
Metatheorems about �rst-order logic

András Máté

28 March 2025

András Máté Metatheorems



András Máté Metatheorems



Last week's key lemma

There exists an algorithm that produces a �nite set of Γ∗

sequences of closed sentences from Γ s.t.:

Every step of the algorithm produces at least one consistent
extension of Γ and either

I some Γ∗ is a �nished analytic sequence for Γ
or

II every Γ∗ is �nite and contains a trivial contradiction.

In case I, Γ∗ has a model (therefore Γ has a model, too) whose
domain consists of natural numbers only.
In case II, Γ is inconsistent.
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Theorems

Compactness: If Γ is inconsistent, then it has an inconsistent
�nite subset. In other words:

If every �nite subset of Γ is consistent, then Γ is consistent,
too.

If a sentence follows (semantically) from Γ (i.e., Γ ∪ {¬C}
has no model), then it follows from a �nite part of Γ.

Completeness: Every consistent set of sentences Γ has a
model. Alternative formulation:

If a sentence C is a (semantical) consequence of a set of
sentences Γ, then C is derivable from Γ.

Löwenheim-Skolem: If a set of sentences has a model, then it
has a countable model, too.

András Máté Metatheorems



Theorems

Compactness: If Γ is inconsistent, then it has an inconsistent
�nite subset. In other words:

If every �nite subset of Γ is consistent, then Γ is consistent,
too.

If a sentence follows (semantically) from Γ (i.e., Γ ∪ {¬C}
has no model), then it follows from a �nite part of Γ.

Completeness: Every consistent set of sentences Γ has a
model. Alternative formulation:

If a sentence C is a (semantical) consequence of a set of
sentences Γ, then C is derivable from Γ.

Löwenheim-Skolem: If a set of sentences has a model, then it
has a countable model, too.

András Máté Metatheorems



Theorems

Compactness: If Γ is inconsistent, then it has an inconsistent
�nite subset. In other words:

If every �nite subset of Γ is consistent, then Γ is consistent,
too.

If a sentence follows (semantically) from Γ (i.e., Γ ∪ {¬C}
has no model), then it follows from a �nite part of Γ.

Completeness: Every consistent set of sentences Γ has a
model. Alternative formulation:

If a sentence C is a (semantical) consequence of a set of
sentences Γ, then C is derivable from Γ.

Löwenheim-Skolem: If a set of sentences has a model, then it
has a countable model, too.

András Máté Metatheorems



Theorems

Compactness: If Γ is inconsistent, then it has an inconsistent
�nite subset. In other words:

If every �nite subset of Γ is consistent, then Γ is consistent,
too.

If a sentence follows (semantically) from Γ (i.e., Γ ∪ {¬C}
has no model), then it follows from a �nite part of Γ.

Completeness: Every consistent set of sentences Γ has a
model. Alternative formulation:

If a sentence C is a (semantical) consequence of a set of
sentences Γ, then C is derivable from Γ.

Löwenheim-Skolem: If a set of sentences has a model, then it
has a countable model, too.

András Máté Metatheorems



Theorems

Compactness: If Γ is inconsistent, then it has an inconsistent
�nite subset. In other words:

If every �nite subset of Γ is consistent, then Γ is consistent,
too.

If a sentence follows (semantically) from Γ (i.e., Γ ∪ {¬C}
has no model), then it follows from a �nite part of Γ.

Completeness: Every consistent set of sentences Γ has a
model. Alternative formulation:

If a sentence C is a (semantical) consequence of a set of
sentences Γ, then C is derivable from Γ.

Löwenheim-Skolem: If a set of sentences has a model, then it
has a countable model, too.

András Máté Metatheorems



Theorems

Compactness: If Γ is inconsistent, then it has an inconsistent
�nite subset. In other words:

If every �nite subset of Γ is consistent, then Γ is consistent,
too.

If a sentence follows (semantically) from Γ (i.e., Γ ∪ {¬C}
has no model), then it follows from a �nite part of Γ.

