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What is formalism?

Full-blooded formalism (H.B. Curry, 1963):

`[M]athematics is characterized more by its method than by its
subject matter; its objects either are unspeci�ed or, if they are
speci�ed, are such that their exact nature is irrelevant [...]'

Mathematics investigates formal symbol systems in which there
are usually certain symbol sequences called propositions, axioms,
theorems etc., certain transformation rules called derivation
rules, but all of these are de�ned in a purely syntactic way, i.e.
by reference only to the structure of the symbol sequences.

Propositions can have meaning, they can make true or false
statements about some objects, but this is irrelevant to
mathematics.
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Hilbert and Bernays as non-formalists

Hilbert (1919): `[C]oncept formation in mathematics is always
guided by intuition and experience, and therefore mathematics
as a whole is a closed structure free of arbitrariness.'

Bernays (1928): `Making us methodologically free from the
intuition of space is not the same as ignoring the fact that the
starting points of geometry lie in the intuition of space.'
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Principles, �rst results, aims

The (relative) consistency of geometry: by reduction to real
arithmetics.

The existence of geometric space is based on the consistency of
the postulates.

Bernays, 1928: only a complete (and consistent) system of
axioms guarantees existence.

In arithmetics, a direct (absolute) proof of consistency is needed.

Reduction to logic cannot guarantee consistency. (This is the
lesson of the paradoxes.)
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The program

Hilbert, 1918:
All such questions of principle . . . [sc. completeness, consistency,
decidability] seem to me to constitute an important new �eld of
research that still needs to be developed. In order to conquer
this �eld we must . . . make the very notion of a speci�cally
mathematical proof itself the object of investigation, just as . . .
the physicist studies the theory of his apparatus, and the
philosopher criticizes reason itself.

The preparatory steps for such an investigation of a
mathematical theory are the following:

Axiomatize the theory

Formalize the theory (including the logical principles used
in it)

The main aim of the investigation is to prove that the risky,
trans�nite constituents don't make the theory inconsistent.
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Certainty

Logical axioms have no distinguished role and no special
privilege with respect to certainty. On the contrary, if they refer
to the in�nity, they need to be justi�ed in the same way as the
other components.

E.g. the instances of the scheme

∀xA(x) ∨ ∃x¬A(x)

are trivially valid on a �nite domain because they can be
veri�ed in �nitely many steps. But on an in�nite domain, after a
�nite number of steps, it is always possible that we have not
�nd an object a for which ¬A(a) holds but we have not veri�ed
∀xA(x), either.

Certainty does not lie in logic, but in experience and intuition
(as the framework of experience).
Metamathematics is more reliable than other mathematical
theories because it minimizes references to in�nity.
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Intuition and ideal elements: some quotes from Hilbert

Objects given in intuition must be �nitely many, `their
presentation, their di�erence, their succession . . . must exist for
us directly, intuitively . . . '

`[T]he objects of number theory are for me � in direct contrast
to Dedekind and Frege � the signs themselves . . . '

`The solid philosophical attitude that I think is required for the
grounding of pure mathematics ... is this: In the beginning was

the sign.'

This attitude can justify the existence of natural numbers, but
does not justify the existence of their set or the existence of the
ordinal ω.

We can extend our system (consisting of real elements) with the
ideal element ω.
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The method of ideal elements

The example is projective (plane) geometry. We extend the
system of points and lines of the Euclidean plane by adding an
in�nitely distant point to each line.

Such an extension is justi�ed by proving that the system
extended with ideal elements is consistent (if the original system
was).

The extension can be iterated, and therefore the distinction
between real and ideal elements is always relative to the actual
theory. What we get is a chain of theories that grow link by link
stronger, containing more and more ideal elements.

`No one will drive us from the paradise which Cantor created for
us.'
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Finitism

In�nite sets, large cardinals etc. are ideal elements. The use of
ideal elements is not forbidden (as in intuitionist mathematics),
but it needs justi�cation in the mathematics of real elements.

With relative consistency proofs, we can reduce the problem of
consistency of mathematical theories to the consistency of `more
fundamental' ones. The proofs must be purely formal and must
not use anything other than the axioms.
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The problem of the �rst link in the chain

Geometry can be reduced to the theory of real numbers. Theory
of real numbers can be reduced to Peano arithmetic. Peano
arithmetic � to what? What about the �rst link in this chain of
more and more fundamental theories?

The reliability of the �rst link cannot be reduced to another,
more fundamental theory. It must be reliable in itself, for reasons
related to the content of the theory and not for formal reasons.

