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Preface

Riemannian geometry is the study of manifolds endowed with Riemannian metrics,
which are, roughly speaking, rules for measuring lengths of tangent vectors and
angles between them. It is the most “geometric” branch of differential geometry.
Riemannian metrics are named for the great German mathematician Bernhard
Riemann (1826-1866).

This book is designed as a textbook for a graduate course on Riemannian
geometry for students who are familiar with the basic theory of smooth manifolds.
It focuses on developing an intimate acquaintance with the geometric meaning of
curvature, and in particular introducing many of the fundamental results that relate
the local geometry of a Riemannian manifold to its global topology (the kind of
results I like to call “local-to-global theorems,” as explained in Chapter 1). In so
doing, it introduces and demonstrates the uses of most of the main technical tools
needed for a careful study of Riemannian manifolds.

The book is meant to be introductory, not encyclopedic. Its coverage is reason-
ably broad, but not exhaustive. It begins with a careful treatment of the machinery
of metrics, connections, and geodesics, which are the indispensable tools in the sub-
ject. Next comes a discussion of Riemannian manifolds as metric spaces, and the
interactions between geodesics and metric properties such as completeness. It then
introduces the Riemann curvature tensor, and quickly moves on to submanifold
theory in order to give the curvature tensor a concrete quantitative interpretation.

The first local-to-global theorem I discuss is the Gauss—Bonnet theorem for com-
pact surfaces. Many students will have seen a treatment of this in undergraduate
courses on curves and surfaces, but because I do not want to assume such a course
as a prerequisite, [ include a complete proof.

From then on, all efforts are bent toward proving a number of fundamental
local-to-global theorems for higher-dimensional manifolds, most notably the Killing—
Hopf theorem about constant-curvature manifolds, the Cartan—-Hadamard theorem
about nonpositively curved manifolds, and Myers’s theorem about positively curved
ones. The last chapter also contains a selection of other important local-to-global
theorems.
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Many other results and techniques might reasonably claim a place in an introduc-
tory Riemannian geometry book, but they would not fit in this book without dras-
tically broadening its scope. In particular, I do not treat the Morse index theorem,
Toponogov’s theorem, or their important applications such as the sphere theorem;
Hodge theory, gauge theory, minimal surface theory, or other applications of elliptic
partial differential equations to Riemannian geometry; or evolution equations such as
the Ricci flow or the mean curvature flow. These important topics are for other, more
advanced, books.

When I wrote the first edition of this book twenty years ago, a number of superb
reference books on Riemannian geometry were already available; in the intervening
years, many more have appeared. I invite the interested reader, after reading this
book, to consult some of those for a deeper treatment of some of the topics introduced
here, or to explore the more esoteric aspects of the subject. Some of my favorites are
Peter Petersen’s admirably comprehensive introductory text [Pet16]; the elegant
introduction to comparison theory by Jeff Cheeger and David Ebin [CE08] (which
was out of print for a number of years, but happily has been reprinted by the American
Mathematical Society); Manfredo do Carmo’s much more leisurely treatment of the
same material and more [dC92]; Barrett O’Neill’s beautifully integrated introduction
to pseudo-Riemannian and Riemannian geometry [O’N83]; Michael Spivak’s classic
multivolume tome [Spi79], which can be used as a textbook if plenty of time is
available, or can provide enjoyable bedtime reading; the breathtaking survey by
Marcel Berger [Ber03], which richly earns the word “panoramic” in its title; and
the “Encyclopaedia Britannica” of differential geometry books, Foundations of
Differential Geometry by Shoshichi Kobayashi and Katsumi Nomizu [KN96]. At the
other end of the spectrum, Frank Morgan’s delightful little book [Mor98] touches on
most of the important ideas in an intuitive and informal way with lots of pictures—I
enthusiastically recommend it as a prelude to this book. And there are many more to
recommend: for example, the books by Chavel [Cha06], Gallot/Hulin/Lafontaine
[GHLO4], Jost [Jos17], Klingenberg [KIi95], and Jeffrey Lee [Leeleff09] are all
excellent in different ways.

It is not my purpose to replace any of these. Instead, I hope this book fills a niche
in the literature by presenting a selective introduction to the main ideas of the
subject in an easily accessible way. The selection is small enough to fit (with some
judicious cutting) into a single quarter or semester course, but broad enough, I hope,
to provide any novice with a firm foundation from which to pursue research or
develop applications in Riemannian geometry and other fields that use its tools.

This book is written under the assumption that the student already knows the
fundamentals of the theory of topological and smooth manifolds, as treated, for
example, in my two other graduate texts [LeeTM, LeeSM]. In particular, the
student should be conversant with general topology, the fundamental group, covering
spaces, the classification of compact surfaces, topological and smooth manifolds,
immersions and submersions, submanifolds, vector fields and flows, Lie brackets and
Lie derivatives, tensors, differential forms, Stokes’s theorem, and the basic theory of
Lie groups. On the other hand, I do not assume any previous acquaintance with
Riemannian metrics, or even with the classical theory of curves and surfaces in R>.
(In this subject, anything proved before 1950 can be considered “classical”!)
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Although at one time it might have been reasonable to expect most mathematics
students to have studied surface theory as undergraduates, many current North
American undergraduate math majors never see any differential geometry. Thus the
fundamentals of the geometry of surfaces, including a proof of the Gauss—Bonnet
theorem, are worked out from scratch here.

The book begins with a nonrigorous overview of the subject in Chapter 1,
designed to introduce some of the intuitions underlying the notion of curvature and
to link them with elementary geometric ideas the student has seen before. Chapter 2
begins the course proper, with definitions of Riemannian metrics and some of their
attendant flora and fauna. Here I also introduce pseudo-Riemannian metrics, which
play a central role in Einstein’s general theory of relativity. Although I do not
attempt to provide a comprehensive introduction to pseudo-Riemannian geometry,
throughout the book I do point out which of the constructions and theorems of
Riemannian geometry carry over easily to the pseudo-Riemannian case and which
do not.

Chapter 3 describes some of the most important “model spaces” of Riemannian
and pseudo-Riemannian geometry—those with lots of symmetry—with a great deal
of detailed computation. These models form a sort of leitmotif throughout the text,
serving as illustrations and testbeds for the abstract theory as it is developed.

Chapter 4 introduces connections, together with some fundamental constructions
associated with them such as geodesics and parallel transport. In order to isolate the
important properties of connections that are independent of the metric, as well as to
lay the groundwork for their further study in arenas that are beyond the scope of this
book, such as the Chern—Weil theory of characteristic classes and the Donaldson and
Seiberg—Witten theories of gauge fields, connections are defined first on arbitrary
vector bundles. This has the further advantage of making it easy to define the induced
connections on tensor bundles. Chapter 5 investigates connections in the context of
Riemannian (and pseudo-Riemannian) manifolds, developing the Levi-Civita con-
nection, its geodesics, the exponential map, and normal coordinates. Chapter 6
continues the study of geodesics, focusing on their distance-minimizing properties.
First, some elementary ideas from the calculus of variations are introduced to prove
that every distance-minimizing curve is a geodesic. Then the Gauss lemma is used to
prove the (partial) converse—that every geodesic is locally minimizing.

Chapter 7 unveils the first fully general definition of curvature. The curvature
tensor is motivated initially by the question whether all Riemannian metrics are
“flat” (that is, locally isometric to the Euclidean metric). It turns out that the failure
of parallel transport to be path-independent is the primary obstruction to the
existence of a local isometry. This leads naturally to a qualitative interpretation of
curvature as the obstruction to flatness. Chapter 8 is an investigation of submanifold
theory, leading to the definition of sectional curvatures, which give curvature a
more quantitative geometric interpretation.

The last four chapters are devoted to the development of some of the most
important global theorems relating geometry to topology. Chapter 9 gives a simple
moving-frames proof of the Gauss—Bonnet theorem, based on a careful treatment of
Hopf’s rotation index theorem (often known by its German name, the Umlaufsatz).
Chapter 10 has a largely technical nature, covering Jacobi fields, conjugate points,
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the second variation formula, and the index form for later use in comparison
theorems. Chapter 11 introduces comparison theory, using a simple comparison
theorem for matrix Riccati equations to prove the fundamental fact that bounds on
curvature lead to bounds (in the opposite direction) on the size of Jacobi fields,
which in turn lead to bounds on many fundamental geometric quantities, such as
distances, diameters, and volumes. Finally, in Chapter 12 comes the denouement:
proofs of some of the most important local-to-global theorems illustrating the ways
in which curvature and topology affect each other.

Exercises and Problems

This book contains many questions for the reader that deserve special mention.
They fall into two categories: “exercises,” which are integrated into the text, and
“problems,” grouped at the end of each chapter. Both are essential to a full
understanding of the material, but they are of somewhat different characters and
serve different purposes.

The exercises include some background material that the student should have
seen already in an earlier course, some proofs that fill in the gaps from the text,
some simple but illuminating examples, and some intermediate results that are used
in the text or the problems. They are, in general, elementary, but they are not
optional—indeed, they are integral to the continuity of the text. They are chosen
and timed so as to give the reader opportunities to pause and think over the material
that has just been introduced, to practice working with the definitions, and to
develop skills that are used later in the book. I recommend that students stop and do
each exercise as it occurs in the text, or at least convince themselves that they know
what is involved in the solution of each one, before going any further.

The problems that conclude the chapters are generally more difficult than the
exercises, some of them considerably so, and should be considered a central part
of the book by any student who is serious about learning the subject. They not only
introduce new material not covered in the body of the text, but they also provide the
student with indispensable practice in using the techniques explained in the text,
both for doing computations and for proving theorems. If the result of a problem is
used in an essential way in the text, or in a later problem, the page where it is used is
noted at the end of the problem statement. Instructors might want to present some
of these problems in class if more than a semester is available.

At the end of the book there are three appendices that contain brief reviews of
background material on smooth manifolds, tensors, and Lie groups. I have omitted
most of the proofs, but included references to other books where they may be
found. The results are collected here in order to clarify what results from topology
and smooth manifold theory this book will draw on, and also to establish definitions
and conventions that are used throughout the book. I recommend that most readers
at least glance through the appendices before reading the rest of the book, and
consider consulting the indicated references for any topics that are unfamiliar.
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About the Second Edition

This second edition, titled Introduction to Riemannian Manifolds, has been adapted
from my earlier book Riemannian Manifolds: An Introduction to Curvature,
Graduate Texts in Mathematics 176, Springer 1997.

For those familiar with the first edition, the first difference you will notice about
this edition is that it is considerably longer than the first. To some extent, this is due
to the addition of more thorough explanations of some of the concepts. But a much
more significant reason for the increased length is the addition of many topics that
were not covered in the first edition. Here are some of the most important ones: a
somewhat expanded treatment of pseudo-Riemannian metrics, together with more
consistent explanations of which parts of the theory apply to them; a more detailed
treatment of which homogeneous spaces admit invariant metrics; a new treatment of
general distance functions and semigeodesic coordinates; introduction of the Weyl
tensor and the transformation laws for various curvatures under conformal changes
of metric; derivation of the variational equations for hypersurfaces that minimize
area with fixed boundary or fixed enclosed volume; an introduction to symmetric
spaces; and a treatment of the basic properties of the cut locus. Most importantly,
the entire treatment of comparison theory has been revamped and expanded based
on Riccati equations, and a handful of local-to-global theorems have been added
that were not present in the first edition: Cartan’s torsion theorem, Preissman’s
theorem, Cheng’s maximal diameter theorem, Milnor’s theorem on polynomial
growth of the fundamental group, and Synge’s theorem. I hope these will make the
book much more useful.

I am aware, though, that one of the attractions of the first edition for some
readers was its brevity. For those who would prefer a more streamlined path toward
the main local-to-global theorems in Chapter 12, here are topics that can be omitted
on a first pass through the book without essential loss of continuity.

e Chapter 2: Other generalizations of Riemannian metrics

e Chapter 3: Other homogeneous Riemannian manifolds and model pseudo-
Riemannian manifolds

e Chapter 5: Tubular neighborhoods, Fermi coordinates, and Euclidean and
non-Euclidean geometries

e Chapter 6: Distance functions and semigeodesic coordinates
Chapter 7: The Weyl tensor and curvatures of conformally related metrics
Chapter 8: Computations in semigeodesic coordinates, minimal hypersur-
faces, and constant-mean-curvature hypersurfaces
Chapter 9: The entire chapter
Chapter 10: Locally symmetric spaces and cut points

e Chapter 11: Glinther’s volume comparison theorem and the Bishop—Gromov
volume comparison theorem

e Chapter 12: All but the theorems of Killing—Hopf, Cartan-Hadamard, and
Myers
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In addition to the major changes listed above, there are thousands of minor ones
throughout the book. Of course, I have attempted to correct all of the mistakes that I
became aware of in the first edition. Unfortunately, I surely have not been able to
avoid introducing new ones, so if you find anything that seems amiss, please let me
know by contacting me through the website listed below. I will keep an updated list
of corrections on that website.

I have also adjusted my notation and terminology to be consistent with my two
other graduate texts [LeeSM, LeeTM] and hopefully to be more consistent with
commonly accepted usage. Like those books, this one now has a notation index just
before the subject index, and it uses the same typographical conventions: mathema-
tical terms are typeset in bold italics when they are officially defined; exercises in
the text are indented, numbered consecutively with the theorems, and marked with
the special symbol » to make them easier to find; the ends of numbered examples
are marked with the symbol //; and the entire book is now set in Times Roman,
supplemented by the MathTime Professional II mathematics fonts created by
Personal TgX, Inc.
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Chapter 1
What Is Curvature?

If you have spent some time studying modern differential geometry, with its intricate
web of manifolds, submanifolds, vector fields, Lie derivatives, tensor fields, differ-
ential forms, orientations, and foliations, you might be forgiven for wondering what
it all has to do with geometry. In most people’s experience, geometry is concerned
with properties such as distances, lengths, angles, areas, volumes, and curvature.
These concepts, however, are often barely mentioned in typical beginning graduate
courses in smooth manifold theory.

The purpose of this book is to introduce the theory of Riemannian manifolds:
these are smooth manifolds equipped with Riemannian metrics (smoothly varying
choices of inner products on tangent spaces), which allow one to measure geometric
quantities such as distances and angles. This is the branch of differential geometry in
which “geometric” ideas, in the familiar sense of the word, come to the fore. It is the
direct descendant of Euclid’s plane and solid geometry, by way of Gauss’s theory of
curved surfaces in space, and it is a dynamic subject of contemporary research.

The central unifying theme in current Riemannian geometry research is the
notion of curvature and its relation to topology. This book is designed to help you
develop both the tools and the intuition you will need for an in-depth exploration
of curvature in the Riemannian setting. Unfortunately, as you will soon discover, an
adequate development of curvature in an arbitrary number of dimensions requires
a great deal of technical machinery, making it easy to lose sight of the underlying
geometric content. To put the subject in perspective, therefore, let us begin by asking
some very basic questions: What is curvature? What are some important theorems
about it? In this chapter, we explore these and related questions in an informal way,
without proofs. The “official” treatment of the subject begins in Chapter 2.

The Euclidean Plane

To get a sense of the kinds of questions Riemannian geometers address and where
these questions came from, let us look back at the very roots of our subject. The

© Springer International Publishing AG 2018 1
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2 1 What Is Curvature?

treatment of geometry as a mathematical subject began with Euclidean plane geom-
etry, which you probably studied in secondary school. Its elements are points, lines,
distances, angles, and areas; and its most fundamental relationship is congruence—
two plane figures are congruent if one can be transformed into the other by a rigid
motion of the plane, which is a bijective transformation from the plane to itself that
preserves distances. Here are a couple of typical theorems.

Theorem 1.1 (Side-Side-Side). Two Euclidean triangles are congruent if and only
if the lengths of their corresponding sides are equal.

Theorem 1.2 (Angle-Sum Theorem). The sum of the interior angles of a Euclidean
triangle is 7.

As trivial as they may seem, these theorems serve to illustrate two major types of
results that permeate the study of geometry; in this book, we call them “classification
theorems” and “local-to-global theorems.”

The side-side-side (SSS) theorem is a classification theorem. Such a theorem
tells us how to determine whether two mathematical objects are equivalent (under
some appropriate equivalence relation). An ideal classification theorem lists a small
number of computable invariants (whatever “small” may mean in a given context),
and says that two objects are equivalent if and only if all of these invariants match.
In this case the equivalence relation is congruence, and the invariants are the three
side lengths.

The angle-sum theorem is of a different sort. It relates a local geometric property
(angle measure) to a global property (that of being a three-sided polygon or triangle).
Most of the theorems we study in this book are of this type, which, for lack of a
better name, we call local-to-global theorems.

After proving the basic facts about points and lines and the figures constructed
directly from them, one can go on to study other figures derived from the basic
elements, such as circles. Two typical results about circles are given below; the first
is a classification theorem, while the second is a local-to-global theorem. (It may not
be obvious at this point why we consider the second to be a local-to-global theorem,
but it will become clearer soon.)

Theorem 1.3 (Circle Classification Theorem). Two circles in the Euclidean plane
are congruent if and only if they have the same radius.

Theorem 1.4 (Circumference Theorem). The circumference of a Euclidean circle
of radius R is 27 R.

If we want to continue our study of plane geometry beyond figures constructed
from lines and circles, sooner or later we have to come to terms with other curves in
the plane. An arbitrary curve cannot be completely described by one or two numbers
such as length or radius; instead, the basic invariant is curvature, which is defined
using calculus and is a function of position on the curve.

Formally, the curvature of a plane curve y is defined to be «(¢) = |y”(t)|, the
length of the acceleration vector, when y is given a unit-speed parametrization.



The Euclidean Plane 3

Fig. 1.1: Osculating circle

(Here and throughout this book, the word “curve” refers to a parametrized curve,
not a set of points. Typically, a curve will be defined as a smooth function of a real
variable ¢, with a prime representing an ordinary derivative with respect to 7.)

Geometrically, the curvature has the following interpretation. Given a point
p = y(t), there are many circles tangent to y at p—namely, those circles whose
velocity vector at p is the same as that of y when both are given unit-speed
parametrizations; these are the circles whose centers lie on the line that passes
through p and is orthogonal to y’(p). Among these circles, there is exactly one
unit-speed parametrized circle whose acceleration vector at p is the same as that of
y; itis called the osculating circle (Fig. 1.1). (If the acceleration of y is zero, replace
the osculating circle by a straight line, thought of as a “circle with infinite radius.”)
The curvature is then «(¢) = 1/R, where R is the radius of the osculating circle.
The larger the curvature, the greater the acceleration and the smaller the osculating
circle, and therefore the faster the curve is turning. A circle of radius R has constant
curvature k = 1/R, while a straight line has curvature zero.

It is often convenient for some purposes to extend the definition of the curvature
of a plane curve, allowing it to take on both positive and negative values. This is done
by choosing a continuous unit normal vector field N along the curve, and assigning
the curvature a positive sign if the curve is turning toward the chosen normal or a
negative sign if it is turning away from it. The resulting function « along the curve
is then called the signed curvature.

Here are two typical theorems about plane curves.

Theorem 1.5 (Plane Curve Classification Theorem). Suppose y and y: [a,b] —
RZ are smooth, unit-speed plane curves with unit normal vector fields N and N,
and kn(t), K5 (t) represent the signed curvatures at y(t) and y(t), respectively.
Then y and y are congruent by a direction-preserving congruence if and only if
kn(t) =k (t) forallt € [a,b].

Theorem 1.6 (Total Curvature Theorem). If y : [a,b] — R? is a unit-speed simple
closed curve such that y'(a) = y'(b), and N is the inward-pointing normal, then

b
/ kn(t)dt =2m.
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The first of these is a classification theorem, as its name suggests. The second
is a local-to-global theorem, since it relates the local property of curvature to the
global (topological) property of being a simple closed curve. We will prove both of
these theorems later in the book: the second will be derived as a consequence of a
more general result in Chapter 9 (see Corollary 9.6); the proof of the first is left to
Problem 9-12.

It is interesting to note that when we specialize to circles, these theorems reduce
to the two theorems about circles above: Theorem 1.5 says that two circles are con-
gruent if and only if they have the same curvature, while Theorem 1.6 says that if
a circle has curvature k and circumference C, then k C = 2. It is easy to see that
these two results are equivalent to Theorems 1.3 and 1.4. This is why it makes sense
to regard the circumference theorem as a local-to-global theorem.

Surfaces in Space

The next step in generalizing Euclidean geometry is to start working in three dimen-
sions. After investigating the basic elements of “solid geometry”—points, lines,
planes, polyhedra, spheres, distances, angles, surface areas, volumes—one is led
to study more general curved surfaces in space (2-dimensional embedded subman-
ifolds of R3, in the language of differential geometry). The basic invariant in this
setting is again curvature, but it is a bit more complicated than for plane curves,
because a surface can curve differently in different directions.

The curvature of a surface in space is described by two numbers at each point,
called the principal curvatures. We will define them formally in Chapter 8, but here
is an informal recipe for computing them. Suppose S is a surface in R3, p is a point
in S, and N is a unit normal vector to S at p.

1. Choose a plane I passing through p and parallel to N. The intersection of /1
with a neighborhood of p in S is a plane curve y C IT containing p (Fig. 1.2).

2. Compute the signed curvature ky of y at p with respect to the chosen unit
normal N.

3. Repeat this for all normal planes I1. The principal curvatures of S at p,
denoted by «; and k5, are the minimum and maximum signed curvatures so
obtained.

Although the principal curvatures give us a lot of information about the geome-
try of S, they do not directly address a question that turns out to be of paramount
importance in Riemannian geometry: Which properties of a surface are intrinsic?
Roughly speaking, intrinsic properties are those that could in principle be measured
or computed by a 2-dimensional being living entirely within the surface. More pre-
cisely, a property of surfaces in R3 is called intrinsic if it is preserved by isometries
(maps from one surface to another that preserve lengths of curves).

To see that the principal curvatures are not intrinsic, consider the following two
embedded surfaces S; and S, in R? (Figs. 1.3 and 1.4): S is the square in the xy-
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Fig. 1.2: Computing principal curvatures

Fig. 1.3: S} Fig. 1.4: S»

plane where 0 < x <7 and 0 < y < 7, and S is the half-cylinder {(x,y,z) : z =
V1=y2,0<x <m, |y| < 1}. If we follow the recipe above for computing principal
curvatures (using, say, the downward-pointing unit normal), we find that, since all
planes intersect S; in straight lines, the principal curvatures of S; are k; =k, = 0.
On the other hand, it is not hard to see that the principal curvatures of S, are k; =0
and x; = 1. However, the map taking (x, y,0) to (x,cos y,sin y) is a diffeomorphism
from S; to S, that preserves lengths of curves, and is thus an isometry.

Even though the principal curvatures are not intrinsic, the great German mathe-
matician Carl Friedrich Gauss made the surprising discovery in 1827 [Gau65] that
a particular combination of them is intrinsic. (See also [Spi79, Vol. 2] for an excel-
lent discussion of the details of Gauss’s paper.) He found a proof that the product
K = k1k2, now called the Gaussian curvature, is intrinsic. He thought this result
was so amazing that he named it Theorema Egregium. (This does not mean “totally
awful theorem” as its English cognate egregious might suggest; a better translation
into modern colloquial English might be “totally awesome theorem.”)
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To get a feeling for what Gaussian curvature tells us about surfaces, let us look at
a few examples. Simplest of all is any surface that is an open subset of a plane: as we
have seen, such a surface has both principal curvatures equal to zero and therefore
has constant Gaussian curvature equal to zero. The half-cylinder described above
also has K = k1«3 =0-1 =0, as the Theorema Egregium tells us it must, being iso-
metric to a square. Another simple example is a sphere of radius R. Every normal
plane intersects the sphere in a great circle, which has radius R and therefore curva-
ture £1/R (with the sign depending on whether we choose the outward-pointing or
inward-pointing normal). Thus the principal curvatures are both equal to -1/ R, and
the Gaussian curvature is K1k = 1/R?. Note that while the signs of the principal
curvatures depend on the choice of unit normal, the Gaussian curvature does not: it
is always positive on the sphere.

Similarly, any surface that is “bowl-shaped” or “dome-shaped” has positive
Gaussian curvature (Fig. 1.5), because the two principal curvatures always have the
same sign, regardless of which normal is chosen. On the other hand, the Gaussian
curvature of any surface that is “saddle-shaped” (Fig. 1.6) is negative, because the
principal curvatures are of opposite signs.

The model spaces of surface theory are the surfaces with constant Gaussian cur-
vature. We have already seen two of them: the Euclidean plane R? (K = 0), and the
sphere of radius R (K = 1/R?). The most important model surface with constant
negative Gaussian curvature is called the hyperbolic plane, and will be defined in
Chapter 3. It is not so easy to visualize because it cannot be realized globally as a
smoothly embedded surface in R? (see [Spi79, Vol. 3, pp. 373-385] for a proof).

Surface theory is a highly developed branch of geometry. Of all its results, two—
a classification theorem and a local-to-global theorem—are generally acknowledged
as the most important.

Theorem 1.7 (Uniformization Theorem). Every connected 2-manifold is diffeo-
morphic to a quotient of one of the constant-curvature model surfaces described
above by a discrete group of isometries without fixed points. Thus every connected
2-manifold has a complete Riemannian metric with constant Gaussian curvature.

Theorem 1.8 (Gauss—Bonnet Theorem). Suppose S is a compact Riemannian 2-
manifold. Then

/ KdA=2my(S),
S

where x(S) is the Euler characteristic of S.
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The uniformization theorem is a classification theorem, because it replaces the
problem of classifying surfaces with that of classifying certain discrete groups of
isometries of the models. The latter problem is not easy by any means, but it sheds
a great deal of new light on the topology of surfaces nonetheless. In Chapter 3, we
sketch a proof of the uniformization theorem for the case of compact surfaces.

Although stated here as a geometric-topological result, the uniformization the-
orem is usually stated somewhat differently and proved using complex analysis. If
you are familiar with complex analysis and the complex version of the uniformiza-
tion theorem, it will be an enlightening exercise after you have finished this book to
prove that the complex version of the theorem is equivalent to the one stated here.

The Gauss—Bonnet theorem, on the other hand, is purely a theorem of differential
geometry, arguably the most fundamental and important one of all. It relates a local
geometric property (the curvature) with a global topological invariant (the Euler
characteristic). We give a detailed proof in Chapter 9.

Taken together, these theorems place strong restrictions on the types of metrics
that can occur on a given surface. For example, one consequence of the Gauss—
Bonnet theorem is that the only compact, connected, orientable surface that admits
a metric of strictly positive Gaussian curvature is the sphere. On the other hand, if
a compact, connected, orientable surface has nonpositive Gaussian curvature, the
Gauss—Bonnet theorem rules out the sphere, and then the uniformization theorem
tells us that its universal covering space is topologically equivalent to the plane.

Curvature in Higher Dimensions

We end our survey of the basic ideas of Riemannian geometry by mentioning briefly
how curvature appears in higher dimensions. Suppose M is an n-dimensional Rie-
mannian manifold. As with surfaces, the basic geometric invariant is curvature, but
curvature becomes a much more complicated quantity in higher dimensions because
a manifold may curve in so many different directions.

The first problem we must contend with is that, in general, Riemannian mani-
folds are not presented to us as embedded submanifolds of Euclidean space. There-
fore, we must abandon the idea of cutting out curves by intersecting our manifold
with planes, as we did when defining the principal curvatures of a surface in R3.
Instead, we need a more intrinsic way of sweeping out submanifolds. Fortunately,
geodesics—curves that are the shortest paths between nearby points—are ready-
made tools for this and many other purposes in Riemannian geometry. Examples
are straight lines in Euclidean space and great circles on a sphere.

The most fundamental fact about geodesics, which we prove in Chapter 4, is
that given any point p € M and any vector v tangent to M at p, there is a unique
geodesic starting at p with initial velocity v.

Here is a brief recipe for computing some curvatures at a point p € M.

1. Choose a 2-dimensional subspace IT of the tangent space to M at p.
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2. Look at all the geodesics through p whose initial velocities lie in the selected
plane I7. It turns out that near p these sweep out a certain 2-dimensional sub-
manifold Sy of M, which inherits a Riemannian metric from M.

3. Compute the Gaussian curvature of Sy7 at p, which the Theorema Egregium
tells us can be computed from the Riemannian metric that Sy inherits from M.
This gives a number, denoted by sec(I1), called the sectional curvature of M
at p associated with the plane I7.

Thus the “curvature” of M at p has to be interpreted as a map
sec: {2-planesin T,M} — R.

As we will see in Chapter 3, we again have three classes of constant (sectional)
curvature model spaces: R” with its Euclidean metric (for which sec = 0); the n-
sphere of radius R, with the Riemannian metric inherited from R? 1 (sec = 1/R?);
and hyperbolic space of radius R (with sec = —1/R?). Unfortunately, however,
there is as yet no satisfactory uniformization theorem for Riemannian manifolds in
higher dimensions. In particular, it is definitely not true that every manifold pos-
sesses a metric of constant sectional curvature. In fact, the constant-curvature met-
rics can all be described rather explicitly by the following classification theorem.

Theorem 1.9 (Characterization of Constant-Curvature Metrics). The complete,
connected, n-dimensional Riemannian manifolds of constant sectional curvature
are, up to isometry, exactly the Riemannian quotients of the form M /I", where M
is a Euclidean space, sphere, or hyperbolic space with constant sectional curvature,
and I' is a discrete group of isometries of M that acts freely on M.

On the other hand, there are a number of powerful local-to-global theorems,
which can be thought of as generalizations of the Gauss—Bonnet theorem in var-
ious directions. They are consequences of the fact that positive curvature makes
geodesics converge, while negative curvature forces them to spread out. Here (in
somewhat simplified form) are two of the most important such theorems.

Theorem 1.10 (Cartan—Hadamard). Suppose M is a complete, connected Rie-
mannian n-manifold with all sectional curvatures less than or equal to zero. Then
the universal covering space of M is diffeomorphic to R".

Theorem 1.11 (Myers). Suppose M is a complete, connected Riemannian mani-
fold with all sectional curvatures bounded below by a positive constant. Then M is
compact and has a finite fundamental group.

Looking back at the remarks concluding the section on surfaces above, you can
see that these last three theorems generalize some of the consequences of the uni-
formization and Gauss—Bonnet theorems, although not their full strength. It is the
primary goal of this book to prove Theorems 1.9, 1.10, and 1.11, among others; it is
a primary goal of current research in Riemannian geometry to improve upon them
and further generalize the results of surface theory to higher dimensions.
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Chapter 2
Riemannian Metrics

In this chapter we officially define Riemannian metrics, and discuss some of the
basic computational techniques associated with them. After the definitions, we
describe a few standard methods for constructing Riemannian manifolds as subman-
ifolds, products, and quotients of other Riemannian manifolds. Then we introduce
some of the elementary geometric constructions provided by Riemannian metrics,
the most important of which is the Riemannian distance function, which turns every
connected Riemannian manifold into a metric space.

At the end of the chapter, we discuss some important generalizations of Rie-
mannian metrics—most importantly, the pseudo-Riemannian metrics, followed by
brief mentions of sub-Riemannian and Finsler metrics.

Before you read this chapter, it would be a good idea to skim through the three
appendices after Chapter 12 to get an idea of the prerequisite material that will be
assumed throughout this book.

Definitions

Everything we know about the Euclidean geometry of R” can be derived from its
dot product, which is defined for v = (v!,...,v") and w = (w!,...,w") by

n
vew = E viw'.

i=1

The dot product has a natural generalization to arbitrary vector spaces. Given a
vector space V' (which we always assume to be real), an inner product on 'V is
amap V xV — R, typically written (v, w) + (v, w), that satisfies the following
properties for all v, w,x € V and a,b € R:

(i) SYMMETRY: (v,w) = (w,v).
(i1) BILINEARITY: {(av +bw,x) = a({v,x) +b{w,x) = (x,av + bw).
© Springer International Publishing AG 2018 9
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(iii) POSITIVE DEFINITENESS: (v, v) > 0, with equality if and only if v = 0.

A vector space endowed with a specific inner product is called an inner product
space.

An inner product on V allows us to make sense of geometric quantities such as
lengths of vectors and angles between vectors. First, we define the length or norm
of a vector v € V as

lv| = (v,v)/2. 2.1)

The following identity shows that an inner product is completely determined by
knowledge of the lengths of all vectors.

Lemma 2.1 (Polarization Identity). Suppose (-,-) is an inner product on a vector
space V. Then for all v,w €V,

(vow) = H((v+w.v+w)—(v—w,v—w)). (2.2)
» Exercise 2.2. Prove the preceding lemma.

The angle between two nonzero vectors v, w € V is defined as the unique 0 €
[0, 7r] satistying

2.3)

Two vectors v,w € V are said to be orthogonal if (v,w) = 0, which means that
either their angle is 77/2 or one of the vectors is zero. If S C V is a linear subspace,
the set S* C V, consisting of all vectors in ¥ that are orthogonal to every vector in
S, is also a linear subspace, called the orthogonal complement of S .

Vectors vy,..., v, are called orthonormal if they are of length 1 and pairwise
orthogonal, or equivalently if (v;,v;) = §;; (where §;; is the Kronecker delta symbol
defined in Appendix B; see (B.1)). The following well-known proposition shows
that every finite-dimensional inner product space has an orthonormal basis.

Proposition 2.3 (Gram-Schmidt Algorithm). Let V' be an n-dimensional inner

product space, and suppose (v1,...,Vy) is any ordered basis for V. Then there is an
orthonormal ordered basis (b1, ...,by) satisfying the following conditions:
span(by,...,br) = span(vy,...,vg) foreachk =1,...,n. (2.4)
Proof. The basis vectors by,..., b, are defined recursively by
v
by = —, (2.5)
|vl |
bj = =i (v b . 2<j<n. (2.6)
Zl—l b;
Because vy #0and v; ¢ span(by,...,b;_;) foreach j > 2, the denominators are all

nonzero. These vectors satisfy (2.4) by construction, and are orthonormal by direct
computation. O
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If two vector spaces V' and W are both equipped with inner products, de-
noted by (-,-)y and (-,-)w, respectively, then a map F: V — W is called a lin-
ear isometry if it is a vector space isomorphism that preserves inner products:
(F(v), FW))w = (v,v")y. If V and W are inner product spaces of dimension 7,
then given any choices of orthonormal bases (v, ..., v,) for V and (wq,...,w,) for
W, the linear map F: V — W determined by F(v;) = w; is easily seen to be a lin-
ear isometry. Thus all inner product spaces of the same finite dimension are linearly
isometric to each other.

Riemannian Metrics

To extend these geometric ideas to abstract smooth manifolds, we define a structure
that amounts to a smoothly varying choice of inner product on each tangent space.
Let M be a smooth manifold. A Riemannian metricon M is a smooth covariant
2-tensor field g € 72(M) whose value g, at each p € M is an inner product on
Tp M; thus g is a symmetric 2-tensor field that is positive definite in the sense that
gp(v,v) > 0foreach p € M and each v € T, M, with equality if and only if v = 0.
A Riemannian manifold is a pair (M, g), where M is a smooth manifold and g is a
specific choice of Riemannian metric on M. If M is understood to be endowed with
a specific Riemannian metric, we sometimes say “M is a Riemannian manifold.”
The next proposition shows that Riemannian metrics exist in great abundance.

Proposition 2.4. Every smooth manifold admits a Riemannian metric.

» Exercise 2.5. Use a partition of unity to prove the preceding proposition.

We will give a number of examples of Riemannian metrics, along with several
systematic methods for constructing them, later in this chapter and in the next.

If M is a smooth manifold with boundary, a Riemannian metric on M is defined
in exactly the same way: a smooth symmetric 2-tensor field g that is positive definite
everywhere. A Riemannian manifold with boundary is a pair (M, g), where M is
a smooth manifold with boundary and g is a Riemannian metric on M. Many of the
results we will discuss in this book work equally well for manifolds with or without
boundary, with the same proofs, and in such cases we will state them in that gen-
erality. But when the treatment of a boundary would involve additional difficulties,
we will generally restrict attention to the case of manifolds without boundary, since
that is our primary interest. Many problems involving Riemannian manifolds with
boundary can be addressed by embedding into a larger manifold without boundary
and extending the Riemannian metric arbitrarily to the larger manifold; see Propo-
sition A.31 in Appendix A.

A Riemannian metric is not the same as a metric in the sense of metric spaces
(though, as we will see later in this chapter, the two concepts are related). In this
book, when we use the word “metric”” without further qualification, it always refers
to a Riemannian metric.
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Let g be a Riemannian metric on a smooth manifold M with or without boundary.
Because g, is an inner product on 7, M for each p € M, we often use the following
angle-bracket notation for v, w € T, M:

(v,w)e = gp(v,w).

Using this inner product, we can define lengths of tangent vectors, angles between
nonzero tangent vectors, and orthogonality of tangent vectors as described above.
The length of a vector v € T, M is denoted by [v]|g = (v,v)g Y2 If the metric is
understood, we sometimes omit it from the notation, and write (v, w) and |v| in
place of (v, w), and |v|g, respectively.

The starting point for Riemannian geometry is the following fundamental exam-
ple.

Example 2.6 (The Euclidean Metric). The Euclidean metric is the Riemannian
metric g on R” whose value at each x € R” is just the usual dot product on 7, R”
under the natural identification 7, R” =~ R”. This means that for v,w € T,R" writ-
ten in standard coordinates (xl,...,x”) as v = Zi V! 0|y, W= Zj w’/0j|x, we

have
n
= Z viw'.
i=1
When working with R” as a Riemannian manifold, we always assume we are using
the Euclidean metric unless otherwise specified. VA

Isometries

Suppose (M, g) and (1\7 §) are Riemannian manifolds with or without boundary.
An isometry from (M ,g) to ( ,g) is a diffeomorphism ¢: M — M such that
¢*g = g. Unwinding the definitions shows that this is equivalent to the requirement
that ¢ be a smooth bijection and each differential dg,: Tp,M — Ty, M be a lin-
ear isometry. We say (M, g) and (M g) are isometric 1f there exists an isometry
between them.

A composition of isometries and the inverse of an isometry are again isometries,
so being isometric is an equivalence relation on the class of Riemannian manifolds
with or without boundary. Our subject, Riemannian geometry, is concerned primar-
ily with properties of Riemannian manifolds that are preserved by isometries.

If (M,g) and (M g) are Riemannian manifolds, a map ¢: M — M is a local
isometry if each point p € M has a neighborhood U such that ¢|y is an isometry
onto an open subset of M.

» Exercise 2.7. Prove that if (M, g) and (1\7 ,g ) are Riemannian manifolds of the same
dimension, a smooth map ¢ : M — M is a local isometry if and only if p*g = g.

A Riemannian n-manifold is said to be flat if it is locally isometric to a Euclidean
space, that is, if every point has a neighborhood that is isometric to an open set in



Definitions 13

R™ with its Euclidean metric. Problem 2-1 shows that all Riemannian 1-manifolds
are flat; but we will see later that this is far from the case in higher dimensions.

An isometry from (M, g) to itself is called an isometry of (M,g). The set of
all isometries of (M, g) is a group under composition, called the isometry group
of (M,g); it is denoted by Iso(M, g), or sometimes just Iso(M) if the metric is
understood.

A deep theorem of Sumner B. Myers and Norman E. Steenrod [MS39] shows
that if M has finitely many components, then Iso(M, g) has a topology and smooth
structure making it into a finite-dimensional Lie group acting smoothly on M. We
will neither prove nor use the Myers—Steenrod theorem, but if you are interested, a
good source for the proof is [Kob72].

Local Representations for Metrics

Suppose (M, g) is a Riemannian manifold with or without boundary. If (x!,...,x")
are any smooth local coordinates on an open subset U € M, then g can be written
locally in U as

g =gij dx' @ dx’ 2.7

for some collection of n% smooth functions gij for i,j =1,...,n. (Here and
throughout the book, we use the Einstein summation convention; see p.375.)
The component functions of this tensor field constitute a matrix-valued function
(gij), characterized by g;; (p) = (8i|p,3j|p>, where 9; = 3/0x" is the ith coordi-
nate vector field; this matrix is symmetric in i and j and depends smoothly on
peU.If v =v'0;|, is a vector in T, M such that g;;(p)v’/ = 0, it follows that
(v,v) = gij (p)v'v/ = 0, which implies v = 0; thus the matrix (g;; (p)) is always
nonsingular. The notation for g can be shortened by expressing it in terms of the
symmetric product (see Appendix B): using the symmetry of g;;, we compute

g =gij dx' @ dx’
=1(gijdx' ®dx’ +gj;idx' ®dx’)
= 1(gijdx' ®dx’ +g;;dx’ ®dx")
=g;jdx"dx’.

For example, the Euclidean metric on R” (Example 2.6) can be expressed in
standard coordinates in several ways:

g=) dx'dx' =) (dx')* = §;dxdx’. (2.8)

The matrix of g in these coordinates is thus g;; = J;;.
More generally, if (E1,..., E,) is any smooth local frame for TM on an open
subset U € M and (g!,...,&") is its dual coframe, we can write g locally in U as
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g=gijeel, (2.9)

where g;;(p) =(Eilp. E | ), and the matrix-valued function (g;;) is symmetric and
smooth as before.

A Riemannian metric g acts on smooth vector fields X,Y € X(M) to yield a
real-valued function (X,Y'). In terms of any smooth local frame, this function is
expressed locally by (X,Y) = g;; X'Y/ and therefore is smooth. Similarly, we
obtain a nonnegative real-valued function |X| = (X, X)!/2, which is continuous
everywhere and smooth on the open subset where X # 0.

A local frame (E;) for M on an open set U is said to be an orthonormal frame
if the vectors E1|p.,..., E,|, are an orthonormal basis for 7, M at each p € U.
Equivalently, (E;) is an orthonormal frame if and only if

(Ei, Ej) =4,
in which case g has the local expression
g= ()4 + ("7
where (¢')? denotes the symmetric product e's’ = &' ® &'

Proposition 2.8 (Existence of Orthonormal Frames). Let (M, g) be a Riemannian
n-manifold with or without boundary. If (X ;) is any smooth local frame for TM
over an open subset U C M, then there is a smooth orthonormal frame (E ;) over
U such that span (E1|p. ..., Ex|p) = span(X1|p...., Xk|p) for each k = 1,....n
and each p € U. In particular, for every p € M, there is a smooth orthonormal
frame (E ;) defined on some neighborhood of p.

Proof. Applying the Gram—Schmidt algorithm to the vectors (X1/p,...,Xx|p) at
each p € U, we obtain an ordered n-tuple of rough orthonormal vector fields
(Eq,...,Ep) over U satisfying the span conditions. Because the vectors whose
norms appear in the denominators of (2.5)—(2.6) are nowhere vanishing, those for-
mulas show that each vector field E; is smooth. The last statement of the proposition
follows by applying this construction to any smooth local frame in a neighborhood
of p. O

Warning: A common mistake made by beginners is to assume that one can find
coordinates near p such that the coordinate frame (9;) is orthonormal. Proposition
2.8 does not show this. In fact, as we will see in Chapter 7, this is possible only
when the metric is flat, that is, locally isometric to the Euclidean metric.

For a Riemannian manifold (M, g) with or without boundary, we define the unit
tangent bundle to be the subset UTM C TM consisting of unit vectors:

UTM = {(p,v) e TM : |v], = 1}. (2.10)

Proposition 2.9 (Properties of the Unit Tangent Bundle). If (M,g) is a Rie-
mannian manifold with or without boundary, its unit tangent bundle UTM is a
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smooth, properly embedded codimension-1 submanifold with boundary in TM , with
IUTM)=n"1(OM) (where w: UTM — M is the canonical projection). The unit
tangent bundle is connected if and only if M is connected (when n> 1), and
compact if and onlyif M is compact.

» Exercise 2.10. Use local orthonormal frames to prove the preceding proposition.

Methods for Constructing Riemannian Metrics

Many examples of Riemannian manifolds arise naturally as submanifolds, products,
and quotients of other Riemannian manifolds. In this section, we introduce some of
the tools for constructing such metrics.

Riemannian Submanifolds

Every submanifold of a Riemannian manifold automatically inherits a Riemannian
metric, and many interesting Riemannian metrics are defined in this way. The key
fact is the following lemma.

Lemma 2.11. Suppose (1\7 , §) is a Riemannian manifold with or without boundary,
M is a smooth manifold with or without boundary, and F: M — M is a smooth
map. The smooth 2-tensor field g = F*g is a Riemannian metric on M if and only
if F is an immersion.

» Exercise 2.12. Prove Lemma 2.11.

Suppose (1\7 , §) is a Riemannian manifold with or without boundary. Given a
smooth immersion F: M — M, the metric g = F*Z is called the metric induced
by F. On the other hand, if M is already endowed with a given Riemannian met-
ric g, an immersion or embedding F: M — M satisfying F*g = g is called an
isometric immersion or isometric embedding, respectively. Which terminology is
used depends on whether the metric on M is considered to be given independently
of the immersion or not.

The most important examples of induced metrics occur on submanifolds. Sup-
pose M C M is an (immersed or embedded) submanifold, with or without bound-
ary. The induced metric on M is the metric g = (*g induced by the inclusion map
i M <> M. With this metric, M is called a Riemannian submanifold (or Rie-
mannian submanifold with boundary) of M. We always consider submanifolds
(with or without boundary) of Riemannian manifolds to be endowed with the
induced metrics unless otherwise specified.

If (M, g) is a Riemannian submanifold of (M, g), then forevery p € M and v, w €
T, M, the definition of the induced metric reads
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gp(v,w) = gp(d‘p(v)»d‘p(w))-

Because we usually identify 7, M with its image in TI,M under d1,, and think of
dip as an inclusion map, what this really amounts to is g,(v,w) = g, (v, w) for
v,w € T, M. In other words, the induced metric g is just the restriction of g to
vectors tangent to M. Many of the examples of Riemannian metrics that we will
encounter are obtained in this way, starting with the following.

