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PREFACE

This book is intended both as an elementary introduction and as an original
contribution to the development of a scientific account of the distinction be-
tween the past and the future.

▲▲▲ Chapter 1 is a relatively straightforward rehearsal of what is perenni-
ally referred to in the physical literature as “the problem of the direction of
time”—but in what I hope is an unprecedentedly precise language of phys-
ical states, and with what I hope is an unprecedentedly careful discussion
of exactly what it means for a set of dynamical laws to distinguish, or to fail
to distinguish, between the past and the future. Chapter 2, together with
the more detailed appendix on Gedankenexperiments with heat engines, is
a report on the second law of thermodynamics—which is the point at
which distinctions between past and future have made their most explicit
and most widely heralded and most intensively studied appearance in the
laws of physics—very much along the lines of the beautiful treatment of
that subject in the famous book by Enrico Fermi. Chapter 3 is an outline,
more or less in the spirit of Ludwig Boltzmann, of the project of statistical
mechanics—including what I hope will prove relatively novel discussions
of the mathematical structure and the metaphysical status of the probabil-
ity-distributions over initial conditions, and of the connection between en-
tropy and information, and of the question of Haecceisstism, and of a num-
ber of other matters as well. Chapter 4 is about the famous objections to
that project due to J. Loschmidt and Ernst Zermello and Henri Poincaré,
and also about what seems to me to be the proper remedy for those objec-
tions—which is a new and fundamental and non-dynamical law of nature
called the “past-hypothesis.” Chapter 5 is a critique of the long history of at-



tempts to show that there can as a matter of fundamental principle be no
such thing as an operational Maxwellian demon. What I argue (on the
contrary—and by means of an explicit construction) is that there is nothing
whatsoever in either the classical or the quantum-mechanical laws of phys-
ics that stands in the way of there being such demons as that. Chapter 6
(which is perhaps the most ambitious) is about the time-directedness of our
own capacity to acquire information about the world, and to manipulate the
world according to our will, or (more precisely) it is about the business of
incorporating those sorts of directedness into the general picture of the
world laid out thus far, that is, it is about the business of understanding
those sorts of directedness as mechanical phenomena of nature—of a piece
(that is) with the understanding of the time-directedness of the second law
of thermodynamics described in chapters 3 and 4. And Chapter 7 (which is
perhaps the most important) is about the possibility of there being a very il-
luminating connection between the problem of the direction of time and
the fundamental quantum-mechanical problem of measurement.

▲▲▲ There are so many people to thank. I am thankful ~rst and foremost
and beyond all reckoning to my wife, Orna, for the weeks and months and
years of hard work she did so that I might have time to write, and for her pa-
tience and her encouragement, and for the unwavering enormity of her
love, and for ~guring out that what this sort of book needed on its cover was
Italian Futurism. And I am thankful to Tim Maudlin and Frank Artzenius
and Ned Hall and Simon Saunders and Gordon Belot and especially and
particularly to Barry Loewer for their extraordinarily careful readings of my
manuscript—in the course of which many errors (both small and large)
were corrected. And to Bas van Fraassen and David Lewis and various of my
students at Columbia and Princeton and Harvard who have patiently heard
me out on these matters in seminars and lecture courses, and have helped
me get them straight. And to Yakir Aharonov and Hilary Putnam and Marc
Albert and Arthur Kantrowitz and the late Gary Feinberg for whatever I may
have managed to absorb of the general craft of thinking things through. And
to Sidney Morgenbesser and Irad Kimhi, of whom (let’s just say) indescrib-
ably vast stretches of my work, and of my self, are poor attempts at imitation.
And I am thankful to my friend Lloyd Miller for preparing the diagrams,
and to Lindsay Waters and Kim Steere and Christine Thorsteinsson and
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Elizabeth Gilbert and Jill Breitbarth of Harvard University Press for editing
and designing and publishing my manuscript with such a profound and
imaginative respect for my tone of voice (such as it is) and for the sort of
book I’ve tried to write.
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▲▲▲ C H A P T E R O N E

T IME - REVERSA L
INVAR IANCE

1. THE NEWTONIAN P ICTURE OF THE WORLD

What I want to talk about here is a certain tension between fundamental mi-
croscopic physical theory and everyday macroscopic human experience, a
tension that comes up (more particularly) in connection with the question of
precisely how the past is different from the future.

And the fundamental theory in which it will work best to start that talk
out, the fundamental theory (that is) in which this tension is at its purest and
most straightforward, is the mechanics of Newton. Never mind (for the mo-
ment) that the mechanics of Newton turns out not to be the mechanics of
the actual world.1 We’ll talk about that later.

▲▲▲ According to Newtonian mechanics, or at any rate according to the
particularly clean and simple version of it that I want to start off with here,
the physical furniture of the universe consists entirely of point particles.
The only dynamical variables of such particles—the only physical attrib-
utes of such particles that can change with time—are (on this theory) their
positions; and (consequently) a list of what particles exist, and of what sorts
of particles they are,2 and of what their positions are at all times, is a list
of absolutely everything there is to say about the physical history of the
world.3

1. What the actual world turns out to be (insofar as we can tell at present) is quantum me-
chanical, or quantum ~eld theoretic, or quantum string theoretic, or something like that.

2. That is, of their non-dynamical properties: their masses and their charges and so forth.
3. This is certainly not to deny that there are such things in the world as extended objects; the

idea is just that all the facts about objects like that (facts, say, about where the tables and chairs
are, and about who punched whom, and about who said what, and so on) are determined, in
principle, by the facts about the particles of which those objects are composed.



And Newtonian mechanics is deterministic. Given a list of the positions
of all the particles in the world at any particular time, and of how those
positions are changing, at that time, as time _ows forward, and of what
sorts of particles they are, the universe’s entire history, in every detail, from
that time on, can in principle be calculated (if this theory is true) with cer-
tainty.

▲▲▲ All this will be worth spelling out in some detail.
Let’s start slow.
The rate at which some particular particle’s position is changing, at some

particular time, as time _ows forward, is called its velocity at that time. And
the rate at which such a particle’s velocity is changing, at some particular
time, as time _ows forward, is called its acceleration at that time.

And what Newtonian mechanics has to say about the motions of particles,
the entirety of what it has to say about the motions of particles, is that a certain
breathtakingly simple mathematical relation—F � ma—invariably holds be-
tween the force on any particle at any particular instant, and its acceleration
at that instant, and its mass.

Let’s say a bit about where forces come from.
What happens in the most familiar cases (think, for example, of gravita-

tional attraction, or of electrostatic repulsion) is that forces arise exclusively
between pairs of particles, and (moreover) that the forces which any two par-
ticles are exerting on each other at any particular instant depend only on
what sorts of particles they are and on their relative positions.

And the third and ~nal fundamental principle of the Newtonian picture
of the world (the ~rst is that the world consists entirely of particles, and the
second is the relation between F and m and a) is that as a matter of fact all
the forces there are are like that.

And so (on this picture) a speci~cation of the positions of all the particles
in the world at some particular time, and of what sorts of particles they are,
amounts (at least insofar as these familiar sorts of forces are concerned) to a
speci~cation of what the forces on each of those particles are at that time as
well.

Good. Let’s see how all this results in precisely the sort of determinism I
said it did above.

2 T IME AND CHANCE



Call the “initial” time, the time we will want to calculate forward from,
t � 0.

And suppose that what we’re given at the outset are the positions of all
the particles in the world (or in some isolated subsystem of the world) at t
� 0 (call those x0

i), and their velocities at t � 0 (call those v0
i), and their

masses (mi), and their electric charges (ci), and all their other intrinsic
properties.

And let’s say that what we would like to calculate is the positions of all
these particles at t � T.

The most illuminating way of doing that, I think, will be by means of a
succession of progressively better and better approximations.

The ~rst goes like this: calculate the positions of all the particles at t � T
by supposing that their velocities are constant—and equal to their above-
mentioned values (v0

i) at t � 0—throughout the interval between t � 0 and
t � T.

This calculation will place particle i at x0
i � v0

iT at t � T; but it hardly
needs saying that this calculation is not a particularly accurate one, because
(unless it happens that no forces are at work on any of the particles here) the
velocities of these particles will in fact not remain constant throughout that
interval.

Here’s a somewhat better calculation:
Divide the time-interval in question into two, one extending from t � 0

to t � T/2 and the other extending from t � T/2 to t � T. Then calcu-
late the positions of all the particles at T/2 by supposing that their veloci-
ties are constant—and equal to their values at t � 0—throughout the inter-
val between t � 0 and t � T/2 (this will place particle i at x0

i � v0
i(T/2) at

T/2).
Then calculate the forces acting on each of the particles at t � 0 (what

those forces are, remember, will follow from the positions of those particles
at t � 0 together with their masses and their charges and their other internal
properties—all of which we are given at the outset).

Then calculate each particle’s velocity at T/2 by plugging those forces into
the above-mentioned law of motion (plugging them, that is, into F � ma),
and assuming that the particles’ accelerations are constant throughout the
interval from t � 0 to t � T/2—and are equal to their values at t � 0 (this will
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put the velocity of particle i at v0
i � a0

i(T/2), where a0
i is equal to the force on

particle i at t � 0 divided by particle i’s mass).
Then, ~nally, calculate the position of particle i at t � T (which is what

we’re after here) by supposing that this particle maintains this new velocity
throughout the interval between t � T/2 and t � T.

This calculation isn’t going to be perfect either, but (since the intervals
during which the velocities of the particles are erroneously presumed to be
constant are shorter here than in the previous calculation) it amounts to a
clear improvement.

And of course this improvement can itself be improved upon by dividing
the interval further, into four intervals. That calculation will proceed as fol-
lows.

To begin with, the approximate positions of all the particles at t � T/4 can
be calculated (just as we did above) from the positions and velocities at t � 0
alone. Moreover, the forces on all the particles at t � 0 can now be read off
(as we did above) from their intrinsic properties and their positions at t � 0,
and thus (with the aid of F � ma) the approximate velocities of all the parti-
cles at t � T/4 can be deduced as well. And so what we now have in hand is a
list of approximate positions and approximate velocities and particle-types at
T/4, and of course those approximate positions and particle-types can now be
used to determine the approximate forces on all the particles at that time as
well, and that will in turn allow us to determine the positions and velocities
and forces at T/2, and so on.

And then we can go on to eight intervals, and then to sixteen. And as the
number of intervals approaches in~nity, the calculation of the particles’ posi-
tions at t � T patently approaches perfection. And it happens that there is a
trick (and the name of that trick is the calculus) whereby—given a simple
enough speci~cation of the dependence of the forces to which the particles
are subjected on their relative positions—that perfect calculation can actu-
ally and straightforwardly be carried out.

And of course T can be chosen to have any positive value we like. And so
the positions of all the particles in the system in question at any time be-
tween t � 0 and t � in~nity (and with that the velocities of all those particles
between those times, and their energies, and their angular momenta, and ev-
erything else about them) can in principle be calculated, exactly and with
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certainty, from the positions and velocities and intrinsic properties of all
those particles at t � 0.4

2. T IME - REVERSAL INVAR IANCE IN THE
NEWTONIAN P ICTURE

Newtonian mechanics has a number of what are referred to in the literature
as fundamental symmetries; and what that means is that in Newtonian me-
chanics there are certain sorts of facts about the world which—as a matter of
absolutely general principle—don’t make any dynamical difference.

Suppose, for example, that we are given the present positions and veloci-
ties of all the particles in the world, and that we are told what sorts of particles
they are, and that we would like to calculate their positions and velocities
(say) two hours from now. It is an extremely straightforward consequence of
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4. Note, by the way, that this overall determinism of the evolution of a universe of classical
particles (whereby all the present positions and velocities determine all the future ones) can in-
variably be taken apart (as it were) into separate determinisms running in parallel.

Consider, for example, a universe consisting of a single classical particle, which (being all
alone in the world) is never subjected to force.

Exactly two logically independent pieces of information—two numbers—are required in
order to specify fully the present physical situation of such a particle, and to nail down (by
means of the classical laws of motion) all its future situations. The pair of numbers we’re usually
presented with in contexts like this is the particle’s present position (x0) and its present velocity
(v0); but there are, of course, an in~nite collection of other, mathematically equivalent, such
pairs (x0 � v0 and x0 � v0, for example, or 5x0 � 14v0 and 36x0 � 7v0, or x0 and x0 � 23v0, or what
have you) which will patently do just as well.

Imagine, then, that we are informed of the values of the quantities v0 and x0 � Tv0 (where T
is some number), and that we would like to deduce, by means of the laws of classical mechan-
ics, the values of the velocity and the position of the particle at some later time t � T. The calcu-
lations involved here are trivial, of course, but what I want to draw the reader’s attention to here
is that the outcome of the ~rst of those calculations (which is: vT � v0) will depend exclusively on
the value of v0 and not at all on the value of x0 � Tv0, and that the outcome of the second of those
calculations (which is: xT � x0 � Tv0) will depend exclusively on the value of x0 � Tv0 and not at
all on the value of x0. And so if we were informed only of the value of v0, and were left entirely in
the dark about x0 � Tv0, we could nonetheless deduce, with certainty, from the laws of classical
mechanics alone, the value of vT; and if we were informed only of the value of x0 � Tv0, and
were left entirely in the dark about v0, we could nonetheless deduce, with certainty, from the
laws of classical mechanics alone, the value of xT.

And this turns out to be an absolutely general phenomenon, which applies to classical
worlds consisting of any number of particles, interacting with one another in any way you like:
the velocity (say) of particle number 789 at t � 6 years will necessarily be equal to some de~nite
function of the positions and velocities of all the particles in the world at t � 0, and the position
of particle number 3 at that time will necessarily be some other such function, and the values of
those two functions will necessarily be logically independent of each other.



the Newtonian picture of the world I described above that that calculation
can be carried through in perfect ignorance of what time “now” is. If the
classical laws of motion entail that a certain set of positions and velocities at
4:02 evolves into a certain other set of positions and velocities at 6:02, then
those laws will necessarily also entail that the ~rst set at 4:07 will evolve into
the second set at 6:07, and that the ~rst set at 12:23 will evolve into the sec-
ond at 2:23, and so on. Any sequence of position and velocity values for every
particle in an isolated collection which is in accord with classical mechanics
and which begins at time t would necessarily (to put all this slightly differ-
ently) also be in accord with classical mechanics if it were to begin instead at
t�. And in virtue of all that, Newtonian mechanics is said to have time-trans-
lation-symmetry, that is, it is said to be invariant under translations like that.

And it has a number of other signi~cant invariances as well: absolute posi-
tions don’t play any role in Newtonian mechanics (although the positions of
particles relative to one another certainly do), and neither do absolute direc-
tions in space, and neither do absolute velocities.5

▲▲▲ And neither does the direction of time.
Let’s stop and talk about that some.
Imagine, to begin with, watching a ~lm of a baseball which is thrown di-

rectly upward, and which is subject to the in_uence of the gravitational force
of the earth; and then imagine watching the same ~lm in reverse. The ~lm
run forward will depict the baseball moving more and more slowly upward;
and the ~lm run in reverse will depict the baseball moving more and more
quickly downward. What both ~lms will depict, though, is a baseball which
(whatever its velocity) is accelerating, constantly, at the rate of 32 feet per sec-
ond per second, in the direction of the ground.

And this is (of course) an absolutely general phenomenon: the apparent
velocity of any particular material particle at any particular frame of any ~lm
of any classical physical process run forward will be equal and opposite to
the apparent velocity of that particle at that frame of that ~lm run in reverse;
but the apparent acceleration of any particular particle at any particular
frame of the ~lm run forward will be identical, both in magnitude and in di-
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5. And all of these invariances are (by the way) also invariances of Maxwellian electrody-
namics, and of relativistic quantum string theories, and of every other fundamental theory in
the canon too.



rection, to the apparent acceleration of that particle at that frame of the ~lm
run in reverse.6

Now, the Newtonian law of motion (which is, remember, the entirety of
what the Newtonian picture of the world has to say about the motions of par-
ticles) is that a certain mathematical relation holds, at every instant, between
mass and force and acceleration. And of course the mass of any particular
particle at any particular frame of the sort of movie we’ve been talking about
depends on nothing other than what particular particle it is; and the force on
any particular particle at any particular frame of the sort of movie we’ve been
talking about depends on nothing other than what particular set of particles
happens to exist, and what those particles’ spatial distances from one another
at that frame happen to be; and what we’ve just seen is that the acceleration
of any particular particle, at any particular frame of such a movie, will be en-
tirely independent of the direction in which the ~lm is run. And so if a cer-
tain ~lm, run forward, depicts a process which is in accord with Newtonian
mechanics, then, necessarily, the same ~lm run in reverse will depict a pro-
cess which is in accord with Newtonian mechanics as well.7
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6. The proof is trivial. Let x(t) represent the apparent trajectory (that is, the apparent posi-
tion as a function of time) of the particle depicted in the ~lm run forward, and let v(t) represent
the apparent velocity (that is, the apparent derivative of the position with respect to time) of that
particle, and let a(t) represent the apparent acceleration (that is, the apparent derivative of the
velocity with respect to time) of that particle. Then the apparent trajectory of the particle de-
picted in the ~lm run in reverse will be x(�t). And of course the apparent velocity of a particle
whose apparent trajectory is x(�t) is (by de~nition) dx(�t)/dt, which is equal (by the chain rule)
to �v(�t), which is (of course) the negative of the velocity of the particle (at the frame in ques-
tion) depicted in the ~lm run forward. By contrast, the apparent acceleration of a particle whose
apparent trajectory is x(�t) is (by de~nition) (d/dt)(dx(�t)/dt), which is equal (by the upshot of
the previous sentence) to (d/dt)(�v(�t)), which is equal (by the chain rule) to �(�a(�t)),
which is equal (because (�1) times (�1) is (�1)) to a(�t), which is (of course) the same as the
acceleration of the particle (at the frame in question) depicted in the ~lm run forward.

7. Let’s put this a bit more formally. Consider a history {x1(t) . . . xN(t)} of some isolated col-
lection of N particles. What’s just been shown is that if

d2xi(t)/dt2 � Fi(x1(t) . . . xN(t))

for all i (where xi is the position of particle i, and Fi is the force on particle i), then necessarily

d2xi(�t)/dt2 � Fi(x1(�t) . . . xN(�t));

which is to say that if {x1(t) . . . xN(t)} is a solution to the Newtonian equations of motion, then
necessarily

{x1(�t) . . . xN(�t)}

is too.



And so it is a consequence of Newtonian mechanics that nothing in the
laws of nature can be of any help whatsoever in deciding which way any
~lm is ever being run. And so it is a consequence of Newtonian mechanics
that whatever can happen can just as easily, just as naturally, happen back-
ward.8

And so the Newtonian-mechanical instructions for calculating future
physical situations of the world from its present physical situation turn out to
be identical to the Newtonian-mechanical instructions for calculating past
physical situations of the world from its present physical situation. The in-
structions for calculating (say) the positions of all the particles in the world
ten minutes from now are to plug the present positions of all those particles,
and the rates at which those positions are changing as time _ows forward,
into a certain algorithm (the sort of algorithm we explicitly went through
above); and the instructions for calculating the positions of those particles
ten minutes ago are to plug their present positions, and the rates at which
those positions are changing as time _ows backward, into precisely the same
algorithm.

And so if we are told the positions of all the particles in the world at pres-
ent, and if we are told the rates at which those positions are changing as time
_ows toward some other moment M, and if we are told the size of the
time-interval that separates M from the present, then we can in principle cal-
culate the positions of all the particles in the world at M, with certainty, with-
out ever having been told (and also without ever learning, as the calculation
proceeds) whether M happens to lie after the present or before it.

And so (if the laws of Newtonian mechanics are all the fundamental natu-
ral laws there are) there can be no lawlike asymmetries whatsoever between
past and future.

▲▲▲ And the thing is that all this is wildly at odds with our everyday expe-
rience.

To begin with, every corner of the world is positively swarming with ordi-
nary physical processes that don’t, or don’t regularly, or don’t naturally, or

8 T IME AND CHANCE

8. Maybe a few of the standard illustrations are in order here. Think, then, of watching
~lms, run forward and run in reverse, of a single particle, alone in the universe, moving (say) to
the right; or of two billiard balls colliding; or of a rock moving downward, and accelerating
downward, in the gravitational ~eld of the earth.



don’t familiarly, happen backward (the melting of ice, say, or the cooling of
soup, or the breaking of glass, or the passing of youth; whatever).9

And (on top of that) there’s an asymmetry of epistemic access: our capaci-
ties to know what happened yesterday, and our methods of ~nding out what
happened yesterday, are as a general matter very different from our capaci-
ties to know and our methods of ~nding out what will happen tomorrow.10

And (on top of that) there’s what you might call an asymmetry of interven-
tion: it seems to us that we can bring it about that certain things occur—or
that they don’t—in the future, but we feel absolutely incapable of doing any-
thing at all about the past.

▲▲▲ And that’s the tension I mentioned before. And that’s more or less
what I want to talk about in this book. Or at any rate that’s the Newtonian ver-
sion.

The next thing to do is to generalize it some.

3. T IME - REVERSAL INVAR IANCE IN GENERAL

Let’s start by thinking through what it means to give a complete description
of the physical situation of the world at an instant.

There would seem to be two things you want from a description like that:

a. that it be genuinely instantaneous (which is to say that descriptions
of the world at different times have the appropriate sort of logical or
conceptual or metaphysical independence of one another, that a per-
fectly explicit and intelligible sense can be attached to any temporal
sequence whatever of the sorts of descriptions we have in mind
here—whether the sequence happens to be in accord with the dy-
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9. Maybe this is worth belaboring a bit further. Take soup. It isn’t that soup never heats up;
it’s (rather) that occasions when soup does heat up never look anything at all like mere temporal
inversions, like ~lms watched backward of occasions when soup cools off. The former occasions
are always different, somehow. They involve ~res or electrical currents or parabolic mirrors or
something like that. And that’s the point here: that you can bet your life that a tepid pot of soup,
in (say) an otherwise empty, cold, closed, insulated room, is invariably and ineluctably in the
process of getting colder.

10. Note that this is no less a physical business than the stuff about the cooling of soup: this
too is about the sequences in which the states of physical systems occur; this is about the fact that
(say) detailed and accurate depictions of freak accidents (photographic depictions, or tape-
recorded ones, or written ones, or ones stored in the physical states of human brains, or what-
ever) almost never precede those accidents themselves.



namical laws or not, that any such sequence whatever is readable—
against the background or within the context or relative to the frame-
work of the best or last or canonical metaphysical interpretation of
whatever complete theory of the world is under discussion—as a story
of the physical world); and

b. that it be complete (which is to say, that all the physical facts about
the world can be read off from the full temporal set of its descrip-
tions).

Good. Let’s call whatever satis~es (a) and (b) an instantaneous physical
state of the world.

What satis~es (a) and (b) in the Newtonian picture (for example) is a
speci~cation of the positions, at the time in question, of all the particles in
the world: no speci~cation of the positions of those particles at any one time,
or at any collection of times, logically entails anything whatsoever about their
positions at any other time; and given such speci~cations for all times, every-
thing about the history of the world can straightforwardly be read off.

What typically gets referred to in the physical literature as an “instanta-
neous state” of a Newtonian-mechanical universe, of course, is a speci~cat-
ion of the positions and the velocities of all the particles in the world at the
time in question. But the trouble with that is just that speci~cations of the
positions and the velocities of all the particles in the world at one time are
not conceptually independent of speci~cations of the positions and veloci-
ties of all the particles in the world at all other times.11 The trouble (to put it
slightly differently) is that a speci~cation of the positions and the velocities
of all the particles in the world at some particular instant is not a speci~cat-
ion of the physical situation of the world at that instant alone; it is not a
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11. And what I mean here (and maybe this deserves to be emphasized) is all other times.
The positions and the velocities of any set of particles at any one time are indeed perfectly logi-
cally and conceptually and metaphysically independent of the positions and the velocities of
those particles at any particular other time. But suppose that I is some time-interval within
which some particular time t happens to fall. Then the positions and the velocities of those par-
ticles at t will certainly not be logically or conceptually independent of their positions and veloc-
ities throughout the complement of t in I.

Think (for example) of a single particle moving uniformly to the right throughout the inter-
val (t � �1 minute) to (t � � 1 minute). And now replace x(t) and v(t) with x(�t) and v(�t), re-
spectively. And note that this maneuver leaves x and v at t � 0 (but not at any other time) un-
changed. And note that what this maneuver results in is a straightforward logical contradiction.



speci~cation of the physical situation of the world at that instant as opposed
to all others, at all!

And so the Newtonian laws of motion turn out not (exactly) to amount to
a deterministic connection between all the states of the world at all times
and any single one of them. What those laws amount to (if you want to be
careful) is a deterministic connection between all the states of the world at
all times and all the states of the world throughout any arbitrarily small
time-interval.12

▲▲▲ What is it, then, for something to happen backward?
Simple. Suppose that the true and complete fundamental physical theory

of the world is something called T. Then any physical process is necessarily
just some in~nite sequence SI . . . SF of instantaneous states of T. And what it
is for that process to happen backward is just for the sequence SF . . . SI to
occur.

▲▲▲ What is it, then, for a fundamental theory of the world to fail to dis-
tinguish between past and future?

I mentioned two ideas about that, some pages back, and talked about
them as if they amounted to more or less the same thing. One was that the
theory entails that whatever can happen can also happen backward, and the
other was that the theory offers identical algorithms for inferring toward the
future and the past. And these are actually, logically, altogether different
propositions. And I want to say something about precisely what their rela-
tion is.

Both of them, of course, turn out to be true of Newtonian mechanics; and
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12. The laws (that is) turn out to amount to a deterministic connection not between the po-
sitions of all the particles in the world at one time and their positions at any other time, but
(rather) between the positions of all the particles in the world at one time, and the rates at which
those positions are changing in the immediate vicinity of that time, and the positions at any
other time.

And those rates are emphatically not features of the physical situation of the world at any
particular instant. And so (on this way of looking at things) the Newtonian-mechanical laws of
motion turn out emphatically not to be anything along the lines of a set of rules whereby the
world decides, on the basis of its physical situation exactly now, what to do exactly next. But
(come to think of it) they couldn’t have been. The temporal instants (after all) form a contin-
uum; there is no such thing as the instant immediately after (say) ~ve o’clock.



it goes without saying that one can imagine other theories of which neither is
true; and it turns out (more interestingly) that theories can be imagined of
which one of them is true and the other isn’t.

There are (to begin with) two entirely distinct ways in which a theory
might fail to offer us identical algorithms for inferring toward the future and
the past.

One—the obvious one—is for the theory in question to offer us an algo-
rithm for calculating toward the past and an algorithm for calculating toward
the future and for those two algorithms to be different. Here’s a theory like that:
somewhere in space there is a ~xed blue dot. And there are particles. And the
law of motion is that each of those particles invariably proceeds toward that
dot as time _ows forward, and that the speed with which any particular particle
proceeds toward that dot at any particular time measured in feet per second is
equal to the distance between them at that time measured in feet.

But something else can happen too.
Consider (for example) a theory like this: there are, at a number of points

in space, ~xed blue dots. And there are particles. And all the particles invari-
ably move in perfect accord with the Newtonian laws of motion, except that
at noon, on a certain particular day, as the clock strikes, each particle jumps,
instantaneously, to the nearest blue dot, and thereafter proceeds onward,
with its pre-jump velocity, once again in accord with the Newtonian laws,
forever after.

The algorithm for determining the future positions of all the particles in
the world from their present ones, and from their rates of change as time
_ows forward, will be perfectly deterministic on this theory. But note that
this theory will yield no algorithms whatsoever for inferring from times after
the noon in question to times before it.

And note that the two very fanciful theories we’ve just been talking about
will both _atly deny—unlike Newtonian mechanics—that whatever can
happen to a collection of particles can also happen backward. And as a mat-
ter of fact, it turns out that any deterministic theory—that deterministic the-
ories in general—can allow that whatever can happen forward can also hap-
pen backward only if the theory offers us identical algorithms for inferring
toward the future and the past, and (equivalently) it turns out that determin-
istic theories can deny that whatever can happen forward can also happen
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backward only if they fail to offer us identical algorithms for inferring toward
the future and the past.13

Indeterministic theories are a bit more complicated. Theories with proba-
bilistic algorithms for inferring toward the future (that is, theories whose laws
stipulate the probability that such-and-such goes on at time 2 given that
such-and-such goes on at time 1) generally entail nothing about the business
of inferring toward the past—and yet many such theories allow that whatever
can happen forward can also happen backward.

Consider, for example, a system consisting of a single particle, which can
be located in either of two boxes. And suppose that the full theory of the dy-
namical evolution of this system, so long as it is isolated from outside
in_uences, is that the particle is as likely as not, over any one-second interval,
to switch boxes (that is, the full theory of the free dynamical evolution of this
system is that the particle’s probability of now being in box 1, given that it
was in box 1 one second ago, is 1/2; and the particle’s probability of now
being in box 2, given that it was in box 1 one second ago, is 1/2; and the parti-
cle’s probability of now being in box 2, given that it was in box 2 one second
ago, is 1/2; and the particle’s probability of now being in box 1, given that it
was in box 2 one second ago, is 1/2).

This theory will entail that the time-reverse of any physically possible free
trajectory is another physically possible free trajectory—it will entail (as a
matter of fact) that the probability of any physically possible free trajectory
(given its initial state) will be equal to the probability of that trajectory’s
time-reverse (given its initial state). And yet this theory will tell us nothing
whatsoever about the probability that (say) the particle was in box 2 one sec-
ond ago given that it is currently in box 1—just as the proposition that the
probability of a certain die landing on 4, given that it is a fair die, is 1/6,
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13. Here’s why: if whatever can happen forward can happen backward, then there is a one-
to-one mapping—the mapping that takes any trajectory into its time-inversion—between phy-
sically possible trajectories proceeding from any given present state toward the future and
physically possible trajectories proceeding from that same given present state toward the past.
Thus, if there is an algorithm whereby the present state plus (say) present-to-future rates of
change invariably pick out a single possible future trajectory, then there must be only a single
possible past trajectory with that same present state and the equivalent present-to-past rates of
change; and that present state, and those present-to-past rates of change, must necessarily pick
that past trajectory out in accord with precisely the same algorithm.



entails nothing whatsoever about the probability that the die is fair given that
it does land on 4.14

Of course, if any theory whatsoever offers us both predictive and retro-
dictive algorithms, and if those two algorithms happen to be identical, and if
the theory in question entails that a certain process can happen forward,
then it will necessarily also entail that the process can happen backward.
That’s what I’ll mean, then, from here on, when I speak of a theory as being
invariant under time-reversal.

▲▲▲ Good. Let’s talk some (with all this now under our belts) about the
candidates for a fundamental physical theory that have been taken seriously
since Newton.

Look, for example, at the classical theory of a universe made up of electri-
cally charged particles and electromagnetic ~elds. What counts as an instan-
taneous state of the world, according to classical electrodynamics (which is
what that theory is called), is a speci~cation of the positions of all the parti-
cles and of the magnitudes and directions of the electric and magnetic ~elds
at every point in space. And it turns out not to be the case that for any se-
quence of such states SI . . . SF which is in accord with the dynamical laws of
this theory, SF . . . SI is too. And so this theory is not invariant under time-
reversal. Period.

And neither (it turns out) is quantum mechanics, and neither is relativis-
tic quantum ~eld theory, and neither is general relativity, and neither is
supergravity, and neither is supersymmetric quantum string theory, and nei-
ther (for that matter) are any of the candidates for a fundamental theory that
anybody has taken seriously since Newton. And everything everybody has al-
ways said to the contrary (of which more later) is wrong.
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14. Perhaps this is worth spelling out in more detail. The point is just this: if some large col-
lection of particles is known, at time t, to be in (say) box 1, and if it is known that none of these
particles will be disturbed from the outside over the course of the next second, then it can be re-
liably inferred that about half of them will be in box 1, and the other half in box 2, at t plus one
second. But if some large collection of particles is known at time t to be in box 1, and if it is
known that none of these particles was disturbed from the outside over the course of the past
second, it can by no means be inferred that about half of those particles were in box 1 at t minus
one second, and the other half in box 2. Suppose, for example, that the second collection of par-
ticles is itself half of some much larger one, all of which were placed, at t minus one second, in
box 1. Nothing about the situations of those particles at t, needless to say, will have any bearing
whatsoever on the likelihood of that!



There is, though, a curious vestige of time-reversal invariance in all these
theories. There’s something about all these theories that isn’t time-reversal
invariance but nonetheless somehow recalls time-reversal invariance or sug-
gests time-reversal invariance or smacks of time-reversal invariance or is ca-
pable of masquerading, for certain purposes, as time-reversal invariance.

Let’s talk about classical electrodynamics again.
It turns out that for every sequence of instantaneous states SI . . . SF which

is in accord with the laws of classical electrodynamics, a sequence of the
form êSF . . . êSI will necessarily be in accord with them too, where the only dif-
ferences between any êSK and its corresponding SK have to do with where the
magnetic ~elds are pointing. And so classical electrodynamics does have
what you might call a partial time-reversal invariance, a time-reversal in-
variance insofar as the positions of the particles are concerned: classical elec-
trodynamics does entail that whatever motions particles can execute, they
can also (though under other circumstances, with differently directed mag-
netic ~elds around) execute backward.

And so the unbreaking of glass can be no less in accord with the laws of
Maxwellian electrodynamics than the breaking of glass is, and the spontane-
ous heating of soup can be no less in accord with Maxwellian electrodynam-
ics than its spontaneous cooling is, and the coming of youth can be no less in
accord with Maxwellian electrodynamics than its passing is, since (when you
come right down to it) what it is for glass to break or for soup to cool or for
people to get older-looking is just for the particles that make them up to as-
sume certain particular sequences of positions. And so classical electrody-
namics (even though it is decidedly not invariant under time-reversal) is
every bit as much at odds with the time-directedness of our everyday macro-
scopic experience as Newtonian mechanics is.

And the broad outlines of all this have remained more or less in place, or
at any rate they have suffered only two further complications (of which more
in a minute), ever since.

None of the fundamental physical theories that anybody has taken seri-
ously throughout the past century and a half is (as I mentioned above) invari-
ant under time-reversal.

Most of them are invariant under time-reversal, though, insofar as the po-
sitions of particles are concerned. For most of them (more particularly) there
is some fairly straightforward transformation linking every state SK with an-
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other state êSK—a transformation which varies from theory to theory, but
which in every case has the property that it leaves the positions of particles
unaffected—such that if SI . . . SF is in accord with the theory, then êSF . . . êSI

is too. And (once again) since our everyday macroscopic experience is ~rst
and foremost an experience of the positions of material bodies, those theories
are all at odds with the time-directedness of that experience in much the
same way as Newtonian mechanics is.

And there are two curious pieces of contemporary physical theory that ap-
pear not to be invariant under time-reversal, even in the limited sense we
have just been talking about.

One concerns the decays of certain sub-atomic particles. And those de-
cays (insofar as anybody has yet been able to imagine) have nothing whatso-
ever to do with the time-directedness of our everyday experience.

The other is more interesting. There is—very brie_y—a problem at the
foundations of quantum mechanics. And there are a variety of proposals
around for modifying quantum mechanics in such a way as to make that
problem go away. And it happens that some of those proposals (though not
all of them, and not even most of them) involve violations of partial time-
reversal invariance too. And those violations (if there turn out to be any, if the
proposals in question turn out to be right) might well have something to do
with the time-directedness of our everyday experience. And we will be talk-
ing a great deal about all that in the last chapter of this book.

But let’s leave it aside for the time being. There might well turn out (after
all) not to be any such violations. And if there aren’t, we’re going to need to
~gure out how to alleviate this tension, or how to live with this tension, or
what to make of this tension, without them. And the right place to start would
seem to be Newtonian mechanics, where the tension is particularly simple
and stark. Whatever we manage to discover there will presumably apply in
the more up-to-date cases too.

4. T IME - REVERSAL INVAR IANCE IN THE
PHYS ICAL L I TERATURE

Before we get to that, though, it ought to be acknowledged in somewhat
more detail that the thrust of what was reported in the previous section is
quite radically at odds with what it says in the textbooks.
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To begin with, what the books say it is to specify the world’s complete
physical situation at a certain instant is to specify what you might call its
complete dynamical conditions at that instant, to specify (that is) all the infor-
mation about the instant in question—or all the information which can in
one way or another be uniquely attached to the instant in question—which
is required in order to bring the full predictive resources of the dynamical
laws of physics to bear. And the trouble with that (the trouble with it—that
is—as a conception of the situation of the world at an instant) is that dynami-
cal conditions of the world at different instants can turn out, as I have repeat-
edly emphasized, not to be logically or conceptually or metaphysically inde-
pendent of one another.

Take Newtonian mechanics. The dynamical conditions of a Newtonian
universe at any instant are not the positions of all the particles in the world at
that instant but the positions and the velocities of all the particles in the world
at that instant (together, as usual, with a speci~cation of what sorts of parti-
cles they are). And the positions and velocities of all the particles in the
world at some particular instant are patently not logically independent of
their positions and velocities at other instants; and so a speci~cation of those
positions and velocities at some particular instant is not a description of the
world at that instant alone—it is not a description of the world at that instant
as opposed to all others, at all!15

Talking about going backward in the language of dynamical conditions
can consequently be a messy business. If (for example) DI . . . DF is an
in~nite sequence of Newtonian dynamical conditions corresponding to a
single free particle moving to the right, then DF . . . DI will correspond not to
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15. Maybe it ought to be stressed here that there is nothing wrong or misleading or incoher-
ent about Newtonian dynamical conditions per se, and (moreover) that such conditions can per-
fectly well be uniquely attached to particular times. Those sorts of attachments (after all) are pre-
cisely the business of differential calculus. What needs to be kept in mind is just that there is all
the difference in the world between being uniquely attachable to some particular time and
being a component of the instantaneous physical situation of the world at that time!

There’s nothing wrong with propositions like “the velocity of particle 5 at t � 7 is 12 miles
per hour, in the x-direction.” What a proposition like that is about, though, is not the instanta-
neous situation of particle 5 at t � 7 itself, but the rate of change of the position of that particle in
the immediate temporal vicinity of t � 7. What a proposition like that is about (to put it a bit
more technically) is the limit of the rate of change of the position of particle 5 over an interval
centered on t � 7, as the length of that interval goes to zero.



a particle like that moving to the left (which is what it is, after all, for a pro-
cess like that to happen backward) but to nothing whatsoever, to gibberish,
to a contradiction.16 And so if what counts for you as an instantaneous physi-
cal situation of the world is (somehow) a dynamical condition, then turning
something around (at least in certain cases) must involve something other,
something more, than a mere commonsensical inversion of the temporal se-
quence of those situations.

The books all tell it like this: for every possible dynamical condition of the
world, there is such a thing as that condition “going backward.” And here we
are starting to get right up to our necks in paradox. What can it possibly
mean for a single instantaneous physical situation to be happening “back-
ward”? Never mind. Press on. For every such condition D, there is (whatever
it means) some unique condition D* which is D’s so-called time-reverse.
And what it is for a process DI . . . DF to happen backward is not for the in-
verted sequence of dynamical conditions DF . . . DI to happen (which will as
often as not be illogical gibberish), but for the inverted sequence of inverted
dynamical conditions—DF* . . . DI*—to happen.

And what the books have to say on the question of the precise mathemat-
ical procedure for obtaining DK* from DK is (1) that in the case of New-
tonian mechanics the procedure is “obviously” to reverse the velocities of all
the particles, and to leave everything else untouched; and (2) that the ques-
tion needs to be approached afresh (but with the Newtonian case always
somehow in the back of one’s head) in each new theory one comes across;
and (3) that what it is in all generality for one physical situation to be the
time-reverse of another is (not surprisingly!) an obscure and dif~cult busi-
ness.

