
Enumerability, e�ectivity, decidability

Markov algorithms

András Máté

10.10.2025

András Máté metalogic 10th October



The calculus H3

H2 (over an alphabet Acc plus 9 auxiliary letters) derives strings

with the intended meanings �a is a calculus�, �b is a string of the

alphabet of a�, �a derives b�. (a and b are translations, codes or

if you want, names of a calculus resp. word in Acc.)

The calculus H3 is an extension of H2. It renders numerals to

every Acc-string. (This is in e�ect a Gödel numbering.)

Numerals: strings consisting of α-s only.

First step: introduce a lexicographic ordering of Acc-strings.

New auxiliary letter: F for the relation `follows'.

I. e., xFy should mean that the string y follows x in the

lexicographic ordering.

Base: α follows the empty word.

Inductive rules de�ne the follower of a string according to its

last letter.
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Lexicographic ordering

26. Fα

27. xαFxβ

28. xβFxξ

29. xξFx ≫
30. x ≫ Fx∗
31. xFy → x ∗ Fyα

From the language radix axioms it follows that:

Every Acc-string has one and only one follower;

Except of the empty string, each string is the follower of one

and only one string.

The empty string is not a follower of anything.

I. e., strings with the empty string as 0 and this follower-relation

as the successor-function ful�l axioms of primitive Peano

arithmetics without mathematical induction.
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Gödel numbering of Acc-strings

Now we can add the (Gödel-)numbering to our calculus on the

trivial way.

G is a a new auxiliary letter, intended meaning of xGy: y is the

ordinal number of x in the lexicographic ordering.

Basis: the ordinal number of the empty string is the empty

string itself.

Inductive rule: to get the number of the follower of a string x we

need to add an α to the number of x.

32. G

33. xFy → xGz → yGzα

Our hypercalculus H3 now consists of the rules 1-33. and it

su�ces to prove at least one important incompleteness result.
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Autonomous numerals

Be C an arbitrary calculus.

The translation of C into our language is some Acc-word a.
H3 derives Ka.
There is a numeral c s.t. H3 derives aGc, i. e. the Gödel number

of C is c.

Does C derive a string whose translation is c?
Be C a calculus with this property (deriving its own Gödel

number).

Then H3 derives aDc, too.
Let us call such c-s autonomous numbers.

Let us extend H3 to de�ne autonomous numbers.

New auxiliary letter: A with the intended meaning

�autonomous�. New rule:

34. xDy → xGy → Ay
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Our Gödel-like theorem

The numbers are the strings of the one-letter alphabet

A0 = {α}, so their class is A◦
0 and it can be de�ned inductively.

The class of autonomous numerals, in class theoretic notation:

Aut = {x : x ∈ A◦
0 ∧H3 7→ Ax}

By adding a release rule to H3 deleting A, we gain a de�nition

of Aut by a canonical calculus.

We prove that the string class A◦
0 −Aut (the class of

non-autonomous numerals) cannot be de�ned inductively.

Theorem: There is no canonical calculus C over some B ⊇ Acc

s.t. for any string x,

C 7→ x ⇔ x ∈ A◦
0 −Aut
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Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the Gödel number g s.t for every non-autonomous numeral

c, C 7→ c, and there is no autonomous numeral d for that

C 7→ d.

Suppose that C 7→ g. In this case, C is an autonomous calculus,

g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an

autonomous calculus, g is a non-autonomous number, therefore

C 7→ g. Contradiction again, q.e.d.

This theorem is Gödel-like because it shows that no inductive

de�nition can be given for the notion �non-autonomous calculus�

just like Gödel's �rst incompleteness theorem shows that no

inductive de�nition can be given for the notion �arithmetical

truth�. And this proof uses an analogue of the Liar Paradox,

too.
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Enumerability

In general, if we have a calculus to de�ne some string class, we

have an e�ective process to enumerate its members. We can

enumerate the derivations in the calculus: �rst, the one-member

derivations, then the two-member ones, etc. For any given n, the
set of the n-member derivations is �nite.

The enumeration of derivations produces an enumeration of the

derivable strings too. This informal consideration shows that

inductively de�ned classes are e�ectively enumerable, i. e., we

have a procedure that enumerates all of its members. What

about the conversion of this claim? Is every e�ectively

enumerable class inductively de�nable? We don't have an

answer yet.
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Enumerability and decidability

If we had a calculus for the non-autonomous numerals we would

have an enumeration of the non-autonomous numerals, too. In

that case we could decide about any given numeral n whether it

is an autonomous numeral or not.

Imagine that a printing machine prints the autonomous

numbers in the order of enumeration and another one the

non-autonomous numbers. After a �nite time, n will occur as an

output of either the �rst or the second machine and therefore we

have a decision procedure for the membership of the class.

The converse of the claim is obvious: if we have a decision

procedure then we can enumerate both the set and its

complement. Therefore we have an enumeration procedure both

for a string class B over an alphabet A and its complement

A◦ − B if and only if we have a decision procedure for B.
Our next task is to make precise and formally de�ned the

notions used above: `procedure', `e�ective enumeration'.
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The open question

We know that the string class A◦
0 −Aut is not inductively

de�nable. Does it mean that it is not e�ectively enumerable,

either?

Generalization: If a string class is not inductively de�nable,

dores it imply that the class is not e�ectively enumerable,

either?

