nAF(y) ANz : (F(x) Nx #y) =m)

1 =gef No: (x=0)
ISuce(0,1)
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Numbers, natural (finite) numbers

Num(n) <>gey IF(Nx : F(z) = n) (n_is a number)

This is the answer to the Julius Caesar-problem. But it also
covers infinite numbers.

0=gef Nz : (x # x)

ISucc(m,n) <>gef
JF3y(Nz : F(x) =nAF(y) ANz : (F(x) Nx #y) =m)

1 =gef No: (x=0)
ISuce(0,1)

m < n <rgef Isucc*(m,n)
See Conceptual Notation chap. 3 about R*.
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Numbers, natural (finite) numbers

Num(n) <>gey IF(Nx : F(z) = n) (n_is a number)

This is the answer to the Julius Caesar-problem. But it also
covers infinite numbers.

0=gef Nz : (x # x)

ISucc(m,n) <>gef
JF3y(Nz : F(x) =nAF(y) ANz : (F(x) Nx #y) =m)

1 =gef No: (x=0)
ISuce(0,1)

m < n <rgef Isucc*(m,n)
See Conceptual Notation chap. 3 about R*.

m<n<<grm=nVm<n

NNum(n) <+4ef 0 < n (n is a natural number)
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Frege numbers: the N Num-s endowed with the immediate
successor-relation Isucc.
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Theorems; , Frege’s theorem”

Frege numbers: the N Num-s endowed with the immediate
successor-relation Isucc.

NNum(n) — —ISucc(n,n)

If a predicate extension has an one-to-one mapping onto a
proper part of it (i.e., it is Dedekind-infinite), then its number is
an immediate successor of itself.
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NNum(n) — —ISucc(n,n)

If a predicate extension has an one-to-one mapping onto a
proper part of it (i.e., it is Dedekind-infinite), then its number is
an immediate successor of itself.

n = Nz : (x < n) That is, Frege’s natural numbers are quite
similar to the finite von Neumann ordinals.
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Theorems; , Frege’s theorem”

Frege numbers: the N Num-s endowed with the immediate
successor-relation Isucc.

NNum(n) — —ISucc(n,n)

If a predicate extension has an one-to-one mapping onto a
proper part of it (i.e., it is Dedekind-infinite), then its number is
an immediate successor of itself.

n = Nz : (x < n) That is, Frege’s natural numbers are quite
similar to the finite von Neumann ordinals.

SErege’s theorem™ Frege numbers satisfy the axioms of primitive
Peano-arithmetics. I.e., 0 is not an immediate successor, I Succ
is one-to-one and mathematical induction holds.
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Frege’s work today

Frege arithmetics (today): second-order logic + Hume’s
principle.
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Frege arithmetics (today): second-order logic + Hume’s
principle.

Using Frege’s definitions, we get a theory equivalent to
second-order Peano arithmetics.
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Frege’s work today

Frege arithmetics (today): second-order logic + Hume’s
principle.

Using Frege’s definitions, we get a theory equivalent to
second-order Peano arithmetics.

It is consistent relative to Peano arithmetics (demonstrated by
Boolos in the 1980’s).

An introduction of abstract objects into a theory by an
abstraction principle is a consistent extension of the theory
relative to set theory if the equivalence classes generated by the
principle are sets.
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Richard Dedekind (1831-1916)
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Richard Dedekind (1831-1916)

The grandfather of mathematical structuralism
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Richard Dedekind

Richard Dedekind (1831-1916)

The grandfather of mathematical structuralism

Structuralism:
@ Bourbaki circle from the 1930’s
@ Paul Benacerraf: What numbers could not be” (1965)

@ William Lawvere’s works on category theory (from the
1960’s)
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Dedekind cut

1872: Continuity and irrational numbers
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Dedekind cut

1872: Continuity and irrational numbers

Dedekind cut: Divide the rational numbers into two classes such
that all members of the first (lower) class are less than any
members of the second (upper) class. Such a classification is
called cut.
There are three sorts of cuts:

@ The upper class has a minimal member.

@ The lower class has a maximal member.

© Neither of 1. or 2.
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called cut.
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@ The upper class has a minimal member.

@ The lower class has a maximal member.

© Neither of 1. or 2.

Irrational numbers: cuts of the sort 3.
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Dedekind cut

1872: Continuity and irrational numbers

Dedekind cut: Divide the rational numbers into two classes such
that all members of the first (lower) class are less than any
members of the second (upper) class. Such a classification is
called cut.
There are three sorts of cuts:

@ The upper class has a minimal member.

@ The lower class has a maximal member.

© Neither of 1. or 2.
Irrational numbers: cuts of the sort 3.

Rational numbers can be identified with cuts of sort 1. (or 2., as
you like it.)
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Dedekind cut

1872: Continuity and irrational numbers

Dedekind cut: Divide the rational numbers into two classes such
that all members of the first (lower) class are less than any
members of the second (upper) class. Such a classification is
called cut.
There are three sorts of cuts:

@ The upper class has a minimal member.

@ The lower class has a maximal member.

© Neither of 1. or 2.
Irrational numbers: cuts of the sort 3.

