
Enumerability, e�ectivity, decidability

Markov algorithms

András Máté

10.10.2025

András Máté metalogic 10th October

The calculus H3

H2 (over an alphabet Acc plus 9 auxiliary letters) derives strings

with the intended meanings �a is a calculus�, �b is a string of the

alphabet of a�, �a derives b�. (a and b are translations, codes or

if you want, names of a calculus resp. word in Acc.)

The calculus H3 is an extension of H2. It renders numerals to

every Acc-string. (This is in e�ect a Gödel numbering.)

Numerals: strings consisting of α-s only.

First step: introduce a lexicographic ordering of Acc-strings.

New auxiliary letter: F for the relation `follows'.

I. e., xFy should mean that the string y follows x in the

lexicographic ordering.

Base: α follows the empty word.

Inductive rules de�ne the follower of a string according to its

last letter.

András Máté metalogic 10th October

The calculus H3

H2 (over an alphabet Acc plus 9 auxiliary letters) derives strings

with the intended meanings �a is a calculus�, �b is a string of the

alphabet of a�, �a derives b�. (a and b are translations, codes or

if you want, names of a calculus resp. word in Acc.)

The calculus H3 is an extension of H2. It renders numerals to

every Acc-string. (This is in e�ect a Gödel numbering.)

Numerals: strings consisting of α-s only.

First step: introduce a lexicographic ordering of Acc-strings.

New auxiliary letter: F for the relation `follows'.

I. e., xFy should mean that the string y follows x in the

lexicographic ordering.

Base: α follows the empty word.

Inductive rules de�ne the follower of a string according to its

last letter.

András Máté metalogic 10th October

The calculus H3

H2 (over an alphabet Acc plus 9 auxiliary letters) derives strings

with the intended meanings �a is a calculus�, �b is a string of the

alphabet of a�, �a derives b�. (a and b are translations, codes or

if you want, names of a calculus resp. word in Acc.)

The calculus H3 is an extension of H2. It renders numerals to

every Acc-string. (This is in e�ect a Gödel numbering.)

Numerals: strings consisting of α-s only.

First step: introduce a lexicographic ordering of Acc-strings.

New auxiliary letter: F for the relation `follows'.

I. e., xFy should mean that the string y follows x in the

lexicographic ordering.

Base: α follows the empty word.

Inductive rules de�ne the follower of a string according to its

last letter.

András Máté metalogic 10th October

The calculus H3

H2 (over an alphabet Acc plus 9 auxiliary letters) derives strings

with the intended meanings �a is a calculus�, �b is a string of the

alphabet of a�, �a derives b�. (a and b are translations, codes or

if you want, names of a calculus resp. word in Acc.)

The calculus H3 is an extension of H2. It renders numerals to

every Acc-string. (This is in e�ect a Gödel numbering.)

Numerals: strings consisting of α-s only.

First step: introduce a lexicographic ordering of Acc-strings.

New auxiliary letter: F for the relation `follows'.

I. e., xFy should mean that the string y follows x in the

lexicographic ordering.

Base: α follows the empty word.

Inductive rules de�ne the follower of a string according to its

last letter.

András Máté metalogic 10th October

Lexicographic ordering

26. Fα

27. xαFxβ

28. xβFxξ

29. xξFx ≫
30. x ≫ Fx∗
31. xFy → x ∗ Fyα

From the language radix axioms it follows that:

Every Acc-string has one and only one follower;

Except of the empty string, each string is the follower of one

and only one string.

The empty string is not a follower of anything.

I. e., strings with the empty string as 0 and this follower-relation

as the successor-function ful�l axioms of primitive Peano

arithmetics without mathematical induction.

András Máté metalogic 10th October

Lexicographic ordering

26. Fα

27. xαFxβ

28. xβFxξ

29. xξFx ≫
30. x ≫ Fx∗
31. xFy → x ∗ Fyα

From the language radix axioms it follows that:

Every Acc-string has one and only one follower;

Except of the empty string, each string is the follower of one

and only one string.

The empty string is not a follower of anything.

I. e., strings with the empty string as 0 and this follower-relation

as the successor-function ful�l axioms of primitive Peano

arithmetics without mathematical induction.