It isn’t, really. If you just keep your eye on the ball (which is to say, if
you’re careful to represent instantaneous physical situations of the world cor-
rectly, if you’re careful to represent them in accord with the requirements of
instantaneity and completeness, if you’re careful to represent them by means
of the sorts of things I decided, a few pages back, to call states) then every-
thing is perfectly straightforward. The way to ~gure out what it is for any se-

18 T IME AND CHANCE

16. What DF . . . DI will correspond to, in this case, will be a particle whose position is con-
stantly being displaced toward the left, and whose velocity (which is by de~nition nothing other
than the rate of change of that position) is constantly pointing to the right.



quence of dynamical conditions DI . . . DF to happen backward is to translate
that sequence into a sequence of instantaneous states,17 and then write that
latter sequence down in reverse order, and then translate that inverted se-
quence back into the language of dynamical conditions;18 and whatever you
end up with, when all that’s done, is (by de~nition) DF* . . . DI*. The thing is
that if you’ve fallen under the spell of the books, if the language of states is
unavailable to you, if you’ve gotten it into your head that what counts as a
complete description of the physical situation of the world at a pure indivisi-
ble structureless temporal instant is (per impossible!) a dynamical condition,
then the above analysis can never even become an object of your attention.19

▲▲▲ Insofar as Newtonian mechanics is concerned, none of this ends up
causing any actual trouble. The velocities of particles, after all, are nothing
but the rates of change of their positions. And so if a certain sequence of
genuinely instantaneous Newtonian states SI . . . SF corresponds to the se-
quence DI . . . DF of Newtonian dynamical conditions, and if the prescrip-
tion for obtaining DK* from DK is just to turn all the velocities around, then
the commonsensically backward sequence SF . . . SI will necessarily corre-
spond to the backward sequence DF* . . . DI* of the textbooks. And so the
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17. In all the candidates for a fundamental physical theory that anybody has taken seriously
since the Renaissance, a complete history of the world’s dynamical conditions is also a complete
history of the world, and so a complete history of the world’s dynamical conditions will corre-
spond to exactly one complete history of its states, and so the translation we are talking about
here will be completely unique.

But there can perfectly well (in principle) be theories in which it isn’t; there can perfectly
well be theories in which a given complete history of the world’s dynamical conditions corre-
sponds to more than one complete history of its states. In cases like that, any one of those latter
complete histories will do.

18. That this translation is always unique follows from the fact that states, by de~nition, are
complete.

19. Dynamical conditions aren’t necessarily distinct from states, of course. On the two-state
probabilistic theory discussed above, for example, states and dynamical conditions are identical.
But on any theory which is deterministic, and which is time-reversal symmetric, and which is
(in a sense that will presently be clear) non-trivial, they can’t be.

To see why, think of a deterministic theory T on which the state of the world can evolve
(over the course of a second, say) from SA to SB, and then (over the course of the next second)
from SB to SC. And suppose that SA is not the same state as SC. And suppose that this is a theory
on which whatever can happen can also happen backward. Then T must entail that there are at
least two different states (SC and SA) into which the state SB can lawfully evolve, over the course
of the subsequent second. And so T must entail that not every state-speci~cation is also a
speci~cation of a complete set of dynamical conditions.



textbook idea of what it is to go backward is cooked up in such a way as to
amount to precisely the same thing as the commonsensical idea. And so it
turns out to be a consequence of the Newtonian laws of motion, on all ac-
counts, that any physical process that can happen forward can happen back-
ward too.

But in other theories, and as a matter of fact in all the fundamental theo-
ries that anybody has taken seriously since Newton, the plot is a good bit
thicker.

Take classical electrodynamics again. What counts as an instantaneous
state of the world according to classical electrodynamics is (as I said before) a
speci~cation of the positions of all the particles and of the magnitudes and
directions of the electric and magnetic ~elds at every point in space. And it
isn’t the case that for any sequence of such states SI . . . SF which is in accord
with the dynamical laws of classical electrodynamics, SF . . . SI is too. And so
classical electrodynamics is not invariant under time-reversal.

But the books tell it very differently. What the books count as a physical
situation of the world at an instant (once again) is not an instantaneous phys-
ical state but a dynamical condition. And what counts according to classical
electrodynamics as a dynamical condition is a speci~cation of the positions
and velocities of all the particles in the world, and the magnitudes and direc-
tions of the electric and magnetic ~elds at every point in space. And of
course a simple inversion of any sequence of those which is in accord with
the classical electrodynamical equations of motion gives you illogic. But
there turns out to be a way of transforming those dynamical conditions (to
wit: reverse all the velocities, and reverse all the magnetic ~elds, and leave
everything else as it was) such that if a certain sequence of those conditions is
in accord with the classical electrodynamical equations of motion, then the
inverted sequence of transformed conditions necessarily is too. And it hap-
pens (or rather, it will come as no surprise) that the books identify precisely
that transformation as the transformation of “time-reversal.” And so, accord-
ing to the books, classical electrodynamics is no less invariant under time-
reversal than Newtonian mechanics is.

The thing is that this identi~cation is wrong. Magnetic ~elds are not the
sorts of things that any proper time-reversal transformation can possibly turn
around. Magnetic ~elds are not—either logically or conceptually—the rates
of change of anything. If SI . . . SF is a sequence of instantaneous states of a
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classical electrodynamical world, and if the sequence of dynamical condi-
tions corresponding to SI . . . SF is DI . . . DF, and if we write the sequence of
dynamical conditions corresponding to SF . . . SI as DF* . . . DI*, then the
transformation from DK to DK* can involve nothing whatsoever other than
reversing the velocities of the particles. And if that’s the case, and if DI . . . DF

is in accord with the classical electrodynamical laws of motion, then, in gen-
eral, DF* . . . DI* will not be.

▲▲▲ And so (notwithstanding what all the books say) there have been dy-
namical distinctions between past and future written into the fundamental
laws of physics for a century and a half now.

And nonetheless (and on this score the books are right), those laws are all
very curiously at odds with the time-directedness of our everyday experience.
And that (as I said before) is the tension I mentioned at the outset. And that’s
what the next couple of hundred pages will be about.
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▲▲▲ C H A P T E R T W O

THERMODYNAMICS

Let’s pay some more attention to the time-directedness of our everyday mac-
roscopic experience.

I mentioned three such directednesses before: a directedness of in_u-
ence, a directedness of knowledge, and a directedness of ordinary physical
processes like the melting of ice and the cooling of soup and the spreading of
smoke and the breaking of eggs and the passing of biological youth and so
on. And there happens to be a breathtakingly simple and concise and ele-
gant and powerful characterization of that third directedness, which is called
the second law of thermodynamics, and which was one of the supreme
achievements of the physics of the nineteenth century, and which is what
this chapter is going to be about.

▲▲▲ Note, to begin with, that the sorts of physical systems in which mani-
fest past-future asymmetries arise are, invariably, macroscopic ones, that
(more particularly) they are invariably systems consisting of enormous num-
bers of particles. Systems like that apparently have distinctive properties. And
it happens that in the middle of the nineteenth century a number of investi-
gators undertook to develop an autonomous science of such systems.

These guys were for the most part in the business of designing steam-en-
gines, and so the system of paradigmatic interest for them was a box of gas.

Let’s talk some about systems like that, then. Let’s ask, to begin with, what
terms are appropriate for the description of such a system. Let’s ask what it is
to give an account of the physical situation of such a system. The fullest pos-
sible such account is (needless to say) a speci~cation of the positions and ve-
locities and internal properties of all the particles that make up the gas and
its box. From that, and from the Newtonian laws of motion, the positions



and velocities of all those particles at all other times can in principle be cal-
culated. And from the full history of those positions and velocities everything
about the history of the gas and its box can in principle be read off. But the
calculations involved here are impossibly cumbersome. And there is pa-
tently another, simpler, more powerful, more useful, more familiar, alto-
gether different way of talking about such systems, which is to talk about
them in a language of the macroscopic, which is (more particularly) to talk
about things like the size and shape and mass and motion of the box as a
whole and the temperature and the pressure and the volume of the gas. And
there is patently a possible science of these temperatures and pressures and
volumes—a science (that is) of macroconditions. We know it to be a lawlike
fact, after all, that if we raise the temperature of a box of gas high enough the
box will blow up. And we know it to be a lawlike fact that if we squeeze a box
of gas from all sides the box will get harder to squeeze as it gets smaller.
Never mind (for the moment) that this must all in principle be deducible
from Newtonian mechanics. It must be possible (or at any rate it seems that it
must be possible, or at any rate it seemed so to these guys in the nineteenth
century) to systematize all this on its own; that is, it must be possible to dis-
cover an autonomous set of so-called thermodynamic laws of such boxes of
gas which directly relate volume and temperature and pressure to one an-
other, and which make no reference whatsoever to the positions and veloci-
ties of the particles of which (as it happens) the box and the gas consist.1
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1. This is worth harping on some. The situation (then) is as follows. The exact and complete
description of a collection of boxes of gas at some particular temporal instant (or of anything else
at some particular temporal instant, or of the universe as a whole at some particular temporal in-
stant) is called its microcondition, which is what we have heretofore been referring to as its dy-
namical condition, which consists—in Newtonian mechanics—of a speci~cation of the posi-
tion and velocity of every one of the particles of which those gasses and their boxes and whatever
else may happen to be around are made up. And since everything there is to say about a system
like that can necessarily be read off of its microcondition, any other way of talking about a system
like that, any other language for talking about a system like that, must necessarily amount to
some sort of a carving up of the entirety of its set of possible microconditions into subsets. And
there is (in particular) a carving up of that set which is characteristic of everyday human lan-
guage, and there is another carving up of that set (a very closely related one, of course) which is
characteristic of the discriminatory capacities of ordinary unaided human sense organs, and
there is another carving up of that set (and this—on the face of it—is a way of coming at the
business from an entirely different angle) of which there can be a simple and autonomous and
robust and non-trivial dynamical science; and it is (to begin with) something of a miracle, it is
something which is by no means guaranteed merely by there being a science of the micro-
conditions, that this third sort of a carving up should have existed at all. And it is (you might say)



And as it turns out, there are laws like that.
Let’s have a look at them.

▲▲▲ There is, to begin with, a thing called “heat.” Things get warmer by
absorbing heat, and they get cooler by relinquishing it. Heat is something
that can be transferred from one body to another. When a cool body is
placed next to a warm one (for example), the cool one warms up and the
warm one cools down, and this is in virtue of the “_ow” of heat from the
warmer body to the cooler one.

But what kind of a thing is “heat”? It turns out (on a little re_ection and a
little experimentation) to be a form of energy.

There are any number of ways of seeing that. Look, for example, at the
contraption in Figure 2.1. When the ~rst pin is removed, the gas pushes the
piston out, and the piston pushes the ball, and the ball accelerates, and (it is
observed) the temperature of the gas goes down. In the course of the pushing,
then, the ball gains energy and the gas loses heat. And it has been a very deep
article of faith in physics—it has been (you might even say) part and parcel
of the very idea of energy—that the total energy of any collection of systems
that are interacting with one another is necessarily always conserved. And so
the ball’s new energy must have come from someplace, and the only place
that immediately suggests itself is the heat relinquished by the gas.

Imagine, too, running the above experiment in reverse. The ball comes in
from the right, hits the piston, pushes it in, compresses the gas, heats it up,
and (at the same time) slows to a stop. The ball loses energy, and that energy
must have gone someplace, and the only place that immediately suggests it-
self is the heat acquired by the gas.

The temperature of a gas, then (if it has any particular temperature—if its
temperature is uniform throughout), is a measure of how much energy, of
how much heat, that gas has stored up inside it.

There are two ways in which gasses are known to be able to exchange
energy with their surroundings. They can exchange energy as heat (which
is what happens, for example, when bodies at different temperatures are
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the essence of thermodynamics, or the fundamental condition of the possibility of thermody-
namics, or whatever, that these three carvings up happen to amount to more or less the same
thing; and what that thing is called is the carving up of the set of possible microconditions into
macroconditions.



brought into thermal contact with one another), and they can exchange en-
ergy in mechanical form, as “work” (which is what happens when, say, the
gas pushes on the ball).2 And since energy is conserved, it must be the case
that, in the course of anything that might happen to a gas,

DU � DQ � DW (2.1)

where DU is the increase, in the course of the occurrence in question, of the
total energy of the gas, and DQ is the energy the gas absorbs in the course of
that occurrence in the form of heat, and DW is the energy the gas absorbs in
the course of that occurrence in the form of mechanical work; and where
DU, DQ, and DW can of course take on either positive or negative values.
This (once again) is nothing other than the law of the conservation of total
energy, written down in the macrolanguage of this autonomous science of
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2. Maybe this deserves a little further clari~cation. When we speak of a gas as transferring
energy to another system “as heat,” we mean that the energy takes the form of heat in the system
that receives it, and when we speak of a gas transferring energy to another system “as work,” we
are speaking of the gas as mechanically pushing on something. In both cases, of course, the heat
content of the gas itself will go down.



temperatures and pressures and volumes; and it is referred to as the ~rst law
of thermodynamics.

▲▲▲ Let’s sharpen our language a bit. It turns out to be convenient (to
begin with) to divide the various elements of the complete macrodescription
of (say) a collection of boxes of gas up into two roughly distinct classes, one of
which contains the sorts of things that we ~nd we are able to arrange, by gross
everyday mechanical means, as we please (the total masses of each of the sep-
arate gasses, for example, and their total energies, and the shapes and the vol-
umes of their boxes, and the positions of those boxes relative to one another
and to other macroscopic bodies, and so on), and the other of which contains
everything—or rather everything macroscopic—else (which is to say, a speci-
~cation of the values of variables like the pressure, density, and temperature
of each of the gasses as functions of position within each of their boxes). And
the elements of the ~rst class are referred to as “gross constraints” on the sys-
tem, and the elements of the second—taken all together—are referred to as
the system’s “thermodynamic condition.”3

Now, alterations in the gross constraints on a gas will typically bring about
changes in its thermodynamic condition. If (for example) the piston in Fig-
ure 2.2 is slowly pushed in, the volume of the gas inside it will decrease, and
its temperature will go up.

And it happens that if those alterations of the gross constraints are subse-
quently reversed (if, that is, the piston is slowly pulled the same distance back
out), the volume of the gas will go back up, and its temperature will go back
down, and its original thermodynamic condition will be restored. And trans-
formations of this sort are consequently said to be reversible.

And the characteristic of macrosystems which will particularly interest us
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3. It goes without saying that there are any number of different respects in which this sort of
talk is outrageously vague. And the thing (for the moment) is not to worry about that. It turns out
that—at a certain intermediate and not entirely fundamental stage of thinking things through—
it is a help.

Take the boxes, for example. The boxes we’ve been talking about here—which is to say the
walls of the boxes we’ve been talking about here—are going to have thermodynamic conditions
too. But the usual procedure—insofar as discussions of the thermodynamics of gasses (such as
we are engaged in now) are concerned—is to neglect those altogether. And that has turned out
to be a perfectly serviceable approximation for (say) the design of steam-engines. And we will
(until further notice) be adopting it here.



here is that certain of the thermodynamic transitions they undergo are not
reversible, that certain of the thermodynamic transitions they undergo have
a temporal directionality about them, that certain of the thermodynamic
things they do when their gross constraints are altered don’t get undone
when those alterations are reversed. Consider, for example, the gas in Figure
2.3. If the wall is slid out, the volume of the gas will increase, but sliding it
back in thereafter will patently have no thermodynamic effect whatsoever.

And it’s with transitions like that—with irreversible transitions—that the
second law of thermodynamics is concerned. What that law aims at is a very
concise and very general way of summing up all we know about such transi-
tions, a very concise and general rule for determining which transitions can
be reversed, or can occur in reverse (in this latter way of talking about it we’re
taking the manipulations of the gross constraints to be a part of the process as
well), and which cannot.

Let’s begin to think about what such a law might look like. We can start
anywhere. Let’s start, then, with what is perhaps the simplest and most strik-
ing and most familiar example of an irreversible process, which is the _ow of
heat from a hotter body to a cooler one when the two are brought into ther-
mal contact. The process is patently not reversible: separating the two bodies
again will not cause the heat to _ow back. Let’s see, as a ~rst shot, whether
that can somehow be directly elevated to the status of a general principle.

Consider the following proposal: “heat can never _ow from a cooler
body to a hotter one.” Note that this principle is explicitly time-reversal-
asymmetric: it permits, as nature also surely does, heat to _ow from hotter bod-
ies to cooler ones. But it looks absurdly narrow as a candidate for a second law
of the sort that we anticipated above: it seems to refer only to one of a gigantic
array of very different sorts of irreversible processes (the spreading of smoke,
the dissolving of sugar, the burning of paper, the passing of youth, and so on);
it seems as if it can have nothing whatsoever to say about the rest of them.
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And it is going to turn out to be (as it were) the miracle of thermodynam-
ics that as a matter of fact that isn’t so.

But we’re getting ahead of ourselves. The above principle, as it stands,
will patently not do, because it’s false. We know, after all, of counter-
examples: there are such things in the world as (say) refrigerators. But note
that it is a characteristic of refrigerators, insofar as we know, that their opera-
tion is invariably accompanied by thermodynamic changes in the rest of the
world, that (more particularly) they require an input of energy in order to
work, that their working requires that the total energy of the external world is
going down. And note that the familiar phenomenon of spontaneous heat
_ow from hotter bodies to cooler ones requires no concurrent changes in the
thermodynamic state of the rest of the world.

And so a principle like “no transformation whose sole (thermodynamic)
consequence is the transfer of a given quantity of heat from a cooler body to
a hotter one is possible” (which was ~rst written down by Clausius) would
seem (even if worries about the generality of its implications remain) at least
to be true, and to point to a genuine temporal asymmetry.

Let’s see what it can be parlayed into.
Consider a manifestly irreversible process which, on the face of it, has

nothing to do with the sorts of heat exchanges referred to in the above-pro-
posed second law of thermodynamics: a chair is initially sliding along a _oor.
There is friction. The chair slows down, and its energy of motion is con-
verted into heat, which raises the temperature of the _oor.4 Can the Clausius
law be shown to preclude the time-reverse of that? In the course of the re-
verse process, heat leaves the _oor (which is to say, the _oor cools down) and
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Figure 2.3

4. This rise in temperature will of course initially be con~ned to those local regions of the
_oor which come into direct contact with the chair, but things will eventually even out, and the
~nal, stable state of things will be one in which the chair is at rest and the _oor’s temperature is
uniformly higher than it was when the chair was moving.



is transformed into kinetic energy of the chair (which is to say, the chair be-
gins to move). And if that were to occur, nothing would stand in the way of
our setting up a piston in the chair’s path (as in Figure 2.4), which the chair
will run into, compressing the gas inside and heating it up, while (in the pro-
cess) losing its own kinetic energy. Then the gas can be irreversibly re-
expanded to its original volume without further changing its temperature.
And note that there is no reason at all why the initial temperature of the gas
inside the piston cannot be higher than the initial temperature of the _oor.
And so the sole ~nal thermodynamic result of such a process would be the
transfer of a quantity of heat from one body at a lower temperature (the _oor)
to another body at a higher one (the gas in the piston). And so this last
second-law proposal does indeed preclude the time-reverse of the frictional
slowing down of a chair sliding across a _oor.

Let’s try one more. A partition is slid out (as in Figure 2.3), allowing a gas
initially con~ned to one part of a container to expand, irreversibly, ~lling the
entire volume. Suppose that (per impossible) that could occur in reverse.
And suppose that we had prepared, in advance, a second box of gas, at higher
temperature and at lower pressure than the ~rst. And suppose that (at the
conclusion of the hypothetical spontaneous contraction of gas number 1) we
set up a two-ended piston between the two gasses as depicted in Figure 2.5.
And suppose that we allow the ~rst gas to push on that piston and compress
the second (in the course of which the temperature of the ~rst will go down
and the temperature of the second will go up) until the ~rst gas regains its
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original larger volume. Finally, we allow the second gas to expand irrevers-
ibly (by the removal of another partition, say) back to its original volume.5

Well, the net result of all this (starting with the state of things just prior to the
spontaneous contraction of gas number 1) will have been to transfer heat
from a cooler body (gas number 1) to a hotter one (gas number 2) with no
other thermodynamic changes in the rest of the world. And so the time-re-
verse of the free expansion of a gas is ruled out by the Clausius formulation
of the second law as well.

And so the Clausius formulation of the second law turns out to be vastly
more general and more powerful than it appears at ~rst.

▲▲▲ Let’s take this a little further. The time-reverse of the chair sliding
across the _oor is a process in which heat is extracted from a source (the
_oor), which is initially at a uniform temperature throughout, and converted
into mechanical energy, into work, and which leaves all the other thermody-
namic properties of the world unchanged. And a straightforward declaration
of the impossibility of anything like that turns out to be another famous for-
mulation of the second law, the formulation due to Kelvin: “a transforma-
tion whose sole ~nal thermodynamic result is to transform into mechanical
energy heat extracted from a source which is at the same temperature
throughout is impossible.”6
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Figure 2.5

5. Note, as before, that this irreversible expansion will cause no further changes in tempera-
ture, since no energy is being exchanged, here, with the rest of the world.

6. A mechanism for transforming heat extracted from a source at the same temperature
throughout into mechanical energy, and which produces no other thermodynamic changes in
the world in the course of that transformation, is referred to in the literature as a perpetuum mo-
bile of the second kind. The ~rst kind of perpetuum mobile, of course, is a mechanism for violat-
ing the conservation of energy. And so the ~rst and second laws of thermodynamics amount, re-
spectively, to stipulations to the effect that neither the ~rst nor the second kind of perpetuum
mobile can, in fact, exist.



Three remarks are in order here. (1) The word “sole” is just as crucial to
this formulation of the second law as it was to the last one. Heat can be ex-
tracted from a body at the same temperature throughout and transformed
into mechanical energy (for example) by putting that body in thermal con-
tact with a gas in a container with a piston on one end, and allowing the gas to
push the piston out, and allowing the piston to (say) set a ball in motion. But
note that at the conclusion of this process the volume of the gas will be larger
than it was initially, and that (of course) amounts to a thermodynamically
signi~cant difference in the state of the world. (2) This formulation, like the
last one, points to a time-asymmetry: the transformation of mechanical energy
into heat, with no other thermodynamic consequences (by means of friction
between a chair and a _oor, say), is a perfectly routine affair. (3) The discus-
sion of the sliding chair shows that Kelvin’s formulation of the second law is a
consequence of Clausius’s. Or rather, it shows that Kelvin’s formulation is a
consequence of Clausius’s together with one or two auxiliary stipulations—
which happen to be empirically true—to the effect that certain thermody-
namic transformations (a moving chair’s pushing in on a piston, for example,
and compressing the gas inside, and heating it up) are possible.

And it turns out (given our empirical knowledge of the possibility of cer-
tain other transformations) that Clausius’s formulation of the second law is
also a consequence of Kelvin’s.

▲▲▲ And there is yet another important formulation of this law, which is
demonstrably equivalent to the ~rst two, but which is (as a matter of prac-
tice) a great deal more powerful and more illuminating, and which makes
reference to something called the entropy.7

Let’s talk some about what that is. Consider two distinct thermodynamic
states of a certain system. Call them A and B. Typically, there will be any
number of different macroscopic routes, there will be any number of differ-
ent thermodynamic transformations, which can get us from A to B. And some
of those routes will be reversible, and some will not; and some of them may
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7. That Clausius’s formulation of the second law can be deduced from Kelvin’s, and that
both Clausius’s and Kelvin’s formulations can be deduced from the formulation we are about to
discuss, and that the formulation we are about to discuss can be deduced from either Kelvin’s or
Clausius’s, will all be demonstrated (along with other interesting things) in the Appendix.



involve the absorption of heat from the outside world, and some of them may
involve the relinquishing of heat to the outside world, and some may involve
the absorption of heat at some stages and its relinquishing at others, and cer-
tainly some will involve neither.

Good. Let Qi represent the heat absorbed by the system during the ith
stage of a certain route from A to B, and let Ti represent the temperature of
the system at that stage of that route. It happens to be a consequence of both
the Clausius and the Kelvin formulations of the second law of thermody-
namics that the sum over all values of i of the quantity Qi/Ti is the same for
any fully reversible route from A to B as it is for any other fully reversible
route from A to B.8 And so the sum over all values of i of the quantity Qi/Ti for
any fully reversible route from A to B turns out to be a perfectly de~nite ther-
modynamic function of the states A and B alone. And the name of that func-
tion is the entropy difference between A and B. And the third and ~nal and
most powerful and most illuminating of the formulations of the second law
of thermodynamics that I want to talk about in this chapter is that “the total
entropy of the world (or of any isolated subsystem of the world), in the course
of any possible transformation, either keeps the same value or goes up.” If
the transformation in question is reversible, then (needless to say) the en-
tropy value stays constant; if the transformation is irreversible, the entropy
goes up.

Let’s think through a couple of examples.
(1) A gas, initially con~ned to one corner of a large container, spreads ir-

reversibly to ~ll the container after a partition is removed. Note that the tem-
perature of the gas (let’s call it T) will be unaffected by all this, since the gas
never exchanges any energy with the outside world. All right. If this new for-
mulation of the second law is right, the entropy of the ~nal state here had
better exceed the entropy of the initial state. In order to see whether it does,
what we need to do is to cook up some fully reversible path from the initial
state to the ~nal one. Here’s one: the gas (in its initial state) is put into ther-
mal contact with a large heat source at temperature T, and the partition is re-
placed by a piston, and the piston is slowly pulled out. The gas does work.
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8. On many of these routes, of course, the system will absorb or relinquish heat at the same
time as its temperature is continuously changing. Routes like that will need to be subdivided,
then, into an in~nity of distinct in~nitesimal constant-temperature stages. For routes like that,
the sum over i of Qi/Ti will take the form of an integral over time of Q(t)/T(t).



But (since it remains in contact with the heat source at T) its temperature re-
mains constant. And the way it does that is by absorbing a positive amount of
heat from the source. And so the entropy of the gas rises. And of course the
entropy of the source will fall. And by precisely the same amount. And so the
entropy of the entire isolated system here remains the same throughout this
process. And so it must (according to this third formulation of the second
law), since the transformation the system undergoes is a thoroughly revers-
ible one.

(2) Two gasses whose masses and volumes are equal but whose tem-
peratures are initially different (let’s call them T1 and T2) are brought into
thermal contact with each other. Their temperatures irreversibly equalize at
(T1 � T2)/2. The ~nal state had better have a higher entropy here too. Let’s
see. Here’s a reversible path from the initial state to the ~nal one: the gas at
T1 is put into thermal contact with a gas in a piston at temperature T1, and
the gas at T2 is put into thermal contact with a gas in a piston at temperature
T2, and the ~rst piston is slowly pushed in and the second piston is slowly
pulled out in such a way as to equalize the temperatures at (T1 � T2)/2. Note,
to begin with, that Q/T will be positive for the cooler gas here, and negative
for the hotter one.9 What about the amounts? Well, the amount of heat ab-
sorbed by the cooler gas will clearly be equal to the amount removed from
the hotter one, and all the stages of the absorption occur at lower tempera-
tures than all the stages of the removal, and so the absolute value of Q/T for
the cooler gas will clearly exceed the absolute value of Q/T for the hotter
one, and so the total entropy of the two-gas system will be higher at the end
of this reversible process than it was at the beginning.

Note, by the way, that we have just now derived the Clausius formulation
of the second law from its entropy formulation.

▲▲▲ And one more thing. Corresponding to every particular thermody-
namic system, and every particular speci~cation of gross constraints, there is
exactly one stable thermodynamic condition, which is called the equilibrium
condition of that system under those constraints. For example, the equilib-
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9. Note that the transformations here are of the sort mentioned in footnote 8. What Q/T
stands for here, then, is the sum of Qi/Ti over the whole in~nity of in~nitesimal constant-tem-
perature stages of these transformations; what it stands for (that is) is the integral over t of
Q(t)/T(t).



rium condition of a gas of a certain total mass and internal energy and en-
closed within a container of a certain particular shape and volume is the
condition in which the gas uniformly ~lls the container, and in which the
gas’s temperature and pressure are uniform throughout.10 Any other condi-
tion of this gas, subject to those same gross constraints (a condition, for ex-
ample, in which the gas is all concentrated in one corner of the container),
will be unstable, and will spontaneously and irreversibly evolve toward the
equilibrium condition, and will stop evolving when it gets there. And so the
entropies of all the non-equilibrium conditions compatible with a certain set
of gross constraints must necessarily be lower than the entropy of the equilib-
rium condition. And so the equilibrium condition of any particular system
subject to any particular set of gross constraints will necessarily be the
unique maximal-entropy condition of that system compatible with those
gross constraints.
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10. The equilibrium state of any two-gas system, where the gasses are in thermal contact with
each other, will be one in which the temperatures of the two gasses are equal. The equilibrium
state of a chair in ~ctional contact with a _oor is one in which the chair is at rest. And so on.



▲▲▲ C H A P T E R T H R E E

S TAT I S T ICA L
MECHANICS

1. THE BAS IC IDEA

In the last decades of the nineteenth century, an enormously suggestive anal-
ogy was noticed between the thermodynamic properties of gasses and the
statistical properties of large collections of particles, of large collections of
(so-called) molecules.

Here’s the basic idea.
Think of a gas—a gas in a box, say—as consisting of billions of tiny parti-

cles. The particles are moving around freely and more or less independ-
ently of one another. And the quantity referred to in thermodynamics as
the “pressure” that this gas exerts on any particular wall of this box must
presumably be a measure of the force—per unit time per unit area—ex-
erted on the wall by the gas, a measure (that is) of how many of the gas’s
particles per unit time per unit area are hitting the wall, and of how hard
they’re hitting.

Good. Now consider an experiment. A gas is con~ned by a removable
wall (as in Figure 3.1) to the left half of a large container. Its pressure is P.
And now the wall is slid out, quickly, parallel to its surface. And the gas ex-
pands to ~ll the container. How should we expect this expansion to affect the
gas’s pressure? Well, the removal of the wall (particularly if it’s removed
quickly—so that few or none of the particles that make up the gas come into
physical contact with the wall while it’s in motion) will presumably not af-
fect the speeds with which the particles are bouncing around. And so it will
presumably not affect the momenta with which these particles typically hit
the wall. But note that the average distance which a particle travels between
collisions with a wall will increase when the removable wall is slid out. And
so the total number of such collisions per unit time ought to be expected to



go down when the gas expands. And so the pressure ought to be expected to
go down too. And so (as a matter of empirical fact) it does.

What temperature gets identi~ed with, in statistical mechanics, is the av-
erage kinetic energy (that is, the average energy of motion, the average value
of (1/2) � (mass) � (velocity)2) of the gas particles. So it turns out that heat is
not really another form of energy; heat, too, is mechanical. All energy, ac-
cording to the Newtonian picture of the world, is mechanical.

Consider another experiment. A gas is con~ned by a removable wall, just
as above, to the left half of a large container. Its temperature is T. And now
the wall is slid out, quickly, parallel to its surface. And the gas expands to ~ll
the container. The sliding of the wall presumably doesn’t affect the velocities
of the particles, and so it presumably doesn’t affect the energies of the parti-
cles, and so it presumably doesn’t affect the heat content of the gas, and so it
presumably doesn’t affect the gas’s temperature. And (as a matter of empiri-
cal fact) it doesn’t.

Another. The same initial condition as above. But this time draw the wall
out slowly, and perpendicular to its surface, like a piston. Now it happens to
be the case, it happens to be a consequence of the Newtonian laws of mo-
tion, that a billiard ball which bounces off a receding wall (as in Figure 3.2)
will move more slowly after the collision than before it.1 And so gas particles
that bounce off the wall as it’s being drawn out will have their kinetic ener-
gies somewhat depleted. And so the temperature of this gas should go down,
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1. Proof: consider the frame of reference in which the wall is at rest.

Figure 3.1



and (conversely) the temperature of a gas which a piston is pushing in on
ought to rise. And so they do.

One more. Take a gas in a box. Heat it up. Keep the volume constant.
The velocities of the gas particles will rise. And so the number of wall colli-
sions per unit time per unit area will rise (and the velocities of those colli-
sions will too, of course). And so the pressure ought to go up. And it does.

And there’s something else. It was noticed (with microscopes) that tiny
specks of dust, _oating around in gasses, move in tiny, sudden, random jerks,
as if they were being bombarded from all sides, as if the gas consisted of mov-
ing particles, of molecules. And it was with that (I think) that the metaphor of
particles came to be taken seriously. It was with that that material objects
came to be widely thought of as literally made up of atoms.

▲▲▲ What about irreversibility? What about the microscopic underpin-
nings of the second law?

Let’s start slow.
There’s an enormously illuminating thought-experiment of James Clark

Maxwell’s which suggests that the irreversibility of the behaviors of thermo-
dynamic systems requires that the systems in question not be too closely ex-
amined, and that the irreversibility of the behaviors of thermodynamic sys-
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tems must be a matter of high probability rather than of certainty. It’s called
the story of Maxwell’s demon. It goes like this.

A large container is divided (as in Figure 3.3) into two separate thermally
insulated chambers. One of those chambers contains a cooler gas and the
other contains a warmer one. And the wall between them has a small hole in
it. And the hole is covered by a small movable shutter. And the shutter is con-
trolled by a demon (or a supercomputer or whatever—it isn’t that anything su-
pernatural is required here). And the demon is able to measure very quickly
and very accurately the positions and velocities of all the molecules that make
up the two gasses. And the way the demon runs things is this: whenever a par-
ticularly slow-moving molecule in the warmer gas approaches the shutter—a
molecule whose kinetic energy is lower even than the average kinetic energy
of the molecules in the cooler gas2—the demon opens the shutter and lets it
through to the cooler gas. And whenever a particularly fast-moving molecule
from the cooler gas approaches the shutter—a molecule whose kinetic energy
is higher even than the average kinetic energy of the molecules in the warmer
gas—the demon opens the shutter and lets it through to the warmer gas. And
so the net effect of all this is to raise the average kinetic energy of the molecules
in the warmer gas and to lower the average kinetic energy of the molecules in
the cooler gas—to raise the temperature of the warmer gas and to lower the
temperature of the cooler one—to transfer heat from the cooler gas to the
warmer one. And note that all this occurs without the demon’s having been re-
quired to do any work3—note (as a matter of fact) that it all occurs without any
accompanying thermodynamic changes whatsoever in the rest of the world.
And that is, needless to say, in direct violation of Clausius’s formulation (and
hence all the others too) of the second law of thermodynamics.

And so if any agent or automatic device were ever in fact in a position to
survey the precise microscopic condition of the two gasses, and to act on that
information, then the second law would be false. And so the truth of that law
would seem to depend on there not being any such agents or automatic de-
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2. Molecules like that will of course make up an exceedingly tiny fraction of the molecules
in the warmer gas; but there will be some such molecules, or at any rate there are very likely to
be some, if the number of molecules in the gas is suf~ciently large.

3. He needs to move the shutter up and down, of course, but nothing on the level of princi-
ple stands in the way of the shutter’s being engineered to be arbitrarily light and arbitrarily
frictionless.



vices. And yet (and this is why the story is interesting) nothing on the level of
principle would seem to preclude them.

Note (and this is just to belabor the obvious, but it will be useful, later on,
to have written it down here) that all this depends crucially on the fact that
any full speci~cation of the thermodynamic situation of a gas necessarily falls
very far short of being a full speci~cation of its physical situation, that ther-
modynamic situations invariably correspond to enormous collections of dis-
tinct microsituations. It is explicitly because the demon is able to ascertain
more than we normally can about such a gas, because he is able to ascertain
more than is expressed by the gas’s thermodynamic condition, because he is
able to ascertain its microcondition, that he is reliably able to bring about vio-
lations of the second law.

Another story: the shudder is operated automatically, on a pre-selected
schedule. It opens (say) for precisely one second precisely once every two
seconds. Now clearly, it might be, just by chance, that when the shudder
opens, particularly fast moving particles pass through it from the cooler
chamber to the warmer one and particularly slow-moving particles pass
through it from the warmer chamber to the cooler one. That would repre-
sent an astounding stroke of luck, of course (or at any rate, it would represent
an astounding stroke of luck for it to happen repeatedly; it would represent
an astounding stroke of luck for it to happen to any signi~cant degree), but it
would seem not to be altogether impossible; it would seem not to be alto-
gether out of the question.
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The idea (presumably) is something like this: the microcondition of this
pair of gasses must be one or another of the enormous collection that is com-
patible with its thermodynamic condition, with its macrocondition; but of
course we can have no idea (given only the thermodynamic information)
which one. And there are only relatively few such microconditions which
will result, on the above shutter schedule, in a net transfer of heat from the
cooler chamber to the warmer one; and there are many many more that
won’t. And that would seem to suggest (but we will want to be thinking this
particular move through a great deal more carefully later on) that the proba-
bility of such a transfer, under such circumstances, although it isn’t zero, is
small.

▲▲▲ All right. Before we get in any deeper, there are one or two further
things we will need to know about Newtonian mechanics.

Consider the family of paths in three-dimensional space which a single
particle, moving in some particular external ~eld of force, moving in accord
with the Newtonian laws of motion, might traverse between t � �∞ and
t � �∞. That family will consist of some in~nite collection of continuous
curves, going every which way, crossing over one another, and perhaps sin-
gle points as well (which represent cases in which the particle is perma-
nently at rest). Consider, for example, the family of paths which a single free
particle, a single particle subject (that is) to no external forces, might tra-
verse. That family will consist of every single straight line there is in three-
dimensional space, and every single point there is too.

And all this is a bit of a mess. And it happens that there is a much prettier
and more informative way of representing things. In order to specify the posi-
tion of a particle in three-dimensional space, we need to specify three num-
bers; we need to specify the values of the particle’s three coordinates. And in
order to specify the velocity of a particle in three-dimensional space we need
to specify three other numbers (the three speeds with which the particle is
progressing along the x, y, and z axes, respectively). And that suggests a way
of representing the full dynamical conditions of a single-particle system, in a
three-dimensional space, at an instant, as follows: think (instead) of a six-di-
mensional space, and represent the full dynamical conditions of a single-par-
ticle system at an instant by a point in that space, using the ~rst three of its co-
ordinates as position coordinates and the second three of its coordinates as

40 T IME AND CHANCE



velocity coordinates. A space like that is referred to in the literature as the
phase space (as opposed to the three-dimensional position space) of the sin-
gle-particle system in question.

Picking out a point in phase space, then, corresponds to a full speci~cat-
ion of the dynamical conditions of a single-particle system at an instant, and
we can of course plot out possible trajectories (that is, we can plot out possi-
ble continuous sequences of dynamical conditions; we can plot out possible
continuous sequences of positions and velocities) in phase space too.4

Consider how those trajectories will look. Here are a few observations:
think (to begin with) of a point in ordinary three-dimensional space, in posi-
tion space, at which two possible position-space trajectories of a single-parti-
cle system cross. Think (that is) of a point in position space which two possi-
ble position-space trajectories share. The velocities associated with those two
trajectories at that common point must clearly be different, since the two tra-
jectories proceed to different points in position space slightly later on. In-
deed, we know that the position and the velocity of a single-particle system at
any one instant completely determine that system’s entire future and past,
which is to say that they completely determine that system’s entire trajectory,
and so no two trajectories that are in any respect distinct can ever share both
a position and a velocity.

The determinism of the Newtonian laws of the motions of single-particle
systems, then, entails that no two trajectories, depicted in phase space, can
ever cross! Trajectories depicted in phase space will tend to _ow along side
by side, as in Figure 3.4. The family of phase-space trajectories of a free sin-
gle-particle system, which moves about (for simplicity) in a one-dimensional
position space, is depicted in Figure 3.5. Note that each of the individual
points on the x-axis is a full trajectory in and of itself.

The generalization to many-particle systems is simple. One point in
6N-dimensional space can represent all the positions and velocities (which
is to say, it can represent the complete dynamical conditions) of a system of
N particles moving around in a three-dimensional position space. The mo-
tion of that single point in the phase space describes, in every detail, the indi-
vidual motions of all N particles, including a speci~cation of which particu-
lar particles are moving which way. And as before, the determinism of the
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4. Every particle (after all) at every instant has some position and some velocity!