Rational numbers can be identified with cuts of sort 1. (or 2., as
you like it.)

But what are the natural numbers?
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1887: What numbers are and what they ought to be?
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The Nature and Meaning of Numbers

1887: What numbers are and what they ought to be?

»In science nothing capable of proof ought to be accepted
without proof.”
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1887: What numbers are and what they ought to be?

»In science nothing capable of proof ought to be accepted
without proof.”

Chapter I.: System |[= set|, subset, union, intersection.
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The Nature and Meaning of Numbers

1887: What numbers are and what they ought to be?

»In science nothing capable of proof ought to be accepted
without proof.”

Chapter I.: System |[= set|, subset, union, intersection.

I1.: Transformation [= function| of a system [= on a set],
composition.

[11.: Similar transformation (= injective function)
[A function ¢ is injective iff p(z) = p(y) >z =1y |

S’ = ¢(S) is the system consisting of the p-maps of the
members of S. If ¢ is a similarity transformation, then it has a
converse that is a similarity transformation again and ¢ is an
one-to-one correspondence between the members of S and S’

Andras Maté matfil 07. Oct.



Similar systems, chains

matfil 07. Oct.



Similar systems, chains

Two systems are similar iff there is a similarity transformation
between them.

matfil 07. Oct.



Similar systems, chains

Two systems are similar iff there is a similarity transformation
between them.

Based on similarity, we can divide the class of all systems into
(equivalence) classes. Given a system R, we can define the class
of the systems similar to it. R is the representative of the class.
Any member of the class can be chosen as representative.
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between them.

Based on similarity, we can divide the class of all systems into
(equivalence) classes. Given a system R, we can define the class
of the systems similar to it. R is the representative of the class.
Any member of the class can be chosen as representative.

Let S be any system, ¢ a transformation for which ¢(S) C S.
K C S is a( ¢-)chain iff o(K) C K
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Similar systems, chains

Two systems are similar iff there is a similarity transformation
between them.

Based on similarity, we can divide the class of all systems into
(equivalence) classes. Given a system R, we can define the class
of the systems similar to it. R is the representative of the class.
Any member of the class can be chosen as representative.

Let S be any system, ¢ a transformation for which ¢(S) C S.
K C 8 'is a( p-)chain iff o(K) C K

S itself is a chain, p(K) is a chain if K is a chain, union and
intersection of chains is a chain.
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Similar systems, chains

Two systems are similar iff there is a similarity transformation
between them.

Based on similarity, we can divide the class of all systems into
(equivalence) classes. Given a system R, we can define the class
of the systems similar to it. R is the representative of the class.
Any member of the class can be chosen as representative.

Let S be any system, ¢ a transformation for which ¢(S) C S.
K C S is a( ¢-)chain iff o(K) C K

S itself is a chain, p(K) is a chain if K is a chain, union and
intersection of chains is a chain.

If AC S, then the intersection of all chains containing A is a
chain containing A and contained by S. It is the chain of A, Ay,

or o (A).
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Similar systems, chains

Two systems are similar iff there is a similarity transformation
between them.

Based on similarity, we can divide the class of all systems into
(equivalence) classes. Given a system R, we can define the class
of the systems similar to it. R is the representative of the class.
Any member of the class can be chosen as representative.

Let S be any system, ¢ a transformation for which ¢(S) C S.
K C 8 'is a( p-)chain iff o(K) C K

S itself is a chain, p(K) is a chain if K is a chain, union and
intersection of chains is a chain.

If AC S, then the intersection of all chains containing A is a
chain containing A and contained by S. It is the chain of A, Ay,
or ol A).

Theorem of complete induction: For any systems ¥ and A C X,
if for any z € AgN Y, p(x) € AgN 3,

then Ag C X.
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Infinity

A system is (Dedekind-)infinite iff it is similar to a proper part
of itself. Finite in the other case.

Andras Maté matfil 07. Oct.



Infinity

A system is (Dedekind-)infinite iff it is similar to a proper part
of itself. Finite in the other case.

66. Theorem. There exist infinite systems.

Proof.* My own realm of thoughts, i. e., the to-
tality .S of all t_tlﬂg_s? which can be objects of my
thought, is infinite. For if s signifies an element of
S, then is the thought s/, that s can be object of my
thought, itself an element of S. If we regard this as
transform ¢ () of the element s then has the transfor-
mation ¢ of .S, thus determined, the property that the
transform S’ is part of §; and S’ is certainly proper
part of S, because there are elements in S (e. g., my
own ego) which are different from such thought s and
therefore are not contained in 5. Finally it is clear
that if a, # are different elements of S, their trans-
forms «', &' are also different, that therefore the trans-
formation ¢ is a distinct (similar) tfansformation (26).
Hence S is infinite, which was to be proved.
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Numbers

Chapter VI.: Simply infinite systems

N is simply infinite iff there is a similarity ¢ and an element of
N called 1 s.t.
N = o(1) and 1 & o(N)
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Numbers

Chapter VI.: Simply infinite systems

N is simply infinite iff there is a similarity ¢ and an element of
N called 1 s.t.
N = o(1) and 1 & o(N)

Theorem: Every infinite system contains a simply infinite
system as a part of it.
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Numbers

Chapter VI.: Simply infinite systems

N is simply infinite iff there is a similarity ¢ and an element of
N called 1 s.t.
N = ¢o(1) and 1 & o(N)
Theorem: Every infinite system contains a simply infinite
system as a part of it.
Natural numbers: the elements of any simply infinite system N if
we entirely neglect the special character of the ele-
menis; simply retaining their distinguishability and.
taking into account only the relations to one another
in which they are placed by the order-setting trans-

formation )
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Numbers: some theorems

Every natural number m generates a chain mg and m € my.
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Numbers: some theorems

Every natural number m generates a chain mg and m € my.