Example 2.13 (Spheres). For each positive integer 7, the unit n-sphere S € R”*+!
is an embedded n-dimensional submanifold. The Riemannian metric induced on S”
by the Euclidean metric is denoted by ¢ and known as the round metric or standard
metric on S". n

The next lemma describes one of the most important tools for studying Riemann-
ian su@anifolds. If (1\7 , §) is an m-dimensional smooth Riemannian manifold and
M C M is an n-dimensigyal submanifold (both~with 1 Or without boundary), a local
frame (E1,..., Ep) for M on an open subset U € M is said to be adapted to M
if the first n vector fields (Eq,..., E,) are tangent to M. In case M has empty
boundary (so that slice coordinates are available), adapted local orthonormal frames
are easy to find.

Proposition 2.14 (Existence of Adapted Orthonormal Frames). Let (1\7 , g) be a
Riemannian manifold (without boundary), and let M C M be an embedded smooth
submanifold with or without boundary. Given p € M, there exist a neighborhood U
of p in M and a smooth orthonormal frame for M on U that is adapted to M.

» Exercise 2.15. Prove the preceding proposition. [Hint: Apply the Gram—Schmidt algo-
rithm to a coordinate frame in slice coordinates (see Prop. A.22).]

Suppose (M g) is a Riemannian manifold and M < Misa smooth submanifold
with or without boundary in M. Given pE€M,avectorveT, M is said to be
normal to M if (v,w) = 0 for every w € T, M. The space of all vectors normal
to M at p is a subspace of T}, M, called the normal space at p and denoted by
N,M = (T,M)*. At each p € M, the ambient tangent space T M splits as an
orthogonal direct sum 77 M = TpyM ® N,M. A section N of the amblent tangent
bundle T M |ar is called a normal vector field along M if N, € N,M for each
p € M. The set

NM =[] NyM
PEM

is called the normal bundle of M .
Proposition 2.16 (The Normal Bundle). [f M is a Riemannian m-manifold and
M C M is an immersed or embedded n-dimensional submanifold with or without

boundary, then NM is a smooth rank-(m — n) vector subbundle of the ambient tan-
gent bundle T M |pr. There are smooth bundle homomorphisms

TTM|y —TM, 7t:TM|y— NM,
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called the tangential and normal projections, that for each p € M restrict to
orthogonal projections from T, M to T, M and N, M, respectively.

Proof. Given any point p € M, Theorem A.16 shows that there is a neighborhood
U of p in M that is embedded in M, and then Proposition 2.14 shows that there is a
smooth orthonormal frame (E7,..., Ex) thatis adapted to U on some neighborhood
U of p in M. This means that the restrictions of (E1,..., E,) to U NU form alocal
orthonormal frame for M. Given such an adapted frame, the restrictions of the last
m —n vector fields (E;+1,..., E;) to M form a smooth local frame for NM, so it
follows from Lemma A.34 that NM is a smooth subbundle.

The bundle homomorphisms 7 | and 7 are defined pointwise as orthogonal
projections onto the tangent and normal spaces, respectively, which shows that they
are uniquely defined. In terms of an adapted orthonormal frame, they can be written

7 (X'Ey 4+ X"Ep) = X"E; +-+ X"E,,
A (X 'Ev 4+ X"Ep) = X"V Eyyt + o+ X" Ep,

which shows that they are smooth. O

In case M is a manifold with boundary, the preceding constructions do not
always work, because there is not a fully general construction of slice coordinates
in that case. However, there is a satisfactory result in case the submanifold is the
boundary itself, using boundary coordinates in place of slice coordinates.

Suppose (M, g) is a Riemannian manifold with boundary. We will always con-
sider M to be a Riemannian submanifold with the induced metric.

Proposition 2.17 (Existence of Outward-Pointing Normal). If (M, g) is a smooth
Riemannian manifold with boundary, the normal bundle to OM is a smooth rank-1
vector bundle over dM, and there is a unique smooth outward-pointing unit normal
vector field along all of M.

» Exercise 2.18. Prove this proposition. [Hint: Use the paragraph preceding Prop. B.17
as a starting point.]

Computations on a submanifold M < M are usually carried out most conve-
niently in terms of a smooth local parametrization: this is a smooth map X : U —
M, where U is an open subset of R” (or R’} in case M has a boundary), such that
X(U) is an open subset of M, and such that X, regarded as a map from U into M,
is a diffeomorphism onto its image. Note that we can think of X either as a map into
M or as a map into M ; both maps are typically denoted by the same symbol X . If
weput V=X({U)C M andgp =X"': V — U, then (V,¢) is a smooth coordinate
charton M.

Suppose (M, g) is a Riemannian submanifold of (]\7 §) and X: U — M isa
smooth local parametrization of M. The coordinate representation of g in these
coordinates is given by the following 2-tensor field on U:

(¢ )'g=X"g=X""g= (1o X)*g.
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Since to X is just the map X itself, regarded as a map into M, this is really just X *g.
The simplicity of the formula for the pullback of a tensor field makes this expression
exceedingly easy to compute, once a coordinate expression for g is known. For
example, if M is an immersed n-dimensional Riemannian submanifold of R” and
X : U — R™ is a smooth local parametrization of M, the induced metric on U is
just

i . i ax! aX' 9
g=X*§=Z(dX’)2=Z aif,d“ Z Z 351 aX T du*.

i=1 i=1\j=1 i=1jk=1

Example 2.19 (Metrics in Graph Coordinates). If U € R” is an open set and
f: U — R is a smooth function, then the graph of f is the subset I'(f) =
{(x, f(x)): x € U} S R"*! which is an embedded submanifold of dimension 7. It
has a global parametrization X : U — R"T! called a graph parametrization, given
by X(u) = (u, f(u)); the corresponding coordinates (u',...,u") on M are called
graph coordinates. In graph coordinates, the induced metric of I'( f) is

X*g=Xx* ((dx1)2 ot (dx"+1)2) = (du")? + -+ (du™)? + df .
Applying this to the upper hemisphere of S? with the parametrization X : B2 — R3

given by
X(u,v) = (u,v,vl—u2—v2),

we see that the round metric on S? can be written locally as

_ du+vdv \?
$ — x* :du2+dv2+(”—)
£ £ V1—-u?—v?
(1—v?)du?*+ (1—u?) dv? +2uvdudv
= /
1—u2—v?

Example 2.20 (Surfaces of Revolution). Let H be the half-plane {(r,z) : r > 0},
and suppose C C H is an embedded 1-dimensional submanifold. The surface of
revolution determined by C is the subset Sc € R? given by

Sc = {(x,y,z) : (\/xz—i—yz,z) € C}.

The set C is called its generating curve (see Fig. 2.1). Every smooth local parametri-
zation y(t) = (a(t),b(¢)) for C yields a smooth local parametrization for S¢ of the
form

X(t,0) = (a(t)cosB,a(t)sinb,b(t)), (2.11)

provided that (z,0) is restricted to a sufficiently small open set in the plane. The
t-coordinate curves t — X (t,0p) are called meridians, and the 6-coordinate curves
0 +— X(t9,0) are called latitude circles. The induced metric on S¢ is
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Fig. 2.1: A surface of revolution

X*g =d(a(t)cos0)* +d(a(t)sinb)* +d(b(1))?
= (d'(t)cosOdt —al(t)sinf db)>
+(a'(¢)sinfdt +a(t)cosOdO)> + (b (t)dt)?
= (a'(t)> +b'(t)*)dt* +a(1)*do>.

In particular, if y is a unit-speed curve (meaning that |y’ (¢)|> =a’(1)?> +b'(t)> = 1),
this reduces to dt? + a(t)>d6>.
Here are some examples of surfaces of revolution and their induced metrics.

o If C is the semicircle 2 4 z2 = 1, parametrized by y(¢)=(sing, cos ¢) for 0<
¢ < 7, then Sc is the unit sphere (minus the north and south poles). The map
X(p,0) = (singcosb,singsinf, cosg) constructed above is called the spher-
ical coordinate parametrization, and the induced metric is dg? + sin® ¢ d62.
(This example is the source of the terminology for meridians and latitude cir-
cles.)

o If C is the circle (r —2)? +z2 = 1, parametrized by y(¢) = (2 +cos?,sint), we
obtain a torus of revolution, whose induced metric is dt% + (2 + cost)?>d6>.

o If C is a vertical line parametrized by y(¢) = (1,1), then Sc is the unit cylinder
x2 4+ y2 = 1, and the induced metric is dt2 + d62. Note that this means that
the parametrization X : R? — R3 is an isometric immersion. I

Example 2.21 (The n-Torus as a Riemannian Submanifold). The smooth cover-
ing map X : R” — T” described in Example A.52 restricts to a smooth local pa-
rametrization on any sufficiently small open subset of R”, and the induced metric is
equal to the Euclidean metric in (u?) coordinates, and therefore the induced metric
on T” is flat. I

» Exercise 2.22. Verify the claims in Examples 2.19-2.21.
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Riemannian Products

Next we consider products. If (M1, g1) and (M>, g2) are Riemannian manifolds, the
product manifold M; x M, has a natural Riemannian metric g = g; @ g», called the
product metric, defined by

C(p1.pn) ((V1,02), (w1, w2)) = g1 ‘m (vi,wr) +82’p2(vz,w2), (2.12)

where (vi,v2) and (wy,w,) are elements of T, My @ Tp, M», which is natu-
rally identified with T(,, ,,)(M1 x M>). Smooth local coordinates (x!,....,x™) for
My and (x"*1,. .. x"T™) for M, give coordinates (x',...,x" ™) for M| x M.
In terms of these coordinates, the product metric has the local expression g =
gijdx'dx’, where (g;;) is the block diagonal matrix

(&ij) = ((gIO)ab (gzo)cd);

here the indices a,b run from 1 to n, and ¢,d run from n + 1 to n 4+ m. Product
metrics on products of three or more Riemannian manifolds are defined similarly.

» Exercise 2.23. Show that the induced metric on T'"* described in Exercise 2.21 is equal
to the product metric obtained from the usual induced metric on St C R2,

Here is an important generalization of product metrics. Suppose (M7, g1) and
(M3, g5) are two Riemannian manifolds, and f: M; — R™ is a strictly positive
smooth function. The warped product M, x y M, is the product manifold M; x M,
endowed with the Riemannian metric g = g @ f2g», defined by

E(p1.p2) ((V1.02), (w1, w2)) = g1 |p] (vi,wr) + f(P1)2g2|p2(U2, w2),

where (v1,v2), (w1, w2) € Ty, My @ T, M as before. (Despite the similarity with
the notation for product metrics, g; @ f2g> is generally not a product metric unless
f is constant.) A wide variety of metrics can be constructed in this way; here are
just a few examples.

Example 2.24 (Warped Products).

(a) With f =1, the warped product My X s M> is just the space M; x M, with
the product metric.

(b) Every surface of revolution can be expressed as a warped product, as follows.
Let H be the half-plane {(r,z) : r > 0}, let C € H be an embedded smooth
1-dimensional submanifold, andlet S¢ € R3 denotethe corresponding surface of
revolution as in Example 2.20. Endow C with the Riemannian metric induced
from the Euclidean metric on H, and let S! be endowed with its standard
metric. Let f: C — R be the distance to the z-axis: f(r,z)=r. Then Problem
2-3 shows that Sc is isometric to the warped product C x ¢ S'.
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(c) If we let p denote the standard coordinate function on Rt C R, then the map
@ (p,w) = pw gives an isometry from the warped product R* x, S"™1 to
R” ~ {0} with its Euclidean metric (see Problem 2-4). I

Riemannian Submersions

Unlike submanifolds and products of Riemannian manifolds, which automatically
inherit Riemannian metrics of their own, quotients of Riemannian manifolds inherit
Riemannian metrics only under very special circumstances. In this section, we see
what those circumstances are.

Suppose M and M are smooth manifolds, 7 : M — M is a smooth submersion,
and g is a Riemannian metric on M. By the submersion level set theorem (Corollary
A.25), each fiber M My =7 ~1(y) is a properly embedded smooth submanifold of M.
At each point x € M, we define two subspaces of the tangent space T M as follows:
the vertical tangent space at x is

Vi =Kerdm, = Tx(MH(X))

(that is, the tangent space to the fiber containing x), and the horizontal tangent
space at x 1is its orthogonal complement:

= (Vx)l~

Then the tangent space TXM decomposes as an orthogonal direct sum T.M =
H, & V. Note that the vertical space is well defined for every submersion, because
it does not refer to the metric; but the horizontal space depends on the metric.

A vector field on M is said to be a horizontal vector field if its value at each point
lies in the horizontal space at that point; a vertical vector field is defined similarly.
Given a vector field X on M, a vector field X on M is called a horizontal lift of X
if X is horizontal and m-related to X. (The latter property means that d er( x) =
Xy (x) foreach x € M.)

The next proposition is the principal tool for doing computations on Riemannian
submersions.

Proposition 2.25 (Properties of Horizontal Vector Fields). Ler M and M be
smooth manifolds, lg w: M — M be a smooth submersion, and let g be a Rie-
mannian metric on M.

(a) Every smooth vector field W on M can be expressed uniquely in the form
W =WH 4+ WYV, where WH is horizontal, WY is vertical, and both WH
and WV are smooth.

(b) Every smooth vector field on M has a unique smooth horizontal lift to M.

(¢) For every x € M and v € Hy, there is a vector field X € X(M) whose hori-
zontal lift X satisfies Xe=v.
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Proof. Letp e M be arbitrary. Because 7 is a smooth submersion, the rank theorem
(Theorem A.15) shows that there exist smooth coordinate charts (U, (x")) centered
at p and (U , (uj )) centered at 7 (p) in which 7 has the coordinate representation

n(xl,...,x",x”+l,...,xm) = (xl,...,x”),

where m = dimM and n = dimM. It follows that at each point g € U, the
vertical space V, is spanned by the vectors 9,41lg,...,0m|q. (It probably will
not be the case, however, that the horizontal space is spanned by the other n
basis vectors.) If we apply the Gram—Schmidt algorithm to the ordered frame
(9n41.---.0m.01,...,9,), we obtain a smooth orthonormal frame (E1. ..., E;) on
U such that V; is spanned by (E1lg,.... Em—nlq) at each g € U. It follows that H,,
is spanned by (Em—n+1lg..--. Emlg)-

Now let W € %(1\7 ) be arbitrary. At each point g € M, W, can be written
uniquely as a sum of a vertical vector plus a horizontal vector, thus defining a
decomposition W = WV + W# into rough vertical and horizontal vector fields.
To see that they are smooth, just note that in a neighborhood of each point we
can express W in terms of a frame (E,..., E;,) of the type constructed above as
W =WUYE, +---+ W™ E,, with smooth coefficients (Wi), and then it follows that
WY =W'Ey+--+W" "E,,_,and WH = wm—+tlg 4+ ..o W"E,,
both of which are smooth.

The proofs of (b) and (c) are left to Problem 2-5. O

The fact that every horizontal vector at a point of M can be extended to a hor-
izontal lift on all of M (part (c) of the preceding proposition) is highly useful for
computations. It is important to be aware, though, that not every horizontal vector
field on M is a horizontal lift, as the next exercise shows.

» Exercise 2.26. Let 7 : R? — R be the projection map 7 (x, ¥) = x, and let W be the
smooth vector field yd, on RZ. Show that W is horizontal, but there is no vector field on
R whose horizontal lift is equal to W.

Now we can identify some quotients of Riemannian manifolds that inherit met-
rics of their own. Let us begin by describing what such a metric should look like.

Suppose (M ,§) and (M, g) are Riemannian manifolds, and w: M — M is a
smooth submersion. Then 7 is said to be a Riemannian submersion if for each
X € M, the differential d 7, restricts to a linear isometry from Hy onto Ty ()M . In
other words, gx (v, w) = gr(x)(dmx(v),d 7y (w)) Whenever v,w € Hy.

Example 2.27 (Riemannian Submersions).

(a) The projection 7 : R”T* — R” onto the first n coordinates is a Riemannian
submersion if R”** and R” are both endowed with their Euclidean metrics.

(b) If M and N are Riemannian manifolds and M x N is endowed with the product
metric, then both projections wpr: M x N — M and iy : M x N — N are
Riemannian submersions.
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(c) If M x ¢ N is a warped product manifold, then the projection wps : M x s N —
M is a Riemannian submersion, but 7 typically is not. n

Given a Riemannian manifold (1\7 , §) and a surjective submersion 7 : MM s
itis almost never the case that there is a metric on M that makes 7 into a Riemannian
submersion. It is not hard to see why: for this to be the case, whenever py, p» € M
are two points in the same fiber 7 ~!(y), the linear maps (dnpl. |HPi )_1 TyM —
H, both have to pull g back to the same inner product on 7, M .

There is, llgwever, an important special case in which there is such a metric.
Suppose 7 : M — M is a smooth surjective submersion, and G is a group acting on
M . (See Appendix C for a review of the basic definitions and terminology regarding
group actions on manifolds.) We say that the action is vertical if every element
@ € G takes each fiber to itself, meaning that (¢ - p) = 7(p) forall p € M. The
action is transitive on fibers if for each p,q € M such that 7w (p) = 7(q), there exists
¢ € Gsuchthatg.-p=gq.

If in addition M is endowed with a Riemannian metric, the action is said to be
an isometric action or an action by isometries, and the metric is said to be invariant
under G, if the map x — ¢ - x is an isometry for each ¢ € G. In that case, provided
the action is effective (so that different elements of G define different isometries of
M), we can identify G with a subgroup of Iso(M , g). Since an isometry is, in par-
ticular, a diffeomorphism, every isometric action is an action by diffeomorphisms.

Theorem 2.28. Let (]\7 , ;g‘) be a Riemannian manifold, let 7 : M— Mbea surjec-
tive smooth submersion, and let G be a group acting on M. If the action is isometric,
vertical, and transitive on fibers, then there is a unique Riemannian metric on M
such that  is a Riemannian submersion.

Proof. Problem 2-6. O

The next corollary describes one important situation to which the preceding the-
orem applies.

Corollary 2.29. Suppose (1\7 g) is a Riemannian manifold, and G is a Lie group
acting smoothly, freely, properly, and isometrically on M. Then the orbit space M =
M /G has a unique smooth manifold structure and Riemannian metric such that w
is a Riemannian submersion.

Proof. Under the given hypotheses, the quotient manifold theorem (Thm. C.17)
shows that M has a unique smooth manifold structure such that the quotient map
7: M — M is a smooth submersion. It follows easily from the definitions in that
case that the given action of G on M is vertical and transitive on fibers. Since the
action is also isometric, Theorem 2.28 shows that M inherits a unique Riemannian
metric making 7 into a Riemannian submersion. O

Here is an important example of a Riemannian metric defined in this way. A
larger class of such metrics is described in Problem 2-7.
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Example 2.30 (The Fubini-Study Metric). Let n be a positive integer, and con-
sider the complex projective space CP” defined in Example C.19. That example
shows that the map 7: C*T! < {0} — CP” sending each point in C"*! < {0} to
its span is a surjective smooth submersion. Identifying C"*! with R?"*2 endowed
with its Euclidean metric, we can view the unit sphere S?* 1 with its round metric g
as an embedded Riemannian submanifold of C"*+1 < {0}. Let p: S?"*1 — CP" de-
note the restriction of the map . Then p is smooth, and it is surjective, because every
1-dimensional complex subspace contains elements of unit norm. We need to show
thatitis a submersion. Let zo € S>*T!andset ¢y = p(z¢) € CP". Since r is a smooth
submersion, it has a smooth local section ¢ : U — C**! defined on a neighborhood
U of ¢y and satisfying 0({o) = zo (Thm. A.17). Let v: C"*1 < {0} — S2"*1 be the
radial projection onto the sphere:

v(z) = i.

|2

Since dividing an element of C"*! by a nonzero scalar does not change its span, it
follows that p ov = 7. Therefore, if we set & = voo, we have poG = povoo =
woo = Idy, so & is a local section of p. By Theorem A.17, this shows that p is a
submersion.

Define an action of S! on S2”*! by complex multiplication:

/\-(zl,...,z”H) = (Azl,...,AZ”H),

for A € S' (viewed as a complex number of norm 1) and z = (z',....z"*1) €
S27+1 This is easily seen to be isometric, vertical, and transitive on fibers of p.
By Theorem 2.28, therefore, there is a unique metric on CP” such that the map
p: S?"+1 . CP” is a Riemannian submersion. This metric is called the Fubini—
Study metric; you will have a chance to study its geometric properties in Problems
3-19 and 8-13. I

Riemannian Coverings

Another important special case of Riemannian submersions occurs in the context of
covering maps. Suppose (M , §) and (M, g) are Riemannian manifolds. A smooth
covering map i : M — M is called a Riemannian covering if it is a local isometry.

Proposition 2.31. Suppose w: M — M is a smooth normal covering map, and g is
any metric on M that is invariant under all covering automorphisms. Then there is
a unique metric g on M such that v is a Riemannian covering.

Proof. Proposition A.49 shows that  is a surjective smooth submersion. The au-
tomorphism group acts vertically by definition, and Proposition C.21 shows that it
acts transitively on fibers when the covering is normal. It then follows from Theorem
2.28 that there is a unique metric g on M such that 7 is a Riemannian submersion.
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Since a Riemannian submersion between manifolds of the same dimension is a local
isometry, it follows that 7 is a Riemannian covering. |

Proposition 2.32. Suppose (1\7 , g) is a Riemannian manifold, and I’ is a discrete
Lie group acting smoothly, freely, properly, and isometrically on M. Then M /T’
has a unique Riemannian metric such that the quotient map w: M — M /T is a
normal Riemannian covering.

Proof. Proposition C.23 shows that 7 is a smooth normal covering map, and Propo-
sition 2.31 shows that M = M /I" has a unique Riemannian metric such that 7 is a
Riemannian covering. |

Corollary 2.33. Suppose (M, g) and (M , §) are connected Riemannian manifolds,
i M — M is a normal Riemannian covering map, and I' = Auty (M ) Then M
is isometric to M /.

Proof. Proposition C.20 shows that with the discrete topology, I is a discrete Lie
group acting smoothly, freely, and properly on M, and then Proposition C.23 shows
that M /I" is a smooth manifold and the quotient map ¢: M — M /I" is a smooth
normal covering map. The fact that both 7 and ¢ are normal coverings implies that
I' acts transitively on the fibers of both maps, so the two maps are constant on
each other’s fibers. Proposition A.19 then implies that there is a diffeomorphism
F: M — M/T that satisfies g o F = 7. Because both g and 7 are local isometries,
F is too, and because it is bijective it is a global isometry. O

Example 2.34. The two-element group I" = {1} acts smoothly, freely, properly,
and isometrically on S” by multiplication. Example C.24 shows that the quotient
space is diffeomorphic to the real projective space RP” and the quotient map
q: S"™ — RP” is a smooth normal covering map. Because the action is isomet-
ric, Proposition 2.32 shows that there is a unique metric on RIP” such that ¢ is a
Riemannian covering. I

Example 2.35 (The Open Mébius Band). The open Mobius band is the quotient
space M = R? /7, where Z acts on R2 by n« (x,y) = (x +n,(—1)"y). This action
is smooth, free, proper, and isometric, and therefore M inherits a flat Riemannian
metric such that the quotient map is a Riemannian covering. (See Problem 2-8.) /

» Exercise 2.36. Let T” € R2" be the n-torus with its induced metric. Show that the
map X : R” — T” of Example 2.21 is a Riemannian covering.

Basic Constructions on Riemannian Manifolds

Every Riemannian metric yields an abundance of useful constructions on manifolds,
besides the obvious ones of lengths of vectors and angles between them. In this
section we describe the most basic ones. Throughout this section M is a smooth
manifold with or without boundary.



26 2 Riemannian Metrics

Raising and Lowering Indices

One elementary but important property of Riemannian metrics is that they allow us
to convert vectors to covectors and vice versa. Given a Riemannian metric g on M,
we define a bundle homomorphism g: TM — T*M by setting

g)(w) = gp(v.w)

forall pe M and v,w € T,M. If X and Y are smooth vector fields on M, this
yields
gX)(Y) =g(X,Y),

which implies, first, that g(X)(Y) is linear over C*°(M) in Y and thus g(X) is
a smooth covector field by the tensor characterization lemma (Lemma B.6); and
second, that the covector field g(X) is linear over C®°(M) as a function of X, and
thus g is a smooth bundle homomorphism.

Given a smooth local frame (E;) and its dual coframe (&'), let g = g;; &' &/ be
the local expression for g. If X = X' E; is a smooth vector field, the covector field
2(X) has the coordinate expression

g(X) = (g X")e.

Thus the matrix of g in any local frame is the same as the matrix of g itself.
Given a vector field X, it is standard practice to denote the components of the
covector field g(X) by '
Xj =g X",
so that .
g(X)=X;é,

and we say that g(X) is obtained from X by lowering an index. With this in mind,
the covector field g(X) is denoted by X" and called X flat, borrowing from the
musical notation for lowering a tone.

Because the matrix (g;;) is nonsingular at each point, the map g is invertible, and
the matrix of 7! is just the inverse matrix of (g; 7). We denote this inverse matrix
by (gij), so that gijgjk = gkj g/t = 81’;. The symmetry of g;; easily implies that
(gij ) is also symmetric in i and j. In terms of a local frame, the inverse map g~ ! is
given by

g N (w)='E;.

where ' -
o'=g"w;. (2.13)

If w is a covector field, the vector field ! (w) is called (what else?) @ sharp and
denoted by w*, and we say that it is obtained from w by raising an index. The two
inverse isomorphisms b and {} are known as the musical isomorphisms.

Probably the most important application of the sharp operator is to extend the
classical gradient operator to Riemannian manifolds. If g is a Riemannian metric
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on M and f: M — R is a smooth function, the gradient of f is the vector field
grad f = (df)* obtained from df by raising an index. Unwinding the definitions,
we see that grad f is characterized by the fact that

dfp(w)z(gradf|p,w) forall pe M,w e T, M, (2.14)
and has the local basis expression
grad f = (¢ E; f)E;.

Thus if (E;) is an orthonormal frame, then grad f is the vector field whose
components are the same as the components of df’; but in other frames, this will
not be the case.

The next proposition shows that the gradient has the same geometric interpre-
tation on a Riemannian manifold as it does in Euclidean space. If f is a smooth
real-valued function on a smooth manifold M, recall that a point p € M is called a
regular point of f if df, # 0, and a critical point of f otherwise; and a level set
f7(c) is called a regular level set if every point of f~!(c) is a regular point of f
(see Appendix A). Corollary A.26 shows that each regular level set is an embedded
smooth hypersurface in M.

Proposition 2.37. Suppose (M, g) is a Riemannian manifold, f € C*°(M), and
R C M is the set of regular points of f. For each ¢ € R, the set M. = f~1(c)N R,
if nonempty, is an embedded smooth hypersurface in M, and grad f is everywhere
normal to M.

Proof. Problem 2-9. O

The flat and sharp operators can be applied to tensors of any rank, in any index
position, to convert tensors from covariant to contravariant or vice versa. Formally,
this operation is defined as follows: if F is any (k,l)-tensorand i € {1,...,k + [} is
any covariant index position for ' (meaning that the i th argument is a vector, not a
covector), we can form a new tensor F* of type (k + 1,/ — 1) by setting

Fﬂ(Oll,...,Olk_i_]) = F(al,...,ai_l,a?,ai_!,_],...,ak_l,.l)

whenever a1, ...,ax4; are vectors or covectors as appropriate. In any local frame,
the components of F'# are obtained by multiplying the components of F by g?9and
contracting one of the indices of g#9 with the ith index of F. Similarly, if i is a
contravariant index position, we can define a (k — 1,/ 4 1)-tensor F° by

Fb(ozl,...,oek+l) = F(al,...,ai_l,af,aiﬂ,...,ak+1).

In components, it is computed by multiplying by g,, and contracting.
For example, if A is a mixed 3-tensor given in terms of a local frame by

A=Aijk8i®E_/®8k
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(see (B.6)), we can lower its middle index to obtain a covariant 3-tensor A” with
components
Aijx = gleilk-

To avoid overly cumbersome notation, we use the symbols F # and F" without
explicitly specifying which index position the sharp or flat operator is to be applied
to; when there is more than one choice, we will always stipulate in words what is
meant.

Another important application of the flat and sharp operators is to extend the
trace operator introduced in Appendix B to covariant tensors. If % is any covariant
k-tensor field on a Riemannian manifold with k > 2, we can raise one of its indices
(say the last one for definiteness) and obtain a (1, k — 1)-tensor /¥, The trace of A¥ is
thus a well-defined covariant (k — 2)-tensor field (see Exercise B.3). We define the
trace of h with respect to g as

trg h =tr (hﬁ).

Sometimes we may wish to raise an index other than the last, or to take the trace on
a pair of indices other than the last covariant and contravariant ones. In each such
case, we will say in words what is meant.

The most important case is that of a covariant 2-tensor field. In this case, ht s
a (1, 1)-tensor field, which can equivalently be regarded as an endomorphism field,
and trg A is just the ordinary trace of this endomorphism field. In terms of a basis,
this is

trgh = hii = gi‘ihij.

In particular, in an orthonormal frame this is the ordinary trace of the matrix (/;;)
(the sum of its diagonal entries); but if the frame is not orthonormal, then this trace
is different from the ordinary trace.

» Exercise 2.38. If g is a Riemannian metric on M and (E;) is a local frame on M,
there is a potential ambiguity about what the expression (gij ) represents: we have defined
it to mean the inverse matrix of (g;;), but one could also interpret it as the components of
the contravariant 2-tensor field g## obtained by raising both of the indices of g. Show that
these two interpretations lead to the same result.

Inner Products of Tensors

A Riemannian metric yields, by definition, an inner product on tangent vectors at
each point. Because of the musical isomorphisms between vectors and covectors, it
is easy to carry the inner product over to covectors as well.

Suppose g is a Riemannian metric on M, and x € M. We can define an inner
product on the cotangent space 7, M by

(a)v 77)g = (a)#’ Wﬁ>g
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(Just as with inner products of vectors, we might sometimes omit g from the notation
when the metric is understood.) To see how to compute this, we just use the basis
formula (2.13) for the sharp operator, together with the relation gx; g% = g g** =
81, to obtain

(@,n) = gri (" i) (g" ;)
=5jg" win;
=g" win;.

In other words, the inner product on covectors is represented by the inverse ma-
trix (g’/ ) Using our conventions for raising and lowering indices, this can also be
written

(w.n) =win' =o'y,

» Exercise 2.39. Let (M,g) be a Riemannian manifold with or without boundary, let
(E;) be alocal frame for M, and let (&') be its dual coframe. Show that the following are
equivalent:

(a) (E;) is orthonormal.
(b) (¢') is orthonormal.
(c) (¢1)* = E; foreachi.

This construction can be extended to tensor bundles of any rank, as the following
proposition shows. First a bit of terminology: if £ — M is a smooth vector bundle, a
smooth fiber metric on E is an inner product on each fiber £, that varies smoothly,
in the sense that for any (local) smooth sections o, t of E, the inner product (o, t)
is a smooth function.

Proposition 2.40 (Inner Products of Tensors). Let (M, g) be an n-dimensional
Riemannian manifold with or without boundary. There is a unique smooth fiber
metric on each tensor bundle T®*DTM with the property that if Oy s Ohtl,
Bi....,Brx+1 are vector or covector fields as appropriate, then

(01 @ ®ag1r, 1 @@ Bry1) = (a1, B1) ..  (Whkt1. Bryi)- (2.15)

With this inner product, if (Eq,..., Ey) is a local orthonormal frame for TM and
(e',....€") is the corresponding dual coframe, then the collection of tensor fields
E,® QL ® e ®--- @&/l as all the indices range from 1 to n forms a local
orthonormal frame for T(k’l)(TpM ). In terms of any (not necessarily orthonormal)
frame, this fiber metric satisfies

(F.G) = Givry Qg gj1S1 .. ,gjlsz Fjl]l;]; G;II Tk (2.16)

o8]

If F and G are both covariant, this can be written

(F.G) = Fj,..;; G110,
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where the last factor on the right represents the components of G with all of its
indices raised:
G]lu-]l — g]lsl .. ,g]lsl GS] sy

Proof. Problem 2-11. O

The Volume Form and Integration

Another important construction provided by a metric on an oriented manifold is a
canonical volume form.

Proposition 2.41 (The Riemannian Volume Form). Let (M, g) be an oriented Rie-
mannian n-manifold with or without boundary. There is a unique n-form dVg on
M, called the Riemannian volume form, characterized by any one of the following
three equivalent properties:

(a) If (81, .. ,8") is any local oriented orthonormal coframe for T* M, then
dVg ="' Ao ng".
(b) If (Eq, ..., Ey) is any local oriented orthonormal frame for TM, then

dVe(Ey.....En) = 1.

(o) If (xl, ... ,x”) are any oriented local coordinates, then
dVg = \/det(gij)dx" A+ Adx".
Proof. Problem 2-12. O

The significance of the Riemannian volume form is that it allows us to integrate
functions on an oriented Riemannian manifold, not just differential forms. If f is
a continuous, compactly supported real-valued function on an oriented Riemannian
n-manifold (M, g) with or without boundary, then f dV, is a compactly supported
n-form. Therefore, the integral f M f dVg makes sense, and we define it to be the
integral of f over M. Similarly, if M is compact, the volume of M is defined to
be

wm@:/dwzflw;
M M

In particular, if D € M is a regular domain (a closed, embedded codimension-0
submanifold with boundary), we can apply these definitions to D with its induced
metric and thereby make sense of the integral of f over D and, in case D is com-
pact, the volume of D.

The notation d Vg is chosen to emphasize the similarity of the integral [, /' d Vg
with the standard integral of a function over an open subset of R”. It is not meant
to imply that dV, is an exact form; in fact, if M is a compact oriented manifold
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without boundary, then d 'V, is never exact, because its integral over M is positive,
and exact forms integrate to zero by Stokes’s theorem.

Because there are two conventions in common use for the wedge product (see
p. 401), it should be noted that properties (a) and (c) of Proposition 2.41 are the
same regardless of which convention is used; but property (b) holds only for the
determinant convention that we use. If the Alt convention is used, the number 1
should be replaced by 1/n! in that formula.

» Exercise 2.42. Suppose (M, g) and (1\7 s §) are oriented Riemannian manifolds, and
@: M — M is an orientation-preserving isometry. Prove that ¢*d Vg = d V.

For Riemannian hypersurfaces, we have the following important characterization
of the volume form on the hypersurface in terms of that of the ambient manifold.
If X is a vector field and p is a differential form, recall that X _I u denotes interior
multiplication of | by X (see p. 401).

Proposition 2.43. Suppose M is a hypersurface in an oriented Riemannian mani-
fold (M , §) and g is the induced metric on M. Then M is orientable if and only if
there exists a global unit normal vector field N for M, and in that case the volume
form of (M, g) is given by

dVg =(N1dVz)|,,. (2.17)

Proof. Problem 2-13. O

When M is not orientable, we can still define integrals of functions, but now we
have to use densities instead of differential forms (see pp. 405-406).

Proposition 2.44 (The Riemannian Density). If (M, g) is any Riemannian mani-
fold, then there is a unique smooth positive density |t on M, called the Riemannian
density, with the property that

W(E1,...,Ep) =1 (2.18)

for every local orthonormal frame (E;).

» Exercise 2.45. Prove this proposition by showing that  can be defined in terms of any
local orthonormal frame by
w=le' A ng.

Let (M, g) be a Riemannian manifold (with or without boundary). If M is ori-
ented and d V; is its Riemannian volume form, then its Riemannian density is easily
seen to be equal to |d Vg |. On the other hand, the Riemannian density is defined
whether M is oriented or not. It is customary to denote the Riemannian density by
the same notation d V, that we use for the Riemannian volume form, and to specify
when necessary whether the notation refers to a density or a form. In either case,
we can define the integral of a compactly supported smooth function f: M — R as
[y [ dVg. This is to be interpreted as the integral of a density when M is nonori-
entable; when M is orientable, it can be interpreted either as the integral of a density
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or as the integral of an n-form (with respect to some choice of orientation), because
both give the same result.

The Divergence and the Laplacian

In advanced calculus, you have undoubtedly been introduced to three important
differential operators involving vector fields on R3: the gradient (which takes real-
valued functions to vector fields), divergence (vector fields to functions), and curl
(vector fields to vector fields). We have already described how the gradient operator
can be generalized to Riemannian manifolds (see equation (2.14)); now we can show
that the divergence operator also generalizes easily to that setting. Problem 2-27
describes a similar, but more limited, generalization of the curl.

Suppose (M, g) is an oriented Riemannian n-manifold with or without boundary,
and d V, is its volume form. If X is a smooth vector field on M, then X 1 dVy is
an (n — 1)-form. The exterior derivative of this (n — 1)-form is a smooth n-form, so
it can be expressed as a smooth function multiplied by d V. That function is called
the divergence of X , and denoted by div X; thus it is characterized by the following
formula:

d(X1dVg) = (divX)dVs. (2.19)

Even if M is nonorientable, in a neighborhood of each point we can choose an
orientation and define the divergence by (2.19), and then note that reversing the ori-
entation changes the sign of dV, on both sides of the equation, so divX is well
defined, independently of the choice of orientation. In this way, we can define the
divergence operator on any Riemannian manifold with or without boundary, by
requiring that it satisfy (2.19) for any choice of orientation in a neighborhood of
each point.

The most important application of the divergence operator is the divergence the-
orem, which you will be asked to prove in Problem 2-22.

Using the divergence operator, we can define another important operator, this one
acting on real-valued functions. The Laplacian (or Laplace-Beltrami operator) is
the linear operator A: C*° (M) — C°° (M) defined by

Au = div(gradu). (2.20)

(Note that many books, including [LeeSM] and the first edition of this book, define
the Laplacian as —div(gradu). The main reason for choosing the negative sign is
so that the operator will have nonnegative eigenvalues; see Problem 2-24. But the
definition we give here is much more common in Riemannian geometry.)

The next proposition gives alternative formulas for these operators.

Proposition 2.46. Let (M, g) be a Riemannian manifold with or without boundary,
and let (x’) be any smooth local coordinates on an open set U C M. The coordinate
representations of the divergence and Laplacian are as follows:
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aiv (x2 ) = ! B(X" det)
axi ) /detg dx! &)
1 0 py ou
= b 7 d tg— N
! J/detg 0x? (g y gaxf)
where detg = det(gg;) is the determinant of the component matrix of g in these co-
ordinates. On R"™ with the Euclidean metric and standard coordinates, these reduce

to
;0 2L ox!
divl X' — | = —,
w( 8x‘) — Jx?
i=1
n
0%u
Au = —_—
"= 2 Gy
Proof. Problem 2-21. O

Lengths and Distances

Perhaps the most important tool that a Riemannian metric gives us is the ability to
measure lengths of curves and distances between points. Throughout this section,
(M, g) denotes a Riemannian manifold with or without boundary.

Without further qualification, a curve in M always means a parametrized curve,
that is, a continuous map y: I — M, where I € R is some interval. Unless
otherwise specified, we will not worry about whether the interval is bounded or
unbounded, or whether it includes endpoints or not. To say that y is a smooth curve
is to say that it is smooth as a map from the manifold (with boundary) I to M. If
I has one or two endpoints and M has empty boundary, then y is smooth if and
only if it extends to a smooth curve defined on some open interval containing /. (If
dM # @, then smoothness of y has to be interpreted as meaning that each coor-
dinate representation of y has a smooth extension to an open interval.) A curve
segment is a curve whose domain is a compact interval.

A smooth curve y: I — M has a well-defined velocity y’(t) € Ty, ;)M for each
t € I. We say that y is a regular curve if y’(¢t) # 0 for t € I. This implies that y is
an immersion, so its image has no “corners” or “kinks.”

We wish to use curve segments as “measuring tapes” to define distances between
points in a connected Riemannian manifold. Many aspects of the theory become
technically much simpler if we work with a slightly larger class of curve segments
instead of just the regular ones. We now describe the appropriate class of curves.

If [a,b] C R is a closed bounded interval, a partition of [a,b] is a finite sequence
(ag,...,ar) of real numbers such that a = a9 < a; < --- < a = b. Each interval
lai—1.,a;] is called a subinterval of the partition. If M is a smooth manifold with
or without boundary, a (continuous) curve segment y: [a,b] — M is said to be
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Diecewise regular if there exists a partition (ao, ...,ax) of [a,b] such that y (4, | 4;]
is a regular curve segment (meaning it is smooth with nonvanishing velocity) for
i =1,...,k. For brevity, we refer to a piecewise regular curve segment as an admis-
sible curve, and any partition (ao,...,ax) such that y[[4;_, 4,1 is smooth for each
i an admissible partition for y. (There are many admissible partitions for a given
admissible curve, because we can always add more points to the partition.) It is also
convenient to consider any map y : {a} — M whose domain is a single real number
to be an admissible curve.

Suppose y is an admissible curve and (ay,...,ax) is an admissible partition for
it. At each of the intermediate partition points a1,...,d,—_1, there are two one-sided
velocity vectors, which we denote by

=\ — 13 ’
Y'(a7) = tl}rgi Y (@),
o+ 1 /

y'(a") = lim y'(0).

They are both nonzero, but they need not be equal.

If y: I — M is a smooth curve, we define a reparametrization of y to be a curve
of the form y = yog: I' — M, where I’ C R is another interval and ¢: I’ — [
is a diffeomorphism. Because intervals are connected, ¢ is either strictly increasing
or strictly decreasing on I’. We say that y is a forward reparametrization if ¢ is
increasing, and a backward reparametrization if it is decreasing.

For an admissible curve y: [a,b] — M, we define a reparametrization of y a
little more broadly, as a curve of the form y = y o ¢, where ¢: [c,d] — [a,b] is
a homeomorphism for which there is a partition (co, ..., cg) of [c,d] such that the
restriction of ¢ to each subinterval [¢;_1,c;] is a diffeomorphism onto its image.

If y: [a,b] — M is an admissible curve, we define the length of y to be

b
Le(y) = / (0 dt.

The integrand is bounded and continuous everywhere on [a,b] except possibly at
the finitely many points where y is not smooth, so this integral is well defined.

Proposition 2.47 (Properties of Lengths). Suppose (M, g) is a Riemannian mani-
fold with or without boundary, and y : [a,b] — M is an admissible curve.

(a) ADDITIVITY OF LENGTH: If a < ¢ < b, then

Le(y)=Lg (V |[a,c]) +Lg (V |[c,b])'

(b) PARAMETER INDEPENDENCE: If ¥ is a reparametrization of y, then Lg (y) =
L (7). ~

(c) ISOMETRY INVARIANCE: If (M,g) andLM,g) are Riemannian manifolds
(with or without boundary) and ¢ : M — M is a local isometry, then Lg(y) =

Lz(poy).
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» Exercise 2.48. Prove Proposition 2.47.

Suppose y: [a,b] — M is an admissible curve. The arc-length function of y is
the function s: [a,b] — R defined by

5() = L (ylau)) = / 1Y )| du.

It is continuous everywhere, and it follows from the fundamental theorem of calcu-
lus that it is smooth wherever y is, with derivative s'(¢) = |y’(¢)|.

For this reason, if y: I — M is any smooth curve (not necessarily a curve seg-
ment), we define the speed of y at any time ¢ € I to be the scalar |y’(¢)|. We say
that y is a unit-speed curve if |y'(t)| = 1 for all ¢, and a constant-speed curve if
|y’(¢)] is constant. If y is a piecewise smooth curve, we say that y has unit speed
if |[y'(¢)| = 1 wherever y is smooth.

If y: [a,b] > M is a unit-speed admissible curve, then its arc-length function
has the simple form s(¢) = ¢ —a. If, in addition, its parameter interval is of the form
[0,b] for some b > 0, then the arc-length function is s(¢) = ¢. For this reason, a
unit-speed admissible curve whose parameter interval is of the form [0, 5] is said to
be parametrized by arc length.

Proposition 2.49. Suppose (M, g) is a Riemannian manifold with or without bound-
ary.

(a) Every regular curve in M has a unit-speed forward reparametrization.
(b) Every admissible curve in M has a unique forward reparametrization by arc
length.

Proof. Suppose y: I — M is aregular curve. Choose an arbitrary ¢y € I, and define
s: I - Rby

50 = [ Iyl au.

Since s'(¢) = |y'(t)|g > 0, it follows that s is a strictly increasing local diffeo-
morphism, and thus maps I diffeomorphically onto an interval I’ C R. If we let
¢ =s"': 1" — I, then ¥ = y o is a forward reparametrization of y, and the chain
rule gives

~/ / / 1 !
[7'(0)], = 19" )y (9(s))g = mly (P(s)g = 1.

Thus ¥ is a unit-speed reparametrization of y.

Now let y : [a,b] — M be an admissible curve. We prove the existence statement
in part (b) by induction on the number of smooth segments in an admissible parti-
tion. If y has only one smooth segment, then it is a regular curve segment, and (b)
follows by applying (a) in the special case I = [a, b] and choosing typ = a. Assuming
that the result is true for admissible curves with k smooth segments, suppose y
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has an admissible partition (ao,...,ar+1). The inductive hypothesis gives piece-
wise regular homeomorphisms ¢: [0,c] — [a,a] and ¥ : [0,d] — [ag,b] such
that y o ¢ is an arc-length reparametrization of y|[4 4,7 and y o ¥ is an arc-length
reparametrization of y|[4, 5. If we define ¢ [0,¢ + d] — [a,b] by

- o(s), s €[0,c],
@(s) =
Y(s—c), se€lc,c+d],
then y o ¢ is a reparametrization of y by arc length.

