Enumerability, effectivity, decidability

Markov algorithms

Andras Maté

10.10.2025

Andras Maté metalogic 10th October

The calculus Hs

Andras Maté metalogic 10th October

The calculus Hs

H, (over an alphabet A.. plus 9 auxiliary letters) derives strings
with the intended meanings “a is a calculus”, “b is a string of the
alphabet of a”, “a derives b”. (a and b are translations, codes or

if you want, names of a calculus resp. word in Ag..)

Andras Maté metalogic 10th October

The calculus Hs

H, (over an alphabet A.. plus 9 auxiliary letters) derives strings
with the intended meanings “a is a calculus”, “b is a string of the
alphabet of a”, “a derives b”. (a and b are translations, codes or

if you want, names of a calculus resp. word in Ag..)

The calculus Hs is an extension of Hsy. It renders numerals to
every Acc-string. (This is in effect a Godel numbering.)
Numerals: strings consisting of a-s only.

Andras Maté metalogic 10th October

The calculus Hs

H, (over an alphabet A.. plus 9 auxiliary letters) derives strings
with the intended meanings “a is a calculus”, “b is a string of the
alphabet of a”, “a derives b”. (a and b are translations, codes or

if you want, names of a calculus resp. word in Ag..)

The calculus Hs is an extension of Hsy. It renders numerals to
every Acc-string. (This is in effect a Godel numbering.)
Numerals: strings consisting of a-s only.

First step: introduce a lexicographic ordering of A..-strings.
New auxiliary letter: F' for the relation ‘follows’.

I. e., xF'y should mean that the string y follows z in the
lexicographic ordering.

Base: a follows the empty word.

Inductive rules define the follower of a string according to its
last letter.

Andras Maté metalogic 10th October

Lexicographic ordering

metalogic 10th October

Lexicographic ordering

26.
27.
28.
29.
30.
31.

Fa

rzaFzp
rPBFx€

x&Fxr >

x> Frxx
zFy — x x Fya

Andras Maté metalogic 10th October

Lexicographic ordering

26.
27.
28.
29.
30.
31.

Fa

rzaFzp

rPBFx€

x&Fxr >

x> Frxx
zFy — x x Fya

From the language radix axioms it follows that:
Every A..-string has one and only one follower;
Except of the empty string, each string is the follower of one

and only one string.

The empty string is not a follower of anything.

L. e, strings with the empty string as 0 and this follower-relation
as the successor-function fulfil axioms of primitive Peano
arithmetics without mathematical induction.

Andras Maté metalogic 10th October

Godel numbering of A..-strings

Andras Maté metalogic 10th October

Godel numbering of A..-strings

Now we can add the (Godel-)numbering to our calculus on the
trivial way.

G is a a new auxiliary letter, intended meaning of xGy: y is the
ordinal number of x in the lexicographic ordering.

Andras Maté metalogic 10th October

Godel numbering of A..-strings

Now we can add the (Godel-)numbering to our calculus on the
trivial way.

G is a a new auxiliary letter, intended meaning of xGy: y is the
ordinal number of x in the lexicographic ordering.

Basis: the ordinal number of the empty string is the empty
string itself.

Inductive rule: to get the number of the follower of a string « we
need to add an « to the number of z.

Andras Maté metalogic 10th October

Godel numbering of A..-strings

Now we can add the (Godel-)numbering to our calculus on the
trivial way.

G is a a new auxiliary letter, intended meaning of xGy: y is the
ordinal number of x in the lexicographic ordering.

Basis: the ordinal number of the empty string is the empty
string itself.

Inductive rule: to get the number of the follower of a string « we
need to add an « to the number of z.

32. G
33. xFy— 2Gz = yGza

Andras Maté metalogic 10th October

Godel numbering of A..-strings

Now we can add the (Godel-)numbering to our calculus on the
trivial way.

G is a a new auxiliary letter, intended meaning of xGy: y is the
ordinal number of x in the lexicographic ordering.

Basis: the ordinal number of the empty string is the empty
string itself.