András Máté metalogic 10th October

Lexicographic ordering

26. Fα

27. xαFxβ

28. xβFxξ

29. xξFx ≫
30. x ≫ Fx∗
31. xFy → x ∗ Fyα

From the language radix axioms it follows that:

Every Acc-string has one and only one follower;

Except of the empty string, each string is the follower of one

and only one string.

The empty string is not a follower of anything.

I. e., strings with the empty string as 0 and this follower-relation

as the successor-function ful�l axioms of primitive Peano

arithmetics without mathematical induction.

András Máté metalogic 10th October

Gödel numbering of Acc-strings

Now we can add the (Gödel-)numbering to our calculus on the

trivial way.

G is a a new auxiliary letter, intended meaning of xGy: y is the

ordinal number of x in the lexicographic ordering.

Basis: the ordinal number of the empty string is the empty

string itself.

Inductive rule: to get the number of the follower of a string x we

need to add an α to the number of x.

32. G

33. xFy → xGz → yGzα

Our hypercalculus H3 now consists of the rules 1-33. and it

su�ces to prove at least one important incompleteness result.

András Máté metalogic 10th October

Gödel numbering of Acc-strings

Now we can add the (Gödel-)numbering to our calculus on the

trivial way.

G is a a new auxiliary letter, intended meaning of xGy: y is the

ordinal number of x in the lexicographic ordering.

Basis: the ordinal number of the empty string is the empty

string itself.

Inductive rule: to get the number of the follower of a string x we

need to add an α to the number of x.

32. G

33. xFy → xGz → yGzα

Our hypercalculus H3 now consists of the rules 1-33. and it

su�ces to prove at least one important incompleteness result.

András Máté metalogic 10th October

Gödel numbering of Acc-strings

Now we can add the (Gödel-)numbering to our calculus on the

trivial way.

G is a a new auxiliary letter, intended meaning of xGy: y is the

ordinal number of x in the lexicographic ordering.

Basis: the ordinal number of the empty string is the empty

string itself.

Inductive rule: to get the number of the follower of a string x we

need to add an α to the number of x.

32. G

33. xFy → xGz → yGzα

Our hypercalculus H3 now consists of the rules 1-33. and it

su�ces to prove at least one important incompleteness result.

András Máté metalogic 10th October

Gödel numbering of Acc-strings

Now we can add the (Gödel-)numbering to our calculus on the

trivial way.

G is a a new auxiliary letter, intended meaning of xGy: y is the

ordinal number of x in the lexicographic ordering.

Basis: the ordinal number of the empty string is the empty

string itself.

Inductive rule: to get the number of the follower of a string x we

need to add an α to the number of x.

32. G

33. xFy → xGz → yGzα

Our hypercalculus H3 now consists of the rules 1-33. and it

su�ces to prove at least one important incompleteness result.

András Máté metalogic 10th October

Gödel numbering of Acc-strings

Now we can add the (Gödel-)numbering to our calculus on the

trivial way.

G is a a new auxiliary letter, intended meaning of xGy: y is the

ordinal number of x in the lexicographic ordering.

Basis: the ordinal number of the empty string is the empty

string itself.

Inductive rule: to get the number of the follower of a string x we

need to add an α to the number of x.

32. G

33. xFy → xGz → yGzα

Our hypercalculus H3 now consists of the rules 1-33. and it

su�ces to prove at least one important incompleteness result.

András Máté metalogic 10th October

Autonomous numerals

Be C an arbitrary calculus.

The translation of C into our language is some Acc-word a.
H3 derives Ka.
There is a numeral c s.t. H3 derives aGc, i. e. the Gödel number

of C is c.

Does C derive a string whose translation is c?
Be C a calculus with this property (deriving its own Gödel

number).

Then H3 derives aDc, too.
Let us call such c-s autonomous numbers.

Let us extend H3 to de�ne autonomous numbers.

New auxiliary letter: A with the intended meaning

�autonomous�. New rule:

34. xDy → xGy → Ay

András Máté metalogic 10th October

Autonomous numerals

Be C an arbitrary calculus.

The translation of C into our language is some Acc-word a.
H3 derives Ka.
There is a numeral c s.t. H3 derives aGc, i. e. the Gödel number

of C is c.

