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First-order languages

All the symbols are strings of some given alphabet A

.

The class of arities A = {∅, o, oo, . . .} was de�ned inductively
earlier.

A �rst-order language L1 is a quintuple

< Log, V ar, Con, Term,Form >

where Log = {(, ), ¬, ⊃, ∀, =} is the class of logical constants,
V ar is the in�nite class of variables de�ned inductively, and
Con = N ∪ P =

⋃
a∈A Pa ∪

⋃
a∈ANa is the class of non-logical

constants containing all the classes Pa of a-ary predicates and
Na of a-ary name functors.

It is assumed that for ai ̸= aj ∈ A, Nai ∩Naj = Pai ∩ Paj = ∅
and N ∩ P = ∅.
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Terms and a-tuples of terms

The class of a-tuples of terms a ∈ A is T (a).

The simultaneous inductive de�nition of the classes Term and
T (a):

1. V ar ⊆ Term

2. T (∅) = {∅}
3. (s ∈ T (a) & t ∈ Term) ⇒ ⌜s(t)⌝ ∈ T (ao)

4. (φ ∈ Na & s ∈ T (a)) ⇒ ⌜φs⌝ ∈ Term
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Formulas

1. π ∈ Pa & s ∈ T (a) ⇒ ⌜πs⌝ ∈ Form

2. s, t ∈ Term ⇒ ⌜s = t⌝ ∈ Form

3. A ∈ Form ⇒ ⌜¬A⌝ ∈ Form

4. A,B ∈ Form ⇒ ⌜A ⊃ B⌝ ∈ Form

5. A ∈ Form & x ∈ V ar ⇒ ⌜∀xA⌝ ∈ Form

Atomic formulas are the formulas generated by the rules 1. and
2.

Other logical constants (∨, ∧, ≡, ∃) are introduced by
abbreviation conventions.

Be A,B ∈ Form. B is a subformula of A i� A is of the form
uBv (u, v ∈ A◦).

If x ∈ V ar and A ∈ Form, an occurrence of x in A is a
bound occurrence of x in A i� it lies in a subformula of A of the
form ∀xB. Other occurrences are called free occurrences.
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Some further auxiliary notions

A term is open i� at least one variable is a substring of it;
otherways it is closed.

A formula is open if it contains at least one free occurrence of a
variable; otherwise it is closed. Closed formulas are called
sentences.

A formula A is free from the variable x i� x has no free
occurrences in A. Γ ⊆ Form is free from x if each member of it
is.

Be A ∈ Form, x, y ∈ V ar. y is substitutable for x in A i� for
every subformula of A of the form ∀yB, B is free from x.

t ∈ Term is substitutable for x in A i� every variable occurring
in t is substitutable. If t is substitutable for x in A, then At/x

denotes (in the metalanguage) the formula obtained from A
substituting t for every free occurrence of x in A.
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The quanti�cation calculus (QC) 1: the axioms

Given a �rst-order language L1, the logical axioms (basic
formulas) are de�ned by the help of the following schemes:

(B1) (A ⊃ (B ⊃ A))

(B2) ((A ⊃ (B ⊃ C) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)))

(B3) ((¬B ⊃ ¬A) ⊃ (A ⊃ B))

(B4) (∀xA ⊃ At/x)

(B5) (∀x(A ⊃ B) ⊃ (∀xA ⊃ ∀xB))

(B6) (A ⊃ ∀xA) provided that A is free from x

(B7) (x = x)

(B8) ((x = y) ⊃ (Ax/z ⊃ Ay/z))

The class BF of logical axioms is de�ned inductively:

i If we substitute formulas for A,B,C , variables for x, y, z
and terms for t of L1 in the above schemes, we get members
of BF .

ii If A ∈ BF and x ∈ V ar, then ⌜∀xA⌝ ∈ BF .
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QC 2: deducibility and some metatheorems

Base for the inductive de�nition of Γ ⊢ A: if A ∈ Γ ∪BF , then
Γ ⊢ A. Inductive rule is detachment: if Γ ⊢ A and Γ ⊢ A ⊃ B,
then Γ ⊢ B.

Deduction Theorem: If Γ ∪ {A} ⊢ C, then Γ ⊢ A ⊃ C.

Cut: If Γ ⊢ A and Γ′ ∪ {A} ⊢ B then Γ ∪ Γ′ ⊢ B.

Universal generalization: If Γ ⊢ A and Γ is free from x, then
Γ ⊢ ∀xA.
Universal generalization 2.: If t ∈ N∅ s.t. it occurs neither
in A nor in the members of Γ and Γ ⊢ At/x then Γ ⊢ ∀xA.

A de�nition: If A ∈ Form and the variables having free
occurrences in A are x1, x2, . . . xn, then the universal closure of
A is the formula ∀x1∀x2 . . . ∀xnA.
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Consequences, consistency, �rst-order theories

Given any logical calculus Σ in a language L and a class Γ of
formulas of L, the class of the consequences of Γ is the class

Cns(Γ) = {A ∈ Form : Γ ⊢Σ A}

Γ is inconsistent if Cns(Γ) = Form, consistent in the other
case.