Newtonian laws of the evolutions of such systems will entail that no two
paths in the phase space of any isolated dynamical system ever cross.

And yet another representation will come in handy sometimes. N points,
N numbered points, in a six-dimensional space (rather than a 6N-dimen-
sional one) can pick out the complete dynamical conditions of an N-parti-
cle system as well. Their N trajectories will specify the motions of all the
particles. Here, the implication of classical determinism will be that no two
distinct complete sets of N trajectories can ever all coincide at any single par-
ticular moment. Spaces like that are called mu-spaces. For single-particle
systems, of course, phase space and mu-space coincide.

▲▲▲ Good. Let’s get back to statistical mechanics.
The various different possible macroconditions, the various different pos-

sible thermodynamic conditions of any particular physical system, will pre-
sumably correspond to different regions of that system’s phase space. Every-
day macroscopic human language (that is) carves the phase space of the
universe up into chunks.

And the heart of the statistical-mechanical account of the second law of
thermodynamics is the observation (which was originally Boltzmann’s) that
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this carving up is radically uneven, that some of the chunks are radically
larger than others.

Think (to begin with) in mu-space. Think (say) of the mu-space of a gas in a
rectangular container. And divide that space up into equal-sized cubical
boxes. And call a speci~cation of which of the N identical gas particles is in
which of those equal cubical boxes an arrangement. And call a speci~cation of
how many particles there are in every particular box (but not of which particu-
lar particles are in every particular box) a distribution. And so a distribution
will typically be compatible with a number of different arrangements. And so a
distribution will typically convey much less information than will an arrange-
ment. And clearly every distinct arrangement of this gas will be compatible
with any one of an in~nite collection of its microconditions. Every distinct ar-
rangement of this gas (that is) will be compatible with any one of the in~nity of
points in some ~nite region of its phase space. And a little re_ection (of the sort
that goes on in Figure 3.6, for example) will show that the volume of the region
corresponding to any one arrangement will be equal to the volume of the dif-
ferent region—the disjoint region—corresponding to any other arrangement.

And note (~nally) that if the dimensions of the boxes are microscopic,
and if the boxes are nonetheless large enough so that there are many fewer of
them than there are particles in the gas, then what we’ve been referring to as
a distribution and what we’ve been referring to as a macrocondition will
come to more or less the same thing: they will both (that is) amount to
speci~cations of pressure and temperature and density and momentum and
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energy and charge and chemical composition and what have you as func-
tions of approximate location, as functions (if you will) of coarse-grained lo-
cation, in ordinary geometrical space.5

Good. Now the punch line. What Boltzmann observed was this: the dis-
tribution in which all N of the particles are located in box number one (or in
box number two or in box number three or in any particular box) corre-
sponds to exactly one arrangement. And the distribution in which N � 1 of
the particles are located in box number one and one of the particles is lo-
cated in box number two corresponds to N arrangements. And the distribu-
tion in which N � 2 of the particles are in box number one and two of the
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Consider (for simplicity) a system consisting of two particles, each of which is free to move about
only in one spatial dimension, and both of which are (moreover) confined within a certain finite

of that dimension. And suppose that what it means to give an of these two
particles is simply to specify about each one of them separately whether it happens to lie in the
right half or the left half of that interval. And forget altogether (just for the moment, just so as to
make everything representable on a two-dimensional sheet of paper) about the of these
two particles. Then the correspondence between arrangements and compatible regions of phase
space is going to go like this:

interval arrangement

velocities

Figure 3.6

5. The boxes need to be microscopic, then, so as to be capable of standing in, for all macro-
scopic intents and purposes, as “points”—and as to the boxes nonetheless being large enough so
that there are many fewer of them than there are particles in the gas, the idea there is that an indi-
vidual box should typically contain either a statistically signi~cant number of particles or none at
all, so that talk of statistical properties like the “temperature” or the “pressure” or the “density” of
the gas at a particular coordinate space box makes good sense—and so it turns out to be part and
parcel of what thermodynamic systems are that they are the sorts of systems whose mu-spaces can
be divided up into equal-sized boxes which simultaneously satisfy the above two constraints.



particles are located in box number two corresponds to N2 � N arrange-
ments. And the distribution in which N � 3 of the particles are located in
box number one and three are located in box number two corresponds to
N(N � 1)(N � 2) arrangements. And (more generally) dispersed distribu-
tions correspond to larger numbers of arrangements (and vastly larger num-
bers, mind you, if N is large) than concentrated distributions do.

And recall that we set things up so that the volume of the chunk of phase
space corresponding to any particular arrangement is equal to the volume of
the chunk of phase space corresponding to any other particular arrangement.
And so the upshot of all this is that dispersed distributions correspond to vastly
larger chunks of phase space than concentrated ones do.

And it turns out to be precisely this imbalance (as it were) that gets the sta-
tistical-mechanical account of the second law of thermodynamics off the
ground.

▲▲▲ But before that story gets told, a little digression is in order, on the
question of precisely where this imbalance comes from.6 The argument above
(which is the canonical one and the simplest one and the one that’s in all the
textbooks and the one that everybody learns as an undergraduate) is danger-
ously misleading about that. It makes it appear as if the imbalance depends
on there being some determinate matter of fact about which particular parti-
cle is in which particular mu-space location; it makes it appear as if the imbal-
ance depends (say) on the two situations depicted in Figure 3.7 being physi-
cally or metaphysically or in some meaningful way actually distinct from
each other. It makes it appear (that is) that the imbalance depends on an ex-
plicitly Haecceisstistic calculation of volumes in phase space.7 And as a mat-
ter of fact, it doesn’t depend on that. And that deserves to be made very clear.

Let’s start slow. The above calculation of volumes was carried out (once
again) in an explicitly Haecceisstistic phase space, the sort of space in which
the situations depicted in Figure 3.7 correspond to two distinct points. And
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6. And what follows here, by the way, is due to Nick Huggett, who published a very elegant
paper, “Atomic Metaphysics,” about all this a year or so ago in the Journal of Philosophy (96, no.
1 [January 1999]: 5–24).

7. Haecceisstism, then, is the doctrine that two worlds which differ from each other by
means of nothing over and above a simple permutation of the positions of otherwise identical
material particles are (nonetheless) different.



what immediately jumps out at everybody who looks at that calculation is
that switching to a non-Haecceisstistic phase space, switching (that is) to a
space in which the situations depicted in Figure 3.7 correspond to just a sin-
gle point, will drastically reduce the phase-space volumes associated with dis-
persed macroconditions. And so it will. But what’s easier to miss (but no less
true) is that switching to a non-Haecceisstistic phase space will reduce the
volumes associated with non-dispersed macroconditions as well, and by pre-
cisely the same factor.

Let’s see how that works. Consider a system consisting of two particles.
And suppose that each of those particles is free to move about in only a single
spatial dimension. And forget (for the moment) about their velocities. The
spatial con~guration of a system like that can be represented, Haecceis-
stistically, by a point in a two-dimensional phase space like the one depicted
in Figure 3.8, which is divided (as above) into separate boxes. The points in
box a correspond to situations in which particle one is in region A and parti-
cle 2 is in region B, and the points in box b correspond to situations in which
particle one is in region B and particle two is in region A, and the points in
box c correspond to situations in which both particles are in region A, and
the points in box d correspond to situations in which both particles are in re-
gion B. And a very natural non-Haecceisstistic phase space for this system
can be carved out of this Haecceisstistic one simply (say) by discarding the
region below the diagonal dotted line.

Of course, switching to a non-Haecceisstistic method of counting up the
possible con~gurations of a pair of particles like these will simply do away
with the distinction between what we’ve been calling an arrangement and
what we’ve been calling a distribution. Switching to a non-Haecceisstistic
method of counting up the possible con~gurations of a pair of particles like
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these (that is) will make it the case that there are exactly as many arrange-
ments of these particles in which one of them is in A and the other is in B
(namely: 1) as there are arrangements in which (say) both of them are in B.
That’s the thing that jumps out at everybody right away. What seems to have
been easier to miss (but which is right there to see, for example, in Figure
3.8) is that switching to a non-Haecceisstistic counting method will also do
away with the principle that different arrangements correspond to equal
volumes of phase space. Notwithstanding (for example) that there are exactly
as many non-Haecceisstistic arrangements of these particles in which one of
them is in A and the other is in B as there are non-Haecceisstistic arrange-
ments in which both of them are in B, the volume of the region of non-
Haecceisstistic phase space in which one of these particles is in A and the
other is in B is twice as large as the volume of the region in which both of
them are in B, just as it was in the Haecceisstistic case. And so it will go in
general. And so (notwithstanding everybody’s impression to the contrary) the
imbalance we have been talking about, the imbalance which is crucial to
the statistical-mechanical account of the second law of thermodynamics, has
nothing whatsoever to do with the question of Haecceisstism.8
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8. There’s a certain fairly trivial sense in which it ought to have been obvious from the out-
set (if we had stopped to think about it) that the facts of thermodynamics cannot possibly shed
any light on the truth or falsehood of the doctrine of Haecceisstism. The question of the truth or
falsehood of the second law of thermodynamics is (after all) a straightforwardly empirical one;
and the question of Haecceisstism, the question (that is) of whether or not certain observation-
ally identical situations are identical simpliciter, manifestly is not.

Nonetheless, it might have turned out that the statistical-mechanical account of thermody-



That having been said, we will, for the most part, be working with explic-
itly Haecceisstistic phase spaces here. They are (if only for the purposes of
smoothly connecting up with the physical literature) a good deal more con-
venient. But it will need to be remembered that that in no way, shape, or
form represents a matter of principle.

▲▲▲ All right. Let’s get back to our story. Let’s ~gure out what to make of
Boltzmann’s observation.

Consider, to begin with, how the entropy of any given macrocondition de-
pends on the shape of its distribution.

Consider, for example, two macroconditions of a gas, in one of which the
gas is concentrated in one corner of a large container, and in the other of
which it is more or less uniformly dispersed throughout the container, and in
both of which the temperature of the gas is the same. We learned in Chapter
2 that the entropy of the dispersed condition is higher than the entropy of the
concentrated one. And note that the condition that’s more dispersed in ordi-
nary coordinate space (since the temperatures of these two conditions are the
same, which is to say that the average kinetic energies of the gas particles in
these two conditions are the same, which is to say that the momentum distri-
butions associated with these two conditions are the same) will be more dis-
persed in mu-space as well. And so (in this case, at least) the higher-entropy
macrocondition is the one that corresponds to the larger number of arrange-
ments, and the higher-entropy macrocondition is the one that corresponds
to the larger volume in phase space.

This is suggestive. Let’s look further. Consider two macroconditions of a
gas, in both of which the gas is more or less uniformly dispersed throughout
its container, but in one of which its temperature is high and in the other of
which its temperature is low. The higher-temperature condition will be the
higher-entropy one. And the coordinate space distributions of these two con-
ditions will (by stipulation) be the same. And of course the momentum dis-
tribution of the warmer condition will be more dispersed than the momen-
tum distribution of the cooler one. And so the overall mu-space distribution
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namics is somehow radically simpler or more natural or more compelling or more of an explana-
tory success when expressed in a Haecceisstistic language than it is when expressed in a non-

non-trivial and impossible to have anticipated without doing the work) is that that is not the case.
Haecceisstistic one. And the thing we’ve just learned (which seems to me substantive and



associated with the higher-entropy condition will once again be more dis-
persed (as depicted in Figure 3.9) than the overall mu-space distribution as-
sociated with the lower-entropy one. And so the higher-entropy macro-
condition will again be the one that corresponds to the larger number of
arrangements, the one that corresponds to the larger volume in phase space.

Let’s try one more. Consider two macroconditions of a pair of gasses, each
of which is uniformly dispersed throughout its container. In one condition the
two gasses have different temperatures, and in the other their temperatures are
equal. The latter condition is (as we learned in the last chapter) the higher-en-
tropy one, and it turns out here too (although the demonstration is a bit more
involved) that the latter condition is the one that corresponds to the larger
number of arrangements and to the larger volume in phase space.

And so on. And this is Boltzmann’s ~rst great insight: that for all thermo-
dynamic systems, looked at in an appropriately coarse-grained mu-space,9
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9. In the sense described in footnote 5.



higher entropies correspond to larger numbers of arrangements, and larger
volumes of phase space.

▲▲▲ And as a matter of fact, Boltzmann was able to ~nd a stunningly sim-
ple and general mathematical expression for the thermodynamic entropy of
a distribution as an explicit function of the number of arrangements compat-
ible with it, which is:

S � K log n (3.1)

where S is the entropy of the distribution in question, n is the number of ar-
rangements compatible with that distribution, and K is a number known as
Boltzmann’s constant.10

And so we now have in hand a variety of new and beautiful and profound
and statistical ways of thinking about entropy.

To begin with, the entropy of a macrocondition is a measure of something
like the number of microconditions compatible with a given macrocondition.
That can’t be exactly right, of course: the possible microconditions of any
system (after all) form a continuum, and every macrocondition will necessar-
ily be compatible with an in~nity of them. What the entropy measures, then,
is not quite the number of microconditions compatible with the macro-
condition in question, but (as we saw above) the number of arrangements
compatible with it, the volume of the in~nity of compatible microconditions
in phase space.

And of course the fact that the entropy of a macrocondition is a measure
of the volume of the in~nity of microconditions compatible with it, the fact
that the entropy of a macrocondition is in some sense a measure of how
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10. The precise mathematical form of this function is (of course) determined by the re-
quirement that it match the thermodynamic entropy for all thermodynamically well-de~ned
circumstances.

Consider, for example, why the function needs to be proportional to the logarithm of n
rather than to n itself. It’s like this. The thermodynamic entropy of any collection of thermody-
namic systems is (think about it) the sum of the entropies of each of those systems separately.
But the number of arrangements compatible with the macrocondition of any such collection
will be the product of the numbers of arrangements compatible with the macroconditions of
each of those systems separately. And so it will be the logarithms of the numbers of arrange-
ments compatible with the macroconditions of each of those systems, and not the numbers of
such arrangements themselves, that add up the way thermodynamic entropies do.



many microconditions are compatible with it, means that entropy has some-
thing to do with information. Entropy (that is) is a measure of how much one
can infer about a system’s microcondition from knowledge of its macro-
condition. The higher the entropy of a macrocondition, the larger the vol-
ume of phase space which is compatible with it, the larger the number of
microconditions which are compatible with it, the less information that
macrocondition carries, the less a knowledge of that macrocondition can tell
you.

And if (say) all we know for certain of some particular system at some par-
ticular instant are its gross constraints, and if (for whatever reason, of which
more later) the probability we assign to the system’s being in any particular
one of the microconditions compatible with those constraints is equal to the
probability we assign to the system’s being in any other particular one of the
microconditions compatible with those constraints,11 then entropy is pa-
tently a measure of probability, then (more particularly) higher-entropy
macroconditions will be more probable, will be much more probable, than
lower-entropy ones.12

And entropy clearly has something to do with (at least) intuitive ideas of
randomness and disorder. Conditions with higher entropies are in some
sense less structured, less arranged, less bunched up, more dispersed, more of
a mess than those with lower entropies.

▲▲▲ Now we’re getting somewhere. None of this (as yet) is explicitly dy-
namical, but dynamical implications are patently not all that far off.

Let’s think some about how to get at them.
Here (to start with) are three crude stabs:

( 1 )

Suppose that a certain system is at present in a certain non-maximal entropy
macrocondition. Suppose (for example) that a gas is concentrated, at pres-
ent, in one corner of a large container. And suppose we would like to get an
idea of how this gas is going to be distributed in the coordinate space dimen-
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11. That is, if (for whatever reason, of which more later) our probability-distribution is uni-
form over the entire region of the phase space of the system which is compatible with the gross
constraints.

12. Since entropy is proportional to the log of the volume—and hence also to the log of the
probability—of the macrocondition in question.



sions of its mu-space one second from now. And suppose we would like to
get this idea without going to the trouble of ~nding out exactly what the pres-
ent microcondition of the gas is, and without going to the trouble of actually
applying the Newtonian equations of motion to a system consisting (as this
one does) of a huge number of particles.

Well, here’s something we might do—it’s crude (as I warned), but it has a
compelling sort of reasonableness about it: consider (as Boltzmann did) the
full set of coordinate-space distributions of the gas particles which might possi-
bly obtain a second from now given the gas’s initial macrocondition (given,
more particularly, the average initial speed of the particles of which the gas
consists). There are a number of such distributions (see Figure 3.10). But note
that one of those distributions (the maximally uniform, maximally dispersed
one) is associated with an overwhelmingly larger volume of phase space, with
(as it were) an overwhelmingly larger number of microdestinations, than any
of the others.13 And since we have no idea whatsoever which particular one of
the microconditions compatible with any of the above-mentioned distribu-
tions is the one that this gas will actually assume, it would seem to make sense
to count every one of those microdestinations as, a priori, equally probable.
And of course that will mean that it is overwhelmingly likely that the distribu-
tion that this gas assumes one second from now is precisely the maximally uni-
form maximally dispersed one pictured above—precisely the distribution
which our experience (and the summation of that experience in thermody-
namics) informs us it does assume!

And the same reasoning will now entail that the uniform spreading is very
much to be expected to continue for the subsequent second, and thereafter as
well, until the gas ~nally uniformly ~lls the entire container. And at that
point, what the same sort of reasoning will entail is that the container is over-
whelmingly likely to stay uniformly ~lled.

And so we have apparently succeeded here in deducing (from what seem
like entirely innocent and reasonable assumptions about the behaviors of
microsystems) an irreversibility! We have succeeded in deducing (that is)
that whereas concentrated distributions of this gas can be expected to evolve
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13. And note that this is entirely independent of the distribution of the gas particles in the
velocity dimensions of the mu-space. For every such distribution in velocity space, the coordi-
nate space distribution that takes up by far the largest volume of phase space will be the one
that’s maximally uniform and maximally dispersed.



into dispersed ones, dispersed ones are not to be expected to evolve into con-
centrated ones.

( 2 )

The gross constraint that typically comes into play in the position dimen-
sions of the mu-space is (as we’ve seen) something to the effect that each of
the particles in the gas is located within some speci~ed spatial region, within
some particular container—a constraint (that is) on the values of certain
physical variables of each of the particles separately.

The velocity dimensions, by contrast, tend to be a bit more complicated.
The constraints you encounter there are generally something along the lines
of a ~xed average energy per gas particle14—something (that is) that will give
rise both to constraints on each of the particles separately and also to mathe-
matical relations among them.

And it turns out that the most convenient way of thinking through the con-
sequences of relations like that is to think them through in the limit at which
the number of particles in the gas goes to in~nity, and the sizes of the boxes
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14. That is, a ~xed total energy for the gas as a whole.



in momentum space go to zero, so that the speci~cation of a distribution
amounts to the speci~cation of a continuously de~ned density-function.15

And the density-function which turns out to maximize the entropy, in the
limit as N goes to in~nity, with a ~xed average per-particle energy (that is, the
density-function which turns out to occupy the largest volume in the phase
space, the density-function which has the least internal structure, the den-
sity-function which is the most dispersed, in the limit as N goes to in~nity,
with a ~xed average per-particle energy) is the so-called Maxwell-Boltzmann
distribution, which is a bell-shaped curve that peaks at that average.

Think (then) of a gas which is composed of an in~nite collection of parti-
cles. And consider the rates at which those particles will typically be altering
the magnitudes and directions of one another’s velocities—altering them
(that is) by means of collisions. Consider (more particularly) the rate at
which pairs of particles in that gas, at some particular location x in physical
space, can be expected to undergo the particular sorts of collisions in which
(as depicted in Figure 3.11) the velocity of one of them gets changed from v1

to v1� and the velocity of the other one gets changed from v2 to v2�.
To begin with, that rate (as a little re_ection will show) must always be ex-

pressible in the form fx(v1)fx(v2)[v1 � v2]C, where C (which is known as the
cross-section for collisions of the type (v1,v2 → v1� ,v2�)) is deducible from infor-
mation about the structure of the interactions between the particles in ques-
tion.16

And suppose (and this is just to suppose that the interactions between the
particles in question are invariant under rotations) that the cross-section for
collisions of the type (v1,v2 → v1� ,v2�) happens to be identical to the cross-sec-
tion for collisions of the type (v1� ,v2� → v1,v2).
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15. Of course, the right way of expressing the energy constraint in the limit as the number of
particles in the gas goes to in~nity will be in terms not of the total energy of the gas, but of its
per-particle average.

16. Here’s the idea: to begin with, fx(v1) and fx(v2) are the initial densities of particles at the
(x, v1) and (x, v2) coordinates (respectively) in the mu-space. Patently, the rates of the sorts of col-
lisions we’re talking about must go up, linearly, as either of those go up.

Moreover, v1 � v2 will be the rate at which particles of the sorts we’re talking about will ini-
tially be approaching one another, and the rates of the sorts of collisions we’re talking about will
clearly be proportional to that too.

And then there will be a factor, C, which depends on precisely how the particles in question
interact with one another, and which will determine the frequency with which such interac-
tions de_ect particles from (v1, v2) to (v1�, v2�).



And suppose (and here we are dealing with something a bit less innocent,
a bit less obviously true) that the values of the density functions fx(v) happen
not to depend on x; suppose (that is) that at the moment in question there
happen to be no systematic correlations whatsoever between the velocities of
particles in this gas and their locations in ordinary physical space.

What Boltzmann was able to prove rigorously is that if all the above sup-
positions are true, then the velocity space density-function of this gas neces-
sarily either is the Maxwell-Boltzmann density-function at the moment in
question or is evolving toward the Maxwell-Boltzmann density-function, at
that moment, as time _ows forward. That’s his famous “H-theorem.” And so
(given all we’ve supposed, of which there will be a good deal more to say
later on) we have irreversibility, and we have entropy increase, and we have
the approach to equilibrium, all over again.17

( 3 )

Let’s take another tack. This one (which is more in the tradition of the Amer-
ican physicist J. W. Gibbs) is best laid out in the phase space.

In the phase representation (remember) the full Newtonian dynamical
conditions of an N-particle system at any particular instant correspond to a
single point in a 6N-dimensional space. And if the system in question is
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Figure 3.11

17. The upshot of all this, then, is that collections of particles will tend to spread out, as much
as the gross constraints allow, in mu-space. And the reason is always (roughly) that the maximally
spread-out distributions correspond to by far the largest number of microdestinations.



known to have some particular total energy, that (of course) will restrict the
possible locations of the system-point in the phase space.

Consider, for example, a system consisting of a single free particle, which
moves about only in a single spatial dimension. The phase space of a system
like that will be two-dimensional, and the information that the total energy
of that system is (say) E will restrict the possible locations of the system-point
to one of the two lines in Figure 3.12a.18

Or consider a system consisting of two free particles, each of which
moves about only in a single spatial dimension. The phase space of a system
like that will be four-dimensional. And the information that the total energy
of that system is E will here restrict the possible locations of the system-point
to the four-dimensional counterpart of a cylinder; the information that the
total energy of that system is E (that is) will restrict the possible locations of
the system-point to a region whose cross-section at every possible com-
bination of the position values of the two particles is precisely the circle in
Figure 3.12b.

And that’s how things always go: the set of locations in any Newtonian sys-
tem’s phase space which is compatible with that system’s having any particu-
lar total energy E forms some continuous region, and the dimensionality of
that region is typically larger than two, and the dimensionality of that region
is invariably less by one than the dimensionality of the phase space itself, and
that region is consequently referred to in the literature as the system’s “en-
ergy-E hypersurface.” And the conservation of the total energies of isolated
Newtonian systems clearly entails that the trajectory of any such system can
never wander off the particular energy hypersurface it starts out on.

Good. Let’s get back to gasses.
Consider (then) a gas which is subject to some particular set (any particu-

lar set) of gross constraints—constraints like the size of the box that the gas is
in, and the location of that box, and the total energy of the gas particles, and
so on. We know from our mu-space discussions that the overwhelming ma-
jority of the microconditions of such a gas are conditions whose entropy
value is precisely at the top of the range that those constraints allow. We
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18. The 6N-dimensionality of the phase space that I referred to above presumes that each of
the N particles is free to move around three ordinary spatial dimensions. The more general rule
is that the dimensionality of the phase space of an N-particle system is 2 � N � (the number of
ordinary spatial dimensions in which the particles in the system are free to move around).



know (that is) that the overwhelming majority of the microconditions of
such a gas are conditions corresponding to equilibrium.

And what that amounts to in phase space (which is depicted in Figure
3.13) is that equilibrium conditions take up the overwhelming majority of
the surface area of the relevant energy hypersurface of a gas like that.

Consider, then, a gas which is known to be concentrated at a certain ini-
tial time in one corner of a large container. Consider (that is) a gas whose sys-
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tem-point is known to be located at a certain initial time in a certain particu-
lar non-equilibrium region of the sort of hypersurface depicted in Figure
3.13. And suppose (once again) that we would like to get some idea of how
that gas is going to evolve; suppose that we would like to get some idea of
where that system-point is going to go, over the next ten minutes or so. And
suppose (as before) that we would like to get this idea without going to the
trouble of ~nding out exactly what the present microcondition of te gas is,
and without going to the trouble of actually applying the Newtonian equa-
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tions of motion to a system consisting (as this one does) of a huge number of
particles.

Well, something we might do, something that seems to have a compelling
reasonableness about it (more or less in the spirit of what we were doing on
page 52), is to suppose that the system-point wanders aimlessly, randomly,
every which way, in no particular direction, favoring no particular region, all
over the energy hypersurface. Let’s see what that can be parlayed into.

Let’s start by sharpening it up some. Let’s say of a system-point’s trajectory
that it favors no particular region of its available energy hypersurface if, for all
choices of T, in the limit as the length of a time-interval centered on T goes
to in~nity, the fraction of that interval that that trajectory spends in any par-
ticular region of that hypersurface is equal to the area of that region divided
by the area of the hypersurface. Trajectories like that (by the way) are re-
ferred to in the literature as ergodic, and ergodicity (if you think about it) is
clearly also the sort of thing one has in the back of one’s mind when one
speaks of trajectories wandering aimlessly and randomly and all over the
place and in no particular direction.

Not all the trajectories can be like that, of course. Think (for example) of
a gas in a perfectly rectangular container. And suppose that at a certain in-
stant the N particles that make up that gas are all in a line (as shown in Fig-
ure 3.14), and suppose that their velocities at that moment are all equal, and
parallel to one of the walls of the container. The trajectory of the sys-
tem-point of a gas like that will be con~ned, forever, to a single tiny corner of
its available energy hypersurface. The particles are going to be bouncing
back and forth, just as they currently are, for all time.

But this is patently (in some sense, of which more later) a very unusual
case. Alter the direction of the motion of even a single one of these particles,
by even the tiniest angle, and wait around a while, and you will have a whole
new ballgame. The majority of trajectories, the vast majority of trajectories,
are (it would seem) going to wander. The vast majority of trajectories (it
would seem) are going to be ergodic.

Let’s make that a bit more precise. Call a point in phase space an ergodic
point if the trajectory that point is sitting on—if the trajectory that point de-
termines—is an ergodic trajectory. What the above considerations suggest,
then, is that the area taken up by the non-ergodic points on any ~nite energy
hypersurface of any suf~ciently complicated Newtonian system is over-
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whelmingly tiny.19 What the above considerations suggest (as a matter of
fact) is that the area taken up by the non-ergodic points on any ~nite energy
hypersurface of any suf~ciently complicated Newtonian system (although
there are invariably an in~nite number of them) is zero.20

Good. Let’s get back to our story. Consider a gas whose system-point is
known to be located at a certain initial time in a certain particular non-
equilibrium region of the sort of hypersurface depicted in Figure 3.13. And
suppose that the trajectories on this hypersurface are typically ergodic.
Then—since the overwhelming majority of the area of this hypersurface is
taken up by its equilibrium-region—the typical trajectory on this hyper-
surface will spend the overwhelming majority of its time in that region. And
so a system whose phase point is initially outside of the equilibrium region
will typically make its way there before too long. And a system whose phase
point is initially within the equilibrium region will typically stay there.

And so we have irreversibility yet again.

▲▲▲ None of this proves anything, of course—we have merely (remem-
ber) been making crude stabs; we have been making assumptions all over
the place.
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Figure 3.14

19. The ~niteness of the energy hypersurface, by the way, is crucial here. To begin with, the
very de~nition of ergodicity—as applied to trajectories—will patently fail to make sense if the
area of the energy hypersurface on which the trajectory in question is located is in~nite. But it’s
more than just that. It’s that trajectories on in~nite energy hypersurfaces are typically not going
to have endless random-looking twists and turns in them. Think, for example, of the trajectories
of a system consisting of N free particles, uncon~ned by any boxes, alone in in~nite space.

20. Rigorous proofs of this sort of thing are hard to come by, but there are a few. It is now
known, for example, that a system consisting of three hard spheres—three billiard balls, more or
less—con~ned within a rectangular container, has this property.



But there can be no denying that these stabs have an enormously power-
ful cumulative suggestiveness. And the terminological resources for saying
precisely what it is that they suggest are now (at long last) fully in place.

It goes like this.
Consider a true thermodynamical law, any true thermodynamical law,

symmetric under time-reversal or not, to the effect that macrocondition A
evolves under such-and-such external circumstances over such-and-such an
interval into macrocondition B. What these stabs suggest (and suggesting
this—mind you—is all these stabs are for, and so everything that’s been said
up to this point in this chapter is a ladder that can now be kicked away; every-
thing that’s been said up to this point in this chapter has now served its pur-
pose by bringing us precisely here) is as follows: wherever such a law holds, it
will be the case (that is, it will be a logical consequence of the Newtonian par-
ticulate equations of motion) that the overwhelming majority of the volume
of the region of phase space associated with macrocondition A is taken up by
microconditions which are sitting on trajectories which pass, deterministi-
cally, under the allotted circumstances, at the end of the allotted interval,
through the region of phase space associated with macrocondition B.

And so if we are initially given only the information that macrocondition
A obtains, and that the external circumstances are such-and-such, and if we
suppose (in the absence of more detailed information) that the initial micro-
condition of the system in question is as likely to have been located in one
part of the region of the phase space associated with macrocondition A as in
another, if (that is) we suppose (in the absence of more detailed information)
that the probability that the initial microcondition of the system in question
was located in any particular subregion of the region of the phase space asso-
ciated with macrocondition A is proportional to the volume of that subre-
gion, and to nothing else, then it will follow that the probability of A’s evolv-
ing into B, under the allotted circumstances, over the allotted time, in the
absence of more detailed information, is (just as the laws of thermodynamics
dictate) overwhelmingly high.21
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21. Note (by the way) that there will patently be any number of other ways of cutting any
phase space up into chunks, into macroconditions, in terms of which there turn out not to be
any simple and robust and more or less deterministic “laws of thermodynamics.” The way our
senses happen to have cut it up, then, is no accident.



And so there would seem (on the face of it) to be good reasons for suspect-
ing that the laws of thermodynamics can in principle be deduced in their en-
tirety, in all their irreversibility, from the Newtonian particulate equations of
motion together with a single stunningly simple and eminently innocent-
looking and manifestly time-reversal-symmetric postulate about statistics.

▲▲▲ It turns out (of course) that a hell of a lot about this, as it stands, is a
hell of a lot too easy. And that’s what much of the remainder of this chapter
and much of the next one are going to be about.

2. THE NATURE OF THE POSTULATE ABOUT STAT IST ICS

I’ve been talking about the postulate about statistics up to now as if it more or
less amounted to a stipulation that what you ought to suppose, for purposes
of predicting a system’s future behavior, if you are given only the information
that the system initially satis~es X,22 is that the system is as likely to be in any
one of the microconditions compatible with X at the initial time in question
as it is to be in any other one of the microconditions compatible with X at the
initial time in question. That’s more or less what the postulate amounts to (I
think) in the imaginations of most physicists. And that (to be sure) has a su-
premely innocent ring to it. It sounds very much—when you ~rst hear it—as
if it is instructing you to do nothing more than attend very carefully to what
you mean, to what you are saying, when you say that all you know of the sys-
tem at the time in question is X. It sounds very much as if it is doing nothing
more than reminding you that what you are saying when you say something
like that is that X is the case at the time in question, and (moreover) that you
have no more reason for believing that the system is in any particular one of
the microconditions compatible with X at the time in question than you
have for believing that it is in any other particular one of the microconditions
compatible with X at the time in question, that (insofar as you know, at the
time in question) nothing favors any particular one of those microconditions
over any particular other one of them, that (in other words) the probability of
any particular one of those microconditions obtaining at the time in ques-
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22. If (for example) you are given only the information that the system is initially in a cer-
tain particular macrocondition.



tion, given the information you have, is equal to the probability of any partic-
ular other one of them obtaining at the time in question.

This is all wrong, however. And there is a technical reason that it’s wrong,
and there is a more fundamental (and less often rehearsed) one too.

The technical reason has to do with the fact that the sort of information
we can actually have about physical systems—the sort that we can get (that
is) by measuring—is invariably compatible with a continuous in~nity of the
system’s microconditions.23 And so the only way of assigning equal probabil-
ity to all of those conditions at the time in question will be by assigning each
and every one of them the probability zero. And that will of course tell us
nothing whatsoever about how to make our predictions.

And so people took to doing something else—something that looked to
them to be very much in the same spirit—instead. They abandoned the idea
of assigning probabilities to individual microconditions, and took instead (of
course) to stipulating that the probability assigned to any ~nite region of the
phase space which is entirely compatible with X—under the epistemic cir-
cumstances described above—ought to be proportional to the continuous
measure of the points within that region.

But there’s a problem with that—or at any rate there’s a problem with the
thought that it’s innocent—too. The problem is that there is in general an
in~nity of equally mathematically legitimate ways of putting measures on
in~nite sets of points. Think, for example, of the points on the real number
line between 0 and 1. There is a way of putting measures on that set of points
according to which the measure of the set of points between any two num-
bers a and b (with a � 1 and b � 1 and b � a) is b � a, and there is another
way of putting measures on that set of points according to which the measure
of the set of points between any two numbers a and b (with a � 1 and b � 1
and b � a) is b2 � a2. According to the ~rst of those two formulae, there are
“as many” points between 1 and ½ as there are between ½ and 0, and ac-
cording to the second of those two formulae, there are three times “as many”
points between 1 and ½ as there are between ½ and 0, and there turns out to
be no way whatsoever (or at any rate none that anybody has yet dreamed up)
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23. This follows from the fact that the totality of the possible microconditions of any Newto-
nian system invariably has the cardinality of the continuum, and that the accuracies of the mea-
surements that we are able to perform are invariably ~nite.



of arguing that either one of these two formulae represents a truer or more
natural or more compelling measure of the “number” or the “amount” or
the “quantity” of points between a and b than the other one does.24 And
there are (moreover) an in~nite number of other such possible measures on
this interval as well, and this sort of thing (as I mentioned above) is a very
general phenomenon.

And anyway, there’s a much more fundamental problem. There’s some-
thing completely insane (if you think about it) about the sort of explanation
we have been imagining here. Forget about all the stuff in the last three
paragraphs. Suppose there was no problem with the measures. Suppose that
there were some unique and natural and well-de~ned way of expressing, by
means of a distribution-function, the fact that “nothing in our epistemic sit-
uation favors any particular one of the microconditions compatible with X
over any other particular one of them.” So what? Can anybody seriously
think that that would somehow explain the fact that the actual microscopic
conditions of actual thermodynamic systems are statistically distributed in the
way that they are? Can anybody seriously think that it is somehow necessary,
that it is somehow a priori, that the particles that make up the material
world must arrange themselves in accord with what we know, with what we
happen to have looked into? Can anybody seriously think that our merely
being ignorant of the exact microconditions of thermodynamic systems
plays some part in bringing it about, in making it the case, that (say) milk dis-
solves in coffee? How could that be? What can all those guys have been up
to? If probabilities have anything whatsoever to do with how things actually
fall out in the world (after all), then knowing nothing whatsoever about a
certain system other than X can in and of itself entail nothing whatsoever
about the relative probabilities of that system’s being in one or another of
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24. This is (as a matter of fact) a long and not uninteresting story. There has been an entire
tradition of attempts over the past hundred years or so to argue that (notwithstanding the undis-
puted formal mathematical in~nity of measures) there will be features of every possible physical
situation, or of every possible epistemic relation to a physical situation, which will dictate that
there is exactly one way of putting measures on sets of microconditions that is (somehow) “natu-
ral” to that situation; and (moreover) that the appropriate sort of examination of the symmetries
of that situation will invariably reveal what way that is. And this tradition is now (after much
consideration) more or less universally acknowledged to be a failure. All of this is very nicely
laid out, I think, in chapter 12 of a wonderful and seminal book of Bas van Fraassen’s called
Laws and Symmetry (New York: Oxford University Press, 1989).



the microconditions compatible with X; and if probabilities have nothing
whatsoever to do with how things actually fall out in the world, then they
can patently play no role whatsoever in explaining the behaviors of actual
physical systems; and that would seem to be all the options there are to
choose from!

Let’s see where that leaves us. Certainly it does not follow merely from the
fact that all we know of a certain system is X that the chance of that system’s
microcondition being located in any particular subregion of the region of
the phase space that’s compatible with X is proportional to the volume of that
subregion. And yet it does seem to be some sort of a fact—or at any rate it
seems to yield correct predictions to suppose that it is some sort of a fact—that
the percentage of any large collection of randomly selected X-systems whose
microconditions lie within any particular subregion of the X-region of the
phase space will be more or less proportional to the familiarly de~ned vol-
ume of that subregion. And so the sort of fact that is must be an empirical
one, a contingent one, a scienti~c one.

▲▲▲ But that can’t be all there is to it, either. It turns out not to be quite
right, it turns out to be not quite true, as a general matter, as an empirical
matter, if you think it over, that the percentage of any large collection of ran-
domly selected X-systems whose microconditions lie within any particular
subregion of the X-region of the phase space is proportional to the volume of
that subregion.

Suppose, for example, that X is the property of being an apartment that
contains a spatula, and consider the large collection of such apartments on
earth. If the percentage of any large collection of randomly selected X-
systems whose microconditions lie within any particular subregion of the
X-region of the phase space is as a general matter proportional to the volume
of that subregion, then the ratio of the percentage of those apartments in
which the spatula is in the kitchen drawer to the percentage of those apart-
ments in which the spatula is (say) in the bathtub ought to be equal to the
ratio of the amounts of space those two containers take up. But that’s just not
right. Spatulas (as a matter of fact) are hardly ever in bathtubs; or at any rate,
they are much less often in bathtubs than they are in kitchen drawers; or at
any rate, that’s how it is on earth.
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Or suppose that X is the property of being a glassful of water,25 a glassful
(more particularly) in which the average kinetic energy of the water mole-
cules is well above the temperature at which water freezes. And consider the
large collection of such glassfuls on earth. If the percentage of any large col-
lection of randomly selected X-systems whose microconditions lie within
any particular subregion of the X-region of the phase space is as a general
matter proportional to the volume of that subregion, then the percentage of
those glassfuls in which any appreciable amount of the water is frozen ought
to be well within a millionth of a millionth of a millionth of a percent of
zero. But we see glasses of water, sitting in warm rooms, with chunks of ice in
them, all the time.

Maybe the thing to do is to narrow down the antecedent a bit; maybe it
ought to be rewritten so as to refer not to any property whatsoever (which is
how we’ve been writing it so far, which is what we’ve been meaning by the
X) but only to the property of being in one or another particular macro-
condition. Let the postulate read (then) that if a certain system is at present in
a certain macrocondition M, then the probability that that system’s micro-
condition currently lies within any particular subregion of the M-region of its
phase space is proportional to the familiarly calculated volume of that sub-
region.26

Or something like that. That will do (at any rate) for the time being—but
there are two points it will be well (for future reference) to keep in the back
of one’s mind.