Does C derive a string whose translation is c?
Be C a calculus with this property (deriving its own Gödel

number).

Then H3 derives aDc, too.
Let us call such c-s autonomous numbers.

Let us extend H3 to de�ne autonomous numbers.

New auxiliary letter: A with the intended meaning

�autonomous�. New rule:

34. xDy → xGy → Ay

András Máté metalogic 10th October

Autonomous numerals

Be C an arbitrary calculus.

The translation of C into our language is some Acc-word a.
H3 derives Ka.
There is a numeral c s.t. H3 derives aGc, i. e. the Gödel number

of C is c.

Does C derive a string whose translation is c?
Be C a calculus with this property (deriving its own Gödel

number).

Then H3 derives aDc, too.
Let us call such c-s autonomous numbers.

Let us extend H3 to de�ne autonomous numbers.

New auxiliary letter: A with the intended meaning

�autonomous�. New rule:

34. xDy → xGy → Ay

András Máté metalogic 10th October

Autonomous numerals

Be C an arbitrary calculus.

The translation of C into our language is some Acc-word a.
H3 derives Ka.
There is a numeral c s.t. H3 derives aGc, i. e. the Gödel number

of C is c.

Does C derive a string whose translation is c?
Be C a calculus with this property (deriving its own Gödel

number).

Then H3 derives aDc, too.
Let us call such c-s autonomous numbers.

Let us extend H3 to de�ne autonomous numbers.

New auxiliary letter: A with the intended meaning

�autonomous�. New rule:

34. xDy → xGy → Ay

András Máté metalogic 10th October

Autonomous numerals

Be C an arbitrary calculus.

The translation of C into our language is some Acc-word a.
H3 derives Ka.
There is a numeral c s.t. H3 derives aGc, i. e. the Gödel number

of C is c.

Does C derive a string whose translation is c?
Be C a calculus with this property (deriving its own Gödel

number).

Then H3 derives aDc, too.
Let us call such c-s autonomous numbers.

Let us extend H3 to de�ne autonomous numbers.

New auxiliary letter: A with the intended meaning

�autonomous�. New rule:

34. xDy → xGy → Ay

András Máté metalogic 10th October

Our Gödel-like theorem

The numbers are the strings of the one-letter alphabet

A0 = {α}, so their class is A◦
0 and it can be de�ned inductively.

The class of autonomous numerals, in class theoretic notation:

Aut = {x : x ∈ A◦
0 ∧H3 7→ Ax}

By adding a release rule to H3 deleting A, we gain a de�nition

of Aut by a canonical calculus.

We prove that the string class A◦
0 −Aut (the class of

non-autonomous numerals) cannot be de�ned inductively.

Theorem: There is no canonical calculus C over some B ⊇ Acc

s.t. for any string x,

C 7→ x ⇔ x ∈ A◦
0 −Aut

András Máté metalogic 10th October

Our Gödel-like theorem

The numbers are the strings of the one-letter alphabet

A0 = {α}, so their class is A◦
0 and it can be de�ned inductively.

The class of autonomous numerals, in class theoretic notation:

Aut = {x : x ∈ A◦
0 ∧H3 7→ Ax}

By adding a release rule to H3 deleting A, we gain a de�nition

of Aut by a canonical calculus.

We prove that the string class A◦
0 −Aut (the class of

non-autonomous numerals) cannot be de�ned inductively.

Theorem: There is no canonical calculus C over some B ⊇ Acc

s.t. for any string x,

C 7→ x ⇔ x ∈ A◦
0 −Aut

András Máté metalogic 10th October

Our Gödel-like theorem

The numbers are the strings of the one-letter alphabet

A0 = {α}, so their class is A◦
0 and it can be de�ned inductively.

The class of autonomous numerals, in class theoretic notation:

Aut = {x : x ∈ A◦
0 ∧H3 7→ Ax}

By adding a release rule to H3 deleting A, we gain a de�nition

of Aut by a canonical calculus.

We prove that the string class A◦
0 −Aut (the class of

non-autonomous numerals) cannot be de�ned inductively.