Every natural number different from 1 is an immediate follower
(p-map) of some natural number.
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Numbers: some theorems

Every natural number m generates a chain mg and m € my.

Every natural number different from 1 is an immediate follower
(p-map) of some natural number.

Complete induction: If

@ A(m) holds;

@ for any n € my, if A(n), then A(¢(n)),
then A(z) holds for any member of my.
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Numbers: some theorems

Every natural number m generates a chain mg and m € my.

Every natural number different from 1 is an immediate follower
(p-map) of some natural number.

Complete induction: If
@ A(m) holds;
@ for any n € my, if A(n), then A(¢(n)),

then A(z) holds for any member of my.

To sum up, the axioms of second-order PA hold for simply
infinite systems.
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Numbers: some theorems

Every natural number m generates a chain mg and m € my.

Every natural number different from 1 is an immediate follower
(p-map) of some natural number.
Complete induction: If
@ A(m) holds;
@ for any n € my, if A(n), then A(¢(n)),
then A(z) holds for any member of my.

To sum up, the axioms of second-order PA hold for simply
infinite systems.

In other words, simply infinite systems are models of second
order Peano arithmetics. The converse is also true: every model
of second-order PA is a simply infinite system.
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X. The class of simply infinite systems

Theorem 132. All simply infinite systems are similar.
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A negation-complete arithmetics ?!7

X. The class of simply infinite systems
Theorem 132. All simply infinite systems are similar.

In other words: the theory of simply infinite systems is
categorical, i.e. each model of the theory is isomorphic to the
others.
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X. The class of simply infinite systems
Theorem 132. All simply infinite systems are similar.

In other words: the theory of simply infinite systems is
categorical, i.e. each model of the theory is isomorphic to the
others.

Conclusion: in all models, the same propositions of the language
of second-order PA are true.
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A negation-complete arithmetics ?!7

X. The class of simply infinite systems
Theorem 132. All simply infinite systems are similar.

In other words: the theory of simply infinite systems is
categorical, i.e. each model of the theory is isomorphic to the
others.

Conclusion: in all models, the same propositions of the language
of second-order PA are true.

Every proposition of this language is either true in every simply
infinite system and therefore a semantical consequence of the
second-order Peano-axioms, or the same holds for its negation.
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A negation-complete arithmetics ?!7

X. The class of simply infinite systems
Theorem 132. All simply infinite systems are similar.

In other words: the theory of simply infinite systems is
categorical, i.e. each model of the theory is isomorphic to the
others.

Conclusion: in all models, the same propositions of the language
of second-order PA are true.

Every proposition of this language is either true in every simply
infinite system and therefore a semantical consequence of the
second-order Peano-axioms, or the same holds for its negation.

Therefore, second-order Peano arithmetics (the set of semantical
consequences of second-order Peano axioms) is negation
complete.
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Metalogical consequences

Godel’s first incompleteness theorem: First-order Peano
Arithmetics has no negation-complete aziomatic extension.
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Godel’s first incompleteness theorem: First-order Peano
Arithmetics has no negation-complete aziomatic extension.

The semantic completeness of a logical calculus: all semantic
consequences of any set of premises can be derived in the
calculus. First-order logic has a semantically complete calculus
(GODEL 1930).
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Metalogical consequences

Godel’s first incompleteness theorem: First-order Peano
Arithmetics has no negation-complete aziomatic extension.

The semantic completeness of a logical calculus: all semantic
consequences of any set of premises can be derived in the
calculus. First-order logic has a semantically complete calculus
(GODEL 1930).

Second-order logic cannot have a semantically complete
calculus. Because if it had, then we could derive all semantic
consequences from the second-order Peano axioms and obtain a
negation complete axiomatic extension of first-order Peano
arithmetics.
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Some additional remarks

A simpler proof of the impossibility of a semantically complete
second-order logical calculus: the semantic consequence relation
of second-order logic is not compact. There are valid inferences
with infinitely many premises where the conclusion does not
follow from any finite subset of the premises.
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Some additional remarks

A simpler proof of the impossibility of a semantically complete
second-order logical calculus: the semantic consequence relation
of second-order logic is not compact. There are valid inferences
with infinitely many premises where the conclusion does not
follow from any finite subset of the premises.

What is arithmetical truth? The answer seems simple: a
theorem of second-order PA. But the appearance of simplicity
here is misleading.
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