TEMPORAL LOGIC

INTRODUCTION

Attila Molnár Eötvös Loránd University

March 16, 2016

Intro	Language	Semantics
0	0000	00000000

Introduction

Language 0000	

MCTAGGART 1908

Intro

There are two ways of speaking about time:

A-series: with singular predicates: "...is past", "...is present", "...is future" (maybe builted in tenses "was", "is", "will"). Note that the truth of these sentences depends on the time of the utterance. **Local** perspective.

B-series: with ordering relations: "... comes before ...", "... comes after ...". The truth of these sentences does not depend on the time of the utterance. **Global** perspective.

Logics of tenses / Tense logics / Temporal logics: A-theories of time Semantics of tense logics, first-order theories of orderings: B-theories of time

(the A-perspective)

Temporal language

Language	Semantics
0000	0000000

 $At \stackrel{\text{def}}{=} \{p_i : i \in \omega\}$

BASIC TEMPORAL LANGUAGE

Readings:

 $\begin{array}{ll} \varphi: & \text{``It is the case that } \varphi.'' \\ \neg \varphi: & \text{``It is not the case that } \varphi.'' \\ \varphi \wedge \psi: & \text{``Both } \varphi \text{ and } \psi \text{ are true.''} \\ \mathbf{F} \varphi: & \text{``It will be the case that } \varphi.'' \\ \mathbf{P} \varphi: & \text{``It was the case that } \varphi.'' \end{array}$

• Symbols:

- Atomic sentences *p*, *q*, *r*, . . .
- Logical symbols: $\neg, \land, \mathbf{F}, \mathbf{P}$
- Other symbols: (,)

• Formulas:

$$\varphi ::= p \mid (\varphi \land \psi) \mid \neg \varphi \mid \mathbf{F} \varphi \mid \mathbf{P} \varphi$$

DEFINED CONNECTIVES

Abbreviations:

$$\begin{array}{c} \bot & \stackrel{\text{def}}{\Leftrightarrow} & p \land \neg p \\ \varphi \lor \psi & \stackrel{\text{def}}{\Leftrightarrow} & \neg (\neg \varphi \land \neg \psi) \\ \top & \stackrel{\text{def}}{\Leftrightarrow} & p \lor \neg p \\ \varphi \to \psi & \stackrel{\text{def}}{\Leftrightarrow} & \neg (\varphi \land \neg \psi) \\ \varphi \leftrightarrow \psi & \stackrel{\text{def}}{\Leftrightarrow} & (\varphi \to \psi) \land (\psi \to \varphi) \\ \mathbf{G}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & \neg \mathbf{F} \neg \varphi \\ \mathbf{H}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & \neg \mathbf{P} \neg \varphi \\ \mathbf{E}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & \varphi \lor \mathbf{F}\varphi \\ \mathbf{\underline{P}}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & \varphi \lor \mathbf{F}\varphi \\ \mathbf{\underline{P}}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & \varphi \lor \mathbf{F}\varphi \\ \mathbf{\underline{G}}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & \varphi \land \mathbf{G}\varphi \\ \mathbf{\underline{H}}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & \varphi \land \mathbf{H}\varphi \end{array}$$

the contradiction, the false, or falsum " φ or ψ (or both of them) are true." the tautology, the true, or verum "If φ is true, then so is ψ .") "It is the case that φ if and only if ψ is the case." "It will always Going to be the case that φ ." "It Has always been the case that φ ." "It is or will be the case that φ ." "It is or was the case that φ ." "It is and always going to be the case that φ ." "It is and always has been the case that φ ."

Check (using classical logic) that $\neg \underline{\mathbf{F}} \neg \varphi \iff \underline{\mathbf{G}} \varphi$!

Language
0000

Language
0000

Which one of the followings sounds true?

 $\mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$

Language	Semantic
	00000

$$\mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) \qquad \text{fine}$$

Intro	Language	Semantics
0	0000	000000

$$\begin{aligned} \mathbf{G}(\varphi \wedge \psi) &\to (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \text{fine} \\ \mathbf{G}(\varphi \wedge \psi) &\leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) \end{aligned}$$

ntro	Language	Semantics
0	0000	0000000
0	ంర్లం	0000

$$\mathbf{G}(\varphi \land \psi) \to (\mathbf{G}\varphi \land \mathbf{G}\psi) \qquad \text{fine}$$

$$\mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) \qquad \text{fine}$$

ntro	Language	Semantics
0	0000	0000000

$$\begin{array}{ll} \mathbf{G}(\varphi \wedge \psi) \to (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \text{fine} \\ \mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \text{fine} \\ \mathbf{G}(\varphi \vee \psi) \to (\mathbf{G}\varphi \vee \mathbf{G}\psi) \end{array}$$

ro	Language oo●o	Semantics 0000000

$$\begin{array}{ll} \mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \vee \psi) \rightarrow (\mathbf{G}\varphi \vee \mathbf{G}\psi) & \quad \text{strange} \end{array}$$

L	anguage	Semantics
	0000	0000000

Which one of the followings sounds true?

0

$\mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \lor \psi) \to (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	strange
$\mathbf{G}(\varphi \lor \psi) \leftarrow (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	

Language	Semantics
0000	0000000

$\mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \lor \psi) \to (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	strange
$\mathbf{G}(\varphi \lor \psi) \leftarrow (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	fine

Language	Semantics
0000	0000000

$\mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \lor \psi) \to (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	strange
$\mathbf{G}(\varphi \lor \psi) \leftarrow (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	fine
$\mathbf{F}(\varphi \lor \psi) \to (\mathbf{F}\varphi \lor \mathbf{F}\psi)$	

Language	Semantics
0000	0000000

$\mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \lor \psi) \to (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	strange
$\mathbf{G}(\varphi \lor \psi) \leftarrow (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	fine
$\mathbf{F}(\varphi \lor \psi) \to (\mathbf{F}\varphi \lor \mathbf{F}\psi)$	fine

Language	Semantics
0000	0000000

$$\begin{array}{ll} \mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \vee \psi) \rightarrow (\mathbf{G}\varphi \vee \mathbf{G}\psi) & \quad \text{strange} \\ \mathbf{G}(\varphi \vee \psi) \leftarrow (\mathbf{G}\varphi \vee \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \vee \psi) \rightarrow (\mathbf{F}\varphi \vee \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \vee \psi) \leftarrow (\mathbf{F}\varphi \vee \mathbf{F}\psi) & \quad \text{fine} \end{array}$$

