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Consistency of PA � proved by Gentzen, reformulated by

Kalmár

We want to prove that any numerical formula that is derivable

in the system is true.

Therefore, the formula `0 = 0′' can't be derived.

Some notions:

Numerical terms and formulas: no variables, no logical constants

except of the equality sign.

Veri�able formulas:

no bound variables

yield true numerical formulas for any substitution of their

free variables (with numerals)

Our axioms, with the exception of induction axioms are

veri�able formulas and that's all we need to know about them.
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Preparatory steps 1.

Consider a deduction of an arbitrary numerical formula

(the closing formula).

Eliminate the universal quanti�cations.

Arrange the deduction in a tree in the obvious way.

Each formula occurs in as many copies as it is used in the

deduction. I.e., nodes are formula tokens.

The root is the closing formula of the deduction.
Each leaf is of one of the following sorts:

1 Truths of propositional logic (tautologies)
2 ∃-axioms: A(t) → ∃rA(r)
3 Equality formulas: r = s → (A(r) → A(s))
4 Veri�able formulas
5 Induction axioms
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Preparatory steps 2.

Substitute every induction axiom

A(0) → ∀c(A(c) → A(c′)) → A(a)

with an application of the following inference scheme (I):

A(0) A(c) → A(c′)

A(a)

We use the following 3 inference rules:

Detachment

I-scheme, as above

∃-scheme:
B(c) → A

∃xB(x) → A
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Transformation of the proof tree

By long and sometimes tricky calculation it turns out that we

can transform our proof tree into a proof tree that deduces the

closing formula from substitutions of veri�able formulas and

tautologies (at the leafs) and uses only detachment as an

inference rule.

The closing formula is deduced by this transformed tree from

veri�ed numerical equalities (substitutions of the axioms) using

propositional logic only. Therefore, there is no reason to doubt

it.
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Elimination steps

The two key step-types of the transformation are the following:

Elimination of I-inferences.The I-inference is only used to

prove a truth about a speci�c number, such as 3. So we can

replace it by inferences from 0 to 1, from 1 to 2, from 2 to 3.

Elimination of forks. A fork is the following con�guration in

the proof tree: An existentially quanti�ed formula is

introduced somewhere using an ∃-scheme, and the same

formula is the consequent of some ∃-axiom at some leaf.

The idea is that the relevant existentially quanti�ed

formulas occur in such pairs. The paths from the two

formulas to the closing formula must met at some node

before the closing formula, otherwise the closing formula

would contain a quanti�cation. Forks can also be replaced

by propositional logic proof trees.
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What is remaining?

We still need to prove that from the proof of an arbitrary

numerical formula using a �nite number of iterated I-inference

elimination and fork elimination is possible to obtain such a

transformed proof tree. This is the part of our proof that cannot

be formalized within 1-order Peano Arithmetic.
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0− ω-�gures

Recursive de�nition of the 0− ω-�gures, with their ordering <
and classi�cation into degrees:1

The �rst and smallest �gure is `0', the only member of

degree 0.

Members of the �rst degree are (non-empty)

sum(expression)s of the form ω0 +ω0 + ...+ω0. The shorter

is the smaller one, and 0 is smaller than any of them.

Instead of ω0, write 1, and instead of the sum the length r,
write r.

1Ordinals under the �rst ε-number, in an intuitive form.
András Máté Consistency, Russell
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0− ω-�gures, continued

Suppose we have already introduced the �gures up to

degree k with their ordering. An expression of the form

ωa1 + ωa2 + ...+ ωar (r ̸= 0)

belongs to the degree k + 1 i�

the expressions a1, ...ar all belong to a degree ≤ k;
a1 belongs to the degree k;
a1 ≥ a2 ≥ ... ≥ ar according to the ordering already

introduced up to the degree k.

Extension of < to the degree k + 1:

Figures of the degree k + 1 are all larger than the �gures of

the previous degrees.

A �gure a of degree k + 1 is larger than another (b) i�

the �rst exponent in which they di�er is larger in a then in

b;
or else i� it is a continuation of b.
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Assigning ordinals to the nodes in the proof tree

The nodes of our original proof tree can be labelled (after the

preparation steps) with 0− ω-�gures, or ordinals for short.
We begin with the leaves and follow the proof step by step. The

ordinal of each node depends on the ordinal of its immediate

predecessor(s) in a rather simple way. At the very end we arrive

at the ordinal of the closing formula � this is the ordinal of the

proof.

We prove that the elimination steps (strictly) decrease the

ordinal.

The last step of our proof (next slides): we prove that there is

no in�nite decreasing sequence of our ordinals.

Therefore, the transformed tree can be achieved in �nitely many

steps.
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Descending �nite ordinals

An ordinal is descending �nite if there is no in�nite decreasing

sequence of ordinals starting with it. We prove (by induction!)

that every ordinal is descending �nite.

The ordinals of degree 0 and 1 are obviously descending

�nite. (For the degree 1, this statement already depends on

induction.)

Assume that every ordinal whose degree is not larger than

k ≥ 1 is descending �nite. We should prove that every

ordinal of the degree k + 1 is descending �nite.