The ~rst is that this way of ~xing things up is in a certain sense exceed-
ingly crude. The trouble with the original postulate (remember) was that it
seemed to be making false claims about (say) the locations of spatulas in
apartments. And what we’ve done by way of solving that problem is simply to
rewrite the postulate in such a way as to preclude it from making any claims
about things like the locations of spatulas in apartments at all. And that
would seem—or it might seem—to go a bit too far. There do appear to be
such things in the world, after all, as robust statistical regularities about the
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25. Tim Maudlin suggested this example to me.
26. And note that all this amounts (as well) to a contribution to our understanding of what it

is to be a macrocondition in the ~rst place—note (that is) that this is something to be kept in
mind alongside of what we learned (say) in footnote 1 of Chapter 2, and in footnote 5 of this
chapter.



locations of spatulas in apartments. And whatever such regularities there are
will be rendered altogether uncapturable by our fundamental statistical pos-
tulate if we ~x that postulate up as I am here proposing.

And note that (insofar as this ~xed-up postulate itself is concerned) there
must certainly be an in~nity of other postulates that can serve all practical
purposes just as well. The reason is that the familiarly calculated volume of
the subregion of any M-region of the phase space of any thermodynamic
system which is taken up by “abnormal” microconditions, microconditions
(that is) that lead to violations of the laws of thermodynamics, is not merely
small (which is what I have been at pains to emphasize about it so far) but
also scattered, in unimaginably tiny clusters, more or less at random, all
over the place, as illustrated (badly) in Figure 3.15. And so the percentage
of the familiarly calculated volume of any regularly shaped and not un-
imaginably small subregion of the region of the phase space corresponding
to whatever macrocondition the system in question happens to be in which
is taken up by abnormal microconditions will be (to an extremely good ap-
proximation) the same as the percentage of the familiarly calculated vol-
ume of the region of the phase space corresponding to that macrocondition
as a whole that abnormal microconditions take up. And so a uniform dis-
tribution, or even a reasonably smooth distribution,27 over any regularly
shaped and not unimaginably small subregion of the region of the phase
space corresponding to whatever macrocondition the system in question
happens to be in, will yield (to an extremely good approximation) the same
probabilities of the system’s being in this or that other macrocondition at
this or that future time as does the above uniform distribution over the
macrocondition as a whole.

3. WHAT AL L TH IS IS ABOUT

Here (just by way of ~nishing up) are three quick sketches of a certain bad
and in_uential train of thought about what the object of the science of statis-
tical mechanics is.

a. Entropies (you will remember) are associated with numbers of distinct
arrangements, or with volumes of phase space; and since any particular
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27. That is, a distribution which varies only negligibly over distances of the order of the di-
ameters of the unimaginably small subregions mentioned in the previous sentence.



microcondition is necessarily compatible with exactly one arrangement,28

since (to put it slightly differently) any particular microcondition occupies a
volume of exactly zero in phase space, no two microconditions can possibly
be associated with different entropies! And so the entropies of which we
speak in thermodynamics, the entropies whose values can change with time,
must somehow be associated not with individual systems but with ensembles
of systems, or rather not with individual conditions but with volume-~lling
probability-distributions over conditions. What the entropies of which we
speak in thermodynamics must characterize (to put it another way—a way
which seems to link up with the talk outlined above about entropy and infor-
mation) are not physical systems per se but rather our knowledge of such sys-
tems!

b. The briefest re_ection on the fact that gasses are collections of particles
(after the manner of the Maxwell’s demon story, say) reveals that it cannot
possibly be the case that individual systems will, as an invariable rule, mono-
tonically evolve in any particular direction—that it cannot possibly be the
case that individual systems will as an invariable rule evolve monotonically
toward any particular condition of equilibrium. By contrast, it seems not at all
implausible that in~nite ensembles of systems (or rather, probability-
distributions over in~nite collections of microconditions) might be shown to
evolve that way. And so it must be such ensembles, such probability-distribu-
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Figure 3.15

28. And note that this will be the case no matter how we decide to carve up the phase space
into macroconditions.



tions, and not individual systems, to which the laws and the predicates of
thermodynamics actually, properly, apply.

c. To speak of something being in “equilibrium” is surely (among other
things) to assert that its properties do not vary with time. But the same sorts
of very elementary re_ections that I alluded to in the last paragraph will re-
veal that there can certainly not be any individual microconditions of a gas
that have this property. It turns out to be easy to show, by contrast, that there
is a probability-distribution over the possible microconditions of any given
system, subject to any given set of ~xed gross constraints, that does.29 And so
“equilibrium,” too, must be a predicate not of individual gasses but of en-
sembles of them; not of microconditions but of distributions over micro-
conditions.

And now it becomes a matter of some urgency (since there is, after all,
only one macroscopic physical condition of equilibrium corresponding to
any given set of gross constraints) to show that there are no other probabil-
ity-distributions that have this property. And it turns out to be possible to
prove that if the laws of the motion of some particular Newtonian-mechani-
cal system are ergodic, then there aren’t30 (the idea is roughly that the
ergodicity of the laws of motion will entail that distributions other than the
one that’s uniform, on the standard measure, over the entire accessible re-
gion of the phase space—distributions which, say, are con~ned to some
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29. The distribution in question here turns out to be the one that’s uniform (relative to the
standard measure) over the complete set of the microconditions which are compatible with those
constraints. The demonstration (as I said) is easy. Note (to begin with) that for any point P in the
phase space of any Newtonian-mechanical system, there will invariably be some unique other
point in that space (let’s call it the “N-second-evolution” of P) at which a system initially located
at P will end up—in accord with the deterministic equations of motion—N seconds down the
line. Consider the N-second-evolutions of every one of the points in some arbitrary region of the
phase space of some such system. Those N-second-evolutions will (of course) form a region of
the phase space too. And there is a very general and very beautiful theorem of Newtonian me-
chanics (which we will prove, as a matter of fact, in the next chapter) to the effect that although
those two regions can differ arbitrarily in shape and location, they cannot differ at all, for any
value of N, in volume. And so the N-second-evolution of the region occupied by the complete
set of the microconditions of any such system which is compatible with any particular ~xed
gross constraints can evolve into nothing (if you think about it) other than precisely itself.

30. Or rather, it turns out to be possible to prove that if the laws of the motion of some par-
ticular Newtonian-mechanical system are ergodic, then the only other probability-distributions
with this property, if there are any, must assign non-zero probabilities to sets of microconditions
whose standard measures, whose familiarly calculated volumes, are zero, and there turn out to be
all sorts of reasons (or so they say) that a distribution like that cannot possibly represent any
macrocondition whatsoever.



smaller subregion—will invariably end up leaking all over the place). And so
the business of concocting rigorous proofs of the ergodicity of this or that set
of Newtonian laws of motion is all of a sudden of the utmost foundational
importance.

▲▲▲ All of this, however, is sheer madness. Let’s try to keep our heads on.
The sort of entropy we are attempting to get to the bottom of here, remem-
ber, is the entropy we ran into in thermodynamics. And thermodynamical en-
tropy is patently an attribute of individual systems. And attributes of individ-
ual systems can patently be nothing other than attributes of their individual
microconditions. And the way to calculate the entropy of an individual
microcondition (if that’s what the trouble is supposed to be) is patently to
calculate the number of arrangements compatible with the macrocondition
to which that microcondition belongs.31 And as to the time-invariance of the
condition of equilibrium and the monotonicity of the approach to equilib-
rium, the thing to say about them is just that they turn out not to be quite
true. And the prodigious effort that has over the years been poured into rigor-
ous proofs of ergodicity is nothing more nor less—from the standpoint of the
foundations of statistical mechanics—than a waste of time.32
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31. This sort of an attitude more or less goes back (I think) to Boltzmann, and it has been de-
fended in recent years, and with considerable eloquence, by (among others) Shelly Goldstein
and Joel Lebowitz.

32. Mind you, the effort has certainly produced beautiful mathematics. And insofar as the
project of a statistical-mechanical explanation of the laws of thermodynamics is concerned, it is
certainly suggestive, it is certainly welcome, that the laws of the motions of the phase points of a
wide variety of thermodynamic systems appear, or appear in some approximation, to be ergodic.
But neither the ergodicity nor the approximate ergodicity of those sorts of systems is necessary
for the success of that project, and neither of them would suf~ce; and the difference between
them, insofar as this particular project is concerned, is of no importance whatsoever.



▲▲▲ C H A P T E R F O U R

THE REVERS I B I L I T Y
OB J ECT IONS AND THE
PAST -HYPOTHES I S

Let’s see where we are.
It would appear that the tension we started out with has somehow magi-

cally evaporated. It would appear—if everything goes as expected, if every-
thing goes as the results of the previous chapter suggest—that the laws of
thermodynamics can in principle be derived, in their entirety, in all their ir-
reversibility, by pure logical deduction, from nothing over and above the
Newtonian laws of motion and the postulate about statistics.

▲▲▲ But this absolutely cannot be. The laws of thermodynamics (once
again) have a temporal direction in them; and there is patently no such direc-
tion, and there is patently nothing capable of picking out such a direction,
anywhere in the Newtonian laws of motion; and there is patently no such di-
rection, and there is patently nothing capable of picking out such a direc-
tion, anywhere in the postulate about statistics.1

This is worth rubbing in some. And there are a pair of century-old and pe-
rennially popular ways of doing that, and they are referred to in the literature
as the reversibility objections.

The ~rst objection—the objection of Zermello and Loschmidt, the objec-
tion I laid out (more or less) in Chapter 1—is that it would seem to follow
from the invariance under time-reversal of the laws of motion and the postu-

1. The Newtonian laws of motion (as was pointed out at considerable length in Chapter 1)
make no distinction whatsoever between past and future; and insofar as the postulate about sta-
tistics is concerned, the question of such a distinction cannot even arise. The postulate about
statistics (remember) isn’t about relationships between times at all; what it says (rather) is that a
certain relationship obtains, at any single time, between the macrostate of the system in ques-
tion and the probability of its being in some particular microstate.



late about statistics that entropy-decreasing processes can be no less natural or
familiar or statistically common in the world than entropy-increasing ones.

Let’s make that completely explicit. Suppose that a certain macro-
condition A evolves, irreversibly, over n seconds, as a matter of thermody-
namic law, into some other macrocondition B; and suppose that macro-
condition B evolves, over n seconds, as a matter of thermodynamic law, into
some third macrocondition C—A and B and C might (say) be macro-
conditions of an isolated warm room, in the ~rst of which there is a block of
ice, and in the second of which there is a half-melted block of ice and a pud-
dle, and in the third of which there is no ice at all and a bigger puddle. And
call a microcondition m� the n-second-evolution of another microcondition
m (as I began to do in footnote 29 of the previous chapter) if the Newtonian
laws of motion entail that m evolves, deterministically, over n seconds, into
m�. And now consider any one of the microconditions of the system in ques-
tion which is compatible with C and which also is an n-second-evolution of a
microcondition compatible with B and which also is a 2n-second-evolution
of a microcondition compatible with A. Take the velocity-reverse of that con-
dition (which is to say, take the microcondition you get by starting with the
one we just picked out—the one compatible with C—and reversing the ve-
locities of all the particles, and leaving everything else unchanged) and let it
evolve for n seconds into the future. What that will give you, by the time-
reversal symmetry of the Newtonian laws of motion, is the velocity-reverse of
a microcondition compatible with B. Let it evolve n seconds more into the
future. What that will give you, by the time-reversal symmetry of the New-
tonian laws of motion, is the velocity-reverse of a microcondition compatible
with A. And note that the velocity-reverse of any microcondition compatible
with A will itself be compatible with A, and that the velocity-reverse of any
microcondition with B will itself be compatible with B, and that the veloc-
ity-reverse of any microcondition compatible with C will itself be compati-
ble with C (nothing about what it is to be a warm room with a puddle or a
block of ice or a combination of the two in it, after all, entails anything what-
soever about the directions in which any of the individual molecules in that
room happen to be moving). And so for every single trajectory which is in ac-
cord with the laws and which carries you from A to B to C, there will neces-
sarily be exactly one which is in accord with the laws and which carries you,
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in the same amount of time, from C to B to A. And note (moreover) that the
familiarly calculated volume of the region of phase space taken up by the ve-
locity-reverses of any in~nite set of microconditions will necessarily be equal
to the familiarly calculated volume of the region taken up by that set itself.
And so, given only the information that a certain room is at present (say) in
macrocondition B, the postulate about statistics will entail (if you think
about it) that the room is exactly as likely to be on its way from C to A as it is
to be on its way from A to C.

The second objection is still more powerful—and more illuminating. It
will take some setting up, however.

Think (to begin with) of a certain continuous set of points, a certain re-
gion, a certain blob, in phase space. And consider the set of n-second evolu-
tions of every one of the points in that blob. That latter set will patently con-
stitute another blob,2 which will presumably have a different shape, and
which will presumably be located in a different part of the phase space,
from the ~rst. But there is a theorem of Liouville to the effect that the famil-
iarly calculated volumes of those two blobs (whatever the value of n is) will
necessarily be identical.3 The _ows of points in phase space (that is) have
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2. It will be a single blob rather than a number of them, by the way, because it is a property of
the Newtonian laws of motion that the microproperties of any isolated system n seconds from
now are invariably a continuous function of its microproperties now, at all times, and for any
value of n.

3. The proof goes like this:
Every system describable by classical mechanics (which includes—among many other sorts

of things—collections of point particles, interacting by means of separation-dependent inter-
particle forces, such as we have been concerned with here) can be uniquely associated with one
or another so-called Hamiltonian function H. For systems consisting of particles, H is invariably
a function of the particles’ individual positions, and of their individual momenta, and of nothing
else; and H invariably takes the form of the total kinetic energy of the system plus its total poten-
tial energy; and it happens (and this, of course, is why these functions are of interest in the ~rst
place) that the equations of the motion of any such system can invariably be written down, in an
especially simple and elegant way, in terms of its Hamiltonian. More particularly, it happens
that for every such system

dxi/dt � dH/dpi (4.1)

and

dpi/dt � �dH/dxi. (4.2)

Consider, for example, a single free particle, which is free to move about only in a single



precisely the mathematical structure of the currents in an incompressible
_uid.4

And there is a technique, due to Poincaré, for parlaying this theorem into
another one, a substantially more striking one, according to which any classi-
cal system which is con~ned to any ~nite region of its phase space (any clas-
sical system which, say, is in a box, and which has a certain de~nite, ~nite,
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spatial dimension. For a particle like that (since its potential energy is always, by de~nition,
zero),

H � p2/2m, (4.3)

and so it will follow from equations (4.1) and (4.2), respectively, that

dx/dt � p/m and dp/dt � 0, (4.4)

which (of course) precisely describes the motion of a particle like that.
For cases of multiparticle systems, with interparticle forces acting between them, which are free

to move around in a three-dimensional physical space, the Hamiltonian will take the general form

H � pi/2mi � V(x1 . . . x3N), (4.5)

where N is the number of particles. And that will entail (via (4.1) and (4.2)) that

dxi/dt � pi/2mi and dpi/dt � dV/dxi, (4.6)

which, taken together, amounts (in a slightly different notation) to precisely F � ma.
Good. Now, let fk(x1 . . . x3N, p1 . . . p3N) (where k varies from 1 to 6N) be what you might call

the _ow-~eld (or f-~eld) in phase space, by which I mean:

f1(x1 . . . x3N, p1 . . . p3N) � dx1/dt

� (4.7)

f6N(x1 . . . x3N, p1 . . . p3N) � dp3N/dt.

It will follow from (4.1) and (4.2) (if you just write it all down) that the 6N-dimensional diver-
gence of fk(x1 . . . x3N, p1 . . . p3N), which is de~ned as

df1(x1 . . . x3N, p1 . . . p3N)/dx1 � df2(x1 . . . x3N, p1 . . . p3N)/dx2

� . . . � df6N(x1 . . . x3N, p1 . . . p3N)/dp3N,

which is (as it were) the net out_ow of the f-~eld from any particular point in the phase space, is
always, everywhere, zero.

And there is a famous theorem of C. F. Gauss to the effect that the net _ow of any vector
~eld outward across the boundary of any ~nite region is equal to the integral of the divergence
of that ~eld throughout the interior of that region. And note that the net _ow of fk(x1 . . . x3N,
p1 . . . p3N) outward across any such boundary will be equal to the rate at which the volume of the
set of points in that boundary is increasing.

QED.
4. And this makes good sense, if you think about it; it has something intuitively to do with

the determinism of the classical equations of motion, with the fact that no two trajectories in the
phase space ever merge, and that no single one ever splits.

[ ... ]x p N1 3



total energy) will in the long run invariably return to its initial conditions, or
(at any rate) arbitrarily close to its initial conditions.

The proof goes like this:
Consider some particular blob in phase space called g0, and suppose that

the volume of g0 is w0. The blob which is the n-second evolution of g0 is
called gn, and its volume is called wn, and it follows from Liouville’s theo-
rem that w0 � wn.

Now, think of the much bigger blob which is made of the union of all the
points contained in any of the blobs gt for 0 � t � ∞. Call that big blob G0,
and call its volume W0; and let GT for any 0 � T � ∞ represent the big blob
composed of the union of all the points contained in any of the little blobs gt

for T � t � ∞; and let WT T

umes of all the GT will clearly be ~nite (since, by hypothesis, the volume of
the entire available phase space is ~nite here); and note that G0 will clearly
contain all the GT.

And now switch gears. G0, whatever else it is, whatever methods were used
to construct it, is patently itself a blob in phase space. And we can perfectly
well inquire, if we wish, what (say) the T-second evolution of G0 is. And the
T-second evolution of G0 T 0

� WT. And so (since G0 contains GT) it must be that G0 and GT are as a matter

same blob! And so GT, for any value of T, must contain (among other things)
g0. And remember that GT is entirely made up of future-evolutions of g0. And
so it follows that all the points in g0 are among the future-evolutions of the
points in g0!

And what that means is (of course) that all the points in g0 (except, per-
haps, for a set of measure zero of them) are sitting on trajectories which
passed through g0 at some earlier time. And what that means (in light of the
invariance under time-reversal of the Newtonian equations of motion) is that
all the points in g0 (except, perhaps, for a set of measure zero), will pass
through there again. And note that all this will be the case no matter how
small g0 may happen to be.

And so any classical-mechanical system which is con~ned to a ~nite re-
gion of phase space will sooner or later loop back around, with probability
one, arbitrarily close to all the points in that space which it ever occupied,
and then again, and then again, and so on, ad in~nitum.
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is patently G . And so (by Liouville’s theorem) W

of fact (modulo, at most, a set of points whose cumulative measure is zero) the

represent the volume of G ; and note that the vol-



And this is an astounding result. Consider what it implies:

1. A drop of ink, which is dropped into a bowl of clear water, in a
closed room, will eventually, with probability one, re-collect within
the water and hop back out.

2. An egg, dropped on the _oor from a considerable height in a closed
room, will eventually, with probability one, reassemble itself per-
fectly on the _oor and then hop up off it.

3. Two gasses of different temperatures in thermal contact with each
other will eventually, with probability one, return to their original,
different, temperatures.
.
.
.

N. All irreversible processes that occur within closed, ~nite volumes of
phase space will eventually, with probability one, and then again
and again and again, reverse themselves.

And so it ineluctably follows from the Newtonian laws of motion and the
best version we currently have of the postulate about statistics that (1) the
entropy of any thermodynamic system in any macroscopic condition is ex-
actly as likely to be decreasing as it is to be increasing; and that (2) the number
of entropy-decreasing segments and the number of entropy-increasing seg-
ments of the full history of any individual thermodynamic system which is
permanently isolated and permanently con~ned to some particular ~nite re-
gion of phase space will, with probability one, be equal. And so things are ab-
solutely and positively not as I said they appeared in the third sentence of this
chapter.

What the hell was the content of the insight of Boltzmann and Gibbs,
then? Nothing?

Let’s slow down a bit. Let’s think it through more carefully.5

What they saw, or what (at least) they were able to make plausible, was that
the Newtonian laws of motion and the postulate about statistics (or some-
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5. And these next few paragraphs will more or less rehearse, insofar as I am familiar with it,
what Boltzmann and Gibbs themselves had to say, at the time, by way of responding to the two
objections we have just been discussing.



thing like the postulate about statistics, but of that more in a minute) entail
that the overwhelming majority of the trajectories passing through any partic-
ular non-maximal-entropy macrocondition increase their entropies toward the
future; that (more precisely) the measure, or rather the standard measure, of
the trajectories passing through any particular non-maximal-entropy macro-
condition which increase their entropies toward the future is overwhelm-
ingly larger than the standard measure of those that don’t.

And this (if you think about it) is something a good bit weaker than the
proposition that gets alluded to in the third sentence of this chapter. This—
as it stands—is perfectly compatible with the time-reversal-symmetry of the
Newtonian laws of motion and the postulate about statistics, and (more par-
ticularly) it is perfectly compatible with the claim that entropy-increasing
trajectory segments are no more plentiful, either in general (which is to say,
within the entire set of physically possible trajectories) or even in the history
of any particular single, isolated, bounded, thermodynamic system, than en-
tropy-decreasing trajectory segments are. To say that the overwhelming ma-
jority of the trajectories passing through any particular non-maximal-entropy
macrocondition increase their entropies toward the future is (after all) cer-
tainly not to deny that the overwhelming majority of the trajectories passing
through any particular non-maximal-entropy macrocondition also increase
their entropies toward the past!

What Boltzmann and Gibbs saw, then, was apparently that the New-
tonian laws of motion and the postulate about statistics (or something like it,
of which more in a minute) entail that the overwhelming majority of the
trajectories passing through any particular non-maximal-entropy macro-
condition must just then be in the process of turning around; that (as il-
lustrated in Figure 4.1) every non-maximal-entropy macrocondition of a
thermodynamic system represents a local entropy minimum of the over-
whelming majority of the physically possible trajectories that pass through it.

Let’s get in a bit deeper here. Let’s see how that can be. Consider a system
which the laws of thermodynamics say will evolve from a certain relatively
low-entropy macrocondition A through a certain higher-entropy macro-
condition B to a certain equilibrium macrocondition C. If statistical me-
chanics is to be able to do its job, then, the overwhelming majority of the
physically possible trajectories passing through A are going to have to pass,
subsequently, through B. And yet Boltzmann and Gibbs, as we are currently
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reading them, are going to be committed to the proposition that B represents
a local entropy minimum of the overwhelming majority of the physically pos-
sible trajectories that pass through it; which is to say that Boltzmann and
Gibbs, as we are currently reading them, are going to be committed to the
proposition that only an unimaginably tiny minority of the physically possi-
ble trajectories passing through B have recently passed through A. And all of
this can only be consistent in the event that (as it were) the total number of
physically possible trajectories passing through B is overwhelmingly larger
than the total number of physically possible trajectories passing through A;
in the event (that is) that the total number of distinct microconditions com-
patible with B is overwhelmingly larger than the total number of distinct
microconditions compatible with A. But (of course) it is. That, after all, is
just what it amounts to, in the language of statistical mechanics, to say that B
has higher entropy than A does!

▲▲▲ Good.
But now there are patently new concerns. And quite serious ones.
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Figure 4.1



The above considerations make it abundantly clear (to begin with) that
even the most recent and most sophisticated of our attempts at cooking up a
postulate about statistics can’t possibly be quite right, because it turns out to
be radically incompatible with what we have just now come to suspect must
be true of the Newtonian laws of motion.

The trouble (more particularly) is that in the event that the postulate is
true of a certain ensemble of thermodynamic systems at one time, it will in
general not be true of that ensemble of systems at any later time.

Suppose (for example) that at t � 0 we place a large ensemble of fully
unmelted ice cubes in an equally large ensemble of warm rooms. And sup-
pose that this composite ensemble is initially well described by the most re-
cent version of our postulate about statistics. Well, that postulate, together
with the Newtonian laws of motion, is going to entail (if all goes as we now
hope) that the overwhelming majority of these ice cubes will be partly
melted at (say) t � (5 minutes). But suppose that we were now to apply the
postulate again, this time to the macrocondition of the composite ensemble
at t � (5 minutes). Well, what that will entail, together with the Newtonian
laws of motion, as we have just been discussing, is that back at t � 0 the over-
whelming majority of the ice cubes were more melted still!6 And that (of
course) _atly contradicts one of the postulates we started out with! And so it
turns out to be a straightforward mathematical impossibility (if the Newto-
nian equations of motion have the sorts of consequences, for systems like
these, that Boltzmann and Gibbs suggest they do)7 for there to be any ensem-
ble of melting ice cubes which is well described, throughout its evolution, by
this most recent version of our postulate about statistics. And as a matter of
fact (if you think it over for a minute) there turns out not even to be a single
possible macrocondition of a classical system—not even its equilibrium con-
dition—which has the property that if it is the initial macrocondition of the
isolated system in question, and if the static probability rule initially holds,
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6. That is, what the most recent version of our postulate about statistics will entail, when ap-
plied to the macroconditions of the composite ensemble of the systems we have been talking
about at t � (5 minutes), if the Newtonian laws of motion have the property we have lately
come to think they must, is that the proportion of those systems whose microconditions at t � (5
minutes) are 5-minute evolutions of microconditions in which the ice is completely unmelted
is overwhelmingly small.

7. Which is that every non-maximal-entropy macrocondition represents a local entropy mini-
mum of the overwhelming majority of the physically possible trajectories that pass through it.



then the dynamics will guarantee that the rule will continue to hold in the
future.8

Moreover, all questions of logical compatibility aside, the considerations
of the last few pages make it clear that our latest version of the postulate
about statistics is explicitly, empirically, false (of large systems of half-melted
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8. It will turn out to be worth our while, for future reference, to take a few sentences to go
through this business of compatibility (or the lack of it) between a dynamical law and a static
probability rule in full generality.

Consider (then) any static probability rule (which is to say, any rule concerning temporal co-
incidences of properties, rather than their temporal sequences) which gives the probability that Xj

will be instantiated, at any particular time, given that Zi is instantiated then (in the statistical me-
chanics we have been working through here, for example, the Zi are clearly the macro-
conditions, and the Xj are the microconditions).

Now, a probability rule of this sort is said to be incompatible with a law of dynamical evolu-
tion in the event that the dynamics can take us from circumstances which are in accord with the
probability rule to circumstances which are not in accord with it.

Let’s spell this out in somewhat more detail. The static probability rule (whatever particular
form it takes) will associate some particular X-distribution with each particular Zi. Consider
some initial Zi � (X-distribution) pair which is in accord with some particular static rule. Evolve
this initial situation into the future by means of the dynamical laws; this will yield a probabil-
ity-distribution over the various possible Z-values at the future time in question, and it will also
yield a probability-distribution over the various possible X-values at the future time in question,
and it will also yield a collection of conditional probability-distributions over the various possi-
ble X-values given one or another of those Z-values whose overall probabilities, at the future
time in question, are non-zero. If, for any initial value of Z, any of the above-mentioned condi-
tional probability-distributions is not in accord with the static rule in question, then that rule is
said to be incompatible with the dynamics with which those conditional distributions were calcu-
lated.

And so (once again) it will now follow from the argument given in the text that if what we
have recently come to suspect of the dynamical laws of Newtonian mechanics is true, then the
dynamical laws of Newtonian mechanics are not compatible with the stipulation that the appro-
priate probability-distribution for microconditions is (at all times) the one that’s uniform over
the present macrocondition.

And there is a famous deterministic hidden-variable version of non-relativistic quantum me-
chanics (which is due to David Bohm; and of which we shall be talking a good deal more, in an-
other context, near the end of this book) which will make for an instructive comparison here.
Never mind (for the moment) what a theory with a name like that might be for. What I want to
focus on at present is just its formal structure.

The world (according to Bohm’s theory) has two sorts of physical objects in it: material parti-
cles and something called wave-functions. And all the particles and all the wave-functions al-
ways evolve (as I said above) in accord with thoroughly deterministic dynamical laws. The way it
works is this: the wave-functions have their own completely autonomous and thoroughly deter-
ministic laws of evolution, and proceed on their various ways, completely oblivious to, com-
pletely independent of, the behaviors of the material particles. The particles, by contrast, are very
much affected by the wave-functions. It is the wave-functions (as a matter of fact) that more or
less single-handedly carry the particles along, as corks (say) are carried along on a river. And the
laws of that carrying are also fully deterministic, so that if the wave-functions and the positions of
the particles are all given at some initial time, their values at any later time can in principle be



ice cubes, say) in our world, since such systems almost invariably do (as a
matter of fact) originate from systems of fully unmelted cubes.9

And ~nally (and this is really just a restatement, in somewhat grander
terms, of the previous point), this latest version of the statistical postulate, if
applied in the present, is _atly inconsistent with what we take to be true, with
what we remember, with what is recorded (that, for example, everybody was
younger, that ice was less melted, and so on), of the past. The postulate, as we
have it now, if applied in the present, will entail (after all) that throughout the
past the entropy of the universe has constantly been decreasing.

▲▲▲ Let’s think about what we might be able to do about all that.
Let me remind you, to begin with, of something we learned in the previ-

ous chapter. There I had taken to referring to those regions of the phase
space of a thermodynamic system which correspond to that system’s possible
macrostates (remember) as “M-regions.” And I remarked at a certain point
that the familiarly calculated volume of the subregion of any M-region of the
phase space of any thermodynamic system which is taken up by microstates
that lead to decreases in entropy toward the future is not merely small
(which is what the bulk of that chapter was all about) but also scattered, in
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determined from the dynamical law of the evolutions of the wave-functions, and the dynamical
law whereby the wave-functions carry the particles along, with complete certainty.

And it happens that Bohm’s theory also has a non-dynamical law in it, which takes the form
of precisely the sort of static probability rule that we have just been thinking about, which con-
sists of an algorithm for calculating the conditional probability that the material particles in the
world are (at a certain time) located in such-and-such a set of positions, given that the wave-
functions of the world are (at the time in question) in such-and-such a con~guration. And so the
con~gurations of the wave-functions are the Zi’s here, and the positions of the material particles
are the Xj’s. And it happens (and this is the twist) that the truth of the Bohmian static probability
rule, at all times, is fully compatible with the Bohmian dynamical laws. Indeed (and this just
comes to the same thing, given that the Bohmian dynamical laws are fully deterministic), the
truth of that rule at any one time, together with the laws of dynamics, turns out to entail its truth
at any other!

And so it is by no means a matter of general necessity that dynamical laws and static proba-
bility rules—even of the sort that you run into in rich and serious and fully developed scienti~c
theories—must necessarily collide with each other. It is (rather) an unfortunate peculiarity of
the formulations we have thus far been able to cook up of classical statistical mechanics.

9. Here (by the way), and everywhere else in statistical mechanics, and (as a matter of fact)
everywhere simpliciter, it seems to me to be a great help, it seems to me to spare one an enor-
mous amount of confusion, to be thinking of probabilities as supervening in one way or another
on the non-probabilistic facts of the world, to be thinking of them (that is) as having something
or other to do, by de~nition, with actual frequencies.



unimaginably tiny clusters, more or less at random, all over the place (and
this was very crudely illustrated in Figure 3.15, which appears on page 68).
And what we have learned so far in the present chapter will then suggest that
precisely the same thing must be true of the subregion of any M-region of the
phase space of any thermodynamic system which is taken up by microstates
that lead to decreases in entropy toward the past. And (moreover) there is pa-
tently no reason at all that those two subregions of any particular M-region of
the phase space of any particular thermodynamic system10 should have any
tendency whatsoever to be aligned or to be correlated or to be otherwise
matched up with each other. And so the percentage of the familiarly cal-
culated volume of either one of those tiny subregions which is taken up with
its intersection with the other one of those tiny subregions will very likely be
very nearly the same as the percentage of the familiarly calculated volume of
the region of the phase space corresponding to that macrocondition as a
whole that the latter subregion takes up.11

And so the apparent time-invariant rightness of the future thermodynamic
predictions of the standard uniform-over-the-present-macrocondition distri-
bution need not force us into the self-contradictory posit that that distribution
always actually obtains! There might be ways of making it suf~ce if that distri-
bution were to obtain only once, and not now.

Consider, for example, the following system (which is pictured in Figure
4.2): a long line of glasses is arrayed underneath a triangular pinballish de-
vice. The glasses all contain warm water, and at present a number of them
contain half-melted cubes of ice.

The standard uniform-over-the-present-macrocondition distribution and
the laws of motion (if what we have lately come to believe about them is
true) will entail that the ice will with overwhelmingly high probability be
fully melted ~ve minutes from now, and that is of course very much in ac-
cord with what we have learned to expect from past experience, and with
what the second law of thermodynamics requires. But that same distribution
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10. That is, the subregion that’s taken up by microstates that lead to decreases in entropy to-
ward the future and the subregion that’s taken up by microstates that lead to decreases in en-
tropy toward the past.

11. Note that it’s the “randomness” and the “lack of alignment” of the subregions we’re
thinking about here that are ful~lling the function of the “smoothness” and the “regularity” of
the distributions we were thinking of in connection with Figure 15 of Chapter 3.



(together with the laws of motion) also entails, with equally overwhelming
probability, that the cubes were fully melted ~ve minutes ago, and (more
generally) that the entropy of these systems has been decreasing over that
time, and this (of course) runs counter to the laws of thermodynamics, and
to our past experience with systems of this general type, and (let’s suppose) to
our speci~c memory of the past ~ve minutes of the history of this particular
system as well.

Here’s how to remedy that: posit (in accord with our memory) that ~ve
minutes ago the glasses in question had fully unmelted ice cubes in them,
and that the microcondition-probability was uniform—on the standard mea-
sure—over the macrocondition then. Relative to this posit, it will be over-
whelmingly probable that the present state is what it is, and that the future
will be what all our previous experience of such systems and the summary of
that experience in the second law lead us to expect it to be, and that the past
~ve minutes were what we remember them to be.
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But this new posit is still plainly going to get everything about the period
prior to ~ve minutes ago wrong: it will dictate, for example, that ten minutes
ago the glasses in question almost certainly contained half-melted ice, which
subsequently (in violation of the second law) became fully unmelted ice.
Here’s how to remedy that: posit (and suppose, once again, that this is in
accord with our memory) that ten minutes ago the ice was all collected at
the top of the pinballish device. Suppose (moreover) that the average tem-
perature of this macrocondition is somewhat lower than the average temper-
ature of the macrocondition we referred to in the previous posit (the tem-
perature difference here will correspond to the energy gained as the ice falls
down into the glasses). And posit that the microprobability-distribution is
uniform—on the standard measure—over that ten-minutes-ago macro-
condition.

The details of this case are going to be interestingly different from those of
the one above. It is (to begin with) certainly not the case that this last posit
will make either the present macrocondition or the ~ve-minutes-ago macro-
condition overwhelmingly probable: this posit (as a matter of fact) will make
no particular present or ~ve-minutes-ago macrocondition overwhelmingly
probable. What it will do (rather) is to make certain prominent thermody-
namic features of the present and ~ve-minutes-ago macroconditions over-
whelmingly probable (their average temperatures, for example, and the de-
gree to which what ice there is in them is melted, and so on), but it will
clearly assign similar probabilities to a rather wide variety of quite distinct
~ve-minutes-ago macroconditions (macroconditions associated with the ice
cubes having landed in quite different sets of glasses, for example). What we
have, though, in this last posit, and what we were lacking in the previous one,
is a probability-distribution relative to which what we remember of the en-
tirety of the last ten minutes, and what we know of the present, and what we
expect of the future, is (you might say) typical.12 And so what we have in the
conjunction of this last posit with the laws of classical mechanics is (if all
goes as expected) a fully satisfactory probabilistic theory of the history of this
system beginning ten minutes ago.
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12. What we have in this last posit (that is) is a probability-distribution relative to which a
certain highly restricted set of sequences of macrostates—a set which happens to include what
we remember of the entirety of the last ten minutes, and what we know of the present, and what
we expect of the future—is overwhelmingly more probable than any other such sequence.



But of course this last posit is itself going to go bad prior to ten minutes
ago, and by now it will be perfectly clear that all such posits are bound to
fail—unless they concern nothing less than the entirety of the universe at
nothing later than its beginning.13

That’s what the statistical posit is going to have to be about, then. And if
the project of statistical mechanics is on anything remotely like the right
track, then, when all the data are in, the initial macrocondition of the uni-
verse had better turn out to be one relative to which—on the standard uni-
form probability-distribution over microconditions—what we think we know
of the history of the world, and what we expect of its future, is typical. And
what seems to me to have been the achievement of Boltzmann and Gibbs is
to have made just that sound plausibly true.

▲▲▲ And that, at last, is what seems to me to be more or less the right way of
describing the overall structure of classical statistical mechanics. But there’s
still a bit more to be said. It happens that the actual history of reactions to the
reversibility-objections is a good deal longer and more varied and more com-
plicated than what we’ve just been through, and—notwithstanding the fact
that we have already said how it is that the story rightly ends—there are some
other parts of it, there are some detours and false starts, there are (more partic-
ularly) some attempts at defending the sort of probability-distribution we
have just now gotten done rejecting, the probability-distribution which is
uniform (on the standard measure) over the world’s present macrocondition,
which ought not to go altogether unmentioned here.

Here (to begin with) is an especially tortured paragraph from Gibbs,
which I came across in a great book by Larry Sklar:

But while the distinction of prior and subsequent events may be im-
material with respect to mathematical functions, it is quite otherwise
with respect to events in the real world. It should not be forgotten,
when our ensembles are chosen to illustrate the probabilities of events
in the real world, that while probabilities of subsequent events may be
often determined from probabilities of prior events, it is rarely the case
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13. Or at any rate the entirety of that sector of the universe which has any physical interac-
tion with the systems of interest to us, at the beginning of the epoch to which we have any
epistemic access.



that probabilities of prior events can be determined from those of sub-
sequent events, for we are rarely justi~ed in excluding from consider-
ation the antecedent probability of the prior events.14

What’s this supposed to mean? That the probability-distributions over
microconditions are (as a matter of literal fact) nothing of the sort? That
what they are (that the entirety of what they are) are serviceable instruments
for the prediction of the macrofuture—that they have nothing directly to do
with the frequencies with which microconditions are actually realized in the
world? But if that’s so, then there would seem to be a great deal of work still
to be done. We are now going to be very curious to know exactly how it is
that these instruments manage to work; we are going to be very curious to
know (that is) what the actual frequencies of microconditions are. And of
course both of those questions are quite neatly dealt with by our own latest
version of the postulate about statistics—the one about the macrocondition
of the world at its outset—but that can’t have been the direction in which
Gibbs intended to go!

Sklar thinks that some sense can be made of Gibbs here if we read him as
espousing something along the lines of a purely subjectivist interpretation of
the statistical-mechanical probabilities. He thinks Gibbs must be thinking
of probabilities here as degrees of belief. He thinks Gibbs must be thinking
that “although future events are not yet known to us, and hence have as
their ‘probability’ only such probability as can be inferred by us from our
statistical theorizing, past events, being known by direct evidence of their
occurrence, are not subject to having probabilities attributed to them in this
way.” But it’s hard to see how that’s going to help. Given that the equations
of motion we’re talking about here are fully deterministic, a probability-
distribution over possible present or past or future conditions—subjective or
otherwise—is ipso facto a probability-distribution over conditions at all
other times as well. And so if what Gibbs has in mind here is any interpre-
tation whatsoever of the statistical-mechanical probability-distributions as
probability-distributions over possible present microconditions, then the
problem with the distribution that’s uniform (on the standard measure) over
the world’s present macrocondition, or over what we know of the world’s
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14. Lawrence Sklar, Physics and Chance (Cambridge: Cambridge University Press, 1993),
199.



present macrocondition, is still that that distribution radically fails to match
up with what we know of the past.15

Erwin Schrödinger had another angle. He urges us not to forget for even a
moment that all that needs to be accounted for is that entropy never decreases
as time _ows forward. The thing to keep your eye on, the thing people haven’t
been careful enough about heretofore, the thing that’s caused all the con-
fusion (so says Schrödinger), is the meaning of the locution “time _ows
forward.” Look (he says): it follows from the fully time-reversal-symmetric
version of the fundamental insight of Boltzmann and Gibbs that if at some
given instant two separate systems are both in non-maximal-entropy macro-
conditions, and if the probability-distribution over the microconditions com-
patible with those macroconditions is taken to be the standard uniform one,
then the entropies of both systems are overwhelmingly likely to be going up
toward the future, and the entropies of both systems are also overwhelmingly
likely to be going up toward the past, which is to say, it is overwhelmingly
likely that their entropies always evolve in parallel (as in Figure 4.3). And
note that the two systems in question here can be any macrosystems at all;
one of them (for example) can be taken to be the system of interest, while the
other is the rest of the universe. And what (if you think about it) can “the di-
rection in which time _ows forward” really mean other than “the direction in
which the entropy of the bulk of the universe, the direction in which the en-
tropy of the natural reference system, is increasing.” And so (says Schrödinger)
there was never really any problem here to begin with.