Theorem: There is no canonical calculus C over some B ⊇ Acc

s.t. for any string x,

C 7→ x ⇔ x ∈ A◦
0 −Aut

András Máté metalogic 10th October

Our Gödel-like theorem

The numbers are the strings of the one-letter alphabet

A0 = {α}, so their class is A◦
0 and it can be de�ned inductively.

The class of autonomous numerals, in class theoretic notation:

Aut = {x : x ∈ A◦
0 ∧H3 7→ Ax}

By adding a release rule to H3 deleting A, we gain a de�nition

of Aut by a canonical calculus.

We prove that the string class A◦
0 −Aut (the class of

non-autonomous numerals) cannot be de�ned inductively.

Theorem: There is no canonical calculus C over some B ⊇ Acc

s.t. for any string x,

C 7→ x ⇔ x ∈ A◦
0 −Aut

András Máté metalogic 10th October

Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the Gödel number g s.t for every non-autonomous numeral

c, C 7→ c, and there is no autonomous numeral d for that

C 7→ d.

Suppose that C 7→ g. In this case, C is an autonomous calculus,

g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an

autonomous calculus, g is a non-autonomous number, therefore

C 7→ g. Contradiction again, q.e.d.

This theorem is Gödel-like because it shows that no inductive

de�nition can be given for the notion �non-autonomous calculus�

just like Gödel's �rst incompleteness theorem shows that no

inductive de�nition can be given for the notion �arithmetical

truth�. And this proof uses an analogue of the Liar Paradox,

too.

András Máté metalogic 10th October

Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the Gödel number g s.t for every non-autonomous numeral

c, C 7→ c, and there is no autonomous numeral d for that

C 7→ d.

Suppose that C 7→ g. In this case, C is an autonomous calculus,

g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an

autonomous calculus, g is a non-autonomous number, therefore

C 7→ g. Contradiction again, q.e.d.

This theorem is Gödel-like because it shows that no inductive

de�nition can be given for the notion �non-autonomous calculus�

just like Gödel's �rst incompleteness theorem shows that no

inductive de�nition can be given for the notion �arithmetical

truth�. And this proof uses an analogue of the Liar Paradox,

too.

András Máté metalogic 10th October

Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the Gödel number g s.t for every non-autonomous numeral

c, C 7→ c, and there is no autonomous numeral d for that

C 7→ d.

Suppose that C 7→ g. In this case, C is an autonomous calculus,

g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an

autonomous calculus, g is a non-autonomous number, therefore

C 7→ g. Contradiction again, q.e.d.

This theorem is Gödel-like because it shows that no inductive

de�nition can be given for the notion �non-autonomous calculus�

just like Gödel's �rst incompleteness theorem shows that no

inductive de�nition can be given for the notion �arithmetical

truth�. And this proof uses an analogue of the Liar Paradox,

too.

András Máté metalogic 10th October

Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the Gödel number g s.t for every non-autonomous numeral

c, C 7→ c, and there is no autonomous numeral d for that

C 7→ d.

Suppose that C 7→ g. In this case, C is an autonomous calculus,

g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an

autonomous calculus, g is a non-autonomous number, therefore

C 7→ g. Contradiction again, q.e.d.

This theorem is Gödel-like because it shows that no inductive

de�nition can be given for the notion �non-autonomous calculus�

just like Gödel's �rst incompleteness theorem shows that no

inductive de�nition can be given for the notion �arithmetical

truth�. And this proof uses an analogue of the Liar Paradox,

too.

András Máté metalogic 10th October

Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the Gödel number g s.t for every non-autonomous numeral

c, C 7→ c, and there is no autonomous numeral d for that

C 7→ d.

Suppose that C 7→ g. In this case, C is an autonomous calculus,

g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an

autonomous calculus, g is a non-autonomous number, therefore

C 7→ g. Contradiction again, q.e.d.

This theorem is Gödel-like because it shows that no inductive

de�nition can be given for the notion �non-autonomous calculus�

just like Gödel's �rst incompleteness theorem shows that no

inductive de�nition can be given for the notion �arithmetical

truth�. And this proof uses an analogue of the Liar Paradox,

too.

András Máté metalogic 10th October

Enumerability

In general, if we have a calculus to de�ne some string class, we

have an e�ective process to enumerate its members. We can

enumerate the derivations in the calculus: �rst, the one-member

derivations, then the two-member ones, etc. For any given n, the
set of the n-member derivations is �nite.

