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Natural numbers; Heyting arithmetics HA

The non-logical axioms of intuitionist (Heyting) arithmetics are

the same as the Peano axioms plus axioms for identity that

guarantee that `=' is an equivalence relation symbol. But logic

is the intuitionist predicate logic.

Atomic formulas are decidable and stable, and so are formulas

with bounded quanti�ers.

HA is capable of Gödelisation, therefore incompleteness

theorems are valid for it.
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Real numbers

`Let us consider the concept: �real number between 0 and 1.�

For the formalist this concept is equivalent to �elementary series

of digits after the decimal point,� for the intuitionist it means

�law for the construction of an elementary series of digits after

the decimal point, built up by means of a �nite number of

operations.� And when the formalist creates the �set of all real

numbers between 0 and 1,� these words are without meaning for

the intuitionist, even whether one thinks of the real numbers of

the formalist, determined by elementary series of freely selected

digits, or of the real numbers of the intuitionist, determined by

�nite laws of construction.' (Brouwer)

Intuitionist theory of real numbers is incomparable with classical

real analysis. Some true propositions of classical analysis are not

true intuitionistically, but there are theorems of intuitionist

analysis which are not true classically.
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Weak counterexamples: classically true propositions that

are neither true nor false in intuitionistic analysis

Be A(n) a decidable predicate of natural numbers for which we

don't know whether ∀nA(n) is true or not; say, `2n is the sum of

two prime numbers'. Let us de�ne a sequence of real numbers:

rn =

{
2−n if ∀m ≤ n.A(m)
2−m if ¬A(m) ∧m ≤ n ∧ ∀k < m.A(k)

This sequence de�nes a real number r. Bu we don't know

whether r = 0 (the Goldbach conjecture is true) or not.

Therefore, the proposition (r = 0) ∨ (r ̸= 0) does not hold.
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The intuitionist continuum

Real numbers are generated by (or are identi�ed with) choice

sequences. A choice sequence is an in�nite sequence of numbers

(or other �nite objects) created by free will. Sequences are not

�ready� objects but are continuously generated in time and

never �nished.

A choice sequence may be generated by some law (lawlike

sequences) but it can also be a lawless products of free will.

Most of the classical concepts have an intuitionistic counterpart

based on choice sequences. E. g. the intuitionistic counterpart of

the (su�ciently small) neighborhood of a real number is the set

of choice sequences having a (su�ciently long) common initial

segment with the given choice sequence.

There are statements that are (de�nitely) true in intuitionistic

mathematics although classically false (�strong

counterexamples�). A simple but very important example:

Every total real function is continuous.
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The intuitionist version of Bolzano's theorem

The classical theorem:

Let f be a continuous real-valued function on the interval [a, b]
such that f(a) < 0 < f(b). Then there is a c ∈ [a, b] for which
f(c) = 0.

Intuitionist version (or surrogate):

If f is a real-valued function with the same conditions, then

∀n ∈ N∃c ∈ [a, b](|f(c)| < 2−n).

In general, instead of existence theorems intuitionists often

have theorems about the existence of approximations within

arbitrary precision.
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Continuity and choice axioms

In classical mathematics, we postulate that the intersection of

nested non-empty closed intervals is never empty.

In intuitionistic mathematics, continuity axioms play a similar

role. They use the aforementioned notion of choice sequences

with common initial segments and make predictions about their

further behaviour.

The classical axiom of choice (AC) says that if we have an F
family of non-empty sets, then there is a (choice) function that

assigns to every member S of F a member of S.

This is unacceptable for the intuitionist. But there are weaker

versions of AC which are acceptable (and important for classical

mathematics, too): countable choice, dependent choice.
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