Inductive rule: to get the number of the follower of a string « we
need to add an « to the number of z.

32. G
33. xFy— 2Gz = yGza

Our hypercalculus Hs now consists of the rules 1-33. and it
suffices to prove at least one important incompleteness result.

Andras Maté metalogic 10th October

Autonomous numerals

metalogic 10th October

Autonomous numerals

Be C an arbitrary calculus.

The translation of C into our language is some A..-word a.

Hj; derives Ka.

There is a numeral c s.t. H3 derives aGc, i. e. the Godel number
of Cisc.

metalogic 10th October

Autonomous numerals

Be C an arbitrary calculus.

The translation of C into our language is some A..-word a.

Hj; derives Ka.

There is a numeral c s.t. H3 derives aGc, i. e. the Godel number
of Cisc.

Does C derive a string whose translation is ¢?

Be C a calculus with this property (deriving its own Godel
number).

Then Hj derives aDc, too.

Let us call such c-s autonomous numbers.

Andras Maté metalogic 10th October

Autonomous numerals

Be C an arbitrary calculus.

The translation of C into our language is some A..-word a.

Hj; derives Ka.

There is a numeral c s.t. H3 derives aGc, i. e. the Godel number
of Cisc.

Does C derive a string whose translation is ¢?

Be C a calculus with this property (deriving its own Godel
number).

Then Hj derives aDc, too.

Let us call such c-s autonomous numbers.

Let us extend Hgs to define autonomous numbers.

New auxiliary letter: A with the intended meaning
“autonomous”. New rule:

Andras Maté metalogic 10th October

Autonomous numerals

Be C an arbitrary calculus.

The translation of C into our language is some A..-word a.

Hj; derives Ka.

There is a numeral c s.t. H3 derives aGc, i. e. the Godel number
of Cisc.

Does C derive a string whose translation is ¢?

Be C a calculus with this property (deriving its own Godel
number).

Then Hj derives aDc, too.

Let us call such c-s autonomous numbers.

Let us extend Hgs to define autonomous numbers.

New auxiliary letter: A with the intended meaning
“autonomous”. New rule:

34. zDy — xGy — Ay

Andras Maté metalogic 10th October

Our Godel-like theorem

Andras Maté metalogic 10th October

Our Godel-like theorem

The numbers are the strings of the one-letter alphabet
Ag = {a}, so their class is AJ and it can be defined inductively.
The class of autonomous numerals, in class theoretic notation:

Aut = {z:2 € AgANHz — Az}

By adding a release rule to Hg deleting A, we gain a definition
of Aut by a canonical calculus.

Andras Maté metalogic 10th October

Our Godel-like theorem

The numbers are the strings of the one-letter alphabet
Ag = {a}, so their class is AJ and it can be defined inductively.
The class of autonomous numerals, in class theoretic notation:

Aut = {z:2 € AgANHz — Az}

By adding a release rule to Hg deleting A, we gain a definition
of Aut by a canonical calculus.

We prove that the string class Af — Aut (the class of
non-autonomous numerals) cannot be defined inductively.

Andras Maté metalogic 10th October

Our Godel-like theorem

The numbers are the strings of the one-letter alphabet
Ag = {a}, so their class is AJ and it can be defined inductively.
The class of autonomous numerals, in class theoretic notation:

Aut = {z:2 € AgANHz — Az}

By adding a release rule to Hg deleting A, we gain a definition
of Aut by a canonical calculus.

We prove that the string class Af — Aut (the class of
non-autonomous numerals) cannot be defined inductively.
Theorem: There is no canonical calculus C over some B 2 A..
s.t. for any string «,

CorerecAy— Aut

Andras Maté metalogic 10th October

Proof of the theorem

Andras Maté metalogic 10th October

Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the G6del number g s.t for every non-autonomous numeral
¢, C — ¢, and there is no autonomous numeral d for that

C—d.