To prove uniqueness, suppose that ¥y = yog and ¥ = y oy are both for-
ward reparametrizations of y by arc length. Since both have the same length,
it follows that ¢ and ¥ both have the same parameter domain [0,c], and thus
both are piecewise regular homeomorphisms from [0,c] to [a,b]. If we define
n=¢ Yoy:[0,c] = [0.c], then n is a piecewise regular increasing homeomor-
phism satisfying ¥ = y o on = y on. The fact that both ¥ and y are of unit speed
implies the following equality for all s € [0, c] except the finitely many values at
which ¥ or 7 is not smooth:

1= 7O, = 7066, = 706D, 16 = 16).

Since 7 is continuous and 1(0) = 0, it follows that n(s) = s for all s € [0,¢], and
thus y = 9. O

The Riemannian Distance Function

We are now in a position to introduce one of the most important concepts from
classical geometry into the Riemannian setting: distances between points.

Suppose (M, g) is a connected Riemannian manifold with or without boundary.
For each pair of points p,g € M, we define the Riemannian distance from p to
¢, denoted by dg(p.q), to be the infimum of the lengths of all admissible curves
from p to q. The following proposition guarantees that dg(p,q) is a well-defined
nonnegative real number for each p,g € M.

Proposition 2.50. If M is a connected smooth manifold (with or without boundary),
then any two points of M can be joined by an admissible curve.

Proof. Let p,q € M be arbitrary. Since a connected manifold is path-connected,
p and ¢ can be connected by a continuous path c: [a,b] — M. By compactness,
there is a partition of [a,b] such that c([a,-_l,a,-]) is contained in a single smooth
coordinate ball (or half-ball in case IM # @) for each i. Then we may replace each
such curve segment by a straight-line path in coordinates, yielding an admissible
curve y between the same points (Fig.2.2). O

For convenience, if (M, g) is a disconnected Riemannian manifold, we also let
dg(p.q) denote the Riemannian distance from p to g, provided that p and g lie in
the same connected component of M. (See also Problem 2-30.)
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Fig. 2.2: Any two points can be connected by an admissible curve

Proposition 2.51 (Isometry Invariance of the Riemannian Distance Function).
Suppose (M, g) and (M ,g) are connected Riemannian manifolds with or without
boundary, and ¢ : M — M is an isometry. Then dz(¢(x),¢(y)) = dg(x,y) for all
x,yeM.

» Exercise 2.52. Prove the preceding proposition.

(Note that unlike lengths of curves, Riemannian distances are not necessarily pre-
served by local isometries; see Problem 2-31.)

We wish to show that the Riemannian distance function turns M into a metric
space, whose metric topology is the same as its original manifold topology. To do
so, we need the following lemmas.

Lemma 2.53. Let g be a Riemannian metric on an open subset W CR" or R'} , and
let g denote the Euclidean metric on W. For every compact subset K C W, there
are positive constants ¢, C such that for all x € K and all v € TxR",

clvlg <|vlg = Clvlg. (2.21)

Proof. Define a continuous function F': TW — R by F(x,v) = |v|g = gx(v, v)1/2
for x € W and v € TyR". Let K € W be any compact subset, and define L € TR”
by

L={(x,v)eTR" :x €K, |v|zg =1}.

Under the canonical identification of TR” with R” x R", L is equal to the prod-
uct set K x S"~1, which is compact. Since F is positive on L, there are positive
constants ¢, C such that

c<|v|lg <C forall (x,v)eL.

For each x € K and v € TxR" with v # 0, we can write v = AU, where A = |v|z and
0 =v/A. Then (x,?) € L, and it follows from the homogeneity of |- |, that

|v]g = A|B], <AC =C|vg.

The same inequality holds trivially when v = 0. Arguing similarly in the other direc-
tion, we conclude that (2.21) holds for all x € K and v € T,R". O
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Fig.2.3:dg(p,q) > D Fig. 2.4: The triangle inequality

The next lemma shows how to transfer this result to Riemannian manifolds.

Lemma 2.54. Let (M, g) be a Riemannian manifold with or without boundary and
let dg be its Riemannian distance function. Suppose U is an open subset of M and
p € U. Then p has a coordinate neighborhood V- C U with the property that there
are positive constants C, D satisfying the following inequalities:

(@) If g €V, then dg(p,q) < Cdg(p.q), where g is the Euclidean metric in the
given coordinates on V.
b)Ifge MV, thendg(p.q) > D.

Proof. Let W be any neighborhood of p contained in U on which there exist smooth
coordinates (xi). Using these coordinates, we can identify ¥ with an open subset
of R” or R’,.. Let K be a compact subset of W containing a neighborhood V' of
P, chosen as follows: If p is an interior point of M, let K be the closed Euclidean
ball B.(0), with &€ > 0 chosen small enough that K € W, and let V = B,(0). If
p € dM, let K be a closed half-ball B (0) N R, with & chosen similarly, and let V =
B(0)NRY . Letg =), (dx")? denote the Euclidean metric in these coordinates,
and let ¢, C be constants satisfying (2.21). If y is any admissible curve whose image
lies entirely in V/, it follows that

cLz(y) < Lg(y) = CLg(y). (2.22)

To prove (a), suppose g € V. Letting y: [a,b] — V be a parametrization of the
line segment from p to ¢, we conclude from (2.22) that

dg(p.q) < Lg(y) < CLg(y) = Cdgz(p.q).

To prove (b), suppose ¢ € M ~V_.If y: [a,b] — M is any admissible curve from
p to g, let ty denote the infimum of times ¢ € [a,b] such that y(¢) ¢ V. It follows
that y([a,to]) C K and dg(p.y(to)) = € by continuity (Fig. 2.3), so (2.22) implies

Leg(y) = Lg(Yliao]) = Lz (Vliaro]) = cdg(p.y(t0)) = ce.
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Taking the infimum over all such curves y, we obtain (b) with D = ce. |

Theorem 2.55 (Riemannian Manifolds as Metric Spaces). Let (M, g) be a con-
nected Riemannian manifold with or without boundary. With the distance function
dg, M is a metric space whose metric topology is the same as the given manifold

topology.

Proof. It is immediate from the definition of dg that d¢(p,q) = dg(gq. p) > 0 and
dg(p, p) = 0. On the other hand, suppose p,q € M are distinct. Let U € M be an
open set that contains p but not ¢, and choose a coordinate neighborhood V' of p
contained in U and satisfying the conclusion of Lemma 2.54. Then Lemma 2.54(b)
shows that dg(p,q) > D > 0.

The triangle inequality follows from the fact that an admissible curve from p
to g can be combined with one from ¢ to r (possibly changing the starting time
of the parametrization of the second) to yield one from p to r whose length is the
sum of the lengths of the two given curves (Fig. 2.4). (This is one reason for defining
distance using piecewise regular curves instead of just regular ones.) This completes
the proof that d, turns M into a metric space.

It remains to show that the metric topology is the same as the manifold topology.
Suppose first that U € M is open in the manifold topology. For each p € U, we can
choose a coordinate neighborhood V' of p contained in U with positive constants
C, D satisfying the conclusions of Lemma 2.54. The contrapositive of part (b) of
that lemma says dg(p.q) < D = g € V C U, which means that the metric ball of
radius D is contained in U. Thus U is open in the metric topology induced by d.

On the other hand, suppose U’ is open in the metric topology. Given p € U’,
choose § > 0 such that the dg-metric ball of radius § around p is contained in U’.
Let V' be any neighborhood of p that is open in the manifold topology and satisfies
the conclusions of Lemma 2.54, with corresponding constants C, D. (We are not
claiming that V' C U’.) Choose ¢ small enough that Ce < §. Lemma 2.54(a) shows
that if g is a point of V' such that dz(p.q) < ¢, then dg(p,q) < Ce < §, and thus
q lies in the metric ball of radius § about p, and hence in U’. Since the set {g €
V :dgz(p,q) < €} is open in the given manifold topology, this shows that U is also
open in the manifold topology. |

Thanks to the preceding theorem, it makes sense to apply all the concepts of the
theory of metric spaces to a connected Riemannian manifold (M, g). For example,
we say that M is (metrically) complete if every Cauchy sequence in M converges. A
subset A € M is bounded if there is a constant C such that d,(p,q) < C for all
P,q € A; if this is the case, the diameter of A is the smallest such constant:

diam(A4) = sup{dg(p.q) : p.q € A}.

Since every compact metric space is bounded, every compact connected Riemannian
manifold with or without boundary has finite diameter. (Note that the unit sphere
with the Riemannian distance determined by the round metric has diameter 7, not
2, since the Riemannian distance between antipodal points is 7. See Problem 6-2.)
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Pseudo-Riemannian Metrics

From the point of view of geometry, Riemannian metrics are by far the most impor-
tant structures that manifolds carry. However, there is a generalization of Rieman-
nian metrics that has become especially important because of its application to
physics.

Before defining this generalization, we begin with some linear-algebraic pre-
liminaries. Suppose V' is a finite-dimensional vector space, and g is a symmetric
covariant 2-tensor on V' (also called a symmetric bilinear form). Just as for an inner
product, there is a linear map ¢: V — V* defined by

q)(w) =q(v,w) forallv,w € V.

We say that g is nondegenerate if g is an isomorphism.

Lemma 2.56. Suppose q is a symmetric covariant 2-tensor on a finite-dimensional
vector space V. The following are equivalent:

(a) q is nondegenerate.
(b) For every nonzero v € V, there is some w € V such that (v, w) # 0.
(¢c) Ifq =q;; €' &’ interms of some basis (ef ) forV*, thenthe matrix (q;;) isinvertible.

» Exercise 2.57. Prove the preceding lemma.

Every inner product is a nondegenerate symmetric bilinear form, as is every sym-
metric bilinear form that is negative definite (which is defined by obvious analogy
with positive definite). But there are others that are neither positive definite nor negative
definite, as we will see below.

We use the term scalar product to denote any nondegenerate symmetric bilinear
form on a finite-dimensional vector space V', and reserve the term inner product for
the special case of a positive definite scalar product. A scalar product space is a
finite-dimensional vector space endowed with a scalar product. When convenient,
we will often use a notation like (-, -) to denote a scalar product. We say that vectors
v,w € V are orthogonal if (v, w) = 0, just as in the case of an inner product. Given
a vector v € V, we define the norm of v to be |v| = |(v,v)|'/2. Note that in the
indefinite case, it is possible for a nonzero vector to be orthogonal to itself, and thus
to have norm zero. Thus |v| is not technically a norm in the sense defined on page 47
below, but it is customary to call it “the norm of v anyway.

» Exercise 2.58. Prove that the polarization identity (2.2) holds for every scalar product.

If S €V is any linear subspace, the set of vectors in V' that are orthogonal to
every vector in S is a linear subspace denoted by S+.

Lemma 2.59. Suppose (V,q) is a finite-dimensional scalar product space, and S C
V' is a linear subspace.

(@) dim S +dim S+ = dim V.
(b) (SH)t =5,
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Proof. Define a linear map @: V — S* by ®(v) = ¢(v)|s. Note that v € Ker @ if
and only if ¢(v,x) = g(v)(x) =0 forall x € S, so Ker® = S+.If ¢ € §* is arbi-
trary, there is a covector ¢ € V* whose restriction to S is equal to ¢. (For example,
such a covector is easily constructed after choosing a basis for S and extending it to
a basis for V) Since ¢ is an isomorphism, there exists v € V such that §(v) = @. It
follows that @(v) = ¢, and therefore @ is surjective. By the rank—nullity theorem,
the dimension of S+ = Ker® is equal to dimV —dimS* = dimV —dim S. This
proves (a).

To prove (b), note that every v € S is orthogonal to every element of S by
definition, so S € (S+)*. Because these finite-dimensional vector spaces have the
same dimension by part (a), they are equal. O

An ordered k-tuple (vy,...,vg) of elements of V is said to be orthonormal if
|v;| =1foreachi and (v;,v;) =0fori # j, or equivalently, if (v;,v;) = £4;; for
each i and j. We wish to prove that every scalar product space has an orthonormal
basis. Note that the usual Gram—Schmidt algorithm does not always work in this
situation, because the vectors that appear in the denominators in (2.5)—(2.6) might
have vanishing norms. In order to get around this problem, we introduce the fol-
lowing definitions. If (V,¢q) is a finite-dimensional scalar product space, a subspace
S C V is said to be nondegenerate if the restriction of g to S x S is nondegener-
ate. An ordered k-tuple of vectors (vy,...,vr) in V is said to be nondegenerate if
foreach j =1,...,k, the vectors (v1,...,v;) span a nondegenerate j-dimensional
subspace of V. For example, every orthonormal basis is nondegenerate.

Lemma 2.60. Suppose (V,q) is a finite-dimensional scalar product space, and S C
V is a linear subspace. The following are equivalent:

(a) S is nondegenerate.
(b) S+ is nondegenerate.
(c) SNS+ ={o}.
dV=SaSt

» Exercise 2.61. Prove the preceding lemma.

Lemma 2.62 (Completion of Nondegenerate Bases). Suppose (V,q) is an n-
dimensional scalar product space, and (v1,...,Vx) is a nondegenerate k-tuple in
V with 0 < k < n. Then there exist vectors Viy1,...,0y € V such that (vy,...,vy,)
is a nondegenerate basis for V.

Proof. Let S = span(vy,...,v;) C V. Because k < n, S+ is a nontrivial subspace
of V, and Lemma 2.60 shows that S+ is nondegenerate and V = S @ S+. By the
nondegeneracy of S+, there must be a vector in S+ with nonzero length, because
otherwise the polarization identity would imply that all scalar products of pairs of
elements of S would be zero. If v € S+ is any vector with nonzero length, then
(v1,...,Vk41) is easily seen to be a nondegenerate (k 4 1)-tuple. Repeating this
argument for vg 45, ..., v, completes the proof. |
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Proposition 2.63 (Gram—-Schmidt Algorithm for Scalar Products). Suppose
(V,q) is an n-dimensional scalar product space. If (v;) is a nondegenerate basis for
V., then there is an orthonormal basis (b;) with the property that span(by,...,by) =
span(vy,...,vg) foreachk = 1,...,n.

Proof. As in the positive definite case, the basis (b;) is constructed recursively,
starting with 5y = vy /|v;| and noting that the assumption that v; spans a nonde-
generate subspace ensures that |v| # 0. At the inductive step, assuming we have
constructed (by,...,by), we first set

(kg bi)
+1,Ui
P Ty
i=1 ’

Each denominator (b;,b;) is equal to £1, so this defines z as a nonzero element
of V orthogonal to bq,...,bg, and with the property that span(by,...,bg,z) =

span(vy,...,Vk+1). If (z,z) = 0, then z is orthogonal to span(vy,...,Vk+1), cOn-
tradicting the nondegeneracy assumption. Thus we can complete the inductive step
by putting by +1 = z/|z|. ]

Corollary 2.64. Suppose (V,q) is an n-dimensional scalar product space. There is
a basis (,3’) for V* with respect to which q has the expression

g=(B) ++ (") = (BH) = (B)". (2.23)
for some nonnegative integers r,s withr +s = n.

Proof. Let (b;) be an orthonormal basis for 1, and let (") be the dual basis for V*.
A computation shows that g has a basis expression of the form (2.23), but perhaps
with the positive and negative terms in a different order. Reordering the basis so that
the positive terms come first, we obtain (2.23). O

It turns out that the numbers r and s in (2.23) are independent of the choice of
basis. The key to proving this is the following classical result from linear algebra.

Proposition 2.65 (Sylvester’s Law of Inertia). Suppose (V,q) is a finite-dimen-
sional scalar product space. If q has the representation (2.23) in some basis, then the
number r is the maximum dimension among all subspaces on which the restriction of
q is positive definite, and thus r and s are independent of the choice of basis.

Proof. Problem 2-33. O

The integer s in the expression (2.23) (the number of negative terms) is called
the index of q, and the ordered pair (r,s) is called the signature of q.

Now suppose M is a smooth manifold. A pseudo-Riemannian metric on M
(called by some authors a semi-Riemannian metric) is a smooth symmetric 2-tensor
field g that is nondegenerate at each point of M, and with the same signature every-
where. Every Riemannian metric is also a pseudo-Riemannian metric.
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Proposition 2.66 (Orthonormal Frames for Pseudo-Riemannian Manifolds). Let
(M, g) be a pseudo-Riemannian manifold. For each p € M, there exists a smooth
orthonormal frame on a neighborhood of p in M.

» Exercise 2.67. Prove the preceding proposition.

» Exercise 2.68. Suppose (M, g1) and (M>, g>) are pseudo-Riemannian manifolds of
signatures (r1,51) and (r2, s2), respectively. Show that (M| x M>, g1 @ g>) is a pseudo-
Riemannian manifold of signature (71 + 72,51 + 52).

For nonnegative integers r and s, we define the pseudo-Euclidean space of sig-
nature (r,s), denoted by R™*, to be the manifold R" +5_ with standard coordinates
denoted by (§'....,€",7',...,7%), and with the pseudo-Riemannian metric g
defined by

700 = (@) ook (@8) = (@) e @) 229

By far the most important pseudo-Riemannian metrics (other than the Riemann-
ian ones) are the Lorentz metrics, which are pseudo-Riemannian metrics of index 1,
and thus signature (r, 1). (Some authors, especially in the physics literature, prefer
to use signature (1,7); either one can be converted to the other by multiplying the
metric by —1, so there is no significant difference.)

The pseudo-Euclidean metric > is a Lorentz metric called the Minkowski
metric, and the Lorentz manifold R”! is called (r -+ 1)-dimensional Minkowski
space. If we denote standard coordinates on R”! by (El N r), then the Min-
kowski metric is given by

7o) = (d&") + -+ (dE")” - (d7)*. (2.25)

In the special case of R3-1, the Minkowski metric is the fundamental invariant of
Albert Einstein’s special theory of relativity, which can be expressed succinctly by
saying that if gravity is ignored, then spacetime is accurately modeled by (3 + 1)-
dimensional Minkowski space, and the laws of physics have the same form in every
coordinate system in which the Minkowski metric has the expression (2.25). The
differing physical characteristics of “space” (the £’ directions) and “time” (the t
direction) arise from the fact that they are subspaces on which the metric is positive
definite and negative definite, respectively. The general theory of relativity includes
gravitational effects by allowing the Lorentz metric to vary from point to point.
Many, but not all, results from the theory of Riemannian metrics apply equally
well to pseudo-Riemannian metrics. Throughout this book, we will attempt to point
out which results carry over directly to pseudo-Riemannian metrics, which ones
can be adapted with minor modifications, and which ones do not carry over at all.
As a rule of thumb, proofs that depend only on the nondegeneracy of the metric
tensor, such as properties of the musical isomorphisms and existence and uniqueness
of geodesics, work fine in the pseudo-Riemannian setting, while proofs that use
positivity in an essential way, such as those involving lengths of curves, do not.
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One notable result that does not carry over to the pseudo-Riemannian case is
Proposition 2.4, about the existence of metrics. For example, the following result
characterizes those manifolds that admit Lorentz metrics.

Theorem 2.69. A smooth manifold M admits a Lorentz metric if and only if it
admits a rank-1 tangent distribution (i.e., a rank-1 subbundle of TM).

Proof. Problem 2-34. O

With some more sophisticated tools from algebraic topology, it can be shown
that every noncompact connected smooth manifold admits a Lorentz metric, and a
compact connected smooth manifold admits a Lorentz metric if and only if its Euler
characteristic is zero (see [O’N83, p. 149]). It follows that no even-dimensional
sphere admits a Lorentz metric, because S?” has Euler characteristic equal to 2.

For a thorough treatment of pseudo-Riemannian metrics from a mathematical
point of view, see the excellent book [O’N83]; a more physical treatment can be
found in [HE73].

Pseudo-Riemannian Submanifolds

The theory of submanifolds is only slightly more complicated in the pseudo-
Riemannian case. If (M .g) is a pseudo-Riemannian manifold, a smooth submani-
fold t: M < M is called a pseudo-Riemannian submanifold of M if 1*g is non-
degenerate with constant signature. If this is the case, we always consider M to be
endowed with the induced pseudo-Riemannian metric ¢*g. In the special case in
which (* g is positive definite, M is called a Riemannian submanifold.

The nondegeneracy hypothesis is not automatically satisfied: for example, if
M C RU! is the submanifold {(§,7) : £ =t} and t: M — RU! is inclusion, then
the pullback tensor :*7(>") is identically zero on M.

For hypersurfaces (submanifolds of codimension 1), the nondegeneracy condi-
tion is easy to check. If M C M is a smooth submanifold and p € M, then a vector
veT, M is said to be normal to M if (v,x) =0forall x € T, M, just as in the
Riemannian case. The space of all normal vectors at p is a subspace of T) M de-
noted by N, M

Proposition 2.70. Suppose (1\7 , §) is a pseudo-Riemannian manifold of signature
(r,5). Let M be a smooth hypersurface in M, and let 1. M < M be the inclusion
map. Then the pullback tensor field *g is nondegenerate if and only if 2(v,v) # 0
for every p € M and every nonzero normal vector v e NyM. If g(v,v) > 0 for
every nonzero normal vector to M, then M is a pseudo-Riemannian submanifold of
signature (r — 1,s); and if 2(v,v) < 0 for every such vector, then M is a pseudo-
Riemannian submanifold of signature (r,s — 1).

Proof. Given p € M, Lemma 2.60 shows that 7, M is a nondegenerate subspace of
T, M if and only if the one-dimensional subspace (TyM Y =N p»M is nondegen-
erate, which is the case if and only if every nonzero v € N, M satisfies g(v,v) # 0.
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Now suppose g(v,v) > 0 for every nonzero normal vector v. Let p € M be
arbitrary, and let v be a nonzero element of N, M. Writing n = dimM, we can
complete v to a nondegenerate basis (v, ws, .. wn) for T M by Lemma 2.62, and
then use the Gram—Schmidt algorithm to find an orthonormal basis (by,...,by,) for
TPM such that span(b;) = N, M . It follows that span(b»,...,b,) = TI,M. If (,3’)
is the dual basis to (b;), then g, has a basis representation of the form (') £
(B?)? & --- £ (B™)?, with a total of r positive terms and s negative ones, and with
a positive sign on the first term (B'!)2. Therefore, 1*g, = £(B%)%> & --- £ (8")? has
signature (r — 1,s). The argument for the case g (v, v) < 0 is similar. |

If (1\7 , §) is a pseudo-Riemannian manifold and f € C°°(M), then the gradient of
f is defined as the smooth vector field grad f = (df)¥ just as in the Riemannian
case.

Corollary 2.71. Suppose (1\7 §) is a pseudo-Riemannian manifold of signature
(r,s), f € C°°(A7), and M = f~1(c) for some c € R. If g(grad f, grad f) >0
everywhere on M, then M is an embedded pseudo-Riemannian submanifold of M
of signature (r —1,s); and if g (grad f, grad f) <0 everywhere on M, then M is an
embedded pseudo-Riemannian submanifold of M of signature (r,s — 1). In either
case, grad f is everywhere normal to M.

Proof. Problem 2-35. O

Proposition 2.72 (Pseudo-Riemannian Adapted Orthonormal Frames). Suppose
(M g) is a pseudo-Riemannian manifold, and M C M is an embedded pseudo-
Riemannian or Riemannian submanifold. For each p € M, there exists a smooth
orthonormal frame on a neighborhood of p in M that is adapted to M.

Proof. Write m = dimM and n = dimM, and let p € M be arbitrary. Propo-
sition 2.66 shows that there is a smooth orthonormal frame (E4,..., E,) for M
on some neighborhood of p in M. Then by Lemma 2.62, we can find vectors
Unt1.--..Um € TpM such that (Eq|p,....En|p,Unt1.....Vm) is a nondegener-
ate basis for 7, M. Now extend v,41,...,Vy, arbitrarily to smooth vector fields
Vat1,..., Vim on a neighborhood of p in M. By continuity, the ordered m-tuple
(E1,.-s En,Vag1,-.., Vin) will be a nondegenerate frame for M in some (possibly
smaller) neighborhood of p. Applying the Gram—Schmidt algorithm (Prop. 2.63) to
this local frame yields a smooth local orthonormal frame (E1,..., E,,) for M with
the property that (Eq,..., E,) restricts to a local orthonormal frame for M. |

The next corollary is proved in the same way as Proposition 2.16.

Corollary 2.73 (Normal Bundle to a Pseudo-Riemannian Submanifold). Sup-
pose (M g) is a pseudo-Riemannian manifold, and M C M is an embedded
pseudo-Riemannian or Riemannian_submanifold. The set of vectors normal to M
is a smooth vector subbundle of T M |y, called the normal bundle to M . |
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Other Generalizations of Riemannian Metrics

Pseudo-Riemannian metrics are obtained by relaxing the positivity requirement for
Riemannian metrics. In addition, there are other useful generalizations that result
when we relax other requirements. In this section we touch briefly on two of those
generalizations. We will not treat these anywhere else in the book, but it is useful to
know the definitions.

Sub-Riemannian Metrics

The first generalization arises when we relax the requirement that the metric be
defined on the whole tangent space.

A sub-Riemannian metric (also sometimes known as a singular Riemannian
metric or Carnot—Carathéodory metric) on a smooth manifold M is a smooth fiber
metric on a smooth tangent distribution S € TM (i.e., a vector subbundle of TM).
Since lengths make sense only for vectors in .S, the only curves whose lengths can
be measured are those whose velocity vectors lie everywhere in S. Therefore, one
usually imposes some condition on S that guarantees that any two nearby points
can be connected by such a curve. This is, in a sense, the opposite of the Frobenius
integrability condition, which would restrict every such curve to lie in a single leaf
of a foliation.

Sub-Riemannian metrics arise naturally in the study of the abstract models of
real submanifolds of complex space C”, called CR manifolds (short for Cauchy—
Riemann manifolds). CR manifolds are real manifolds endowed with a tangent dis-
tribution S € T'M whose fibers carry the structure of complex vector spaces (with
an additional integrability condition that need not concern us here). In the model
case of a submanifold M € C”, S is the set of vectors tangent to M that remain
tangent after multiplication by i = ~/—1 in the ambient complex coordinates. If S is
sufficiently far from being integrable, choosing a fiber metric on S results in a sub-
Riemannian metric whose geometric properties closely reflect the complex-analytic
properties of M as a subset of C”.

Another motivation for studying sub-Riemannian metrics arises from control the-
ory. In this subject, one is given a manifold with a vector field depending on parame-
ters called controls, with the goal being to vary the controls so as to obtain a solution
curve with desired properties, often one that minimizes some function such as arc
length. If the vector field is constrained to be everywhere tangent to a distribution S
on the manifold (for example, in the case of a robot arm whose motion is restricted
by the orientations of its hinges), then the function can often be modeled as a sub-
Riemannian metric and optimal solutions modeled as sub-Riemannian geodesics.

A useful introduction to the geometry of sub-Riemannian metrics is provided in
the article [Str86].
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Finsler Metrics

Another important generalization arises from relaxing the requirement that norms
of vectors be defined in terms of an inner product on each tangent space.

In general, a norm on a vector space V' is a real-valued function on V', usually
written v > |v], that satisfies

(i) HOMOGENEITY: |cv| = |c||v| forv € V and ¢ € R;
(ii) POSITIVITY: |v| > O for v € V, with equality if and only if v = 0;
(ili) TRIANGLE INEQUALITY: |v 4+ w| < |v| + |w]| forv,w € V.

For example, the length function associated with an inner product is a norm.

Now suppose M is a smooth manifold. A Finsler metric on M is a continuous
function F: TM — R, smooth on the set of nonzero vectors, whose restriction to
each tangent space T, M is a norm. Again, the norm function associated with a
Riemannian metric is a special case.

The inventor of Riemannian geometry himself, Bernhard Riemann, clearly envis-
aged an important role in n-dimensional geometry for what we now call Finsler met-
rics; he restricted his investigations to the “Riemannian” case purely for simplicity
(see [Spi79, Vol. 2]). However, it was not until the late twentieth century that Finsler
metrics began to be studied seriously from a geometric point of view.

The recent upsurge of interest in Finsler metrics has been motivated in part by
the fact that two different Finsler metrics appear very naturally in the theory of
several complex variables. For certain bounded open sets in C” (the ones with
smooth, strictly convex boundaries, for example), the Kobayashi metric and the
Carathéodory metric are intrinsically defined, biholomorphically invariant Finsler
metrics. Combining differential-geometric and complex-analytic methods has led
to striking new insights into both the function theory and the geometry of such
domains. We do not treat Finsler metrics further in this book, but you can consult
one of the recent books on the subject [AP94, BCS00, JP13].

Problems

2-1. Show that every Riemannian 1-manifold is flat. (Used on pp. 13, 193.)

2-2. Suppose V and W are finite-dimensional real inner product spaces of the
same dimension, and F': V' — W is any map (not assumed to be linear or
even continuous) that preserves the origin and all distances: F(0) = 0 and
|F(x)— F(y)| = |x—y| forall x,y € V. Prove that F' is a linear isometry.
[Hint: First show that F' preservesinner products, and then show thatitis linear. |
(Used on p. 187.)

2-3. Given a smooth embedded 1-dimensional submanifold C C H as in Exam-
ple 2.24(b), show that the surface of revolution S¢ € R3 with its induced
metric is isometric to the warped product C x, S!, where a: C — R is the
distance to the z-axis.
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2-4.

2-5.

2-6.

2-7.

2-8.

2-9.
2-10.

2 Riemannian Metrics

Let p: R*T — R be the restriction of the standard coordinate function, and
let R™ x, S"~1 denote the resulting warped product (see Example 2.24(c)).
Define @: Rt x,S"™! — R"” < {0} by @(p,w) = pw. Show that @ is an
isometry between the warped product metric and the Euclidean metric on
R”™~{0}. (Used on p. 293.)

Prove parts (b) and (c) of Proposition 2.25 (properties of horizontal vector
fields). (Used on p. 146.)

Prove Theorem 2.28 (if 7: M — M is a surjective smooth submersion,
and a group acts on M isometrically, vertically, and transitively on fibers,
then M inherits a unique Riemannian metric such that 7 is a Riemannian
submersion).

For 0 < k < n, the set G (R") of k-dimensional linear subspaces of R”
is called a Grassmann manifold or Grassmannian. The group GL(n,R)
acts transitively on Gg(R”) in an obvious way, and G (R") has a unique
smooth manifold structure making this action smooth (see [LeeSM, Exam-
ple 21.21]).

(a) Let Vi (R") denote the set of orthonormal ordered k-tuples of vectors
in R”. By arranging the vectors in k columns, we can view Vi (R")
as a subset of the vector space M(n x k,R) of all n x k real matrices.
Prove that V. (R") is a smooth submanifold of M(n x k,R) of dimen-
sion k(2n —k —1)/2, called a Stiefel manifold. [Hint: Consider the
map @: M(n xk,R) = M(k x k,R) given by ®(A4) = AT A.]

(b) Show that the map 7: Vi (R") — Gy (R") that sends a k-tuple to its
span is a surjective smooth submersion.

(¢) Give Vi (R™) the Riemannian metric induced from the Euclidean met-
ric on M(n x k,R). Show that the right action of O(k) on V(R") by
matrix multiplication on the right is isometric, vertical, and transitive
on fibers of 7, and thus there is a unique metric on G (R") such that
m is a Riemannian submersion. [Hint: It might help to note that the
Euclidean inner product on M(n x k,R) can be written in the form
(A.B) =t (AT B).]

(Used on p. 82.)

Prove that the action of Z on R? defined in Example 2.35 is smooth, free,
proper, and isometric, and therefore the open Mobius band inherits a flat
Riemannian metric such that the quotient map is a Riemannian covering.

Prove Proposition 2.37 (the gradient is orthogonal to regular level sets).

Suppose (M, g) is a Riemannian manifold, f € C*°(M), and X € X(M)
is a nowhere-vanishing vector field. Prove that X = grad f if and only if
Xf=1|X |§ and X is orthogonal to the level sets of f at all regular points
of f. (Used on pp. 161, 180.)

. Prove Proposition 2.40 (inner products on tensor bundles).
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2-12.

2-13.

2-14.

2-15.

2-16.

2-17.

Prove Proposition 2.41 (existence and uniqueness of the Riemannian volume
form).

Prove Proposition 2.43 (characterizing the volume form of a Riemannian
hypersurface). [Hint: To prove (2.17), use an adapted orthonormal frame.]

Suppose A{M g and (M, g) are compact connected Riemannian manifolds,

and r: M — M is a k-sheeted Riemannian covering. Prove that Vol (M ) =
k -Vol(M). (Used on p. 363.)

Suppose (M1, g1) and (M>, g>) are oriented Riemannian manifolds of di-
mensions k; and kj, respectively. Let f: M; — R be a smooth func-
tion, and let g = g; @ f2g> be the corresponding warped product metric
on My x y M>. Prove that the Riemannian volume form of g is given by

dVe = fR2dV,, AdVy,,

where f, dVy,, and d Vg, are understood to be pulled back to M; x M, by
the projection maps. (Used on p. 295.)

Let (M, g) be a Riemannian n-manifold. Show that for each k = 1,...,n,
there is a unique fiber metric (-, ) on the bundle A¥7* M that satisfies

(wl/\---/\wk,nl/\---/\nk)g=det<(wi,nj)g) (2.26)

whenever w!,...,w*, n',... ,n¥ are covectors at a point p € M. [Hint: De-
fine the inner product locally by declaring the set of k-covectors

{gil /\.../\Eik’p :il <...<ik}

to be an orthonormal basis for A¥ (7 M) whenever (&) is a local orthonor-
mal coframe for 7* M, and then prove that the resulting inner product satis-
fies (2.26) and is independent of the choice of frame.]

Because we regard the bundle AXT*M of k-forms as a subbundle of
the bundle T¥T*M of covariant k-tensors, we have two inner products to
choose from on k-forms: the one defined in Problem 2-16, and the restriction
of the tensor inner product defined in Proposition 2.40. For this problem, we
use the notation (-, -) to denote the inner product of Problem 2-16, and (-, -))
to denote the restriction of the tensor inner product.

(a) Using the convention for the wedge product that we use in this book (see
p- 400), prove that

(b) Show that if the Alt convention is used for the wedge product (p. 401),
the formula becomes
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{+)g =Kk De-
2-18. Let (M, g) be an oriented Riemannian n-manifold.

(a) For each k = 0,...,n, show that there is a unique smooth bundle
homomorphism *: AKT*M — A" *T* M called the Hodge star op-
erator, satisfying

oAxn=(w,N)edVg

for all smooth k-forms w, 1, where (-,-)¢ is the inner product on k-
forms defined in Problem 2-16. (For k = 0, interpret the inner product
as ordinary multiplication.) [Hint: First prove uniqueness, and then de-
fine * locally by setting

*(si‘ /\---/\sik) =4/t Ao pgTnk

in terms of an orthonormal coframe (si ), where the indices ji,..., ju—k
are chosen such that (iy,...,ig, j1,..., ju—k) 1S Some permutation of
(1,...,n).]

(b) Show that x: A°T*M — A"T*M is givenby * f = f dV,.
(c) Show that % xw = (—=1)k®* Ky if o is a k-form.

2-19. Regard R” as a Riemannian manifold with the Euclidean metric and the
standard orientation, and let * denote the Hodge star operator defined in
Problem 2-18.

(a) Calculate *dx".fori = 1,...,n.
(b) Calculate *(dx’ A dxf) in the case n = 4.

2-20. Let M be an oriented Riemannian 4-manifold. A 2-form w on M is said to
be self-dual if xw = w, and anti-self-dual if xw = —w.

(a) Show that every 2-form w on M can be written uniquely as a sum of a
self-dual form and an anti-self-dual form.

(b) On M = R* with the Euclidean metric, determine the self-dual and anti-
self-dual forms in standard coordinates.

2-21. Prove Proposition 2.46 (the coordinate formulas for the divergence and the
Laplacian).

2-22. Suppose (M, g) is a compact Riemannian manifold with boundary.

(a) Prove the following divergence theorem for X € X(M):

/(divX)dV =/ (X,N)gdVs,
M oM

where N is the outward unit normal to dM and g is the induced metric
on oM. [Hint: Prove it first in the case that M is orientable, and then
apply that case to the orientation covering of M (Prop. B.18).]
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(b) Show that the divergence operator satisfies the following product rule for
ueC>®(M)and X € X(M):

div(uX) = u divX + (gradu, X),,

and deduce the following “integration by parts” formula:

/(gradu,X)ngg:/ u(X,N)ng§—/ udivX dVg.
M M M

What does this say when M is a compact interval in R?
(Used on p. 149.)

2-23. Let (M, g) be a compact Riemannian manifold with or without boundary.
A function u € C*°(M) is said to be harmonic if Au = 0, where A is the
Laplacian defined on page 32.

(a) Prove Green’s identities:

[ uAvdVg=/ qudVg—/ (gradu, gradv), dVy,
M M M
/(uAv—vAu)dVg:/ uNv—vNu)dVs,

M M

where N is the outward unit normal vector field on dM and g is the
induced metric on oM.

(b) Show that if M is connected, IM # @&, and u, v are harmonic functions
on M whose restrictions to dM agree, then u = v.

(c) Show that if M is connected and M = @, then the only harmonic
functions on M are the constants, and every smooth function u satisfies
Joy AudVg =0.

(Used on pp. 149, 223.)

2-24. Let (M, g) be a compact Riemannian manifold (without boundary). A real
number A is called an eigenvalue of M if there exists a smooth function u
on M, not identically zero, such that —Au = Au. In this case, u is called an
eigenfunction corresponding to A.

(a) Prove that 0 is an eigenvalue of M, and that all other eigenvalues are
strictly positive.

(b) Show that if u and v are eigenfunctions corresponding to distinct eigen-
values, then [, uvd Vg =0.

(Used on p. 149.)

2-25. Let (M, g) be a compact connected Riemannian n-manifold with nonempty
boundary. A number A € R is called a Dirichlet eigenvalue for M if there
exists a smooth real-valued function ¥ on M, not identically zero, such that
—Au = Au and u|yp, = 0. Similarly, A is called a Neumann eigenvalue if
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there exists such a u satisfying —Au = Au and Nu|ypy = 0, where N is the
outward unit normal.

(a) Show that every Dirichlet eigenvalue is strictly positive.
(b) Show that 0 is a Neumann eigenvalue, and all other Neumann eigenval-
ues are strictly positive.

2-26. DIRICHLET’S PRINCIPLE: Suppose (M,g) is a compact connected Rie-
mannian n-manifold with nonempty boundary. Prove that a function u €
C*(M) is harmonic if and only if it minimizes |,, |gradu|*dV, among
all smooth functions with the same boundary values. [Hint: For any func-
tion f € C®(M) that vanishes on dM, expand [, | grad(u + ef)|?>dV, and
use Problem 2-22.]

2-27. Suppose (M, g) is an oriented Riemannian 3-manifold.

(a) Define B: TM — A%T*M by B(X) = X 1dV,. Show that 8 is a
smooth bundle isomorphism, and thus we can define the curl of a vector
field X € X(M) by

curl X = ,B_ld(Xl’).
(b) Show that the following diagram commutes:

co ) £ x ) 2oy Y o)

bbb | e

Q°(M) " Q'(M) - Q*(M) v Q*(M),

where *(f) = f dV,, and use this to prove that curl(grad /') = 0 for
every f € C®°(M), and div(curl X') = 0 for every X € X(M).

(c) Compute the formula for the curl in standard coordinates on R with
the Euclidean metric.

2-28. Let (M, g) be an oriented Riemannian manifold and let * denote its Hodge
star operator (Problem 2-18). Show that for every X € X(M),

X 1dVy = x(X"),
divX:*d*(Xb),

and, when dimM = 3,
curl X = (xd (")),

where the curl of a vector field is defined as in Problem 2-27.

2-29. Let (M, g) be a compact oriented Riemannian n-manifold. For 1 <k <n,
define a map d*: QK(M) — QK1 (M) by d*w = (—1)"* D+ s d xw,
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where * is the Hodge star operator defined in Problem 2-18. Extend this
definition to O-forms by defining d *w = 0 for w € Q°(M).

(a) Show thatd*od™ = 0.
(b) Show that the formula

(@.1) = /M<w,n>gdvg

defines an inner product on ¥ (M) for each k, where (-, -) is the inner
product on forms defined in Problem 2-16.
(c) Show that (d*w,n) = (w.dn) for all v € Q¥ (M) and n € Q1 (M).

2-30. Suppose (M,g) is a (not necessarily connected) Riemannian manifold.
Show that there is a distance function d on M that induces the given topol-
ogy and restricts to the Riemannian distance on each component of M.
(Used on p. 187.)

2-31. Suppose (M,g) and (1\7 , gr') are connected Riemannian manifolds, and
¢: M — M is a local isometry. Show that dz(¢(x),¢(y)) < dg(x,y) for
all x,y € M. Give an example to show that equality need not hold. (Used
onp. 37.)

2-32. Let (M, g) be a Riemannian manifold and y: [a,b] — M a smooth curve
segment. For each continuous function f: [a,b] — R, we define the integral
of f with respect to arc length, denoted by | y fds, by

b
ds = ! dt.
[yf s /af(t)ly(t)lg ‘

(a) Show that [ fds is independent of parametrization in the following
sense: if ¢ : fc,d ] — [a,b] is a diffeomorphism, then

b d _
| s olear= [ Faolyal,

where f: fopandy =yoqp.
(b) Suppose now that y is a smooth embedding, so that C = y([a,b]) is an
embedded submanifold with boundary in M. Show that

/yde=/C(foy‘l)dl7,

where d V is the Riemannian volume element on C associated with the
induced metric and the orientation determined by y.

(Used on p. 273.)

2-33. Prove Proposition 2.65 (Sylvester’s law of inertia).
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2-34. Prove Theorem 2.69 (existence of Lorentz metrics), as follows.

(a)

(b)

For sufficiency, assume that D € 7'M isa 1-dimensional distribution, and
choose any Riemannian metric g on M. Show that locally it is possible
to choose a g-orthonormal frame (E;) and dual coframe (') such that
E| spans D; and then show that the Lorentz metric —(¢')? 4 (£2)% +
---+ (¢™)? is independent of the choice of frame.

To prove necessity, suppose that g is a Lorentz metric on M, and let
go be any Riemannian metric. Show that for each p € M, there are
exactly two go-unit vectors vy, —vo on which the function v + g(v,v)
takes its minimum among all unit vectors in 7, M, and use Lagrange
multipliers to conclude that there exists a number A(p) < 0 such that
g(vo, w) = A(p)go(vo, w) forall w € T, M. You may use the following
standard result from perturbation theory: if U is an open subset of R"
and A: U — GL(n,R) is a smooth matrix-valued function such that
A(x) is symmetric and has exactly one negative eigenvalue for each
x € U, then there exist smooth functions A U — (—00,0)and X : U —
R” ~ {0} such that A(x)X(x) = A(x)X(x) forall x e U.

2-35. Prove Corollary 2.71 (about level sets in pseudo-Riemannian manifolds).
(Used on p. 63.)
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Chapter 3
Model Riemannian Manifolds

Before we delve into the general theory of Riemannian manifolds, we pause to give
it some substance by introducing a variety of “model Riemannian manifolds” that
should help to motivate the general theory. These manifolds are distinguished by
having a high degree of symmetry.

We begin by describing the most symmetric model spaces of all—Euclidean
spaces, spheres, and hyperbolic spaces. We analyze these in detail, and prove that
each one has a very large isometry group: not only is there an isometry taking any
point to any other point, but in fact one can find an isometry taking any
orthonormal basis at one point to any orthonormal basis at any other point. As we
will see in Chapter 8, this has strong consequences for the curvatures of these man-
ifolds.

After introducing these very special models, we explore some more general
classes of Riemannian manifolds with symmetry—the invariant metrics on Lie
groups, homogeneous spaces, and symmetric spaces.

At the end of the chapter, we give a brief introduction to some analogous models
in the pseudo-Riemannian case. For the particular case of Lorentz manifolds, these
are the Minkowski spaces, de Sitter spaces, and anti-de Sitter spaces, which are
important model spaces in general relativity.

Symmetries of Riemannian Manifolds

The main feature of the Riemannian manifolds we are going to introduce in this
chapter is that they are all highly symmetric, meaning that they have large groups of
isometries.

Let (M, g) be a Riemannian manifold. Recall that Iso(M, g) denotes the set of all
isometries from M to itself, which is a group under composition. We say that (M, g)
is a homogeneous Riemannian manifold if Iso(M, g) acts transitively on M, which
is to say that for each pair of points p,q € M, there is an isometry ¢ : M — M such
that p(p) =gq.
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The isometry group does more than just act on M itself. For every ¢ € Iso(M, g),
the global differential dp maps TM to itself and restricts to a linear isometry
dep: TyM — Ty M foreach p e M.

Given a point p € M, let Iso,(M, g) denote the isotropy subgroup at p, that
is, the subgroup of Iso(M, g) consisting of isometries that fix p. For each ¢ €
Iso, (M, g), the linear map d ¢, takes T, M to itself, and the map [, : Iso,(M,g) —
GL(T,M) given by I,(p) = dg, is a representation of Iso,(M,g), called the
isotropy representation. We say that M is isotropic at p if the isotropy represen-
tation of Iso,(M, g) acts transitively on the set of unit vectors in T, M. If M is
isotropic at every point, we say simply that M is isotropic.

There is an even stronger kind of symmetry than isotropy. Let O(M') denote the
set of all orthonormal bases for all tangent spaces of M:

oM) = ]_[ {orthonormal bases for TI,M}.
PEM

There is an induced action of Iso(M, g) on O(M ), defined by using the differential
of an isometry ¢ to push an orthonormal basis at p forward to an orthonormal basis
at p(p):

@+ (br.....by) = (dgp(by).....dg, (by)). (3.1)

We say that (M, g) is frame-homogeneous if this induced action is transitive on
O(M), or in other words, if for all p,q € M and choices of orthonormal bases at
p and g, there is an isometry taking p to g and the chosen basis at p to the one at g.
(Warning: Some authors, such as [Boo86, dC92, Spi79], use the term isotropic to
refer to the property we have called frame-homogeneous.)