Language	Semantics
0000	0000000

fine
fine
strange
fine
fine
fine

Language	Semantics
0000	0000000

$$\begin{array}{ll} \mathbf{G}(\varphi \wedge \psi) \to (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \text{fine} \\ \mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \text{fine} \\ \mathbf{G}(\varphi \vee \psi) \to (\mathbf{G}\varphi \vee \mathbf{G}\psi) & \text{strange} \\ \mathbf{G}(\varphi \vee \psi) \leftarrow (\mathbf{G}\varphi \vee \mathbf{G}\psi) & \text{fine} \\ \mathbf{F}(\varphi \vee \psi) \to (\mathbf{F}\varphi \vee \mathbf{F}\psi) & \text{fine} \\ \mathbf{F}(\varphi \vee \psi) \leftarrow (\mathbf{F}\varphi \vee \mathbf{F}\psi) & \text{fine} \\ \mathbf{F}(\varphi \wedge \psi) \to (\mathbf{F}\varphi \wedge \mathbf{F}\psi) & \text{fine} \end{array}$$

Language	Semantics
0000	0000000

$\mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \lor \psi) \to (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	strange
$\mathbf{G}(\varphi \lor \psi) \leftarrow (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	fine
$\mathbf{F}(\varphi \lor \psi) \to (\mathbf{F}\varphi \lor \mathbf{F}\psi)$	fine
$\mathbf{F}(\varphi \lor \psi) \leftarrow (\mathbf{F}\varphi \lor \mathbf{F}\psi)$	fine
$\mathbf{F}(\varphi \wedge \psi) \rightarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi)$	fine

Language	Semantics
0000	0000000

$\mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \lor \psi) \to (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	strange
$\mathbf{G}(\varphi \lor \psi) \leftarrow (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	fine
$\mathbf{F}(\varphi \lor \psi) \to (\mathbf{F}\varphi \lor \mathbf{F}\psi)$	fine
$\mathbf{F}(\varphi \lor \psi) \leftarrow (\mathbf{F}\varphi \lor \mathbf{F}\psi)$	fine
$\mathbf{F}(\varphi \wedge \psi) \rightarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi)$	fine
$\mathbf{F}(\varphi \wedge \psi) \leftarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi)$	

Language	Semantics
0000	0000000

$\mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \lor \psi) \to (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	strange
$\mathbf{G}(\varphi \lor \psi) \leftarrow (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	fine
$\mathbf{F}(\varphi \lor \psi) \to (\mathbf{F}\varphi \lor \mathbf{F}\psi)$	fine
$\mathbf{F}(\varphi \lor \psi) \leftarrow (\mathbf{F}\varphi \lor \mathbf{F}\psi)$	fine
$\mathbf{F}(\varphi \wedge \psi) \rightarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi)$	fine
$\mathbf{F}(\varphi \wedge \psi) \leftarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi)$	strange

Language	Semantics
0000	000000

$$\begin{array}{ll} \mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \vee \psi) \rightarrow (\mathbf{G}\varphi \vee \mathbf{G}\psi) & \quad \text{strange} \\ \mathbf{G}(\varphi \vee \psi) \leftarrow (\mathbf{G}\varphi \vee \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \vee \psi) \rightarrow (\mathbf{F}\varphi \vee \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \vee \psi) \leftarrow (\mathbf{F}\varphi \vee \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \wedge \psi) \rightarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \wedge \psi) \rightarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \wedge \psi) \leftarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi) & \quad \text{strange} \\ \mathbf{(K)} \ \mathbf{G}(\varphi \rightarrow \psi) \rightarrow (\mathbf{G}\varphi \rightarrow \mathbf{G}\psi) \end{array}$$

Language	Sema
oo€o [™]	00

$$\begin{array}{ll} \mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \vee \psi) \rightarrow (\mathbf{G}\varphi \vee \mathbf{G}\psi) & \quad \text{strange} \\ \mathbf{G}(\varphi \vee \psi) \leftarrow (\mathbf{G}\varphi \vee \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \vee \psi) \rightarrow (\mathbf{F}\varphi \vee \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \wedge \psi) \leftarrow (\mathbf{F}\varphi \vee \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \wedge \psi) \rightarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \wedge \psi) \rightarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi) & \quad \text{strange} \\ \mathbf{K} (\mathbf{G}(\varphi \rightarrow \psi) \rightarrow (\mathbf{G}\varphi \rightarrow \mathbf{G}\psi) & \quad \text{fine} \end{array}$$

Language	Seman
0000	000

$$\begin{array}{ll} \mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \vee \psi) \rightarrow (\mathbf{G}\varphi \vee \mathbf{G}\psi) & \quad \text{strange} \\ \mathbf{G}(\varphi \vee \psi) \leftarrow (\mathbf{G}\varphi \vee \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \vee \psi) \rightarrow (\mathbf{F}\varphi \vee \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \vee \psi) \leftarrow (\mathbf{F}\varphi \vee \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \wedge \psi) \rightarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \wedge \psi) \rightarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi) & \quad \text{strange} \\ \mathbf{K}(\mathbf{G}(\varphi \rightarrow \psi) \rightarrow (\mathbf{G}\varphi \rightarrow \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \rightarrow \psi) \leftarrow (\mathbf{G}\varphi \rightarrow \mathbf{G}\psi) & \quad \text{fine} \end{array}$$

Language	Sem
0000	00

$$\begin{array}{ll} \mathbf{G}(\varphi \wedge \psi) \rightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \vee \psi) \rightarrow (\mathbf{G}\varphi \vee \mathbf{G}\psi) & \quad \text{strange} \\ \mathbf{G}(\varphi \vee \psi) \leftarrow (\mathbf{G}\varphi \vee \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \vee \psi) \rightarrow (\mathbf{F}\varphi \vee \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \wedge \psi) \rightarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \wedge \psi) \rightarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi) & \quad \text{fine} \\ \mathbf{F}(\varphi \wedge \psi) \rightarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi) & \quad \text{strange} \\ \mathbf{K}(\mathbf{G}(\varphi \rightarrow \psi) \rightarrow (\mathbf{G}\varphi \rightarrow \mathbf{G}\psi) & \quad \text{fine} \\ \mathbf{G}(\varphi \rightarrow \psi) \leftarrow (\mathbf{G}\varphi \rightarrow \mathbf{G}\psi) & \quad \text{strange} \end{array}$$

ro	Language ○○●○	Semantics 0000000

Which one of the followings sounds true?