Well, he must be kidding. There most certainly is a problem here,
which is that the Boltzmann-Gibbs insight, together with the stipulation
that the probability-distribution over the microconditions compatible with
the world’s present macrocondition is the standard uniform one, entails
that what we seem to remember of the past is almost certainly wrong. And
what Schrödinger has to say here does nothing whatsoever to alleviate that.
What Schrödinger does here is (as it were) to eliminate the problem with
the past by eliminating the past itself. But that’s not what we need; what we
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15. Sklar’s own objection to Gibbs (or to his reading of Gibbs) is that in fact “past events are
as frequently a matter of inference to us as are those of the future.” But that seems utterly beside
the point. Indeed, the more we do directly know about the past, the more there is going to be for
the distribution that’s uniform (on the standard measure) over the world’s present macro-
condition to fail radically to match up with, and the worse off Gibbs is going to be!



need, and what the solution I proposed above accomplishes, is to get the
past right.

Paul Davies (who in The Physics of Time Asymmetry sees himself as taking
up a train of thought that goes back to the great Hans Reichenbach) is a bit
less off the mark. Davies and Reichenbach both understand very clearly that
we will be getting some part of the past wildly wrong if the instant at which
we choose to apply the uniform distribution over microstates is anything
other than the one at which things begin. But what things, exactly? Davies
seems to think that there are speci~able moments at which the quasi-isolated
medium-sized systems of our everyday thermodynamic experience—the
“branch” systems, as he calls them—can be said to begin. He seems to think
that one can point to an exact moment in the history of any such system at
which it was “formed by interaction with the outside world.” He seems to
think (for example) that a glass of water with a chunk of ice _oating in it can
be said to have come into being exactly at the moment when (I suppose) the
chunk of ice was dropped in—and that the right probability-distribution over
the possible microconditions of a system like that is (consequently) the one
that’s uniform (on the standard measure) over the region of that system’s
phase space which is compatible with its macrocondition then. And as to the
past of that moment, well, the idea is clearly that “if a branch system is
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formed in a random low-entropy state, it simply did not exist” in the past of
that moment. And that’s that.

But all this is sheer madness. How is it (to begin with) that we are to de-
cide at exactly what moment it was that the glass of water with ice in it ~rst
came into being? And even if we could decide that, what then? How is it (ex-
actly) that the medium-sized system we decided to focus on was the glass of
water with the ice in it and not (say) the room in which that glass is currently
located, which also contains the table on which the glass is currently sitting,
and the freezer from which the ice was previously removed, and the person
who ~rst got it into his head to do the removing? The uniform probabil-
ity-distribution over the possible microconditions of the macrocondition of
that system, at the moment when it came into being, will (after all) differ
quite radically—even insofar as the glass of ice water itself is concerned—
from the one we have just been talking about! And why not the building that
the room is in? And why not the city that the building is in? And even if all
that could be decided, very serious questions would remain as to the logical
consistency of all these statistical-hypotheses-applied-to-individual-branch-
systems with one another, and with the earlier histories of the branch systems
those branch systems branched off from. And all that aside, why in God’s
name bother with all this, when the uniform probability-distribution over the
possible microconditions compatible with the macrocondition of the world,
at the moment when it came into being, will very straightforwardly give us
everything we need?16

▲▲▲ One more historical matter. The physical literature is positively in-
fested with suggestions about what the “origin” of the lowness of the initial
entropy of the world is, or about what it is that “drives” or “powers” or “ex-
plains” the world’s constant entropy increase.

Thomas Gold, for example, is famous for noting that if the universe were
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16. I think Davies must have something along the lines of an epistemic understanding of the
statistical-mechanical probabilities somewhere in the back of his mind. That, at any rate, is what
I read into locutions like “random low-entropy state” (emphasis mine). I think that sort of talk
still has a ring of innocence for him. But if that’s his game, if he wants to see himself as in some
sense positing nothing at all here over and above the laws of Newtonian mechanics, then one
must ask why this randomness should a priori come at the beginnings of the careers of these sys-
tems, rather than at their ends, say, or in their middles?



somehow con~ned to within a small spatial volume, then it would quickly
reach equilibrium, and all temporal directionality would vanish. And this, of
course, is true. And this (moreover) is a way of making clear in precisely what
sense the initial state of the world was far from equilibrium—of which more
in a minute. But Gold seems to see a hell of a lot more in it than that. He
speaks of the expansion process (if I understand him) as what drives the en-
tropy increase, as what causes it; as if that process could somehow stand in (I
guess) for the postulate about statistics, as if the fact that the process is occur-
ring could somehow bring about the entropy increase all by itself, independ-
ent of the initial microconditions. He seems to think (as a matter of fact) that
the entropy of the universe would have no choice but to begin to decrease in
the event that the universe should ever begin to re-contract! And this (it ap-
parently needs to be said) is simply insane—there are plainly locations in the
phase space of the world from which (on the Newtonian equations of mo-
tion, or on the general-relativistic equations of motion, or on any classical set
of equations of motion you like) the world’s radius will inexorably head up
and the world’s entropy will inexorably head down, and that’s all there is to it,
and there’s nothing to do about it, period, end of story.

One reads (similarly) in authors like Paul Davies that “the origin of all
thermodynamic irreversibility in the real universe ultimately depends on
gravitation.” And if what Professor Davies means is that the nature of those
macroconditions whose entropies are particularly high or particularly low, in
our world, is much in_uenced by the presence of gravitation, then he is surely
right—and (moreover) he is making an interesting point. Consider (for ex-
ample) how stars come into being. What happens (we think) is that an ini-
tially dispersed cloud of dust—under the in_uence of its own gravitation—
clumps up. And it is as clear as it can be that the clumping up is a thermody-
namically irreversible process. And so it must be the case (and here is some-
thing unfamiliar from our considerations of gasses—here is the in_uence of
gravity) that the entropy of the clumped-up condition is higher than the en-
tropy of the dispersed one, It must be (that is) that the dust particles are over-
whelmingly likely to pick up a great deal of momentum, in all sorts of differ-
ent directions, as they fall in toward one another—it must be (that is) that the
clumped-up condition is the condition that’s nonetheless by far the more
dispersed one in the mu-space. But anything more, anything to the effect that
gravitation can somehow cause entropy to increase more or less independ-
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ently of the identity of the world’s initial microcondition, anything to the
effect that (say) the entropy of the world might suddenly start to decrease if
gravitation were suddenly to turn repulsive, is (well) nuts.

Enough about all this. Let’s get back on track.

▲▲▲ All the elements of a coherent classical statistical-mechanical ac-
count of the world are now (I think) on the table. And the only thing that still
seems to me to need doing, by way of ~nishing this chapter up, is to raise a
certain question—a question which (by the way) is going to reappear, in a
slightly different form, as the central topic of Chapter 6—about the episte-
mology of that account.

It will take a little setting up.
Call the present macrocondition of the world P. And let MP represent that

region of the phase space of the world which is associated with P. And let DP

represent the probability-distribution which is uniform—on the standard
measure—over the entirety of MP, and is zero elsewhere. Now, DP is of
course (by construction, by de~nition) compatible with the present macro-
condition of the world, and it is also (by virtue of the fundamental insight of
Boltzmann and Gibbs) compatible with everything we have learned to ex-
pect of the future, and so the various alterations and amendments to DP that
we’ve been considering over the course of the present chapter have (once
again) been aimed exclusively at bringing it into accord with what we take
ourselves to know about the past. The trouble with DP (remember) is that DP

and the laws of motion turn out to entail that you and I previously looked
older than we do now, and that the building I am sitting in previously looked
more worn than it does now, and that the half-melted ice cube in the glass of
water in front of me was previously more melted than it is now, and (more
generally) that the entropy of the universe was previously enormously higher
than it is now—and the thing is that we are as certain as we are of anything in
the world that that’s all wrong.

And if it should ever occur to anybody to ask exactly where all that cer-
tainty came from, we would likely respond (at ~rst) that the evidence is so
abundant and so familiar and so unassailable that it’s hard even to know
where to start: we can show photographs (I guess) or play tape-recordings or
point to footprints or dig up fossil records or look in newspapers or interrogate
our memories or any number of other things like that—things as natural as
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breathing, things we are all well accustomed to betting our very lives on,
hundreds or thousands of times a day.

But there’s something not altogether kosher about that.
Every last shred of the evidence we’ve been talking about is (after all) al-

ways already part and parcel of P. And so every last shred of this evidence is
always already automatically taken account of in DP. And when you think
about that, it suddenly gets hard to see how this evidence can possibly
amount to good grounds for any alteration or amendment of DP whatsoever.
And yet (and this is the rub) DP is precisely the sort of distribution on which it
is overwhelmingly unlikely that any of what we normally take this sort of evi-
dence to support actually turns out to be true!

The thing is that DP—together with the laws of motion—gives its own ac-
count of how the world is overwhelmingly likely to have gotten to be the way
it currently (macroscopically) is, and part and parcel of that account is an ac-
count of how (say) this photograph I have “of myself at the age of 5” is over-
whelmingly likely to have gotten to be the way it currently (macroscopically)
is, and that account entails that the photograph was previously yellower and
more worn than it is now, and that a very long time ago—with fantastic slow-
ness—it formed, spontaneously, as a matter of pure chance, out of disparate
wisps of paper and emulsion and dust, and that there has almost certainly
never been anybody in the world who actually looked much like the boy in
that picture.

The spontaneous formation of a photograph like that is of course an ex-
ceedingly unlikely event on the probability-distribution which is uniform
(on the standard measure) over the unlimited entirety of the phase space of
the universe, or on the distribution which is uniform (on the standard mea-
sure) over the region of the phase space associated with the universe’s having
been in equilibrium a billion years ago, or on any distribution which is uni-
form (on the standard measure) over any region of the phase space corre-
sponding to that photograph’s not having existed (say) ~fty years ago. But all
that counts for absolutely nothing—on any of those distributions (after all) it
is exceedingly unlikely that the present macrocondition of the world (the
one with this photograph in it) actually obtains at all! The thing you have to
start with—if you want to play by the rules—is what the macrocondition of
the world currently, actually, is. And given that, and given that the probabil-
ity-distribution over microconditions that we use in our calculations ought
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to be the one that’s uniform (on the standard measure) over the entirety of
the region of phase space which is compatible with that present macro-
condition, and given the insight of Boltzmann and Gibbs about the laws of
motion—it is exceedingly likely, it is overwhelmingly likely, that the ice
_oating in the glass of water in front of me was more melted ~ve minutes ago
than it is now (notwithstanding my memory to the contrary), and that I
looked older ~ve years ago than I do now (notwithstanding the photograph I
have in my desk), and that Napoleon never existed (notwithstanding what it
says in the book in the next room). And I can of course produce as many
other such photographs and books and eyewitness accounts as I like, and it
will all be to no avail. It will be overwhelmingly likely that all of them came
into being and ended up here in this room, together, by coincidence.

And so the _ip-side of the insight of Boltzmann and Gibbs is that there
can be nothing at all about the present macrocondition of the world which
can possibly count as evidence that the world’s entropy has ever previously
been lower.17

And so the fact that the universe came into being in an enormously
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17. Hans Reichenbach looks to me to be struggling rather desperately—on pages 129 and 130
of The Direction of Time (Berkeley: University of California Press, 1971)—not to believe this.

He seems to be thinking something like the following: consider (say) a spherical shell of
light which is (at present) expanding outward from a star. And note that this expansion (unlike
the melting of an ice cube _oating in a glass of water, or the dispersing of smoke, or the aging of
a human being) involves no increase in entropy. And so the past of a system like that—the past
in which the shell is smaller—can reliably be inferred (unlike the past of a half-melted ice cube
_oating in a glass of water, or the past of a half-dispersed puff of smoke, or the past of a mid-
dle-aged human being) from its present macrocondition � the equations of motion � the stan-
dard statistical hypothesis. And so (Reichenbach imagines) the image of a younger, stronger,
lower-entropy star which that light-shell carries to our eyes must be a reliable one too. And so it
can reliably be inferred, after all, that the entropies of stars—and of galaxies, and of the world as
a whole—were once indeed much lower than they are now.

And everything about all this is ~ne up until the last two sentences. The thing that seems to
have slipped Reichenbach’s mind is that although the process of the expansion of that sort of a
shell of light into space is indeed reversible, the process of the emission of that shell from the star
in the ~rst place is emphatically not. What will follow about the past of that shell from its present
macrocondition � the equations of motion � the standard statistical hypothesis is that (prior to
the present) it was a smaller expanding shell than it is now, and that (sometime prior to that) it
was all concentrated at a point which just happens to have coincided with the position (then) of
the star in question, and that (sometime prior to that) it was a contracting shell, and that the fact
that this shell has always carried with it an image of a young star is purely a matter of coinci-
dence, and that it is in fact overwhelmingly likely that no such young star ever existed. And so it
can certainly not be reliably inferred, in the way Reichenbach is thinking, that the entropy of
the world was once much smaller.



low-entropy macrocondition cannot possibly be the sort of fact that we know,
or ever will know, in the way we know of straightforward everyday particular
empirical facts. We know it differently, then. Our grounds for believing it
turn out to be more like our grounds for believing general theoretical laws.
Our grounds (that is) are inductive; our grounds have to do with the fact that
the proposition that the universe came into being in an enormously low-en-
tropy macrocondition turns out to be enormously helpful in making an enor-
mous variety of particular empirical predictions.

Suppose, for example, that we happen to dig up a decayed boot with an
“N” embroidered on it. If the probability-distribution over microconditions
that we use to make inferences about the world is the one that’s uniform (on
the standard measure) over those regions of the phase space of the universe
which are compatible with everything we have thus far been able to directly
observe of its present physical situation, then the probability we will associate
with ~nding another such boot, if we dig around a bit further, will be over-
whelmingly small. But if the distribution we use is the one that’s uniform
over those regions of the phase space of the universe which are compatible
both with what we have thus far been able to observe of its present physical
situation and with its having initially started out with a big bang, then that
~rst boot will plausibly count as evidence for the truth of the proposition that
there was once such a person as Napoleon, and the probability of our ~nding
another such boot, if we dig around a bit further, will plausibly be much
more substantial. And what our experience dictates is (of course) that the
second of those predictions is much closer to the mark.18

Or think, again, about the case of spatulas. Suppose that I come upon an
apartment about which I happen to have no direct empirical knowledge
whatsoever other than the details of its architectural design and the fact that
it contains a spatula. Just as before, if the probability-distribution over micro-
conditions that I use to make inferences is the one that’s uniform (on the
standard measure) over those regions of the phase space of the universe
which are compatible with everything I have yet been able to observe of its
present physical situation, then the probability we will associate with ~nding
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18. The previous two paragraphs (by the way) are very much in the spirit of the beautiful
essay on the distinction between the past and the future by Richard Feynman in his book The
Character of Physical Law (Cambridge: MIT Press, 1967).



the spatula in the bathtub comes out (as we saw in Chapter 3) too big. But if
the distribution I use is the one that’s uniform over those regions of the phase
space of the universe which are compatible both with everything I have yet
been able to observe of its present physical situation and with its having ini-
tially started out with a big bang, then (and only then) there is going to be
good reason to believe that (for example) spatulas typically get to be where
they are in apartments only by means of the intentional behaviors of human
agents, and that what human agents typically intend vis-à-vis spatulas is that
they should be in kitchen drawers.19

And note that we have just now more or less inadvertently done away with
what (so far as I know) was the last existing impediment to a fully satisfactory
formulation of the fundamental postulate about statistics. The postulate we
started out with (remember) was the one according to which the correct
probability-distribution over the possible microconditions of a system S,
given that all I observationally know of S is X, and where X can be any in-
formation whatsoever about the present physical situation of S, is the one
that’s uniform (on the standard measure) over whatever region of the phase
space of S that X is compatible with. And the trouble with that formulation
(the trouble, that is, that became obvious on page 65) was that it generated
propositions about the positions of spatulas which are false. And the best
thing we could come up with by way of straightening that out, at the time,
was to limit the Xs to complete macrodescriptions. And what that left us with
(as we saw on page 67) was a postulate that failed to generate certain state-
ments about the locations of spatulas—certain very general and robust and
law-like statements about the locations of spatulas—which are true. And now
(under the pressure of the altogether different sorts of considerations, consid-
erations about the past, that have emerged in the present chapter) the postu-
late has changed yet again—to the effect that the probability-distribution
that one ought to plug into the equations of motion in order to make infer-
ences about the world is the one that’s uniform, on the standard measure,
over those regions of the phase space of the world which are compatible both
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19. In the absence of any stipulation to the effect that the universe started out in a big
bang—or in some very low-entropy state, at any rate—spatulas will typically come to be where
they are in apartments by means of random spontaneous materializations, and the intentions of
human agents vis-à-vis spatulas (supposing that it would make any sort of sense, under such cir-
cumstances, even to speak of such things) will typically be absolutely all over the place.



with whatever it is that we may happen to know about the present physical
condition of the universe (just as in the original postulate) and with the hy-
pothesis that the original macrocondition of the universe was the one associ-
ated with the big bang. And the thing that we have just now stumbled across
is that this third formulation of the postulate appears to get the story about
spatulas just right.

But of all this more later—our present task (which has just been to put all
the elements of the classical statistical-mechanical picture of the world more
or less in their proper conceptual boxes) is done.

It comes out like this:
The Newtonian statistical-mechanical contraption for making inferences

about the world consists, in its entirety, of three laws and one contingent em-
pirical fact.

The empirical fact is the one about what the macrocondition of the world
currently happens to be (or rather, the empirical fact is the one about what
the directly surveyable condition of the world currently happens to be; where
the directly surveyable condition of the world—insofar as Mr. X is con-
cerned—includes its macrocondition plus whatever, perhaps microscopic,
features of Mr. X’s brain he may happen to have direct and unproblematic
introspective access to), and the laws are:

1. The Newtonian law of motion (which is that F � ma).
2. The Past-Hypothesis (which is that the world ~rst came into being in

whatever particular low-entropy highly condensed big-bang sort of
macrocondition it is that the normal inferential procedures of cos-
mology will eventually present to us).

3. The Statistical Postulate (which is that the right probability-
distribution to use for making inferences about the past and the fu-
ture is the one that’s uniform, on the standard measure, over those
regions of phase space which are compatible with whatever other in-
formation—either in the form of laws or in the form of contingent
empirical facts—we happen to have).
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▲▲▲ C H A P T E R F I V E

THE SCOPE OF
THERMODYNAMICS

There was a question that came up at the beginning of Chapter 3—the ques-
tion about whether the second law of thermodynamics had any systematic
exceptions, the question (that is) about Maxwell’s demon—which we are now
in a position to think through with a good deal more care.

▲▲▲ Let’s start a few steps back.
People have sometimes worried that (say) the development of a human

infant from a single fertilized cell might somehow amount to a violation of
the second law of thermodynamics. The worry is obviously that processes
like that seem to correspond to decreases in entropy; the worry is that the
ends of processes like that seem to represent fantastically more organized
conditions of the organic material involved than their beginnings do. And it
is by now a cliché of the thermodynamical literature that this sort of worry is
utterly misguided; that this sort of worry can only come up if you have been
thinking of the organic material in question as isolated. And it isn’t isolated,
of course, and it isn’t a particularly dif~cult business to argue that as a matter
of fact the total entropy of a developing fetus and its mother and her environ-
ment goes radically upward in the course of that development, and so the
whole business is no more mysterious, and no different in kind, than (say)
the decrease in the entropy of a hot body which is put in thermal contact
with a cooler one. And the same thing goes for the thermodynamic status of
biological evolution as a whole, and for the thermodynamic status of the
construction of cities, and for the thermodynamic status of the electronic or-
ganization of information, and so on.

Good.
Here’s another sort of worry, which gets undone (in the end) by means of



a particularly beautiful observation, which we owe (insofar as I know) to
Richard Feynman.

Consider a contraption like the one pictured in Figure 5.1. There is (to
begin with) a box with some gas in it. And there is an axle. And one end of
the axle is sticking into the box, and that end has some plates or sails or vanes
(or whatever you call them) attached to it. And the other end is ~xed up with
a spring-loaded ratchet-and-pawl sort of a thing that’s designed to allow the
axle to turn only in a single direction—clockwise, say. And the middle is at-
tached to a string with a little weight on the bottom.

And the way the contraption is intended to work is this: the gas molecules
will for the most part be banging more or less equally on each of the two
sides of each of the vanes, and (consequently) pushing them nowhere. But
every now and then, by pure chance, that won’t be so. Every now and then
(that is) there will just happen to be more gas molecules banging the vanes
in (say) the clockwise direction than in the counterclockwise direction—and
the probability of there being an imbalance of that sort, of a certain particular
degree, per unit time, is clearly going to go up with the gas’s temperature.
Anyway, when such an imbalance occurs, the axle will turn, and the weight
will lift, and the temperature of the gas will decrease; and if we wait long
enough the axle will almost certainly turn again, and lift the weight higher,
and the temperature of the gas will decrease still more. And of course the
ratchet-and-pawl mechanism will guarantee that none of that turning or lift-
ing or cooling ever gets undone; and so what we apparently have here is a
means for extracting any amount of heat we like from a gas which is at uni-
form temperature throughout, and converting it entirely into mechanical
energy, and (in the course of all that) bringing about no other thermody-
namic changes whatsoever in the world, which is directly in violation of Kel-
vin’s formulation of the second law.

But look a bit more closely.
Note, to begin with, that if the ratchet and pawl were to be manufactured

(as it were) too well, if the ratchet and pawl were to be manufactured in such
a way (of which more in a minute) as to guarantee that their combined total
mechanical energy never decreases, then whenever the pawl happens to snap
to the bottom of a new ratchet-tooth it will have no choice whatsoever—by
simple conservation of energy—but promptly to bounce all the way back up
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again. And then (of course) the weight will promptly pull the ratchet back.
And then the whole contraption will be useless.

And so (if this contraption is going to work) the normal operational inter-
actions between the ratchet and the pawl are going to have to involve some
sort of rubbing or scraping or denting or something like that—they are going
to have to involve the systematic transformation of some of the mechanical
energy of the ratchet-and-pawl system into heat. And so the temperature of
the ratchet and pawl, in the course of each turn-step, is going to have to rise.
And so the entropy of the ratchet-and-pawl system, in the course of each
turn-step, is going to have to rise.

And remember (from Chapter 2) that the amount by which the entropy of
any macroscopic system rises in the course of any thermodynamic transfor-
mation is (by de~nition) equal to the amount of heat it absorbs in the course
of that transformation divided by its temperature at the time of that transfor-
mation. And note (in that connection) that the proper functioning of this
contraption is going to require that the temperature of the ratchet and pawl
not be too high. The higher the temperature—you see—the higher the prob-
ability per unit time of statistical _uctuations whereby (say) the pawl sponta-
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neously lifts itself up off the ratchet, and so leaves the ratchet free, for a mo-
ment, to turn backward, and so (again) renders the contraption useless.

And what turns out to follow from all that—without too much more trou-
ble—is that the amount by which the entropy of the ratchet and pawl is
going to have to rise in the course of each turn-step will necessarily exceed
the amount by which the entropy of the gas is simultaneously going down.

And so the second law is saved again.

▲▲▲ Now to the main event.
Here’s the setup: there’s an isolated system called S that consists of two gas-

ses, and of the box those two gasses are in, and of the interior wall between
them, and of the movable shutter in that wall (all of which is pictured in Fig-
ure 3.3) and of a very talented but thoroughly physical “demon.” And the
temperatures of the two gasses are initially different. And the demon is ready
and willing and able and implacably disposed to carry out a carefully coordi-
nated program of measurements and calculations and manipulations of the
shutter—the sort of program (that is) that we discussed at the beginning of
Chapter 3—which is designed to make those temperatures differ still more.1

And the problem (as mentioned in Chapter 3) is just that this sort of pro-
gram looks very much as if it ought to work. The problem (more particularly)
is that under the circumstances described above, what the three fundamen-
tal laws of statistical mechanics look very much as if they will entail2 is that
the entropy of S is overwhelmingly likely to go down toward the future.3 And
that—once again—looks to be in direct and _agrant violation of the so-
called second law of thermodynamics.

And once again there is a famous collection of arguments in the literature
to the effect that all these “looks” are (as a matter of fact) illusory.

The idea at the center of those arguments (which is exactly the one criti-
cized at the end of Chapter 3, but of that more later) is that entropy is an
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1. Suppose (that is) that he is initially disposed to measure and to calculate and to manipu-
late the shutter so as to allow only very high velocity molecules to pass from the cooler gas to the
warmer one and so as to allow only very low velocity molecules to pass from the warmer gas to
the cooler one.

2. That is, the three fundamental laws of the world, the ones I wrote down—after many false
starts—at the very end of Chapter 4.

3. As a matter of fact, laws 1 and 3 alone will apparently entail that; and law 2 will simply do
nothing to contradict it.



epistemic business, that entropy is a characteristic of probability-distributions,
that the entropy of any given system at any given time is (roughly speaking) a
measure of the number of distinct microconditions which—for all we hap-
pen to know—that system at that time might imaginably be in. And it hap-
pens that if the evolution of any system S over the course of any interval I is
isolated and unobserved, and if the laws that govern S’s evolution are deter-
ministic in I, and if the laws that govern S’s evolution are symmetric under
time-reversal in I, then it follows (about which more in a minute)—abso-
lutely irrespective of any further details about precisely what sort of a system
S happens to be—that the size of the set of microconditions which S might
imaginably be in can simply not decrease in I. And that’s more or less all
there is to it.

Take the particular case of the demon. If everything goes as advertised, the
demon is supposed to be able to accept any two-gas system we happen to
hand it in some particular macrocondition A—whose entropy is relatively
high—and to hand it back to us sometime thereafter in some other particular
macrocondition B, whose entropy is lower. If everything goes as advertised (to
put it another way), and if all we initially know of the two gasses in question is
that their joint macrocondition is A, then what the demon is supposed to be
able to do is (roughly speaking) to reduce the number of distinct micro-
conditions that the two-gas system might imaginably be in. If everything goes
as advertised, then (speaking roughly again) there are supposed to be at least
two distinct microconditions of the two-gas system—c and d—both of which
are compatible with A, and either one of which the demon is able to transform
into some unique third microcondition, e, which is compatible with B.

And it turns out (and this is the punch line) that every such bringing to-
gether of distinct conditions in the two-gas system can only be accomplished
at the cost of a corresponding bringing apart in the demon himself. Think
about it: the particular things this demon is going to need to do in order to
transform c into e are necessarily going to be different from the particular
things he is going to need to do in order to transform d into e.4 And so the
robot-demon is going to need to ascertain and store in his memory some-
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4. Note, by the way, that it is absolutely crucial to the truth of this claim that the ~nal states
in these two transformations are the same. It might very well be the case, in principle, that the
things that need to be done in order to transform c into e are precisely the same as the things that
need to be done in order to transform d into (say) f.



thing about which particular one of those two initial conditions actually ob-
tains in order to decide how to proceed; he is going to need to ascertain and
store in his memory something about (say) the positions and velocities of the
particles in the vicinity of his shutter—in the case of the scheme Maxwell
discussed—in order to know precisely when that shutter will need to be
opened and closed. And so (if you think it over) for every two distinct condi-
tions compatible with A which the robot-demon is able to bring together in
B, there are necessarily going to be two distinct conditions in which the
demon’s own physical memory-elements may potentially end up. And so as
the number of distinct conditions that the two-gas system might imaginably
be in decreases, the number of distinct conditions that the robot-demon him-
self might potentially be in will necessarily be going up.5 And those numbers
(once again) are precisely the ones that the entropies of those systems are
about. Or so the argument goes.

Let’s sharpen all this up a bit. Strictly speaking, the talk in the last several
paragraphs about the “number” of distinct microconditions that a certain
system might imaginably be in, or about the “number” of distinct micro-
conditions compatible with this or that macrocondition, is all wrong—the
number of such distinct microconditions (after all) is invariably in~nite. The
right thing to talk about in this connection—if you want to be careful—isn’t
number, but measure. And the particular measure on sets of microconditions
that thermodynamic entropy happens to be connected with—as we saw in
Chapter 2—is the standardly calculated volume in phase space. And so the
thing that apparently needs to be demonstrated in order to establish that the
entropy of S cannot decrease in the course of the exercise we’ve been talking
about (whatever might or might not happen, in the course of that exercise, to
the two-gas subsystem of S) is just that the standardly calculated phase-space
volume of the set of distinct microconditions that S might imaginably be in
is no smaller at the conclusion of the exercise than it is at its beginning.
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5. And it hardly needs saying (and this has nonetheless recently been made a very big deal of
in the physical literature) that if there happens to be some other mechanism in the picture,
whereby the demon can be reset, when his work is done, to his original microcondition, then
the number of distinct microconditions that the resetting mechanism might potentially be in
will necessarily go up—in the course of that resetting—by precisely the same amount as the
number of distinct microconditions that the robot-demon might potentially be in goes down.
And so on and so on (if there should also happen to be resetting mechanisms for the resetting
mechanisms) ad in~nitum.



And it happens to be exactly the content of the Liouville theorem (you will
remember) that the standardly calculated volume in phase space of any set
of microconditions of any isolated system will be exactly equal to the
standardly calculated volume in phase space of the set of whatever other
microconditions those original ones get carried into, over any particular
time-interval, by the Newtonian equations of motion. And so—if entropy is
indeed the sort of thing that we’ve been taking it to be over the last few
paragraphs—then the entropy of an isolated and unobserved Newtonian-
mechanical system can patently never go down. Period. End of story. But the
rub (now) is that it can just as patently also never go up. And it does go up, of
course. And so something is terribly wrong.

▲▲▲ Let’s start again.
The thing, of course, is that entropy is not an epistemic business. Entropy

(as I went to some trouble to point out at the end of Chapter 3) is an objec-
tive physical characteristic of the individual microconditions of individual
thermodynamic systems. The entropy of a microcondition is the logarithm
of the standardly calculated phase-space volume of the macrocondition to
which the microcondition in question belongs. And if (as often happens, in
our everyday experience) the microcondition of a certain thermodynamic
system happens to wander from a smaller-volume macrocondition into a
larger-volume macrocondition, then (at that instant) the entropy of that sys-
tem goes up; and if (as rarely happens, in our everyday experience) the
microcondition of a certain thermodynamic system happens to wander from
a larger-volume macrocondition into a smaller-volume macrocondition,
then (at that instant) the entropy of that system goes down. Period.

And once that sinks in, and if (as usual) we take the fundamental micro-
scopic dynamical laws of the world to be the Newtonian ones, then it follows
almost immediately that the proposition that the entropies of isolated ther-
modynamic systems do not decrease cannot be a universal law; not a strict
one (which is old news, of course), and not a statistical one, either.

Imagine (for example) a certain demon which is capable of surveying and
(thereafter) rearranging the microconditions of isolated boxes of gas in such
a way that at a certain particular time after those rearrangements have been
completed, the entropy of the gas will begin spontaneously to decrease. Imag-
ine (more precisely) that there is a demon with at least one macrocondition
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M and a gas with at least one macrocondition A such that if at some initial
time the demon is in M and the gas is in A, and the demon and the gas are in
the appropriate sort of proximity to each other, then it is overwhelmingly
likely that at a certain later time—a time after the demonic rearrangements
are complete—the entropy of the gas (then isolated!) will begin to go down.
Imagine (that is) a system D with at least one macrocondition M such that
almost the entirety of phase-space volume of the macrocondition

{D is in M and G is in A and D and G are in the appropriate sort of
proximity to each other}

is taken up with microconditions which the deterministic Newtonian equa-
tions of motion entail will begin to move, once the time-interval in question
has elapsed, once (that is) G is evolving in complete isolation, through re-
gions of the phase space associated with progressively lower entropies for G.6

And note that the compatibility of the existence of a demon like that with
the Newtonian equations of motion is an absolutely uncontroversial mat-
ter—all that the controversy was ever about (remember) is the amount by
which the entropy of a demon like that would need to go up in the course of
its operations. Let it need to go up (then) by any amount you like. It doesn’t
matter. The game (in a certain technical sense, at any rate) is already over. If
such a demon can exist, and completely irrespective of the amount by which
the entropy of a demon like that would need to increase in the course of its
operations, the second law, in all its various formulations, turns out not to be
universally true. If such a demon can exist—which nobody denies—then it
cannot be a matter of anything like a universal law of nature that the entropy
of an isolated gas which is not in equilibrium with respect to its gross con-
straints is bound or even statistically likely to go up over the next few minutes.
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6. The “overwhelmingly likely” and “almost the entirety” locutions are (by the way) abso-
lutely crucial here. Nobody (after all) disputes the physical possibility of the entropy of an iso-
lated thermodynamic system’s going down; what we’re after here are circumstances under
which the decrease of the entropy of an isolated thermodynamic system is not merely possible,
but precisely what one ought to expect. And the same sorts of considerations apply to the insis-
tence that M be a macrocondition (as opposed to a microcondition) of D: if all this is supposed to
work, if all this is supposed to demolish the generality of the truth of the second law of thermody-
namics, then M had better turn out to be the sort of thing that we can actually prepare, the sort
of thing to which the laws of thermodynamics are actually meant to apply; it had better turn out
(that is) to be a macrostate.



Whether that will happen will depend (rather) on whether there happen to
have been any such demons around at certain particular times in the past!

These (however) are plainly not quite the sorts of demons that either
Maxwell or his critics had in mind. The demons we’ve just been talking
about (after all)—notwithstanding that they are statistically reliable produc-
ers of violations of the literal prohibitions of the second law of thermody-
namics—will not necessarily leave the entropy of the world any lower (once
the whole business is over) than it was back when we ~rst decided to put
them to work.7 And so they aren’t the sorts of demons that can make you any
money—they aren’t the sorts of demons (that is) with whose help one can re-
liably increase that portion of the total energy of the world which is available
for our exploitation by gross mechanical procedures. Let’s call then pseudo-
-Maxwellian demons, then.

▲▲▲ And now (at last) let’s get to the real thing. Call him (as above) D.
And call the system consisting of the two gasses and the box and the dividing
wall and the shutter G. D � G, then, is the system we were referring to above
as S. And now the question about whether or not there can be a demon of
the sort that Maxwell was imagining comes down to something like this: can
there be a system D with at least one macrocondition M such that if D is in
M and G is in A and if D and G are brought into the appropriate sort of prox-
imity to each other, and are subsequently left alone, then the macro-
condition of G at a certain particular later time is overwhelmingly likely to
be B, and the entropy of D at that particular later time is overwhelmingly
likely not to have gone up. Can there be a system D with at least one
macrocondition M such that (in other words) almost the entirety of phase-
space volume of the macrocondition

{D is in M and G is in A and D and G are in the appropriate sort of
proximity to each other}

is taken up with microconditions which the deterministic Newtonian equa-
tions of motion entail will move, over the time-interval in question, into re-
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7. This (once again) is because we have put no restrictions whatsoever here on how much
the entropy of the demon itself may need to rise in the course of its operations.



gions of the phase space associated with G’s being in B and with D’s being in
some macrocondition whose entropy is not higher than the entropy of M?8

And at ~rst glance, the answer would still appear to be no.
The sort of thing that occurs to you is this: the volumes in phase space of

any particular initial set of microconditions of any isolated system S and of any
particular one of the time-evolutions of that initial set will necessarily—by
Liouville’s theorem—be equal.9 And remember (and this is just a trivial char-
acteristic of the geometry of phase space) that for any thermodynamic systems
S1 and S2 and any macrocondition {c1} of S1 and any macrocondition {c2} of S2,
the volume of the macrocondition {S1 is in c1 and S2 is in c2} in the phase
space of (S1 and S2) is just the volume of the macrocondition {c1} in the
phase space of S1 multiplied by the volume of the macrocondition {c2} in
the phase space of S2. And so there can certainly not be a system D with a
macrocondition M such that the overwhelming majority of phase-space vol-
ume of the above-mentioned macrocondition is taken up with micro-
conditions which will move, over the time-interval in question, into regions of
the phase space associated with G’s being in B and with D’s being in some par-
ticular macrocondition whose entropy is not higher than the entropy of M.

But (notwithstanding super~cial appearances to the contrary) that doesn’t
quite settle the question. Let’s keep our eye on the ball. What we want to
know (remember) is whether there can be a contraption which is capable of
reliably reducing the entropy of an isolated system of which that contraption
itself forms a part; what we want to know (more particularly) is whether there
can be a contraption capable of reliably taking the two-gas system we’ve been
talking about from A to B—as Maxwell envisioned—without increasing its
own entropy in the process. And note (and this is why the conclusion of the
previous paragraph is utterly beside the point) that nothing in any of this re-
quires that the ~nal macrocondition of the demon be the same on every run.
Nothing in any of this (that is) requires that the ~nal macrocondition of the
demon not depend on the details of the initial microcondition of the two gas-
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8. A and B are of course just the (respectively) higher-entropy and lower-entropy macro-
conditions of the two-gas system we were talking about a few paragraphs ago. And note that all
the stuff in footnote 6 about measure and likelihood and macroscopicness plainly needs to be
borne in mind in connection with the present considerations as well.

9. And what I mean, of course, by “any particular one” of the time-evolutions is just the
n-second evolution for any real value of n.



ses. And if the cardinality of the set of possible ~nal macroconditions of the
demon is greater than one, then (as Figure 5.2 makes clear) nothing whatso-
ever stands in the way of there being a macrocondition M such that the al-
most the entirety of phase-space volume of the above-mentioned macro-
condition is taken up with microconditions which will move, over the
time-interval in question, into regions of the phase space associated with G’s
being in B and with D’s being in one or another of some set of macro-
conditions, each of whose entropies is no higher than the entropy of M.

What Liouville’s theorem ineluctably requires is that the decrease in the
volume of the region of phase space associated with the macrocondition of
the two-gas system over the course of this exercise be paid for. But what has
perennially been overlooked (it seems to me) is that there are any number of
forms that the payment can legitimately take; and nothing whatsoever re-
quires (in particular) that it take the form of an increase in the volume asso-
ciated with the macrocondition of D.

Think (for example) of a Maxwellian demon whose individual physical
memory-elements happen to be solid movable macroscopic bodies. Think
(more particularly) of a demon who records the outcomes of his measure-
ments of the positions and velocities of certain of the particles in G (so as to
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be able to open and close his shutter at the appropriate times) exclusively in
the macroscopic positions of a gigantic array of billiard balls. The entropy of
a demon like that (and as a matter of fact, the full thermodynamic condition
of a demon like that) could in principle not change at all in the course of his
getting his job done.10

And so there are physical systems whose existence is perfectly compatible
with the three fundamental microphysical laws of the world discussed at the
end of Chapter 4—which (on the Newtonian picture) are all the strict or sta-
tistical fundamental laws there are—which have what you might call a ro-
bust capacity (which is to say, a capacity which is every bit as independent of
the microscopic details of initial conditions as any thermodynamic behaviors
are) to lower the entropies of certain larger isolated systems of which they form
parts. There can perfectly well (in other words) be such things, such physical
things, as bona ~de Maxwellian demons.