The enumeration of derivations produces an enumeration of the

derivable strings too. This informal consideration shows that

inductively de�ned classes are e�ectively enumerable, i. e., we

have a procedure that enumerates all of its members. What

about the conversion of this claim? Is every e�ectively

enumerable class inductively de�nable? We don't have an

answer yet.

András Máté metalogic 10th October

Enumerability

In general, if we have a calculus to de�ne some string class, we

have an e�ective process to enumerate its members. We can

enumerate the derivations in the calculus: �rst, the one-member

derivations, then the two-member ones, etc. For any given n, the
set of the n-member derivations is �nite.

The enumeration of derivations produces an enumeration of the

derivable strings too. This informal consideration shows that

inductively de�ned classes are e�ectively enumerable, i. e., we

have a procedure that enumerates all of its members. What

about the conversion of this claim? Is every e�ectively

enumerable class inductively de�nable? We don't have an

answer yet.

András Máté metalogic 10th October

Enumerability

In general, if we have a calculus to de�ne some string class, we

have an e�ective process to enumerate its members. We can

enumerate the derivations in the calculus: �rst, the one-member

derivations, then the two-member ones, etc. For any given n, the
set of the n-member derivations is �nite.

The enumeration of derivations produces an enumeration of the

derivable strings too. This informal consideration shows that

inductively de�ned classes are e�ectively enumerable, i. e., we

have a procedure that enumerates all of its members. What

about the conversion of this claim? Is every e�ectively

enumerable class inductively de�nable? We don't have an

answer yet.

András Máté metalogic 10th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we would

have an enumeration of the non-autonomous numerals, too. In

that case we could decide about any given numeral n whether it

is an autonomous numeral or not.

Imagine that a printing machine prints the autonomous

numbers in the order of enumeration and another one the

non-autonomous numbers. After a �nite time, n will occur as an

output of either the �rst or the second machine and therefore we

have a decision procedure for the membership of the class.

The converse of the claim is obvious: if we have a decision

procedure then we can enumerate both the set and its

complement. Therefore we have an enumeration procedure both

for a string class B over an alphabet A and its complement

A◦ − B if and only if we have a decision procedure for B.
Our next task is to make precise and formally de�ned the

notions used above: `procedure', `e�ective enumeration'.

András Máté metalogic 10th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we would

have an enumeration of the non-autonomous numerals, too. In

that case we could decide about any given numeral n whether it

is an autonomous numeral or not.

Imagine that a printing machine prints the autonomous

numbers in the order of enumeration and another one the

non-autonomous numbers. After a �nite time, n will occur as an

output of either the �rst or the second machine and therefore we

have a decision procedure for the membership of the class.

The converse of the claim is obvious: if we have a decision

procedure then we can enumerate both the set and its

complement. Therefore we have an enumeration procedure both

for a string class B over an alphabet A and its complement

A◦ − B if and only if we have a decision procedure for B.
Our next task is to make precise and formally de�ned the

notions used above: `procedure', `e�ective enumeration'.

András Máté metalogic 10th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we would

have an enumeration of the non-autonomous numerals, too. In

that case we could decide about any given numeral n whether it

is an autonomous numeral or not.

Imagine that a printing machine prints the autonomous

numbers in the order of enumeration and another one the

non-autonomous numbers. After a �nite time, n will occur as an

output of either the �rst or the second machine and therefore we

have a decision procedure for the membership of the class.

The converse of the claim is obvious: if we have a decision

procedure then we can enumerate both the set and its

complement. Therefore we have an enumeration procedure both

for a string class B over an alphabet A and its complement

A◦ − B if and only if we have a decision procedure for B.
Our next task is to make precise and formally de�ned the

notions used above: `procedure', `e�ective enumeration'.

András Máté metalogic 10th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we would

have an enumeration of the non-autonomous numerals, too. In

that case we could decide about any given numeral n whether it

is an autonomous numeral or not.

Imagine that a printing machine prints the autonomous

numbers in the order of enumeration and another one the

non-autonomous numbers. After a �nite time, n will occur as an

output of either the �rst or the second machine and therefore we

have a decision procedure for the membership of the class.