Andras Maté metalogic 10th October

Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the G6del number g s.t for every non-autonomous numeral

¢, C — ¢, and there is no autonomous numeral d for that
C—d

Suppose that C — g¢. In this case, C is an autonomous calculus,
g is an autonomous number, therefore C does not derive g.
Contradiction.

Andras Maté metalogic 10th October

Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the G6del number g s.t for every non-autonomous numeral

¢, C — ¢, and there is no autonomous numeral d for that
C—d

Suppose that C — g¢. In this case, C is an autonomous calculus,
g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an
autonomous calculus, g is a non-autonomous number, therefore
C — g. Contradiction again, g.e.d.

Andras Maté metalogic 10th October

Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the G6del number g s.t for every non-autonomous numeral
¢, C — ¢, and there is no autonomous numeral d for that
C—d

Suppose that C — g¢. In this case, C is an autonomous calculus,
g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an
autonomous calculus, g is a non-autonomous number, therefore
C — g. Contradiction again, g.e.d.

This theorem is Godel-like because it shows that no inductive
definition can be given for the notion “non-autonomous calculus”
just like Godel’s first incompleteness theorem shows that no
inductive definition can be given for the notion “arithmetical
truth”. And this proof uses an analogue of the Liar Paradox,
too.

Andras Maté metalogic 10th October

Enumerability

Andras Maté metalogic 10th October

Enumerability

In general, if we have a calculus to define some string class, we
have an effective process to enumerate its members. We can
enumerate the derivations in the calculus: first, the one-member
derivations, then the two-member ones, etc. For any given n, the
set, of the n-member derivations is finite.

Andras Maté metalogic 10th October

Enumerability

In general, if we have a calculus to define some string class, we
have an effective process to enumerate its members. We can
enumerate the derivations in the calculus: first, the one-member
derivations, then the two-member ones, etc. For any given n, the
set, of the n-member derivations is finite.

The enumeration of derivations produces an enumeration of the
derivable strings too. This informal consideration shows that
inductively defined classes are effectively enumerable, i. e., we
have a procedure that enumerates all of its members. What
about the conversion of this claim? Is every effectively
enumerable class inductively definable? We don’t have an
answer yet.

Andras Maté metalogic 10th October

Enumerability and decidability

Andras Maté metalogic 10th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we would
have an enumeration of the non-autonomous numerals, too. In
that case we could decide about any given numeral n whether it
is an autonomous numeral or not.

metalogic 10th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we would
have an enumeration of the non-autonomous numerals, too. In
that case we could decide about any given numeral n whether it
is an autonomous numeral or not.

Imagine that a printing machine prints the autonomous
numbers in the order of enumeration and another one the
non-autonomous numbers. After a finite time, n will occur as an
output of either the first or the second machine and therefore we
have a decision procedure for the membership of the class.

Andras Maté metalogic 10th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we would
have an enumeration of the non-autonomous numerals, too. In
that case we could decide about any given numeral n whether it
is an autonomous numeral or not.

Imagine that a printing machine prints the autonomous
numbers in the order of enumeration and another one the
non-autonomous numbers. After a finite time, n will occur as an
output of either the first or the second machine and therefore we
have a decision procedure for the membership of the class.

The converse of the claim is obvious: if we have a decision
procedure then we can enumerate both the set and its
complement. Therefore we have an enumeration procedure both
for a string class B over an alphabet A and its complement

A° — B if and only if we have a decision procedure for 5.

Andras Maté metalogic 10th October

Enumerability and decidability

If we had a calculus for the non-autonomous numerals we would
have an enumeration of the non-autonomous numerals, too. In
that case we could decide about any given numeral n whether it
is an autonomous numeral or not.

Imagine that a printing machine prints the autonomous
numbers in the order of enumeration and another one the
non-autonomous numbers. After a finite time, n will occur as an
output of either the first or the second machine and therefore we
have a decision procedure for the membership of the class.

The converse of the claim is obvious: if we have a decision
procedure then we can enumerate both the set and its
complement. Therefore we have an enumeration procedure both
for a string class B over an alphabet A and its complement

A° — B if and only if we have a decision procedure for 5.