$\mathbf{G}(\varphi \wedge \psi) ightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \wedge \psi) \leftarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi \lor \psi) ightarrow (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	strange
$\mathbf{G}(\varphi \lor \psi) \leftarrow (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	fine
$\mathbf{F}(\varphi \lor \psi) \to (\mathbf{F}\varphi \lor \mathbf{F}\psi)$	fine
$\mathbf{F}(\varphi \lor \psi) \leftarrow (\mathbf{F}\varphi \lor \mathbf{F}\psi)$	fine
$\mathbf{F}(\varphi \wedge \psi) \rightarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi)$	fine
$\mathbf{F}(\varphi \wedge \psi) \leftarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi)$	strange
(K) $\mathbf{G}(\varphi \to \psi) \to (\mathbf{G}\varphi \to \mathbf{G}\psi)$	fine
$\mathbf{G}(\varphi ightarrow \psi) \leftarrow (\mathbf{G} \varphi ightarrow \mathbf{G} \psi)$	strange

Memorization Trick: If **F** and \lor are **weak**, **G** and \land are **strong**, then

"weak likes the weak, and strong likes the strong"

 $\begin{array}{c} \mathbf{G}(\varphi \wedge \psi) \leftrightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) \\ \text{(A2)} \ \mathbf{F}(\varphi \lor \psi) \leftrightarrow (\mathbf{F}\varphi \lor \mathbf{F}\psi) \end{array}$

tro D	Language ○○●○	Semantics 0000000

Which one of the followings sounds true?

$\mathbf{G}(arphi \wedge \psi) ightarrow (\mathbf{G} arphi \wedge \mathbf{G} \psi)$	fine
$\mathbf{G}(arphi \wedge \psi) \leftarrow (\mathbf{G} arphi \wedge \mathbf{G} \psi)$	fine
$\mathbf{G}(\varphi \lor \psi) ightarrow (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	strange
$\mathbf{G}(\varphi \lor \psi) \leftarrow (\mathbf{G}\varphi \lor \mathbf{G}\psi)$	fine
$\mathbf{F}(\varphi \lor \psi) \to (\mathbf{F}\varphi \lor \mathbf{F}\psi)$	fine
$\mathbf{F}(\varphi \lor \psi) \leftarrow (\mathbf{F}\varphi \lor \mathbf{F}\psi)$	fine
$\mathbf{F}(\varphi \wedge \psi) ightarrow (\mathbf{F} \varphi \wedge \mathbf{F} \psi)$	fine
$\mathbf{F}(\varphi \wedge \psi) \leftarrow (\mathbf{F}\varphi \wedge \mathbf{F}\psi)$	strange
$\textbf{(} \boldsymbol{\mathcal{G}} (\varphi \rightarrow \psi) \rightarrow (\boldsymbol{\mathbf{G}} \varphi \rightarrow \boldsymbol{\mathbf{G}} \psi) $	fine
$\mathbf{G}(\varphi ightarrow \psi) \leftarrow (\mathbf{G} \varphi ightarrow \mathbf{G} \psi)$	strange

Memorization Trick: If **F** and ∨ are **weak**, **G** and ∧ are **strong**, then

"weak likes the weak, and strong likes the strong"

 $\begin{array}{c} \mathbf{G}(\varphi \wedge \psi) \leftrightarrow (\mathbf{G}\varphi \wedge \mathbf{G}\psi) \\ (A2) \ \mathbf{F}(\varphi \lor \psi) \leftrightarrow (\mathbf{F}\varphi \lor \mathbf{F}\psi) \end{array}$

And "WeakStrong \rightarrow StrongWeak": $\mathbf{F} \land \rightarrow \land \mathbf{F}$, and $\lor \mathbf{G} \rightarrow \mathbf{G} \lor$ That is quite usual in logic: $\exists x \forall y x Ry \rightarrow \forall y \exists x x Ry$ but not vice versa.

INTERPLAY OF TENSE AND TENSE

INTERPLAY OF TENSE AND TENSE

Which one of the followings sounds true?

 $(\mathbf{M}) \qquad \qquad \mathbf{G}\mathbf{F}\varphi \to \mathbf{F}\mathbf{G}\varphi$

Intro

INTERPLAY OF TENSE AND TENSE

Which one of the followings sounds true?

(M) $\mathbf{GF}\varphi \rightarrow \mathbf{FG}\varphi$ strange

Intro	Language
0	0000

INTERPLAY OF TENSE AND TENSE

(M)	$\mathbf{GF}arphi ightarrow \mathbf{FG}arphi$	strange
(G)	${f FG}arphi o {f GF}arphi$	

0

INTERPLAY OF TENSE AND TENSE

(M)	${f GF}arphi o {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine

0			

0

INTERPLAY OF TENSE AND TENSE

(M)	${f GF}arphi o {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	

0			

0

INTERPLAY OF TENSE AND TENSE

(M)	${f GF}arphi ightarrow {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
Intro		
-------	--	--
0		

(M)	${f GF}arphi o {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	$\mathbf{G}arphi ightarrow arphi$	

Intro	
0	

(M)	${f GF}arphi ightarrow {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	${f G}arphi o arphi$	strange

ntro		
0		

$$\begin{array}{cccc} (M) & \mathbf{GF}\varphi \rightarrow \mathbf{FG}\varphi & \text{strange} \\ (G) & \mathbf{FG}\varphi \rightarrow \mathbf{GF}\varphi & \text{fine} \\ (B) & \varphi \rightarrow \mathbf{GF}\varphi & \text{strange} \\ (T) & \mathbf{G}\varphi \rightarrow \varphi & \text{strange} \\ & \underline{\mathbf{G}}\varphi \rightarrow \varphi \end{array}$$

ntro	
0	

(M)	${f GF}arphi o {f FG}arphi$	strange
(G)	${f FG}arphi o {f GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	$\mathbf{G}arphi ightarrow arphi$	strange
	$\underline{\mathbf{G}} arphi ightarrow arphi$	trivial

ntre	Э
0	

$$\begin{array}{cccc} (\mathbf{M}) & \mathbf{GF}\varphi \rightarrow \mathbf{FG}\varphi & \text{strange} \\ (\mathbf{G}) & \mathbf{FG}\varphi \rightarrow \mathbf{GF}\varphi & \text{fine} \\ (\mathbf{B}) & \varphi \rightarrow \mathbf{GF}\varphi & \text{strange} \\ (\mathbf{T}) & \mathbf{G}\varphi \rightarrow \varphi & \text{strange} \\ & \underline{\mathbf{G}}\varphi \rightarrow \varphi & \text{trivial} \\ (\mathbf{4}) & \mathbf{FF}\varphi \rightarrow \mathbf{F}\varphi \end{array}$$