Proposition 3.1. Letr (M, g) be a Riemannian manifold.

(a) If M is isotropic at one point and it is homogeneous, then it is isotropic.
(b) If M is frame-homogeneous, then it is homogeneous and isotropic.

Proof. Problem 3-3. O

A homogeneous Riemannian manifold looks geometrically the same at every
point, while an isotropic one looks the same in every direction. It turns out that
an isotropic Riemannian manifold is automatically homogeneous; however, a Rie-
mannian manifold can be isotropic at one point without being isotropic (for example,
the paraboloid z = x2 4 y2 in R3 with the induced metric); homogeneous without
being isotropic anywhere (for example, the Berger metrics on S discussed in Prob-
lem 3-10 below); or homogeneous and isotropic without being frame-homogeneous
(for example, the Fubini—Study metrics on complex projective spaces discussed in
Example 2.30). The proofs of these claims will have to wait until we have developed
the theories of geodesics and curvature (see Problems 6-18, 8-5, 8-16, and 8-13).

As mentioned in Chapter 2, the Myers—Steenrod theorem shows that Iso(M, g)
is always a Lie group acting smoothly on M. Although we will not use that result,
in many cases we can identify a smooth Lie group action that accounts for at least
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some of the isometry group, and in certain cases we will be able to prove that it is
the entire isometry group.

Euclidean Spaces

The simplest and most important model Riemannian manifold is of course
n-dimensional Euclidean space, which is just R” with the Euclidean metric g given
by (2.8).

Somewhat more generally, if V' is any n-dimensional real vector space
endowed with an inner product, we can set g(v,w) = (v,w) for any p € V and
any v,w € T,V = V. Choosing an orthonormal basis (b1,...,b,) for V defines a
basis isomorphism from R” to V' that sends (x',....,x™) to x'b;; this is easily seen
to be an isometry of (V, g) with (R", §), so all n-dimensional inner product spaces
are isometric to each other as Riemannian manifolds.

It is easy to construct isometries of the Riemannian manifold (]R{” , g_): for exam-
ple, every orthogonal linear transformation 4: R” — R” preserves the Euclidean
metric, as does every translation x > b + x. It follows that every map of the form
X = b+ Ax, formed by first applying the orthogonal map A4 and then translating by
b, is an isometry.

It turns out that the set of all such isometries can be realized as a Lie group
acting smoothly on R”. Regard R” as a Lie group under addition, and let
f: O(n) x R" — R" be the natural action of O(n) on R”. Define the Euclidean
group E(n) to be the semidirect product R” xg O(n) determined by this action: this
is the Lie group whose underlying manifold is the product space R” x O(n), with
multiplication given by (b, A)(b’, A') = (b+ Ab’, AA") (see Example C.12). It has a
faithful representation given by the map p: E(n) — GL(n + 1,R) defined in block

form by
Ab
po=(57).

where b is considered an n x 1 column matrix.
The Euclidean group acts on R” via

(b, A)-x = b+ Ax. (3.2)

Problem 3-1 shows that when R” is endowed with the Euclidean metric, this action
is isometric and the induced action on O (R") is transitive. (Later, we will see that
this is in fact the full isometry group of (R” , E)—see Problem 5-11—but we do not
need that fact now.) Thus each Euclidean space is frame-homogeneous.



58 3 Model Riemannian Manifolds

Fig. 3.1: Transitivity of O(n 4+ 1) on O(S" (R))

Spheres

Our second class of model Riemannian manifolds comes in a family, with one for
each positive real number. Given R > 0, let S”(R) denote the sphere of radius R
centered at the origin in R”*1, endowed with the metric § R (called the round metric
of radius R) induced from the Euclidean metric on R”*!. When R = 1, it is the
round metric on S” introduced in Example 2.13, and we use the notation § = g;.
One of the first things one notices about the spheres is that like Euclidean spaces,
they are highly symmetric. We can immediately write down a large group of isome-
tries of S” (R) by observing that the linear action of the orthogonal group O(n + 1)
on R"*! preserves S”(R) and the Euclidean metric, so its restriction to S (R) acts
isometrically on the sphere. (Problem 5-11 will show that this is the full isometry

group.)

Proposition 3.2. The group O(n + 1) acts transitively on O (S"(R)), and thus each
round sphere is frame-homogeneous.

Proof. 1t suffices to show that given any p € S"(R) and any orthonormal ba-
sis (b;) for T,S™(R), there is an orthogonal map that takes the “north pole”
N =(0,...,0, R) to p and the basis (01,...,d,) for Ty S"(R) to (b;).

To do so, think of p as a vector of length R in R”*!, and let p = p/R denote
the unit vector in the same direction (Fig. 3.1). Since the basis vectors (b;) are
tangent to the sphere, they are orthogonal to p, so (by,...,b,, p) is an orthonormal
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basis for R”*!. Let o be the matrix whose columns are these basis vectors. Then
a € O(n + 1), and by elementary linear algebra, o takes the standard basis vectors
(01,...,0n4+1) to (b1,...,by, D). It follows that «(N) = p. Moreover, since « acts
linearly on R"*1, its differential day : TyR" T — T,R"*! is represented in stan-
dard coordinates by the same matrix as « itself, so day (0;) = b; fori =1,...,n,
and « is the desired orthogonal map. O

Another important feature of the round metrics—one that is much less evident
than their symmetry—is that they bear a certain close relationship to the Euclidean
metrics, which we now describe. Two metrics g1 and g, on a manifold M are said
to be conformally related (or pointwise conformal or just conformal) to each other
if there is a positive function f € C*°(M) such that g» = fg;. Given two Rie-
mannian manifolds (M, g) and (M , §), a diffeomorphism ¢: M — M is called a
conformal diffeomorphism (or a conformal transformation) if it pulls g back to a
metric that is conformal to g:

¢*g = fg for some positive f € C®(M).

Problem 3-6 shows that conformal diffeomorphisms are the same as angle-pre-
serving diffeomorphisms. Two Riemannian manifolds are said to be conformally
equivalent if there is a conformal diffeomorphism between them.

A Riemannian manifold (M, g) is said to be locally conformally flat if every
point of M has a neighborhood that is conformally equivalent to an open set in

(R, 8).

» Exercise 3.3. (a) Show thatforevery smooth manifold M, conformality is an equiva-
lence relation on the set of all Riemannian metrics on M .
(b) Show that conformal equivalence is an equivalence relation on the class of all Rie-
mannian manifolds.

» Exercise 3.4. Suppose g1 and go = fg are conformally related metrics on an ori-
ented n-manifold. Show that their volume forms are related by d Vg, = f/2d Vg, .

A conformal equivalence between R” and S”(R) minus a point is provided by
stereographic projection from the north pole. This is the map o: S"(R) ~{N} —
R” that sends a point P € S*(R) ~ {N}, written P = (51,...,5",1:), to u =
ul,...,u™) e R", where U = (u!,...,u",0) is the point where the line through
N and P intersects the hyperplane {(£,7) : T = 0} in R”*! (Fig. 3.2). Thus U is
characterized by the fact that (U — N) = A(P — N) for some nonzero scalar A. Writ-
ing N =(0,R),U = (u,0),and P = (£,7) e R"T! = R” xR, we obtain the system
of equations

ul = A,

—R=A(t—R). ©-3)

Solving the second equation for A and plugging it into the first equation, we get
the following formula for stereographic projection from the north pole of the sphere
of radius R:
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Fig. 3.2: Stereographic projection

R
o(&,r):u:—g. (3.4)
R—1
It follows from this formula that ¢ is defined and smooth on all of S”(R) ~{N}.
The easiest way to see that it is a diffeomorphism is to compute its inverse. Solving

the two equations of (3.3) for 7 and &' gives

Syt A—1
L= =R——. 35
#==. t=R5 (35)
The point P = o~ (u) is characterized by these equations and the fact that P is on
the sphere. Thus, substituting (3.5) into |£|?> 4 72 = R? gives

|”|2 2(/\_ 1)2 2
F + R A’Z R P}
from which we conclude
)= |u|? + R?
~ 2R2

Inserting this back into (3.5) gives the formula

f%m=@ﬂ=( (3.6)

2R?u |u|?> — R?
lu|2+ R2™" |u|2+R2)’

which by construction maps R” back to S”(R) ~{N } and shows that ¢ is a diffeo-
morphism.
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Proposition 3.5. Stereographic projection is a conformal diffeomorphism between
S"(R)~{N} and R".

Proof. The inverse map ¢! is a smooth parametrization of S”(R) ~ {N}, so we
can use it to compute the pullback metric. Using the usual technique of substitution
to compute pullbacks, we obtain the following coordinate representation of gg in
stereographic coordinates:

2

wo e 2R?u/ lu?= R2\\"
@er=" g:Z(d(|u|2+R2)) +(d (R|u|2+R2)) '

J

If we expand each of these terms individually, we get

J 2R?u/ \  2R*duw/  4R*u Y uldu’
uPP+R2) T uP+R2 (u2+ R
( |u|2—R2) B 2RY ;uldu’ 2R(lul>—R?)Y; ul du’

uP+R) T P+ R (uP+ )2
_ARIY vt du!
C (uP+R»?
Therefore,
(1) 8x = ARYY; (du!)® 16R* (3 u'du’)™  16R*ul (3 u' du')
(lul*> + R?)? (lul> + R?)? (lul?> + R?)*
16R® (Y, u! du')?
(lu]*>+ R?)*
_ 4R* Y (du’)?
(lul*> + R?)?
In other words, y
4R
—1\* 9 =
=————7, 3.7
(07)"gr P+ k228 3.7
where g now represents the Euclidean metric on R”, and so o is a conformal
diffeomorphism. O

Corollary 3.6. Each sphere with a round metric is locally conformally flat.

Proof. Stereographic projection gives a conformal equivalence between a neighbor-
hood of any point except the north pole and Euclidean space; applying a suitable ro-
tation and then stereographic projection (or stereographic projection from the south
pole), we get such an equivalence for a neighborhood of the north pole as well. O
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Hyperbolic Spaces

Our third class of model Riemannian manifolds is perhaps less familiar than the
other two. For each n > 1 and each R > 0 we will define a frame-homogeneous
Riemannian manifold H" (R), called hyperbolic space of radius R. There are four
equivalent models of the hyperbolic spaces, each of which is useful in certain con-
texts. In the next theorem, we introduce all of them and show that they are isometric.

Theorem 3.7. Let n be an integer greater than 1. For each fixed R > 0, the following
Riemannian manifolds are all mutually isometric.

(a) (HYPERBOLOID MODEL) H"(R) is the submanifold of Minkowski space R™!
defined in standard coordinates (El co E r) as the “upper sheet” {t > 0} of

the two-sheeted hyperboloid (El)2 4+ (&“")2 — 12 = —R?, with the induced
metric

gr=1"7.
where 1: H"(R) — R™! is inclusion, and § = g™V is the Minkowski metric:
_ 2 2
g=(d&") +-+ (dg")" —(d7)*. (3.8)
(b) (BELTRAMI-KLEIN MODEL) K" (R) is the ball of radius R centered at the
origin in R", with the metric given in coordinates (w', ..., w") by
1\2 n\2 1 1. ... n n\2
2 _ p2(dw!)? 4+ (du") , (whdw! +--- 4+ w" dw")
8R= RZ—|w]? (R2—[w])>

(3.9)

(c) (POINCARE BALL MODEL) B"(R) is the ball of radius R centered at the
origin in R™, with the metric given in coordinates (u',...,u™) by

(dul)z RS (dun)Z

33 — 4R*
Sk (R2—[ul?)?

(d) (POINCARE HALF-SPACE MODEL) U”(R) is the upper half-space in R"
defined in coordinates (x',...,x""1,y) by U"(R) = {(x,y) : y > 0}, endowed
with the metric

§4R _ R (dxH)2 4+ + (;lx"_l)2 +dy2.
Yy

Proof. Let R > 0 be given. We need to verify that H" (R) is actually a Riemannian
submanifold of R™!, or in other words that gr}e is positive definite. One way to do
this is to show, as we will below, that it is the pullback of g% or g% (both of which
are manifestly positive definite) by a diffeomorphism. Alternatively, here is a direct
proof using some of the theory of submanifolds of pseudo-Riemannian manifolds
developed in Chapter 1.
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Y

Fig. 3.3: Isometries among the hyperbolic models

Note that H”(R) is an open subset of a level set of the smooth function
f:R™! = R givenby f(£,7) = (51)2+---+ (E")Z—rz. We have

df =28VdE .- 428" dE" —21d1,

and therefore the gradient of f with respect to ¢ is given by

3 3 3
gradf:2§la—$l+---+2§"@+27:$. (3.10)

Direct computation shows that

Flerad f.grad f) = 4(2(5")2 —rz),

i

which is equal to —4 R? at points of H” (R). Thus it follows from Corollary 2.71 that
H"(R) is a pseudo-Riemannian submanifold of signature (7,0), which is to say it
is Riemannian.

We will show that all four Riemannian manifolds are mutually isometric by defin-
ing isometries ¢ : H"(R) — K" (R), 7 : H"(R) — B"(R), and « : B"(R) — U"(R)
(shown schematically in Fig. 3.3).

We begin with a geometric construction of a diffeomorphism called central pro-

Jection from the hyperboloid to the ball,

c¢: H"(R) — K" (R),

which turns out to be an isometry between the two metrics given in (a) and (b).
For any P = (élé”r) e H*(R) € R™!, set ¢(P) = w € K"(R), where
W = (w, R) € R™! is the point where the line from the origin to P intersects the
hyperplane {(§,7) : T = R} (Fig. 3.4). Because W is characterized as the unique
scalar multiple of P whose last coordinate is R, we have W = R P /t, and therefore
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Fig. 3.4: Central projection from the hyperboloid to the Beltrami—Klein model

¢ is given by the formula

c(&‘,t):?. (3.11)
The relation |£]?> — 72 = — R? guarantees that |c(£,7)|> = R*(1— R?/1?) < R?, 50
¢ maps H"(R) into K”(R). To show that ¢ is a diffeomorphism, we determine its
inverse map. Let w € K" (R) be arbitrary. The unique positive scalar A such that the
point (£,7) = A(w, R) lies on H"(R) is characterized by A?|w|?> —A2R? = —R?,
and therefore R

VRl

It follows that the following smooth map is an inverse for c:

_ Rw R2
¢ 1(w)=(:§,r)=(\/R2_|w|2,\/R2_|w|2). (3.12)

A=

Thus c is a diffeomorphism. To show that it is an isometry between g}e and g%, we
use the fact that g, is the metric induced from g, analogously to the computation
we did for stereographic projection above. With (&, t) defined by (3.12), we have

. Rdw! Rw'S" . w/ dw’
agi = Rdw' | Ro'a wldvr
VR =wl?  (R2—|w]?)”
R2Y . w/ dw’
(R?—|w]?)

Y

It is then straightforward to compute that (¢~!) gk = 3", (d£")> — (d1)* = §3.
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Fig. 3.5: Hyperbolic stereographic projection

Next we describe a diffeomorphism
7: H"(R) — B"(R)

from the hyperboloid to the ball, called hyperbolic stereographic projection, which
is an isometry between the metrics of (a) and (c). Let S € R™! denote the point
S =(0....,0,—R).Forany P = (¢',....6",7) e H"(R) CR™!, set n(P) =u €
B"(R), where U = (u,0) € R™! is the point where the line through S and P inter-
sects the hyperplane {(¢,7) : © = 0} (Fig. 3.5). The point U is characterized by
(U—-S)=A(P —2S) for some nonzero scalar A, or

ui ZAgi,
R=A(t +R).

These equations can be solved in the same manner as in the spherical case to yield

(3.13)

R§
n,1)=u=——,
(€.7) R+<
which takes its values in B” (R) because |7 (£,7)|?> = R?(t? — R?)(¢%> + R?) < R?.
A computation similar to the ones before shows that the inverse map is

2R?u R? +|ul?
R2_|u|2’ R2—|u|2 :

7l w) = (6.7) = (
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We will show that (z~1)* g}e = g;. The computation proceeds just as in the
spherical case, so we skip over most of the details:

2R%u \\° R2 4 [u2\\?
—1y*x 21
e d| —5—— —d| R———7
o) Z( (meor)) - (¢ (*2tiie))
_ 4R*Y (dul)?
(R>—[ul?)?
=g3.
Next we consider the Poincaré half-space model, by constructing an explicit dif-
feomorphism
k: U"(R) —> B"(R).

In this case it is more convenient to write the coordinates on the ball as (u,v) =
(u',...,u" ' v). In the 2-dimensional case, k is easy to write down in complex
notation w =u +iv and z = x +1iy. Itis a variant of the classical Cayley transform:

z—IiR
z4+iR’

k(z) =w=IiR 3.14)
Elementary complex analysis shows that this is a complex-analytic diffeomorphism
taking U2(R) onto B2(R). Separating z into real and imaginary parts, we can also
write this in real terms as

(3.15)

2R?%x |x|% +|y|?> = R?
K(x,y) =(u,v)=( )

X2+ + R [xP+ (v + R)?
This same formula makes sense in any dimension n if we interpret x to mean

(x1,...,x"71), and it is easy to check that it maps the upper half-space {y > 0}
into the ball of radius R. A direct computation shows that its inverse is

_ 2R?u R? — |u|?> —v?
« 1(u,v>=(x,y)=( )

[ul24+(w—R)?"" |u]?+ (v—R)?

so k is a diffeomorphism, called the generalized Cayley transform. The verification
that k*¢3 = g% is basically a long calculation, and is left to Problem 3-4. O

We often use the generic notation H” (R) to refer to any one of the Riemannian
manifolds of Theorem 3.7, and gg to refer to the corresponding metric; the special
case R =1 is denoted by (H", g) and is called simply hyperbolic space, or in the
2-dimensional case, the hyperbolic plane.

Because all of the models for a given value of R are isometric to each other, when
analyzing them geometrically we can use whichever model is most convenient for
the application we have in mind. The next corollary is an example in which the
Poincaré ball and half-space models serve best.

Corollary 3.8. Each hyperbolic space is locally conformally flat.
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Proof. In either the Poincaré ball model or the half-space model, the identity map
gives a global conformal equivalence with an open subset of Euclidean space. O

The examples presented so far might give the impression that most Riemannian
manifolds are locally conformally flat. This is far from the truth, but we do not yet
have the tools to prove it. See Problem 8-25 for some explicit examples of Riemann-
ian manifolds that are not locally conformally flat.

The symmetries of H"(R) are most easily seen in the hyperboloid model. Let
O(n,1) denote the group of linear maps from R™! to itself that preserve the
Minkowski metric, called the (n + 1)-dimensional Lorentz group. Note that each
element of O(n, 1) preserves the hyperboloid {72 — |£|?> = R?}, which has two com-
ponents determined by 7 > 0 and < 0. We let O" (1, 1) denote the subgroup of
O(n,1) consisting of maps that take the T > 0 component of the hyperboloid to
itself. (This is called the orthochronous Lorentz group, because physically it repre-
sents coordinate changes that preserve the forward time direction.) Then O™ (n,1)
preserves H”(R), and because it preserves ¢ it acts isometrically on H"(R).
(Problem 5-11 will show that this is the full isometry group.) Recall that O (H" (R))
denotes the set of all orthonormal bases for all tangent spaces of H” (R).

Proposition 3.9. The group O (n, 1) acts transitively on O (H” (R)), and therefore
H" (R) is frame-homogeneous.

Proof. The argument is entirely analogous to the proof of Proposition 3.2, so we
give only a sketch. Suppose p € H"”(R) and (b;) is an orthonormal basis for
T,H"(R). Identifying p € R™! with an element of T,R™! in the usual way, we
can regard p = p/R as a g-unit vector in T,,R"’l, and (3.10) shows that it is a
scalar multiple of the g-gradient of the defining function f and thus is orthogonal
to T, H" (R) with respect to g. Thus (bl yersbn byy1 = ﬁ) is a g-orthonormal basis
for R™!, and g has the following expression in terms of the dual basis (,8’ ):

g= B+ + ("= (B

Thus the matrix whose columns are (b, ...,b,1) is an element of O (1, 1) send-
ing N =(0,...,0,R) to p and 0; to b; (Fig. 3.6). O

Invariant Metrics on Lie Groups

Lie groups provide us with another large class of homogeneous Riemannian mani-
folds. (See Appendix C for a review of the basic facts about Lie groups that we will
use.)

Let G be a Lie group. A Riemannian metric g on G is said to be left-invariant
if it is invariant under all left translations: L:;g = g for all ¢ € G. Similarly, g is
right-invariant if it is invariant under all right translations, and bi-invariant if it is
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Fig. 3.6: Frame homogeneity of H" (R)

both left- and right-invariant. The next lemma shows that left-invariant metrics are
easy to come by.

Lemma 3.10. Let G be a Lie group and let g be its Lie algebra of left-invariant
vector fields.

(a) A Riemannian metric g on G is left-invariant if and only if for all X, Y € g, the
Sfunction g(X,Y) is constant on G.

(b) The restriction map g — g, € L2 (Te*G) together with the natural identifica-
tion T,G = g gives a bijection between left-invariant Riemannian metrics on
G and inner products on g.

» Exercise 3.11. Prove the preceding lemma.

Thus all we need to do to construct a left-invariant metric is choose any inner
product on g, and define a metric on G by applying that inner product to left-
invariant vector fields. Right-invariant metrics can be constructed in a similar way
using right-invariant vector fields. Since a Lie group acts transitively on itself by
either left or right translation, every left-invariant or right-invariant metric is homo-
geneous.

Much more interesting are the bi-invariant metrics, because, as you will be able
to prove later (Problems 7-13 and 8-17), their curvatures are intimately related to
the structure of the Lie algebra of the group. But bi-invariant metrics are generally
much rarer than left-invariant or right-invariant ones; in fact, some Lie groups have
no bi-invariant metrics at all (see Problems 3-12 and 3-13). Fortunately, there is a
complete answer to the question of which Lie groups admit bi-invariant metrics,
which we present in this section.

We begin with a proposition that shows how to determine whether a given left-
invariant metric is bi-invariant, based on properties of the adjoint representation of
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the group. Recall that this is the representation Ad: G — GL(g) given by Ad(¢) =
(Cp)«: @ = g, where C,: G — G is the automorphism defined by conjugation:
Cy(¥) = ¢y @~ '. See Appendix C for more details.

Proposition 3.12. Let G be a Lie group and g its Lie algebra. Suppose g is a
left-invariant Riemannian metric on G, and let {-,+) denote the corresponding inner
product on g as in Lemma 3.10. Then g is bi-invariant if and only if {-,-) is invariant
under the action of Ad(G) C GL(q), in the sense that (Ad(¢) X, Ad(p)Y) = (X,Y)
forall X,Y e gand ¢ € G.

Proof. We begin the proof with some preliminary computations. Suppose g is left-
invariant and (-,-) is the associated inner product on g. Let ¢ € G be arbitrary,
and note that C, is the composition of left multiplication by ¢ followed by right
multiplication by ¢~!. Thus for every X € g, left-invariance implies (Ry-1)xX =
(Ry—1)x(Lyp)sxX = (Cyp)« X = Ad(p) X . Therefore, forall y € G and X,Y € g, we
have

(Re)"8)y Xy 70) = 201 (R 1) X) yore (Ryr),¥) gt
= gW(p*] ((Ad((p)X)wgofl ’ (Ad((p)Y)W(p*I)
= (Ad(p)X. Ad(p)Y).

Now assume that (-, -} is invariant under Ad(G). Then the expression on the last
line above is equal to (X, Y) = gy (Xy, Yy ), which shows that (wal )*g = g. Since
this is true for all ¢ € G, it follows that g is bi-invariant.

Conversely, assuming that g is bi-invariant, we have (Rq,_l)*g = g for each
¢ € G, so the above computation yields

(X.Y) =gy (Xy.Yy) = ((Ry-1)"g),, (Xy. Yy) = (Ad(¢) X, Ad(p)Y),

which shows that (-, ) is Ad(G)-invariant. O

In order to apply the preceding proposition, we need a lemma about finding
invariant inner products on vector spaces. Recall from Appendix C that for every
finite-dimensional real vector space V', GL(V') denotes the Lie group of all invertible
linear maps from V toitself. If H is a subgroup of GL(V'), an inner product (., ) on V'
is said to be H -invariant if (hx,hy) = (x,y) forallx,y € Vandh e H.

Lemma 3.13. Suppose V is a finite-dimensional real vector space and H is a sub-
group of GL(V'). There exists an H -invariant inner product on V' if and only if H
has compact closure in GL(V).

Proof. Assume first that there exists an H -invariant inner product (., -) on V. This
implies that H is contained in the subgroup O(V) € GL(V') consisting of linear
isomorphisms of V' that are orthogonal with respect to this inner product. Choos-
ing an orthonormal basis of V' yields a Lie group isomorphism between O(V') and
O(n) C GL(n,R) (where n = dim V'), so O(V) is compact; and the closure of H is
a closed subset of this compact group, and thus is itself compact.
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Conversely, suppose H has compact closure in GL(V'), and let K denote the
closure. A simple limiting argument shows that K is itself a subgroup, and thus it is
a Lie group by the closed subgroup theorem (Thm. C.8). Let (-, )¢ be an arbitrary
inner product on V, and let i be a right-invariant density on K (for example, the Ri-
mannian density of some right-invariant metric on K). For fixed x,y € V, define
a smooth function fy,,: K = R by fx (k) = (kx,ky)o. Then define a new inner
product {-,+) on V by

(x.,y)= /fo,yu-

It follows directly from the definition that (.,.) is symmetric and bilinear over R.
For each nonzero x € V, we have fx x > 0 everywhere on K, so (x, x) > 0, showing
that (., -) is indeed an inner product.

To see that it is invariant under K, let kg € K be arbitrary. Then for all x,y € V
and k € K, we have

fkox,k()y(k) = (kkOX, kkOy)O
= fx,yoRk()(k)7

where Ry, : K — K is right translation by ko. Because p is right-invariant, it fol-
lows from diffeomorphism invariance of the integral that

(kox,koy) I/kaox,koy“
=/ (fx,yoRko)PL
K
Z/ R;o(fxaylu)
K
=/ Sry = (x,y).
K

Thus (-, ) is K-invariant, and it is also H -invariant because H C K. O

Theorem 3.14 (Existence of Bi-invariant Metrics). Let G be a Lie group and g its
Lie algebra. Then G admits a bi-invariant metric if and only if Ad(G) has compact
closure in GL(g).

Proof. Proposition 3.12 shows that there is a bi-invariant metric on G if and only if
there is an Ad(G)-invariant inner product on g, and Lemma 3.13 in turn shows that
the latter is true if and only if Ad(G) has compact closure in GL(g). O

The most important application of the preceding theorem is to compact groups.
Corollary 3.15. Every compact Lie group admits a bi-invariant Riemannian metric.

Proof. If G is compact, then Ad(G) is a compact subgroup of GL(g) because
Ad: G — GL(g) is continuous. O
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Another important application is to prove that certain Lie groups do not admit
bi-invariant metrics. One way to do this is to note that if Ad(G) has compact closure
in GL(g), then every orbit of Ad(G) must be a bounded subset of g with respect to
any choice of norm, because it is contained in the image of the compact set Ad(G)
under a continuous map of the form ¢ — ¢(Xy) from GL(g) to g. Thus if one can
find an element Xy € g and a subset S € G such that the elements of the form
Ad(¢)X,, are unbounded in g for ¢ € §, then there is no bi-invariant metric.

Here are some examples.

Example 3.16 (Invariant Metrics on Lie Groups).

(a) Every left-invariant metric on an abelian Lie group is bi-invariant, because the
adjoint representation is trivial. Thus the Euclidean metric on R” and the flat
metric on T” of Example 2.21 are both bi-invariant.

(b) If a metric g on a Lie group G is left-invariant, then the induced metric on
every Lie subgroup H C G is easily seen to be left-invariant. Similarly, if g is
bi-invariant, then the induced metric on H is bi-invariant.

(c) The Lie group SL(2,R) (the group of 2 x 2 real matrices of determinant 1)
admits many left-invariant metrics (as does every positive-dimensional Lie
group), but no bi-invariant ones. To see this, recall that the Lie algebra of
SL(2,R) is isomorphic to the algebra s[(2,R) of trace-free 2 x 2 matrices,
and the adjoint representation is given by Ad(4)X = AXA~! (see Example
C.10). If we let Xo = (§ §) € s[(2.R) and A; = (§ ;). ) € SL(2,R) for ¢ >0,
then Ad(A.)Xo = (8 82), which is unbounded as ¢ — oo. Thus the orbit of
X is not contained in any compact subset, which implies that there is no bi-
invariant metric on SL(2,RR). A similar argument shows that SL(n, R) admits
no bi-invariant metric for any n > 2. In view of (b) above, this shows also
that GL(n,R) admits no bi-invariant metric for n > 2. (Of course, GL(1,R)
does admit bi-invariant metrics because it is abelian.)

(d) With S regarded as a submanifold of C2, the map

(w,2) > (_’f f) (3.16)

zZw

gives a diffeomorphism from S3 to SU(2). Under the inverse of this map, the
round metric on S3 pulls back to a bi-invariant metric on SU(2), as Problem
3-10 shows.

(e) Let o(n) denote the Lie algebra of O(n), identified with the algebra of skew-
symmetric 7 X n matrices, and define a bilinear form on o(n) by

(4,B) = (AT B).

This is an Ad-invariant inner product, and thus determines a bi-invariant Rie-
mannian metric on O(n) (see Problem 3-11).

(f) Let U" be the upper half-space as defined in Theorem 3.7. We can regard
U" as a Lie group by identifying each point (x,y) = (xl, ... ,x"_l,y) e U~
with an invertible n x n matrix as follows:
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Iy O
o (5)

where [, is the (n — 1) x (n — 1) identity matrix. Then the hyperbolic metric
g;g is left-invariant on U” but not right-invariant (see Problem 3-12).

(g) For n > 1, the (2n + 1)-dimensional Heisenberg group is the Lie subgroup
H, € GL(n +2,R) defined by

xT

1 z
H,={l0 1 y|:x,yeR", zeRy,
001
where x and y are treated as column matrices. These are the simplest examples
of nilpotent Lie groups, meaning that the series of subgroups G 2 [G,G] 2
[G,[G,G]] 2 --- eventually reaches the trivial subgroup (where for any sub-
groups G1, G, C G, the notation [G1, G,] means the subgroup of G generated
by all elements of the form xlxle_lxz_ ! for x; € G;). There are many left-
invariant metrics on H,,, but no bi-invariant ones, as Problem 3-13 shows.
(h) Our last example is a group that plays an important role in the classification
of 3-manifolds. Let Sol denote the following 3-dimensional Lie subgroup of

GL(3,R):
e 0 «x
Sol = 0e?y|:x,y,zeR;.
0 01

This group is the simplest nonnilpotent example of a solvable Lie group,
meaning that the series of subgroups G 2 [G,G] 2 [[G, G],[G,G]] 2 --- even-
tually reaches the trivial subgroup. Like the Heisenberg groups, Sol admits
left-invariant metrics but not bi-invariant ones (Problem 3-14). VA

In fact, John Milnor showed in 1976 [Mil76] that the only Lie groups that admit
bi-invariant metrics are those that are isomorphic to direct products of compact
groups and abelian groups.

Other Homogeneous Riemannian Manifolds

There are many homogeneous Riemannian manifolds besides the frame-homoge-
neous ones and the Lie groups with invariant metrics. To identify other examples, it
is natural to ask the following question: If M is a smooth manifold endowed with a
smooth, transitive action by a Lie group G (called a homogeneous G-space or just
a homogeneous space), is there a Riemannian metric on M that is invariant under
the group action?

The next theorem gives a necessary and sufficient condition for existence of an
invariant Riemannian metric that is usually easy to check.
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Theorem 3.17 (Existence of Invariant Metrics on Homogeneous Spaces). Sup-
pose G is a Lie group and M is a homogeneous G-space. Let py be a point in M,
and let Ip,: G,y — GL(Tp, M) denote the isotropy representation at po. There
exists a G-invariant Riemannian metric on M if and only if I, (G p,) has compact
closure in GL(Tpy M ).

Proof. Assume first that g is a G-invariant metric on M . Then the inner product g,
on T, M is invariant under the isotropy representation, so it follows from Lemma
3.13 that /(G p,) has compact closure in GL (T, M ).

Conversely, assume that 7, (G p,) has compact closure in GL (T, M ). Lemma
3.13 shows that there is an inner product g,, on 7p,(M) that is invariant under
the isotropy representation. For arbitrary p € M, we define an inner product g, on
T, M by choosing an element ¢ € G such that ¢(p) = po and setting

8p = (d%)*gpo'

If ¢1, ¢ are any two such elements of G, then g1 = hg, with h = 1951 € G, 50

(do11p)" gpo = (d(h92)p)" €po = (d921p) " (dhpy)” gpo = (d2]5)” Epo-

showing that g is well defined as a rough tensor field on M. An easy computation
shows that g is G-invariant, so it remains only to show that it is smooth.

The map 7 : G — M given by w(¥) = ¥ - pg is a smooth surjection because the
action is smooth and transitive. Given ¢ € G, if we let 6,: M — M denote the map
p—¢-pand L,: G — G the left translation by ¢, then the map 7 satisfies

wolLly(Y) = (oY) -po=¢- (- po)=0y0m(¥), (3.17)

so it is equivariant with respect to these two actions. Thus it is a submersion by the
equivariant rank theorem (Thm. C.14).

Define a rough 2-tensor field r on G by t = 7* g. (It will typically not be positive
definite, because 7. (v, w) = 0 if either v or w is tangent to the isotropy group G p,
and thus in the kernel of d ,.) For all ¢ € G, (3.17) implies

L;r = L;n*g = (7T0L¢,)*g = (9(0 on)*g = n*G;‘g =n*g=r1,

where the next-to-last equality follows from the G-invariance of g. Thus 7 is a
left-invariant tensor field on G. Every basis (X1,..., X,) for the Lie algebra of G
forms a smooth global left-invariant frame for G, and with respect to such a frame
the components 7(X;, X ;) are constant; thus t is a smooth tensor field on G.

For each p € M, the fact that 7 is a surjective smooth submersion implies that
there exist a neighborhood U of p and a smooth local section 6: U — G (Thm.
A.17). Then

gly = (moo)* g =0*n%g =0"r,

showing that g is smooth on U. Since this holds in a neighborhood of each point, g
is smooth. O
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The next corollary, which follows immediately from Theorem 3.17, addresses
the most commonly encountered case. (Other necessary and sufficient conditions
for the existence of invariant metrics are given in [Poo81, 6.58-6.59].)

Corollary 3.18. If a Lie group G acts smoothly and transitively on a smooth man-
ifold M with compact isotropy groups, then there exists a G-invariant Riemannian
metric on M. O

» Exercise 3.19. Suppose G is a Lie group and M is a homogeneous G-space that
admits at least one g-invariant metric. Show that for each p € M, the map g —> g, gives
a bijection between G-invariant metrics on M and I, (G p)-invariant inner products on
TyM.

Locally Homogeneous Riemannian Manifolds

A Riemannian manifold (M, g) is said to be locally homogeneous if for every pair
of points p,q € M there is a Riemannian isometry from a neighborhood of p to a
neighborhood of ¢ that takes p to ¢. Similarly, we say that (M, g) is locally frame-
homogeneous if for every p,q € M and every pair of orthonormal bases (v;) for
TpM and (w;) for T, M, there is an isometry from a neighborhood of p to a neigh-
borhood of ¢ that takes p to ¢, and whose differential takes v; to w; for eachi.

Every homogeneous Riemannian manifold is locally homogeneous, and every
frame-homogeneous one is locally frame-homogeneous. Every proper open subset of
a homogeneous or frame-homogeneous Riemannian manifold is locally homoge-
neous or locally frame-homogeneous, respectively. More interesting examples arise
in the following way.

Proposition 3.20. Suppose (ﬂ , §) is a homogeneous Riemannian manifold, (M, g)
is a Riemannian manifold, and w: M — M is a Riemannian covering. Then (M, g)
is locally homogeneous. If (1\7 ,E) is frame-homogeneous, then (M,g) is locally
[frame-homogeneous.

» Exercise 3.21. Prove this proposition.

Locally homogeneous Riemannian metrics play an important role in classifica-
tion theorems for manifolds, especially in low dimensions. The most fundamental
case is that of compact 2-manifolds, for which we have the following important
theorem.

Theorem 3.22 (Uniformization of Compact Surfaces). Every compact, connected,
smooth 2-manifold admits a locally frame-homogeneous Riemannian metric, and
a Riemannian covering by the Euclidean plane, hyperbolic plane, or round unit
sphere.

Sketch of proof. The proof relies on the topological classification of compact sur-
faces (see, for example, [LeeTM, Thms. 6.15 and 10.22]), which says that every
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Fig. 3.7: A connected sum of tori Fig. 3.8: Constructing a Riemannian covering

connected compact surface is homeomorphic to a sphere, a connected sum of one
or more tori, or a connected sum of one or more projective planes. The crux of
the proof is showing that each of the model surfaces on this list has a metric that
admits a Riemannian covering by one of the model frame-homogeneous manifolds,
and therefore is locally frame-homogeneous by Proposition 3.20. We consider each
model surface in turn.

The 2-sphere: S2, of course, has its round metric, and the identity map is a Rie-
mannian covering.

The 2-torus: Exercise 2.36 shows that the flat metric on T? described in Example
2.21 admits a Riemannian covering by (Rz, §).

A connected sum of n > 2 copies of T?: It is shown in [LeeTM, Example 6.13]
that such a surface is homeomorphic to a quotient of a regular 4n-sided polygo-
nal region by side identifications indicated schematically by the sequence of labels
arbray'byt .. .apbya;'b, ! (Fig. 3.7 illustrates the case n = 2). Let G € GL(2,C)
be the following subgroup:

G:{(%&):a,ﬁec, |82 > ol. (3.18)
Problem 3-8 shows that G acts transitively and isometrically on the Poincaré disk
with its hyperbolic metric. It is shown in [LeeTM] that for each n > 2, there is a
discrete subgroup I, € G such that the quotient map B2 — B2/}, is a covering
map, and B2/ I}, is homeomorphic to a connected sum of n tori. The group is found
by first identifying a compact region P C B? bounded by a “regular geodesic poly-
gon,” which is a union of 4n congruent circular arcs making interior angles that all
measure exactly 7 /2n, so that 4n of them fit together locally to fill out a neighbor-
hood of a point (see Fig. 3.8). (The name *“geodesic polygon” reflects the fact that
these circular arcs are segments of geodesics with respect to the hyperbolic metric,
as we will see in Chapter 5.) Then [, is the group generated by certain elements
of G that take an edge with a label @, or b, to the other edge with the same label.
Because I}, acts isometrically, it follows that such a connected sum admits a locally
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Fig. 3.9: The Klein bottle Fig. 3.10: Connected sum of three projective planes

frame-homogeneous metric and a Riemannian covering by the Poincaré disk. For
details, see the proofs of Theorems 12.29 and 12.30 of [LeeTM].

The projective plane: Example 2.34 shows that RIP? has a metric that admits a
2-sheeted Riemannian covering by (S2,§).

A connected sum of two copies of RP2: It is shown in [LeeTM, Lemma 6.16]
that RP2 #RP? is homeomorphic to the Klein bottle, which is the quotient space of
the unit square [0, 1] x [0, 1] by the equivalence relation generated by the following
relations (see Fig. 3.9):

(x,0) ~ (x,1) for0<x <1,

(0.y)~(1.1—y) for0<y<IL. (3.19)
y y y

Let E(2) be the Euclidean group in two dimensions as defined earlier in this chapter,
and let I € E(2) be the subgroup defined by

I'=)(b,A) €EQ): b= (k,])withk,] € Z,and A = ((1) (_?)k)}. (3.20)

It turns out that I" acts freely and properly on R2, and every I"-orbit has a rep-
resentative in the unit square such that two points in the square are in the same
orbit if and only if they satisfy the equivalence relation generated by the relations in
(3.19). Thus the orbit space R2/I" is homeomorphic to the Klein bottle, and since
the group action is isometric, it follows that the Klein bottle inherits a flat, locally
frame-homogeneous metric and the quotient map is a Riemannian covering. Prob-
lem 3-18 asks you to work out the details.

A connected sum of n > 3 copies of RP?: Such a surface is homeomorphic to a
quotient of a regular 2n-sided polygonal region by side identifications according to
ayaiazas...ayza, [LeeTM, Example 6.13]. As in the case of a connected sum of
tori, there is a compact region P C B2 bounded by a 2n-sided regular geodesic poly-
gon whose interior angles are all 7/n (see Fig. 3.10), and there is a discrete group
of isometries that realizes the appropriate side identifications and yields a quotient
homeomorphic to the connected sum. The new ingredient here is that because such
a connected sum is not orientable, we must work with the full group of isometries
of B2, not just the (orientation-preserving) ones determined by elements of G; but
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otherwise the argument is essentially the same as the one for connected sums of tori.
The details can be found in [Ive92, Section VII.1].

There is one remaining step. The arguments above show that each compact topo-
logical 2-manifold possesses a smooth structure and a locally frame-homogeneous
Riemannian metric, which admits a Riemannian covering by one of the three
frame-homogeneous model spaces. However, we started with a smooth compact
2-manifold, and we are looking for a Riemannian metric that is smooth with respect
to the given smooth structure. To complete the proof, we appeal to a result by James
Munkres [Mun56], which shows that any two smooth structures on a 2-manifold
are related by a diffeomorphism; thus after pulling back the metric by this diffeo-
morphism, we obtain a locally frame-homogeneous metric on M with its originally
given smooth structure. O

Locally homogeneous metrics also play a key role in the classification of compact
3-manifolds. In 1982, William Thurston made a conjecture about the classification
of such manifolds, now known as the Thurston geometrization conjecture. The
conjecture says that every compact, orientable 3-manifold can be expressed as a
connected sum of compact manifolds, each of which either admits a Riemannian
covering by a homogeneous Riemannian manifold or can be cut along embedded
tori so that each piece admits a finite-volume locally homogeneous Riemannian
metric. An important ingredient in the analysis leading up to the conjecture was his
classification of all simply connected homogeneous Riemannian 3-manifolds that
admit finite-volume Riemannian quotients. Thurston showed that there are exactly
eight such manifolds (see [Thu97] or [Sco83] for a proof):

R3 with the Euclidean metric

S* with a round metric

H3 with a hyperbolic metric

S? x R with a product of a round metric and the Euclidean metric

H? x R with a product of a hyperbolic metric and the Euclidean metric
The Heisenberg group H; of Example 3.16(g) with a left-invariant metric
The group Sol of Example 3.16(h) with a left-invariant metric

The universal covering group of SL(2,R) with a left-invariant metric

The Thurston geometrization conjecture was proved in 2003 by Grigori Perel-
man. The proof is described in several books [BBBMP, KL08, MF10, MT14].

Symmetric Spaces

We end this section with a brief introduction to another class of Riemannian mani-
folds with abundant symmetry, called symmetric spaces. They turn out to be inter-
mediate between frame-homogeneous and homogeneous Riemannian manifolds.
Here is the definition. If (M,g) is a Riemannian manifold and p € M, a
point reflection at p is an isometry ¢: M — M that fixes p and satisfies dg, =
—Id: T,M — T, M. A Riemannian manifold (M, g) is called a (Riemannian) sym-
metric space if it is connected and for each p € M there exists a point reflection at
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p. (The modifier “Riemannian” is included to distinguish such spaces from other
kinds of symmetric spaces that can be defined, such as pseudo-Riemannian sym-
metric spaces and affine symmetric spaces; since we will be concerned only with
Riemannian symmetric spaces, we will sometimes refer to them simply as “sym-
metric spaces” for brevity.)

Although we do not yet have the tools to prove it, we will see later that every
Riemannian symmetric space is homogeneous (see Problem 6-19). More generally,
(M, g) is called a (Riemannian) locally symmetric space if each p € M has a neigh-
borhood U on which there exists an isometry ¢ : U — U that is a point reflection at
p. Clearly every Riemannian symmetric space is locally symmetric.

The next lemma can be used to facilitate the verification that a given Riemannian
manifold is symmetric.

Lemma 3.23. If (M, g) is a connected homogeneous Riemannian manifold that pos-
sesses a point reflection at one point, then it is symmetric.

Proof. Suppose (M, g) satisfies the hypothesis, and let ¢ : M — M be a point re-
flection at p € M . Given any other point g € M, by homogeneity there is an isometry
V¥ : M — M satisfying ¥ (p) = g. Then § = ¥ op o~ ! is an isometry that fixes
q. Because d/,, is linear, it commutes with multiplication by —1, so

d§q = dypo(=1dr,,)od(y™"), = (~1dr,, ) ody,od ('),
= —IquM.

Thus ¢ is a point reflection at g. O

Example 3.24 (Riemannian Symmetric Spaces).

(a) Suppose (M, g) is any connected frame-homogeneous Riemannian manifold.
Then for each p € M, we can choose an orthonormal basis (b;) for T, M,
and frame homogeneity guarantees that there is an isometry ¢ : M — M that
fixes p and sends (b;) to (—b;), which implies that d¢, = —Id. Thus every
frame-homogeneous Riemannian manifold is a symmetric space. In particular,
all Euclidean spaces, spheres, and hyperbolic spaces are symmetric.