Our next task is to make precise and formally defined the
notions used above: ‘procedure’, ‘effective enumeration’.

Andras Maté metalogic 10th October

The open question

metalogic 10th October

The open question

We know that the string class Aj — Aut is not inductively
definable. Does it mean that it is not effectively enumerable,
either?

Andras Maté metalogic 10th October

The open question

We know that the string class Aj — Aut is not inductively
definable. Does it mean that it is not effectively enumerable,
either?

Generalization: If a string class is not inductively definable,
dores it imply that the class is not effectively enumerable,
either?

Andras Maté metalogic 10th October

The open question

We know that the string class Aj — Aut is not inductively
definable. Does it mean that it is not effectively enumerable,
either?

Generalization: If a string class is not inductively definable,
dores it imply that the class is not effectively enumerable,
either?

Contrapositive form of the above (generalized) question: Is it

true that an effectively enumerable class is always inductively
definable?

Andras Maté metalogic 10th October

The open question

We know that the string class Aj — Aut is not inductively
definable. Does it mean that it is not effectively enumerable,
either?

Generalization: If a string class is not inductively definable,
dores it imply that the class is not effectively enumerable,
either?

Contrapositive form of the above (generalized) question: Is it

true that an effectively enumerable class is always inductively
definable?

If the answer is ‘yes’, then the class of autonomous numerals is
not decidable (although it is enumerable).

Andras Maté metalogic 10th October

The open question

We know that the string class Aj — Aut is not inductively
definable. Does it mean that it is not effectively enumerable,
either?

Generalization: If a string class is not inductively definable,
dores it imply that the class is not effectively enumerable,
either?

Contrapositive form of the above (generalized) question: Is it

true that an effectively enumerable class is always inductively
definable?

If the answer is ‘yes’, then the class of autonomous numerals is
not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of
effective procedure.

Andras Maté metalogic 10th October

Procedures, algorithms

Andras Maté metalogic 10th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should
perform in a prescribed sequence in order to solve a task of some
type (class of tasks). Some well-known sorts of procedures:

Andras Maté metalogic 10th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should
perform in a prescribed sequence in order to solve a task of some
type (class of tasks). Some well-known sorts of procedures:
Operations. Example: multiplication of numerals. Given any pair
of numerals, produce a numeral which denotes the product of
the two numbers.

Andras Maté metalogic 10th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should
perform in a prescribed sequence in order to solve a task of some
type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair
of numerals, produce a numeral which denotes the product of
the two numbers.

Decision procedures. Example: Given a string from
zanguage(FOL)’ decide whether it is a formula of
Language(FOL) or not.

Andras Maté metalogic 10th October

Procedures, algorithms

A procedure or algorithm is a set of commands that you should
perform in a prescribed sequence in order to solve a task of some
type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair
of numerals, produce a numeral which denotes the product of
the two numbers.

Decision procedures. Example: Given a string from
zanguage(FOL)’ decide whether it is a formula of

Language(FOL) or not.

Enumeration procedure for a given sequence (of strings).

Example: from any string of the alphabet A.., produce the next

string in the lexicographic ordering.

Andras Maté metalogic 10th October

Markov algorithms

Andras Maté metalogic 10th October

Markov algorithms

Ways to formalize the notion of (finite, effectively performable)
procedure: Turing machines, recursive functions, lambda
calculus etc. We will use Markov algorithms.

Andras Maté metalogic 10th October

Markov algorithms

Ways to formalize the notion of (finite, effectively performable)
procedure: Turing machines, recursive functions, lambda
calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm
prescribes what we must do.

Andras Maté metalogic 10th October

Markov algorithms

Ways to formalize the notion of (finite, effectively performable)
procedure: Turing machines, recursive functions, lambda
calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm
prescribes what we must do.

Markov algorithms transform strings of a given alphabet into
other strings. Every step of the algorithm is a substitution of a
string by another string, prescribed by the commands of the
algorithm and their order.