In �rst-order logic, Γ is consistent i� there is no A ∈ Form s. t.
both Γ ⊢ A and Γ ⊢ ¬A.
The pair T =< L1,Γ > is a �rst-order theory if L1 is a
�rst-order language and Γ is a class of its closed formulas (called
axioms of T ).

The theorems of T are the members of Cns(Γ). T is said
consistent resp. inconsistent if Γ is consistent resp. inconsistent.
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The �rst-order theory of canonical calculi: CC∗

We construct CC∗ as a �rst-order theory, whose intended
interpretation is that its terms denote strings, its propositions
say that some strings are words, canonical calculi, certain calculi
derive certain strings, certain numerals are autonomous
numerals etc. It is expected to derive only true propositions of
this type.

That is, we want it to do something very similar to the
hypercalculus H3. (See 3rd October presentation.) In practice,
we simply rewrite H3 in the form of a �rst-order theory. But
this �rst-order theory can be reconstructed as a canonical
calculus Σ∗ again. There will be a mutual mirroring relationship
between H3 and Σ∗, which we will use to prove metatheorems.
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The language L1∗

H3 derives strings like Ka, Wb, aDb, aGb, Aa with the
intended meanings `a is a calculus', . . . `a is an autonomous
number'. We want CC∗ to prove formulas like K(a), . . . A(a)
just in the same case.

The language of CC∗ is the �rst-order language L1∗.
Non-logical components :

N∅ = {ϑ, α, β, ξ, ≫, ∗}
ϑ denotes the empty string, the other name constants
denote (autonymously) the letters of Acc.

Noo = {∅}
The empty string denotes concatenation (and we omit the
parentheses around its arguments), i.e., we write the
concatenation of the strings x and y as xy.
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The language L1∗ (continuation)

The auxiliary letters of the hypercalculi H1 � H3 become
predicates and we keep the intended meanings:

Po = {I, L, V, W, T, R, K, A}
Poo = {D, F, G}
Poooo = {S}
S(v)(u)(y)(x): if we substitute the word y for the variable
x, we get the string v from the string u.

Logical constants, variables (let us write them as x, x1, . . .), the
syntax of terms and formulas are like in any other �rst-order
language. The intended universe (the domain of the variables) is
the class of Acc-strings.
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The axioms of CC∗: the language radix-axioms

First group: The Acc-strings build a language radix (12th
September presentation) or in the language of algebra, the free
monoid on Acc. In some details:

The empty string is di�erent from the letters (�ve axioms).

Strings ending with di�erent letters are di�erent (ten
axioms).

Five more axioms about strings:
1 ∀x(xϑ = ϑx = x)
2 ∀x∀x1(xx1 = ϑ ⊃ (x = ϑ ∧ x1 = ϑ)
3 ∀x1∃x(x1 ̸= ϑ ⊃ (x1 = xα ∨ x1 = xβ ∨ x1 = xξ ∨ x1 = x ≫

∨x1 = x∗))
4 ∀x∀x1∀x2(x1x = x2x ⊃ x1 = x2)

András Máté metalogic 7th November



The axioms of CC∗: the language radix-axioms

First group: The Acc-strings build a language radix (12th
September presentation) or in the language of algebra, the free
monoid on Acc. In some details:

The empty string is di�erent from the letters (�ve axioms).

Strings ending with di�erent letters are di�erent (ten
axioms).

Five more axioms about strings:
1 ∀x(xϑ = ϑx = x)
2 ∀x∀x1(xx1 = ϑ ⊃ (x = ϑ ∧ x1 = ϑ)
3 ∀x1∃x(x1 ̸= ϑ ⊃ (x1 = xα ∨ x1 = xβ ∨ x1 = xξ ∨ x1 = x ≫

∨x1 = x∗))
4 ∀x∀x1∀x2(x1x = x2x ⊃ x1 = x2)

András Máté metalogic 7th November



The axioms of CC∗: the language radix-axioms

First group: The Acc-strings build a language radix (12th
September presentation) or in the language of algebra, the free
monoid on Acc. In some details:

The empty string is di�erent from the letters (�ve axioms).

Strings ending with di�erent letters are di�erent (ten
axioms).

Five more axioms about strings:
1 ∀x(xϑ = ϑx = x)
2 ∀x∀x1(xx1 = ϑ ⊃ (x = ϑ ∧ x1 = ϑ)
3 ∀x1∃x(x1 ̸= ϑ ⊃ (x1 = xα ∨ x1 = xβ ∨ x1 = xξ ∨ x1 = x ≫

∨x1 = x∗))
4 ∀x∀x1∀x2(x1x = x2x ⊃ x1 = x2)

András Máté metalogic 7th November



The axioms of CC∗: the language radix-axioms

First group: The Acc-strings build a language radix (12th
September presentation) or in the language of algebra, the free
monoid on Acc. In some details:

The empty string is di�erent from the letters (�ve axioms).