In	tro	
	С	

$$\begin{array}{cccc} (\mathbf{M}) & \mathbf{GF}\varphi \rightarrow \mathbf{FG}\varphi & \text{strange} \\ (\mathbf{G}) & \mathbf{FG}\varphi \rightarrow \mathbf{GF}\varphi & \text{fine} \\ (\mathbf{B}) & \varphi \rightarrow \mathbf{GF}\varphi & \text{strange} \\ (\mathbf{T}) & \mathbf{G}\varphi \rightarrow \varphi & \text{strange} \\ & \underline{\mathbf{G}}\varphi \rightarrow \varphi & \text{trivial} \\ (\mathbf{4}) & \mathbf{FF}\varphi \rightarrow \mathbf{F}\varphi & \text{fine} \end{array}$$

Intro	
0	

(M)	${f GF}arphi ightarrow {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	$\mathbf{G}arphi ightarrow arphi$	strange
	$\underline{\mathbf{G}} arphi ightarrow arphi$	trivial
(4)	${f F}{f F}arphi o {f F}arphi$	fine
(Den)	${f F}arphi o {f F}{f F}arphi$	

Intr	0
mu	0
0	
0	

(M)	${f GF}arphi ightarrow {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	$\mathbf{G}arphi ightarrow arphi$	strange
	$\underline{\mathbf{G}} arphi ightarrow arphi$	trivial
(4)	${f F}{f F}arphi o {f F}arphi$	fine
(Den)	${f F}arphi o {f F}{f F}arphi$	fine

lt	ntro	
	0	

(M)	${f GF}arphi o {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	$\mathbf{G}arphi ightarrow arphi$	strange
	$\underline{\mathbf{G}} \varphi ightarrow \varphi$	trivial
(4)	${ m FF}arphi ightarrow { m F}arphi$	fine
(Den)	${f F}arphi o {f F}{f F}arphi$	fine
(E)	$\mathbf{F}arphi ightarrow \mathbf{GF}arphi$	

lr	ntro	
	0	

(M)	${f GF}arphi o {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	$\mathbf{G}arphi ightarrow arphi$	strange
	$\underline{\mathbf{G}} \varphi ightarrow \varphi$	trivial
(4)	${f F}{f F}arphi o {f F}arphi$	fine
(Den)	$\mathbf{F}arphi ightarrow \mathbf{FF}arphi$	fine
(E)	$\mathbf{F}arphi ightarrow \mathbf{GF}arphi$	strange

ntr	0
0	

(M)	${f GF}arphi ightarrow {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	$\mathbf{G}arphi ightarrow arphi$	strange
	$\underline{\mathbf{G}} arphi ightarrow arphi$	trivial
(4)	${f F}{f F}arphi o {f F}arphi$	fine
(Den)	$\mathbf{F}arphi ightarrow \mathbf{FF}arphi$	fine
(E)	$\mathbf{F}arphi ightarrow \mathbf{GF}arphi$	strange
$(C)_F$	$arphi ightarrow {f HF} arphi$	

ntr	0
	0
~	
0	

(M)	${f GF}arphi o {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	$\mathbf{G}arphi ightarrow arphi$	strange
	$\underline{\mathbf{G}} arphi ightarrow arphi$	trivial
(4)	${f F}{f F}arphi o {f F}arphi$	fine
(Den)	$\mathbf{F}arphi ightarrow \mathbf{FF}arphi$	fine
(E)	$\mathbf{F}arphi ightarrow \mathbf{GF}arphi$	strange
$(C)_F$	$arphi ightarrow {f HF} arphi$	fine

lr	l	tr	0	
	¢	С		

(M)	${f GF}arphi ightarrow {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	$\mathbf{G}arphi ightarrow arphi$	strange
	$\underline{\mathbf{G}} \varphi ightarrow \varphi$	trivial
(4)	${f F}{f F}arphi o {f F}arphi$	fine
(Den)	$\mathbf{F}arphi ightarrow \mathbf{FF}arphi$	fine
(E)	$\mathbf{F}arphi ightarrow \mathbf{GF}arphi$	strange
$(C)_{F}$	$arphi ightarrow {f HF} arphi$	fine
$(C)_P$	$arphi ightarrow {f GP} arphi$	

		-r	3	
11	r,	ш	o	
	1			
	5	2		

nge
nge
ial
nge
1

		-r	3	
11	r,	ш	o	
	1			
	5	2		

(M)	${f GF}arphi o {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	$\mathbf{G}arphi ightarrow arphi$	strange
	$\underline{\mathbf{G}} arphi ightarrow arphi$	trivial
(4)	${f F}{f F}arphi o {f F}arphi$	fine
(Den)	$\mathbf{F}arphi ightarrow \mathbf{FF}arphi$	fine
(E)	$\mathbf{F}arphi ightarrow \mathbf{GF}arphi$	strange
$(C)_{F}$	$arphi ightarrow {f HF} arphi$	fine
$(C)_{P}$	$arphi ightarrow {f GP} arphi$	fine
$(D)_F$	${f G}arphi o {f F}arphi$	

ľ	1	tr	0	
	0	С		

(M)	$\mathbf{GF}arphi ightarrow \mathbf{FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	$\mathbf{G}arphi ightarrow arphi$	strange
	$\underline{\mathbf{G}} arphi ightarrow arphi$	trivial
(4)	${f F}{f F}arphi o {f F}arphi$	fine
(Den)	${f F}arphi o {f F}{f F}arphi$	fine
(E)	$\mathbf{F}arphi ightarrow \mathbf{GF}arphi$	strange
$(C)_{F}$	$arphi ightarrow {f HF} arphi$	fine
$(C)_P$	$arphi ightarrow {f GP} arphi$	fine
$(D)_F$	${f G}arphi o {f F}arphi$	fine