This �rst step (or link) can only contain reasoning about �nite
objects that are directly given to us in our intuition, and can
only use �nite rules of argumentation.

This �rst link could be a limited fragment of the arithmetics of
natural numbers, with a limited logic (bounded quanti�ers). In
such a theory we would have to prove the consistency of the full
Peano arithmetics, and then we could move forward.
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Risk in the logic and in arithmetics

Trans�nite constituent of logic: Existential instantiation resp.
universal generalization.

EI: ∃xF (x) ⇒ F (a) (i.e., if there are F s, then we can choose one
of them and call it a).

UG: If a is an arbitrary member of the domain, F (a) ⇒ ∀xF (x)

Hilbert's formulation of the risky thing in logic: ϵ-operator
with the trans�nite axiom A(x) → A(ϵA(x))

BTW. tacit universal quanti�cation is allowed in general.
Universal instantiation and existential generalization don't
count as risky.

The risky component in arithmetics: mathematical induction.
The induction scheme

(A(0) ∧ ∀x(A(x) → A(x′))) → ∀xA(x)

can only be used in cases where A(x) contains no bounded
variable.
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Universal instantiation and existential generalization don't
count as risky.

The risky component in arithmetics: mathematical induction.
The induction scheme

(A(0) ∧ ∀x(A(x) → A(x′))) → ∀xA(x)

can only be used in cases where A(x) contains no bounded
variable.
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The realization (continued to its end)

Ackermann proves

1 the consistency of Peano arithmetics without induction

2 the consistency of Peano arithmetics with induction limited
to the no-bounded-variables case.

Von Neumann proves the consistency of full Peano arithmetics
with �rst-order logic without the trans�nite axiom.

And then comes Gödel and proves that even the full Peano
arithmetics does not su�ce to prove its own consistency. (1931)

In 1936 Gerhard Gentzen proves the consistency of Peano
arithmetics.

An overview of the results of Hilbert's school follows.
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Basic metamathematical notions

Consider a system of axioms (a sequence of closed formulas Γ)
in some formal language equipped with a calculus (system of
rules of derivation).

Thm(Γ) is the set of closed formulas derivable from Γ.

Γ is consistent i� Thm(Γ) is a proper subset of the sentences of
the language

.

Γ is negation complete i� for every closed sentence A of the
language, either A or ¬A is in Thm(Γ).
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Basic notions II: Semantical notions

An interpretation of a set of formulas consists of a domain of
individuals and a mapping of the constants of the formulas to
their extensions in the model.
Not an exact de�nition!
An interpretation assigns a truth value to each closed formula.

A model of a set of formulas is an interpretation that makes all
members of the set true.

An inference Γ ⇒ C is (semantically) valid i� all models of Γ
are models of C.

A logical calculus is semantically complete i� all semantically
valid inferences can be justi�ed by derivation in the calculus.
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A technique for proving metatheorems: analytic sequences

Let us have a �rst-order language L(1) and a set of closed
formulas Γ formalized in it.

A sequence of closed sentences Γ∗ (in some L′(1) that is an
extension of L(1) by some in-constants) is a
�nished analytic sequence for Γ i�

it contains every member of Γ;

if it contains a sentence ¬¬A, then it contains A, too;

if it contains A → B, then it contains either ¬A or B;

if it contains ¬(A → B), then it contains both A and ¬B;

if it contains ¬∀xA, then it contains at least one sentence of
the form ¬A(a/x);

if it contains ∀xA, then it contains

at least one formula of the form A(a/x);

every formula of the form A(a/x) where a is any in-constant

occurring in Γ∗;
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Analytic sequences (continuation)

if it contains an atomic sentence A and a formula a = b,
then it contains both A(a/b) and A(b/a);

it contains no trivial contradiction, i.e.

no sentence of the form a ̸= a;
no pair of sentences A, ¬A.

Proposition There is an algorithm that produces a sequence of
closed sentences Γ∗ from Γ s.t.:
Each step of the algorithm produces a consistent extension of Γ
and either

I Γ∗ is a �nished analytic sequence for Γ
or

II Γ∗ is �nite and contains a trivial contradiction.

In case I, Γ∗ has a model (so Γ has a model) whose domain
consists only of natural numbers.
In case II, Γ is inconsistent.
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closed sentences Γ∗ from Γ s.t.:
Each step of the algorithm produces a consistent extension of Γ
and either

I Γ∗ is a �nished analytic sequence for Γ
or

II Γ∗ is �nite and contains a trivial contradiction.

In case I, Γ∗ has a model (so Γ has a model) whose domain
consists only of natural numbers.
In case II, Γ is inconsistent.
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