It is enough to prove that every ordinal of the form ωa

(where a has the degree k) is descending �nite.

Let us have a decreasing sequence from ωa. Its �rst member

is c = ωa1 + ωa2 + ...+ ωar , where a1 < a. We should prove

that c is descending �nite.
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Descending �nite ordinals, continued

c is not larger than ωa1 + ωa1 + ...+ ωa1 (shortly, ωa1 · r).
Therefore, if we have a descending chain from c, we can get

a descending chain from ωa1 · r putting this latter ordinal to

the beginning of the sequence. Therefore, if ωa1 · r is

descending �nite, then ωa is descending �nite, too.

If the ordinal ωb is descending �nite, then ωb · r is

descending �nite, too. (Another subproof, by induction.)

Therefore we reduced the descending �niteness of ωa to

that of ωa1 , where a1 < a. Iterating this consideration, we

can get a decreasing sequence a > a1 > a2... where the �rst
member has the degree k and therefore by hypothesis the

sequence is �nite.

The last member must be of degree 0 or 1, otherwise the

decreasing sequence could have continued. But the ordinals

of degree 0 and 1 are descending �nite.

Q. e. d.
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Conclusion

The proof of the proposition that there are no in�nite

decreasing sequences of ordinals is the part of the proof that

cannot be formalized within PA.

Is it �nitary? In other words, what have we gained from this

proof?

The reliability of Peano arithmetics is taken at the price of

accepting the above induction (in the last part of the proof).

The above induction is an informal argument about �nite

syntactic objects ordered into a trans�nite sequence.

The 1-order Peano proofs (formalized as above) use two kinds of

`trans�nite' tools: ∃-inferences and induction inferences. Our

metalanguage proof has shown that both can be eliminated at

the cost that the �niteness of the elimination procedure can

only be proved by some stronger sort of induction.

BTW. we did not use the other trans�nite tool (∃-inference or
its equivalent existential instantiation) in the proof.
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Russell's logicism

Russell's vicious circle principle (VCP):

�Whatever involves all of a collection must not be one
of the collection;� or, conversely: �If, provided a certain
collection had a total, it would have members only de�n-
able in terms of that total, then the said collection has
no total.�

�Mathematical logic as based on the theory of types�, 1908

It eliminates the Russell paradox, the Liar paradox, the paradox

of the smallest number not de�nable by . . . letters, the Richard

paradox, the hypergame paradoxes. It does not eliminate the

Yablo paradox.
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Predicativity

A de�nition is impredicative if it contains quanti�cation over a

class to which the entity to be de�ned belongs. Predicative if it

does not contain such quanti�cations. Informally, predicative

de�nitions are those that respect VCP.

A plausible (Fregean) de�nition of the property `being a natural

number':

N(n) ↔def ∀φ((φ(0) ∧ ∀x(φ(x) → φ(x′))) → φ(n))

It is impredicative because N belongs to the possible values of φ.
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Russellian types

A technical elaboration of VCP: the theory of types.

�Whatever contains an apparent [i.e. bounded] variable
must not be the value of that variable.� Thus whatever
contains an apparent variable must be of a di�erent type
from the possible values of that variable; we will say that
it is of a higher type.

Type: the value range of a bound variable, i.e. `the collection of

arguments for which the function has values'.

The technical elaboration of predicativity is done through the

theory of types.
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Simple and rami�ed theory of types

Types are always relative to some given discourse.

Simple theory of types:

Bottom of the hierarchy: variables of type 0 ranging over a

non-empty set of individuals.

Type 1: classes of individuals. These can be de�ned by

propositional functions φ(x) containing variables of type 0.

Type 2: classes of classes of individuals, etc.

Not satisfactory because bound variables may occur in φ and

according to VCP, they also should be of lower type than φ.

Rami�ed theory of types: types are descending sequences of

natural numbers.
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according to VCP, they also should be of lower type than φ.

Rami�ed theory of types: types are descending sequences of

natural numbers.
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Arithmetics in the theory of types

We need an axiom saying that there are in�nitely many

individuals (objects of type 0). (Axiom of In�nity)

The above de�nition:

N(n) ↔def ∀φ((φ(0) ∧ ∀x(φ(x) → φ(x′))) → φ(n))

de�nes natural numbers of the type t if the successor function
maps type t into itself and φ belongs to a certain type higher

than t. There is no impredicativity any more because N will

belong to a higher type than φ.

Problem: we cannot use the de�nition of number in our usual

inductive proofs because the properties for which we want to use

induction are of higher type than the type of φ.

András Máté Consistency, Russell
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Reducibility

Russell's solution: reducibility

φ is a predicativeRussell function of x (in symbols: φ!x) if all the
bounded variables (if any) in φ are the same or lower type than

x.

Axiom of Reducibility: All functions are coextensive with

some predicative function.

Implementation of the above program, i.e. formalization of

mathematics (arithmetics of natural and real numbers,

geometry as coordinate geometry) in the framework of type

theoretical logic:

Russell and Whitehead, Principia Mathematica I-III. (1st

edition: 1910, 11, 13).

András Máté Consistency, Russell
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