The converse of the claim is obvious: if we have a decision

procedure then we can enumerate both the set and its

complement. Therefore we have an enumeration procedure both

for a string class B over an alphabet A and its complement

A◦ − B if and only if we have a decision procedure for B.

Our next task is to make precise and formally de�ned the

notions used above: `procedure', `e�ective enumeration'.

András Máté metalogic 10th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we would

have an enumeration of the non-autonomous numerals, too. In

that case we could decide about any given numeral n whether it

is an autonomous numeral or not.

Imagine that a printing machine prints the autonomous

numbers in the order of enumeration and another one the

non-autonomous numbers. After a �nite time, n will occur as an

output of either the �rst or the second machine and therefore we

have a decision procedure for the membership of the class.

The converse of the claim is obvious: if we have a decision

procedure then we can enumerate both the set and its

complement. Therefore we have an enumeration procedure both

for a string class B over an alphabet A and its complement

A◦ − B if and only if we have a decision procedure for B.
Our next task is to make precise and formally de�ned the

notions used above: `procedure', `e�ective enumeration'.

András Máté metalogic 10th October

The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.

András Máté metalogic 10th October

The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.

András Máté metalogic 10th October

The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.

András Máté metalogic 10th October

The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.

András Máté metalogic 10th October

The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.

András Máté metalogic 10th October

The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.

András Máté metalogic 10th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should

perform in a prescribed sequence in order to solve a task of some

type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair

of numerals, produce a numeral which denotes the product of

the two numbers.

Decision procedures. Example: Given a string from

A◦
Language(FOL), decide whether it is a formula of

Language(FOL) or not.

Enumeration procedure for a given sequence (of strings).

Example: from any string of the alphabet Acc, produce the next

string in the lexicographic ordering.

András Máté metalogic 10th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should

perform in a prescribed sequence in order to solve a task of some

type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair

of numerals, produce a numeral which denotes the product of

the two numbers.

Decision procedures. Example: Given a string from

A◦
Language(FOL), decide whether it is a formula of

Language(FOL) or not.

Enumeration procedure for a given sequence (of strings).

Example: from any string of the alphabet Acc, produce the next

string in the lexicographic ordering.

András Máté metalogic 10th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should

perform in a prescribed sequence in order to solve a task of some

type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair

of numerals, produce a numeral which denotes the product of

the two numbers.

Decision procedures. Example: Given a string from

A◦
Language(FOL), decide whether it is a formula of

Language(FOL) or not.

Enumeration procedure for a given sequence (of strings).

Example: from any string of the alphabet Acc, produce the next

string in the lexicographic ordering.

András Máté metalogic 10th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should

perform in a prescribed sequence in order to solve a task of some

type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair

of numerals, produce a numeral which denotes the product of

the two numbers.

Decision procedures. Example: Given a string from

A◦
Language(FOL), decide whether it is a formula of

Language(FOL) or not.

Enumeration procedure for a given sequence (of strings).

Example: from any string of the alphabet Acc, produce the next

string in the lexicographic ordering.

András Máté metalogic 10th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should

perform in a prescribed sequence in order to solve a task of some

type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair

of numerals, produce a numeral which denotes the product of

the two numbers.

Decision procedures. Example: Given a string from

A◦
Language(FOL), decide whether it is a formula of

Language(FOL) or not.

Enumeration procedure for a given sequence (of strings).

Example: from any string of the alphabet Acc, produce the next

string in the lexicographic ordering.

András Máté metalogic 10th October

Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.

András Máté metalogic 10th October

Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.

András Máté metalogic 10th October

Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.

András Máté metalogic 10th October

Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.

András Máté metalogic 10th October

Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.

András Máté metalogic 10th October

Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.

András Máté metalogic 10th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result.

András Máté metalogic 10th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result.

András Máté metalogic 10th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result.

András Máté metalogic 10th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result.

András Máté metalogic 10th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).

2 Otherwise, apply the �rst applicable command C0 to f0.
The result is f1 = C0(f0).

3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result.

András Máté metalogic 10th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).

3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result.

András Máté metalogic 10th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.

4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))
and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result.

András Máté metalogic 10th October

Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result.
András Máté metalogic 10th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.