(M)	${f GF}arphi ightarrow {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	$\mathbf{G}arphi ightarrow arphi$	strange
	$\underline{\mathbf{G}} arphi ightarrow arphi$	trivial
(4)	${f FF}arphi o {f F}arphi$	fine
(Den)	${f F}arphi o {f F}{f F}arphi$	fine
(E)	$\mathbf{F}arphi ightarrow \mathbf{GF}arphi$	strange
$(C)_{F}$	$arphi ightarrow {f HF} arphi$	fine
$(C)_P$	$arphi ightarrow {f GP} arphi$	fine
$(D)_F$	${f G}arphi o {f F}arphi$	fine
$(H)_{F}$	$(\mathbf{F}\varphi \wedge \mathbf{F}\psi) \to (\mathbf{F}(\mathbf{F}\varphi \wedge \psi) \vee \mathbf{F}(\varphi \wedge \mathbf{F}\psi) \vee \mathbf{F}(\varphi \wedge \psi))$	

(M)	${f GF}arphi o {f FG}arphi$	strange
(G)	$\mathbf{FG}arphi ightarrow \mathbf{GF}arphi$	fine
(B)	$arphi ightarrow {f GF} arphi$	strange
(T)	$\mathbf{G}arphi ightarrow arphi$	strange
	$\underline{\mathbf{G}} arphi ightarrow arphi$	trivial
(4)	${f FF}arphi o {f F}arphi$	fine
(Den)	$\mathbf{F}arphi ightarrow \mathbf{FF}arphi$	fine
(E)	$\mathbf{F}arphi ightarrow \mathbf{GF}arphi$	strange
$(C)_{F}$	$arphi ightarrow {f HF} arphi$	fine
$(C)_P$	$arphi ightarrow {f GP} arphi$	fine
$(D)_F$	${f G}arphi o {f F}arphi$	fine
$(H)_F$	$(\mathbf{F}\varphi \wedge \mathbf{F}\psi) \to (\mathbf{F}(\mathbf{F}\varphi \wedge \psi) \vee \mathbf{F}(\varphi \wedge \mathbf{F}\psi) \vee \mathbf{F}(\varphi \wedge \psi))$	fine

(M)	${f GF}arphi ightarrow$	$\mathbf{FG}\varphi$	strange
(G)	$\mathbf{FG}arphi ightarrow$	$\mathbf{GF} \varphi$	fine
(B)	$\varphi \rightarrow$	$\mathbf{GF} \varphi$	strange
(T)	$\mathbf{G}arphi ightarrow$	arphi	strange
	$\underline{\mathbf{G}} \varphi \rightarrow$	arphi	trivial
(4)	${ m FF}arphi ightarrow$	$\mathbf{F} arphi$	fine
(Den)	${ m F}arphi ightarrow$	$\mathbf{FF} \varphi$	fine
(E)	${ m F}arphi ightarrow$	$\mathbf{GF} \varphi$	strange
$(C)_{F}$	$\varphi \rightarrow$	$\mathbf{HF}\varphi$	fine
$(C)_{P}$	$\varphi \rightarrow$	$\mathbf{GP}\varphi$	fine
$(D)_F$	$\mathbf{G}arphi ightarrow$	$\mathbf{F} \varphi$	fine
$(H)_F$	$(\mathbf{F} \varphi \wedge \mathbf{F} \psi) \rightarrow$	$(\mathbf{F}(\mathbf{F}\varphi \wedge \psi) \vee \mathbf{F}(\varphi \wedge \mathbf{F}\psi) \vee \mathbf{F}(\varphi \wedge \psi))$	fine
(.3) _F	$\mathbf{G}(\underline{\mathbf{G}}\varphi\rightarrow\psi)~\vee$	$\mathbf{G}(\underline{\mathbf{G}}\psi ightarrow \varphi)$	

Which one of the followings sounds true?

(M)	${f GF}arphi ightarrow$	$\mathbf{FG}\varphi$	strange
(G)	$\mathbf{FG}arphi ightarrow$	$\mathbf{GF} \varphi$	fine
(B)	$\varphi \rightarrow$	$\mathbf{GF} \varphi$	strange
(T)	$\mathbf{G}arphi ightarrow$	φ	strange
	$\underline{\mathbf{G}} \varphi \rightarrow$	φ	trivial
(4)	${ m FF}arphi ightarrow$	$\mathbf{F} \varphi$	fine
(Den)	$\mathbf{F}arphi ightarrow$	$\mathbf{FF} arphi$	fine
(E)	$\mathbf{F}arphi ightarrow$	$\mathbf{GF} \varphi$	strange
$(C)_{F}$	$\varphi \rightarrow$	$HF\varphi$	fine
$(C)_{P}$	$\varphi \rightarrow$	$\mathbf{GP}\varphi$	fine
$(D)_F$	$\mathbf{G}arphi ightarrow$	$\mathbf{F} \varphi$	fine
$(H)_{F}$	$(\mathbf{F} \varphi \wedge \mathbf{F} \psi) \rightarrow$	$(\mathbf{F}(\mathbf{F}\varphi \wedge \psi) \vee \mathbf{F}(\varphi \wedge \mathbf{F}\psi) \vee \mathbf{F}(\varphi \wedge \psi))$	fine
$(.3)_{\rm F}$	$\mathbf{G}(\mathbf{\underline{G}}\varphi \to \psi) \lor$	$\mathbf{G}(\mathbf{\underline{G}}\psi o \varphi)$?

It's time to use precise semantics instead of "sense the Truth behind".

Intro	Language	Semantics
0	0000	0000000

Semantics

(The B-perspective)

FRAMES AND MODELS

A **frame** is a pair $\langle W, R \rangle$, where

- *W* is not empty, its elements are called **worlds** or **moments** and
- *R* is a binary relation on *W*, sometimes called **alternative** or **accessibility** relation.

A strict partial ordering (SPO) is a frame $\langle T, < \rangle$, where < is

- irreflexive: $\forall w \neg w < w$
- transitive: $\forall w, v, u ((w < v \land v < u) \rightarrow w < u)$

A SPO $\langle T, < \rangle$ is **treelike** or **is a forest** if

• there is no branching to the past: $\forall w, v, u ((w < u \land v < u) \rightarrow (w < v \lor w = v \lor w > v))$ $w \leq w$

A **tree** is a treelike SPO $\langle T, < \rangle$ where

• every two different element has a 'root': $\forall w, v (w \neq v \rightarrow \exists u (u \leq w \land u \leq v))$

A flow of time or strict total order (STO) is a SPO $\langle T, < \rangle$, where

• < is trichotomic: $\forall w, v (w < v \lor w = v \lor w > v)$

If *wRv*, then we say that *"w* sees *v"* or *"v* is seen by *w"*.