Completeness: Every consistent set of sentences Γ has a
model. Alternative formulation:

If a sentence C is a (semantical) consequence of a set of
sentences Γ, then C is derivable from Γ.

Löwenheim-Skolem: If a set of sentences has a model, then it
has a countable model, too.

András Máté Metatheorems



Theorems

Compactness: If Γ is inconsistent, then it has an inconsistent
�nite subset. In other words:

If every �nite subset of Γ is consistent, then Γ is consistent,
too.

If a sentence follows (semantically) from Γ (i.e., Γ ∪ {¬C}
has no model), then it follows from a �nite part of Γ.

Completeness: Every consistent set of sentences Γ has a
model. Alternative formulation:

If a sentence C is a (semantical) consequence of a set of
sentences Γ, then C is derivable from Γ.

Löwenheim-Skolem: If a set of sentences has a model, then it
has a countable model, too.

András Máté Metatheorems



Some consequences

1. In �rst-order logic, there is no sentence that expresses the
in�nity of the domain.

2. Suppose that we have a �rst-order theory of real numbers
which contains the usual operations and relations on real
numbers and proves at least some simple propositions about
them. Suppose further than we have a model for this theory,
consisting of real numbers as we used to thinking about them
(`standard model').

Within the theory we can prove that the domain (the set of real
numbers) is not countable (Cantor's theorem).

But according to Löwenheim-Skolem, the theory has a model
where the domain is countable. (Skolem's paradox.)

Not a contradiction; but it implies that some important notions
(e.g. countability) are incurably relative, model-dependent.
(Putnam: `Models and reality', 1980)
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Consequences continued

3. There are non-standard models of the �rst-order theory of
real numbers, e.g. those whith in�nitely small positive numbers.

Let us consider the following set of propositions:

{0 < a < 1, 0 < a < 1/2, . . . , 0 < a < 1/n, . . .}
∪{Axioms of the theory}

Every �nite subset of this set has a model (namely the standard
one extended by an appropriate interpretation of `a'). Therefore,
(due to compactness) the whole set has a model, too, and this is
also a model of the axioms.
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Consequences �nished

4. Similarly, Peano arithmetics has models with in�nitely large
numbers.

BTW., nonstandard models of Peano arithmetics can be
characterized by the following 2-order sentence:

∃X(∃xXx ∧ ∀x(Xx → x > 0)∧
∀y[∀x(Xx → x > y) → ∀x(Xx → x > y′)])
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Gödel's discovery

Gödel 1931: `On Formally Undecidable Propositions of Principia
Mathematica and Related Systems'

First Incompleteness Theorem: Peano arithmetics is not
negation complete.
There is some sentence G such that neither G itself nor ¬G can
be deduced from the axioms
(provided that Peano-arithmetics is ω-consistent).

The statement of the theorem remains valid if the system is
extended with new axioms or axiom schemes.
It also holds for systems in which Peano arithmetics has a
model (e.g. set theory).

Rosser 1936: Instead of ω-consistency, consistency is enough.

Second Incompleteness Theorem: The sentence expressing
the consistency of Peano arithmetics is neither provable nor
refutable (under the same conditions and with the same
generalizations).
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Kalmár's proof of the �rst incompleteness theorem

Language: �rst-order logic with 0 as an individual constant and
some function symbols for arithmetic operations. Include at least
the successor (′) and the four basic operations (+, ∗, −, ÷).

Numerals are the individual terms 0, 0′, 0′′, . . ..
Numerical terms are the terms containing no variable.
Assume that we can calculate the value of any numerical term.
Calculating a numerical term t means proving some equality
t = n (where n is a numeral).
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A matrix of inequalities and its diagonal

Consider the terms of the language that contain (at most) one
free variable. These can be enumerated in an (in�nite) sequence:

k0(x), k1(x), . . . , kn(x), . . .

The indexes are the Gödel numbers of the terms.