And we have learned something interesting (by the way) about what sorts
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10. Suppose somebody were to object, at this point, that it is part and parcel of what it is to
be a macrocondition, that it is part and parcel of what it is (that is) to be the sort of condition to
which thermodynamic predicates—predicates of entropy, for example—can even be coher-
ently applied, that the number of distinct macroconditions that a system can potentially be in is
relatively small. It seems to me that I’ve heard people say that sort of thing. And (you see) the
number of distinct potential macroconditions that we are going to need to attribute to this set of
billiard balls—if everything is to work as advertised—is more or less on the order of the number
of distinct potential microconditions which are compatible with the initial macrocondition of
the two gasses. And that latter number is (of course) enormous. And so (the objection will run)
predicates of entropy simply do not apply to systems like the demon we’ve been thinking about
here, and so they don’t apply to systems like S (of which that sort of a demon is a subsystem) ei-
ther, and so propositions to the effect that a system like S either obeys or fails to obey the second
law of thermodynamics are simply devoid of meaning.

The thing is that any attempt at taking an objection like this seriously is going to leave us
with a rather badly withered-up version of the second law; a version (that is) which is enormously
more restricted and more uninformative and more uninteresting than the one we’re used to
thinking about; a version which (for example) is going to have nothing whatsoever to say about
the possibility that somebody is eventually going to be able to slap together a contraption which
is reliably capable of transferring heat from a hotter body to a cooler one without any attendant
cost in mechanical energy to the rest of the world.

And anyway, and more important, and more trivially, the objection is absurd. On any rea-
sonable construal whatsoever of what the word “macroscopic” is supposed to mean, any billiard
ball in any in~nite Newtonian universe can damn well potentially be in an in~nite number of
macroscopically distinct locations. And if entropy is an additive quantity (and it is an additive
quantity), and if every one of the billiard balls of which the sort of demon we’ve been talking
about is composed has a perfectly well de~ned entropy (and every one of them does have a per-
fectly well de~ned entropy), then—as a matter of logic—the entire ~nite collection of them
damn well has a perfectly well de~ned entropy too!



of physical things those demons are going to need to be. They are going to
need to be microscopically sensitive: they are going to need to be capable of
tailoring their macroscopic behaviors to the particular microcondition of the
system they happen to be operating on; they are going to need to be the sorts
of systems (that is) whose ~nal macrocondition is not predictable, and not
even approximately predictable, from the initial macrocondition of the
larger isolated system of which it forms a part.11 And that’s what’s different
about the case of the demon, and that’s why there turned out to be no genu-
ine possibility of reducing the total entropy of the world by means of (say) the
ratchet-and-pawl mechanism I was talking about before: the thing is pre-
cisely that the demon is sensitive, and the ratchet and pawl isn’t.12
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11. Note that all this is in no way incompatible with the sort of robustness discussed in the
previous paragraph; indeed, what I am asserting here is precisely that microscopic sensitivity is a
necessary condition of that robustness.

12. There can be no such thing (then) as a mechanism which reliably reduces the entropy
of an otherwise isolated pair of gasses and that also reliably ends up in the macrocondition it
starts off in, there can be no such thing as a mechanism which reliably reduces the entropy of an
otherwise isolated pair of gasses and that also reliably ends up in precisely the macrocondition
(that is) that constitutes its being all set to start again, on another such pair of gasses. And it has
sometimes been thought, or at any rate it sometimes seems to have been thought, that a mecha-
nism which reliably reduces the entropy of an otherwise isolated pair of gasses, and which suf-
fers no increase of its own entropy in the process, but which fails to end up in the macrocondition
it started off in, is somehow not quite legitimately or genuinely or fundamentally in violation of
the second law of thermodynamics. And if anything like that were the case, then of course
everything I’ve been talking about for the past several pages would be altogether beside the
point. It isn’t, but it will be worth another couple of sentences (I think) to inquire a bit more
carefully into what a thought like that can possibly have been about, and how a thought like that
can possibly have arisen in the ~rst place.

The ~rst thing to say is that macroconditions of isolated systems which are overwhelmingly
likely to lead to evolutions in the course of which the entropy of the system in question de-
creases are absolutely and unambiguously and straightforwardly in violation of the second law
of thermodynamics—completely irrespective of whether any particular component of that sys-
tem happens to return to the macrocondition it starts out in or not—period, end of story. The
puzzle (as I said above) is about how anybody can ever have thought otherwise. And insofar as I
can tell, the essence of the confusion has been a certain perennial equivocation in the literature
about the meaning of the word “cycle.”

Now and then—and particularly in the more old-fashioned discussions—the word “cycle”
appears in formulations of the second law. Sometimes (for example) one sees Clausius’ version
of that law formulated as a proclamation of the impossibility of the existence of any physical
contraption for transferring a given quantity of heat from a hotter body to a cooler one which
(moreover) operates in a cycle. And what it is—in the present context—for such a contraption to
“operate in a cycle” is for its thermodynamic parameters, and nothing whatever other than its
thermodynamic parameters, to have the same values at the end of the heat transfer in question
as they do at its beginning. And (as a matter of fact, and as a quick perusal of the Appendix will
con~rm) is turns out to be absolutely crucial to the standard demonstrations of the entropic ver-
sion of the second law, it turns out to be absolutely crucial (that is) to the arguments from the



▲▲▲ A few concluding remarks.
First, the way the phase space of the world gets carved up into macro-

conditions depends very much (as mentioned in Chapter 3) on us; it is a
matter of our practices, it is a matter of what we ~nd we are easily able to dis-
tinguish, it is a matter of what we ~nd we are easily able to prepare. And so
the entropies of particular points in that phase space (which are just the loga-
rithms of the volumes of the macroconditions to which those points belong)
depend on us too. And yet (and this is the punch line) the above conclusions
about Maxwellian demons do not. Here’s the deal: you tell me how you want
to carve the phase space up into macroconditions and I will be able to come
back to you with a design for a Maxwellian demon which will be robustly ca-
pable of lowering the entropy (as you calculate it) of a larger isolated system
of which it forms a part. If billiard balls won’t do on the way you carve things
up, we can just design a demon who records his memories in the positions of
buildings, or cities, or planets, or whatever.

Second, the entirety of the foregoing discussion more or less straightfor-
wardly carries over to relativistic theories and to quantum-mechanical theo-
ries and to relativistic quantum ~eld theories and to relativistic quantum
string theories and (in short) to every one of the theories that anybody has
taken seriously over the past two hundred years or so as a candidate for the
fundamental physical theory of the world. And among those theories the
case of quantum mechanics deserves special mention, since there have been
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Clausius and Kelvin formulations of the second law to the conclusion that the entropy of a sys-
tem is a function of its present thermodynamic state alone, and not of how that state happens to
have arisen, that nothing whatever other than the purely thermodynamic parameters of the con-
traption in question can come into play here! And the thing is that all this has somehow again
and again been understood in the context of discussions of the supposed impossibility of Max-
wellian demons in an altogether different way. The thing (more particularly) is that the require-
ment that the contraption in question “operate in a cycle” has somehow again and again been
understood in the context of discussions of Maxwellian demons not merely as requiring the con-
traption’s thermodynamic parameters return, at the end of the transformation, to their original
values, but (rather) as imposing the enormously stronger constraint that the contraption return
at the end of the transformation to its full original macrocondition, that it be ready, at the end, to
start over! But (for the last time) that understanding is wrong. On that understanding (for exam-
ple) the deduction of the entropic formulation of the second law from its Clausius and Kelvin
formulations would simply not go through. On that understanding (to put it another way) the
second law would not preclude (either strictly or as a statistical matter) decreases in the
entropies of isolated thermodynamic systems. And precluding just that, of course, is what the
second law is all about!



suggestions around more or less from the beginnings of recorded history that
the quantum-mechanical uncertainty-relations might somehow make it im-
possible—as a matter of fundamental principle—for any such demon to
carry out the sorts of measurements he needs to, or to operate his shutter in
the way that he needs to. And there isn’t a hell of a lot to say about those sug-
gestions—without going into a good deal more detail than would turn out be
either useful or entertaining here—other than that they are categorically
false. It is certainly true (mind you) that in the quantum-mechanical case
the question of precisely what measurements the demon will need to perform
and the question of precisely how his shutter will need to work need to be
thought through with a bit more care. But it isn’t as if that’s not a perfectly
accomplishable thing—indeed, there has been an explicit answer to those
questions, there has been (that is) an explicit quantum-mechanical model of
those measurements and that shutter, sitting in John von Neumann’s semi-
nal book Mathematical Foundations of Quantum Mechanics, for anybody
who might have cared to look, ever since the 1930s.13

Third, it deserves to be emphasized that there is nothing at all abstract or
restricted or esoteric or legalistic or otherwise suspicious about the sorts of
violations of the second law that these bona ~de Maxwellian demons (as op-
posed to the pseudo-Maxwellian demons we were discussing before) are ca-
pable of producing. It is of the very essence of the thermodynamical de~ni-
tion of entropy (after all) that any decrease whatsoever in the entropy of any
thermodynamic system invariably increases the amount of mechanical en-
ergy which can be extracted from that system by means of a heat engine, and
(moreover) that any increase in the entropy of any thermodynamic system in-
variably decreases the amount of mechanical energy which can be extracted
from that system by means of a heat engine. And so any reliable method of
decreasing the entropy of one thermodynamic system without in the process
increasing the entropies of any others (which is precisely the sort of thing that
we have just now learned that bona ~de Maxwellian demons can do) is nec-
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13. Notwithstanding all this (by the way), von Neumann himself was convinced—by the
sorts of arguments dispensed with above, the arguments based on an epistemic conception of en-
tropy—that Maxwellian demons were physically impossible. John von Neumann, Mathemati-
cal Foundations of Quantum Mechanics, trans. R. T. Beyer (Princeton: Princeton University
Press, 1955). (The ~rst German edition was published in 1932.)



essarily a reliable method of increasing that part of the total energy of the
universe which is available for mechanical exploitation. Period.

▲▲▲ The thing now is (obviously) to look for a catch. And the one thing
that jumps right out at you in that connection is this issue of sensitivity, this
fact that there can be no such thing as a Maxwellian demon that reliably ends
up in any particular macrocondition, that (more particularly) there can be no
such thing as a Maxwellian demon that reliably ends up in the macro-
condition it starts off in, that there can be no such thing as a Maxwellian
demon that reliably ends up in precisely the macrocondition that constitutes
its being all set to start again, that there can be no such thing as a Maxwellian
demon that operates—in the stronger of the two senses I described in footnote
12—in a “cycle.” And the thought is that it might be possible to parlay that
fact (together with the theory of relativity, perhaps, or with the laws of quan-
tum mechanics, or with sciences of complexity, or with all of them in con-
junction, or with something else altogether) into a demonstration that the
construction of a Maxwellian demon system, or the operation of a Maxwel-
lian demon system, or the extraction of mechanical energy from a Maxwellian
demon system by means of heat engines (once its operations are done), or the
exploitation of that energy (once it’s been extracted) will necessarily—as a sta-
tistical matter—somehow prove prohibitive or self-defeating or otherwise
uncircumventably pointless. The thought (to put it another way) is that there
might be some interesting generalization of the second law which is true not
merely in the absence of the sorts of circumstances we’ve been discussing
here, but (rather) simpliciter; that there might be some interesting generaliza-
tion of the notion of entropy, which (say) would reduce to the familiar notion
in those circumstances in which the entropy is in fact statistically unlikely to
go down, and which (as a matter of absolutely universal law) is always statisti-
cally unlikely to go down itself.

And insofar as I am aware, nothing whatsoever is currently known as to
whether or how any of this can actually be made to pan out. And it seems to
me a rather profound and urgent and fascinating question.
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▲▲▲ C H A P T E R S I X

THE ASYMMETR I ES
OF KNOWLEDGE
AND INTERVENT ION

1. KNOWLEDGE

The sort of epistemic access we have to the past is different from the sort of
epistemic access we have to the future. This (to put it mildly) nobody doubts.
And nonetheless (and this is the ~rst matter I want to take up in this chapter),
there is a vast physical and philosophical literature nowadays about the al-
leged dif~culty of specifying exactly what that difference is.

It’s often pointed out, for example, that the difference certainly does not
consist in our having knowledge of the past but none of the future. We do,
after all, have knowledge of the future. We know (for example, and not less
certainly than we know much of what we know of the past) that the sun will
rise tomorrow.

And if it’s said that we know more of the past than we do of the future, this
seems (according to the usual way of talking) true enough, but (as it stands)
not particularly informative—it seems to give us nothing at all that we can
reason any further with, nothing that (as it were) we can sink our teeth into.

Sometimes the focus is shifted to differences between the methods by
which we come to know things about the past and the future. It’s said (more
particularly) that there can be such things as records only of the past; but this
is almost always immediately followed up with whining about the perennial
elusiveness of exactly what it means to be a “record,”1 and cluelessness fol-
lows again.

It seems to me (though) that things aren’t nearly as mysterious as all that.

1. Have a look, for example, at what Larry Sklar has to say about it beginning on the bottom
of page 385 of Physics and Chance: Philosophical Issues in the Foundations of Statistical Me-
chanics (Cambridge: Cambridge University Press, 1993).



The briefest re_ection on the sort of thing we ran into at the end of Chapter
4 (I think) and on the simplest paradigm cases of things which we can know
about the past but not about the future (say, the fact that a certain egg, at a
certain time, hits the _oor and splatters in exactly the shape of Argentina)
will get us to the crux of the matter.

To begin with, let’s be a little more explicit about what the terms of the
discussion are. The game here (once again) is to say how we manage to
make the sorts of inferences that we do from the present to times other than
the present, and to say why we don’t manage to make certain others. And so
we are going to need to start out with some sort of a ground rule as to what
can be taken as unproblematically given to us, some ground rule about the
sorts of raw data from which these inferences proceed. Let’s settle, just for the
moment, just to get the ball rolling, on a very crude one: take the raw data
from which these inferences ought to be seen as proceeding to consist of
what we were referring to at the end of Chapter 4 as the world’s present di-
rectly surveyable condition.2

Good. Now, what I want to claim is that the crucial distinction between
what we can know about the past and what we can know about the future (or
rather, a very serviceable ~rst approximation to that crucial distinction, an
approximation which is going to turn out to be quite close to the mark, of
which more later) runs as follows:

Everything we can know about the future (for example, the sun will rise
tomorrow, the ice in the glass on the table in front of me will soon be melted,
Henry is absolutely going to love Lost Highway) can in principle be deduced
from nothing over and above the dynamical equations of motion and the
probability-distribution which is uniform, on the standard measure, over the
world’s present directly surveyable condition. But a great deal of what we
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2. The present directly surveyable condition of the world (you will remember) is the world’s
present macrocondition plus whatever (perhaps macroscopic) features of the present condition
of the brain of the observer in question may be accessible to her by means of direct introspec-
tion. And granting that we know all that is, of course, granting us much too much: we don’t have
the remotest idea what the entirety of the present macrocondition of the world is, and we surely
never will. Nonetheless, this assumption will serve well enough for the purposes of getting the
structure of the arguments straight. Once that’s done, we’ll be able to re~ne it—in a perfectly
straightforward way—to suit any doctrine we like about what it is we actually and currently and
directly and unproblematically know.



take ourselves to know of the past (and it will be helpful for what follows to
keep two very different sorts of examples simultaneously in mind here: (1)
that certain particular eggs have on certain particular previous occasions
splattered in exactly the shape of Argentina; and (2) that the entropy of the
universe as a whole has previously been much lower than it currently is) pa-
tently does not.

The obviousness of all this notwithstanding, it has had an extraordinary
way of escaping the attention even of investigators who were (in a manner of
speaking) looking it straight in the face—investigators who were vividly
aware (for example) of the fact that the overwhelming majority of trajectories
passing, at any particular instant, through any non-maximal-entropy macro-
state will have higher entropies on both temporal sides of that instant.3 And
what that fact entails (once again) is not only that almost the entirety of what
we take ourselves to know of the past (that the entropy was lower, that certain
eggs splattered in certain particular shapes, that the Roman Empire existed,
and so on) fails to follow from the world’s present macrocondition � the
uniform microdistribution over that macrocondition � the laws of motion,
but (rather) that it follows from all this that almost all of what we take our-
selves to know about the past is almost certainly false! What will follow
(more particularly) from the world’s present macrocondition � the uniform
microdistribution over that macrocondition � the laws of motion is (as we
learned at the end of Chapter 4) that any book describing the Roman Em-
pire is far more likely to have _uctuated out of molecular chaos than to have
arisen as some sort of distant causal consequence of the existence of that em-
pire; and no amount of redundancy among various such books, or among
such books and archeological artifacts and whatever else you may be able to
come up with, will change that one iota. Period.

▲▲▲ All right. Let’s start to hook all this up with the terminology of the
methodological asymmetries I mentioned before. Let’s call inference pro-
cedures to other times which operate by plugging any available macro-
information about the present � the standard microstatistical rule into the
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3. Even Reichenbach (in the passage I was discussing in footnote 17 of Chapter 4) gets this
all bollixed up.



equations of motion predictions or retrodictions; and let’s characterize all
inference procedures which (for whatever reason) do not ~t that description
as relying on records. The claim, then, is that whatever we take ourselves to
know of the future, or (more generally) whatever we take to be knowable of
the future, is in principle ascertainable by means of prediction.4 Some of what
we take ourselves to know about the past (the past positions of the planets, for
example) is no doubt similarly ascertainable by means of retrodiction—but
far from all of it; rather little of it, in fact. Most of it we know by means of
records.

And the puzzle is this: given that our direct empirical database presum-
ably cannot exceed the world’s present macrocondition (or the world’s pres-
ent directly surveyable condition; and no doubt, as I mentioned above, it is
actually a great deal smaller than either of those), how can there possibly be
reliable methods of inference to other times other than prediction and
retrodiction? How can we know more of the past (as we in fact do) than can
be deduced by means of retrodiction?

And at this point—unless all this is somehow put a stop to—a full-blown
skeptical catastrophe is around the corner: retrodiction, after all, is going to
count it as extraordinarily unlikely that the very experiments which we take
to have con~rmed classical mechanics in the ~rst place ever actually oc-
curred! And so one of the beliefs that the combination of classical mechanics
and the uniform-over-the-present-macrocondition-of-the-world-probability-
distribution would seem to undermine is the belief in classical mechanics
itself! And so the reliability of prediction and retrodiction themselves (insofar
as they both depend on the truth of the microscopic laws of motion) is
patently going to require that there be some reliable technique of inference
other than prediction and retrodiction. And the question now is what that
other technique could possibly involve; the question is where the extra
information that the technique will patently require can possibly be coming
from.
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4. Note, however, that it is certainly not being claimed here that we routinely arrive at our
judgments about the future by means of anything along the lines of a conscious application of
the method I have just described; only that whatever we take ourselves to know of the future
could in principle also have been arrived at by means of an application of that method, and
(moreover) that if it could be demonstrated of a certain thing that we take ourselves to know of
the future that it could not have been arrived at by that method, we might begin to doubt that we
know it after all.



▲▲▲ Let’s start over.
Measuring devices (and this is the sort of thing that has long been recog-

nized in discussions of measurement in the context of quantum mechanics)
are not the sorts of systems whose states become reliably correlated with the
states of the systems they are designed to measure merely in the event that
they interact with those systems in the appropriate way. Indeed, insofar as the
basic laws of nature are exclusively dynamical ones (of which more in a min-
ute), there simply can’t be any systems like that.

Here’s what measuring devices are: measuring devices are the sorts of sys-
tems which reliably undergo some particular transition, when they interact
in the appropriate way with the system they are designed to measure, only in
the event that the measured system is (at the time of the interaction) in one
or another of some particular collection of physical situations. The “record”
which emerges from a measuring process is a relation between the con-
ditions of the measuring device at the two opposite temporal ends of the in-
teraction; the “record-bearing” conditions of measuring devices which ob-
tain at one temporal end of such an interaction are reliable indicators of the
situation of the measured system—at the time of the interaction—only in
the event that the measuring device is in its ready condition (the condition,
that is, in which the device is calibrated and plugged in and facing in the
right direction and in every other respect all set to do its job) at the inter-
action’s other temporal end. The sort of inference one makes from a record-
ing is not from one time to a second in its future or past (as in predic-
tion/retrodiction), but rather from two times to a third which lies in between
them.

And note that inferences of this latter sort can be immensely more power-
ful, that they can be immensely more informative, than inferences of the pre-
dictive/retrodictive variety. Think (for example) of an isolated collection of
billiard balls moving around on a frictionless table. And suppose that billiard
ball number 5 (say) is currently at rest; and consider the question of whether
or not, over the past ten seconds, billiard ball number 5 happens to have col-
lided with any of the other billiard balls. The business of answering that ques-
tion by means of retrodiction will of course require as input a great deal
more information about the present—it will require (in particular) a com-
plete catalogue of the present positions and velocities of all the other billiard
balls in the collection. But note that the question can also be settled,
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de~nitively, in the af~rmative, merely by means of a single binary bit of in-
formation about the past; a bit of information to the effect that billiard ball
number 5 was moving ten seconds ago.5

And the puzzle is about how it is that we ever manage to come by such in-
formation. It can’t be by means of retrodiction/prediction (since, if that were
the case, whatever other information that information could subsequently
be parlayed into would necessarily also be of the predictive/retrodictive sort).
It must be because we have a record of that other condition! But how is it that
the ready condition of this second device (that is, the one whose present con-
dition is the record of that ~rst device’s ready condition) is established? And
so on (obviously) ad in~nitum. There must (in order to get all this off the
ground) be something we can be in a position to assume about some other
time—something of which we have no record; something which cannot be
inferred from the present by means of prediction/retrodiction—the mother
(as it were) of all ready conditions. And this mother must be prior in time to
everything of which we can potentially ever have a record, which is to say
that it can be nothing other than the initial macrocondition of the universe
as a whole.6

And so it turns out that precisely the thing that makes it the case that the sec-
ond law of thermodynamics is (statistically) true throughout the entire history
of the world is also the thing that makes it the case that we can have epistemic
access to the past which is not of a predictive/retrodictive sort; the reason there
can be records of the past and not of the future is nothing other than that it
seems to us that our experience is con~rmatory of a past-hypothesis but not of
any future one.

And note, by the way, that all this leaves quite open the possibility that
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5. Note also that it is nothing more than a verbal matter, in this billiard-ball example at least,
which condition of the ball gets called the “ready” condition and which condition gets called
the “record-bearing” one. Having the right sort of information about the billiard ball, or (more
generally) about the measuring device, at some time other than the present, will make it possi-
ble to read its present state as a record of an occurrence at some time between those two.

6. There might be a temptation to think that the mother of all ready conditions—the ready
condition (that is) about which we are prepared to make an assumption, the ready condition
from which all the others are thereafter inferred by means of records—must be whatever condi-
tion of our own brains it is that ensures the reliability of our sense perceptions. But a little
re_ection will show that this can’t possibly be right. The evidence of our senses can (after all) be
overridden, on occasion, by other sorts of records—and there are (after all) records of events
which occurred well before we were born!



there might turn out to be some as yet undiscovered future hypothesis (not,
presumably, a hypothesis to the effect that the far-future state is a low entropy
one, but that it is characterized by some simple macroscopic organization), of
which our experience may yet prove con~rmatory, and whereby we might
yet learn to record or even to remember the future as well. That would make
for a strange world, but perhaps not an altogether unintelligible one.7

Anyway, leaving that possibility aside, what seems to be the case is that ev-
erything we can know of the past and present and future history of the world
can be deduced, in its entirety (as stated at the end of Chapter 4) from the fol-
lowing four elements: what we know of the world’s present macrocondition—
and of our own brains, perhaps; the standard microstatistical rule; the dynami-
cal equations of motion; the past-hypothesis.

And the sorts of things that justify our belief in the past-hypothesis are (as
before) precisely the sorts of things that typically justify our beliefs in laws.
We believe in it (that is) not because it is entailed—or can be entailed—by
any ~nite collection of particular empirical observations, but because of its
conspicuous success (as in the case of the Napoleonic boots, or of the spatu-
las, or of the ice, or of countless billions of other things) in making predic-
tions about how future particular observations are likely to come out,8 and
(more profoundly, perhaps) because it manages to render various of our
other most fundamental convictions (about the veracity of our memories,
and about the truth of the second law of thermodynamics, and about the ac-
curacy of the dynamical equations of motion, and about the reliability of the
techniques of prediction and retrodiction, and so on) compatible with one
another.9

▲▲▲ One more detail—in connection with the attempt at the outset of
this chapter to say precisely what it is that distinguishes the sort of epistemic
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7. That it isn’t unintelligible, or that (at any rate) it perhaps isn’t unintelligible, is by no
means a trivial matter. The sort of worry that jumps right out at you is that you might take steps
to ensure that what you remember of the future does not, in the end, occur. And there is a fa-
mous old paper about just that, which is one of the prettiest and most imaginative little occa-
sional pieces of physical reasoning I have ever come across, and which I heartily recommend to
the reader: J. A. Wheeler and R. P. Feynman, “Interaction with the Absorber as the Mechanism
of Radiation,” Reviews of Modern Physics 17 (1945): 157–181.

8. This is the sort of thing I was talking about back on page 94, at the end of Chapter 4.
9. That is, it turns out to be precisely the thing we need in order to avert the full-blown skep-

tical catastrophe that was looming back on page 116.



access we have to the past from the sort of epistemic access we have to the fu-
ture—now needs setting straight. That original attempt (it now appears) can-
not possibly have gotten things exactly right, because some of what we can
learn of the past, by means of records, can plainly also have implications
about the future—implications which (more particularly) are altogether over
and above what we can learn by means of prediction.

Think (for example) of the pseudo-Maxwellian demon we were talking
about in the previous chapter—the one that rearranges the microconditions
of isolated boxes of gas in such a way that at a certain particular time after
those rearrangements have been completed, the entropy of the gas will begin
to decrease spontaneously. And focus on a time before the entropy of the gas
begins to decrease, but after the microscopic rearrangements have been
completed—a time at which the gas and the demon are (therefore) no lon-
ger interacting with each other, a time (that is) at which the gas is a fully iso-
lated system. And consider the probability-distribution that’s uniform (on the
standard measure) over that region of the phase space of the possible micro-
conditions of the gas which is compatible with its macrocondition at that
time—the probability-distribution (that is) which (in accord with our ~rst at-
tempt at saying precisely what it is that distinguishes the sort of epistemic ac-
cess we have to the past from the sort of epistemic access we have to the fu-
ture) is supposed to tell us everything we know, or can know, about how that
gas is subsequently to be expected to behave. Well, the thing is, it doesn’t tell
us all that. That distribution (after all) is going to count it as overwhelmingly
likely that the entropy of the gas—so long as it remains isolated—is not sub-
sequently going to decease; and we (of course) know better.10 What we know
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10. And there’s something worth pausing over and taking note of here (by the way) in con-
nection with the relationship between these pseudo-Maxwellian demons and the bona ~de ones.

Notwithstanding that both pseudo-Maxwellian demons and bona ~de Maxwellian demons
unquestionably amount to violations of the letter of the second law of thermodynamics, there is
a certain conception of what it is that that law is genuinely about; there is a certain conception
of what it is that that law is genuinely getting at—a conception which seems to have been on the
minds of both Maxwell and his various critics, and which was discussed in some detail back in
Chapter 5, and which has to do with getting energy out of the world by means of gross mechani-
cal manipulations, according to which the pseudo-demons are not even remotely as fundamen-
tal or as catastrophic or as unspeakable a violation of that law as the bona ~de ones are. And one
of the things that the present considerations are turning up is that (as a matter of fact) there are
other interesting conceptions of the spirit of that law on which precisely the reverse is true. The
operations of the bona ~de demons (after all) are perfectly in accord with the principle that the
future macroscopic behaviors of isolated macroscopic systems are more or less accurately given



(more particularly) is that after a certain de~nite time has elapsed, the gas is
spontaneously going to begin to (say) contract. And the way we know that,
the thing we infer it from, is a memory, a recording, of the fact that this demon
and this gas have previously (and in the appropriate way) interacted with
each other.

Or imagine that at a certain time t we come upon a box with a gas in it.
And suppose (moreover) that the box has a sign on it. And suppose that the
sign reads: “Just before t, with a microscope, I observed that gas particle
number 2874 was located at point (x � 39.7, y � 12.1, z � 5).—Sidney.”
And suppose that Sidney is someone I know to be an invariably serious and
trustworthy person, and an excellent microscopist. And the thing is that all
this manifestly puts me in a position to infer the outcome of a new measure-
ment of the position of particle 2874—a measurement which is to be carried
out just after t—with enormously greater accuracy than I could have merely
on the basis of the probability-distribution which is uniform (on the standard
measure) over that region of the phase space of the box � the gas � the sign
which is compatible with its present macrocondition. And the origin of this
extra information is (once again) manifestly in the possibility of reading the
sign as the record of an event in the past.11
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by the probability-distribution that’s uniform (on the standard measure) over the micro-
conditions compatible with their present macroconditions, but what’s just emerged here is that
the operations of the pseudo-demons are radically in violation of that principle!

And as a matter of fact (if you stop and think about it) the considerations of Chapter 5 entail
that there is nothing whatsoever in the classical equations of motion which stands in the way of
there being (even) super-Maxwellian demons, which violate the second law on both of the
above conceptions of what that law is trying to say.

What all this is positively crying out for (of course) is nothing along the lines of a decision as
to what the genuine essence of the second law ~nally turns out to be, but (rather) an improve-
ment of that law of the sort that I was pining after in the last two paragraphs of Chapter 5—a
better and more explicit and absolutely universal version of that law in which letter and essence
are ~nally one.

11. And (come to think of it) if the complete dynamical theory of the world is deterministic,
then anything whatsoever that constrains the condition of the world in the past necessarily also,
somehow, constrains the condition of the world in the future. And if (moreover) the complete
dynamical theory of the world happens to be in accord with the premises of Liouville’s theorem,
then there is a perfectly straightforward sense in which anything that constrains the condition of
the world in the past necessarily also constrains the condition of the world in the future to ex-
actly the same degree. And so the sort of “knowing” we have in mind when we speak of “knowing
more of the past than we do of the future”—if that sort of talk is to make any sense—must
amount to something other, something more speci~c, than our merely being in a position to rat-
tle off some constraints on the condition of the world. The idea (presumably) is that when we



And so our initial stab at saying what it is that distinguishes the sort of
epistemic access we have to the past from the sort of epistemic access we have
to the future can certainly not (once again) have gotten things exactly right.

The right thing (insofar as I know) is this:
Start with a probability-distribution which is uniform—on the standard

measure—over the world’s present macrocondition. Conditionalize that dis-
tribution on all we take ourselves to know of the world’s entire macroscopic
past history (and this will amount to precisely the same thing—if you think it
over—as conditionalizing it on the past-hypothesis). Then evolve this condi-
tionalized present-distribution, by means of the equations of motion, into
the future.

This will yield (among other information) everything we take ourselves to
know of the future.

Conversely:
Start with the same uniform probability-distribution over the present

macrocondition. Conditionalize this distribution on everything we take our-
selves to know of the world’s entire macroscopic future history (and this will
amount to very nearly—but not quite—no conditionalization at all). Then
evolve this conditionalized present-distribution, by means of the equations
of motion, into the past.

This will yield immensely less than we take ourselves to know of the past.
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speak of ourselves as “knowing something about the past,” we are taking ourselves to be in a po-
sition to rattle off the sorts of constraints which pertain to some previous condition of a relatively
small and unisolated subsystem of the world (Napoleon, say, or Woody Guthrie, or Greece), and
which can be expressed in a relatively simple, natural, straightforward, everyday sort of lan-
guage. And there is patently nothing whatsoever either in the determinism of the dynamical
laws of nature or in the Liouville theorem which requires that constraints like that about the
past necessarily also amount to constraints like that about the future.

Think (for example) of the billiard balls we were talking about before. And call the proposi-
tion that billiard ball number 5 is involved in a collision within a certain particular time-inter-
val—the past ten seconds, say—proposition P. A proposition like P, then—together with the dy-
namical equations of motion—is inescapably going to amount to a constraint on the possible
physical conditions of that collection of balls at every one of the temporal instants outside of the in-
terval in question as well; and (moreover) the information content of any individual one of those
constraints (that is, the information content of the constraints on any individual one of those other
times) is inescapably going to be equal to the information content of proposition P itself.

The rub (if you think about it) is just that those other constraints are generally going to take
the form of more or less unimaginably complicated correlations among the values of certain of
the physical properties of nothing less than every last one of the billiard balls in the collection,
which is to say that they are generally not going to amount to the sorts of propositions in which
human beings are even structurally capable of taking an interest.



▲▲▲ That (at any rate) is what seems to me to be the right and ~nal way of
putting things in the classical context. But once again, there is a speculative
history concerning these matters which (notwithstanding that it is in many
ways a misguided history) deserves some of our attention. The speculations
in question here were undertaken (remember) without the bene~t of any
clearly enunciated distinction between what we can know of the past and fu-
ture, or between the methods of prediction/retrodiction and recording; and
consequently, they were never able to focus squarely (as we have here) on
the question of what more fundamental asymmetries might account for those
distinctions. What they were all trying to do was just to construct an argu-
ment to the effect that records (whatever records are, precisely) must neces-
sarily and as a matter of fundamental principle be records of the entropic
past.12

Reichenbach (for example) suggests that we imagine encountering a sys-
tem which is more or less isolated—at present—and which is currently in a
state of non-maximal entropy relative to its current gross constraints (a
half-melted chunk of ice _oating in a glass of warm water, for example). Our
speculations about the past and future of this system must now (says
Reichenbach) run as follows: if the system in question is permanently iso-
lated, its present state must be counted as an enormously improbable _uc-
tuation; but the assumption that some interaction with the external world in
the near past or future (somebody’s dropping an entirely unmelted ice cube
into the glass of water, for example)—an interaction which leaves the system
in a macrocondition whose entropy is even lower than the entropy of the sys-
tem’s condition at present—will render that present condition overwhelm-
ingly probable. Moreover, our general background knowledge of the world
will assign a not-particularly-low a priori probability of such an interaction’s
taking place. And in light of that, the present non-maximal entropy condi-
tion of this system will rightly be viewed, under normal circumstances, as a
record of the actual occurrence of such an interaction. And (this is the punch
line) that this interaction must necessarily lie in the past of its record will
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12. And note that this is a conclusion which, if the above considerations are correct, is not
even true. What emerges from those considerations is that the fact that there happen not (in our
world, insofar as we are currently aware) to be records of the entropic future is an utterly contin-
gent matter: it has to do with the fact that there happens to be a past-hypothesis and there hap-
pens not (insofar as we are currently aware) to be a future one.



now follow from the general statistical truth of the second law; it will follow
(that is) from the fact that a uniform microdistribution over the initial
very-low-entropy macrocondition of the world amounts to a satisfactory the-
ory of the history of the universe. And all this seems to me to be precisely on
the mark—given the assumption that record-bearing conditions (of every
imaginable variety) are invariably non-maximal-entropy ones. But that just
seems wildly wrong. There just isn’t anything whatsoever (if you stop and
think it over) that’s somehow part and parcel of something’s being a re-
cord-bearing condition to the effect that it should (at present) be irreversibly
changing—or changing at all. Suppose (for example) that I come back to my
apartment in the evening and ~nd it in precisely the same stable and dishev-
eled condition I left it in that morning. Is there any reason in the world not to
read that condition—in the evening—as a record of the fact that nobody
broke into my apartment during the day and cleaned it up?

The only other interesting stab at this I know of comes from Paul
Horwich in his book Asymmetries in Time. It goes like this.

The idealized account of measuring devices which we’ve been making
do with thus far supposes that the transition from the ready state to the re-
cord-bearing state occurs only when the sort of event that the device in ques-
tion is designed to look for occurs. We presumed, for example, that a station-
ary billiard ball can only come to be moving later on in the event that
something collides with it in the interim.

But Horwich correctly points out that this sort of thing is not, in general,
going to be exactly true. It isn’t impossible, for example, for an initially sta-
tionary billiard ball to come to be moving by means of a _uctuation. What it
surely is, however, is extraordinarily unlikely; and it is in virtue of that (the
fact that devices can be constructed for which “spurious” readings, though
possible, will be rare) that there can be such things in the world as reliable
recordings.

Note, however, that if we follow the evolution of the world backward in
time, bizarre and unpredictable _uctuations (a stationary billiard ball sud-
denly cools off and starts to move, for example) will be no less ubiquitous
than approaches to equilibrium are as we follow the world’s evolution forward
in time. And this (that is, that the bizarre and the unpredictable will be the
rule as we follow the evolution of the world toward its low-entropy extremum)
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will (so Horwich thinks) render reliable recording devices for the future (that
is, devices whose record-bearing states precede their ready states) impossible.
The idea is that the construction of a recording device of this latter type for
which spurious readings could somehow be guaranteed to be rare is (given
what we have just observed about how the world looks if we follow its evolu-
tion backward in entropic time) manifestly out of the question.

But a little further thought will show all this to be silliness. The point is not
to get carried away. It is emphatically not the case that, going backward in
time, anything can happen. Strange and (within limits) unpredictable things
can happen, but only those things which, seen in the other time-direction,
are in accord with the second law!

If, for example, a billiard ball is known to be stationary at one entropic
time and moving at a later one, then (whichever of these two states gets called
the “ready” state, and whichever gets called the “record-bearing” one) a col-
lision can be inferred. Period.

2. INTERVENT ION

There’s one further fundamental conviction we have about the difference
between the past and the future, which is that the future depends on what
happens now—that the future depends on what we do now—in a way that
the past does not. And all the apparatus we need for getting to the bottom of
that is (I think) now in place.

The ~rst thing that needs saying (I suppose) is that there is nothing what-
soever in the way of a tension between (on the one hand) the conviction that
the future depends on what we do now and (on the other) the proposition
that the fundamental and universal equations of motion of the entire physi-
cal world (including us, of course) are fully deterministic. What we have in
mind when we say that the future depends on what we do now is certainly
not that the actual future can somehow be anything other than what it is ac-
tually going to be, or that there’s anything about that future that isn’t com-
pletely and irrevocably nailed down by the world’s initial condition, but
merely that if (contrary to fact) we were to be doing other than we actually
happen to be doing, at present, then the future would be something other
than it actually is. What we think (that is) is that the future counterfactually
depends on the present—and (moreover) we think that the future depends
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on the present in a way that the past emphatically does not. We think (for ex-
ample) that the decisions that the President of the United States makes today
somehow matter vis-à-vis the question of whether there will be a nuclear war
tomorrow in a way that they don’t vis-à-vis the question of whether there was
a nuclear war yesterday. And there is manifestly (again) a question—in light
of the invariance under time-reversal of the fundamental dynamical equa-
tions of motion—about how that can possibly be.

And the answer to that question is intimately bound up (I think) with the
fact that we live in the sort of world whose simplest and most informative de-
scription—the description at the very end of Chapter 4—involves a past-hy-
pothesis but no future one. The idea (more particularly) is that that fact, that
asymmetry, can be parlayed into an argument to the effect that the present
determinants of the past are (as it were) enormously less amenable to our con-
trol than the present determinants of the future are.

Think (to begin with) of the collection of billiard balls we were talking
about before. And suppose that some particular one of those balls (ball num-
ber 5, say) is currently stationary. And suppose (and this is what’s going to
stand in—in the context of this extremely simple example—for a past-
hypothesis) that that same ball is somehow known to have been moving ten
seconds ago.

What we learned about that sort of a collection of balls in the previous
section (you will remember) was that whereas (on the one hand) whether or
not ball number 5 will be involved in a collision over the next ten seconds is
determined by the present condition of the entire collection of balls, whether
or not ball number 5 has been involved in a collision over the past ten sec-
onds is (on the other) unambiguously determined—under these circum-
stances13—by ball number 5’s present condition alone.

And this is something it will be worth taking the trouble to put in one or
two slightly different ways.