(b) Suppose G is a connected Lie group with a bi-invariant Riemannian metric g.
If we define @: G — G by @(x) = x~ 1, then it is straightforward to check
that d @, (v) = —v for every v € T, G, from which it follows that d @) (g.) =
ge. To see that @ is an isometry, let p € G be arbitrary. The identity ¢~! =
(p~'q)~'p~! forall ¢ € G implies that & = R ,—1 o @ o L ,—1, and therefore
it follows from bi-invariance of g that

(@*g)p=dPpg,1 =d(L,1),0d®; 0d(R,-1);8,1 = &p.

Therefore @ is an isometry of g and hence a point reflection at e. Lemma 3.23
then implies that (G, g) is a symmetric space.

(c) The complex projective spaces introduced in Example 2.30 and the Grassmann
manifolds introduced in Problem 2-7 are all Riemannian symmetric spaces (see
Problems 3-19 and 3-20).
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(d) Every product of Riemannian symmetric spaces is easily seen to be a sym-
metric space when endowed with the product metric. A symmetric space is
said to be irreducible if it is not isometric to a product of positive-dimensional
symmetric spaces. I

Model Pseudo-Riemannian Manifolds

The definitions of the Euclidean, spherical, and hyperbolic metrics can easily be
adapted to give analogous classes of frame-homogeneous pseudo-Riemannian mani-
folds.

The first example is one we have already seen: the pseudo-Euclidean space of
signature (r,s) is the pseudo-Riemannian manifold (]R’ S.q (r ’s)), where g () is the
pseudo-Riemannian metric defined by (2.24).

There are also pseudo-Riemannian analogues of the spherical and hyperbolic
metrics. For nonnegative integers r and s and a positive real number R, we define the
pseudosphere (S™* (R),qog’s)) and the pseudohyperbolic space (H"™* (R),cjg’s) ) as
follows. As manifolds, S™5(R) € R"*15 and H"*(R) € R™$*! are defined by

Sr,S(R) _ {(E’T) . (51)2_'__’_ (Sr+1)2—(fl)2—"'—(l’s)2 _ Rz},
H(R) = (6.0 (1) 44 (€)= (1) o () = R},

The metrics are the ones induced from the respective pseudo-Euclidean metrics:
ég,s) — [*q—(r—i-l,s) on Sr’S(R), and ég,s) — L*q—(r,s+1) on HV,S(R).

Theorem 3.25. For all r, s, and R as above, S™°(R) and H"*(R) are pseudo-
Riemannian manifolds of signature (r,s).

Proof. Problem 3-22. O

It turns out that these pseudo-Riemannian manifolds all have the same degree
of symmetry as the three classes of model Riemannian manifolds introduced ear-
lier. For pseudo-Riemannian manifolds, though, it is necessary to modify the defi-
nition of frame homogeneity slightly. If (M, g) is a pseudo-Riemannian manifold
of signature (r,s), let us say that an orthonormal basis for some tangent space
T, M is in standard order if the expression for g, in terms of the dual basis (¢') is
(V244 (e7)2 = (" T1)2 — ... — (¢"1%)2, with all positive terms coming before
the negative terms. With this understanding, we define O(M) to be the set of all
standard-ordered orthonormal bases for all tangent spaces to M, and we say that
(M, g) is frame-homogeneous if the isometry group acts transitively on O(M ).

Theorem 3.26. All pseudo-Euclidean spaces, pseudospheres, and pseudohyperbolic
spaces are frame-homogeneous.

Proof. Problem 3-23. O
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In the particular case of signature (n, 1), the Lorentz manifolds (S"-!(R), ﬁg”l))

and (H”=1 (R), c}g"l)) are called de Sitter space of radius R and anti-de Sitter space
of radius R, respectively.

Problems

3-1.

3-2.

3-3.

3-4.
3-5.

3-6.

3-8.

Show that (3.2) defines a smooth isometric action of E(n) on (R”,g), and
the induced action on O (R") is transitive. (Used on p. 57.)

Prove that the metric on RP” described in Example 2.34 is frame-homo-
geneous. (Used on p. 145)

Prove Proposition 3.1 (about homogeneous and isotropic Riemannian mani-
folds).

Complete the proof of Theorem 3.7 by showing that k*¢3 = gx-

(a) Prove that (S" (R),§R) is isometric to (S”, R2§) for each R > 0.

(b) Prove that (H" (R),gR) is isometric to (]HI”, Rzgr) for each R > 0.

(c) We could also have defined a family of metrics on R” by gz = R?g.

Why did we not bother?
(Used on p. 185.)

Show that two Riemannian metrics g; and g, are conformal if and only if
they define the same angles but not necessarily the same lengths, and that a
diffeomorphism is a conformal equivalence if and only if it preserves angles.
[Hint: Let (E£;) be a local orthonormal frame for g1, and consider the g,-angle
between E; and (cos6)E; + (sinf) E;.] (Used on p. 59.)

. Let U? denote the upper half-plane model of the hyperbolic plane (of radius

1), with the metric § = (dx? + dy?)/y?. Let SL(2,R) denote the group of
2 x 2 real matrices of determinant 1. Regard U? as a subset of the complex
plane with coordinate z = x + iy, and let

az+b (ab
z = =

- L(2,R).
cz+d’ Cd)es(’ )

Show that this defines a smooth, transitive, orientation-preserving, and iso-
metric action of SL(2,R) on (Uz,gf). Is the induced action transitive on
(0] (1U2) ?

Let B2 denote the Poincaré disk model of the hyperbolic plane (of radius 1),
with the metric § = (du? +dv?)/(1—u?—v?)?, and let G € GL(2,C) be the
subgroup defined by (3.18). Regarding B? as a subset of the complex plane
with coordinate w = u +iv, let G act on B2 by

(505t
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3-10.

3-11.

3-12.

3-13.

3-14.
3-15.

Show that this defines a smooth, transitive, orientation-preserving, and iso-
metric action of G on (B?,g). [Hint: One way to proceed is to define an
action of G on the upper half-plane by A -z = k! 0 Aok(z), where « is the
Cayley transform defined by (3.14) in the case R = 1, and use the result of
Problem 3-7.] (Used on pp. 73, 185.)

. Suppose G is a connected compact Lie group with a left-invariant metric g

and a left-invariant orientation. Show that the Riemannian volume form d V,
is bi-invariant. [Hint: Show that d V¢ is equal to the Riemannian volume
form fora bi-invariant metric.]

Consider the basis

(00 =0 ()

for the Lie algebra su(2). For each positive real number a, define a left-
invariant metric g, on the group SU(2) by declaring X,Y,aZ to be an
orthonormal frame.

(a) Show that g, is bi-invariant if and only if a = 1.

(b) Show that the map defined by (3.16) is an isometry between (83,§)
and (SU(2),g1). [Remark: SU(2) with any of these metrics is called a
Berger sphere, named after Marcel Berger.]

(Used on pp. 56, 71, 259.)

Prove that the formula (4, B) = tr(ATB) defines a bi-invariant Riemannian
metric on O(n). (See Example 3.16(e).)

Regard the upper half-space U” as a Lie group as described in Example
3.16(%).

(a) Show that for each R > 0, the hyperbolic metric gr}‘e on U” is left-
invariant.
(b) Show that U” does not admit any bi-invariant metrics.

(Used on pp. 68, 72.)

Write down an explicit formula for an arbitrary left-invariant metric on the
Heisenberg group H, of Example 3.16(g) in terms of global coordinates
(x',....,x", y',...,¥",2), and show that the group has no bi-invariant met-
rics. (Used on pp. 68, 72.)

Repeat Problem 3-13 for the group Sol of Example 3.16(h). (Used on p. 72.)

Let R™! be the (n + 1)-dimensional Minkowski space with coordinates
(£.7) = (£'.....€".7) and with the Minkowski metric g™ =}, a’(éi)2 -
d7?. Let S € R™! be the set

S={E1:E)V++E)=r=1}
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3-16.

3-17.

3-18.

3-19.

3-20.

3-21.

3-22.

3 Model Riemannian Manifolds

(a) Prove that S is a smooth submanifold diffeomorphic to S”~1, and with
the induced metric ¢ = (5q (1) it is isometric to the round unit (n — 1)-
sphere.

(b) Define an action of the orthochronous Lorentz group Ot (n,1) on S as
follows: For every p € S, let (p) denote the 1-dimensional subspace of
R”! spanned by p. Given 4 € O (n, 1), show that the image set A((p))
is a 1-dimensional subspace that intersects S in exactly one point, so we
can define A - p to be the unique point in S N A({p)). Prove that this is a
smooth transitive action on S.

(¢) Prove that O" (n,1) acts by conformal diffeomorphisms of (S, g).

Prove that there is no Riemannian metric on the sphere that is invariant under
the group action described in Problem 3-15.

Given a Lie group G, define an action of the product group G x G on G
by (¢1,92) - ¥ = ¢1¥ @, . Show that this action is transitive, and that the
isotropy group of the identity is the diagonal subgroup A = {(¢,¢) : ¢ € G}.
Then show that the following diagram commutes:

A ~ G

I, lAd
GL(T.G) = GL(g),

where I, is the isotropy representation of A and g is the Lie algebra of G,
and use this to give an alternative proof of Theorem 3.14.

Let I" € E(2) be the subgroup defined by (3.20). Prove that I" acts freely and
properly on R? and the orbit space is homeomorphic to the Klein bottle, and
conclude that the Klein bottle has a flat metric and a Riemannian covering by
the Euclidean plane.

Show that the Fubini—Study metric on CP” (Example 2.30) is homogeneous,
isotropic, and symmetric. (Used on p. 78.)

Show that the metric on the Grassmannian G (R”) defined in Problem 2-7 is
homogeneous and symmetric. (Used on p. 78.)

Let (1\7 ,§) be a simply connected Riemannian manifold, and suppose I
and I are countable subgroups of Iso (]\7 , §) acting smoothly, freely, and
properly on M (when endowed with the discrete topology). For i = 1,2, let
M; = M /T3, and let g; be the Riemannian metric on M; that makes the
quotient map ; : M — M; a Riemannian covering (see Prop. 2.32). Prove
that the Riemannian manifolds (M1, g1) and (M3, g>) are isometric if and
only if I'y and I, are conjugate subgroups of Iso (M, g).

Prove Theorem 3.25 (showing that pseudospheres and pseudohyperbolic
spaces are pseudo-Riemannian manifolds). [Hint: Mimic the argument in the
proof of Theorem 3.7 that H” (R) is Riemannian.]
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3-23.

3-24.

3-25.

Prove Theorem 3.26 (pseudo-Euclidean spaces, pseudospheres, and pseudo-
hyperbolic spaces are frame-homogeneous).

Prove that for all positive integers r and s and every real number R >0, both the
pseudohyperbolic space H"™*(R) and the pseudosphere S*"(R) are diffeo-
morphic to R” x S*. [Hint: Consider the maps ¢, : R” xS® — R” 5+ given
by

o(x,y) = <Rx, (\/ 1+ |x|2)Ry) . Y(x,y) = ((\/ 1+ |x|2)Ry,Rx> ]

Let (K’ (R), g%) be the r-dimensional ball of radius R with the Beltrami—

Klein metric (3.9), and let H""! (R) be the product manifold K" (R) x R with
the pseudo-Riemannian warped product metric ¢ = g% @ (— f?d1?), where
f:K"(R) — R™ is given by

RZ

f(w) = —’RZ——|w|2

Define F: H"!(R) — R"2 by

(Rw, R?cost, R%sint)
VR —[wlz

Prove that the image of F is the anti-de Sitter space H">!(R), and F de-
fines a pseudo-Riemannian covering of (H”I(R),qg’l)) by (ﬁr’l(R),q).
[Remark: We are tacitly extending the notions of warped product metric and
Riemannian coverings to the pseudo-Riemannian case in the obvious ways.
It follows from the result of Problem 3-24 that H"*(R) is simply connected
when s > 2 but H"!(R) is not. This shows that (H"'(R).q), called uni-
versal anti-de Sitter space of radius R, is the universal pseudo-Riemannian
covering manifold of (H”1 (R), qg’])).]

F(w,t) =




t‘)

Check for
updates

Chapter 4
Connections

Our ultimate goal is to define a notion of curvature that makes sense on arbitrary Rie-
mannian manifolds, and to relate it to other geometric and topological properties.
Before we can do so, however, we need to study geodesics, the generalizations to
Riemannian manifolds of straight lines in Euclidean space. There are two key prop-
erties satisfied by straight lines in R”, either of which serves to characterize them
uniquely: first, every segment of a straight line is the unique shortest path between its
endpoints; and second, straight lines are the only curves that have parametrizations
with zero acceleration.

The first of these characterizations—as shortest paths—is probably the most “ge-
ometric,” so it is tempting to try to use it as a definition of geodesics in Riemannian
manifolds. However, this property turns out to be technically difficult to work with
as a definition, so instead we will use “zero acceleration” as the defining property
and generalize that.

To make sense of acceleration on a manifold, we have to introduce a new object
called a connection—essentially a coordinate-independent set of rules for taking
directional derivatives of vector fields.

We begin this chapter by examining more closely the problem of finding an in-
variant interpretation for the acceleration of a curve, as a way to motivate the defini-
tions that follow. We then give a rather general definition of a connection, in terms
of directional derivatives of sections of vector bundles. After deriving some basic
properties of connections, we show how to use them to differentiate vector fields
along curves, to define geodesics, and to define “parallel transport” of vectors along
curves.

The Problem of Differentiating Vector Fields

To see why we need a new kind of differentiation operator, let us begin by thinking
informally about curves in R”. Let / € R be an interval and y: I — R” a smooth
curve, written in standard coordinates as y(¢) = ()/l(t), ey y”(t)). Such a curve
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has a well-defined velocity y’(t) and acceleration y” (t) at each t € I, computed by
differentiating the components:

. 9 .
YO =70 55|+ VO 55 (4.1)
Xy Xy
) 9 i
V=70 x| AT O 5] (4.2)
Xy Xy

(Here and throughout the book, we use dots to denote ordinary derivatives with
respect to ¢ when there are superscripts that would make primes hard to read.) A
curve y in R” is a straight line if and only if it has a parametrization for which
y"(t)=0.

We can also make sense of directional derivatives of vector fields on R”, just by
computing ordinary directional derivatives of the component functions in standard
coordinates: given a vector field ¥ € .%(R") and a vector v € T,R", we define the
Euclidean directional derivative of Y in the direction v by the formula

- 9
V”Y:”(Yl)ax_l 4+ +v(Y") |
p p

where for each i, v(Yi) is the result of applying the vector v to the function Y*:

- ' (p) ' (p)
Yi) = 127 M n )
vyt =v dx! + dx”
If X is another vector field on R", we obtain a new vector field VxY by evaluating
Vx,Y ateach point:

ﬁxyzx(yl)i+---+x(yn) ) (4.3)

dx! axn’

More generally, we can play the same game with curves and vector fields on a
submanifold of R”. Suppose M C R” is an embedded submanifold, and consider
a smooth curve y: I — M. We want to think of a geodesic in M as a curve in M
that is “as straight as possible.” Of course, if M itself is curved, then y’(¢) (thought
of as a vector in R") will probably have to vary, or else the curve will leave M.
But we can try to insist that the velocity not change any more than necessary for
the curve to stay in M. One way to do this is to compute the Euclidean acceleration
y”(t) as above, and then apply the tangential projection 7 : T,oR" - T,(xZwM
(see Prop. 2.16). This yields a vector y”(¢)T = 7 T (y”(¢)) tangent to M, which we
call the tangential acceleration of y. It is reasonable to say that y is as straight as it
is possible for a curve in M to be if its tangential acceleration is zero.

Similarly, suppose Y is a smooth vector field on (an open subset of) M, and we
wish to ask how much Y is varying in M in the direction of a vector v € T, M . Just
as in the case of velocity vectors, if we look at it from the point of view of R”, the
vector field ¥ might be forced to vary just so that it can remain tangent to M. But
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y
0
Y'(@®)
A
y'(@)
x
®
r
3
Fig. 4.1: Cartesian coordinates Fig. 4.2: Polar coordinates

one plausible way to answer the question is to extend Y to a smooth vector field Y
on an open subset of R”, compute the Euclidean directional derivative of Y in the
direction v, and then project orthogonally onto 7, M. Let us define the tangential
directional derivative of Y in the direction v to be

VoY =xT(V, 7). (4.4)

Problem 4-1 shows that the tangential directional derivative is well defined and pre-
served by rigid motions of R”. However, at this point there is little reason to believe
that the tangential directional derivative is an intrinsic invariant of M (one that de-
pends only on the Riemannian geometry of M with its induced metric).

On an abstract Riemannian manifold, for which there is no “ambient Euclidean
space” in which to differentiate, this technique is not available. Thus we have to
find some way to make sense of the acceleration of a smooth curve in an abstract
manifold. Let y: I — M be such a curve. As you know from your study of smooth
manifold theory, at each time ¢ € I, the velocity of y is a well-defined vector y'(¢) €
Ty )M (see Appendix A), whose representation in any coordinates is given by (4.1),
just as in Euclidean space.

However, unlike velocity, acceleration has no such coordinate-independent in-
terpretation. For example, consider the parametrized circle in the plane given in
Cartesian coordinates by y(¢) = (x(¢), y(¢)) = (cost,sint) (Fig. 4.1). As a smooth
curve in R2, it has an acceleration vector at time ¢ given by

a "
P +y7(1) —

y'(t) =x"(1)
y(@) dy

y(®)

—sint —

= —COSI —
0 9y

ox

y(t)
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y'(t+h)

Fig. 4.3: y’(¢) and y’(¢ + h) lie in different vector spaces

But in polar coordinates, the same curve is described by (r(¢),6(¢)) = (1,¢) (Fig.
4.2). In these coordinates, if we try to compute the acceleration vector by the anal-
ogous formula, we get

9 +0"(t) 9
ar

—0.
0 90

y(2)

v =r"()

The problem is this: to define y”(¢) by differentiating y’(¢) with respect to f,
we have to take a limit of a difference quotient involving the vectors y’(¢ + k) and
y'(t); but these live in different vector spaces (T +n) M and T, )M respectively),
so it does not make sense to subtract them (Fig. 4.3). The definition of acceleration
works in the special case of smooth curves in R” expressed in standard coordinates
(or more generally, curves in any finite-dimensional vector space expressed in linear
coordinates) because each tangent space can be naturally identified with the vector
space itself. On a general smooth manifold, there is no such natural identification.

The velocity vector y’(¢) is an example of a vector field along a curve, a concept
for which we will give a rigorous definition presently. To interpret the acceleration
of a curve in a manifold, what we need is some coordinate-independent way to
differentiate vector fields along curves. To do so, we need a way to compare values
of the vector field at different points, or intuitively, to “connect” nearby tangent
spaces. This is where a connection comes in: it will be an additional piece of data
on a manifold, a rule for computing directional derivatives of vector fields.

Connections

It turns out to be easiest to define a connection first as a way of differentiating
sections of vector bundles. The definition is meant to capture the essential properties
of the Euclidean and tangential directional derivative operators (V and V) that we
defined above. (We will verify later that those operators actually are connections;
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see Examples 4.8 and 4.9.) After defining connections in this general setting, we
will adapt the definition to the case of vector fields along curves.

Let 7: E — M be a smooth vector bundle over a smooth manifold M with
or without boundary, and let T'(E) denote the space of smooth sections of E. A
connection in E is a map

V: X(M)xT(E) — T'(E),

written (X, Y) — Vx Y, satisfying the following properties:
(i) VxY islinear over C*°(M) in X: for f1, f, € C®°(M) and X1, X, € X(M),

Viaxi+px.Y = iVx, Y + f2Vx, Y.
(i) VxY islinearover R in Y: fora;,a; € R and Y1,Y; € T'(E),
Vx(@Yi1+axY2) =a1VxY1 +axVxYa.
(iii) V satisfies the following product rule: for f € C*°(M),
Vx(fY)=fVxY +(Xf)Y.

The symbol V is read “del” or “nabla,” and Vx Y is called the covariant derivative
of Y in the direction X . (This use of the word “covariant” has nothing to do with
covariant functors in category theory. It is related, albeit indirectly, to the use of
the word in the context of covariant and contravariant tensors, in that it reflects the
fact that the components of the covariant derivative have a transformation law that
“varies correctly” to give a well-defined meaning independent of coordinates. From
the modern coordinate-free point of view, “invariant derivative” would probably be
a better term.)

There is a variety of types of connections that are useful in different circum-
stances. The type of connection we have defined here is sometimes called a Koszul
connection to distinguish it from other types. Since we have no need to consider
other types of connections in this book, we refer to Koszul connections simply as
connections.

Although a connection is defined by its action on global sections, it follows from
the definitions that it is actually a local operator, as the next lemma shows.

Lemma 4.1 (Locality). Suppose V is a connection in a smooth vector bundle E —
M. Forevery X e X(M), Y e I'(E), and p € M, the covariant derivative VxY |,
depends only on the values of X and Y in an arbitrarily small neighborhood of
p- More precisely, if X = X and Y =Y on a neighborhood of p, then VxY |, =
ViYp.

Proof. First consider Y. Replacing ¥ by Y — Y shows that it suffices to prove
VxY|p, =0if Y vanishes on a neighborhood of p.

Thus suppose Y is a smooth section of E that is identically zero on a neighbor-
hood U of p. Choose a bump function ¢ € C°° (M) with support in U such that



90 4 Connections

@(p) = 1. The hypothesis that Y vanishes on U implies that ¢¥ = 0 on all of M,
soforevery X € X(M),wehave Vx (¢Y) = Vx(0-¢Y) = 0Vx(¢Y) = 0. Thus the
product rule gives

0=Vx(@Y)=(X@)Y +o(VxT). (4.5)

Now Y = 0 on the support of ¢, so the first term on the right is identically zero.
Evaluating (4.5) at p shows that Vx Y|, = 0. The argument for X is similar but
easier. |

» Exercise 4.2. Complete the proof of Lemma 4.1 by showing that VxY and VY
agree at p if X = X on a neighborhood of p.

Proposition 4.3 (Restriction of a Connection). Suppose V is a connection in a
smooth vector bundle E — M. For every open subset U C M, there is a unique
connection VY on the restricted bundle E |y that satisfies the following relation for
every X e X(M)andY € T'(E):

VoY w) = (VxY) ;. (4.6)

Proof. First we prove uniqueness. Suppose VY is any such connection and X €
X(U) and Y € T'(E|y) are arbitrary. Given p € U, we can use a bump function to
construct a smooth vector field Xe X (M) and a smooth section Ye I'(E) such that
X |u agrees with X and Y |y with Y on some neighborhood of p, and then Lemma
4.1 together with (4.6) implies

viY|, = vf’ilu)(ﬂyﬂp = (VzY)|,. 4.7)

Since the right-hand side is completely determined by V, this shows that VY is
uniquely defined if it exists.

To prove existence, given X € X(U) and Y € I'(E|y), for every p € U we just
construct X “and Y as above, and define VU Y|, by (4.7). This is independent of the
choices of X and ¥ by Lemma 4.1, and it is smooth because the same formula holds
on some neighborhood of p. The fact that it satisfies the properties of a connection
is an easy exercise. |

» Exercise 4.4. Complete the proof of the preceding proposition by showing that V¥ is
a connection.

In the situation of this proposition, we typically just refer to the restricted con-
nection as V instead of VV; the proposition guarantees that there is no ambiguity in
doing so.

Lemma 4.1 tells us that we can compute the value of Vx Y at p knowing only the
values of X and Y in a neighborhood of p. In fact, as the next proposition shows,
we need only know the value of X at p itself.

Proposition 4.5. Under the hypotheses of Lemma 4.1, VxY |, depends only on the
values of Y in a neighborhood of p and the value of X at p.
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Proof. The claim about Y was proved in Lemma 4.1. To prove the claim about X,
it suffices by linearity to assume that X, = 0 and show that Vx Y|, = 0. Choose
a coordinate neighborhood U of p, and write X = X?9; in coordinates on U, with
X?(p) = 0. Thanks to Proposition 4.3, it suffices to work with the restricted con-
nection on U, which we also denote by V. For every Y € I'(E|y), we have

VxY|p=Vyiy Y| =X (p)Vy, Y|, =0. 0

Thanks to Propositions 4.3 and 4.5, we can make sense of the expression V,Y
when v is some element of T, M and Y is a smooth local section of E defined only
on some neighborhood of p. To evaluate it, let X be a vector field on a neighbor-
hood of p whose value at p is v, and set V,Y = VxY|,. Proposition4.5 shows
that the result does not depend on the extension chosen. Henceforth, we will inter-
pret covariant derivatives of local sections of bundles in this way without further
comment.

Connections in the Tangent Bundle

For Riemannian or pseudo-Riemannian geometry, our primary concern is with con-
nections in the tangent bundle, so for the rest of the chapter we focus primarily on
that case. A connection in the tangent bundle is often called simply a connection on
M . (The terms affine connection and linear connection are also sometimes used
in this context, but there is little agreement on the precise definitions of these terms,
so we avoid them.)

Suppose M is a smooth manifold with or without boundary. By the definition we
just gave, a connection in 7'M is a map

ViXM)xX(M)—>X(M)

satisfying properties (i)—(iii) above. Although the definition of a connection resem-
bles the characterization of (1,2)-tensor fields given by the tensor characterization
lemma (Lemma B.6), a connection in 7'M is not a tensor field because it is not linear
over C*°(M) in its second argument, but instead satisfies the product rule.

For computations, we need to examine how a connection appears in terms of a
local frame. Let (E;) be a smooth local frame for 7M on an open subset U € M.
For every choice of the indices i and j, we can expand the vector field Vg, E; in
terms of this same frame:

Vi, Ej =T)Ey. (4.8)

As i, j, and k range from 1 to n = dim M, this defines n3 smooth functions
Fikj: U — R, called the connection coefficients of V with respect to the given
frame. The following proposition shows that the connection is completely deter-
mined in U by its connection coefficients.

Proposition 4.6. Let M be a smooth manifold with or without boundary, and let
V be a connection in TM. Suppose (E;) is a smooth local frame over an open sub-
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set U C M, and let {Fl];} be the connection coefficients of V with respect to this
frame. For smooth vector fields X.Y € X(U), written in terms of the frame as
X=X'E,,Y =Y/E;, one has

VxY = (X(Y*)+ X'Y/T})Ey. (4.9)
Proof. Just use the defining properties of a connection and compute:

VxY =Vx(Y'E))
=X(Y/)E;+Y/Vyip E;
=X(Y/)E; +X'Y/Vg,E;
=X(Y)E; + X'Y/ T} Ey.

Renaming the dummy index in the first term yields (4.9). a

Once the connection coefficients (and thus the connection) have been determined
in some local frame, they can be determined in any other local frame on the same
open set by the result of the following proposition.

Proposition 4.7 (Transformation Law for Connection Coefficients). Let M be
a smooth manifold with or without boundary, and let V be a connection in TM.
Suppose we are given two smooth local frames (E;) and (E j) for TM on an open
subset U C M, related by E; = Al! E; for some matrix of functions (Al]) Let Fikj
Tk . . .
and T'j; denote the connection coefficients of V with respect to these two frames.
Then . .
=k -1 -1
If=(4 )pA?A;F;, + (4 )pA;?Eq(Af). (4.10)
Proof. Problem 4-3. O

Observe that the first term above is exactly what the transformation law would
be if Fikj were the components of a (1,2)-tensor field; but the second term is of a

different character, because it involves derivatives of the transition matrix (Aj.’ ).

Existence of Connections

So far, we have studied properties of connections but have not produced any, so you
might be wondering whether they are plentiful or rare. In fact, they are quite plenti-
ful, as we will show shortly. Let us begin with the simplest example.

Example 4.8 (The Euclidean Connection). In 7R”, define the Euclidean connec-
tion V by formula (4.3). It is easy to check that this satisfies the required proper-
ties for a connection, and that its connection coefficients in the standard coordinate
frame are all zero. VA

Here is a way to construct a large class of examples.
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Example 4.9 (The Tangential Connection on a Submanifold of R”). Let M C R”
be an embedded submanifold. Define a connection V' on TM, called the tangential

connection, by setting o
VyY = ”T(V)"('Y{M)’

where 7 is the orthogonal projection onto TM (Prop. 2.16), V is the Euclidean
connection on R” (Example 4.8), and X and Y are smooth extensions of X and
Y to an open set in R”. (Such extensions exist by the result of Exercise A.23.)
Since the value of ﬁ)ﬂ? at a point p € M depends only on X p = X, this just boils
down to defining (V;Y ) to be equal to the tangential directional derivative V;p Y
that we defined in (4.4) gf)ove. Problem 4-1 shows that this value is independent of
the choice of extension Y, so VT is well defined. Smoothness is easily verified by
expressing V gf in terms of an adapted orthonormal frame (see Prop. 2.14).

It is immediate from the definition that V;Y is linear over C*°(M) in X and
over R in Y, so to show that VT is a connection, only the product rule needs to be
checked. Let f € C*°(M), and let f~ be an extension of f to a neighborhood of M
in R”. Then f Y is a smooth extension of fY to aneighborhood of M, so

Vi) =" (V5(F7)],)
=7 (XN)T],) +7" (V%7 ],)
= (Xf)Y + fV,Y.

Thus V7 is a connection. /

In fact, there are many connections on R”, or indeed on every smooth manifold
that admits a global frame (for example, every manifold covered by a single smooth
coordinate chart). The following lemma shows how to construct all of them explic-
itly.

Lemma 4.10. Suppose M is a smooth n-manifold with or without boundary, and
M admits a global frame (E;). Formula (4.9) gives a one-to-one correspondence
between connections in TM and choices of n® smooth real-valued functions {F l’;}
on M.

Proof. Every connection determines functions {I‘l];} by (4.8), and Proposition 4.6

shows that those functions satisfy (4.9). On the other hand, given {Fikj}, we can
define Vx Y by (4.9); it is easy to see that the resulting expression is smooth if X and
Y are smooth, linear over R in Y, and linear over C*°(M) in X . To prove that it is a
connection, only the product rule requires checking; this is a straightforward
computation left as an exercise. |

» Exercise 4.11. Complete the proof of Lemma 4.10.

Proposition 4.12. The tangent bundle of every smooth manifold with or without
boundary admits a connection.
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Proof. Let M be a smooth manifold with or without boundary, and cover M with
coordinate charts {U, }; the preceding lemma guarantees the existence of a connec-
tion V* on each Uy. Choose a partition of unity {¢, } subordinate to {U, }. We would
like to patch the various V%’s together by the formula

VxY =) ¢aV§Y. 4.11)
o

Because the set of supports of the ¢q’s is locally finite, the sum on the right-hand
side has only finitely many nonzero terms in a neighborhood of each point, so it
defines a smooth vector field on M. It is immediate from this definition that Vx Y is
linear over R in Y and linear over C *°(M) in X. We have to be a bit careful with the
product rule, though, since a linear combination of connections is not necessarily a
connection. (You can check, for example, that if V9 and V! are connections, then
neither 2V nor V° 4 V! satisfies the product rule.) By direct computation,

Vx(fY) =) ¢aV§(fY)
= 0u((XF)Y + fV%Y)
=(XNYY gut f Y 0aVsY

= (Xf)Y + fVxY. O

Although a connection is not a tensor field, the next proposition shows that the
difference between two connections is.

Proposition 4.13 (The Difference Tensor). Let M be a smooth manifold with or

without boundary. For any two connections V° and V' in TM, define a map
D: X(M)xX(M)— X(M) by

D(X,Y)=VyY -VyY.

Then D is bilinear over C*° (M), and thus defines a (1,2)-tensor field called the
difference tensor between V° and V.

Proof. Tt is immediate from the definition that D is linear over C°°(M) in its first
argument, because both V° and V! are. To show that it is linear over C (M) in the
second argument, expand D (X, fY) using the product rule, and note that the two
terms in which f is differentiated cancel each other. O

Now that we know there is always one connection in 7M, we can use the result
of the preceding proposition to say exactly how many there are.

Theorem 4.14. Let M be a smooth manifold with or without boundary, and let V°
be any connection in TM. Then the set A(TM) of all connections in TM is equal
to the following affine space:
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ATM)={V°+D:D eT(T?TM)},

where D € F(T(l’z) TM) is interpreted as a map from X(M) x X(M) to X(M) as
in Proposition B.1, and V° + D : X(M) x X(M) — X (M) is defined by

(VO+D),Y =V3Y + D(X.Y).

Proof. Problem 4-4. O

Covariant Derivatives of Tensor Fields

By definition, a connection in TM is a rule for computing covariant derivatives of
vector fields. We show in this section that every connection in 7'M automatically in-
duces connections in all tensor bundles over M, and thus gives us a way to compute
covariant derivatives of tensor fields of any type.

Proposition 4.15. Let M be a smooth manifold with or without boundary, and let
V be a connection in TM . Then V uniquely determines a connection in each tensor
bundle T®DTM, also denoted by V, such that the following four conditions are
satisfied.

(i) In TEOTM = TM, V agrees with the given connection.
(i) In TOOTM = M xR, V is given by ordinary differentiation of functions:

Vx f = XJ.
(iii) V obeys the following product rule with respect to tensor products:
Vx(F®G)=(VxF)® G+ F ®(VxG).

(iv) V commutes with all contractions: if “tr” denotes a trace on any pair of in-
dices, one covariant and one contravariant, then

Vx(tr F)=tr(Vx F).

This connection also satisfies the following additional properties:

(a) V obeys the following product rule with respect to the natural pairing between
a covector field w and a vector field Y :

Vx (a),Y) = (VXa),Y) + (a),VXY) .

(b) For all F € F(T(k’l)TM), smooth 1-forms ol,....0% and smooth vector
fields Y1,...,Y,
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(VxF)(o',....0" 71,....7)) = X (F(o',....0" Y1,....Y}))

k
—ZF(a)l,...,VXwi,...,a)k,Yl,...,Yl)
i=1 (4.12)

!
—Y F(o'.....0F Y1, VxY;....Y)).
j=1

Proof. First we show that every family of connections on all tensor bundles satisfying
(1)—(iv) also satisfies (a) and (b). Suppose we are given such a family of connections,
all denoted by V. To prove (a), note that (w,Y) = tr(w ® Y), as can be seen by
evaluating both sides in coordinates, where they both reduce to ;Y. Therefore,

(i)~(iv) imply

Vx{w,Y)=Vyx (tr(a) ® Y))
=t(Vx(0®Y))
=tr(Vxo®Y +0®VxY)
=(Vxw,Y)+{(w,VxY).

Then (b) is proved by induction using a similar computation applied to

F(o'....0" Y1,....Y)) =tio- ot (FRO'® -0 @Y, -0 1)),
~——
K+l

where each trace operator acts on an upper index of F' and the lower index of the
corresponding 1-form, or a lower index of F and the upper index of the correspond-
ing vector field.

Next we address uniqueness. Assume again that V represents a family of connec-
tions satisfying (i)—(iv), and hence also (a) and (b). Observe that (ii) and (a) imply
that the covariant derivative of every 1-form w can be computed by

(Vxw)(¥) =X(X))—o(VxY). (4.13)

It follows that the connection on 1-forms is uniquely determined by the original
connection in 7M. Similarly, (b) gives a formula that determines the covariant
derivative of every tensor field F' in terms of covariant derivatives of vector fields
and 1-forms, so the connection in every tensor bundle is uniquely determined.

Now to prove existence, we first define covariant derivatives of 1-forms by (4.13),
and then we use (4.12) to define V on all other tensor bundles. The first thing that
needs to be checked is that the resulting expression is multilinear over C°*°(M) in
each ®’ and Y, and therefore defines a smooth tensor field. This is done by inserting
fo' inplace of v, or f Y; in place of Y}, and expanding the right-hand side, noting
that the two terms in which f is differentiated cancel each other out. Once we know
that Vx F is a smooth tensor field, we need to check that it satisfies the defining
properties of a connection. Linearity over C*°(M) in X and linearity over R in F'
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are both evident from (4.12) and (4.13), and the product rule in F follows easily
from the fact that differentiation of functions by X satisfies the product rule. |

While (4.12) and (4.13) are useful for proving the existence and uniqueness of the
connections in tensor bundles, they are not very practical for computation, because
computing the value of Vx F at a point requires extending all of its arguments to
vector fields and covector fields in an open set, and computing a great number of
derivatives. For computing the components of a covariant derivative in terms of a
local frame, the formulas in the following proposition are far more useful.

Proposition 4.16. Let M be a smooth manifold with or without boundary, and let
V be a connection in TM. Suppose (E;) is a local frame for M, (8/) is its dual

coframe, and { Fl’;} are the connection coefficients of V with respect to this frame.

Let X be a smooth vector field, and let X' E; be its local expression in terms of this
frame.

(a) The covariant derivative of a 1-form w = w;&" is given locally by
Vx (@) = (X(op) — X/ i T ) ek

B If F € I‘(T(k’l)TM ) is a smooth mixed tensor field of any rank, expressed
locally as
F= F]lll ;I;Ezl®"'®Eik®811®...®8h’

then the covariant derivative of F is given locally by

- ll...p...lk 5 ll Ak
VXF_( ( i ”>+me Jredi Fl me J1epeeci mlv)x

E;, ®"'®Eik ®8“ ®--®ell.
Proof. Problem 4-5. O

Because the covariant derivative Vy F of a tensor field (or, as a special case,
a vector field) is linear over C*°(M) in X, the covariant derivatives of F in all
directions can be handily encoded in a single tensor field whose rank is one more
than the rank of F, as follows.

Proposition 4.17 (The Total Covariant Derivative). Letr M be a smooth mani-

fold with or without boundary and let V be a connection in TM. For every F €
F(T(k’l)TM), the map

VF: QM) x---xQUM)xEM) x---xX(M) — C®(M)

k copies [+1 copies
given by

(VF)(0',....0" Y1,....Y,X) = (Vx F)(0',....,0" Y1,....7]) (4.14)
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defines a smooth (k,l + 1)-tensor field on M called the total covariant derivative
of F.

Proof. This follows immediately from the tensor characterization lemma (Lemma
B.6): Vx F is a tensor field, so it is multilinear over C *°(M) in its k + [ arguments;
and it is linear over C*°(M) in X by definition of a connection. |

When we write the components of a total covariant derivative in terms of a local
frame, it is standard practice to use a semicolon to separate indices resulting from
differentiation from the preceding indices. Thus, for example, if ¥ is a vector field
written in coordinates as Y = Y E;, the components of the (1, 1)-tensor field VY
are written Yi; j» so that ' _

VY = Yt;jEi ®8'l,

with
. . K rmi
Yl;jZEle—i-Y F}k'

For a 1-form w, the formulas read
Vo = ;& @&, with w;;; =Eja)i—ka5~‘i.

More generally, the next lemma gives a formula for the components of total co-
variant derivatives of arbitrary tensor fields.

Proposition 4.18. Let M be a smooth manifold with or without boundary and let V
be a connection in TM ; and let (E;) be a smooth local frame for TM and { Fl];}
the corresponding connection coefficients. The components of the total covariant
derivative of a (k,l)-tensor field F with respect to this frame are given by

i1 _ l l].‘.p...lk 15 i1
FJI Jrim E ( )+ZF F ZFlln-Pqu mjs*

» Exercise 4.19. Prove Proposition 4.18.

» Exercise 4.20. Suppose F is a smooth (k,/)-tensor field and G is a smooth (r,s)-
tensor field. Show that the components of the total covariant derivative of F @ G are given
by
i1...ig P1...Dr _ 11 .Dr i1...ifg ;4 P1...DF
(V(F ®G)) < J141...4s:m F 11 chf]I...qi + Fjll~~~jl G‘hlu.qs;m
[Remark: This formula is often written in the following way, more suggestive of the product
rule for ordinary derivatives:
i...0k Dy ll Lk - i1...0k (v P1...Dr

<Fj1...j[ Gtﬁl---q‘z >: - F Jr qupll p\ +Fj|...j, Glhl---qs:m'
Notice that this does not say that V(F ® G) = (VF)® G + F ® (VG), because in the
first term on the right-hand side of this latter formula, the index resulting from differentia-
tion is not the last lower index.]



Covariant Derivatives of Tensor Fields 99

Second Covariant Derivatives

Having defined the tensor field V F for a (k,[)-tensor field F, we can in turn take its
total covariant derivative and obtain a (k, 4 2)-tensor field V2 F = V(V F). Given
vector fields X,Y € X(M), let us introduce the notation V)Z( y F for the (k,[)-tensor

field obtained by inserting X, Y in the last two slots of V2 F
ViyF(..)=V?*F(..Y.X).

Note the reversal of order of X and Y': this is necessitated by our convention that
the /ast index position in V F is the one resulting from differentiation, while it is
conventional to let V2 .y stand for differentiating first in the Y direction, then in the
X direction. (For this reason, some authors adopt the convention that the new index
position introduced by differentiation is the first instead of the last. As usual, be sure
to check each author’s conventions when you read.)

It is important to be aware that V y I is not the same as Vy (Vy F'). The main
reason is that the former is linear over C (M) in Y, while the latter is not. The
relationship between the two expressions is given in the following proposition.

Proposition 4.21. Let M be a smooth manifold with or without boundary and let V
be a connection in TM. For every smooth vector field or tensor field F,

ViyF =Vx(Vy F)—Vv,1)F.

Proof. A covariant derivative Vy F can be expressed as the trace of VF ® Y on its
last two indices:
VyF=tu(VFQ®Y),

as you can verify by noting that both expressions have the same component formula,

Fj’ll ;’l‘m Y™, Similarly, Vg( y I can be expressed as an iterated trace:

ViyF=tu(c(VPVFRX)QY).

(First trace the last index of V2 F with that of X, and then trace the last remaining
free index—originally the second-to-last in V2 F—with that of Y.)
Therefore, since Vy commutes with contraction and satisfies the product rule
with respect to tensor products (Prop. 4.15), we have
Vx(Vy F)=Vyx (tr(VF ® Y))
= tr(VX (VF® Y))
= tr(VX(VF) QY +VF ®VXY)
=tu(r(V’FRX)®Y)+u(VF®VxY)
ZV)Z(,YF-i-V(ny)F. (]
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Example 4.22 (The Covariant Hessian). Let u be a smooth function on M. Then
Vu e I(TOVTM) = Q1 (M) is just the I-form du, because both tensors have
the same action on vectors: Vu(X) = Vyu = Xu = du(X). The 2-tensor V?u =
V(du) is called the covariant Hessian of u. Proposition 4.21 shows that its action
on smooth vector fields X, Y can be computed by the following formula:

V2u(Y,X) =V yu = Vx (Vyu) = Viyy ryu =X(Yu) — (Vx¥ u.

In any local coordinates, it is

Viu = u;ijdxi ®dx’, with u,;; = 3j8iu—l";-‘i8ku. /

Vector and Tensor Fields Along Curves

Now we can address the question that originally motivated the definition of connec-
tions: How can we make sense of the derivative of a vector field along a curve?

Let M be a smooth manifold with or without boundary. Given a smooth curve
y: I — M, a vector field along y is a continuous map V: I — TM such that
V(t) € Ty M for every t € I;itis a smooth vector field along y if it is smooth as
amap from I to TM. We let X(y) denote the set of all smooth vector fields along
y. It is a real vector space under pointwise vector addition and multiplication by
constants, and it is a module over C *° (/) with multiplication defined pointwise:

(fX)(0) = f()X(1).

The most obvious example of a vector field along a smooth curve y is the curve’s
velocity: y’(t) € T ()M for each ¢, and its coordinate expression (4.1) shows that
it is smooth. Here is another example: if y is a curve in R2, let N(t) = Ry'(¢),
where R is counterclockwise rotation by 7 /2, so N(¢) is normal to y’(¢). In standard
coordinates, N(t) = (— P2(t).p! (t)), so N is a smooth vector field along y.

A large supply of examples is provided by the following construction: suppose
y: I — M is a smooth curve and V is a smooth vector field on an open subset of
M containing the image of y. Define V': I — TM by setting V(¢) = I7y(,) for each
t € I. Since V is equal to the composition Vo y, it is smooth. A smooth vector
field along y is said to be extendible if there exists a smooth vector field ¥ on
a neighborhood of the image of y that is related to V in this way (Fig. 4.4). Not
every vector field along a curve need be extendible; for example, if y(t1) = y(t2)
but y'(t1) # y'(t2) (Fig. 4.5), then y’ is not extendible. Even if y is injective, its
velocity need not be extendible, as the next example shows.

Example 4.23. Consider the figure eight curve y : (—m, ) — R? defined by

y(t) = (sin2t,sint).
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Fig. 4.4: Extendible vector field Fig. 4.5: Nonextendible vector field

Fig. 4.6: The image of the figure eight curve of Example 4.23

Its image is a set that looks like a figure eight in the plane (Fig. 4.6). Problem 4-7
asks you to show that y is an injective smooth immersion, but its velocity vector
field is not extendible. VA

More generally, a tensor field along y is a continuous map o from / to some
tensor bundle 7*DTM such that o(t) € T®D(T,;)M) for each ¢ € I. It is a
smooth tensor field along y if it is smooth as a map from [ to T®DTM, and it is
extendible if there is a smooth tensor field & on a neighborhood of y (/) such that
o=00Yy.

Covariant Derivatives Along Curves

Here is the promised interpretation of a connection as a way to take derivatives of
vector fields along curves.

Theorem 4.24 (Covariant Derivative Along a Curve). Let M be a smooth mani-
fold with or without boundary and let V be a connection in TM . For each smooth
curve y: I — M, the connection determines a unique operator

D;: X(y) — X(y),
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called the covariant derivative along y, satisfying the following properties:

(i) LINEARITY OVER R:
Di;(@aV +bW)=aD;V +bD;W fora,b eR.
(i) PRODUCT RULE:
D(fV)=f'V+ fDV for feC™().
(iii) If V € X(y) is extendible, then for every extension v of V,
DV(t)=VynV.

There is an analogous operator on the space of smooth tensor fields of any type
along y.