Let us arrange the inequalities of the form kn(x) ̸= m in a
two-dimensional in�nite table in the obvious way:

k0(x) ̸= 0 k0(x) ̸= 1 . . . k0(x) ̸= n . . .
k1(x) ̸= 0 k1(x) ̸= 1 . . . k1(x) ̸= n . . .

...
kn(x) ̸= 0 kn(x) ̸= 1 . . . kn(x) ̸= n . . .
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Diagonalization

If we have some e�ective axiom system and derivation rules (i.e.
an e�ectively axiomatized theory), some of these inequalities
become provable, others become refutable. Are there
`neither-nor' cases?

Consider the diagonal of the table, i. e. the sequence of formulas
kn(x) ̸= n (call them diagonal formulas). We can enumerate all
the proofs in our theory, and therefore we can also enumerate
the proofs that prove diagonal formulas:

P0, P1, . . . , Pn, . . .

De�ne the function f as f(n) = m i� Pn proves the mth
diagonal formula.

Lemma (not proved): f(x) can be expressed in our language by
a term with one variable.
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Consider the diagonal of the table, i. e. the sequence of formulas
kn(x) ̸= n (call them diagonal formulas). We can enumerate all
the proofs in our theory, and therefore we can also enumerate
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The Gödel sentence

A consequence of the above lemma: there is at least one of the
expressions < kn(x) > which expresses f(x). Let g be the index
of the �rst such expression. I.e., for all x, f(x) = kg(x)

Consider the gth diagonal formula:

kg(x) ̸= g (G)

If (G) is provable, then for some m, the proof Pm proves G,
therefore by the de�nition of f , f(m) = kg(m) = g, and so (G)
is false.
If (G) is false, then for some n, kg(n) = f(n) = g, and therefore
Pn proves (G).
In summary, (G) is provable i� it is false.
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The �nal result and some discussion

If our arithmetic (this could be Peano arithmetic or any e�ective
extension of it) calculates every numerical term and proves only

true equalities with at most one variable, then the Gödel
sentence (G) is true and not provable, and its negation is not
provable because it is false. Therefore it is negation incomplete.

A plausible reading of the sentence (G): For every x, the value
of the expression kg(x) (therefore f(x)) is di�erent from g. This
means that the diagonal formula numbered with g has no proof.
But the g-th diagonal formula is (G) itself!! Therefore (G) says:
`I am not provable'.

For theories satisfying the italic condition above, we have
proved the �rst incompleteness theorem.

Gödel applied a weaker condition than the above: he assumed
that that the theory was ω-consistent.

A consistent theory is ω-inconsistent i� there is some property
P s.t. the theory proves P (0), P (1), . . . P (n), . . . for each
numeral n, but it proves ∃x¬P (x), too.
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The (un)provability of consistency

The consistency of PA can be expressed within PA by a formula
CPA:

CPA ↔ There is no natural number s.t. it is the Gödel number
of the proof of 0 = 0′

CPA is a deductively undecidable sentence in PA. (This is the
second incompleteness theorem.) It is true on the standard
model but false on some non-standard models.

PA + ¬ CPA is an example of a consistent, but ω-inconsistent
theory (provided that Peano arithmetics is consistent).
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Impact of the second incompleteness theorem

Gödel: `I wish to note expressly that [this theorem] does
not contradict Hilbert's formalistic viewpoint. For this
viewpoint presupposes only the existence of a consistency
proof in which nothing but �nitary means of proof is used
and it is conceivable that there exist �nitary proofs that
cannot be expressed in the formalism of [�rst-order Peano
arithmetics].' (Original paper on the incompleteness
theorems)

von Neumann: `Thus I am today of the opinion that
1 Gödel has shown the unrealizability of Hilbert's program.
2 There is no more reason to reject intuitionism (if one

disregards the aesthetic issue, which in practice also for me
be the decisive factor).'

(Letter to Carnap, 1931)
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