Andras Maté metalogic 10th October

Markov algorithms

Ways to formalize the notion of (finite, effectively performable)
procedure: Turing machines, recursive functions, lambda
calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm
prescribes what we must do.

Markov algorithms transform strings of a given alphabet into
other strings. Every step of the algorithm is a substitution of a
string by another string, prescribed by the commands of the
algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A

(not containing the characters ‘=’ and ‘') is a finite, nonempty
sequence N of A-commands.

Andras Maté metalogic 10th October

Markov algorithms

Ways to formalize the notion of (finite, effectively performable)
procedure: Turing machines, recursive functions, lambda
calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm
prescribes what we must do.

Markov algorithms transform strings of a given alphabet into
other strings. Every step of the algorithm is a substitution of a
string by another string, prescribed by the commands of the
algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters ‘=’ and ‘') is a finite, nonempty
sequence N of A-commands.

An _A-command is a string of the form "a — b7 or "a — b
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.

Andras Maté metalogic 10th October

Application of a command resp. algorithm to a word

metalogic 10th October

Application of a command resp. algorithm to a word

The command C' = a — b resp. @ — -b is applicable to a string f
if its input a occurs as a sub-string in f, i.e. f = u"a"'v, where u
and v can be any string over A.

metalogic 10th October

Application of a command resp. algorithm to a word

The command C' = a — b resp. @ — -b is applicable to a string f
if its input a occurs as a sub-string in f, i.e. f = u"a"'v, where u
and v can be any string over A.

The application of C to f is the substitution of the first
occurrence of a in f by b. The result: C(f).

Andras Maté metalogic 10th October

Application of a command resp. algorithm to a word

The command C' = a — b resp. @ — -b is applicable to a string f
if its input a occurs as a sub-string in f, i.e. f = u"a"'v, where u
and v can be any string over A.

The application of C to f is the substitution of the first
occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string fy
(informally):

Andras Maté metalogic 10th October

Application of a command resp. algorithm to a word

The command C' = a — b resp. @ — -b is applicable to a string f
if its input a occurs as a sub-string in f, i.e. f = u"a"'v, where u
and v can be any string over A.
The application of C to f is the substitution of the first
occurrence of a in f by b. The result: C(f).
Steps of the application of an algorithm N to a string fy
(informally):

@ If no command in N is applicable to fy, then fy blocks N,

in symbols, N(f) =t (8 ¢ A).

Andras Maté metalogic 10th October

Application of a command resp. algorithm to a word

The command C' = a — b resp. @ — -b is applicable to a string f
if its input a occurs as a sub-string in f, i.e. f = u"a"'v, where u
and v can be any string over A.

The application of C to f is the substitution of the first
occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string fy
(informally):
@ If no command in N is applicable to fy, then fy blocks N,
in symbols, N(f) =t (8 ¢ A).
@ Otherwise, apply the first applicable command Cy to fy.
The result is f; = Co(fo)-

Andras Maté metalogic 10th October

Application of a command resp. algorithm to a word

The command C' = a — b resp. @ — -b is applicable to a string f
if its input a occurs as a sub-string in f, i.e. f = u"a"'v, where u
and v can be any string over A.

The application of C to f is the substitution of the first
occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string fy
(informally):
@ If no command in N is applicable to fy, then fy blocks N,
in symbols, N(f) =t (8 ¢ A).
@ Otherwise, apply the first applicable command Cy to fy.
The result is f; = Co(fo)-
@ If Cy was a stop command, then N applies to fy and
transforms it to fi. In symbols, N(fy) = fi.

Andras Maté metalogic 10th October

Application of a command resp. algorithm to a word

The command C' = a — b resp. @ — -b is applicable to a string f
if its input a occurs as a sub-string in f, i.e. f = u"a"'v, where u
and v can be any string over A.

The application of C to f is the substitution of the first
occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string fy
(informally):

@ If no command in N is applicable to fy, then fy blocks N,
in symbols, N(f) =t (8 ¢ A).