Proof. For simplicity, we prove the theorem for the case of vector fields along y;
the proof for arbitrary tensor fields is essentially identical except for notation.

First we show uniqueness. Suppose D; is such an operator, and let 7o € I be
arbitrary. An argument similar to that of Lemma 4.1 shows that the value of D,V at
to depends only on the values of V' in any interval (zg — ¢,¢¢ + €) containing fy. (If
tp is an endpoint of 7, extend a coordinate representation of y to a slightly bigger
open interval, prove the lemma there, and then restrict back to 7.)

Choose smooth coordinates (xi) for M in a neighborhood of y(#y), and write

V(t)=V/()d; |y(t)
for ¢ near o, where V1,..., V" are smooth real-valued functions defined on some
neighborhood of 7y in /. By the properties of Dy, since each 9; is extendible,

DV (t)=V'(1)d; ’y(t) + V()09 ’y(t)

o P i X (4.15)
= (V* O+ 7 OV OTE@0)) 9, -
This shows that such an operator is unique if it exists.

For existence, if y (1) is contained in a single chart, we can define D,V by (4.15);
the easy verification that it satisfies the requisite properties is left as an exercise. In
the general case, we can cover y (/) with coordinate charts and define D,V by this
formula in each chart, and uniqueness implies that the various definitions agree when-
ever two or more charts overlap. O

(It is worth noting that in the physics literature, the covariant derivative along a
curve is sometimes called the absolute derivative.)

» Exercise 4.25. Complete the proof of Theorem 4.24 by showing that the operator D,
defined in coordinates by (4.15) satisfies properties (i)—(iii).



Geodesics 103

Apart from its use in proving existence of the covariant derivative along a curve,
(4.15) also gives a practical formula for computing such covariant derivatives in
coordinates.

Now we can improve Proposition 4.5 by showing that V, Y actually depends only
on the values of Y along any curve through p whose velocity is v.

Proposition 4.26. Let M be a smooth manifold with or without boundary, let V be a
connection in TM, and let p € M and v € T, M. Suppose Y and Y are two smooth
vector fields that agree at points in the image of some smooth curve y: I — M such
that y(to) = p and y'(to) = v. Then V,Y = V, Y.

Proof. We can define a smooth vector field Z along y by Z(t) = Y,y = Y.

Since both Y and Y are extensions of Z, it follows from condition (iii) in Theorem
4.24 that both V, Y and V, Y are equal to D, Z(t). O

Geodesics

Armed with the notion of covariant differentiation along curves, we can now define
acceleration and geodesics.

Let M be a smooth manifold with or without boundary and let V be a connection
in TM . For every smooth curve y : I — M, we define the acceleration of y to be the
vector field Dy’ along y. A smooth curve y is called a geodesic (with respect to
V) if its acceleration is zero: D;y’ = 0. In terms of smooth coordinates (xi), if
we write the component functions of y as y(t) = (x1 ®),...,x" (t)), then it follows
from (4.15) that y is a geodesic if and only if its component functions satisfy the
following geodesic equation:

() + & ()1 ()T (x (1) =0, (4.16)

where we use x(¢) as an abbreviation for the n-tuple of component functions
(xl(t), R (t)). This is a system of second-order ordinary differential equations
(ODEs) for the real-valued functions x!,..., x". The next theorem uses ODE theory
to prove existence and uniqueness of geodesics with suitable initial conditions. (Be-
cause difficulties can arise when a geodesic starts on the boundary or later hits the
boundary, we state and prove this theorem only for manifolds without boundary.)

Theorem 4.27 (Existence and Uniqueness of Geodesics). Let M be a smooth
manifold and V a connection in TM. For every p € M, w € T,M, and ty € R,
there exist an open interval I C R containing ty and a geodesic y: I —M satisfy-
ing y(to) = p and y'(ty) = w. Any two such geodesics agree on their common
domain.

Proof. Let (xi) be smooth coordinates on some neighborhood U of p. A smooth
curve in U, written as y(t) = (xl(t), N (t)), is a geodesic if and only if its
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y(8
y(to)

Fig. 4.7: Uniqueness of geodesics

component functions satisfy (4.16). The standard trick for proving existence and
uniqueness for such a second-order system is to introduce auxiliary variables v* =
X' to convert it to the following equivalent first-order system in twice the number of

variables:
Ky = vk,

Treating (xl, ...,x™, vl ... v™) as coordinates on U x R”, we can recognize (4.17)

as the equations for the flow of the vector field G € X(U xR") given by

kL iirk o

Gio) ="V e - v ol I (x) ok (x,v). (4.18)
By the fundamental theorem on flows (Thm. A.42), for each (p,w) € U x R” and
to € R, there exist an open interval /; containing ¢y and a unique smooth solution
£: Ip — U xR” to this system satisfying the initial condition {(¢9) = (p,w). If
we write the component functions of ¢ as (t) = (xi (), v} (t)), then we can easily
check that the curve y(r) = (x'(7),....x" (1)) in U satisfies the existence claim of
the theorem.

To prove the uniqueness claim, suppose y,% : I — M are both geodesics defined
on some open interval with y(t9) = ¥(¢9) and y’(t9) = ¥’(fo). In any local coordi-
nates around y(fp), we can define smooth curves ¢ ,E: (to—e,tg+¢) > U xR”
as above. These curves both satisfy the same initial value problem for the sys-
tem (4.17), so by the uniqueness of ODE solutions, they agree on (fp — &,79 + €)
for some ¢ > 0. Suppose for the sake of contradiction that y(b) # y(b) for some
b € 1. First suppose b > ty, and let B be the infimum of numbers b € I such that
b > to and y(b) # y(b) (Fig. 4.7). Then B € I, and by continuity, y(8) = y(f) and
y'(B) = ¥'(B). Applying local uniqueness in a neighborhood of 8, we conclude that
y and ¥ agree on a neighborhood of §, which contradicts our choice of 8. Arguing
similarly to the left of ¢y, we conclude that y = ¥ on all of 1. |

A geodesic y: I — M is said to be maximal if it cannot be extended to a
geodesic on a larger interval, that is, if there does not exist a geodesic ¥ : I—-M
defined on an interval ] properly containing / and satisfying y|; = y. A geodesic
segment is a geodesic whose domain is a compact interval.
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Fig. 4.8: A parallel vector field along a curve

Corollary 4.28. Let M be a smooth manifold and let V be a connection in TM.
For each p € M and v € T,M, there is a unique maximal geodesic y: I — M
with y(0) = p and y'(0) = v, defined on some open interval I containing 0.

Proof. Given p € M and v € T, M, let I be the union of all open intervals con-
taining O on which there is a geodesic with the given initial conditions. By Theo-
rem 4.27, all such geodesics agree where they overlap, so they define a geodesic
y: I — M, which is obviously the unique maximal geodesic with the given initial
conditions. |

» Exercise 4.29. Show that the maximal geodesics on R” with respect to the Euclidean
connection (4.3) are exactly the constant curves and the straight lines with constant-speed
parametrizations.

The unique maximal geodesic y with y(0) = p and y’(0) = v is often called
simply the geodesic with initial point p and initial velocity v, and is denoted by y,,.
(For simplicity, we do not specify the initial point p in the notation; it can implicitly
be recovered from v by p = 7 (v), where w: TM — M is the natural projection.)

Parallel Transport

Another construction involving covariant differentiation along curves that will be
useful later is called parallel transport.

Let M be a smooth manifold and let V be a connection in 7M. A smooth vector
or tensor field V' along a smooth curve y is said to be parallel along y (with respect
to V) if D,V = 0 (Fig. 4.8). Thus a geodesic can be characterized as a curve whose
velocity vector field is parallel along the curve.
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» Exercise 4.30. Let y: I — R’ be a smooth curve, and let V' be a smooth vector field
along y. Show that V' is parallel along y with respect to the Euclidean connection if and
only if its component functions (with respect to the standard basis) are constants.

The fundamental fact about parallel vector and tensor fields along curves is that
every tangent vector or tensor at any point on a curve can be uniquely extended to a
parallel field along the entire curve. Before we prove this claim, let us examine what
the equation of parallelism looks like in coordinates. Given a smooth curve y with a
local coordinate representation y(t) = (yl ),....y" (t)), formula (4.15) shows that
a vector field V is parallel along y if and only if

VE@) = -V OTEp @), k=1....n, (4.19)

with analogous expressions based on Proposition 4.18 for tensor fields of other
types. In each case, this is a system of first-order linear ordinary differential equa-
tions for the unknown coefficients of the vector or tensor field—in the vector case,
the functions (V1 ),...,V" (t)). The usual ODE theorem guarantees the existence
and uniqueness of a solution for a short time, given any initial values at ¢t = #y; but
since the equation is linear, we can actually show much more: there exists a unique
solution on the entire parameter interval.

Theorem 4.31 (Existence, Uniqueness, and Smoothness for Linear ODEs). Ler
I C R be an open interval, and for 1 < j,k <n, let A’]‘-: I — R be smooth func-
tions. For all ty € I and every initial vector (cl, e, c”) € R”, the linear initial value
problem
ko ik ;
VE@) = ATV (1),
VE(t0) = ¥,
has a unique smooth solution on all of I, and the solution depends smoothly on
(t,c) e I xR™

(4.20)

Proof. First assume 7o = 0. Let (x%,x',...,x") denote standard coordinates on the

manifold / x R” € R"*!, and consider the vector field Y € X(/ x R") defined by

. d
~9x0

ftvQe) = (Vl(t), RN (t)) is a solution to (4.20) with ¢y = 0 defined on some
interval Iy C I, then the curve n(f) = (t, Vi),...,v" (t)) is an integral curve of
Y defined on [ satisfying the initial condition

0

Y .
axn

9 .
+ A} (x%)x/ F +-+ A] (x%)x’

n(0) = (0,c',....c"). 4.21)

Conversely, for each (cl,...,c”) € R”", there is an integral curve n of Y defined
on some open interval /o € I containing 0 and satisfying (4.21). If we write the
component functions of 7 as n(t) = (n°(t),n' (¢),....n" (1)), then 7°(t) = 1 and
1n°(0) = 0, so 1°(t)= ¢ for all . It then follows that V(¢) = (nl(t), N (t)) solves
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(4.20) with ¢ty = 0. Thus there is a one-to-one correspondence between solutions to
(4.20) and integral curves of Y satisfying (4.21).

The fundamental theorem on flows of vector fields (Thm. A.42) guarantees that
for each (cl, ... ,c") € R”, there exists a maximal integral curve n of ¥ defined
on some open interval containing 0 and satisfying the initial condition (4.21), and
the solutions depend smoothly on (z, ¢). Therefore, there is a solution to (4.20) for
¢t in some maximal interval /o C I, and we need only show that /o = I. Write
I = (a,b) and Iy = (ag,by) (Where a,b,aq, by can be finite or infinite), and assume
for the sake of contradiction that by < b.

Let us use the differential equation to estimate the derivative of |V (¢)|?:

d 2 _ 7k (K
prildyl —2;V OV

=23 AV V@)
Jj.k
=2V()T A@)V () <2|A@)| |V (D).

Here |- | denotes the Frobenius norm of a vector or matrix, obtained by summing
the squares of all the components and taking the square root. (It is just the Euclidean
norm of the components.) On the compact interval [0, bo] C I, the functions A]/‘. are
all bounded, so there is a constant M such that |A(¢)| < M there. It then follows
that

GEWOR) =M (Lvor-2mvor) <o

dt dt
so the expression e “2M?|V/(¢)|? is a nonincreasing function of ¢, and thus is bounded
for all 7 € [0, bo) by its initial value |V(0)|2. This implies |V (2)|? < e2M*|V(0)|? for
t € [0,bg), which in turn implies that the corresponding integral curve of Y stays in
the compact set [0, bg] x Br(0) € I x R”, where R = ¢Mb0|V(0)|. This contradicts
the escape lemma (Lemma A.43), and shows that by = b. The possibility thata < ag
can be ruled out by applying the same reasoning to the vector field —Y'.

Finally, the case of general ¢y € I can be reduced to the previous case by making

the substitutions V(1) = vk (t —1p) and A’]‘. )= 1217/‘.(t —1p). a

Theorem 4.32 (Existence and Uniqueness of Parallel Transport). Suppose M
is a smooth manifold with or without boundary, and V is a connection in TM.
Given a smooth curve y: I — M, ty € I, and a vector v € T),;;)M or tensor v €
T(k’l)(Ty(,)M), there exists a unique parallel vector or tensor field V along y such
that V(ty) = v.

Proof. As in the proof of Theorem 4.24, we carry out the proof for vector fields.
The case of tensor fields differs only in notation.

First suppose y (/) is contained in a single coordinate chart. Then V is parallel
along y if and only if its components satisfy the linear system of ODEs (4.19).
Theorem 4.31 guarantees the existence and uniqueness of a solution on all of / with
any initial condition V() = v.
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Fig. 4.9: Existence and uniqueness of parallel transports

Now suppose y (1) is not covered by a single chart. Let 8 denote the supremum
of all b > to for which a unique parallel transport exists on [fg,b]. (The argument
for t < tg is similar.) We know that 8 > t¢, since for b close enough to tg, y([to,P])
is contained in a single chart and the above argument applies. Then a unique par-
allel transport V' exists on [to, f) (Fig. 4.9). If B is equal to sup/, we are done. If
not, choose smooth coordinates on an open set containing y (8 — 8, B + §) for some
positive 8. Then there exists a unique parallel vector field V on (8 —8§., 8 + §) sat-
isfying the initial condition V(8 —§/2) = V(8 —§/2). By uniqueness, V = V on
their common domain, and therefore V is a parallel extension of V' past 8, which is
a contradiction. |

The vector or tensor field whose existence and uniqueness are proved in Theorem
4.32 is called the parallel transport of v along y . For each ty,t, € I, we define a map

P’

of1 *

TyayM — Ty )M, (4.22)

called the parallel transport map, by setting Ptztl (v) =V(t1) foreachv € T, ;)M ,
where V is the parallel transport of v along y. This map is linear, because the equa-
tion of parallelism is linear. It is in fact an isomorphism, because P,yl 1o 18 an inverse
for it.

It is also useful to extend the parallel transport operation to curves that are merely
piecewise smooth. Given an admissible curve y: [a,b] —> M, a map V: [a,b] —
TM such that V(¢) € T, ;) M for each ¢ is called a piecewise smooth vector field
along y if V is continuous and there is an admissible partition (ao,...,ax) for y
such that V' is smooth on each subinterval [a;_1,a;]. We will call any such partition
an admissible partition for V. A piecewise smooth vector field V along y is said to
be parallel along y if D;V = 0 wherever V' is smooth.
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Corollary 4.33 (Parallel Transport Along Piecewise Smooth Curves). Suppose
M is a smooth manifold with or without boundary, and V is a connection in TM.
Given an admissible curve y: [a,b] — M and a vector v € T,y M or tensor v €
T(k’l)(Ty(a)M ), there exists a unique piecewise smooth parallel vector or tensor
field V along y such that V(a) = v, and V is smooth wherever y is.

Proof. Let (ao,...,ar) be an admissible partition for y. First define V'|[4.q4,] tO
be the parallel transport of v along the first smooth segment y|[4,,4,]; then de-
fine V|[4,,q,] to be the parallel transport of V(a;) along the next smooth segment
¥l[a;,a»]; and continue by induction. O

Here is an extremely useful tool for working with parallel transport. Given any
basis (b1,...,b,) for T, i, M, we can parallel transport the vectors b; along y,
thus obtaining an n-tuple of parallel vector fields (Eq,..., E,) along y. Because
each parallel transport map is an isomorphism, the vectors (E;(¢)) form a basis
for T,y M at each point y(¢). Such an n-tuple of vector fields along y is called a
parallel frame along y . Every smooth (or piecewise smooth) vector field along y can
be expressed in terms of such a frame as V(t) = V¥ (¢) E; (t), and then the properties
of covariant derivatives along curves, together with the fact that the E;’s are parallel,
imply

D, V(t) =V (t)E; (1) (4.23)

wherever V' and y are smooth. This means that a vector field is parallel along y if
and only if its component functions with respect to the frame (E;) are constants.
The parallel transport map is the means by which a connection “connects” nearby
tangent spaces. The next theorem and its corollary show that parallel transport de-
termines covariant differentiation along curves, and thereby the connection itself.

Theorem 4.34 (Parallel Transport Determines Covariant Differentiation). Let
M be a smooth manifold with or without boundary, and let V be a connection in
TM. Suppose y: I — M is a smooth curve and V is a smooth vector field along y.
Foreachty €I,

P’ V)=V
D V(1) = lim to V(1) = Vi) (4.24)

1o 11—t

Proof. Let (E;) be a parallel frame along y, and write V(¢) = V' (¢)E; (¢t) fort € I.
On the one hand, (4.23) shows that D;V (ty) = yi (to) Ei (t0)-

On the other hand, for every fixed #; € I, the parallel transport of the vector V (¢1)
along y is the constant-coefficient vector field W(t) = V(t;)E;(t) along y, so
P!, V(t1) = V'(t1) Ei(to). Inserting these formulas into (4.24) and taking the limit
as t; — tg, we conclude that the right-hand side is also equal to yi (to)Ei(tp). O

Corollary 4.35 (Parallel Transport Determines the Connection). Let M be a

smooth manifold with or without boundary, and let V be a connection in TM . Sup-

pose X and Y are smooth vector fields on M. For every p € M,
Pl Y, —Y,

VxY| = lim 2012 7 4.25

X |p h—0 h ( )
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where y: I — M is any smooth curve such that y(0) = p and y'(0) =

Proof. Given p € M and a smooth curve y such that y(0) = p and y'(0) = X, let
V(¢) denote the vector field along y determined by Y, so V(¢) = Y, (). By property
(iii) of Theorem 4.24, Vx Y|, is equal to D; 1 (0), so the result follows from Theo-
rem 4.34. O

A smooth vector or tensor field on M is said to be parallel (with respect to V) if
it is parallel along every smooth curve in M . For example, Exercise 4.30 shows that
every constant-coefficient vector field on R” is parallel.

Proposition 4.36. Suppose M is a smooth manifold with or without boundary, V
is a connection in TM, and A is a smooth vector or tensor field on M. Then A is
parallel on M if and only if VA = 0.

Proof. Problem 4-12. O

Although Theorem 4.32 showed that it is always possible to extend a vector at
a point to a parallel vector field along any given curve, it may not be possible in
general to extend it to a parallel vector field on an open subset of the manifold.
The impossibility of finding such extensions is intimately connected with the phe-
nomenon of curvature, which will occupy a major portion of our attention in the
second half of the book.

Pullback Connections

Like vector fields, connections in the tangent bundle cannot be either pushed for-
ward or pulled back by arbitrary smooth maps. However, there is a natural way to
pull back such connections by means of a diffeomorphism. In this section we define
this operation and enumerate some of its most important proBertles

Suppose M and M are smooth manifolds and ¢: M — M is a diffeomorphism.
For a smooth vector field X € X(M), recall that the pushforward of X is the
unique vector field ¢, X € X (M) that satisfies d¢, (X p) = (9 X ) () forall p € M.
(See Lemma A.36.)

Lemma 4.37 (Pullback Connections). Suppose M _and M are smooth manifolds
with or without boundary. IfV is a connection in TM and o: M — Misa diffeo-
morphism, then the map <p*V. X(M)xX(M)— X(M) defined by

(©*V) ¥ = (¢7"), (Vo x (@:7)) (4.26)

is a connection in TM, called the pullback of v by ¢.

Proof. It is immediate from the definition that (¢*V) Y is linear over R in Y. To
see that it is linear over C*°(M) in X, let f € C*°(M), and let f: fogpl, so
0« (fX) = fp«X. Then
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)*( f(p X((p*Y))

V)x¥

= (o~
= (o~
fle

Finally, to prove the product rule in Y, let f and f be as above, and note that (A.7)
implies ((p*X)(f) = (Xf)op~!. Thus

@) (V)= (7). (Vox (FouY))
= (7). ([Vex (@) + (@ X)(F)e:Y)
=/ ("V)xY +(X/)Y. 0
The next proposition shows that various important concepts defined in terms of

connections—covariant derivatives along curves, parallel transport, and geodesics—
all behave as expected with respect to pullback connections.

Proposition 4.38 (Properties of Pullback Connections). Suppose M and M are
smooth manifolds with or without boundary, and ¢ : M — Misa diffeomorphism.
Let V be a connection in T M and let V = (p*V be the pullback connection in TM .
Suppose y: I — M is a smooth curve.

(a) ¢ takes covariant derivatives along curves to covariant derivatives along
curves: if V' is a smooth vector field along vy, then

dpoD,;V = Dy(dgoV),

where Dy is covariant differentiation along y with_respect to V, and Dy is
covariant differentiation along ¢ o’y with respect to V.

(b) ¢ takes geodesics to geodesics: if y is a V-geodesic in M, then oy is a
g-geodesic inM.

(c) ¢ takes parallel transport to parallel transport: for every ty,t; € I,

d‘Py(tl) © Ptztl = Ptﬁ;)]y Od(py(t())'

Proof. Problem 4-13. (]

Problems
4-1. Let M € R” be an embedded submanifold and Y € X(M). For every point
p € M and vector v € T, M, define V| Y by (4.4).

(a) Show that V,/ Y does not depend on the choice of extension Y of Y.
[Hint: Use Prop. A.28.]



112

4-2.

4-3.

4-4,
4-5.

4-7.

4-8.

4 Connections

(b) Show that V' Y is invariant under rigid motions of R”, in the following
sense: if F € B(n) and M = F(M), then dF,(V, Y) = v}Fp(U)(F*Y).

(Used on pp. 87, 93.)

In your study of smooth manifolds, you have already seen another way of
taking “directional derivatives of vector fields,” the Lie derivative £xY
(which is equal to the Lie bracket [X,Y]; see Prop. A.46). Suppose M is a
smooth manifold of positive dimension.

(a) Show that the map £: X(M) x X(M) — X(M) is not a connection.

(b) Show that there are smooth vector fields X and Y on R? such that
X =Y = 0; along the x!-axis, but the Lie derivatives £x(d,) and
&£y (35) are not equal on the x!-axis.

Prove Proposition 4.7 (the transformation law for the connection coeffi-
cients).
Prove Theorem 4.14 (characterizing the space of connections).

Prove Proposition 4.16 (local formulas for covariant derivatives of tensor
fields).

. Let M be a smooth manifold and let V be a connection in 7M. Define a

map t: X(M)xX(M) — X(M) by
(X, Y)=VxY —-VyX—[X,Y].

(a) Show that 7 is a (1,2)-tensor field, called the torsion tensor of V.

(b) We say that V is symmetric if its torsion vanishes identically. Show that
V is symmetric if and only if its connection coefficients with respect
to every coordinate frame are symmetric: I‘ikj = F}‘i. [Warning: They
might not be symmetric with respect to other frames.]

(c) Show that V is symmetric if and only if the covariant Hessian V2u of
every smooth function u € C°°(M) is a symmetric 2-tensor field. (See
Example 4.22.)

(d) Show that the Euclidean connection V on R” is symmetric.

(Used on pp. 113, 121, 123.)

Let y: (—m,m) — R? be the figure eight curve defined in Example 4.23.
Prove that y is an injective smooth immersion, but its velocity vector field is
not extendible.

Suppose M is a smooth manifold (without boundary), I C R is an interval
(bounded or not, with or without endpoints), and y: I — M is a smooth
curve.

(a) Show that for every to € I such that y’(¢9) # O, there is a connected
neighborhood J of g in I such that every smooth vector field along
y|s is extendible.
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(b) Show that if / is an open interval or a compact interval and y is
a smooth embedding, then every smooth vector field along y is
extendible.

4-9. Let M be a smooth manifold, and let V® and V! be two connections on
™.

(a) Show that V° and V! have the same torsion (Problem 4-6) if and only
if their difference tensor is symmetric, i.e., D(X,Y) = D(Y, X) for all X
and Y.

(b) Show that V? and V! determine the same geodesics if and only if their
difference tensor is antisymmetric, i.e., D(X,Y) = —D(Y, X) for all X
and Y.

(Used on p. 145.)

4-10. Suppose M is a smooth manifold endowed with a connection, y: I — M is
a smooth curve, and Y € X(y). Prove that if Y is parallel along y, then it is
parallel along every reparametrization of y.

4-11. Suppose G is a Lie group.

(a) Show that there is a unique connection V in TG with the property that
every left-invariant vector field is parallel.

(b) Show that the torsion tensor of V (Problem 4-6) is zero if and only if
the identity component af isabelian.

4-12. Prove Proposition 4.36 (a vector or tensor field A is parallel if and only if
VA =0).

4-13. Prove Proposition 4.38 (properties of pullback connections).

4-14. Let M be a smooth n-manifold and V a connectiqn in TM, let (E;) be a
local frame on some open subset U € M, and let (8’) be the dual coframe.

(a) Show that there is a uniquely determined n x n matrix of smooth 1-
forms (a),-j ) on U, called the connection 1-forms for this frame, such
that

VxE; = 0/ (X)E;

forall X € X(U).
(b) CARTAN’S FIRST STRUCTURE EQUATION: Prove that these forms sat-
isfy the following equation, due to Elie Cartan:

de/ =& nw/ +717,

where t!,..., 7" € Q2(M) are the torsion 2-forms, defined in terms of
the torsion tensor v (Problem 4-6) and the frame (E;) by

1(X,Y) =1t/ (X,Y)E;.

(Used on pp. 145, 222.)
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Chapter 5
The Levi-Civita Connection

If we are to use geodesics and covariant derivatives as tools for studying Riemann-
ian geometry, it is evident that we need a way to single out a particular connection
on a Riemannian manifold that reflects the properties of the metric. In this chap-
ter, guided by the example of the tangential connection on a submanifold of R”,
we describe two properties that determine a unique connection on every Riemann-
ian manifold. The first property, compatibility with the metric, is easy to motivate
and understand. The second, symmetry, is a bit more mysterious; but it is motivated
by the fact that it is invariantly defined, and is always satisfied by the tangential
connection. It turns out that these two conditions are enough to determine a unique
connection associated with any Riemannian or pseudo-Riemannian metric, called the
Levi-Civita connection after the early twentieth-century Italian differential geometer
Tullio Levi-Civita.

After defining the Levi-Civita connection, we investigate the exponential map,
which conveniently encodes the collective behavior of geodesics and allows us to
study how they change as the initial point and initial velocity vary. Having estab-
lished the properties of this map, we introduce normal neighborhoods and normal
coordinates, which are essential computational and theoretical tools for studying
local geometric properties near a point. Then we introduce the analogous notion
for studying properties near a submanifold: tubular neighborhoods and Fermi
coordinates. Finally, we return to our three main model Riemannian manifolds and
determine their geodesics.

Except where noted otherwise, the results and proofs of this chapter do not use
positivity of the metric, so they apply equally well to Riemannian and pseudo-
Riemannian manifolds.

The Tangential Connection Revisited

We are eventually going to show that on each Riemannian manifold there is a natural
connection that is particularly well suited to computations in Riemannian geome-
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116 5 The Levi-Civita Connection

try. Since we get most of our intuition about Riemannian manifolds from studying
submanifolds of R” with the induced metric, let us start by examining that case.

Let M C R” be an embedded submanifold. As a guiding principle, consider the
idea mentioned at the beginning of Chapter 4: a geodesic in M should be “as straight
as possible.” A reasonable way to make this rigorous is to require that the geodesic
have no acceleration in directions tangent to the manifold, or in other words that its
acceleration vector have zero orthogonal projection onto TM .

The tangential connection defined in Example 4.9 is perfectly suited to this task,
because it computes covariant derivatives on M by taking ordinary derivatives in
R" and projecting them orthogonally to 7M.

It is easy to compute covariant derivatives along curves in M with respect to
the tangential connection. Suppose y: I — M is a smooth curve. Then y can be
regarded as either a smooth curve in M or a smooth curve in R”, and a smooth
vector field V' along y that takes its values in TM can be regarded as either a
vector field along y in M or a vector field along y in R”. Let D,V denote the
covariant derivative of V' along y (as a curve in R”) with respect to the Euclidean
connection V, and let D,V denote its covariant derivative along y (as a curve in
M) with respect to the tangential connection V' T. The next proposition shows that
the two covariant derivatives along y have a simple relationship to each other.

Proposition 5.1. Let M C R” be an embedded submanifold, y: I — M a smooth
curve in M, and V a smooth vector field along y that takes its values in TM. Then
foreacht el,

D V(t)=nr"(D,V(1)).

Proof. Let ty € I be arbitrary. By Proposition 2.14, on some neighborhood U of
y(tp) in R” there is an adapted orthonormal frame for 7'M, that is, a local orthonor-
mal frame (E1,..., Ey) for TR” such that (E1, ..., E}) restricts to an orthonormal
frame for TM at points of M NU (where k = dim M ). If ¢ > 0 is small enough that
y((to—&.t0 +¢)) C U, then for t € (tg —&,19 + ) we can write

V() =V O E1] )+ + V() Ex|

y(t y(t)’

for some smooth functions V'!,... Vk: (to —&,to + &) — R. Formula (4.15) yields

k

ﬂT(Dt V(l)) = HT(Z (Vl (I)Ei |y(t) + Vi(t)ﬁy'(t)Ei |y(t)))

i=1

I
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(Vi(l)Ei }y(n +V O (Vyo Ei |y(t))>
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Corollary 5.2. Suppose M C R”" is an embedded submanifold. A smooth curve
y: I — M is a geodesic with respect to the tangential connection on M if and
only if its ordinary acceleration y" (t) is orthogonal to T, yM forall t € I.

Proof. As noted in Example 4.8, the connection coefficients of the Euclidean con-
nection on R” are all zero. Thus it follows from (4.15) that the Euclidean covariant
derivative of ¥’ along y is just its ordinary acceleration: D;y’(¢) = y”(¢). The corol-
lary then follows from Proposition 5.1. O

These considerations can be extended to pseudo-Riemannian manifolds as well.
Let (]RV’S,LY(”S)) be the pseudo-Euclidean space of signature (r,s). If M C R™S
is an embedded Riemannian or pseudo-Riemannian submanifold, then for each
D € M, the tangent space T,R"* decomposes as a direct sum 7, M & N, M, where
NpyM = (Tp,M )L is the orthogonal complement of Tp M with respect to g We
letwT: T,R" — T, M be the g9 -orthogonal projection, and define the tangen-
tial connection V' on M by

V;(—Y = JTT(ﬁX“?),

where X and ¥ are smooth extensions of X and Y to a neighborhood of M, and
V is the ordinary Euclidean connection on R”>*. This is a well-defined connection
on M by the same argument as in the Euclidean case, and the next proposition is
proved in exactly the same way as Corollary 5.2.

Proposition 5.3. Suppose M is an embedded Riemannian or pseudo-Riemannian
submanifold of the pseudo-Euclidean space R™. A smooth curve y: I — M is a
geodesic with respect to V' if and only if y"(t) is §7%)-orthogonal to TyyM for
allt 1.

» Exercise 5.4. Prove the preceding proposition.

Connections on Abstract Riemannian Manifolds

There is a celebrated (and hard) theorem of John Nash [Nas56] that says that every
Riemannian metric on a smooth manifold can be realized as the induced metric
of some embedding in a Euclidean space. That theorem was later generalized
independently by Robert Greene [Gre70] and Chris J. S. Clarke [Cla70] to pseudo-
Riemannian metrics. Thus, in a certain sense, we would lose no generality by study-
ing only submanifolds of Euclidean and pseudo-Euclidean spaces with their induced
metrics, for which the tangential connection would suffice. However, when we are
trying to understand intrinsic properties of a Riemannian manifold, an embedding
introduces a great deal of extraneous information, and in some cases actually makes
it harder to discern which geometric properties depend only on the metric. Our
task in this chapter is to distinguish some important properties of the tangential
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connection that make sense for connections on an abstract Riemannian or pseudo-
Riemannian manifold, and to use them to single out a unique connection in the
abstract case.

Metric Connections

The Euclidean connection on R” has one very nice property with respect to the
Euclidean metric: it satisfies the product rule

Vx(Y.Z)=(VxY.Z)+(Y.Vx Z),

as you can verify easily by computing in terms of the standard basis. (In this for-
mula, the left-hand side represents the covariant derivative of the real-valued func-
tion (Y, Z) regarded as a (0,0)-tensor field, which is really just X (Y, Z) by virtue
of property (ii) of Prop. 4.15.) The Euclidean connection has the same property with
respect to the pseudo-Euclidean metric on R”*. It is almost immediate that the tan-
gential connection on a Riemannian or pseudo-Riemannian submanifold satisfies
the same product rule, if we now interpret all the vector fields as being tangent to M
and interpret the inner products as being taken with respect to the induced metric on
M (see Prop. 5.8 below).

This property makes sense on an abstract Riemannian or pseudo-Riemannian
manifold. Let g be a Riemannian or pseudo-Riemannian metric on a smooth mani-
fold M (with or without boundary). A connection V on T M is said to be compatible
with g, or to be a metric connection, if it satisfies the following product rule for all
XY, ZeX(M):

Vx(Y.Z)=(VxY,Z)+(Y,Vx Z). (5.1

The next proposition gives several alternative characterizations of compatibility
with a metric, any one of which could be used as the definition.

Proposition 5.5 (Characterizations of Metric Connections). Let (M, g) be a Rie-
mannian or pseudo-Riemannian manifold (with or without boundary), and let V be
a connection on TM. The following conditions are equivalent:

(a) V is compatible with g: Vx (Y, Z) = (VxY,Z)+ (Y, Vx Z).
(b) g is parallel with respectto V: Vg = 0.
(¢) In terms of any smooth local frame (E;), the connection coefficients of V

satisfy

Tiigi + i = Ex(gif)- (5.2)
(d) If V,W are smooth vector fields along any smooth curve y, then
d
EW’ W)= (D V.W)+(V.D:W). (5.3)

(e) If V,W are parallel vector fields along a smooth curve y in M, then (V, W) is
constant along y.
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Fig. 5.1: A parallel orthonormal frame

(f) Given any smooth curve y in M, every parallel transport map along y is a
linear isometry.

(g) Given any smooth curve y in M, every orthonormal basis at a point of y can
be extended to a parallel orthonormal frame along y (Fig. 5.1).

Proof. First we prove (a) < (b). By (4.14) and (4.12), the total covariant derivative
of the symmetric 2-tensor g is given by

(Vo). Z,X) = (Vxg)(¥. Z) = X(g(Y. 2)) —g(VxY. Z) —g(Y.Vx Z).

This is zero for all X,Y, Z if and only if (5.1) is satisfied for all X, Y, Z.
To prove (b) < (c), note that Proposition 4.18 shows that the components of Vg
in terms of a smooth local frame (E;) are

Sijk = Ex(gi))—Th 817 — F;l(jgiz-

These are all zero if and only if (5.2) is satisfied.

Next we prove (a) < (d). Assume (a), and let VV, W be smooth vector fields along
asmooth curve y: I — M. Given ty € I, in a neighborhood of y(#9) we may choose
coordinates (x’) and write V = V'9; and W = W/9; for some smooth functions
VI W/ (t —e,tg +€) = R. Applying (5.1) to the extendible vector fields 9;,9;,
we obtain

d d S
Lwvwy=2(viwi(. 9,
W)= VW ) N
= (V’Wj + V’Wj)(ai,aj) +Vw/ ((Vy/(t)ai,aj) +(8,-,Vy/(,)8,-))
= (D V,W)+(V,D: W),

which proves (d). Conversely, if (d) holds, then in particular it holds for extendible
vector fields along y, and then (a) follows from part (iii) of Theorem 4.24.

Now we will prove (d) = (e) = (f) = (g) = (d). Assume first that (d) holds. If
V and W are parallel along y, then (5.3) shows that (V, W) has zero derivative with
respect to ¢, so it is constant along y.
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Now assume (e). Let vg,wo be arbitrary vectors in T,,)M, and let V,W
be their parallel transports along y, so that V(ty) = vg, W(ty) = wo, Pt}(;zl
V(t1), and Pt()t1 wo = W(t1). Because (V, W) is constant along v, it follows that
(P, v0. Pyywo) = (V(t1). W(t1)) = (V(to). W(to)) = (vo.wo), so Py, is alin-
ear isometry.

Next, assuming (f), we suppose y: I — M is a smooth curve and (b;) is an
orthonormal basis for 7, M , for some 7o € I. We can extend each b; by parallel
transport to obtain a smooth parallel vector field E; along y, and the assumption
that parallel transport is a linear isometry guarantees that the resulting n-tuple (E;)
is an orthonormal frame at all points of y.

Finally, assume that (g) holds, and let (E;) be a parallel orthonormal frame along
y. Given smooth vector fields V and W along y, we can express them in terms of
this frame as V = V' E; and W = W/ E ;. The fact that the frame is orthonormal
means that the metric coefficients g;; = (E, . E ) are constants along y (£1 or 0),
and the fact that it is parallel means that D,V = V'E; and D,W = W'E;. Thus
both sides of (5.3) reduce to the following expression:

Vo =

g (VIWI +VIWY). (5.4)
This proves (d). O

Corollary 5.6. Suppose (M, g) is a Riemannian or pseudo-Riemannian manifold
with or without boundary, V is a metric connection on M, and y: I — M is a
smooth curve.

(@) |y'(t)] is constant if and only if D;y'(t) is orthogonal to y'(t) for all t € I.
(b) If y is a geodesic, then |y’ (t)| is constant.

» Exercise 5.7. Prove the preceding corollary.

Proposition 5.8. If M is an embedded Riemannian or pseudo-Riemannian subman-
ifold of R"™ or R™S, the tangential connection on M is compatible with the induced
Riemannian or pseudo-Riemannian metric.

Proof. We will show that VT satisfies (5.1). Suppose X,Y,Z € X(M), and let
X, Y, Z be smooth extensions of them to an open subset of R” or R™*. At points of
M , we have

Vi(Y.Z)=X(Y.Z) = X(Y.Z)

where the next-to-last equality follows from the fact that Z and Y are tangent to
M. O
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Symmetric Connections

It turns out that every abstract Riemannian or pseudo-Riemannian manifold admits
many different metric connections (see Problem 5-1), so requiring compatibility
with the metric is not sufficient to pin down a unique connection on such a manifold.
To do so, we turn to another key property of the tangential connection. Recall the
definition (4.3) of the Euclidean connection. The expression on the right-hand side
of that definition is reminiscent of part of the coordinate expression for the Lie

bracket:
d 0

1
(X.Y]=X(Y )a - Y (X' )Bx"'
In fact, the two terms in the Lie bracket formula are exactly the coordinate expressions
for ﬁxY and ﬁyX . Therefore, the Euclidean connection satisfies the following
identity for all smooth vector fields X,Y:

VxY —VyX =[X.Y].

This expression has the virtue that it is coordinate-independent and makes sense
for every connection on the tangent bundle. We say that a connection V on the
tangent bundle of a smooth manifold M is symmetric if

VxY —VyX =[X.Y]forall X,Y € X(M).

The symmetry condition can also be expressed in terms of the torsion tensor
of the connection, which was introduced in Problem 4-6; this is the smooth (1,2)-
tensor field 7: X(M) x X(M) — X(M) defined by

t(X,Y)=VyY —VyX —[X.Y].

Thus a connection V is symmetric if and only if its torsion vanishes identically. It
follows from the result of Problem 4-6 that a connection is symmetric if and only
if its connection coefficients in every coordinate frame satisfy Fikj = I'j?i; this is the
origin of the term “symmetric.”

Proposition 5.9. If M is an embedded (pseudo-)Riemannian submanifold of a
(pseudo-)Euclidean space, then the tangential connection on M is symmetric.

Proof. Let M be an embedded Riemannian or pseudo-Riemannian submanifold
of R”, where R” is endowed either with the Euclidean metric or with a pseudo-
Euclidean metric 77, r + 5 = n. Let X,Y € ¥(M), and let X, Y be smooth ex-
tensions of them to an open subset of the ambient space. If . : M <> R”" represents the
inclusion map, it follows that X and Y are (-related to X and Y, respectively, and
thus by the naturality of the Lie bracket (Prop. A.39), [X, Y] is t-related to [X Y]

In particular, [X , Y] is tangent to M, and its restriction to M is equal to [X,Y].
Therefore,
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=[X,Y]. O

The last two propositions show that if we wish to single out a connection on each
Riemannian or pseudo-Riemannian manifold in such a way that it matches the tan-
gential connection when the manifold is presented as an embedded submanifold of
R” or R™* with the induced metric, then we must require at least that the connec-
tion be compatible with the metric and symmetric. It is a pleasant fact that these two
conditions are enough to determine a unique connection.

Theorem 5.10 (Fundamental Theorem of Riemannian Geometry). Let (M, g)
be a Riemannian or pseudo-Riemannian manifold (with or without boundary).
There exists a unique connection V on TM that is compatible with g and symmetric.
It is called the Levi-Civita connection of g (or also, when g is positive definite,
the Riemannian connection).

Proof. We prove uniqueness first, by deriving a formula for V. Suppose, therefore,
that V is such a connection, and let X,Y,Z € X(M). Writing the compatibility
equation three times with X, Y, Z cyclically permuted, we obtain

X(Y.Z) = (VY. Z) + (V. Vx Z).
Y(Z,X) = (Vyz,X)-i-(Z,VyX),
Z(X,Y)=(VzX,Y)+(X,VzY).

Using the symmetry condition on the last term in each line, this can be rewritten as

X(Y,Z) = (VxY, Z)+(Y,VzX) +(Y,[X,Z]),
Y(Z,X)=(VyZ,X)+(Z,VxY)+(Z,[Y,X]),
Z(X,Y) =(VzX.Y) +(X.Vy Z) + (X.[Z.Y]).

Adding the first two of these equations and subtracting the third, we obtain

X(Y.Z)+Y(Z X)-Z(X.Y) =
2VxY. Z)+(Y.[X.Z]) +(Z.[Y. X]) — (X.[Z.Y]).

Finally, solving for (Vx Y, Z), we get

(VxY.Z)=2(X(Y.Z)+Y(Z.X)-Z(X.Y)
—(V[X,Z]) = {Z,[Y.X]) +{X,[Z,Y])). (55

Now suppose V! and V? are two connections on TM that are symmetric and
compatible with g. Since the right-hand side of (5.5) does not depend on the con-
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nection, it follows that (VY —V%Y,Z) = 0 for all X,Y, Z. This can happen only
if VY =V%Y forall X and Y, so V! = V2.

To prove existence, we use (5.5), or rather a coordinate version of it. It suffices
to prove that such a connection exists in each coordinate chart, for then uniqueness
ensures that the connections in different charts agree where they overlap.

Let (U , (xi )) be any smooth local coordinate chart. Applying (5.5) to the coordi-
nate vector fields, whose Lie brackets are zero, we obtain

(Vo 0.0;) = %(8,- (97.01)+0; (9;.0;) — 0, (9:.9;)). (5.6)
Recall the definitions of the metric coefficients and the connection coefficients:
gij = (0:.9;). Va0 =T}70m.
Inserting these into (5.6) yields
U7 gmi =5 (9igj1+ 0,811 — 018ij) - (5.7)

Finally, multiplying both sides by the inverse matrix gkl and noting that g,,; gkl =
8k, we get

I‘ikj = %gkl (aigjl +ajgil_8lgij)- (5.8)

This formula certainly defines a connection in each chart, and it is evident from

the formula that Fiki = I'}‘i , so the connection is symmetric by Problem 4-6(b). Thus
only compatibility with the metric needs to be checked. Using (5.7) twice, we get

Tl + F]lcjgil =2 (0kgij +0igk; — 97 8ki) + 5 (kg ji + 0 gki — i &kj)
= 0k &ij -
By Proposition 5.5(c), this shows that V is compatible with g. O

A bonus of this proof is that it gives us explicit formulas that can be used for
computing the Levi-Civita connection in various circumstances.

Corollary 5.11 (Formulas for the Levi-Civita Connection). Let (M, g) be a Rie-
mannian or pseudo-Riemannian manifold (with or without boundary), and let V be
its Levi-Civita connection.

(a) IN TERMS OF VECTOR FIELDS: If X, Y, Z are smooth vector fields on M, then
(VxY.Z) = L(X(Y.Z)+Y(Z.X)-Z(X.Y)
—(V,[X,Z]) = {Z.[Y.X]) +(X,[Z,Y])). (5.9)

(This is known as Koszul’s formula.)
(b) IN COORDINATES: In any smooth coordinate chart for M, the coefficients of
the Levi-Civita connection are given by

Fikj = %gkl (9igj1+ 9,81 —d18if)- (5.10)
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(¢) IN A LOCAL FRAME: Let (E;) be a smooth local frame on an open subset
U C M, and let clkj : U = R be the n® smooth functions defined by

[Ei.Ej] = cf; Ex. (5.11)

Then the coefficients of the Levi-Civita connection in this frame are
Tk =1k (Eigji+ Ejgii— Eigij — €jmc — gimc™ + gimc).  (5.12
ij — 28 ( ig8j1+ Ljgil 18ij —&imCj glmcji+gzmclj)- (5.12)

(d) IN A LOCAL ORTHONORMAL FRAME: If g is Riemannian, (E;) is a smooth
local orthonormal frame, and the functions Clkj are defined by (5.11), then
k _ 1(.k J i
Ty = 3(cij = ¢ = ) (5.13)

Proof. We derived (5.9) and (5.10) in the proof of Theorem 5.10. To prove (5.12),
apply formula (5.9) with X = E;,Y = E;, and Z = EJ, to obtain

Il gq = (VE Ej. Ep)
=3(Eigji+ Ejgii— E18ij — & jmcl] —8&imC7; +gim61’7-).