Contrapositive form of the above (generalized) question: Is it

true that an e�ectively enumerable class is always inductively

de�nable?

If the answer is `yes', then the class of autonomous numerals is

not decidable (although it is enumerable).

But to establish such an answer, we need a (formal) notion of

e�ective procedure.
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Procedures, algorithms

A procedure or algorithm is a set of commands that you should

perform in a prescribed sequence in order to solve a task of some

type (class of tasks). Some well-known sorts of procedures:

Operations. Example: multiplication of numerals. Given any pair

of numerals, produce a numeral which denotes the product of

the two numbers.

Decision procedures. Example: Given a string from

A◦
Language(FOL), decide whether it is a formula of

Language(FOL) or not.

Enumeration procedure for a given sequence (of strings).

Example: from any string of the alphabet Acc, produce the next

string in the lexicographic ordering.
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Markov algorithms

Ways to formalize the notion of (�nite, e�ectively performable)

procedure: Turing machines, recursive functions, lambda

calculus etc. We will use Markov algorithms.

A calculus tells us what we are allowed to do, an algorithm

prescribes what we must do.

Markov algorithms transform strings of a given alphabet into

other strings. Every step of the algorithm is a substitution of a

string by another string, prescribed by the commands of the

algorithm and their order.

Markov algorithm (or normal algorithm) over an alphabet A
(not containing the characters `→' and `·') is a �nite, nonempty

sequence N of A-commands.

An A-command is a string of the form ⌜a → b⌝ or ⌜a → ·b⌝
where a (the input of the command) and b (the output) are
A-strings. Commands of the latter form are called

stop commands.
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Application of a command resp. algorithm to a word

The command C = a → b resp. a → ·b is applicable to a string f
if its input a occurs as a sub-string in f , i.e. f = u∩a∩v, where u
and v can be any string over A.

The application of C to f is the substitution of the �rst

occurrence of a in f by b. The result: C(f).

Steps of the application of an algorithm N to a string f0
(informally):

1 If no command in N is applicable to f0, then f0 blocks N ,

in symbols, N(f) = ♯ (♯ /∈ A).
2 Otherwise, apply the �rst applicable command C0 to f0.

The result is f1 = C0(f0).
3 If C0 was a stop command, then N applies to f0 and

transforms it to f1. In symbols, N(f0) = f1.
4 If it was not, then N leads f0 to f1 (in symbols, N(f0/f1))

and the algorithm continues with step 1, but f1 takes the

place of f0. If we arrive to a stop command, then the

original string, f0 is transformed into the last result.
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Possible outcomes of the application of an algorithm

If we try to apply an algorithm N to a string f , there are three
possibilities:

1 After performing �nitely many times the steps above, we

arrive to a situation that no command in N applies to our

last result. In this case, N does not apply to f or f blocks

N , N(f) = ♯.

2 After �nitely many steps, we arrive to a stop command. If

the result of the application of this command was g, then
N applies to f and transforms it to g, N(f) = g.

3 We never arrive after �nitely many steps to a stop

command, nor to a blocking situation. In this case, N runs

in�nitely on f .

The �rst case can be avoided by inserting the command ∅ → ·∅
to the end of the algorithm. It is applicable to any string and

does nothing but stops the algorithm.
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Formal de�nitions of the above notions

Simultaneous inductive de�nition of the relations N(f) = ♯ (f
blocks N), N(f) = g (N transforms f into g) and N(f/g) (N
leads f to g). (N is an algorithm over A, f and g are A-strings

and ♯ /∈ A.)

i If no command in N is applicable to f , then N(f) = ♯.
ii If C is the �rst command in N that is applicable to f ,

C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.
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i If no command in N is applicable to f , then N(f) = ♯.

ii If C is the �rst command in N that is applicable to f ,
C(f) = g, then
a if C is a stop command, then N(f) = g;
b if C is not a stop command, then N(f/g).

iii If N(f/g) and N(g/h), then N(f/h).

iv If N(f/g) and N(g) = h, then N(f) = h.

v If N(f/g) and N(g) = ♯, then N(f) = ♯.
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Examples

Erase a letter. Be aϵA. Let us erase every occurrence of a
from any string.

1. a → ∅
2. ∅ → ·∅

Erase every letter.

1. x → ∅ x ∈ A
2. ∅ → ·∅

The letter x is a metalanguage variable for letters and the �rst

command is an usual and obvious abbreviation of n commands,

if A has n members.
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A mirroring algorithm

We can use auxiliary letters in algorithms as well as in calculi. It

means only that to solve algorithmically some problem

concerning the A-strings, we write an algorithm over some

B ⊃ A and we regard the members of B −A auxiliary letters.

The following algorithm brings any A-string a0a1 . . . an into the

string a0a1 . . . an | anan−1 . . . a0 (| /∈ A, and the algorithm uses

the auxiliary letters A, C, too.).

1. Cxy → yCx x ∈ A, y ∈ A ∪ {|}
2. Cx → x x ∈ A
3. xA → AxCx x ∈ A
4. A → .∅
5. | x → x | x ∈ A
6. x |→ xA | x ∈ A
7. ∅ → |
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Homework

Write an algorithm that decides identity of strings of some

alphabet A in the following sense: Let V and W arbitrary

A-strings. Your algorithm should transform the string V | W
into Y if they are the same string, and in N if they are di�erent.

(Y, | and N are auxiliary letters.)
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