@ Otherwise, apply the first applicable command Cy to fy.
The result is f; = Co(fo)-

@ If Cy was a stop command, then N applies to fy and
transforms it to fi. In symbols, N(fy) = fi.

Q If it was not, then N leads fo to fi (in symbols, N(fo/f1))
and the algorithm continues with step 1, but f; takes the
place of fy. If we arrive to a stop command, then the
original string, fo is transformed into the last result.

Andras Maté metalogic 10th October

Possible outcomes of the application of an algorithm

Andras Maté metalogic 10th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f, there are three
possibilities:

Andras Maté metalogic 10th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f, there are three
possibilities:
O After performing finitely many times the steps above, we
arrive to a situation that no command in N applies to our
last result. In this case, N does not apply to f or f blocks

N, N(f) =1t

Andras Maté metalogic 10th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f, there are three
possibilities:

@ After performing finitely many times the steps above, we
arrive to a situation that no command in N applies to our
last result. In this case, N does not apply to f or f blocks
N, N(f) =t

@ After finitely many steps, we arrive to a stop command. If
the result of the application of this command was ¢, then
N applies to f and transforms it to g, N(f) = g.

Andras Maté metalogic 10th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f, there are three
possibilities:

@ After performing finitely many times the steps above, we
arrive to a situation that no command in N applies to our
last result. In this case, N does not apply to f or f blocks
N, N(f) =t

@ After finitely many steps, we arrive to a stop command. If
the result of the application of this command was ¢, then
N applies to f and transforms it to g, N(f) = g.

@ We never arrive after finitely many steps to a stop
command, nor to a blocking situation. In this case, N runs
infinitely on f.

Andras Maté metalogic 10th October

Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f, there are three
possibilities:

@ After performing finitely many times the steps above, we
arrive to a situation that no command in N applies to our
last result. In this case, N does not apply to f or f blocks
N, N(f) =t

@ After finitely many steps, we arrive to a stop command. If
the result of the application of this command was ¢, then
N applies to f and transforms it to g, N(f) = g.

@ We never arrive after finitely many steps to a stop
command, nor to a blocking situation. In this case, N runs
infinitely on f.

The first case can be avoided by inserting the command @ — -&
to the end of the algorithm. It is applicable to any string and
does nothing but stops the algorithm.

Andras Maté metalogic 10th October

Formal definitions of the above notions

Andras Maté metalogic 10th October

Formal definitions of the above notions

Simultaneous inductive definition of the relations N(f) =4 (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (NN is an algorithm over A, f and g are A-strings
and f ¢ A.)

Andras Maté metalogic 10th October

Formal definitions of the above notions

Simultaneous inductive definition of the relations N(f) =4 (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (NN is an algorithm over A, f and g are A-strings
and f ¢ A.)

Andras Maté metalogic 10th October

Formal definitions of the above notions

Simultaneous inductive definition of the relations N(f) =4 (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (NN is an algorithm over A, f and g are A-strings
and f ¢ A.)

@ If no command in N is applicable to f, then N(f) =t.

Andras Maté metalogic 10th October

Formal definitions of the above notions

Simultaneous inductive definition of the relations N(f) =4 (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (NN is an algorithm over A, f and g are A-strings
and § ¢ A.)
@ If no command in N is applicable to f, then N(f) =t.
@ If C is the first command in N that is applicable to f,
C(f) =g, then
@ if C is a stop command, then N(f) = g;
Q@ if C is not a stop command, then N(f/g).

Andras Maté metalogic 10th October

Formal definitions of the above notions

Simultaneous inductive definition of the relations N(f) =4 (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (NN is an algorithm over A, f and g are A-strings
and § ¢ A.)
@ If no command in N is applicable to f, then N(f) =t.
@ If C is the first command in N that is applicable to f,
C(f) =g, then
@ if C is a stop command, then N(f) = g;
Q@ if C is not a stop command, then N(f/g).

@ If N(f/g) and N(g/h), then N(f/h).