Multiplying both sides by g’ and simplifying yields (5.12). Finally, under the
hypotheses of (d), we have g;; = §;;, so (5.12) reduces to (5.13) after rearranging
and using the fact that clkj is antisymmetric in i, j . O

On every Riemannian or pseudo-Riemannian manifold, we will always use the
Levi-Civita connection from now on without further comment. Geodesics with respect
to this connection are called Riemannian (or pseudo-Riemannian) geodesics, or
simply “geodesics” as long as there is no risk of confusion. The connection coeffi-
cients Fikj of the Levi-Civita connection in coordinates, given by (5.10), are called
the Christoffel symbols of g.

The next proposition shows that these connections are familiar ones in the case
of embedded submanifolds of Euclidean or pseudo-Euclidean spaces.

Proposition 5.12.

(a) The Levi-Civita connection on a (pseudo-)Euclidean space is equal to the
Euclidean connection.

(b) Suppose M is an embedded (pseudo-)Riemannian submanifold of a (pseudo-)
Euclidean space. Then the Levi-Civita connection on M is equal to the tangen-
tial connection VT,

Proof. We observed earlier in this chapter that the Euclidean connection is sym-
metric and compatible with both the Euclidean metric g and the pseudo-Euclidean
metrics E(’ ) which implies (a). Part (b) then follows from Propositions 5.8 and
5.9. O
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An important consequence of the definition is that because Levi-Civita connec-
tions are defined in coordinate-independent terms, they behave well with respect to
isometries. Recall the definition of the pullback of a connection (see Lemma 4.37).

Proposition 5.13 (Naturality of the Levi-Civita Connection). Suppose (M, g)
and (M §) are Riemannian or pseudo-Riemannian manifolds with or without

boundary, and let V denote the Levi-Civita connection of g and V that of g If
o: M — M isan isometry, then (p*V V.

Proof. By uniqueness of the Levi-Civita connection, it suffices to show that the
pullback connection ¢*V is symmetric and compatible with g. The fact that ¢ is an
isometry means that for any X,Y e ¥X(M) and p e M,

(Yp»Zp) = (d‘pp(Yp)’d(Dp(Zp)) = ((‘P*Y)(p(p)a(‘/)*z)(p(p)),

or in other words, (Y, Z) = (¢«Y, ¢« Z) o ¢. Therefore,

X(Y.Z) = X({pxY,0sZ) 0 90)

(@ X){(@xY. 02 Z)) 00

(Vo x @2 ). 0 Z) + (0 Y.V, x (9: Z))) 0
(7). Vo x (@Y, Z)+ (Y. (¢7"), Vo x (92 2))
(" V)xY.Z)+(Y.(¢*V) , Z).

which shows that the pullback connection is compatible with g. Symmetry is proved
as follows:

((p*V)XY—(go*ﬁ)YX = (‘/’_l)*(ﬁrp*X(‘/’*Y)_ﬁp*Y((P*X))
= (¢7").[oxX.0uY ]
=[X.Y]. O

Corollary 5.14 (Naturality of Geodesics). Suppose (M, g) and (1\71 , §) are Rie-
mannian or pseudo-Riemannian manifolds with or without boundary, and ¢ : M —
M is a local isometry. If y is a geodesic in M, then ¢ oy is a geodesic in M.

Proof. This is an immediate consequence of Proposition 4.38, together with the fact
that being a geodesic is a local property. O

Like every connection on the tangent bundle, the Levi-Civita connection induces
connections on all tensor bundles.

Proposition 5.15. Suppose (M, g) is a Riemannian or pseudo-Riemannian mani-
fold. The connection induced on each tensor bundle by the Levi-Civita connec-
tion is compatible with the induced inner product on tensors, in the sense that
X(F,G)=(VxF,G)+(F,VxG) forevery vector field X and every pair of smooth
tensor fields F,G € T (T*DTM).
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Proof. Since every tensor field can be written as a sum of tensor products of vector
and/or covector fields, it suffices to consider the case in which F =] ® -+ @ ag 44
and G = 1 ® - ® Pr41, where o; and B; are covariant or contravariant 1-tensor
fields, as appropriate. In this case, the formula follows from (2.15) by a routine
computation. O

Proposition 5.16. Let (M, g) be an oriented Riemannian manifold. The Riemannian
volume form of g is parallel with respect to the Levi-Civita connection.

Proof. Let p € M and v € T, M be arbitrary, and let y : (—¢,&) — M be a smooth
curve satisfying y(0) = p and y'(0) = v. Let (Ey,..., E,) be a parallel oriented
orthonormal frame along y. Since dVg(E;,...,E,) =1 and D;E; = 0 along y,
formula (4.12) shows that Vy,(dVg) = D (dVg)|i=0 = 0. O

Proposition 5.17. The musical isomorphisms commute with the total covariant
derivative operator: if F is any smooth tensor field with a contravariant ith index
position, and b represents the operation of lowering the ith index, then

V(F") = (VF)". (5.14)
Similarly, if G has a covariant i th position and § denotes raising the ith index, then
V(G = (VG (5.15)

Proof. The discussion on page 27 shows that F® = tr(F ® g), where the trace is
taken on the ith and last indices of F ® g. Because g is parallel, for every vector
field X we have Vyx(F ® g) = (Vx F) ® g. Because Vxy commutes with traces,
therefore,

Vx(F*) = Vx((F®g)) =t (Vx F)® g) = (Vx F)".

This shows that when X is inserted into the last index position on both sides of
(5.14), the results are equal. Since X is arbitrary, this proves (5.14).

Because the sharp and flat operators are inverses of each other when applied
to the same index position, (5.15) follows by substituting F = G* into (5.14) and
applying { to both sides. O

The Exponential Map

Throughout this section, we let (M, g) be a Riemannian or pseudo-Riemannian
n-manifold, endowed with its Levi-Civita connection. Corollary 4.28 showed that
each initial point p € M and each initial velocity vector v € T, M determine a
unique maximal geodesic y,. To deepen our understanding of geodesics, we need to
study their collective behavior, and in particular, to address the following question:
How do geodesics change if we vary the initial point or the initial velocity? The
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dependence of geodesics on the initial data is encoded in a map from the tangent
bundle into the manifold, called the exponential map, whose properties are funda-
mental to the further study of Riemannian geometry.

(It is worth noting that the existence of the exponential map and the basic prop-
erties expressed in Proposition 5.19 below hold for every connection in 7'M, not just
for the Levi-Civita connection. For simplicity, we restrict attention here to the latter
case, because that is all we need. We also restrict to manifolds without boundary, in
order to avoid complications with geodesics running into a boundary.)

The next lemma shows that geodesics with proportional initial velocities are
related in a simple way.

Lemma 5.18 (Rescaling Lemma). For every p e M, v e T,M, and c,t € R,

Yeu(r) = yu(ct), (5.16)
whenever either side is defined.

Proof. If ¢ = 0, then both sides of (5.16) are equal to p for all # € R, so we may
assume that ¢ # 0. It suffices to show that y.,(¢) exists and (5.16) holds whenever
the right-hand side is defined. (The same argument with the substitutions v = ¢'v/,
t =c't’,and ¢ = 1/c¢’ then implies that the conclusion holds when only the left-hand
side is known to be defined.)

Suppose the maximal domain of y,, is the open interval / € R. For simplicity,
write y = ¥, and define anew curve J: ¢~'1 — M by y(t) = y(ct), where c ™' I =
{c™!t :t € I}. We will show that 7 is a geodesic with initial point p and initial
velocity cv; it then follows by uniqueness and maximality that it must be equal to
Yev-

It is immediate from the definition that (0) = y(0) = p. Choose any smooth
local coordinates on M and write the coordinate representation of y as y(t) =
(yl ),...,y" (t)); then the chain rule gives

. d .
V@)= —vy'(ct
Y (@) 77 (ct)
=cy'(ct).
In particular, it follows that ’(0) = ¢y’ (0) = cv.

Now let D; and D, denote the covariant differentiation operators along y and ¥,
respectively. Using the chain rule again in coordinates yields

- d - L
B0 = (G0 + T FOF 07 0 )

= (2% ) +2Tf (ren)y’ (i (en)
=Dy (ct) = 0.

Thus ¥ is a geodesic, S0 ¥ = Y.y, as claimed. O
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The assignment v +— y,, defines a map from TM to the set of geodesics in M.
More importantly, by virtue of the rescaling lemma, it allows us to define a map
from (a subset of) the tangent bundle to M itself, which sends each line through the
originin T, M to a geodesic.

Define a subset & C T'M, the domain of the exponential map, by

& ={v e TM : y, is defined on an interval containing [0, 1]},

and then define the exponential map exp: & — M by

exp(v) = yu(1).

For each p € M, the restricted exponential map at p, denoted by exp,, is the
restriction of exp to the set €, = &ENT, M.

The exponential map of a Riemannian manifold should not be confused with
the exponential map of a Lie group. The two are closely related for bi-invariant
metrics (see Problem 5-8), but in general they need not be. To avoid confusion, we
always designate the exponential map of a Lie group G by exp?, and reserve the
undecorated notation exp for the Riemannian exponential map.

The next proposition describes some essential features of the exponential map.
Recall that a subset of a vector space V' is said to be star-shaped with respect to a
point x € S if for every y € S, the line segment from x to y is contained in S.

Proposition 5.19 (Properties of the Exponential Map). Let (M, g) be a Riemann-
ian or pseudo-Riemannian manifold, and let exp: & — M be its exponential map.

(a) & is an open subset of TM containing the image of the zero section, and each
set &, C Tp M is star-shaped with respect to 0.
(b) For each v € TM, the geodesic yy is given by

Yo (1) = exp(tv) (5.17)

for all t such that either side is defined.

(¢) The exponential map is smooth.

(d) For each point p € M, the differential d (expp)0 (To(TyM)=T,M - T,M
is the identity map of T, M, under the usual identification of To(T, M) with
oM.

Proof. Write n = dimM . The rescaling lemma with # = 1 says precisely that
exp(cv) = yev(1) = yy(c) whenever either side is defined; this is (b). Moreover,
if v € &, then by definition y, is defined at least on [0, 1]. Thus for 0 <¢ < I, the
rescaling lemma says that

expp(tv) =y (1) = yu (1)

is defined. This shows that &, is star-shaped with respect to 0.

Next we will show that & is open and exp is smooth. To do so, we revisit the
proof of the existence and uniqueness theorem for geodesics (Theorem 4.27) and
reformulate it in a more invariant way. Let (xi) be any smooth local coordinates
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onanopenset U € M,let w: TM — M be the projection, and let (xi, vi) denote
the associated natural coordinates for 71 (U) € TM (see p. 384). In terms of these
coordinates, formula (4.18) defines a smooth vector field G on 7~ (U). The integral
curves of G are the curves n(t) = (x1 (t),....x" (1), v (t),...,0" (t)) that satisfy the
system of ODEs given by (4.17), which is equivalent to the geodesic equation under
the substitution v* = x*, as we observed in the proof of Theorem 4.27. Stated some-
what more invariantly, every integral curve of G on 7 ~!(U) projects to a geodesic
under 7: TM — M (which in these coordinates is just (x,v) = x); conversely,
every geodesic y(1) = (x'(¢)....,x"(¢)) in U lifts to an integral curve of G in
7~ 1(U) by setting v (t) = X ().

The importance of G stems from the fact that it actually defines a global vector
field on the total space of 7'M, called the geodesic vector field. We could verify this
by computing the transformation law for the components of G under a change of
coordinates and showing that they take the same form in every coordinate chart; but
fortunately there is a way to avoid that messy computation. The key observation, to
be proved below, is that G acts on a function f € C*°(TM) by

d
Gf(p.v) = — NAORAG)E (5.18)

t=0

(Here and whenever convenient, we use the notations (p,v) and v interchangeably
for an element v € T, M, depending on whether we wish to emphasize the point at
which v is tangent.) Since this formula is independent of coordinates, it shows that
the various definitions of G given by (4.18) in different coordinate systems agree.
To prove that G satisfies (5.18), we write the components of the geodesic y,(¢)
as x!(t) and those of its velocity as v’ (¢) = x*(¢). Using the chain rule and the
geodesic equation in the form (4.17), we can write the right-hand side of (5.18) as

(iik(x(z),v(r))xk<r> + %(x(r)m(r))b"(r)) B
d d L.
= k= o T ()
=Gf(p,v).

The fundamental theorem on flows (Thm. A.42) shows that there exist an open
set H € R x TM containing {0} x TM and a smooth map 0: O — TM, such that
each curve #P¥) (¢) = (¢, (p,v)) is the unique maximal integral curve of G starting
at (p,v), defined on an open interval containing 0.

Now suppose (p,v) € &. This means that the geodesic y, is defined at least on
the interval [0, 1], and therefore so is the integral curve of G starting at (p,v) € TM.
Since (1, (p,v)) € D, there is a neighborhood of (1, (p,v)) in R x TM on which the
flow of G is defined (Fig. 5.2). In particular, this means that there is a neighborhood of
(p,v) on which the flow exists for ¢ € [0, 1], and therefore on which the exponential
map is defined. This shows that & is open.
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Fig. 5.2: & is open

Since geodesics are projections of integral curves of G, it follows that the expo-
nential map can be expressed as

exp,(v) = yu(1) = w0 6(1.(p.v))

wherever it is defined, and therefore exp , (v) is a smooth function of (p,v).

To compute d (expp)o(v) for an arbitrary vector v € T, M, we just need to
choose a curve 7 in T, M starting at 0 whose initial velocity is v, and compute
the initial velocity of exp, ot. A convenient curve is 7(¢) = fv, which yields

d d d
d(exp,),(v) = |, (exp, o1)(1) = o t:Oexpp(tv) = i Yo(t) =v.
Thus d (exp,, ), is the identity map. O

Corollary 5.14 on the naturality of geodesics translates into the following impor-
tant property of the exponential map.

Proposition 5.20 (Naturality of the Exponential Map). Suppose (M,g) and
(M gr') are Riemannian or pseudo-Riemannian manifolds and ¢: M — M is a
local isometry. Then for every p € M, the following diagram commutes:

Pp
Ep — Ey(p)

XPp \ JeXprp(p)
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where &, € T, M and g(p( » S Ty( p)M are the domains of the restricted exponen-
tial maps exp,, (with respect to g) and expy,(, (with respect to g), respectively.

» Exercise 5.21. Prove Proposition 5.20.

An important consequence of the naturality of the exponential map is the follow-
ing proposition, which says that local isometries of connected manifolds are com-
pletely determined by their values and differentials at a single point.

Proposition 5.22. Let (M, g) and (M gf) be Riemannian or pseudo-Riemannian
manifolds, with M connected. Suppose ¢, : M — M are local isometries such
that for some point p € M, we have ¢(p) = V¥ (p) and dop, = dvp. Then ¢ = .

Proof. Problem 5-10. O

A Riemannian or pseudo-Riemannian manifold (M, g) is said to be geodesically
complete if every maximal geodesic is defined for all 7 € R, or equivalently if the
domain of the exponential map is all of TM. It is easy to construct examples of
manifolds that are not geodesically complete; for example, in every proper open
subset of R” with its Euclidean metric or with a pseudo-Euclidean metric, there are
geodesics that reach the boundary in finite time. Similarly, on R” with the metric
(6~1)*g obtained from the sphere by stereographic projection, there are geodesics
that escape to infinity in finite time. Geodesically complete manifolds are the nat-
ural setting for global questions in Riemannian or pseudo-Riemannian geometry;
beginning with Chapter 6, most of our attention will be focused on them.

Normal Neighborhoods and Normal Coordinates

We continue to let (M,g) be a Riemannian or pseudo-Riemannian manifold
of dimension n (without boundary). Recall that for every p € M, the restricted
exponential map exp,, maps the open subset &, € 7, M smoothly into M. Because
d (exp » ) o is invertible, the inverse function theorem guarantees that there exist a
neighborhood V' of the origin in 7, M and a neighborhood U of p in M such
that exp,: V' — U is a diffeomorphism. A neighborhood U of p € M that is the
diffeomorphic image under exp,, of a star-shaped neighborhood of 0 € T, M is
called a normal neighborhood of p.

Every orthonormal basis (b;) for T, M determines a basis isomorphism B : R” —
T,M by B(x!,....x") = x1b;. IfU = exp, (V) is a normal neighborhood of p, we
can combine this isomorphism with the exponential map to get a smooth coordinate
map ¢ = B~ o(exp, |y)7': U - R™

B—l
T,M R”
(exp, m-l[ ¢

U.
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Such coordinates are called (Riemannian or pseudo-Riemannian) normal co-
ordinates centered at p.

Proposition 5.23 (Uniqueness of Normal Coordinates). Let (M, g) be a Riemann-
ian or pseudo-Riemannian n-manifold, p a point of M, and U a normal neigh-
borhood of p. For every normal coordinate chart on U centered at p, the coordinate
basis is orthonormal at p; and for every orthonormal basis (b;) for T, M, there is
a unique normal coordinate chart (xi) on U such that 9;|, = b; fori =1,...,n. In
the Riemannian case, any two normal coordinate charts (xi) and (55-7 ) are related
by .

¥ o=Alx (5.19)

for some (constant) matrix (Al] ) € O(n).

Proof. Let ¢ be anormal coordinate chart on U centered at p, with coordinate func-
tions (xi). By definition, this means that ¢ = B! oexp;l, where B: R" — T, M is
the basis isomorphism determined by some orthonormal basis (b;) for T, M. Note
that (dg,)~'= d(exp ), odBo = B because d (exp,,),, is the identity and B is linear.
Thus 9;|, to (dqop)_l(8i|o): B(0ilo) = b;, which shows that the coordinate basis is
orthonormal at p. Conversely, every orthonormal basis (b;) for T, M yields a basis
isomorphism B and thus a normal coordinate chart ¢ = B~} oexpl_,l, which satisfies
di|p = b; by the computation above.
Ifg = B~ lo exp;1 is another such chart, then

Fop ' =B"! oexp;1 oexp,oB = B~ 'oB,

which is a linear isometry of R” ar_1d therefqre has the form (5.19) in terms of stan-
dard coordinates on R”. Since ()TJ ) and (x’) are the same coordinates if and only

if (Al] ) is the identity matrix, this shows that the normal coordinate chart associated
with a given orthonormal basis is unique. O

Proposition 5.24 (Properties of Normal Coordinates). Ler (M., g) be a Riemann-
ian or pseudo-Riemannian n-manifold, and let (U . (x‘ )) be any normal coordinate
chart centered at p € M.

(a) The coordinates of p are (0,...,0).

(b) The components of the metric at p are g;; = 6;; if g is Riemannian, and g;; =
+6;; otherwise.

(c) Forevery v =v'9; |p € Ty M, the geodesic vy, starting at p with initial velocity
v is represented in normal coordinates by the line

yo(t) = (tv',....00"), (5.20)

as long as t is in some interval I containing O such that y,(I) C U.
(d) The Christoffel symbols in these coordinates vanish at p.
(e) All of the first partial derivatives of g;; in these coordinates vanish at p.
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Proof. Part (a) follows directly from the definition of normal coordinates, and parts
(b) and (c) follow from Propositions 5.23 and 5.19(b), respectively.

To prove (d), let v = v 9; | p € TpM be arbitrary. The geodesic equation (4.16)
for y, (1) = (tv',...,1v") simplifies to

Fikj(tv)vivj =0.

Evaluating this expression at # = 0 shows that Fk (0)v'v/ = 0 for every index k and
every vector v. In particular, with v = d, for some fixed a, this shows that F =0
for each a and k (no summation). Substituting v = d; + dp and v = dp — d, for any
fixed pair of indices a and b and subtracting, we conclude also that F(’l‘b =0at p for
all a,b, k. Finally, (e) follows from (d) together with (5.2) in the case Ey = d¢. 0O

Because they are given by the simple formula (5.20), the geodesics starting at p
and lying in a normal neighborhood of p are called radial geodesics. (But be warned
that geodesics that do not pass through p do not in general have a simple form in
normal coordinates.)

Tubular Neighborhoods and Fermi Coordinates

The exponential map and normal coordinates give us a good understanding of the
behavior of geodesics starting a point. In this section, we generalize those construc-
tions to geodesics starting on any embedded submanifold. We restrict attention to
the Riemannian case, because we will be using the Riemannian distance function.

Suppose (M, g) is a Riemannian manifold, P € M is an embedded submanifold,
and 7 : NP — P is the normal bundle of P in M. Let & C T M denote the domain
of the exponential map of M, and let &p = ENNP. Let E: Ep — M denote
the restriction of exp (the exponential map of M) to &p. We call E the normal
exponential map of Pin M.

A normal neighborhood of P in M is an open subset U C M that is the dif-
feomorphic image under E of an open subset V' C & p whose intersection with each
fiber Ny P is star-shaped with respect to 0. We will be primarily interested in normal
neighborhoods of the following type: a normal neighborhood of P in M is called a
tubular neighborhood if it is the diffeomorphic image under £ of a subset V C &p
of the form

={(x,v)€NP Hvlg <5(x)}, (5.21)

for some positive continuous function §: P — R (Fig. 5.3). If U is the diffeomor-
phic image of such a set V' for a constant function §(x) = ¢, then it is called a
uniform tubular neighborhood of radius ¢, or an e-tubular neighborhood.

Theorem 5.25 (Tubular Neighborhood Theorem). Let (M, g) be a Riemannian
manifold. Every embedded submanifold of M has a tubular neighborhood in M,
and every compact submanifold has a uniform tubular neighborhood.
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E(x,v)=Ex',v)

Fig. 5.3: A tubular neighborhood Fig. 5.4: Injectivity of E

Proof. Let P € M be an embedded submanifold, and let Py € NP be the sub-
set {(x,0) : x € P} (the image of the zero section of NP). We begin by showing
that the normal exponential map E is a local diffeomorphism on a neighborhood of
Py. By the inverse function theorem, it suffices to show that the differential dEy q)
is bijective at each point (x,0) € Py. The restriction of E to Py is just the dif-
feomorphism Py — P followed by the embedding P — M, so dE( o) maps the
subspace T(x,0y Po € T(x,0)N P isomorphically onto Tx P. On the other hand, on the
fiber N P, E agrees with the restricted exponential map exp,, which is a diffeo-
morphism near 0, so dEy o) maps T(x,0)(NxP) S T(x,0)NP isomorphically onto
N, P.Since TyM =T, P ® N, P, this shows that d Ey ¢) is surjective, and hence it
is bijective for dimensional reasons. Thus E is a diffeomorphism on a neighborhood
of (x,0) in NP, which we can take to be of the form

Vs(x) ={(x',v') e NP :dg(x.x") <8, |v'|g <8} (5.22)

for some § > 0. (Here we are using the fact that P is embedded in M, so it has the
subspace topology.)

To complete the proof, we need to show that there is a set V C &p of the form
(5.21) on which F is a diffeomorphism onto its image. For each point x € P, define

A(x) = sup {8 <1: E is a diffeomorphism from Vs (x) to its image}. (5.23)

The argument in the preceding paragraph implies that A(x) is positive for each
x. Note that E is injective on the entire set Va(x)(x), because any two points
(x1,v1), (x2,v7) in this set are in Vs (x) for some § < A(x). Because it is an injective
local diffeomorphism, E is actually a diffeomorphism from V4(y)(x) onto its image.
Next we show that the function A: P — R is continuous. For any x,x’ € P,
if dg(x,x") < A(x), then the triangle inequality shows that Vs (x') is contained in
V@) (x) for § = A(x) — dg(x,x’), which implies that A(x") > A(x) —dg(x,x"),
or
A(x)— A(X") <dg(x,x"). (5.24)
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If dg(x,x") > A(x), then (5.24) holds for trivial reasons. Reversing the roles of x
and x’ yields an analogous inequality, which shows that | A(x) — A(x")| < dg (x,x'),
so A is continuous.

Let V = {(x,v) € NP :|v|g < 2 A(x)}, which is an open subset of N'P contain-
ing Py. We show that E is injective on V. Suppose (x,v) and (x’,v’) are points in
V such that E(x,v) = E(x,v’) (Fig. 5.4). Assume without loss of generality that
A(x") < A(x). Because exp,.(v) = exp,/(v’), there is an admissible curve from x
to x’ of length |v|g + |v'|¢, and thus

dg(x,x') < |vlg +|V]g < 3A(x)+ %A(x') < A(x).

Therefore, both (x,v) and (x,v’) are in V(x)(x). Since E is injective on this set,
this implies (x,v) = (x’,v’).

The set U = E(V) is open in M because E|y is a local diffeomorphism and
thus an open map, and E: V — U is a diffeomorphism. Therefore, U is a tubular
neighborhood of P.

Finally, if P is compact, then the continuous function %A achieves a minimum
value ¢ > 0 on P, so U contains a uniform tubular neighborhood of radius ¢. O

Fermi Coordinates

Now we will construct coordinates on a tubular neighborhood that are analogous
to Riemannian normal coordinates around a point. Let P be an embedded
p-dimensional submanifold of a Riemannian n-manifold (M, g), and let U € M
be a normal neighborhood of P, with U = E (V') for some appropriate open subset
VCNP.

Let (Wp, ¥) be a smooth coordinate chart for P, and let (E,..., E,—p) be alocal
orthonormal frame for the normal bundle N P; by shrinking W} if necessary, we can
assume that the coordinates and the local frame are defined on the same open subset
Wo C P. Let Wo = ¢y (Wo) € R”, and let NP |w, be the portion of the normal
bundle over W,. The coordinate map ¥ and frame (E;) yield a diffeomorphism
B: WoxR"™? — NP|y, defined by

B(xl,...,xp,vl,...,v”_p) = (q, v1E1|q+---+v”_pEn_P|q),

where ¢ = ¥~ (x!,...,x?). Let Vo = VN NP|w, € NP and Uy = E(Vy) € M,
and define a smooth coordinate map ¢: Uy — R" by 9 = B~!o (E|VO)_1'

B!
NPy, —> WoxR"? CR"

(E|Vo)_l Y

Up.
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The coordinate map can also be written
@: E(q v Etlg+-4+0"PE;,_plg) = (x'(q),....x7(q),v",... . 0" P). (5.25)

Coordinates of this form are called Fermi coordinates, after the Italian physicist
Enrico Fermi (1901-1954), who first introduced them in the special case in which
P is the image of a geodesic in M. The generalization to arbitrary submanifolds
was first introduced by Alfred Gray [Gra82]. (See also [Gra04] for a detailed study
of the geometry of tubular neighborhoods.)

Here is the analogue of Proposition 5.24 for Fermi coordinates.

Proposition 5.26 (Properties of Fermi Coordinates). Let P be an embedded
p-dimensional submanifold of a Riemannian n-manifold (M, g), let U be a nor-
mal neighborhood of P in M, and let (xl, Lo xP, vl,...,v"_l’) be Fermi coordi-
nates on an open subset Uy C U. For convenience, we also write x? T =/ for
j=1,....,n—p.

(a) P NUy is the set of points where xPT! = ... = x" = (.

(b) At each point g € P N Uy, the metric components satisfy the following:

), 1<i<pand p+1=<j <n,
== §ij, pH1=i,j=n.

(c) For every ¢ € PNUy and v = vV 'Eq|g+ -+ V" PE,_,|q € Ny P, the
geodesic yy, starting at q with initial velocity v is the curve with coordinate
expression y, (t) = (xl(q),...,x”(q),tvl,...,tv”_p).

(d) At each q € P NUy, the Christoffel symbols in these coordinates satisfy Fikj =0,
provided p+1<1i,j <n.

(e) At each q € P NUy, the partial derivatives 0; g jx (q) vanish for p+1<i, j. k<
n.

Proof. Problem 5-18. O

Geodesics of the Model Spaces

In this section we determine the geodesics of the three types of frame-homogeneous
Riemannian manifolds defined in Chapter 3. We could, of course, compute the
Christoffel symbols of these metrics in suitable coordinates, and try to find the
geodesics by solving the appropriate differential equations; but for these spaces,
much easier methods are available based on symmetry and other geometric consid-
erations.
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Euclidean Space

On R” with the Euclidean metric, Proposition 5.12 shows that the Levi-Civita
connection is the Euclidean connection. Therefore, as one would expect, constant-
coefficient vector fields are parallel, and the Euclidean geodesics are straight lines
with constant-speed parametrizations (Exercises 4.29 and 4.30). Every Euclidean
space is geodesically complete.

Spheres

Because the round metric on the sphere S” (R) is induced by the Euclidean metric on
R”*1 it is easy to determine the geodesics on a sphere using Corollary 5.2. Define
a great circle on S"(R) to be any subset of the form S”(R) N [T, where IT C R"*+!
is a 2-dimensional linear subspace.

Proposition 5.27. A nonconstant curve on S™ (R) is a maximal geodesic if and only
if it is a periodic constant-speed curve whose image is a great circle. Thus every
sphere is geodesically complete.

Proof. Let p € S™(R) be arbitrary. Because f(x) = |x|? is a defining function for
S™(R), a vector v € T,R"*! is tangent to S" (R) if and only if df,(v) = 2(v, p) =
0, where we think of p as a vector by means of the usual identification of R”*! with
T,R"1. Thus T,S"(R) is exactly the set of vectors orthogonal to p.

Suppose v is an arbitrary nonzero vector in 7, S™ (R). Leta = |v|/Rand ¥ =v/a
(so |9] = R), and consider the smooth curve y : R — R”*! given by

y(t) = (cosat) p + (sinat)v.
By direct computation, |y (¢)|?> = R?, so y(t) € S™(R) for all z. Moreover,

Y/ (1) = —a(sinat) p +a(cosat)?,

y"(t) = —a®(cosat) p —a>(sinat)?v.

Because y”(t) is proportional to y(t) (thinking of both as vectors in R”*1), it fol-
lows that y”(¢) is g-orthogonal to T),+)S" (R), so y is a geodesic in S” (R) by Corol-
lary 5.2. Since y(0) = p and y’(0) = a¥ = v, it follows that y = y,,.

Each y, is periodic of period 27 /a, and has constant speed by Corollary 5.6 (or
by direct computation). The image of y, is the great circle formed by the intersection
of S"(R) with the linear subspace spanned by {p, 7}, as you can check.

Conversely, suppose C is a great circle formed by intersecting S”(R) with a
2-dimensional subspace I7, and let {v,w} be an orthonormal basis for /7. Then C
is the image of the geodesic with initial point p = Rw and initial velocity v. O
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Fig. 5.6: Geodesics of K" (R) Fig. 5.7: Geodesics of B” (R)

Hyperbolic Spaces

The geodesics of hyperbolic spaces can be determined by an analogous procedure
using the hyperboloid model.

Proposition 5.28. A nonconstant curve in a hyperbolic space is a maximal geodesic
if and only if it is a constant-speed embedding of R whose image is one of the
following:

(a) HYPERBOLOID MODEL: The intersection of H" (R) with a 2-dimensional lin-
ear subspace of R™1, called a great hyperbola (Fig. 5.5).

(b) BELTRAMI-KLEIN MODEL: The interior of a line segment whose endpoints
both lie on K" (R) (Fig. 5.6).
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Fig. 5.8: Geodesics of U” (R)

(c) BALL MODEL: The interior of a diameter of B"(R), or the intersection of
B”(R) with a Euclidean circle that intersects 0B" (R) orthogonally (Fig. 5.7).

(d) HALF-SPACE MODEL: The intersection of U" (R) with one of the following: a
line parallel to the y-axis or a Euclidean circle with center on dU" (R) (Fig.
5.8).

Every hyperbolic space is geodesically complete.

Proof. We begin with the hyperboloid model, for which the proof is formally quite
similar to what we just did for the sphere. Since the Riemannian connection on
H"(R) is equal to the tangential connection by Proposition 5.12, it follows from
Corollary 5.2 that a smooth curve y: I — H"”(R) is a geodesic if and only if its
acceleration y”(¢) is everywhere g-orthogonal to T, H" (R) (where g = g™ is
the Minkowski metric).

Let p € H"(R) be arbitrary. Note that f(x) = ¢g(x,x) is a defining function
for H"(R), and (3.10) shows that the gradient of f at p is equal to 2p (where
we regard p as a vector in 7,R"! as before). It follows that a vector v € T, R"!
is tangent to H" (R) if and only if g(p,v) = 0. Let v € T,H"(R) be an arbitrary
nonzero vector. Put a = |v|z/R = q(v,v)"/?/R and ¥ = v/a, and define y: R —
R?1 by

y(t) = (coshat) p + (sinhat)v.

Direct computation shows that y takes its values in H”(R) and that its accel-
eration vector is everywhere proportional to y(z). Thus y”(¢) is g-orthogonal to
TyH" (R), so y is a geodesic in H" (R) and therefore has constant speed. Because
it satisfies the initial conditions y(0) = p and y’(0) = v, it is equal to y,. Note that
yv 1s a smooth embedding of R into H”(R) whose image is the great hyperbola
formed by the intersection between H” (R) and the plane spanned by {p, v}.

Conversely, suppose IT is any 2-dimensional linear subspace of R™! that has
nontrivial intersection with H”(R). Choose p € IT NH"(R), and let v be another
nonzero vector in /7 thatis g-orthogonal to p, whichimplies v € T, H" (R). Using the
computation above, we see that the image of the geodesic y, is the great hyperbola
formed by the intersection of I7 with H"(R).
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Before considering the other three models, note that since maximal geodesics in
H" (R) are constant-speed embeddings of R, it follows from naturality that maximal
geodesics in each of the other models are also constant-speed embeddings of R.
Thus each model is geodesically complete, and to determine the geodesics in the
other models we need only determine their images.

Consider the Beltrami—Klein model. Recall the isometry ¢: H"(R) — K"(R)
given by c(€,7) = RE/7 (see (3.11)). The image of a maximal geodesic in H” (R)
is a great hyperbola, which is the set of points (¢,7) € H"(R) that solve a system
of n — 1 independent linear equations. Simple algebra shows that (£, 7) satisfies a
linear equation o; &' + Bt = 0 if and only if w = ¢(£,7) = RE /7 satisfies the affine
equation o; w’ = —BR. Thus ¢ maps each great hyperbola onto the intersection of
K" (R) with an affine subspace of R”, and since it is the image of a smooth curve,
it must be the intersection of K” (R) with a straight line.

Next consider the Poincaré ball model. First consider the 2-dimensional case,
and recall the inverse hyperbolic stereographic projection 7~ !: B2(R) — H?(R)
constructed in Chapter 3:

2R?u R? + |u|?
_1 _ —
7w = 1) (RZ_W, R2_|u|2).

In this case, a great hyperbola is the set of points on H?(R) that satisfy a single
linear equation o; £’ + Bt = 0. In the special case 8 = 0, this hyperbola is mapped
by m to a straight line segment through the origin, as can easily be seen from the
geometric definition of . If 8 # 0, we can assume (after multiplying through by a
constant if necessary) that 8 = —1, and write the linear equation as t = ;&' = - £
(where the dot represents the Euclidean dot product between elements of R?). Under
71, this pulls back to the equation

R*+|ul*>  2R?w-u
R2—[ul2  R2—|ul?

on the disk, which simplifies to
|u|>—2Ra -u + R* = 0.
Completing the square, we can write this as
lu—Ral?> = R*(ja|*—1). (5.26)

If |a|? < 1, this locus is either empty or a point on dB?(R), so it contains no points
in B2(R). Since we are assuming that it is the image of a maximal geodesic, we must
therefore have |a|? > 1. In that case, (5.26) is the equation of a circle with center R
and radius R+/|a|2 — 1. At a point 4 where the circle intersects dB2(R), the three
points 0, ug, and Ro form a triangle with sides |ug| = R, |R«/|, and |ug — Re| (Fig.
5.9), which satisty the Pythagorean identity by (5.26); therefore the circle meets
0B2(R) in a right angle.
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Uuo

[ 7 lup — Ra|

|Ra|

Fig. 5.9: Geodesics are arcs of circles orthogonal to the boundary of HZ(R)

In the higher-dimensional case, a geodesic on H" (R) is determined by a 2-plane.
If the 2-plane contains the point (0,...,0, R), then the corresponding geodesic on
B”(R) is a line through the origin as before. Otherwise, we can use an ortho-
gonal transformation in the (£!,...,€") variables (which preserves gg) to move
this 2-plane so that it lies in the (§',£2, 7) subspace, and then we are in the same
situation as in the 2-dimensional case.

Finally, consider the upper half-space model. The 2-dimensional case is easi-
est to analyze using complex notation. Recall the complex formula for the Cayley
transform « : U2(R) — B2(R) given in Chapter 3:

—iR

—w=iR>
k(z)=w=i TR

Substituting this into equation (5.26) and writing w = u +iv and « = a +ib in
place of u = (u',u?), @ = (a!,a?), we get

2lZ—iR? 5 z—iR 2 Z‘HR 21,12 — R2(lo|2
— R« R =R
criRE (R g iR ez g H Kl (7= 1).

Multiplying through by (z +iR)(Z —iR)/2R? and simplifying yields
(1=b)|z|>* —2aRx + (b + 1)R* = 0.

This is the equation of a circle with center on the x-axis, unless b = 1, in which
case the condition |a|? > 1 forces a # 0, and then it is a straight line x = constant.
The other class of geodesics on the ball, line segments through the origin, can be
handled similarly.

In the higher-dimensional case, suppose first that y : R — U”(R) is a maximal
geodesic such that y(0) lies on the y-axis and y’(0) is in the span of {3/9x",3/dy}.
From the explicit formula (3.15) for «, it follows that k o y(0) lies on the v-axis in
the ball, and (k o y)’(0) is in the span of {a/Bul , 8/81)}. The image of the geodesic
k oy is either part of a line through the origin or an arc of a circle perpendicu-
lar to dB”(R), both of which are contained in the (u1 , v)—plane. By the argument
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in the preceding paragraph, it then follows that the image of y is contained in the
(x',y)-plane and is either a vertical half-line or a semicircle centered on the y = 0
hyperplane. For the general case, note that translations and orthogonal transforma-
tions in the x-variables preserve vertical half-lines and circles centered on the y =0
hyperplane in U” (R), and they also preserve the metric g; Given an arbitrary max-
imal geodesic y: R — U"(R), after applying an x-translation we may assume that
y(0) lies on the y-axis, and after an orthogonal transformation in the x variables,
we may assume that y’(0) is in the span of {8/ ax',0/9 y}; then the argument above
shows that the image of y is either a vertical half-line or a semicircle centered on
the y = 0 hyperplane. O

Euclidean and Non-Euclidean Geometries

In two dimensions, our model spaces can be interpreted as models of classical
Euclidean and non-Euclidean plane geometries.

Euclidean Plane Geometry

Euclid’s axioms for plane and spatial geometry, written around 300 BCE, became a
model for axiomatic treatments of geometry, and indeed for all of mathematics. As
standards of rigor evolved, mathematicians revised and added to Euclid’s axioms
in various ways. One axiom system that meets modern standards of rigor was cre-
ated by David Hilbert [Hil71]. Here (in somewhat simplified form) are his axioms
for plane geometry. (See [Hil71, Gan73, Gre93] for more complete treatments of
Hilbert’s axioms, and see [LeeAG] for a different axiomatic approach based on the
real number system.)

Hilbert’s Axioms For Euclidean Plane Geometry. The terms point, line, lies on,
between, and congruent are primitive terms, and are thus left undefined. We make
the following definitions:

e Given a line / and a point P, we say that I contains P if P lieson /.

e A set of points is said to be collinear if there is a line that contains them all.

e Given two distinct points A, B, the segment ‘AB is the set consisting of A, B,
and all points C such that C is between 4 and B.

e The notation A B & A’B’ means that AB is congruent to A’B’.

e Given two distinct points A, B, the ray AB is the set consisting of A, B, and
all points C such that either C is between A and B or B is between A and C.

e An interior point of the ray ABisa point that lies on AB and is not equal to A.

e Given three noncollinear points A, O, B, the angle ZA OB is the union of the
rays OA and OB.
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e Thenotation ZABC = LA’ B’C’ meansthat ZABC iscongruentto ZA'B'C’.

e Given aline / and two points A, B that do not lie on /, we say that A and B are
on the same side of [ if no point of AB lies on .

e Two lines are said to be parallel if there is no point that lies on both of them.

These terms are assumed to satisfy the following postulates, among others:

e Incidence Postulates:

(a) For any two distinct points A, B, there exists a unique line that contains
both of them.

(b) There exist at least two points on each line, and there exist at least three
noncollinear points.

e Order Postulates:

(a) If a point B lies between a point A and a point C, then A, B,C are three
distinct points of a line, and B also lies between C and A.

(b) Given two distinct points A and C, there always exists at least one point B
such that C lies between A and B.

(c) Given three distinct points on a line, no more than one of them lies between
the other two.

(d) Let A, B,C be three noncollinear points, and let | be a line that does not
contain any of them. If | contains a point of AB, then it also contains a
point of AC or BC.

e Congruence Postulates:

(a) If A, B are two points on a line |, and A’ is a point on a line ', then it is
always possible to find a point B’ on a given ray of 1’ starting at A" such
that AB = A'B’.

(b) If segments A’B’ and A" B" are congruent to the same segment AB, then
A’'B" and A" B" are congruent to each other.

(¢) Onalinel, let AB and BC be two segments that, except for B, have no
points in common. Furthermore, on the same or another line l', let A'B’
and B’'C’ be two segments that, except for B', have no points in common.
In that case, if AB ~ A’B’ and BC =~ B'C’, then AC ~ A'C’".

(d) Let Zrs be an angle and ' a line, and let a definite side of |’ be given. Let
' bea ray on I’ starting at a point O'. Then there exists one and only one

ray s’ such that Zr's' = Zrs and at the same time all the interior points
of s’ lie on the given side of I'.

(e) If for two triangles AABC and AA'B'C’ the congruences AB =~ A’B’,
AC = A'C",and /BAC =~ /B’ A'C’ hold, then /ABC =~ /A'B'C’ and
LACB = LA'C'B’ as well.

e Euclidean Parallel Postulate: Given a line | and a point A that does not lie on
[, there exists a unique line that contains A and is parallel to [.

Given an axiomatic system such as this one, an interpretation of the system is
simply an assignment of a definition for each of the primitive terms. An interpre-
tation is called a model of the axiomatic system provided that each of the axioms
becomes a theorem when the primitive terms are given the assigned meanings.
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We are all familiar with the Cartesian plane as an interpretation of Euclidean
plane geometry. Formally, in this interpretation, we make the following definitions:

A point is an element of R2.

A line is the image of a maximal geodesic with respect to the Euclidean metric.
Given a point A and a line /, we say that A lieson I if A €.

Given three distinct points 4, B, C, we say that B is between A and C if B is
on the geodesic segment joining A to C.

e Given two sets of points S and S’, we say that S is congruent to S’ if there is
a Euclidean isometry ¢ : R? — R? such that ¢(S) = S’.

With this interpretation, it will come as no surprise that Hilbert’s postulates are
all theorems; proving them is just a standard exercise in plane analytic geometry.

» Exercise 5.29. Verify that all of Hilbert’s axioms are theorems when the primitive
terms are given the interpretations listed above.

More interesting is the application of Riemannian geometry to non-Euclidean
geometry. Hilbert’s axioms can be easily modified to yield axioms for plane hyper-
bolic geometry, simply by replacing the Euclidean parallel postulate by the follow-
ing:

e Hyperbolic Parallel Postulate: Given a line | and a point A that does not lie
on 1, there exist at least two distinct lines that contain A and are parallel to [.

We obtain an interpretation of this new axiomatic system by giving definitions
to the primitive terms just as we did above, but now with R? replaced by H? and
g replaced by any hyperbolic metric gr. (The axioms we have listed here do not
distinguish among hyperbolic metrics of different radii.) In Problem 5-19, you will be
asked to prove that some of Hilbert’s axioms are theorems under this interpretation.

In addition to hyperbolic geometry, it is possible to construct another version of
non-Euclidean geometry, in which the Euclidean parallel postulate is replaced by
the following assertion:

¢ Elliptic Parallel Postulate: No two lines are parallel.

Unfortunately, we cannot simply replace the Euclidean parallel postulate with
this one and leave the other axioms alone, because it already follows from Hilbert’s
other axioms that for every line / and every point A ¢ [ there exists at least one
line through A that is parallel to / (for a proof, see [Gre93], for example). Nonethe-
less, we already know of an interesting geometry that satisfies the elliptic parallel
postulate—the sphere S? with the round metric g. To construct a consistent
axiomatic system including the elliptic parallel postulate, some of the other axioms
need to be modified.

If we take the sphere as a guide, with images of maximal geodesics as lines,
then we can see already that the first incidence postulate needs to be abandoned,
because if A, B € S? are antipodal points (meaning that B = —A), then there are
infinitely many lines containing A and B. Any axiomatic system for which (S?, g)
is a model is called double elliptic geometry, because every pair of distinct lines
intersects in exactly two points.
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It is also possible to construct an elliptic geometry in which the incidence postu-
lates hold, as in the following example.

Example 5.30. The real projective plane RIP? has a frame-homogeneous Riemann-
ian metric g that is locally isometric to a round metric on S” (see Example 2.34 and
Problem 3-2). As Problem 5-20 shows, single elliptic geometry satisfies Hilbert’s
incidence postulates as well as the elliptic parallel postulate. This interpretation is
called single elliptic geometry. I

Problems

5-1. Let (M, g) be a Riemannian or pseudo-Riemannian manifold, and let V be
its Levi-Civita connection. Suppose vV is another connection on 7'M, and
D is the difference tensor between V and V (Prop.4.13). Let D" denote the
covariant 3-tensor field defined by D’ (X,Y,Z)=(D(X,Y),Z). Show that
Vis compatible with g if and only if D" is antisymmetric in its last two
arguments: D®(X, Y, Z) = —D"(X, Z,Y)forall X, Y, Z € (M). Conclude
that on every Riemannian or pseudo-Riemannian manifold of dimension
at least 2, the space of metric connections is an infinite-dimensional affine
space. (Used on p. 121.)

