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A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.
Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}
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A language of �rst-order logic (informally, continued)

We apply name functors and predicates always for one argument
(individual term) only, i.e. we �ll in the argument places one by
one (currying).

Auxiliary letters (with intended meanings in brackets): I
(index), A (arity), V (variable), N (name functor), P
(predicate), T (term), F (formula). We use calculus variables as
needed (not to be changed with object-language variables).
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The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Iy → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument
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The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule
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Closing remark and a homework

The ALanguage(FOL)-strings derivable in this calculus are just
the w�'s of our Language(FOL). By changing the release rule
and/or leaving o� some rules we could de�ne other syntactical
categories (terms, atomic formulas, etc.) of the language.

Homework: How to change KLanguage(FOL) to de�ne the terms
resp. atomic formulas of our language?
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Hypercalculi and their use

Hypercalculi are canonical calculi that we use to de�ne classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were de�ned inductively.

Canonical calculi are �nite sequences of rules (special strings).
To represent them as strings we need a sequencing character

distinct from the letters.

Two informal remarks:
1. Hypercalculi are canonical calculi just as any other calculus.
We read the strings they produce as rules, derivability relations
or calculi.
2. The calculus deriving the code of any canonical calculus also
derives the code of itself � an innocent case of self reference.
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How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, let us translate it
letter by letter into a string of our new calculus.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}
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The alphabet of H1

The alphabet will contain Acc as a subset. Above that, we'll
need the following auxiliary characters (intended meaning in
brackets):

I (index)

L (Translation of a letter of C)

V (Translation of a C-variable)

W (Translation of a word, i.e. variable-free string)

T (Translation of a term, i.e. string of letters and
variables )

R (Translation of a C-rule)

K (Translation of an arbitrary calculus C)
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The calculus H1 (beginning)

1. I

2. Ix → Ixβ

3. Ix → Lαx

4. Ix → V ξx

5. W

6. Wx → Ly → Wxy

7. T

8. Tx → Ly → Txy

9. Tx → V y → Txy
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The calculus H1 (continuation)

10. Tx → Rx

11. Tx → Ry → Rx ≫ y

12. Rx → Kx

13. Kx → Ry → Kx ∗ y
13∗ Kx → x

This calculus derives the translation of any calculus over any
alphabet (including its own translation h1).
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Next goal: formalize derivability

Construct a (hyper)calculus H2 such that if the calculus C
derives the string c then H2 derives a string that is the
translation of C 7→ c.
We extend H1 (dropping the release rule 13∗) to the calculus
H2.
Two new auxiliary letters: D for derivable and S for
substitution. In more details:

xDy: the calculus x derives the string y

vSuSySx: if we substitute the word y for the variable x, we
get the string v from the string u. Remember that words
are variable-free strings.

In the above description of the intended meaning, I have
dropped the phrase `translation of'. But never forget that we
speak here not about the letters, variables, etc. of our
hypercalculus, but about the strings translating the letters etc.
of the original calculus.
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Substitution in H2

Substitution needs an inductive de�nition, too:

14. Lu → uSuSySx

15. ≫ S ≫ SySx

16. V x → Iz → xβzSxβzSySx

17. V x → Iz → xSxSySxβz

18. V x → Wy → ySxSySx

19. vSuSySx → wSzSySx → vwSuzSySx

Base: The substitution of the variable x by the word y makes y
from x (rule 18.) and leaves any other character � letters (14.),
the arrow (15.), other variables (16.-17) � unchanged.
Inductive rule (19.): If the substitution makes v from u and w
from z, then from their concatenation uz it makes the
concatenation of the results vw.
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Derivability in H2

Base: every calculus derives its rules. (In details: an one-rule
calculus derives the rule, and longer calculi derive their last,
�rst and middle rules.) Inductive rules are substitution and
detachment.

20. Rx → xDx

21. Rx → Ky → y ∗ xDx

22. Rx → Ky → x ∗ yDx

23. Rx → Ky → Kz → y ∗ x ∗ zDx

24. zDu → vSuSySx → zDv

25. xDy → xDy ≫ z → xDz

The calculus H2 consisting of the rules 1-25 derives Ka, Wb
and aDb i� a is the translation of some calculus C, b is the
translation of a word c of the alphabet of C and C derives c. We
can't give suitable release rules here.
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