Andras Maté metalogic 10th October

Formal definitions of the above notions

Simultaneous inductive definition of the relations N(f) =4 (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (NN is an algorithm over A, f and g are A-strings
and f ¢ A.)

@ If no command in N is applicable to f, then N(f) =t.

@ If C is the first command in N that is applicable to f,
C(f) = g, then
@ if C is a stop command, then N(f) = g;
Q@ if C is not a stop command, then N(f/g).

@ If N(f/g) and N(g/h), then N(f/h).
® If N(f/g) and N(g) = h, then N(f) = h.

Andras Maté metalogic 10th October

Formal definitions of the above notions

Simultaneous inductive definition of the relations N(f) =4 (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (NN is an algorithm over A, f and g are A-strings
and f ¢ A.)

@ If no command in N is applicable to f, then N(f) =t.

@ If C is the first command in N that is applicable to f,
C(f) = g, then
@ if C is a stop command, then N(f) = g;
Q@ if C is not a stop command, then N(f/g).

@ If N(f/g) and N(g/h), then N(f/h).
If N(f/g) and N(g) = h, then N(f) = h.
If N(f/g) and N(g) = , then N(f) = £

© 6

Andras Maté metalogic 10th October

Examples

logic 10th Oc

Examples

Erase a letter. Be aecA. Let us erase every occurrence of a
from any string.

metalogic 10th October

Examples

Erase a letter. Be aecA. Let us erase every occurrence of a
from any string.
1. a—o

2. O— -0

Andras Maté metalogic 10th October

Examples

Erase a letter. Be aecA. Let us erase every occurrence of a
from any string.
1. a—o

2. O— -0

Erase every letter.

Andras Maté metalogic 10th October

Examples

Erase a letter. Be aecA. Let us erase every occurrence of a
from any string.

1. a—o
2. o= -O
Erase every letter.
1. -0 reA
2. 9—=-0

metalogic 10th October

Examples

Erase a letter. Be aecA. Let us erase every occurrence of a
from any string.

1. a—o
2. o= -O
Erase every letter.
1. -0 reA
2. 9—=-0

The letter z is a metalanguage variable for letters and the first
command is an usual and obvious abbreviation of n commands,
if A has n members.

Andras Maté metalogic 10th October

A mirroring algorithm

metalogic 10th October

A mirroring algorithm

We can use auxiliary letters in algorithms as well as in calculi. It
means only that to solve algorithmically some problem
concerning the A-strings, we write an algorithm over some

B D A and we regard the members of B — A auxiliary letters.

Andras Maté metalogic 10th October

A mirroring algorithm

We can use auxiliary letters in algorithms as well as in calculi. It
means only that to solve algorithmically some problem
concerning the A-strings, we write an algorithm over some

B D A and we regard the members of B — A auxiliary letters.

The following algorithm brings any A-string apa; ... a, into the

string apay . ..an | apan—1...ap (| ¢ A, and the algorithm uses
the auxiliary letters A, C, too.).

Andras Maté metalogic 10th October

A mirroring algorithm

We can use auxiliary letters in algorithms as well as in calculi. It
means only that to solve algorithmically some problem
concerning the A-strings, we write an algorithm over some

B D A and we regard the members of B — A auxiliary letters.
The following algorithm brings any A-string apa; ... a, into the

string apay . ..an | apan—1...ap (| ¢ A, and the algorithm uses
the auxiliary letters A, C, too.).

1. Czy—yCx ze A ye Au{|}
2. Cox—=x reA

3. zA— AzCx z€ A

4. A— .0

5. |z — x| reA

6. z|—>zA| reA

7. @—|

Andras Maté metalogic 10th October

logic 10th Oc

Homework

Write an algorithm that decides identity of strings of some
alphabet A in the following sense: Let V and W arbitrary
A-strings. Your algorithm should transform the string V' | W
into Y if they are the same string, and in N if they are different.
(Y, | and N are auxiliary letters.)

Andras Maté metalogic 10th October