András Máté metalogic 10th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.

András Máté metalogic 10th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.

András Máté metalogic 10th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.

András Máté metalogic 10th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.

András Máté metalogic 10th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.

András Máté metalogic 10th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 10th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 10th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 10th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.

ii If C is the �rst command in N that is applicable to f ,
C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 10th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 10th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 10th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 10th October

Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.

András Máté metalogic 10th October

Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.

András Máté metalogic 10th October

Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.

András Máté metalogic 10th October

Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.

András Máté metalogic 10th October

Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.

András Máté metalogic 10th October

Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.

András Máté metalogic 10th October

Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.

András Máté metalogic 10th October

A mirroring algorithm

We can use auxiliary letters in algorithms as well as in calculi. It

means only that to solve algorithmically some problem

concerning the A-strings, we write an algorithm over some

B ⊃ A and we regard the members of B −A auxiliary letters.

The following algorithm brings any A-string a0a1 . . . an into the

string a0a1 . . . an | anan−1 . . . a0 (| /∈ A, and the algorithm uses

the auxiliary letters A, C, too.).

1. Cxy → yCx x ∈ A, y ∈ A ∪ {|}
2. Cx → x x ∈ A
3. xA → AxCx x ∈ A
4. A → .∅
5. | x → x | x ∈ A
6. x |→ xA | x ∈ A
7. ∅ → |

András Máté metalogic 10th October

A mirroring algorithm

We can use auxiliary letters in algorithms as well as in calculi. It

means only that to solve algorithmically some problem

concerning the A-strings, we write an algorithm over some

B ⊃ A and we regard the members of B −A auxiliary letters.

The following algorithm brings any A-string a0a1 . . . an into the

string a0a1 . . . an | anan−1 . . . a0 (| /∈ A, and the algorithm uses

the auxiliary letters A, C, too.).

1. Cxy → yCx x ∈ A, y ∈ A ∪ {|}
2. Cx → x x ∈ A
3. xA → AxCx x ∈ A
4. A → .∅
5. | x → x | x ∈ A
6. x |→ xA | x ∈ A
7. ∅ → |

András Máté metalogic 10th October

A mirroring algorithm

We can use auxiliary letters in algorithms as well as in calculi. It

means only that to solve algorithmically some problem

concerning the A-strings, we write an algorithm over some

B ⊃ A and we regard the members of B −A auxiliary letters.

The following algorithm brings any A-string a0a1 . . . an into the

string a0a1 . . . an | anan−1 . . . a0 (| /∈ A, and the algorithm uses

the auxiliary letters A, C, too.).

1. Cxy → yCx x ∈ A, y ∈ A ∪ {|}
2. Cx → x x ∈ A
3. xA → AxCx x ∈ A
4. A → .∅
5. | x → x | x ∈ A
6. x |→ xA | x ∈ A
7. ∅ → |

András Máté metalogic 10th October

A mirroring algorithm

We can use auxiliary letters in algorithms as well as in calculi. It

means only that to solve algorithmically some problem

concerning the A-strings, we write an algorithm over some

B ⊃ A and we regard the members of B −A auxiliary letters.

The following algorithm brings any A-string a0a1 . . . an into the

string a0a1 . . . an | anan−1 . . . a0 (| /∈ A, and the algorithm uses

the auxiliary letters A, C, too.).

1. Cxy → yCx x ∈ A, y ∈ A ∪ {|}
2. Cx → x x ∈ A
3. xA → AxCx x ∈ A
4. A → .∅
5. | x → x | x ∈ A
6. x |→ xA | x ∈ A
7. ∅ → |

András Máté metalogic 10th October

Homework

Write an algorithm that decides identity of strings of some

alphabet A in the following sense: Let V and W arbitrary

A-strings. Your algorithm should transform the string V | W
into Y if they are the same string, and in N if they are di�erent.

(Y, | and N are auxiliary letters.)

András Máté metalogic 10th October

Homework

Write an algorithm that decides identity of strings of some

alphabet A in the following sense: Let V and W arbitrary

A-strings. Your algorithm should transform the string V | W
into Y if they are the same string, and in N if they are di�erent.

(Y, | and N are auxiliary letters.)

András Máté metalogic 10th October