 $w \leq v \ \stackrel{\mathrm{def}}{\Leftrightarrow} \ w < v \lor w = v$

FRAMES AND MODELS

A **frame** is a pair $\langle W, R \rangle$, where

- *W* is not empty, its elements are called **worlds** or **moments** and
- *R* is a binary relation on *W*, sometimes called **alternative** or **accessibility** relation.

A strict partial ordering (SPO) is a frame $\langle T, < \rangle$, where < is

- irreflexive: $\forall w \neg w < w$
- transitive: $\forall w, v, u ((w < v \land v < u) \rightarrow w < u)$

A SPO $\langle T, < \rangle$ is **treelike** or **is a forest** if

• there is no branching to the past: $\forall w, v, u ((w < u \land v < u) \rightarrow (w < v \lor w = v \lor w > v))$

A **tree** is a treelike SPO $\langle T, < \rangle$ where

• every two different element has a 'root': $\forall w, v (w \neq v \rightarrow \exists u (u \leq w \land u \leq v))$

A flow of time or strict total order (STO) is a SPO $\langle T, < \rangle$, where

• < is trichotomic: $\forall w, v (w < v \lor w = v \lor w > v)$

If *wRv*, then we say that "*w* sees *v*" or "*v* is seen by *w*"

Show that every SPO is asymmetric, i.e, $\forall w, v(w < v \rightarrow \neg w > v)$

 $w \leq v \ \stackrel{\mathrm{def}}{\Leftrightarrow} \ w < v \lor w = v$

In which structure is it true that $\forall w, v(w \le v \leftrightarrow \neg w > v)$?

> Show that every flow of time is a) treelike b) is a tree

Intro	Language	Semantics
0	0000	0000000

The **reflexive closure** R^r of a relation R is the smallest reflexive relation that contains it, i.e.,

- wR^rv whenever wRv,
- R^r is reflexive: $\forall w \ w R w$
- Whenever a relation *Q* has these two property above, it can not have less arrows than *R*^{*r*}, i.e. *wR*^{*r*}*v* implies *wQv*.

Intro	Language	Semantics
0	0000	0000000

The **reflexive closure** R^r of a relation R is the smallest reflexive relation that contains it, i.e., Show that for arbitrary <,

- wR^rv whenever wRv,
- R^r is reflexive: $\forall w \ w R w$

• Whenever a relation *Q* has these two property above, it can not have less arrows than *R*^{*r*}, i.e. *wR*^{*r*}*v* implies *wQv*.

< is the reflexive closure of <.

intro	Language	Semantics
0	0000	0000000

The **reflexive closure** R^r of a relation R is the smallest reflexive relation that contains it, i.e.,

- wR^rv whenever wRv,
- R^r is reflexive: $\forall w \ w R w$

Show that for arbitrary <, \leq is the reflexive closure of <.

• Whenever a relation *Q* has these two property above, it can not have less arrows than *R*^{*r*}, i.e. *wR*^{*r*}*v* implies *wQv*.

The **transitive closure** of a relation R is the smallest transitive relation R^t that contains it, i.e.,

- wR^tv whenever wRv,
- *R^t* is transitive,
- Whenever a relation *Q* has these three property above, *wR*^{*t*}*v* implies *wQv*.

ntro	Language	Semantics
0	0000	0000000

The **reflexive closure** R^r of a relation R is the smallest reflexive relation that contains it, i.e., Show that for arbitrary <,

- wR^rv whenever wRv,
- R^r is reflexive: $\forall w \ w R w$
- Whenever a relation *Q* has these two property above, it can not have less arrows than *R*^{*r*}, i.e. *wR*^{*r*}*v* implies *wQv*.

The **transitive closure** of a relation R is the smallest transitive relation R^t that contains it, i.e.,

- wR^tv whenever wRv,
- *R^t* is transitive,
- Whenever a relation *Q* has these three property above, *wR*^{*t*}*v* implies *wQv*.

Is it true, that if $\langle W, R \rangle$ is irreflexive, then $\langle W, R^t \rangle$ is a SPO?

< is the reflexive closure of <.

ntro	Language	Semantics
0	0000	0000000

The **reflexive closure** R^r of a relation R is the smallest reflexive relation that contains it, i.e.,

- wR^rv whenever wRv,
- R^r is reflexive: $\forall w \ w R w$
- Whenever a relation *Q* has these two property above, it can not have less arrows than *R*^{*r*}, i.e. *wR*^{*r*}*v* implies *wQv*.

The **transitive closure** of a relation R is the smallest transitive relation R^t that contains it, i.e.,

- *wR^tv* whenever *wRv*,
- *R^t* is transitive,
- Whenever a relation *Q* has these three property above, *wR*^{*t*}*v* implies *wQv*.

The **reflexive transitive symmetric closure** of a relation R is the smallest reflexive, transitive and symmetric relation R^{rts} that contains it, i.e.,

- wR^{rts}v whenever wRv,
- *R^{rts}* is reflexive,
- *R^{rts}* is transitive,
- R^{rts} is symmetric: $\forall w, v(wR^{rts}v \rightarrow vR^{rts}w)$
- Whenever a relation *Q* has these four property above, *wR*^{*rts*}*v* implies *wQv*.

Is it true, that if $\langle W, R \rangle$ is irreflexive, then $\langle W, R^t \rangle$ is a SPO?

Show that for arbitrary <, \leq is the reflexive closure of <.

ntro	Language	Semantics
0	0000	0000000

The **reflexive closure** R^r of a relation R is the smallest reflexive relation that contains it, i.e., Show that for arbitrary <,

- wR^rv whenever wRv,
- R^r is reflexive: $\forall w \ w R w$
- Whenever a relation *Q* has these two property above, it can not have less arrows than *R*^{*r*}, i.e. *wR*^{*r*}*v* implies *wQv*.

The **transitive closure** of a relation R is the smallest transitive relation R^t that contains it, i.e.,

- *wR^tv* whenever *wRv*,
- *R^t* is transitive,
- Whenever a relation *Q* has these three property above, *wR*^t*v* implies *wQv*.

The **reflexive transitive symmetric closure** of a relation R is the smallest reflexive, transitive and symmetric relation R^{rts} that contains it, i.e.,

- wR^{rts}v whenever wRv,
- *R^{rts}* is reflexive,
- *R^{rts}* is transitive,
- R^{rts} is symmetric: $\forall w, v(wR^{rts}v \rightarrow vR^{rts}w)$
- Whenever a relation *Q* has these four property above, *wR*^{*rts*}*v* implies *wQv*.