One of the things this means is that whereas (on the one hand) there are
patently any number of hypothetical alterations of the present condition of
the balls in this set—whatever that condition might happen to be—which
would alter the facts about whether or not ball number 5 is to be involved in
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13. That is, given the information we have about the condition of this ball ten seconds
ago.



a collision over the next ten seconds,14 there can (on the other) be no hypo-
thetical alterations in the present condition of this set of balls, unless they in-
volve hypothetical alterations in the present velocity of ball number 5 itself,
which would alter the facts about whether or not ball number 5 had been in-
volved in a collision over the past ten seconds.15

And another of the things it means (and this is the one that’s going to be
the most useful for our purposes here) is that whereas (on the one hand)
there are perfectly imaginable present conditions of this collection of balls in
which certain small hypothetical alterations of (say) the present velocity of
ball number 12 would alter the facts about whether or not ball number 5 is
to be involved in a collision over the next ten seconds,16 and there are per-
fectly imaginable present conditions of this collection of balls in which cer-
tain small hypothetical alterations of the present position of ball number 2
would alter the facts about whether or not ball number 5 is to be involved in
a collision over the next ten seconds,17 and there are (in short) perfectly
imaginable present conditions of this collection of balls in which certain
small hypothetical alterations of any physical feature you choose of any par-
ticular one of these balls you like would alter the facts about whether or not
ball number 5 is to be involved in a collision over the next ten seconds, there
are (on the other hand) no imaginable present conditions of this collection
of balls at all (so long as those conditions are compatible with the proposition
that ball number 5 is currently stationary, and so long as it is taken for
granted that ball number 5 was moving ten seconds ago) in which any hypo-
thetical alterations whatsoever in the present conditions of any of these balls
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14. That is, whatever the present condition of these balls is, it will manifestly be possible to
specify hypothetical alterations of (say) nothing over and above present conditions of ball num-
ber 7, or of nothing over and above the present conditions of balls 25 and 32, or of nothing over
and above the present conditions of balls 12 through 29, or of nothing over and above the pres-
ent conditions of any subset of this collection of balls whatsoever—which will alter the facts
about whether or not particle number 5 is involved in a collision over the next ten seconds.

15. There can be no such alterations (that is) so long as that actual present condition in
question is (as stipulated above) one in which ball number 5 is stationary, and so long as we hold
it ~xed throughout all the hypothetical alterations of that present condition that ball number 5
was moving ten seconds ago.

16. Conditions (for example) in which ball number 12 is very nearly (but not quite) on a
collision course with ball number 5—or conditions in which ball number 12 is very nearly (but
not quite) on a collision course with some other ball which is itself very nearly (but not quite) on
a collision course with ball number 5.

17. Conditions (say) in which ball number 2 is very nearly (but not quite) in the path of ball
number 5.



other than ball number 5 itself would alter the facts about whether or not ball
number 5 was involved in a collision over the past ten seconds.

And so there are (as it were) a far wider variety of potentially available
routes to in_uence over the future of the ball in question here, there are a far
wider variety of what we might call causal handles on the future of the ball in
question here, under these circumstances, than there are on its past.

All right. Let’s jack all this up to cases of worlds more or less like our
own—worlds (that is) in which there are people and buildings and cities and
oceans and planets and galaxies and what have you, all of which behave
more or less as we’re used to such things behaving. The thing we want to ~nd
out about (remember) is precisely which ones of the above-mentioned sorts
of handles we are capable—under the right circumstances—of getting a
hold of. And any systematic investigation of that sort of a question is going to
have to start out (insofar as I can tell) with some primitive and un-argued-for
and not-to-be-further-analyzed conception of which particular features of
the present condition of the world it is that are to be thought of as falling
under our (as it were) direct and unproblematical and unmediated control.
Those features might be (say) the positions of my hands and feet and ~ngers
and toes, or the tensions in various of my muscles, or the electrical excita-
tions (or lack of them) in various of my motor neurons, or even the condi-
tions of various regions of my brain. And a little re_ection will show that it
isn’t going to matter very much, vis-à-vis the question of how the analysis is
ultimately going to come out, which particular one of the above candidates
for the directly controllable we happen to pick. Whatever gets decided about
that, the crux of the matter is going to be that (in the ~rst place) the part of
the present condition of the world over which we can reasonably think of
ourselves as in the above sort of direct and unproblematical control is exceed-
ingly tiny, and that (in the second place) for more or less any present feature
of the world you can think of and for more or less any future feature of the
world you can think of there are going to be a host of perfectly imaginable
worlds more or less like our own in which the present feature in question
amounts to a causal handle on the future one, and that (in the third place)
there are exceedingly few present features of the world which will amount—
on any imaginable world more or less like our own—to a causal handle on
any particular feature of the past.

Let’s spell all this out in a tiny bit more detail. The fundamental point is
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that in worlds like ours, the right procedures for making inferences to other
times from the present (let’s call them the normal procedures of inference,
or the NPI for short) are the ones spelled out at the very end of Chapter 4. In-
deed, that the right procedures for making inferences to other times from the
present—in a certain hypothetical world—are the ones at the end of Chap-
ter 4 is part and parcel of what we mean when we speak of that world as being
“like ours.” And there are patently worlds like that in which the NPI translate
relatively small hypothetical differences in (say) the present position of the
right index ~nger of the President of the United States into the difference be-
tween a certain thermonuclear device’s exploding or not exploding two min-
utes down the road.18 And there are other worlds like that in which the NPI
translate relatively small hypothetical differences in the present position of
the left foot of the President of the United States into the difference between
a certain thermonuclear device’s exploding or not exploding two minutes
down the road.19 And there are still other worlds like that in which the NPI
translate small hypothetical differences in the present position of the left foot
of the President of the United States into hypothetical differences in the
channel that a certain television set is going to be tuned to ~ve seconds down
the road.20 And there are (in short—and as I mentioned above) worlds more
or less like this one in which the NPI translate almost any hypothetical pres-
ent difference you can think of into almost any hypothetical future difference
you can think of.

But note that the situation is utterly and absolutely different with respect to
the past. There are (for example) no worlds at all, even remotely like our own,
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18. Maybe this is worth saying very carefully. What we mean (to begin with) by “a world like
ours” is (again) a world in which there are people and buildings and oceans and planets and
(importantly) whose simplest and most compact and most informative description is the one at
the end of Chapter 4. And what’s being claimed here is (in the ~rst place) that there is some per-
fectly imaginable present condition of a world like that (a condition in which—among other
things—the right hand of the President of the United States is somewhere in the immediate vi-
cinity of the button) for which the NPI entail that there is going to be a thermonuclear explo-
sion two minutes down the road, and (in the second place) that there is some other perfectly
imaginable present condition of a world like that, one that differs from the ~rst in only a small
way, and almost exclusively in terms of the position of the President’s right index ~nger, for
which the NPI entail that there is not going to be a thermonuclear explosion two minutes down
the road.

19. These, of course, will be worlds in which the left foot of the President of the United
States is somewhere in the immediate vicinity of the button.

20. You get the idea.



in which the NPI translate small hypothetical present differences in the pres-
ent position of anybody’s ~nger into the difference between a certain thermo-
nuclear device’s exploding or not exploding two minutes ago. And that (as I
said before) is precisely because there is a past-hypothesis and not a future
one. That (to put it another way) is because there are—vis-à-vis such things as
the past explosions of thermonuclear devices (or the lack of them)—such
things as records, as memories. And it is (as we’ve seen) part and parcel of the
logic of those sorts of things that there just can’t be any hypothetical present
differences in a world like ours that the NPI are going to translate into the dif-
ference between a certain thermonuclear device’s exploding or not explod-
ing two minutes ago—unless (of course) those present differences speci~cally
involve whatever records or memories there may be in the world, at present, of
whether or not any such explosion actually took place two minutes ago.

And those sorts of records are manifestly not things that can by any stretch
of the imagination be thought of as among the features of the present condi-
tion of the world that fall under our direct and unmediated and unproblem-
atical control.

And I am presuming here that however the details of the right method of
evaluating the truth-values of counterfactuals come out (and how those de-
tails do come out is still very much an open question), that method is going
to have to respect and to abide by and to be in accord with all the conse-
quences of the NPI.

And it follows—if all this is right—that the future does indeed counter-
factually depend on what we do now, and that the past (for all our intents
and purposes) does not.21
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21. Of course, none of this means that the past is as a general matter counterfactually inde-
pendent of the present. It patently isn’t. It ought to have been clear from the outset (if we had
bothered to think it through) that if the present were different from what it actually is in a
suf~ciently radical way—if (say) the present con~guration of the entire material contents of the
universe were a gigantic scale model of Bozo the Clown—then the past would surely have been
radically different too. But that sort of thing can be of no practical interest whatsoever to crea-
tures like us—for whom (at best) only the minutest details of the present condition of the world,
or rather, only a minute collection of the minutest details of the present condition of the world,
can reasonably be taken to be under our control. The point that’s crucial for creatures like us
(and precisely this is the point of our whole discussion of intervention) is that whereas almost
any particular feature of the present can turn out—under the right circumstances—to be
counterfactually decisive vis-à-vis almost any particular feature of the future, precious few partic-
ular features of the present condition of the world can turn out, in worlds anything at all like the
one we live in, to be counterfactually decisive vis-à-vis any particular feature of the past.



▲▲▲ C H A P T E R S E V E N

QUANTUM MECHANICS

1. THE BACKGROUND

Newtonian mechanics—as I mentioned at the outset—happens not to be
the mechanics of our world; the mechanics of our world (insofar as anybody
can tell at present) is quantum mechanics.

The empirical predictions of those two theories more or less coincide, of
course, insofar as the sorts of things that Newtonian mechanics manifestly
gets right (things like the motions of planets, or of baseballs, or even—
under certain circumstances—of molecules) are concerned, but the funda-
mental pictures they present of the space of possible physical states and of
the evolutions of those states over time are altogether different from each
other.

And so a question very naturally comes up as to whether and how the sort
of universal Newtonian statistical mechanics we have been working out over
the past six chapters can (as it were) be adapted to quantum theory.

And the conventional wisdom is that this sort of adaptation is (to begin
with) a perfectly accomplishable thing, and that (as a matter of fact, and par-
ticularly in light of the relative closeness of the quantum and the Newtonian
theories to each other insofar as things like the motions of molecules are
concerned) the whole business turns out to be an eminently simple and
straightforward matter of translation.

It (or rather, what seems to me to be the best available rational reconstruc-
tion of it in terms of the cleaner and more precise sort of vocabulary we have
been working out over the course of this book) goes like this:

To begin with, the dynamical laws that govern the evolutions of the in-
stantaneous states of quantum-mechanical systems in time (or rather, the dy-
namical laws that are usually taken to govern those evolutions—of which



more later) involve only ~rst derivatives.1 And one of the things that entails is
that the instantaneous states of quantum-mechanical systems are invariably
also the complete dynamical conditions of those systems.2 And one of the
things that entails (if you think about it for a minute) is that the dynamical
laws that govern the evolutions of quantum states in time cannot possibly be
invariant under time-reversal.3 And yet (and this is the main point) the quan-
tum-mechanical equations of motion do have the sort of partial invariance
under time-reversal—the invariance under time-reversal insofar as the posi-
tions of particles are concerned—that we talked about in Chapter 1. And
equations like that (as we’ve already seen) are going to present exactly as
much of a problem vis-à-vis the time-directedness of our everyday macro-
scopic experience as the Newtonian equations do—and (moreover) they’re
going to present it in more or less exactly the same way.

And (as to the question of what might imaginably be done about that
problem) you can run a quantum-mechanical argument—very much along
the lines of Boltzmann’s classical ones, very much (as a matter of fact) para-
sitic on Boltzmann’s classical ones—to the effect that the familiar regulari-
ties in the evolutions of the macroconditions of thermodynamic systems
toward the future can very plausibly be deduced from the initial macro-
condition of the system in question together with a quantum-mechanical
version of the statistical postulate (in which the standard measure over the
classical phase space is replaced by an analogous one over sets of possible

132 T IME AND CHANCE

1. This contrasts sharply, of course, with the equations that govern the evolutions of Newto-
nian systems—which have a d2/dt2 in them.

2. And this contrasts sharply with the Newtonian case too. There (remember) states consist
simply of speci~cations of positions, whereas dynamical conditions consist of speci~cations of
both positions and velocities.

3. The idea is this: suppose that the instantaneous microscopic state of a certain physical sys-
tem at time t is also that system’s complete dynamical condition at t, and suppose that the dy-
namical equations of motion of that system are invariant under time-reversal. Then whatever it
is that those equations entail about times other than t is patently going to have no alternative
whatsoever but to be symmetrical about t. Suppose (moreover) that the equations of the motion
of this system are invariant under time-translations—which is the case (by the way) of every sin-
gle one of the candidates for a fundamental dynamical equation of the evolution of the world
that anybody has taken seriously since the scienti~c revolution of the Renaissance. Then (if you
think it over) the state of this system is going to have no alternative but to be entirely unchanging
in time. And so any theory for which instantaneous states are also invariably complete dynami-
cal conditions, and for which the equations of motion are invariant under time-reversal, and for
which the equations of motion are invariant under time-translation, is necessarily a theory ac-
cording to which nothing ever happens.



quantum states) together with what are usually taken to be the correct quan-
tum-mechanical equations of motion. And there will (of course) be more or
less the same sorts of reversibility objections to all this as there were in the
classical case—and those objections will elicit more or less the same sorts of
precisi~cations of the Boltzmannian scenarios as they did in the classical
case—and those precisi~cations will in turn run into more or less the same
sorts of problems about the past as they did in the classical case. And the
point to which all the standard sorts of attempts at ~xing up those problems
will inexorably lead is precisely the set of fundamental postulates of universal
statistical mechanics discussed at the end of Chapter 4—with the classical
equations of motion replaced (of course) with what are usually taken to be
correct quantum-mechanical ones, and with the classical statistical postu-
late replaced by its above-mentioned quantum-mechanical correlate.

And that (so the story goes) is pretty much all there is to it.4

▲▲▲ And the thing I want to think through in this last chapter is whether
or not there might be more to the story than that. The thing I want to think
through in this last chapter is whether or not the transition to quantum theo-
ries might somehow (while we’re at it) accommodate a much more radical
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4. The empirical thermodynamical consequences of the classical and the quantum-mechani-
cal versions of statistical mechanics are (of course) going to differ—but those differences (as
with the differences between classical and quantum mechanics themselves) turn out not to
amount to much except in fairly unfamiliar sorts of circumstances—at very low temperatures,
say, or in very small containers, or on very oddly shaped energy hypersurfaces, or what have you.
Elsewhere (which is to say—insofar as things like the spreading of ordinary sorts of smoke and
the cooling of ordinary sorts of soup are concerned) classical mechanics and quantum mechan-
ics (as I mentioned above) more or less reduce to each other, and (consequently) the standard
formulations of classical and quantum-statistical mechanics do too, and (consequently) the em-
pirical contents of classical and quantum thermodynamics do too.

And one other thing deserves mention here. There is a very deeply entrenched tradition in
the physical literature of attributing whatever empirical differences there are between quantum
and classical statistical mechanics at least in part to differences between quantum mechanics
and classical mechanics on the question of Haecceisstism. But as a matter of fact (as discussed at
some length in Chapter 3), classical statistical mechanics turns out (on closer examination) not
to be committed to any position whatsoever on that question, and so quantum mechanics and
classical mechanics cannot possibly be in any disagreement about it, and so whatever empirical
differences there are between quantum and classical statistical mechanics are necessarily mat-
ters of physical theory (which is to say, they are necessarily matters of the structure of the space of
possible physical states, and of the statistical-mechanical measure over that space, and of the dy-
namics of the evolutions of those states in time) and not of metaphysical doctrine, and how
(come to think of it) can it possibly have been otherwise?



and more interesting sort of transformation of the structure of statistical me-
chanics than that.

The thing (remember) is that there’s a dif~cult problem at the foundations
of quantum theory. And nobody is quite certain—just yet—precisely what
ought to be done about that problem. And it might well turn out that the dy-
namical laws of the evolutions of the states of quantum-mechanical systems
in time are not (in fact) what they have usually been taken to be. And that
might change everything.

But this is getting ahead of ourselves. Let’s talk some (to start with) about
precisely what the problem at the foundations of quantum mechanics is.5

2. THE MEASUREMENT PROBLEM

Here are some true stories about experiments with electrons.
The experiments all involve measurements of two perpendicular compo-

nents of the intrinsic angular momenta, of two perpendicular components of
what are usually referred to as the “spins” of electrons.

Let’s call them the x-spin and the y-spin.
It happens to be an empirical fact (insofar as we currently know, at any

rate) that the x-spins of electrons can assume only one of two possible values,
and the same goes for y-spins.

Let’s call those values �1 and �1.
The measurement of x-spins and y-spins is something which can be ac-

complished, with currently available technologies, with considerable ease
and with considerable accuracy. The usual sorts of x-spin and y-spin measur-
ing devices (which will henceforth be referred to here as “x-boxes” and
“y-boxes”) work by altering the direction of motion of the measured electron
on the basis of the value of its measured spin component, so that the value of
that spin component can be determined later on by a simple measurement
of the electron’s position. (See Figure 7.1.)

Another empirical fact about electrons is that there are as a rule no corre-
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5. What follows here, by the way, is not going to amount to a particularly deep or particu-
larly exhaustive account of that problem. And readers who are not already familiar with that
problem, and with the various proposed strategies for solving it, are (I think) going to need to
hear more. And perhaps it’s worth mentioning (in this connection) that I wrote a book about all
that some years ago, which is called Quantum Mechanics and Experience, and from which the
present remarks have been adapted.



lations whatsoever between their x-spin values and their y-spin values: of any
large collection of, for example, x-spin � �1 electrons, all of which are fed
into the left aperture of a y-box, precisely half (statistically speaking) will
emerge through the y-spin � �1 aperture, and half will emerge through the
y-spin � �1 aperture; and the same goes for x-spin � �1 electrons fed into
the left aperture of a y-box, and the same goes for y-spin � �1 and y-spin �

�1 electrons fed into x-boxes.
And another empirical fact about electrons, and an extremely important

one for our purposes here, one that is worth discussing in some detail, is that
a measurement of the x-spin of an electron can disrupt the value of its y-spin,
and that a measurement of the y-spin of an electron can disrupt the value of
its x-spin, in what appears to be a completely uncontrollable way.

If, for example, a measurement of y-spin is carried out on any large collec-
tion of electrons in between two measurements of their x-spins (as in Figure
7.2), what invariably happens is that the y-spin measurement changes the
x-spin values of half (statistically speaking, again) of the electrons that pass
through it, and leaves the x-spin values of the other half unchanged.

No one has ever been able to design a measurement of y-spin which has
anything other than precisely that effect on x-spin values, and no one has
ever been able to identify any physical property or any combination of physi-
cal properties of the individual electrons in such collections which deter-
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mines which of them get their x-spins changed in the course of having their
y-spins measured and which don’t.

What the of~cial doctrine has to say about these matters (and these seem
like very innocent and very reasonable inferences from the experimental
data) is that there can in principle be no such thing as a y-spin measurement
which has anything other than precisely that effect on x-spin values, and that
which electrons get their x-spins changed by measurements of their y-spins
and which don’t is a matter of pure dynamical chance, that (in other words)
the laws which govern those changes simply fail to be deterministic.

If (by the way) there can in principle be no such thing as a measurement
of x-spin which fails to disrupt uncontrollably the value of y-spin, and if there
can in principle be no such thing as a measurement of y-spin which fails to
disrupt uncontrollably the value of x-spin, then, patently, there can as a mat-
ter of principle be no way of ascertaining both the value of the x-spin and the
value of the y-spin of any particular electron at any particular moment. And
that fact is an example (but only one among literally in~nitely many) of the
uncertainty principle: measurable physical properties like x-spin and y-spin
are said to be “incompatible” with each other, since measurements of one
will always (so far as we know) uncontrollably disrupt the other.

▲▲▲ Let’s get in deeper.
Consider the rather complicated device shown in Figure 7.3. In one cor-

136 T IME AND CHANCE

Figure 7.2



ner there’s a y-box. Y-spin � �1 electrons emerge from that box along the
route labeled “y � �1,” and at a certain point on that route there’s a “mir-
ror” or a “re_ecting wall” which changes the direction of motion of the elec-
tron but doesn’t change anything else about it (more particularly, it doesn’t
change the value of the y-spin of an electron that bounces off it) as shown.
And similarly for y-spin � �1 electrons.

At the point where the two routes reconverge, there’s a “black box,”
which also changes the directions of the motions of electrons, without alter-
ing the values of their y-spins in the process, in such a way as to make the two
routes coincide after they pass through it.

Let’s do an experiment.
Suppose that we feed a large collection of x-spin � �1 electrons, one at a

time, into the y-box; and then, as they emerge from the apparatus at “y � �1
and y � �1,” we measure their x-spins. What sorts of results should we ex-
pect? Well, our previous experience informs us that half of such electrons
(statistically speaking) will turn out to have y-spin � �1, and so will take
route “y � �1” through the apparatus; and half of them will turn out to have
y-spin � �1, and so will take route “y � �1” through the apparatus. Con-
sider the ~rst half. Since nothing that those electrons will run into in be-
tween the y-box and “y � �1 and y � �1” can have any effect on their
y-spin values, they will all emerge from the apparatus as y-spin � �1 elec-
trons, and consequently (our experience informs us here again) 50 percent
of them will turn out to have x-spin � �1 and 50 percent will turn out to
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have x-spin � �1. The second half, by contrast, will all emerge as y-spin �

�1 electrons, but of course their x-spin statistics will be precisely the same.
Putting all this together, it follows that of any large set of x-spin � �1 elec-
trons which are fed into this apparatus, half should be found at the end to
have x-spin � �1 and half should be found at the end to have x-spin � �1.

All that seems absolutely cut and dried.
But the funny thing is that when you actually go out and try this experi-

ment, what happens is that exactly 100 percent of the x-spin � �1 electrons
that initially get fed into this apparatus (one at a time, mind you) come out
with x-spin � �1 at the end.

This is very odd. It’s hard to imagine what can possibly be going on. Per-
haps things will get a bit clearer if we do another experiment. Suppose that
we rig up a small, movable, electron-stopping wall that can be slid, at will, in
and out of, say, route “y � �1” (see Figure 7.3). When the wall is “out,” we
have precisely our earlier apparatus; but when the wall is “in,” all electrons
moving along “y � �1” get stopped, and only those moving along “y � �1”
get through to “y � �1 and y � �1.”

What should we expect to happen when we slide the wall in? Well, to
begin with, the overall output of electrons at “y � �1 and y � �1” ought to
go down by 50 percent, since the input x-spin � �1 electrons ought to be
half y-spin � �1 and half y-spin � �1, and the former shouldn’t now be
getting through. What about the x-spin statistics of the remaining 50 per-
cent? Well, when the wall is out, 100 percent of the x-spin � �1 electrons
initially fed in end up as x-spin � �1 electrons. That means that all the elec-
trons that take route “y � �1” end up with x-spin � �1 and that all the
electrons that take route “y � �1” end up with x-spin � �1, and since we
can easily verify that whether the wall is in or out of route “y � �1” can have
no effect whatsoever on the x-spins of electrons traveling along route “y �

�1,” that implies that those remaining 50 percent should be all x-spin
� �1.

What actually happens when we go and do the experiment? Well, the
output is down by 50 percent, as we expect. But the remaining 50 percent is
not all x-spin � �1. It’s half x-spin � �1 and half x-spin � �1. And the
same thing happens, also contrary to our expectations, if we insert a wall in
the “x � �1” path instead.

And now things are getting positively weird.
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Consider an electron which passes through the apparatus when the wall
is out. Consider the possibilities as to which route that electron could have
taken. Could it have taken “y � �1”? Apparently not, because electrons
which take that route (as we’ve just seen again) are known to have the prop-
erty that their x-spin statistics are 50–50, whereas an electron passing through
our apparatus with the wall out is known to have x-spin � �1, with certainty,
at “y � �1 and y � �1.” Could it have taken “y � �1,” then? No, for the
same reasons. Could it somehow have taken both routes? Well, suppose that
when a certain electron is in the midst of passing thorough this apparatus, we
stop the experiment and look to see where it is. It turns out that half the time
we ~nd it on “y � �1,” and ~nd nothing at all on “y � �1,” and half the
time we ~nd it on “y � �1,” and ~nd nothing at all on “y � �1.” Could it
have taken neither route? Certainly not. If we wall up both routes, nothing
gets through at all!

Something breathtakingly deep, it would seem, has got to give; and in-
deed it has become one of the central dogmas of theoretical physics over the
past half-century or so that something does, that (more particularly) these ex-
periments leave us no alternative but to deny that the very question of which
route such an electron takes through such a contraption makes any sense.

The idea is that asking such questions amounts to a misapplication of lan-
guage, that it amounts to something like a category mistake.

Thus, what typically gets said of such electrons in physics textbooks is em-
phatically not that they take either the “y � �1” route or the “y � �1” route
or both routes or neither route through the apparatus, but that there is simply
not any matter of fact (not merely no known matter of fact, but no matter of
fact at all) about which route they take, that they are in what physicists call a
superposition of taking the “y � �1” route and the “y � �1” route through
the apparatus.

▲▲▲ Notwithstanding the profound violence all this does to our earlier pic-
ture of the world, to the very idea of what it is to be material, to be a particle, a
compact set of rules has been cooked up (a set of rules which is called quan-
tum mechanics) which has proven extraordinarily successful at predicting all
of the thus-far-observed behaviors of electrons under the circumstances we
have just been talking about, and which (as a matter of fact) has proven ex-
traordinarily successful at predicting all of the thus-far-observed behaviors of
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all physical systems under all circumstances, and which has functioned for
more than seventy years now (as everybody knows) as the framework within
which the entirety of the enterprise of theoretical physics is carried out.

Now, the mathematical object with which quantum mechanics repre-
sents both the instantaneous states and the full dynamical conditions of
physical systems (which amount to one and the same thing—remember—
for quantum-mechanical systems) is called the wave-function. Representing
things that way (according to quantum mechanics) represents them com-
pletely, which is to say that absolutely everything that’s the case about any
given physical system at any given temporal instant (that is, the value of
every single physical property of that system whose value there is—at that
instant—any determinate matter of fact about, and the probability of any
particular outcome of, any particular measurement one might choose to
carry out on that system at that instant, whether there is at the present instant
any matter of fact about the value of the property to be measured or not) can
be read off (according to quantum mechanics) from its wave-function.

In the particularly simple case of a single-particle system of the sort we’ve
been concerned with over the last few pages, the quantum-mechanical
wave-function takes the form of a straightforward function of (among other
things) position in space. The wave-function of a particle which is located in
some spatial region A, for example, will have the value zero everywhere in
space except in A, and will have a non-zero value in A. Similarly, the
wave-function of a particle which is located in some other region B will
have the value zero everywhere in space except in B, and will have a
non-zero value in B. And the wave-function of a particle which is in a super-
position of being in region A and in region B (the wave-function, for exam-
ple, of an initially x-spin � �1 electron which has just passed through a
y-box) will have non-zero values in both of those regions, and will be zero
everywhere else.

Anyway, what the laws of physics are about, according to quantum me-
chanics (and indeed all the laws of physics could be about, all there is for the
laws of physics to be about, according to quantum mechanics), is how the
wave-functions of physical systems evolve in time. And it is an extraordinary
peculiarity of the standard textbook formulation of quantum mechanics that
there are two very different categories of such laws, one of which applies
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when the physical systems in question are not being directly observed, and
the other of which applies when they are.

The laws in the ~rst category are usually written down in the form of
differential equations of motion.6 And those equations are designed to entail
(for example) that an initially x-spin � �1 electron which is fed into a y-box
will emerge from that box (just as it actually does) in a superposition of trav-
eling along the “y � �1” route and traveling along the “y � �1” route.
Moreover, all the experimental evidence we currently have suggests that
those laws turn out to be the laws which govern the evolutions of the
wave-functions of all isolated microscopic physical systems whatsoever,
under all circumstances. And so (since microscopic physical systems are
after all what everything else in the world consists of) there would seem on
the face of it to be very good reason to suppose that those linear differential
equations are the true equations of motion of the entire physical universe.

And yet there are reasons why (if wave-functions are indeed complete de-
scriptions of physical systems, as quantum mechanics maintains) this can’t
possibly be quite right.

To begin with, the laws expressed by those equations are completely de-
terministic, whereas there seems to be an element of pure chance (as I dis-
cussed above) in the outcome of a measurement of (say) the position of an
electron which is initially in a superposition of being in region A and being
in region B. Moreover (and more important—insofar as the business of see-
ing precisely what it is that’s out of kilter here is concerned), it can be shown
that what the above-mentioned differential equations of the motion of a
quantum-mechanical system would predict about a measuring process like
that (if those equations were indeed the true equations of motion of the
whole world) is emphatically not that the measurement would either ~nd
the electron in A or that it would ~nd the electron in B (which is what hap-
pens when you actually go and do measurements like that), but rather that,
with certainty, a superposition of those two outcomes would occur. What
those equations would predict (to put it slightly differently) is that such a
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only ~rst derivatives with respect to time.



measuring device would end up, with certainty, in a physical condition in
which there is simply no matter of fact about where its pointer is pointing. It
hardly needs saying, though, that this (whatever this is, precisely) is not what
happens when you actually do such a measurement!

Thus (the standard reasoning goes) the ~rst category of laws needs to be
supplemented with a second, which will be explicitly probabilistic, and
which will entail (for example) that if the position of an electron whose
wave-function looks like the one in Figure 7.4 (that is, an electron about
whose position there is, at present, according to quantum theory, no matter
of fact; an electron which is at present in a superposition of being located in
region A and in region B) were to be measured, then there would be a 50 per-
cent chance of ~nding that electron in region A (which is to say, there would
be a 50 percent chance of that electron’s wave-function being altered, in the
course of the measurement, to one whose value is zero everywhere other
than in region A) and a 50 percent chance of ~nding it in region B (which is
to say, there would be a 50 percent chance of its wave-function being altered,
in the course of the measurement, to one whose value is zero everywhere
other than at the point B).

As to the distinction between those circumstances in which the ~rst cate-
gory of laws applies and those in which the second category of laws (the laws
of the so-called collapse of the wave-function) applies, all that the founders
of quantum mechanics had to say was that it has something to do with the
distinction between a “measurement” and an “ordinary physical process,” or
between what observes and what is observed, or between what lies (as it were)
in front of measuring devices and what lies behind them, or between subject
and object.

And it has for some time now been widely agreed to be a profoundly un-
satisfactory state of affairs that the best existing formulation of the most fun-
damental laws of nature should depend on distinctions as imprecise and elu-
sive as those.

And the problem of what to do about that, the problem of how to ~x that
up (which has emerged over the past thirty years or so as the central prob-
lem at the foundations of quantum mechanics), has gone by a number of
names: the problem of Schrödinger’s Cat, for example, and the problem of
Wigner’s Friend, and the problem of quantum state-reduction. We’ll refer
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to it here by its most common contemporary name, which is the measure-
ment problem.

▲▲▲ There have been two big ideas (or rather, there have been two big
ideas which seem to me to have any chance at all of being on the right track)
of what to do about this problem. Both of them have been around more or
less since the problem ~rst came up; but a good deal has been learned in the
past few years about what each of them really amounts to, and about how to
parlay each of them into fully worked-out scienti~c theories.

One of those ideas (the more obvious one, given the way I’ve presented
things here) is somehow to sharpen up the distinction between the circum-
stances in which the ~rst and the second categories of laws of evolution
apply; or (better yet) to cook up some single law of the evolutions of wave-
functions which somehow reduces, under the appropriate circumstances, to
the two sorts of laws just discussed. And the other idea involves rejecting the
second category of laws altogether.

Let me talk a little about that latter one ~rst.
The idea there is to deny that the standard way of thinking about what it

means to be in a superposition is (in fact) the right way of thinking about it;
to deny, for example, that there fails to be any determinate matter of fact,
when a quantum state like the one I was just discussing obtains, about where
the pointer is pointing. The idea (to come at it from a slightly different
angle) is to construe quantum-mechanical wave-functions as less than com-
plete descriptions of the world. The idea is that something extra needs to be
added to the wave-function description, something that can broadly be
thought of as choosing between the two conditions superposed here, some-
thing that can be thought of as somehow marking one of those two condi-
tions as the unique, actual, outcome of the measurement that leads up to it.

And probably the most famous and probably the most successful way of
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parlaying that idea into a full-_edged physical theory is due to David Bohm
(and this, by the way, is precisely the theory I was talking about in footnote 8
of Chapter 4). What Bohm presented (in 1952) was in effect a replacement
for standard quantum mechanics, which stipulates that the linear differen-
tial quantum-mechanical equations of motion are the correct equations of
the time-evolutions of all quantum states at all times and under all circum-
stances, but on which certain facts over and above the facts about the quan-
tum state of a system need to be speci~ed in order to specify precisely and
uniquely what the instantaneous physical state of that system is.

And what those extra facts are about are the positions of the particles of
which the system in question is made up.

Bohm’s theory presumes (notwithstanding all the evidence to the con-
trary presented above, of which more later) that particles are, after all, the
sorts of things that are invariably located in one or another particular place.

Moreover, on Bohm’s account, the wave-functions which are at the cen-
ter of the quantum-mechanical description of the world are no longer
merely (as it were) descriptive mathematical objects, but physical ones, phys-
ical things. Wave-functions, according to Bohm’s theory, are somewhat like
classical force-~elds; and what wave-functions do in Bohm’s theory (just as
force-~elds do in classical mechanics) is to sort of push the particles around,
to guide them (as it were) along their proper courses.

The laws which govern the evolutions of those wave-functions in time
(which, as I said, are stipulated to be precisely the same differential quan-
tum-mechanical equations of motion discussed above, but this time with no
exceptions whatsoever), and the laws which dictate how those wave-func-
tions push their respective particles around (which are unique to Bohm’s
theory), are all fully deterministic.

And what that means, more particularly, is that the positions of all the par-
ticles in the world at any time, and the world’s complete quantum-mechani-
cal wave-function at that time (which together compose the complete in-
stantaneous state of the world at that time, on Bohm’s theory), can in
principle be calculated with certainty from the positions of all the particles
in the world and the world’s complete quantum-mechanical wave-function
at any earlier time; and any incapacity to carry out those calculations, any un-
certainty in the results of those calculations, is necessarily (according to this
theory) an epistemic uncertainty, a matter of ignorance, and not a matter of
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the operations of any irreducible element of chance in the fundamental laws
of the world.7

Nonetheless, this theory entails that some such ignorance (precisely
enough, and of precisely the right kind, to reproduce the familiar statistical
predictions of quantum mechanics by means of roughly the sort of prob-
abilistically weighted averaging over what one doesn’t know that goes on in
classical statistical mechanics) exists for us as a matter of principle, some
such ignorance is unavoidably forced upon us by the laws of evolution of the
theory. The dynamics acts so as to prevent us from ever knowing enough
about the physical state of the world to make those predictions which the
standard irreducibly statistical formalism of quantum mechanics can’t make
for us. There is, on this account, a very real and concrete and lawlike and de-
terministic physical process, a process which can be followed out in exact
mathematical detail, whereby the physical act of measurement unavoidably
gets in the way of what is being measured. This theory entails that there is a
sort of ignorance which is merely ignorance (merely, that is, ignorance of a
certain intelligible fact about the world), and which nonetheless could not be
eliminated without a violation of physical law, without (that is) a violation of
one or another of the three fundamental laws I have mentioned over the past
several paragraphs—the two dynamical ones and the one about the probabil-
istic averaging over one’s ignorance—from which everything else about
Bohm’s theory follows.8

▲▲▲ The account that Bohm’s theory produces of the experiments with
the two-paths contraption (the experiments, that is, which seemed to imply
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7. And note that the determinism in question here (since in Bohm’s theory, as in standard
quantum mechanics, instantaneous states and dynamical conditions are identical with each
other) is somewhat stronger than it was in the Newtonian case: whereas in Newtonian mechan-
ics the complete physical history of the world can be determined in its entirety (by means of the
laws) from any one of that history’s ~nitely long sub-intervals, in Bohm’s theory the complete
physical history of the world can be determined in its entirety (by means of the laws) from any
single one of the world’s instantaneous states.

8. In this respect, of course, the probabilities that come up in Bohm’s theory are of a very dif-
ferent kind (and an interestingly different kind) than the ones at the foundations of classical sta-
tistical mechanics. And that all this is so is intimately tied up (as it turns out) with the issues of
the so-called compatibility of dynamical laws with non-dynamical probability-distributions that
we were talking about in footnote 8 of Chapter 4. The whole story is a bit too involved to be ade-
quately laid out here, I think, but the interested reader will have no trouble reconstructing it for
herself from the materials available in (say) Chapter 5 of Quantum Mechanics and Experience.



that electrons can be in states in which there fails to be any matter of fact
about where they are) runs roughly as follows.

Consider (as we did above) the case of an initially x-spin � �1 electron
which is fed into the apparatus. On Bohm’s theory, that electron will take ei-
ther the “y � �1” route or the “y � �1” route, period. Which one of those two
routes it takes will be fully determined by its initial conditions, by (more par-
ticularly) its initial wave-function and its initial position, but of course certain
of the details of those conditions will prove impossible, as a matter of princi-
ple, to ascertain by measurement. Anyway, the crucial point here is that which-
ever route the electron happens to take, its wave-function will (in accordance
with the linear differential equations of motion) split up and take both. So, in
the event that the electron in question takes (say) the “y � �1” route, that
electron will nonetheless be reunited, at the black box, with that part of its
wave-function which took the “y � �1” route; and of course how that other
part of the electron’s wave-function ends up pushing the electron around, once
the two are reunited, may well depend on whether or not it happened to (say)
run into a wall along the “y � �1” route; and so that other part of the electron’s
wave-function can (as it were) inform an electron which travels through the
contraption along one route about what’s going on along the other one.

▲▲▲ And of course (and this is more or less the whole point) Bohm’s the-
ory can have nothing along the lines of a measurement problem.

Notwithstanding the fact that according to Bohm’s theory the linear
differential equations of motion are invariably the true equations of the
time-evolution of the wave-function of the entire universe (measuring de-
vices, observers, and all!), there are also invariably de~nite matters of fact
about the positions of particles, and (consequently) about the positions of
pointers on measuring devices, and about the positions of ink molecules in
laboratory notebooks, and about the positions of ions in the brains of human
observers, and (to sum it up) about the outcomes of experiments.

▲▲▲ There are a number of other responses to the measurement problem
on the market nowadays—the ones I have in mind here are referred to in the
literature as modal interpretations of quantum mechanics—which start off
(just as Bohm’s theory does) by stipulating that the linear dynamical equa-
tions of motion are always exactly right, and that there are certain particular
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properties of physical systems (let’s call them the extra properties of those sys-
tems) whose values are determinate even in the event that the quantum state
of the world fails to be an eigenstate of the operators associated with them.

On Bohm’s theory, those extra properties are the positions of particles.
On modal interpretations, things are a bit more complicated: on those in-

terpretations, the identities of the extra properties can vary from moment to
moment; and those identities depend on what the overall quantum state of
the world is, and the particular way in which they depend on what that over-
all quantum state is (that is, the explicit rules whereby they depend on what
that overall quantum state is) is cooked up with the aim of guaranteeing that
measurements always have outcomes.

Moreover, modal interpretations (unlike Bohm’s theory) aren’t entirely
deterministic. The evolution of the quantum state of the world is of course
entirely deterministic on these interpretations (just as it is on Bohm’s the-
ory), and the rules whereby the identities of the extra properties depend on
what the quantum state of the world is are deterministic too, but the proba-
bilities associated with the various possible values of the extra properties, on
modal theories, are real dynamical chances.