Strings ending with di�erent letters are di�erent (ten
axioms).

Five more axioms about strings:
1 ∀x(xϑ = ϑx = x)
2 ∀x∀x1(xx1 = ϑ ⊃ (x = ϑ ∧ x1 = ϑ)
3 ∀x1∃x(x1 ̸= ϑ ⊃ (x1 = xα ∨ x1 = xβ ∨ x1 = xξ ∨ x1 = x ≫

∨x1 = x∗))
4 ∀x∀x1∀x2(x1x = x2x ⊃ x1 = x2)

András Máté metalogic 7th November



The axioms of CC∗: the language radix-axioms

First group: The Acc-strings build a language radix (12th
September presentation) or in the language of algebra, the free
monoid on Acc. In some details:

The empty string is di�erent from the letters (�ve axioms).

Strings ending with di�erent letters are di�erent (ten
axioms).

Five more axioms about strings:
1 ∀x(xϑ = ϑx = x)
2 ∀x∀x1(xx1 = ϑ ⊃ (x = ϑ ∧ x1 = ϑ)
3 ∀x1∃x(x1 ̸= ϑ ⊃ (x1 = xα ∨ x1 = xβ ∨ x1 = xξ ∨ x1 = x ≫

∨x1 = x∗))
4 ∀x∀x1∀x2(x1x = x2x ⊃ x1 = x2)

András Máté metalogic 7th November



The axioms of CC∗: the calculus-axioms

Second group: The calculus-axioms
To obtain the axioms about calculi, we can simply translate the
34 rules of the hypercalculus H3 into L1∗ -propositions. The
rules of the translation are the following:

The auxiliary letters of H3 are reinterpreted as predicates
of L1∗; their arguments are written after them and they are
put in parentheses. E.g., instead of xDy we write D(x)(y).

The concatenations of strings in H3 are reinterpreted as
applications of the concatenation functor; it is again a
reinterpretation of the same notation only

The letters of Acc are reinterpreted as their own names; at
places where the empty string occurs as an argument of
some predicate, it is substituted by its name ϑ.

Calculus variables x, y, z, . . . are substituted by the
L1∗-variables x, x1, . . ..
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CC∗'s calculus axioms (continuation)

The arrows are substituted by the conditional sign `⊃' and
formulas of the form ⌜A ⊃ B ⊃ C⌝ are understood as
⌜(A ⊃ (B ⊃ C))⌝.

The open formulas obtained by the previous rules are
substituted by their universal closure.

The axioms of CC∗ are the 20 language radix-axioms plus the
34 axioms obtained from the rules of H3. E.g., the rules 12. and
13. of H3 (de�ning the extension of K) become the following
axioms:

∀x(R(x) ⊃ K(x))

∀x∀x1(K(x) ⊃ R(x1) ⊃ K(x ∗ x1))
The above rules of translation apply to any string derivable in
H3. Let us denote the translation of the string f into a
L1∗-formula Tr(f).
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The theory CC∗ and the calculus Σ∗

CC∗ is now the theory in the language L1∗, de�ned by the set
Γ∗ of 20 language radix axioms and 34 calculus axioms
described above. We want to generate its theorems by the
canonical calculus Σ∗.

The 54 axioms of CC∗ will be zero input rules of Σ∗. But in
order to derive theorems from them, we need to build in the
�rst-order logic of L1∗ into Σ∗: �rst the syntax of the language,
then the logical axioms (basic formulas) and derivation rules of
�rst-order logic.

We introduce auxiliary letters/abbreviations for the syntactic
notions of L1∗. These are written in boldface to distinguish
them from the partly overlapping auxiliary letters of H3 (which
are now non-logical constants of L1∗).
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The syntax of L1∗ in the calculus

The syntactic rules of Σ∗ derive from the following
considerations:
Indexes and Variables of L1∗ are generated in the usual way.
The language has six Name constants: (ϑ) for the empty string,
letters, arrow and asterisk. Variables and the name constants
are Terms and the concatenation of two terms is a term again.
There are eight monadic Predicates. Applying a monadic
predicate to a term yields a formula. The usual rules of formula
construction then follow.

We need application rules for the identity, the three two-place
predicates and the substitution in the object calculus (four-place
predicate). Then we need an inductive de�nition for the relation
that a string is free of a variable (FR).
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First-order logic as part of Σ∗

We must inductively de�ne Substitution in Σ∗. Then we can
include the logical axioms (BFs) and the detachment rule, too.

More details see on pp. 76-81. of the textbook. The whole
calculus Σ∗ consists of 115 rules.

NO CLASS NEXT WEEK (14.11)!
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