A frame $\langle W, R \rangle$ is connected iff $\forall w \forall v \, w R^{rts} v$

 \leq is the reflexive closure of <.

Is it true, that if $\langle W, R \rangle$ is irreflexive, then $\langle W, R^t \rangle$ is a SPO?

ntro	Language	Semantics
0	0000	0000000

The **reflexive closure** R^r of a relation R is the smallest reflexive relation that contains it, i.e.,

- wR^rv whenever wRv,
- R^r is reflexive: $\forall w \ w R w$
- Whenever a relation *Q* has these two property above, it can not have less arrows than *R*^{*r*}, i.e. *wR*^{*r*}*v* implies *wQv*.

The **transitive closure** of a relation R is the smallest transitive relation R^t that contains it, i.e.,

- *wR^tv* whenever *wRv*,
- *R^t* is transitive,
- Whenever a relation *Q* has these three property above, *wR*^{*t*}*v* implies *wQv*.

The **reflexive transitive symmetric closure** of a relation *R* is the smallest reflexive, transitive and symmetric relation *R*^{*rts*} that contains it, i.e.,

- wR^{rts}v whenever wRv,
- *R^{rts}* is reflexive,
- *R^{rts}* is transitive,
- R^{rts} is symmetric: $\forall w, v(wR^{rts}v \rightarrow vR^{rts}w)$
- Whenever a relation *Q* has these four property above, *wR*^{*rts*}*v* implies *wQv*.

A frame $\langle W, R \rangle$ is connected iff $\forall w \forall v \, w R^{rts} v$

Is it true, that if $\langle W, R \rangle$ is irreflexive, then $\langle W, R^t \rangle$ is a SPO?

Show that a) all trees are connected, b) not all treelike SPO's are connected.

Show that for arbitrary <, \leq is the reflexive closure of <.

Intro	Language	Semantics
0	0000	0000000

MODELS

We'll use frames to determine the meaning of the formulas. To establish the connection, what we need is an **interpretation** or **evaluation** *V*.

The job of *V* is to tell for every formula φ , whether it is true or not in a given moment of a frame or not. So this will be a function which assigns a truth value 0 or 1 to every formula *p* and moment $w \in W$, i.e.,

 $V: \operatorname{At} \times W \to \{0, 1\}.$

Another perspective is the following: Let the job of *V* be to tell for every formula φ , what is the set of worlds in which it is true, i.e.,

$$V: \operatorname{At} \to \mathcal{P}(W).$$

Hereby we have the (first step for a) mathematical representation of that connection between the syntax (At), and the semantics ($\langle W, R \rangle$).

According to the latter then, $w \in V(p)$ will represent the fact that p is true at w with respect to $\langle W, R \rangle$ and V. We will abbreviate this by

$$W, R, V, w \models p.$$

To simplify the notation, we will call the frame+interpretation pairs models.

ro	Language 0000	Semantics 00000000

MODELS

A model \mathfrak{M} is a pair $\langle \mathfrak{F}, V \rangle$ where

- \mathfrak{F} is a frame $\mathfrak{F} = \langle W, R \rangle$,
- *V* is an evaluation $V : At \to \mathcal{P}(W)$.

We define the satisfaction or local truth relation in the following way:

$$\begin{array}{lll} \mathfrak{M},w\models p & \stackrel{\text{def}}{\Leftrightarrow} & w\in V(p) \\ \mathfrak{M},w\models\neg\varphi & \stackrel{\text{def}}{\Leftrightarrow} & \text{it is not true that } \mathfrak{M},w\models\varphi \\ \mathfrak{M},w\models\varphi\wedge\psi & \stackrel{\text{def}}{\Leftrightarrow} & \mathfrak{M},w\models\varphi \text{ and } \mathfrak{M},w\models\psi \\ \mathfrak{M},w\models\mathbf{F}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & \exists v(w< v\wedge\mathfrak{M},w\models\varphi) \\ \mathfrak{M},w\models\mathbf{P}\varphi & \stackrel{\text{def}}{\Leftrightarrow} & \exists v(v< w\wedge\mathfrak{M},w\models\varphi) \end{array}$$

We define the **global truth** or just simply the **truth** relation based on the local truth:

$$\mathfrak{M}\models\varphi\iff \forall w\ \mathfrak{M},w\models\varphi$$

And the most important: we say that φ is valid of \mathfrak{F} iff it is true *no matter what are the meanings of its atomic particles*: Why is the latter so important? Becau

$$\mathfrak{F}\models\varphi\iff \forall V\,\mathfrak{F},V\models\varphi$$

Why is the latter so important? Because only the structure matters here. So by investigating validities, we will able to investigate the structure of time, while we keep the local perspective of the modal language.

Intro L o	Language Semantics 0000 00000000
MODELS A model \mathfrak{M} is a pair $\langle \mathfrak{F}, V \rangle$ where • \mathfrak{F} is a frame $\mathfrak{F} = \langle W, R \rangle$,	Give a countermodel a) for every formula what we labelled 'strange', such that b) for some formula what we labelled 'fine'. (i.e., give a model in which the formula in question is not true (i.e., false in some world of it))
• V is an evaluation V : At \rightarrow	$\mathcal{P}(W).$
We define the satisfaction or loca	al truth relation in the following way:
def	

$\mathfrak{M}, w \models p$	⇔	$w \in V(p)$
$\mathfrak{M},w\models\neg\varphi$	def ⇔	it is not true that $\mathfrak{M}, w \models \varphi$
$\mathfrak{M},w\models\varphi\wedge\psi$	def ⇔	$\mathfrak{M}, w \models \varphi \text{ and } \mathfrak{M}, w \models \psi$
$\mathfrak{M}, w \models \mathbf{F} \varphi$	def ⇔	$\exists v \big(w < v \land \mathfrak{M}, w \models \varphi \big)$
$\mathfrak{M}, w \models \mathbf{P} \varphi$	def	$\exists v (v < w \land \mathfrak{M}, w \models \varphi)$

We define the **global truth** or just simply the **truth** relation based on the local truth:

$$\mathfrak{M}\models\varphi\iff \forall w\ \mathfrak{M},w\models\varphi$$

And the most important: we say that φ is valid of \mathfrak{F} iff it is true *no matter what are the meanings of its atomic particles*: Why is the latter so important? Becau

$$\mathfrak{F}\models\varphi\iff \forall V\,\mathfrak{F},V\models\varphi$$

Why is the latter so important? Because only the structure matters here. So by investigating validities, we will able to investigate the structure of time, while we keep the local perspective of the modal language.