▲▲▲ And there are still other strategies that (I guess) ought to get men-
tioned here—and the ones I have in mind now can all more or less be traced
directly back to the work, in the 1950s, of the late Hugh Everett—for enter-
taining the possibility that the dynamical equations of motion are correct but
incomplete. Some of those strategies involve enormous multiplications of
the number of physical universes that there are supposed to be, and others (in
which I myself have had a hand) resort to odd sorts of ~ddling around with
the connections between the brain states of sentient observers and their men-
tal states, and still others are tied up with very fundamental ruminations
about the distinction between the ~rst-person perspective and the third-per-
son perspective; but the best thing (I think) will be not to get too deep into
any of that right now.9
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9. A number of these strategies are discussed in detail in Chapter 6 of Quantum Mechanics
and Experience, and several new and novel and far more philosophically sophisticated ones (the
ones about ~rst-versus-third-person perspective) have been explored (since the time that book
was published) by Simon Saunders of Oxford University. None of them (as it happens, and inso-
far as I can tell at present) seems to me to have a particularly good shot at turning out to be
true—but that’s a matter for some other occasion.



▲▲▲ Let me, rather, say something about the former of the two big ideas
that I mentioned some pages back about what to do about the measurement
problem, the more obvious one. The idea there (remember) is to stick with
the standard way of thinking about what it means to be in a superposition,
and to stick with the idea that a quantum-mechanical wave-function
amounts, all by itself, to a complete description of a physical system, and to
account for the emergence of determinate outcomes of experiments like the
one we were talking about before by means of explicit violations of the deter-
ministic differential equations of motion, and to try to develop some precise
idea of the circumstances under which those violations occur.

There is, as I mentioned above, an enormously long and mostly pointless
history of speculations in the physical literature (speculations which have
notoriously hinged on distinctions between the “microscopic” and the “mac-
roscopic,” or between the “reversible” and the “irreversible,” or between the
“animate” and the “inanimate,” or between “subject” and “object”) about
precisely what sorts of violations of those equations are called for here; but
there has to date been only one fully worked-out, traditionally scienti~c sort
of proposal along these lines, which is due to Giancarlo Ghirardi and
Alberto Rimini and T. Weber, and which has been developed somewhat fur-
ther by Philip Pearle and John Bell.

Ghirardi, Rimini, and Weber’s idea (the GRW theory) goes (roughly) like
this: the wave function of any single-particle system almost always evolves in
accordance with the linear deterministic equations of motion; but every now
and then (once in something like 109 years), at random, but with ~xed proba-
bility per unit time, the wave-function is suddenly multiplied by a narrow
bell-shaped curve—a curve (more particularly) whose width is something on
the order of the diameter of a single atom of one of the lighter elements—
which has the effect of localizing it, of setting its value at zero everywhere in
space except within a certain small region. The probability of this bell
curve’s being centered at any particular point x depends (in accordance with
a precise mathematical rule) on the wave-function of the particle at the mo-
ment just prior to that multiplication. Then, until the next such “jump,” ev-
erything proceeds as before, in accordance with the deterministic differen-
tial equations.

That’s the whole theory. No attempt is made to explain the occurrence of
these “jumps”; that such jumps occur, and occur in precisely the way stipu-
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lated above, can be thought of as a new fundamental law, a beautifully
straightforward and absolutely explicit law of the so-called collapse of the
wave-function, wherein there is no talk at a fundamental level of “measure-
ments” or “recordings” or “macroscopicness” or anything like that.

Moreover, the theory can more or less do its job.
Note, to begin with, that for isolated microscopic systems (that is, systems

consisting of small numbers of particles) “jumps” will be so rare as to be
completely unobservable in practice.

By contrast (and this is the payoff), it turns out that the effects of these
jumps on the evolutions of the wave-functions of macroscopic systems (sys-
tems like measuring devices, for example) can sometimes be dramatic. And
as a matter of fact a reasonably good argument can be made to the effect that
these jumps will almost instantaneously convert superpositions of macro-
scopically different states like {particle found in A � particle found in B} into
either {particle found in A} or {particle found in B}, and that they will do so
in very good accordance with the standard quantum-mechanical probabili-
ties governing the outcomes of measurements like that.10

Anyway, there has been an extraordinarily lively comparative discussion
going on, over the last ~fteen years or so, of all the strategies for reacting to
the measurement problem that I’ve been talking about here, and of a num-
ber of others too. And a great deal—far too much to be adequately summa-
rized in a book which is (after all) about the foundations of statistical me-
chanics—has been learned from that discussion about the advantages and
disadvantages of various of those strategies. And (nonetheless) the question
of which of those strategies is the right one, and (moreover) the question of
whether any of those strategies is the right one, both remain radically open.
And the rest of what I want to say here can be read (I guess) as a small further
contribution to all that.

QUANTUM MECHANICS 149

10. Precisely how good of an argument this is, though, has been a matter of considerable
(and philosophically interesting) controversy—and perhaps it ought to be mentioned that this is
a question about which my own opinions have substantially evolved since I wrote Quantum Me-
chanics and Experience. What I thought back then (to make a long story short) was that the argu-
ment was pretty bad, and what I think now is that (as a matter of fact) it isn’t. The details would
take us much too far a~eld here, but they can all be very straightforwardly dug up (if the reader
is interested) out of papers like “Tails of Schrödinger’s Cat” (by D. Albert and B. Lower, in Per-
spectives on Quantum Reality, ed. Robert K. Clifton, Dordrecht: Kluwer Academic Publishers,
1996) and (as they say) of references therein.



What the punch line of this chapter is supposed to be—and what all of
the remainder of this chapter is going to be about—is (more particularly)
that the sort of story that the GRW theory has to tell about how quantum-
mechanical probabilities make their appearance in the world (that is, as an
element of real dynamical chance—or rather, as an element of the right sort
of real dynamical chance, of which more in a minute—in the evolution of
the world’s overall quantum state) has in it the makings of a revolution in the
foundations of statistical mechanics.

3. THE BAS IC IDEA

Think of two macroscopic bodies whose temperatures initially differ.
And suppose that those two bodies are brought into thermal contact with

each other. And suppose that they are not subsequently disturbed.
Over the next ten minutes, then, the temperature difference between

those two bodies will decrease.
And the traditional statistical-mechanical explanation of that decrease,

both in the classical and in the quantum case, runs (roughly) as follows.
The initial macrocondition of this two-body system—the one in which the

two bodies are in thermal contact with each other and their temperatures are
different—is compatible with a continuously in~nite collection (call it {C})
of that system’s possible microconditions. And the microconditions in {C}
come in two different varieties: the normal ones (which are the ones that hap-
pen to be sitting on trajectories which pass—ten minutes hence—through a
macrocondition of the two-body system in which the temperature difference
between the two bodies is lower, and lower by the right amount) and the ab-
normal ones (which are all the rest, the ones associated with un-thermody-
namic or with anti-thermodynamic sorts of behaviors, the ones in which the
temperature difference will subsequently rise, or not change at all, or oscil-
late, or whatever). And there happens to be a breathtakingly straightforward
measure on the set of the possible microconditions of a system like this one
which is preserved by the equations of motion11 and which our experience of
the world seems to suggest is something along the lines of a measure of
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orem, or (alternatively) with the quantum-mechanical correlate of that theorem, which is called
the principle of unitarity.

11. The sort of “preservation” I have in mind here is the one connected with Liouville’s the-



non-dynamical probability. And it happens that this measure counts the col-
lection of normal points in {C} as vastly larger than the collection of abnormal
points in {C}.

And that (according to the usual story) is that.

▲▲▲ But look at this.
It happens (to begin with) that the collection of normal microconditions

is vastly larger than the collection of abnormal ones—on the above-men-
tioned standard measure—not only over the entirety of {C}, but over every
individual not-unimaginably-small microscopic neighborhood of {C}, and
(more particularly) over every individual not-unimaginably-small micro-
scopic neighborhood of every individual abnormal microcondition of {C}, as
well!

And what that means (or at any rate, one of the things it means) is that the
property of being a normal microcondition is extraordinarily stable under
small perturbations of those two bodies, and that the property of being an ab-
normal microcondition is extraordinarily unstable under small perturbations
of those two bodies.12

And what that means is that if the two bodies we’ve been talking about
here were in fact somehow being frequently and microscopically and ran-
domly perturbed, then the temperatures of those two bodies would be over-
whelmingly likely to approach each other no matter which one of the micro-
conditions in {C} actually initially obtained.

The question, of course, is about where perturbations like that might
imaginably come from. And the suggestion I want to make (as the reader will
no doubt already have guessed) is that the quantum jumps in the GRW the-
ory turn out to be just the sorts of perturbations we need. The suggestion
(more particularly) is that it’s going to turn out to be a consequence of the
full stochastic dynamics of the GRW theory13 that every single individual
one of the microconditions in {C} will be overwhelmingly likely to evolve,
over the subsequent ten minutes, into other microconditions in which the
temperature difference between the two bodies is smaller, and (moreover)
smaller by precisely the right amount.
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12. This is just the thing that I made a pathetic attempt at illustrating back in Figure 3.15.
13. Which is to say, it is going to be a consequence of that dynamics alone; it is going to be a

consequence of that dynamics without any non-dynamical addenda whatsoever.



And so if this suggestion is correct, and if anything along the lines of the
GRW theory should turn out to be true (which, of course, is a matter for fu-
ture experiments to determine) then the probabilities of universal statistical
mechanics are (as a matter of fact, when you come right down to it) nothing
other than the familiar probabilities of quantum mechanics. And if this sug-
gestion is correct, and if anything along the lines of the GRW theory should
turn out to be true, then the tendency of the temperatures of the two bodies
we’ve been talking about here to approach each other over time amounts to
a genuine (albeit statistical) dynamical law.14 And if this suggestion is cor-
rect, and if anything along the lines of the GRW theory should turn out to be
true, then the tendency of the temperatures of the two bodies we’ve been
talking about here to approach each other over time can be understood en-
tirely in terms of readily observable characteristics of the elementary micro-
scopic constituents of those bodies—in precisely the same way that (say) the
functioning of a mechanical clock can be understood entirely in terms of the
material characteristics, and the spatial arrangements, of its parts.15

▲▲▲ And it happens that none of the other attempts to solve the measure-
ment problem that have been mentioned here—and (as a matter of fact)
none of the other attempts to solve the measurement problem of which I
have any knowledge, and (as a matter of fact) nothing else that has ever seri-
ously been put forward as a fundamental dynamical theory of the world—
can do anything like that.

And all this will be worth going into in some detail, as it seems to have
had a way (here and there) of uncannily escaping people’s attention.

It has often been suggested in the literature (for example) that nothing
even remotely as up-to-date as quantum mechanics is going to be required
here—that (more particularly) the sorts of perturbations we were talking
about above are already all over the place, if one simply stops and looks, in
(say) the Newtonian picture of the world. The idea is that since none of the
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14. That there simply cannot be any such genuinely lawlike tendency as that, on the tradi-
tional statistical-mechanical account of the world, was (remember) the upshot of the discussion
of the pseudo-Maxwellian demon on pages 103–105 of Chapter 5.

15. Of course, the question of such an understanding, of such an explanation, in the case of
traditional statistical mechanics, cannot even arise, since (in that case—as the reader was re-
minded again in the previous footnote) there is simply not any such lawlike tendency to be ex-
plained!



macroscopic two-body systems of which we have ever had any experience
and none of the macroscopic two-body systems of which we ever will have
any experience are genuinely isolated ones, the perturbations in question
can be seen as arising simply from the interactions of the two-body system
we’ve been talking about here with its environment. But if (as these authors
always suppose) whatever constitutes the environment of these two bodies
evolves in accord with precisely the same sorts of deterministic dynamical
laws as the constituents of the bodies themselves do, then whatever “random-
ness” there is in the perturbations arising from interactions with that envi-
ronment can only have gotten there in virtue of precisely the same sort of
probability-distribution over that environment’s initial conditions that we
have been dealing with throughout this book. And so the whole exercise gets
us nowhere.

What about something like Bohm’s theory? Bohm’s theory has probabili-
ties in it. The trouble is that those probabilities don’t get inserted into the
world in the right place to do the sort of job we have in mind for probabilities
here. The only sorts of things that turn out to be probabilistic according to
Bohm’s theory (you will remember) are the positions of the particles. The
only sorts of fundamental probabilities there are in Bohm’s theory are (more
particularly) probabilities that such-and-such a collection of particles has
such-and-such a spatial con~guration at such-and-such a temporal instant
given that the particles’ wave-functions have such-and-such an overall shape
at that instant. And it happens that those parts of the laws of physics which
govern the time-evolutions of the shapes of wave-functions, on Bohm’s the-
ory, are completely deterministic; and it turns out that there are wave-
functions compatible with the initial macrocondition of (say) the two-body
system I talked about before which (if those laws are right) will with certainty
evolve, with the passage of time, into ones which determine that the
temperature-difference between the two bodies will very likely have in-
creased.

Modal theories have chances in them too, of course. And the chances in
modal theories (unlike the ones in Bohm’s theory) are genuinely dynamical
ones. And yet the trouble here remains more or less the same: the chances
aren’t in the right places. Everything that’s chancy in modal theories—just as
it is in Bohm’s theory—is of or about the extra variables. And those chances—
just as in Bohm’s theory—are entirely controlled by the wave-functions. And

QUANTUM MECHANICS 153



the laws of the evolutions of those wave-functions (once again) are completely
deterministic. And there are wave-functions compatible with the initial
macrocondition of the sort of two-body system discussed before which (if
those laws are right) will with certainty evolve, with the passage of time, into
ones which determine that the temperature difference between the two bod-
ies will very likely have increased.

And there are even collapse theories, on which the time-evolution of the
wave-function itself is genuinely (and dynamically) probabilistic, which are
nonetheless incapable of underwriting the foundations of statistical mechan-
ics in the way that the GRW theory can. These sorts of theories (which have
been defended in recent years by Roger Penrose, among others) stipulate
that departures from the deterministic equations of motion require a “trig-
ger”; that only certain particular sorts of wave-functions, the ones corre-
sponding to superpositions of “macroscopically different states,” ever un-
dergo “collapses.” And the trouble with that (insofar as the question of
statistical mechanics is concerned) is that one can cook up (or at any rate
one fears that one can cook up) initial wave-functions of thermodynamic sys-
tems which pick out perfectly deterministic entropy-decreasing future trajec-
tories which entirely avoid those triggers.

And so the business of underwriting the thermodynamic regularities of
the world, on any of the proposals for making sense of quantum mechanics I
know of, with the sole exception (of course) of the GRW theory, is going to
call for a story about why it is that the above-mentioned sorts of initial
wave-functions—notwithstanding that they surely exist—need not worry us
too much; which is to say that the business of underwriting the thermody-
namic regularities of the world on any of those other theories is going to call
for something along the lines of a probability-distribution over initial wave-
functions, a probability-distribution which (note) is altogether unrelated and
in addition to the probabilities with which those theories underwrite the sta-
tistical regularities of quantum mechanics.

4. THE OUTL INES OF A (POSS IB LE ) NEW UNIVERSAL
STAT IST ICAL MECHANICS

The business of deciding whether or not to take a GRW-based statistical me-
chanics seriously (if that turns out to be a project worth undertaking at all; if,
that is, there should turn out to be experimental evidence that there are such
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things in the world as collapses of wave-functions) will presumably involve
detailed quantitative examinations of a host of particular cases; but there are
reasons for being optimistic (and the sort of thing I have in mind here, of
which more in a minute, is the very same radical instability of the condition
of abnormality by which all of this was ~rst suggested) about how those exam-
inations will ultimately come out.

Here’s the idea.
Think (to begin with) of some particular individual GRW jump. And call

the microcondition of the system in question just prior to that jump A, and
call the microcondition of the system in question just after that jump B.

And note that the laws of jumps like that (which I have already written
down here, in their entirety) will straightforwardly entail an in~nite set of
probability-distributions PA(B) over all the possible destinations of any partic-
ular such jump, given the point at which that jump starts out.16

And there are two particular features of the PA(B)’s of the GRW theory
(and of any theory more or less in the neighborhood of the GRW theory) that
it will be well (for the purposes of the next paragraph or so) to bear in mind:
one is that every particular one of the PA(B)’s of the GRW theory turns out to
be more or less centered on its own particular A, and the other is that the vol-
ume of the space of possible microconditions over which any particular one
of the PA(B)’s of the GRW theory has non-negligible values will typically be
far smaller than the volume of any one of the macroconditions of anything
that deserves the name of a thermodynamic system.

Now the sort of thing we need from these jumps—in order to get the sta-
tistical-mechanical job done—is (of course) for them to be very good at get-
ting us from abnormal microconditions to normal ones. The sort of thing we
need (that is) is for it to be the case that the scales over which the tiny indi-
vidual clots of abnormal microconditions typically extend are vastly smaller
than the scales over which the values of the PA(B) appreciably vary. The sort
of thing we need (more particularly) is for it to be the case that the probabil-
ity of abnormality that follows from every single individual one of the PA(B)’s
(no matter what A may happen to be) is roughly equal to the probability of
abnormality that follows from the standard statistical-mechanical measure
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16. And indeed, the complete set of those probability-distributions, together with the proba-
bility per unit time of a jump’s occurring, is the entirety of what those laws have to say.



over the entirety of the macrocondition within which the A in question hap-
pens to fall.17

And it would seem to be an eminently plausible proposition—given the
radical unimaginable submicroscopic tinyness of the clots, and given the two
particular characteristics of the jumps in the GRW theory that we took note
of in the paragraph before last—that there are any number of different sorts
of GRW-like perturbations that are perfectly capable of getting all that ac-
complished.

▲▲▲ Nonetheless, there are hard cases, or apparently hard ones (and I am
thankful to Larry Sklar and Phillip Pearle, among others, for bringing these
to my attention); and there turn out to be interesting lessons in them; and it
will be worth taking the trouble to think through two or three of them in
some detail.

Consider (for example) an extraordinarily tiny gas, one which consists of
something on the order of 105 molecules. Even gasses as tiny as that are
known to be very likely to spread out (if space is available) over reasonable in-
tervals of time, and yet gasses as tiny as that are very unlikely to suffer even a
single GRW-type collapse over such an interval, and so an explanation of the
tendencies of gasses like that to evolve like that over intervals like that in
terms of GRW-type collapses of the wave-functions of their constituents is
apparently out of the question.

Or consider the collection of dazzling and beautiful experiments which
have actually been performed over the past twenty years or so, and which are
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17. Actually, we don’t need quite that, and probably can’t quite have it. The trouble (and
here we will have no alternative but to help ourselves rather freely to some of the technical jar-
gon of quantum theory) is that abnormal quantum states have got to be more or less orthogonal
(if you think about it) to normal ones, and that no single GRW collapse can ever (in and of it-
self) bring about transitions between states that are (perfectly) orthogonal to one another, and
that (as a matter of fact) no single GRW collapse is ever going to be able to do much of anything
(in and of itself) about the abnormality of a quantum state if that state should happen to be any-
thing along the lines of an eigenstate of the positions of the particles that make the system in
question up. But none of that turns out to matter much. Let the A and B we have just now been
discussing represent (instead) the before and after states of a dynamical process involving (say)
two GRW collapses, or three, or twenty, with the appropriate deterministic dynamical evolutions
between them (all of which is still going to be overwhelmingly likely to take place, on the GRW
theory, over time-intervals which are negligibly short compared—say—with times over which
the temperatures of the two bodies we were talking about before ever undergo any signi~cant
change)—and everything will come out ~ne.



referred to in the scienti~c literature as “spin-echo” experiments, in which it
has turned out to be possible to isolate some very large array of interacting
microscopic systems from the relevant sorts of external in_uences—and
(moreover) to replace the dynamical condition of that array, at a certain par-
ticular instant, as the array is in the midst of some entropy-increasing trans-
formation, with its time-reverse—and (thereafter) merely to watch, in aston-
ishment, as the array traces its previous trajectory out, dutifully, backward.

The microscopic systems in question are typically atomic nuclei. And
these nuclei are typically being held at ~xed spatial positions—but in such a
way that the orientations of their nuclear magnetic ~elds are free to rotate—
by intermolecular forces in a crystal. And the sort of thing that happens in
these experiments is (very schematically) that the nuclei are all initially ar-
ranged with their magnetic ~elds pointing in the same direction—and then
they’re left (as it were) to their own devices, and they magnetically interact
with one another, and their magnetic ~elds begin to pivot around, and in
time the directions in which those individual ~elds are pointing become
more and more disorganized and uncorrelated. Eventually a state of equilib-
rium is arrived at, in which the arrangement of the individual ~elds is ran-
dom, in which (that is) the cumulative macroscopic magnetic ~eld of the en-
tire array is zero, and then (and this is the cool part) a very intense external
magnetic ~eld is turned on for a very short time, which has the effect (for rea-
sons that need not concern us here) of turning all those tiny individual ~elds
exactly around—and then the system is left again to its own devices, and in
time, and (more particularly) in precisely the same amount of time as had
elapsed between the array’s ~rst having been left to its own devices and the
moment when the external ~eld was turned on, the ~elds spontaneously re-
align themselves!18

It would seem (on the face of it) that GRW collapses can play no role
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18. These spin-echo systems are (by the way) fairly close relatives of the pseudo-Maxwellian
demons we were talking about in Chapter 5. Both of them (like the bona ~de demons) are in di-
rect violation of the letter of the second law. And both of them (unlike the bona ~de demons)
systematically falsify the predictions of the uniform-over-the-present macrocondition probabil-
ity-distribution about the future evolution of the world. And neither of them (unlike the bona
~de demons) produces any net increase, at the end of the day, in the proportion of the total en-
ergy of the universe which is available for routine mechanical exploitation. But note that
whereas the pseudo-demons we were thinking about in Chapter 5 need to be able to ascertain
certain microscopic details of present conditions of the systems on which they operate, nothing
of that sort needs doing in the spin-echo case.



whatsoever in any explanation of the initial approach to equilibrium here.
The trouble is that the atomic nuclei in these experiments are very rigidly
held in place—which is to say that the wave-functions of those atomic nuclei
are permanently localized—which is to say that the wave-functions of those
atomic nuclei are permanently frozen into that particular mathematical
form which is (if you think about it) altogether impervious to the effects of
GRW collapses—by the powerful intermolecular forces I mentioned above.
Moreover (and this is the particularly astonishing business—and this seems
powerfully con~rmatory of the doubts expressed in the previous two sen-
tences), it turns out that the approach to equilibrium can be reversed—it
turns out that the original alignment of the ~elds can be reinstated—simply
by _ipping the nuclei around!

Or consider what it is, on a statistical mechanics of the sort that we have
been imagining here, that guarantees that a regular-sized gas in equilibrium
at t will not spontaneously explode or condense or turn into an elephant be-
tween t and t � &, where & is so short an interval that even a regular-sized
gas is unlikely to suffer a GRW-type collapse in it.

Let’s think through these three cases one at a time.
Take the case of a small gas. We might appeal, there, to the fact that we

have no empirical experience whatsoever, that (come to think of it) we can
have no empirical experience whatsoever, of a small gas which is genuinely
isolated from all external in_uences. And so for all we now empirically know
or ever will empirically know, it might not be a law of nature that gasses like
that tend to spread out at all! And the behaviors of the sorts of small gasses
that can actually be looked at can very plausibly be accounted for by GRW-
type collapses of the wave-functions of particles in (say) their containers.

Or we could appeal to the fact that such gasses, even if they are isolated,
have pasts. This will take a bit more setting up. What we will want to show,
in this case, is that the GRW theory will entail that a small isolated gas which
is condensed at t, and which is around for a while, is likely to be more dis-
persed at t � @, even if the gas in question is unlikely to undergo a single
collapse in the interval between t and t � @. Good. Here’s how to do it: call
the average time between GRW collapses in the gas in question i, and call
the gas’s macrocondition at t C, and call the gas’s macrocondition at (say)
t � i(100000) S. And consider the probability, on the GRW theory, given
that the macrocondition at t � i(100000) is S and that the macrocondition at
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t is C, that the microcondition of the gas at t will be one of the “normal” ones.
And note that the instability of the property of being abnormal will entail,
completely independent of what state S is, that that probability is high.

What about the case of the spin-echo experiments? Collapses in the envi-
ronment will patently get us nowhere with that. The realignability of the
~elds, after all, amounts to a direct empirical proof that those collapses (just
like the ones that hit the nuclei themselves) produce no signi~cant short-
term disruptions of the trajectories along which this system evolves. But the
longer term is (of course) another matter. Given suf~cient time, even in sys-
tems like this, GRW collapses will move us relentlessly away from abnormal-
ity. And so there would seem to be every reason in the world to believe that
the previous history of the array of nuclei in question, whatever that history
may have been, will give us just what we need.

What about large gasses over the very short term? The environment will
be of no avail there either; but histories still will. And here a third strategy
suggests itself. The macroconditions of thermodynamic systems never get
measured at instants. The thermodynamical regularities of our actual experi-
ence, if you stop and think about it, are relations between the physical situa-
tions of systems not at different instants but around different instants. And so
maybe the right way to think of propositions like “this is a gas with such-
and-such a volume and a temperature and a pressure” is to see them as as-
serting that certain physical properties of a certain collection of particles
have persisted over a certain short interval. And if we read such propositions
that way, they will entail (in conjunction with the GRW theory) that the
probability that the microcondition of the gas in question is a normal one is
high.

You get the idea. The crux of the matter is that the job of statistical me-
chanics is not (after all) to underwrite the letter of the laws of thermodynam-
ics, but to underwrite the actual content of our thermodynamic experience.
And I know of no compelling argument, at present, why a statistical mechan-
ics based on GRW collapses should be incapable of doing that.

▲▲▲ One can go further. If the GRW theory should turn out to be true—
and this, of course, is a very big if—it may turn out (as I mentioned earlier
on) that there is at bottom only a single kind of probability in nature. It may
turn out (that is) that all the robust lawlike statistical regularities there are,
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not only in thermodynamics but (one can even imagine) in biology, and in
psychology, and in sociology, and God knows where else, are at bottom noth-
ing other than the probabilities of certain particular GRW collapses’ hitting
certain particular sub-atomic particles.

▲▲▲ As to the question of Maxwellian demons, they are plainly going to
be more or less as much in accord with the laws of physics, and they are
going to be more or less as dif~cult to actually construct, in the context of
the sort of fundamental theory of the world we have been playing around
with here as they were in the context of Newtonian statistical mechanics. All
the main arguments about those demons in Chapter 5 (as the reader can eas-
ily con~rm for herself) have a relatively straightforward translation into
quantum-mechanical language, and (thence) into the language of the GRW
theory.

The only exceptions (insofar as I can see) are going to arise in cases where
there are relatively long intervals over which the evolution of the New-
tonian version of the system in question somehow substantially departs from
what the uniform-over-the-current-macrocondition-probability-distribution
and the deterministic equations of motion jointly predict—systems (say)
like the pseudo-Maxwellian demons we were talking about in Chapter 5,
the ones which rearrange the microconditions of boxes of gas in such a way
that at some particular later time, the gasses in those boxes (which are then
evolving as fully isolated systems) will spontaneously begin to contract.

▲▲▲ And (~nally) as to the question of the overall logical structure of the
universal GRW-statistical-mechanical contraption for making inferences, it
comes out like this:

There are two fundamental laws (as opposed to the three in the standard
contraption) and one contingent empirical fact.

The empirical fact is (as before) the one about what the macrocondition
of the world currently happens to be, and the laws are:

1. The GRW law of motion—the GRW law (that is) of the time-
evolutions of quantum-mechanical wave-functions.

2. The past-hypothesis (which is, again, that the world ~rst came into
being in whatever particular low-entropy sort of macrocondition it is
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that the normal inferential procedures of cosmology will eventually
present to us).

And that’s it.
A few remarks are in order.
To begin with (and this is more or less the whole point of the exercise),

this contraption contains nothing whatsoever along the lines of a statistical
postulate. All the statistics there are in this theory (which is to say, all the sta-
tistics there are in any world of which this theory turns out to be the correct
fundamental scienti~c description) are the purely quantum-mechanical ones
in the GRW equations of motion. This is an account of the world into which
chance enters exactly once, and (as I’ve been saying) there seems to me to be
no other known strategy for making sense of quantum mechanics on which
anything like that can possibly be true. On modal theories, for example,
there are going to be dynamical chances in the fundamental microscopic
laws of motion—just as there are here—but (since the chances in the modal
theories turn out not to be situated in the world in such a way as to be able to
get the statistical-mechanical job done) those chances are going to need to
be supplemented, in the context of any universal statistical mechanics, with a
non-dynamical statistical postulate (very much along the lines of the one
cooked up for Newtonian mechanics) which stipulates some probability-dis-
tribution over initial universal wave-functions. And much the same sort of
thing is going to be necessary on Bohm’s theory, and on collapse theories
with triggers in them, and on everything else I know of. All of them (that is)
are going to need to adopt precisely the sort of universal statistical contrap-
tion we worked out for Newtonian mechanics back in Chapter 4, in which
(now) two utterly unrelated sorts of chance are going to appear—one (the
quantum-mechanical one) in the fundamental microscopic equations of
motion, and the other (the statistical-mechanical one) in the statistical postu-
late.

And note that the past-hypothesis is playing a slightly different conceptual
role here than it did in the contraption at the end of Chapter 4. The reason a
past-hypothesis needed to be added to the contraption back in Chapter 4 (re-
member) was that without such a hypothesis, the contraption turned out to
generate all sorts of claims about the past which were radically false. And the
reason that hypothesis needed to be written in such a way as to refer to the
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very ~rst instant of the existence of the world was that if it were written in any
other way, if it were written in such a way as to refer to any other past instant,
then the full contraption (including that past-hypothesis) would generate all
sorts of claims about times prior to that past instant which are radically false.
And the situation in a GRW-based universal statistical mechanics is going to
be altogether different. The GRW contraption, minus the past-hypothesis,
makes no claims whatsoever (statistical or otherwise) about the past. And so
the necessity of a past-hypothesis arises here not as a matter of correcting an
error, but (as it were) as a matter of ~lling a space which is cleanly and trans-
parently left empty for it by the mathematical structure (and more particu-
larly by the time-reversal asymmetry)19 of the microscopic equations of mo-
tion. And the reason that hypothesis now needs to be written in such a way as
to refer to the very ~rst instant of the existence of the world is that if it were
written in any other way, if it were written in such a way as to refer to any
other past instant, then the full contraption (including that past-hypothesis)
would fail to generate any claims whatsoever about times prior to that past in-
stant, and there would still be space left (as it were) to ~ll.
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APPENDIX
GEDANKENEXPER IMENTS
WITH HEAT ENGINES

I demonstrated in the text that Kelvin’s formulation of the second law is de-
ducible from Clausius’s formulation of it, together with one or two auxiliary
stipulations—which happen to be empirically true—to the effect that cer-
tain particular thermodynamic transformations are possible.

And I mentioned that (given our empirical knowledge of the possibility of
certain other transformations) Clausius’s formulation of the second law is
also deducible from Kelvin’s. And the ~rst thing I want to do here is to show
how that deduction goes.

The transformations involved in this case are called Carnot cycles. And
saying precisely what those are will take some setting up. Consider two bod-
ies at different, uniform temperatures t1 and t2. And suppose (just to keep
things simple and neat) that these bodies are large enough that signi~cant
quantities of heat can be removed from them or added to them without
signi~cantly affecting those temperatures. And suppose there is a much
smaller gas, in a container with a piston, which is initially at temperature t2
(the higher one), and which is initially in thermal contact with the large
body at t2. And suppose that the following sequence of events takes place:
(1) While the gas is in thermal contact with the body at t2, the piston is
slowly, reversibly, pulled out a certain distance.1 (2) The gas is thermally iso-
lated, and the piston is reversibly pulled out a bit farther, until the tempera-
ture is reduced to t1. (3) The gas is put into thermal contact with the body at
t1, and the piston is reversibly pushed in to the point where (4) a ~nal ther-

1. If the piston is pulled out slowly enough, the temperature of the gas will remain constant
throughout this process: whatever energy the gas loses to work on the piston it immediately reab-
sorbs as heat from the large body at t2.



mally insulated reversible compression will return the gas precisely to its
original volume, temperature, and pressure. Insofar as the gas is concerned,
then, all this amounts to a cycle.

Let’s get in deeper. Part of what emerged from the discussions of the bil-
liard balls in the text was that a gas does work in pushing a piston out, and
that it has work done on it when a piston pushes it in. And a little further
re_ection on those discussions will show that the amount of work involved,
in both cases, is proportional to the product of the pressure of the gas and the
change in its volume. And it turns out to follow from this that the net work
done by the gas on the external world throughout the course of the cycle de-
scribed above is positive, and is proportional to the area enclosed by the path
the cycle traces out in a pressure-volume diagram. And so the ~rst law of
thermodynamics will require that the heat absorbed by this gas at t2 exceeds
the heat it relinquishes at t1.

And the name of the sort of contraption I have been describing here is a
heat engine. In typical heat engines—in steam-engines, for example—the
higher-temperature body (the body from which heat is extracted) is some-
thing like a boiler, and the lower-temperature body (the body into which
heat is relinquished) is something like the atmosphere; and the sort of me-
chanical energy such engines produce is typically something like the twisting
of a crank shaft. And note that it follows from the fact that these engines con-
vert heat into work, and from the fact that they operate in cycles, that they
must necessarily operate between two different temperatures. Absorbing heat
from the boiler, and converting it entirely into work, and relinquishing none
of it into the atmosphere, and leaving the thermodynamic state of the world
otherwise unchanged, would amount (after all) to a direct violation of Kel-
vin’s formulation of the second law.

Anyway, given the possibility of cycles like these, Clausius’s formulation
of the second law can be deduced (as promised) from Kelvin’s. It goes like
this: suppose (contradicting Clausius’s formulation) that a certain quantity
of heat could be made to _ow, without any other thermodynamic changes in
the world, from (say) the body at t1 to the body at t2. Then, running a Carnot
cycle between the two bodies, one which removes a larger quantity of heat
from the body at t2, turns (as above) some of that heat into work, and dumps
the rest (which is arranged so as to be equal to the quantity that _owed from
the cooler body to the hotter one at the outset) into the body at t1 (leaving

166 A P P E N D I X



the body at t1 in precisely its original state), would complete a process in
which heat is removed from the body at t2 and converted into work with no
other net changes in the thermodynamic state of the world. And this would
of course amount to a violation of Kelvin’s formulation of the second law.

▲▲▲ Let’s go further.
The ef~ciency with which a cyclic heat engine converts heat into work is

de~ned as the amount of work produced per cycle of the engine divided by the
amount of heat extracted, per cycle, from the higher-temperature body. And it
turns out that the possibility of executing Carnot cycles (or of very nearly exe-
cuting them, at any rate),2 combined with either the Clausius or the Kelvin
formulation of the second law, allows the calculation a speci~c quantitative
upper limit on the possible ef~ciency with which any cyclic heat engine what-
soever, operating between two speci~ed temperatures, can function.

The ~rst step will be to prove that no cyclic engine operating between two
speci~ed temperatures t1 and t2 can possibly have a higher ef~ciency than a
reversible engine operating between those temperatures.3 Here’s how to do
that: consider two cyclic engines, one of which is reversible, operating be-
tween t1 and t2. Let the reversible one be operating in reverse, as a work-con-
suming refrigerator. Arrange things (and this may involve running both en-
gines repeatedly, and different numbers of times) so that at the end of a full
combined cycle the Q2’s of these two engines (one of which is positive and
the other of which is negative) will exactly cancel each other. Then, if the ir-
reversible engine had the higher ef~ciency, the combined device (since the
magnitudes of the two Q2’s are equal) will have a positive net work output—
in a situation where heat is removed from body 1 and no net thermodynamic
changes occur in any other systems—in violation of Kelvin’s formulation of
the second law.

And note that if both engines are reversible, it will follow from the above
argument that their ef~ciencies must necessarily be equal.4
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2. There are, after all, no such things in the world as perfectly reversible thermodynamic
transformations. Pistons, for example, are never utterly free of friction. But the friction can pre-
sumably be made as small as one likes, if one is willing to take the trouble.

3. Note that a heat engine can perfectly well be cyclic without being reversible. Carnot en-
gines, of course, are both.

4. If both engines are reversible, after all, either one can be the one running backward in the
above argument.



And so (since Carnot cycles are examples of reversible cyclic engines, and
since they can actually be instantiated, and their ef~ciencies tested) the upper
limit on the ef~ciency of any cyclic engine operating between two given tem-
peratures t1 and t2, which is equal to the actual ef~ciency of any reversible cy-
clic engine operating between those two temperatures, can be quantitatively
known. Moreover, ~xing the ef~ciency of a heat engine amounts to ~xing the
value of the ratio Q1/Q2—the ef~ciency, by de~nition, is (the work out-
put)/Q2 � (Q2 � Q1)/Q2 � 1 � (Q1/Q2)—and that number turns out to be
equal, for Carnot engines, to T1/T2.

And the interest of all this is that it will facilitate the formulation of a
vastly more informative version of the second law—one that will stipulate,
quantitatively, what changes in the rest of the world are required in order to
pull off the transformations mentioned (and forbidden, on their own) in the
Clausius and Kelvin formulations.

Here’s how to get at that: imagine that a certain system undergoes a cyclic
transformation in the course of which it absorbs positive or negative amounts
of heat (call these amounts Qk) from a number of bodies (whose tempera-
tures are Tk). And let there be a number of reversible cyclic heat engines
around, operating between these various bodies and one other, at tempera-
ture T0; and let them operate so as to restore the original heat contents of all
those bodies (except the one at T0). Now it will follow from what we learned
above about the ef~ciencies of reversible heat engines that the total amount
of heat surrendered by the body at T0 in the course of this restoration process
is Q0 � T0(the sum over k of [Qk/Tk]). And since this process in entirely cy-
clic except insofar as the body at T0 is concerned, whatever heat is absorbed
from that body has necessarily been transformed entirely into work, and so,
in order to avoid contradiction with Kelvin’s formulation of the second law,
that amount (Q0) had better not be positive, which means that the sum over
k of [Qk/Tk] had better not be positive as well. Moreover, if the original cy-
clic process is reversible, Q0 (and hence also the sum over k of [Qk/Tk])
must obviously be zero.

This can now easily be parlayed into a demonstration that the sum over k
of [Qk/Tk] for any reversible route from one thermo-state A to another
thermo-state B must be equal to the sum over k of [Qk/Tk] for any other re-
versible route between those two states. The argument is just that any two re-
versible routes between the same initial and ~nal states can always be con-
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verted (by running one of them forward and then running the other one
backward) into a thoroughly reversible cycle—and we have just shown that
the sum over k of [Qk/Tk] over any such cycle is zero. And so the sum over k
of [Qk/Tk] over any reversible route between two distinct thermodynamic
states is (as was promised in the text) a function only of the initial and ~nal
thermo-states in question and is referred to (as mentioned) as the entropy-
difference between them. And thus if we pick, by convention, a zero-entropy
state for a given sort of system, the entropy becomes a unique and de~nite
function of the thermodynamic state—a new, bona ~de thermodynamic
variable (whose status as a variable is guaranteed by the second law of ther-
modynamics).

Moreover, the above considerations also entail that the Q/T sum over irre-
versible routes between two speci~ed thermodynamic states (call them A and
B) must be less than or equal to the value of the sum over reversible ones—
which is to say that the integral over any irreversible route between A and B
must be less than or equal to the entropy-difference between A and B.

Thus, if B can emerge out of A by means of a transformation which is
both reversible and isolated (that is, Q-exchange � 0), then the entropies of
A and B must be identical; and conversely, if the only isolated transforma-
tions by means of which B can emerge out of A are irreversible ones, then the
entropy of state B must be greater than or equal to the entropy state A.

And so (and this is the punch line—this is the now-canonical formulation
of the second law) the total entropy of the world (or of any isolated subsystem
of the world), in the course of any transformation, either keeps the same
value or goes up.

▲▲▲ Note, by the way, that we now know something quite de~nite, some-
thing quantitative, about the “thermodynamic changes in the rest of the
world” mentioned in the Clausius formulation of the second law. We now
know (as a de~nite function of the two temperatures involved) how much
more heat needs to be dumped into the hotter body by any cyclic refrigerator
than that refrigerator removes from the cooler one.
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