Intro	Language	Semantics
0	0000	00000000

B LANGUAGE

Every temporal model \mathfrak{M} can be viewed as a classical first-order model:

$$\mathfrak{M} = \langle W, R, V \rangle$$

$$\simeq \langle W, R, V(p), V(q), \dots \rangle_{p,q,\dots \in \operatorname{At}}$$
"unpack" V
$$\langle W, I(R), V(p), V(q), \dots \rangle_{p,q,\dots \in \operatorname{At}}$$

$$\overset{R \in \operatorname{Pred}^2}{\longleftrightarrow}$$
consider R as a meaning of an R
$$\langle W, I(R), I(P), I(Q), \dots \rangle_{P,Q,\dots \in \operatorname{Pred}^1}$$

$$\simeq \langle W, I \rangle$$
"pack" I

So the corresponding (object linguistic!) FOL language is

- Symbols:
 - Monadic predicates: *P*, *Q*, *R*, . . .
 - Binary predicates: R
 - Variables: w, v, u, \ldots
 - Logical symbols: $\neg, \land, =, \exists$,
 - Other symbols: (,)
- Formulas:

 $\varphi ::= w = v \mid P(w) \mid wRv \mid \neg \varphi \mid (\varphi \land \psi) \mid \exists w\varphi$

STANDARD TRANSLATION

Homeworks:

<u>Theorem</u> :	$\mathfrak{M}, w \models \varphi$	\iff	$\mathfrak{M} \models \mathrm{ST}_x(\varphi) [\sigma[x \mapsto w]]$
COROLLARY :	$\mathfrak{M}\models\varphi$	\iff	$\mathfrak{M} \models \forall x \operatorname{ST}_x(\varphi)$
COROLLARY :	$\mathfrak{F}\models arphi$	\iff	$\mathfrak{M} \models \forall P \forall Q \dots \forall x \operatorname{ST}_{x}(\varphi)$

The last is in Second Order Logic!!!! Le., in frame semantics we quantify over subsets of W! SOL is a powerful language, but it has a tons of disadvantages, just some of them: Truths of formulas depends on that which ZFC model are we in, it can articulate non-logical statements, what is more, ZFC-independent statements like continuum hypothesis, no completeness theorem, no compactness, etc.

But, the fragment corresponding to TL is free from all of these, while it can maintain some of SOL's power. And sometime second order statements defined by TL are just equivalent to FOL statements...
Intro	Language	Semantics
0	0000	0000000

FOL ABBREVIATIONS

Of course, we always omit the outermost brackets.

And a full stop after a logical symbol means an opening bracket whose scope is the longest as possible (i.e., ends before the first closing bracket), e.g.

$$\exists x.\varphi \to \psi \iff \exists x(\varphi \to \psi)$$

Or the 3rd Frege-Hilbert axiom

$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

can be written up as

$$\begin{split} (\varphi \to .\psi \to \chi) \to .(\varphi \to \psi) \to (\varphi \to \chi) \\ (\varphi \to .\psi \to \chi) \to .(\varphi \to \psi) \to .\varphi \to \chi \end{split}$$

0			0000	0000000	
A-B Correspondences (modal definability)					
Difficulty	Name	TL formula	FOL formula	Name	
Easy	Т	$\Box \varphi \to \varphi$	$\forall w \ w R w$	reflexive	
Easy	4	$\Box \varphi \to \Box \Box \varphi$	$\forall wvu. wRvRu \rightarrow wRu$	transitive	
Normal	Den	$\Box\Box\varphi\to\Box\varphi$	$\forall wv. wRu \rightarrow (\exists v)wRvRu$	dense	
Easy	В	$\varphi \to \Box \Diamond \varphi$	$\forall wv. wRv \rightarrow vRw$	symmetric	
Normal	Ε	$\Diamond \varphi \to \Box \Diamond \varphi$	$\forall wv. u \Re w Rv \rightarrow v Ru$	euclidean	
Normal	G	$\Diamond \Box \varphi \to \Box \Diamond \varphi$	$\forall wvu. v \Re w Ru \rightarrow (\exists u')(v Ru' \Re u)$	convergent	
Normal	.3	$\Diamond \varphi \land \Diamond \psi \rightarrow$	$\forall wvu. v \Re w Ru \to (v Ru \lor v \Re u \lor u = v)$	no branching to the right	
		$(\Diamond(\varphi \land \Diamond \psi) \lor$			
		$\Diamond(\varphi \wedge \psi) \lor$			
		$(\Diamond \varphi \land \psi)$			
Hard	.3	$\Box(\underline{\Box}\varphi \to \psi) \lor$	$\forall wvu. v \Re w Ru \to (v Ru \lor v \Re u \lor u = v)$	no branching to the right	
		$\Box(\underline{\Box}\psi\to\varphi)$			
Easy	D	$\Box \varphi \to \Diamond \varphi$	$\forall w \exists v \ w R v$	serial	
Easy	\mathbf{D}^+	$\Box(\Box\varphi\to\varphi)$	$\forall wv. \ wRv \rightarrow vRv$	secondary reflexive	
Beautiful	GL	$\Box(\Box\varphi\to\varphi)\to\Box\varphi$	$\forall wvu(wRvRu \rightarrow wRu) \land$	Noetherian SPO	
			$\neg \exists P(\forall w \in P)(\exists v \Re w) P(v)$		
Beautiful	Grz	$\Box(\Box(\varphi\to\Box\varphi)\to$	$\forall w \ w R w \land$	reflexive	
		$\rightarrow \varphi) \rightarrow \varphi$	$\forall wvu \ (wRvRu \rightarrow wRu) \land$	Noetherian	
			$\neg \exists P(\forall w \in P)(\exists v \Re w)(w \neq v \land P(v))$	partial ordering	
Easy	V	$\Box \varphi$	$\forall wv \neg wRv$	empty	
Easy	Tr	$\varphi \to \Box \varphi$	$\forall wv. \ wRv \rightarrow w = v$	diagonal	
Normal	1.1	$\Diamond \varphi \to \Box \varphi$	$\forall wvu. v \Re w Ru \rightarrow v = u$	partial function	
Normal	ijkl	$\Diamond^i \Box^j \varphi \to \Box^k \Diamond^l \varphi$	$\forall wvu. v \mathfrak{R}^i w \mathfrak{R}^k u \to (\exists u')(v \mathfrak{R}^j u' \mathfrak{R}^l u)$	ijkl-convergent	