5-2. Let V be a connection on the tangent bundle of a Riemannian manifold
(M,g). Show that V is compatible with g if and only if the connection
1-forms w;’ (Problem 4-14) with respect to each local frame (E;) satisfy

k k
gjkwi” +gikw;" =dgij.
Show that this implies that with respect to every local orthonormal frame, the
matrix (w;7) is skew-symmetric.

5-3. Define a connection on R3 by setting (in standard coordinates)

) =F213 = I‘321 =1,

3 _ 1l
1-‘21 l—132_1-‘13__ ’

with all other connection coefficients equal to zero. Show that this connec-
tion is compatible with the Euclidean metric and has the same geodesics as
the Euclidean connection, but is not symmetric. (See Problem 4-9.)

5-4. Let C be an embedded smooth curve in the half-plane H = {(r,z) : r > 0},
and let S¢ € R3 be the surface of revolution determined by C as in Example
2.20. Let y(t) = (a(t),b(t)) be a unit-speed local parametrization of C, and
let X be the parametrization of S¢ given by (2.11).

(a) Compute the Christoffel symbols of the induced metric on S¢ in (¢,0)
coordinates.
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(b) Show that each meridian is the image of a geodesic on Sc.
(c) Determine necessary and sufficient conditions for a latitude circle to be
the image of a geodesic.

5-5. Recall that a vector field Y defined on (an open subset of) a Riemannian
manifold is said to be parallel if VY = 0.

(a) Let p e R” and v € T,R". Show that there is a unique parallel vector
field Y on R” such that Y, = v.

(b) Let X(¢,0) = (singcos@,singsinf,cos @) be the spherical coordinate
parametrization of an open subset U of the unit sphere S? (see Example
2.20 and Problem 5-4), and let X9 = X.(0p), Xy = X«(d,) denote the
coordinate vector fields associated with this parametrization. Compute
Vx,(X,) and Vy, (Xy), and conclude that X, is parallel along the
equator and along each meridian 6 = 6.

(c) Let p =(1,0,0) € S2. Show that there is no parallel vector field W on
any neighborhood of p in S? such that Wy = Xolp.

(d) Use (a) and (c) to show that no neighborhood of p in (Sz, §) is isomet-
ric to an open subset of (]Rz, E).

(Used on p. 194.)

5-6. Suppose 1 : (1\7, g~) — (M, g) is a Riemannian submersion. If Z is any vec-
tor field on M, we let 7 denote its horizontal lift to M (see Prop. 2.25).

(a) Show that for every pair of vector fields X,Y € X(M), we have
(X.Y)=(X.Y)om;
[X.7]7 =[x, 7];
[f W] is vertical if W € %(1\7) is vertical.
(b) Let V and V denote the Levi-Civita connections of g and g, respec-
tively. Show that for every pair of vector fields X,Y € X(M), we have
V¥ = vxy +4[X.7]". (5.27)
[Hint: Let Z be a horizontal lift and W' a vertical vector field on M,
and compute (VgY, Z) and (VgY, W) using (5.9).]
(Used on p. 224.)
5-7. Suppose (M1,g1) and (M3, g5) are Riemannian manifolds.

(a) Prove thatif M x M> is endowed with the product metric, then a curve
y: I — My x M5 of the form y(¢) = (y1(t), y2(t)) is a geodesic if and
only if y; is a geodesic in (M;, g;) fori = 1,2.

(b) Now suppose f: M; — R is a strictly positive smooth function, and
My x s M, is the resulting warped product (see Example 2.24). Let
y1: I — M, be a smooth curve and go a point in M,, and define
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5-8.

5-9.

y: 1 — My xyM;by y(t) = (yi1(t).q0). Prove that y is a geodesic
with respect to the warped product metric if and only if y; is a geodesic
with respect to g;.

(Used on p. 316.)

Let G be a Lie group and g its Lie algebra. Suppose g is a bi-invariant
Riemannian metric on G, and (., -) is the corresponding inner product on g
(see Prop.3.12). Let ad: g — gl(g) denote the adjoint representation of g
(see Appendix C).

(a) Show that ad(X) is a skew-adjoint endomorphism of g for every X € g:
(ad(X)Y,Z) = —(Y,ad(X)Z).

[Hint: Take the derivative of {Ad (exp®tX)Y,Ad (exp®1X)Z) with
respect to ¢ at 1 = 0, where exp? is the Lie group exponential map of
G, and use the fact that Ad, = ad.]
(b) Show that VxY = %[X ,Y] whenever X and Y are left-invariant vector
fields on G.
(c) Show that the maximal geodesics of g starting at the identity are
exactly the one-parameter subgroups. Conclude that under the canonical
isomorphism of g = 7,G described in Proposition C.3, the restricted
Riemannian exponential map at the identity coincides with the Lie group
exponential map exp%: g — G. (See Prop.C.7.)

(d) Let R™ be the set of positive real numbers, regarded as a Lie group
under multiplication. Show that g = t=2dt? is a bi-invariant metric on
R, and the restricted Riemannian exponential map at 1 is given by
cd/ot — e€.

(Used on pp. 128, 224.)

Suppose (M, g) is a Riemannian manifold and (U , (p) is a smooth coordinate
chart on a neighborhood of p € M such that ¢(p) = 0 and ¢(U) is star-
shaped with respect to 0. Prove that this chart is a normal coordinate chart
for g if and only if g;; (p) = §;; and the following identity is satisfied on U:

ik
x'x/ T} (x) = 0.

. Prove Proposition 5.22 (a local isometry is determined by its value and dif-

ferential at one point).

. Recall the groups E(n), O(n + 1), and O (n, 1) defined in Chapter 3, which

act isometrically on the model Riemannian manifolds (R”, ), (S"(R).gr).
and (H” (R), & R), respectively.

(a) Show that
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Iso (R”,E) =E(n),
Iso (S"(R).gr) =O(n +1),
Iso (H"(R).gg) =0T (n,1).

(b) Show that in each case, for each point p in R”, S”(R), or H"(R), the
isotropy group at p is a subgroup isomorphic to O(n).

(c) Strengthen the result above by showing that if (M, g) is one of the
Riemannian manifolds (]R{",g), (S"(R),goR), or (H"(R),gR), U is
a connected open subset of M, and ¢: U — M is a local isometry,
then ¢ is the restriction to U of an element of Iso(M, g).

(Used on pp. 57, 58, 67, 348, 349.)

5-12. Suppose M is a connected n-dimensional Riemannian manifold, and G is
a Lie group acting isometrically and effectively on M. Show that dimG <
n(n+1)/2. (Used on p. 261.)

5-13. Let (M, g) be a Riemannian manifold.

(a) Show that the following formula holds for every smooth 1-form 71 €
QY(M):
dn(X.Y) = (Vxm(¥) = (Vyn(X).

(b) Generalize this to an arbitrary k-form 7 € Q¥ (M) as follows:
dn = (—D¥(k + 1) Alt(V),

where Alt denotes the alternation operator defined in (B.9). [Hint: For
each p € M, do the computation in normal coordinates centered at p,
and note that both sides of the equation are well defined, independently
of the choice of coordinates.]

(Used on p. 209.)

5-14. Suppose (M, g) is a Riemannian manifold, and let div and A be the diver-
gence and Laplace operators defined on pages 32-33.

(a) Show that for every vector field X € X(M), divX can be written in
terms of the total covariant derivative as div X = tr(VX), and that if
X = X'E; in terms of some local frame, then divX = X i;,-. [Hint:
Show that it suffices to prove the formulas at the origin in normal
coordinates. ]

(b) Show that the Laplace operator acting on a smooth function u can be

expressed as
Au = trg (V?u), (5.28)

and in terms of any local frame,
Au=g"u;; =uy'. (5.29)

(Used on pp. 218, 256, 333.)
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5-15.

5-16.

5-17.

5-18.
5-19.

Suppose (M, g) is a compact Riemannian n-manifold (without boundary)
and u € C*°(M) is an eigenfunction of M, meaning that —Au = Au for
some constant A (see Prob. 2-24). Prove that

)&/ |gradu|2dVg§n/ |V2u|2dVg.
M M

[Hint: Consider the 2-tensor field V2u — %(Au) g, and use one of Green’s

identities (Prob. 2-23).] (Used on p. 223.)

By analogy with the formula div X = tr(VX) developed in Problem 5-14,
we can define a divergence operator on tensor fields of any rank on a Rie-
mannian manifold. If F is any smooth k-tensor field (covariant, contravari-
ant, or mixed), we define the divergence of F by

divF =trg(VF),

where the trace is taken on the last two indices of the (k + 1)-tensor field
VF. (If F is purely contravariant, then tr, can be replaced with tr, because
the next-to-last index of V F is already an upper index.) Extend the integra-
tion by parts formula of Problem 2-22 as follows: if F' is a smooth covariant
k-tensor field and G is a smooth covariant (k + 1)-tensor field on a compact
smooth Riemannian manifold (M, g) with boundary, then

/(VF,G)dngf (F®Nb,G)dV§—[ (F.divG)dVy,,
M M M

where g is the induced metric on M. This is often written more sugges-
tively as

/ Fiyigsj G d Ve
M
=/ Fil,,,ikGil"'iijjdVg—/ Fiy i G d V.
oM M

Suppose (M, g) is a Riemannian manifold and P € M is an embedded sub-
manifold. Show that P has a tubular neighborhood that is diffeomorphic to
the total space of the normal bundle NP, by a diffeomorphism that sends
the zero section of NP to P. [Hint: First show that the function § in (5.21)
can be chosen to be smooth.]

Prove Proposition 5.26 (properties of Fermi coordinates).

Use H? with the metric g to construct an interpretation of Hilbert’s axioms
with the hyperbolic parallel postulate substituted for the Euclidean one, and
prove that the incidence postulates, congruence postulate (e), and the hyper-
bolic parallel postulate are theorems in this geometry. (Used on p. 144.)
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5-20.

5-21.

5-22.

5-23.

5 The Levi-Civita Connection

Show that single elliptic geometry (Example 5.30) satisfies Hilbert’s inci-
dence postulates and the elliptic parallel postulate if points are defined as
elements of RPP? and lines are defined as images of maximal geodesics.

Let (M, g) be a Riemannian or pseudo-Riemannian manifold and p € M.
Show that for every orthonormal basis (by,...,b,) for T, M, there is a
smooth orthonormal frame (E;) on a neighborhood of p such that E;|, = b;
and (VE;), =0 for each i.

A smooth vector field X on a Riemannian manifold is called a Killing vector

field if the Lie derivative of the metric with respect to X vanishes. By Propo-
sition B.10, this is equivalent to the requirement that the metric be invariant
under the flow of X. Prove that X is a Killing vector field if and only if
the covariant 2-tensor field (VX)” is antisymmetric. [Hint: Use Prop. B.9.]
(Used on pp. 190, 315.)

Let (M, g) be a connected Riemannian manifold and p € M. An admissible
loop based at p is an admissible curve y: [a,b] — M such that y(a) =
y(b) = p. For each such loop y, let PY denote the parallel transport operator
P} : TyM — T, M along y, and let Hol(p) € GL (T, M) denote the set of
all automorphisms of 7}, M obtained in this way:

Hol(p) = {PV : y is an admissible loop based atp}.

(a) Show that Hol(p) is a subgroup of O(T,M) (the set of all linear
isometries of T, M), called the holonomy group at p.

(b) Let Hol%(p) € Hol(p) denote the subset obtained by restricting to
loops y that are path-homotopic to the constant loop. Show that Hol® (p)
is a normal subgroup of Hol(p), called the restricted holonomy group
atp.

(c¢) Given p,q € M, show that there is an isomorphism of GL (7, M ) with
GL (7, M) that takes Hol(p) to Hol(g).

(d) Show that M is orientable if and only if Hol(p) € SO (TPM ) (the set
of linear isometries with determinant + 1) for some p € M.

(e) Show that g is flat if and only if Hol®(p) is the trivial group for some
peEM.
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Chapter 6
Geodesics and Distance

In this chapter, we explore the relationships among geodesics, lengths, and distances
on a Riemannian manifold. A primary goal is to show that all length-minimizing
curves are geodesics, and that all geodesics are locally length-minimizing. Later, we
prove the Hopf—Rinow theorem, which states that a connected Riemannian manifold
is geodesically complete if and only if it is complete as a metric space. At the end
of the chapter, we study distance functions (which express the distance to a point
or other subset) and show that they can be used to construct coordinates, called
semigeodesic coordinates, that put a metric in a particularly simple form.

Most of the results of this chapter do not apply to general pseudo-Riemannian
metrics, at least not without substantial modification. For this reason, we restrict
our focus here to the Riemannian case. (For a treatment of lengths of curves in the
pseudo-Riemannian setting, see [O’N83].) Also, the theory of minimizing curves
becomes considerably more complicated in the presence of a nonempty boundary;
thus, unless otherwise stated, throughout this chapter we assume that (M, g) is a Rie-
mannian manifold without boundary. And because we will be using the Riemannian
distance function, we assume for most results that M is connected.

Geodesics and Minimizing Curves

Let (M, g) be a Riemannian manifold. An admissible curve y in M is said to be
a minimizing curve it Lg(y) < Lg ()7) for every admissible curve ¥ with the same
endpoints. When M is connected, it follows from the definition of the Riemannian
distance that y is minimizing if and only if L, (y) is equal to the distance between
its endpoints.

Our first goal in this section is to show that all minimizing curves are geodesics.
To do so, we will think of the length function L as a functional on the set of all ad-
missible curves in M with fixed starting and ending points. (Real-valued functions
whose domains are themselves sets of functions are typically called functionals.)
Our project is to search for minima of this functional.
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152 6 Geodesics and Distance

From calculus, we might expect that a necessary condition for a curve y to be
minimizing would be that the “derivative” of Lg vanish at y, in some sense. This
brings us to the brink of the subject known as the calculus of variations: the use of
calculus to identify and analyze extrema of functionals defined on spaces of func-
tions or maps. In its fully developed state, the calculus of variations allows one to
apply all the usual tools of multivariable calculus in the infinite-dimensional setting
of function spaces—tools such as directional derivatives, gradients, critical points,
local extrema, saddle points, and Hessians. For our purposes, however, we do not
need to formalize the theory of calculus in the infinite-dimensional setting. It suf-
fices to note that if y is a minimizing curve, and {Is : s € (—¢,¢)} is a one-parameter
family of admissible curves with the same endpoints such that L, (I) is a differ-
entiable function of s and Iy = y, then by elementary calculus, the s-derivative of
L¢(I's) must vanish at s = 0 because Lg(I) attains a minimum there.

Families of Curves

To make this rigorous, we introduce some more definitions. Let (M, g) be a Rie-
mannian manifold.

Given intervals /,J C R, a continuous map I': J x I — M is called a one-
parameter family of curves. Such a family defines two collections of curves in M :
the main curves I's(t) = I'(s,t) defined for ¢t € I by holding s constant, and the
transverse curves I’V (s) = I'(s,t) defined for s € J by holding ¢ constant.

If such a family I" is smooth (or at least continuously differentiable), we denote
the velocity vectors of the main and transverse curves by

3 (s,1) = (Iy)(t) € TpsnyM; 35T (s,t) = T'D'(s) € Tr.nM.

Each of these is an example of a vector field along I, which is a continuous map
Vi JxI — TM suchthat V(s,t) € Tr(,nM foreach (s,1).

The families of curves that will interest us most in this chapter are of the fol-
lowing type. A one-parameter family I” is called an admissible family of curves
if (i) its domain is of the form J X [a,b] for some open interval J; (ii) there is a
partition (ay,...,ay) of [a,b] such that I" is smooth on each rectangle of the form
J x[aj—1,a;]; and (iii) Is(¢) = I'(s,t) is an admissible curve for each s € J (Fig.
6.1). Every such partition is called an admissible partition for the family.

If y: [a,b] — M is a given admissible curve, a variation of y is an admissible
family of curves I": J x [a,b] — M such that J is an open interval containing 0
and I'p = y. It is called a proper variation if in addition, all of the main curves have
the same starting and ending points: I's(a) = y(a) and I's(b) = y(b) forall s € J.

In the case of an admissible family, the transverse curves are smooth on J for
each ¢, but the main curves are in general only piecewise regular. Thus the velocity
vector fields d;1" and 0,1 are smooth on each rectangle J x [a;_1,q;], but not
generally on the whole domain.
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a2'

ai

Fig. 6.1: An admissible family

We can say a bit more about ds 1", though. If I" is an admissible family, a piece-
wise smooth vector field along I' is a (continuous) vector field along I" whose
restriction to each rectangle J X [a;—1,a;] is smooth for some admissible parti-
tion (ao,...,ar) for I'. In fact, ;1" is always such a vector field. To see that it
is continuous on the whole domain J X [a,b], note on the one hand that for each
i =1,....,k—1, the values of d;I" along the set J x {a;} depend only on the val-
ues of I" on that set, since the derivative is taken only with respect to the s vari-
able; on the other hand, d,I" is continuous (in fact smooth) on each subrectangle
J X [aj—1,a;] and J X [a;,a;+1], so the right-hand and left-hand limits at t = q;
must be equal. Therefore d;I” is always a piecewise smooth vector field along I.
(However, 0; I is typically not continuous at t = a;.)

If I" is a variation of y, the variation field of I is the piecewise smooth vector
field V(¢) = 0,1°(0,t) along y. We say that a vector field V' along y is proper if
V(a) = 0and V(b) = 0; it follows easily from the definitions that the variation field
of every proper variation is itself proper.

Lemma 6.1. If y is an admissible curve and V is a piecewise smooth vector field
along y, then V is the variation field of some variation of y. If V is proper, the
variation can be taken to be proper as well.

Proof. Suppose y and V satisfy the hypotheses, and set I"(s,7) = exp,,(,(sV (1))
(Fig. 6.2). By compactness of [a,b], there is some positive & such that I" is de-
fined on (—¢,¢) x [a,b]. By composition, I" is smooth on (—e&,¢) X [a;—1,a;] for
each subinterval [a;—1,a;] on which V' is smooth, and it is continuous on its whole
domain. By the properties of the exponential map, the variation field of I" is V.
Moreover, if V(a) = 0 and V(b) = 0, the definition gives I'(s,a) = y(a) and
I'(s,b) =y(b),so I is proper. O

If V is a piecewise smooth vector field along I', we can compute the covariant
derivative of V either along the main curves (at points where V' is smooth) or along
the transverse curves; the resulting vector fields along I" are denoted by D;V and
D,V respectively.

A key ingredient in the proof that minimizing curves are geodesics is the sym-
metry of the Levi-Civita connection. It enters into our proofs in the form of the
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".
y(a) /
y(®)

Fig. 6.2: Every vector field along y is a variation field

following lemma. (Although we state and use this lemma only for the Levi-Civita
connection, the proof shows that it is actually true for every symmetric connection in
™ .)

Lemma 6.2 (Symmetry Lemma). Let " : J X [a,b] — M be an admissible family
of curves in a Riemannian manifold. On every rectangle J X [a;—y,a;] where I is
smooth,

Dso;, " = D;0sT".

Proof. This is a local question, so we may compute in local coordinates (x') around
a point I'(so. o). Writing the components of I" as I'(s,1) = (x'(s,1),....x"(s.1)),
we have

dxk axk
0, = —0; os " = — 0.
t 9 k s 95 k
Then, using the coordinate formula (4.15) for covariant derivatives along curves, we
obtain
92xk  9xt ax/
D3, I = ——Tk ) o
s0t (asaz 0 os f’) k
92xk  9xt 9x/
Do, = =221k )9,
0s (8[3s s o ,,) k

Reversing the roles of i and j in the second line above and using the symmetry

condition F;‘i = I‘ikj, we conclude that these two expressions are equal. a

Minimizing Curves Are Geodesics

We can now compute an expression for the derivative of the length functional along
a variation of a curve. Traditionally, the derivative of a functional on a space of maps
is called its first variation.

Theorem 6.3 (First Variation Formula). Let (M, g) be a Riemannian manifold.
Suppose y: [a,b] — M is a unit-speed admissible curve, I' : J x [a,b] - M is a



Geodesics and Minimizing Curves 155

Fig. 6.3: A;y’ is the “jump” in y’ at a;

variation of y, and V' is its variation field. Then Lg(Iy) is a smooth function of s,
and

k—1

b
Lot == [ (VD)= 3 (Vi@ Ay

i=1

+(V(b).y' (b)) —(V(a).y'(a)). (6.1)

where (ay,...,ay) is an admissible partition for V, and for each i = 1,...,k —1,
Ay’ =v'(a)—y'(ay) is the “jump” in the velocity vector field y' at a; (Fig. 6.3).
In particular, if I is a proper variation, then

d
ds

s=0

k—1

b
Lg(Iy) = —/ (V.Diy')dt = (Vi) Aiy'). (6.2)

i=1

d
ds s=0
Proof. On every rectangle J X [a;—1,a;] where I" is smooth, since the integrand in
Lg(I) is smooth and the domain of integration is compact, we can differentiate
under the integral sign as many times as we wish. Because Lg (I7) is a finite sum of
such integrals, it follows that it is a smooth function of s.

For brevity, let us introduce the notations

T(s,t) =0:I(s,1), S(s,t) = a5 (s,1).
Differentiating on the interval [a;_1,a;] yields

d 4 9
it a) = [ g
1

i1 98

a;
-],

a; 1
=/ — (D,S.T)dt,
aji—q |T|

(T, TY"Y22(D,T.,T) dt (6.3)

where we have used the symmetry lemma in the last line. Setting s = 0 and noting
that S(0,7) = V(¢t) and T(0,¢) = y’(t) (which has length 1), we get
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d o
d_S o Lg (Fs [aifl,ai]) = /,;il (DtV,y/) dt

_ /_1 (%(V, Yy~ (V. Dt)/)) di

= (V(ai)7 V/(ai_)>_<V(ai—l)9 V/(al‘-i__l))

aj
—/ (V.Dyy') dt.
ai—1

(The second equality follows from (5.3), and the third from the fundamental theorem
of calculus.) Finally, summing over i, we obtain (6.1). O

Because every admissible curve has a unit-speed parametrization and length is
independent of parametrization, the requirement in the above proposition that y be
of unit speed is not a real restriction, but rather just a computational convenience.

Theorem 6.4. In a Riemannian manifold, every minimizing curve is a geodesic
when it is given a unit-speed parametrization.

Proof. Suppose y: [a,b] — M is minimizing and of unit speed, and (ao, ...,ax)is an
admissible partition for y. If I" is any proper variation of y, then L, (Is) is a smooth
function of s that achieves its minimum at s = 0, so it follows from elementary
calculus that d (Lg(Iy)) /ds = 0 when s = 0. Since every proper vector field along
y is the variation field of some proper variation, the right-hand side of (6.2) must
vanish for every such V.

First we show that D;y’ = 0 on each subinterval [a;_1,a;], so y is a “broken
geodesic.” Choose one such interval, and let ¢ € C°°(R) be a bump function such
that ¢ > 0 on (a;—1,a;) and ¢ = 0 elsewhere. Then (6.2) with V' = ¢ Dy’ becomes

a; 5

i—1

Since the integrand is nonnegative and ¢ > 0 on (a;—1,4; ), this shows that D;y" =0
on each such subinterval.

Next we need to show that A;y’ = 0 for each i between 0 and k, which is to say
that y has no corners. For each such i, we can use a bump function in a coordinate
chart to construct a piecewise smooth vector field V' along y such that V(a;) = A;y’
and V(a;) =0 for j #i. Then (6.2) reduces to —|A;y’|> = 0, so A;y’ = 0 for each
i.

Finally, since the two one-sided velocity vectors of y match up at each q;, it
follows from uniqueness of geodesics that y|[4; 4, ,] is the continuation of the
geodesic y|[4;_,,q;]> and therefore y is smooth. O

The preceding proof has an enlightening geometric interpretation. Under the as-
sumption that D,y # 0, the first variation with V = ¢ D,y is negative, which shows
that deforming y in the direction of its acceleration vector field decreases its length
(Fig. 6.4). Similarly, the length of a broken geodesic y is decreased by deforming it
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Fig. 6.4: Deforming in the direction of the
acceleration Fig. 6.5: Rounding the corner

in the direction of a vector field V such that V(a;) = A;y’ (Fig. 6.5). Geometrically,
this corresponds to “rounding the corner.”

The first variation formula actually tells us a bit more than is claimed in Theorem
6.4. In proving that y is a geodesic, we did not use the full strength of the assumption
that the length of Iy takes a minimum when s = 0; we only used the fact that its
derivative is zero. We say that an admissible curve y is a critical point of L g if for
every proper variation [y of y, the derivative of Lg (/) with respect to s is zero at
s = 0. Therefore we can strengthen Theorem 6.4 in the following way.

Corollary 6.5. A unit-speed admissible curve y is a critical point for Lg if and only
if it is a geodesic.

Proof. If y is a critical point, the proof of Theorem 6.4 goes through without mod-
ification to show that y is a geodesic. Conversely, if y is a geodesic, then the first
term on the right-hand side of (6.2) vanishes by the geodesic equation, and the sec-
ond term vanishes because y’ has no jumps. O

The geodesic equation D;y’ = 0 thus characterizes the critical points of the
length functional. In general, the equation that characterizes critical points of a func-
tional on a space of maps is called the variational equation or the Euler-Lagrange
equation of the functional. Many interesting equations in differential geometry arise
as variational equations. We touch briefly on three others in this book: the Einstein
equation (7.34), the Yamabe equation (7.59), and the minimal hypersurface equation
H =0 (Thm. 8.18).

Geodesics Are Locally Minimizing

Next we turn to the converse of Theorem 6.4. It is easy to see that the literal con-
verse is not true, because not every geodesic segment is minimizing. For example,
every geodesic segment on S” that goes more than halfway around the sphere is
not minimizing, because the other portion of the same great circle is a shorter curve
segment between the same two points. For that reason, we concentrate initially on
local minimization properties of geodesics.

As usual, let (M, g) be a Riemannian manifold. A regular (or piecewise regular)
curve y: I — M is said to be locally minimizing if every ty € I has a neighborhood
Iy C I such that whenever a,b € Iy with a < b, the restriction of y to [a,b] is
minimizing.
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Fig. 6.6: The radial vector field in a normal neighborhood

Lemma 6.6. Every minimizing admissible curve segment is locally minimizing.

» Exercise 6.7. Prove the preceding lemma.

Our goal in this section is to show that geodesics are locally minimizing. The
proof will be based on a careful analysis of the geodesic equation in Riemannian
normal coordinates.

If ¢ is a positive number such that exp,, is a diffeomorphism from the ball
B:(0) € T, M to its image (where the radius of the ball is measured with respect to
the norm defined by g ). then the image set exp , (B¢(0)) is a normal neighborhood
of p, called a geodesic ball in M, or sometimes an open geodesic ball for clarity.

Also, if the closed ball B,(0) is contained in an open set V' C T, M on which
exp, is a diffeomorphism onto its image, then exp, (EE(O)) is called a closed
geodesic ball, and exp,, (838 (0)) is called a geodesic sphere. Given such a V', by
compactness there exists &’ > & such that B,/ (0) C V, so every closed geodesic ball
is contained in an open geodesic ball of larger radius. In Riemannian normal co-
ordinates centered at p, the open and closed geodesic balls and geodesic spheres
centered at p are just the coordinate balls and spheres.

Suppose U is a normal neighborhood of p € M. Given any normal coordinates
(xi) on U centered at p, define the radial distance function r: U — R by

r(x) =V (xhH2 44 (x7)2, (6.4)
and the radial vector field on U ~ {p} (see Fig. 6.6), denoted by 0d,, by

xt 9

In Euclidean space, r(x) is the distance to the origin, and d, is the unit vector field
pointing radially outward from the origin. (The notation is suggested by the fact that
dr is a coordinate derivative in polar or spherical coordinates.)
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Lemma 6.8. In every normal neighborhood U of p € M, the radial distance function
and the radial vector field are well defined, independently of the choice of normal
coordinates. Both r and 8, are smooth on U ~{p}, and r? is smooth on all of U.

Proof. Proposition 5.23 shows that any two normal coordinate charts on U are re-
lated by X = A’ x/ for some orthogonal matrix (A% ), and a straightforward com-
putation shows that both r and 9, are invariant under such coordinate changes. The
smoothness statements follow directly from the coordinate formulas. O

The crux of the proof that geodesics are locally minimizing is the following de-
ceptively simple geometric lemma.

Theorem 6.9 (The Gauss Lemma). Ler (M, g) be a Riemannian manifold, let U
be a geodesic ball centered at p € M, and let 0, denote the radial vector field on
U ~{p}. Then 9, is a unit vector field orthogonal to the geodesic spheresin U ~{p}.

Proof. We will work entirely in normal coordinates (x') on U centered at p, using
the properties of normal coordinates described in Proposition 5.24.

Let g € U ~{p} be arbitrary, with coordinate representation (q1 yeen ,q”), and let
b=r(q) = +/(g")?+---+ (g")?, where r is the radial distance function defined by
(6.4). It follows that 9, |, has the coordinate representation

Let v = v'0;|, € T, M be the tangent vector at p with components v’ = ¢’ /b.
By Proposition 5.24(c), the radial geodesic with initial velocity v is given in these
coordinates by

yo@) = (tv',....00").

It satisfies y,(0) = p, y»(b) = ¢, and y,,(b) = v'd;|, = d,|,. Because g, is equal
to the Euclidean metric in these coordinates, we have

1
@, = vle = VD2 + (02 = Vg2 4+ (g2 = 1.

s0 v is a unit vector, and thus y,, is a unit-speed geodesic. It follows that 9, |, = y;, (b)
is also a unit vector.

To prove that d, is orthogonal to the geodesic spheres let ¢, b, and v be as above,
and let X = exp,, (BBb (0)) be the geodesic sphere containing ¢. In these coordi-
nates, X, is the set of points satisfying the equation (x!)% +--- 4+ (x")? = b2. Let
w € T;M be any vector tangent to X, at g. We need to show that (w, 8r|q)g =0.

Choose a smooth curve 6 : (—¢,¢) — X, satisfying 0(0) = ¢ and ¢/(0) = w, and
write its coordinate representation in (xi)—coordinates aso(s) = (01 (s),...,0" (s)).
The fact that o (s) lies in X, for all s means that

(01())> + -+ (0" (5))> = b2 (6.6)
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Fig. 6.7: Proof of the Gauss lemma

Define a smooth map I": (—¢,¢) x [0,b] — U (Fig. 6.7) by

I(s,t)= ( al(s).. —on(s))

For each s € (—¢,¢), Iy is a geodesic by Proposition 5.24(c). Its initial velocity is
rj0) = (1/b)a (5)0; |p , which is a unit vector by (6.6) and the fact that g, is the
Euclidean metric in coordinates; thus each Iy is a unit-speed geodesic.

As before, let S = 0,1 and T = 9, I". It follows from the definitions that

5(0,0) = % - I5(0) = 0;
7(0,0) = rrii Yo(t) = v;
S(0,b) = is s=00(s) =w;
ron=4 =Y 0 =5 l,

Therefore (S, T) is zero when (s,¢) = (0,0) and equal to (w,3r|q) when (s,t) =
(0,b), so to prove the theorem it suffices to show that (S, T') is independent of .
We compute

d
E<S’ T)=(D;S,T)+(S,D;T) (compatibility with the metric)

=(DsT,T)+(S,D;T) (symmetry lemma)

) . 6.7
=(D;T,T)+0 (each I is a geodesic)

—|T|2_0 (|T| = |I}| =1 forall (s,1)).

10
24
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Fig. 6.8: Radial geodesics are minimizing

This proves the theorem. O

We will use the Gauss lemma primarily in the form of the next corollary.

Corollary 6.10. Let U be a geodesic ball centered at p € M, and let r and 9, be
the radial distance and radial vector field as defined by (6.4) and (6.5). Then
gradr = 9, on U ~{p}.

Proof. By the result of Problem 2-10, it suffices to show that d, is orthogonal to the
level sets of r and d,(r) = |0, |§ The first claim follows directly from the Gauss
lemma, and the second from the fact that 9, (r) = 1 by direct computation in normal
coordinates, which in turn is equal to |9, |§ by the Gauss lemma. O

Here is the payoff: our first step toward proving that geodesics are locally mini-
mizing. Note that this is not yet the full strength of the theorem we are aiming for,
because it shows only that for each point on a geodesic, sufficiently small segments
of the geodesic starting at that point are minimizing. We will remove this restriction
after a little more work below.

Proposition 6.11. Let (M, g) be a Riemannian manifold. Suppose p € M and q is
contained in a geodesic ball around p. Then (up to reparametrization) the radial
geodesic from p to q is the unique minimizing curve in M from p to q.

Proof. Choose ¢ > 0 such that exp, (Bg(O)) is a geodesic ball containing ¢. Let
y:[0,c] = M be the radial geodesic from p to g parametrized by arc length, and
write y(7) = exp ,(tv) for some unit vector v € T, M. Then L (y) = ¢, since y has
unit speed.

To show that y is minimizing, we need to show that every other admissible curve
from p to ¢ has length at least ¢. Let o : [0,b] — M be an arbitrary admissible curve
from p to ¢, which we may assume to be parametrized by arc length as well. Let
agp € [0,b] denote the last time that o (t) = p, and by € [0, b] the first time after ag
that o () meets the geodesic sphere X, of radius ¢ around p (Fig. 6.8). Then the
composite function r o g is continuous on [ag, bg] and piecewise smooth in (ag, by),
so we can apply the fundamental theorem of calculus to conclude that
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b()d

o) - r@@) = [ Sreds
bo

— | dr@'@))di

ao

bo
= grad r|g).0'(1))dt
/ao ( ’ ) 6.8)

bo
< / lgrad rlo| o) dt

ao

bo
=/ lo”(t)|dt
ag

=Lg (U|[a0,b0]) < Lg(0).

Thus Lg(0) > r(o(bo)) —r(o(ap)) = c, so y is minimizing.

Now suppose Lg(0) = c. Then b = ¢, and both inequalities in (6.8) are equal-
ities. Because we assume that o is a unit-speed curve, the second of these equali-
ties implies that ag = 0 and by = b = ¢, since otherwise the segments of o before
t = ap and after t = by would contribute positive lengths. The first equality then
implies that the nonnegative expression |grad r|(,(t)| |o/(t)| — (grad rlg(,),o/(l)) is
identically zero on [0,b], which is possible only if ¢’(¢) is a positive multiple
of grad r|qs(;) for each ¢. Since we assume that o has unit speed, we must have
o'(t) = grad r|s(+) = 0r|o(r)- Thus o and y are both integral curves of 9, passing
through g attime f = ¢, so0 = y. O

The next two corollaries show how radial distance functions, balls, and spheres
in normal coordinates are related to their global metric counterparts.

Corollary 6.12. Let (M, g) be a connected Riemannian manifold and p € M. Within
every open or closed geodesic ball around p, the radial distance function r(x)
defined by (6.4) is equal to the Riemannian distance from p to x in M.

Proof. Since every closed geodesic ball is contained in an open geodesic ball of
larger radius, we need only consider the open case. If x is in the open geodesic ball
exp,, (B (0)), the radial geodesic y from p to x is minimizing by Proposition 6.11.
Since its velocity is equal to 9, which is a unit vector in both the g-norm and the
Euclidean norm in normal coordinates, the g-length of y is equal to its Euclidean
length, which is r (x). O

Corollary 6.13. In a connected Riemannian manifold, every open or closed geodesic
ball is also an open or closed metric ball of the same radius, and every geodesic
sphere is a metric sphere of the same radius.

Proof. Let (M,g) be a Riemannian manifold, and let p € M be arbitrary. First,
let V' =exp, (BC(O)) C M be a closed geodesic ball of radius ¢ > 0 around p.
Suppose ¢ is an arbitrary point of M. If g € V, then Corollary 6.12 shows that ¢
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is also in the closed metric ball of radius c¢. Conversely, suppose ¢ ¢ V. Let S be
the geodesic sphere exp,, (8BC (0)). The complement of S is the disjoint union of
the open sets exp,, (BC (0)) and M ~exp, (E c (0)), and hence disconnected. Thus if
y: la,b] — M is any admissible curve from p to ¢, there must be a time #y € (a,b)
when y(tp) € S, and then Corollary 6.12 shows that the length of y|[4 ,,) must be at
least c. Since y|[;, 5] must have positive length, it follows that d, (p,q) > ¢, so g is
not in the closed metric ball of radius ¢ around p.

Next, let W = exp,, (BC (O)) be an open geodesic ball of radius c¢. Since W is
the union of all closed geodesic balls around p of radius less than ¢, and the open
metric ball of radius ¢ is similarly the union of all closed metric balls of smaller
radii, the result of the preceding paragraph shows that W is equal to the open
metric ball of radius c.

Finally, if § = exp, (BBC (O)) is a geodesic sphere of radius ¢, the arguments
above show that S is equal to the closed metric ball of radius ¢ minus the open
metric ball of radius ¢, which is exactly the metric sphere of radius c. O

The last corollary suggests a simplified notation for geodesic balls and spheres
in M. From now on, we will use the notations Bc(p) = exp,, (Bc(0)), Bc(p) =
exp, (Ec (O)), and S¢(p) = exp), (BBC (O)) for open and closed geodesic balls and
geodesic spheres, which we now know are also open and closed metric balls and
spheres. (To avoid confusion, we refrain from using this notation for other metric
balls and spheres unless explicitly stated.)

Uniformly Normal Neighborhoods

We continue to let (M,g) be a Riemannian manifold. In order to prove that
geodesics in M are locally minimizing, we need the following refinement of the
concept of normal neighborhoods. A subset W € M is called uniformly normal
if there exists some § > 0 such that W is contained in a geodesic ball of radius &
around each of its points (Fig. 6.9). If § is any such constant, we will also say that
W is uniformly §-normal. Clearly every subset of a uniformly §-normal set is itself
uniformly §-normal.

Lemma 6.14 (Uniformly Normal Neighborhood Lemma). Given p € M and any
neighborhood U of p, there exists a uniformly normal neighborhood of p contained
inU.

Proof. Choose a normal coordinate chart (Uo, (xi)) centered at p and contained in
U, and let (x’,v") be the corresponding natural coordinates for 7! (Up) € TM.
Because this is a local question, we might as well identify Uy with an open sub-
set of R”, and identify TM with Uy x R”. The exponential map for the Riemann-
ian manifold (Uy, g) is defined on an open subset & € Uy x R”. Consider the map
E: & — Uy x Uy defined by
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Fig. 6.9: Uniformly normal neighborhood

E(x,v) = (x,exp, v).
The differential of E at (p,0) is represented by the matrix

axi ox!

ax/ v/ Id 0
dE(p,O) = . ' = (* Id)’

dexp’ dexp'

ox/ v/

which is invertible. By the inverse function theorem, therefore, there are neighbor-
hoods U C Uy xR" of (p,0) and V C Uy x Uy of (p, p) such that E restricts to a
diffeomorphism from U to V. Shrinking both neighborhoods if necessary, we may
assume that U is a product set of the form W x B¢(0), where W is a neighborhood
of p and B(0) is a Euclidean ball in v-coordinates. It follows that for each x € W,
exp, maps B(0) smoothly onto the open set Vyx = {y : (x,y) € V}, and it is a dif-
feomorphism because its inverse is given explicitly by exp; 1 (y) = 20 E71(x, y),
where 7,1 Uy x R” — R” is the projection. Shrinking W still further if necessary,
we may assume that the metric g satisfies an estimate of the form (2.21) for all
x € W. This means that for each x € W, the coordinate ball B.(0) € 7 M contains
a gx-ball of radius at least ¢/c. Put 6 = ¢/c; we have shown that for each x € W,
there is a g-geodesic ball of radius § in M centered at x.

Now, shrinking W once more, we may assume that its diameter (with respect
to the metric dg) is less than §. It follows that for each x € W, the entire set W
is contained in the metric ball of radius § around x, and Corollary 6.13 shows that
this metric ball is also a geodesic ball of radius §. Thus W is the required uniformly
normal neighborhood of p. O

We are now ready to prove the main result of this section.
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a tyg b

Fig. 6.10: Geodesics are locally minimizing

Theorem 6.15. Every Riemannian geodesic is locally minimizing.

Proof. Let (M, g) be a Riemannian manifold. Suppose y: I — M is a geodesic,
which we may assume to be defined on an open interval, and let fg € /. Let W be a
uniformly normal neighborhood of y(#y), and let Iy C I be the connected compo-
nent of y~! (W) containing ty. If a, b € Iy witha < b, then the definition of uniformly
normal neighborhood implies that y(b) is contained in a geodesic ball centered at
y(a) (Fig. 6.10). Therefore, by Proposition 6.11, the radial geodesic segment from
y(a) to y(b) is the unique minimizing curve segment between these points. How-
ever, the restriction of y to [a,b] is also a geodesic segment from y(a) to y(b)
lying in the same geodesic ball, and thus y |, 5] must coincide with this minimizing
geodesic. O

It is interesting to note that the Gauss lemma and the uniformly normal neighbor-
hood lemma also yield another proof that minimizing curves are geodesics, without
using the first variation formula. On the principle that knowing more than one proof
of an important fact always deepens our understanding of it, we present this proof
for good measure.

Another proof of Theorem 6.4. Suppose y: [a,b] — M is a minimizing admissible
curve. Just as in the preceding proof, for every ¢y € [a,b] we can find a connected
neighborhood I of #y such that y(/y) is contained in a uniformly normal neigh-
borhood W . Then for every ag, by € Iy, the same argument as above shows that the
unique minimizing curve segment from y(ag) to y(bg) is a radial geodesic. Since
the restriction of y to [ag, bo] is such a minimizing curve segment, it must coincide
with this radial geodesic. Therefore y solves the geodesic equation in a neighbor-
hood of #y. Since ty was arbitrary, y is a geodesic. O

Given a Riemannian manifold (M, g) (without boundary), for each point p € M
we define the injectivity radius of M at p, denoted by inj(p), to be the supremum
of all @ > 0 such that exp,, is a diffeomorphism from B,(0) € 7, M onto its image.
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If there is no upper bound to the radii of such balls (as is the case, for example, on
R"), then we set inj(p) = oo. Then we define the injectivity radius of M, denoted
by inj(M), to be the infimum of inj(p) as p ranges over points of M. It can be zero,
positive, or infinite. (The terminology is explained by Problem 10-24.)

Lemma 6.16. If (M, g) is a compact Riemannian manifold, then inj(M ) is positive.

Proof. For each x € M, there is a positive number §(x) such that x is contained in a
uniformly §(x)-normal neighborhood Wy, and inj(x”) > §(x) for each x’ € W. Since
M is compact, it is covered by finitely many such neighborhoods Wy, ,..., Wy,.
Therefore, inj(M) is at least equal to the minimum of §(x1),...,8(xg). It cannot be
infinite, because a compact metric space is bounded, and a geodesic ball of radius ¢
contains points whose distances from the center are arbitrarily close to c. O

In addition to uniformly normal neighborhoods, there is another, more special-
ized, kind of normal neighborhood that is frequently useful. Let (M, g) be a Rie-
mannian manifold. A subset U C M is said to be geodesically convex if for each
p,q € U, there is a unique minimizing geodesic segment from p to ¢ in M, and the
image of this geodesic segment lies entirely in U'.

The next theorem says that every sufficiently small geodesic ball is geodesically
convex.

Theorem 6.17. Let (M, g) be a Riemannian manifold. For each p € M, there exists
€0 > 0 such that every geodesic ball centered at p of radius less than or equal to &g
is geodesically convex.

Proof. Problem 6-5. O

Completeness

Suppose (M, g) is a connected Riemannian manifold. Now that we can view M as
a metric space, it is time to address one of the most important questions one can ask
about a metric space: Is it complete? In general, the answer is no: for example, if M
isanopenballin R” withits Euclidean metric, thenevery sequencein M thatconverges
in R” to a point in dM is Cauchy, but not convergent in M.

In Chapter 5, we introduced another notion of completeness for Riemannian and
pseudo-Riemannian manifolds: recall that such a manifold is said to be geodesically
complete if every maximal geodesic is defined for all 7 € R. For clarity, we will
use the phrase metrically complete for a connected Riemannian manifold that is
complete as a metric space with the Riemannian distance function, in the sense that
every Cauchy sequence converges.

The Hopf-Rinow theorem, which we will state and prove below, shows that these
two notions of completeness are equivalent for connected Riemannian manifolds.
Before we prove it, let us establish a preliminary result, which will have other im-
portant consequences besides the Hopf—Rinow theorem itself.
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Fig. 6.11: Proof that y|[o,¢] aims at ¢

Lemma 6.18. Suppose (M, g) is a connected Riemannian manifold, and there is a
point p € M such that exp,, is defined on the whole tangent space T, M.

(a) Given any other q € M, there is a minimizing geodesic segment from p to q.
(b) M is metrically complete.

Proof. Let g € M be arbitrary. If y: [a,b] — M is a geodesic segment starting at
D, let us say that y aims at q if y is minimizing and

dg(p.q) =dg(p.y(b)) +dg(y(b).q). (6.9)

(This would be the case, for example, if y were an initial segment of a minimizing
geodesic from p to g; but we are not assuming that.) To prove (a), it suffices to show
that there is a geodesic segment y : [a,b] — M that begins at p, aims at ¢, and has
length equal to dg(p.q), for then the fact that y is minimizing means that
dg(p,y(D)) = Lg(y) = dg(p.q), and (6.9) becomes

dg(p.q) =dg(p.q) +dg (v(b).q),

which implies y(b) = g. Since y is a segment from p to g of length dg(p.q), it is
the desired minimizing geodesic segment.

Choose & > 0 such that there is a closed geodesic ball B,(p) around p that does
not contain ¢. Since the distance function on a metric space is continuous, there
is a point x in the geodesic sphere S;(p) where dg(x,g) attains its minimum on
the compact set S¢(p). Let y be the maximal unit-speed geodesic whose restriction
to [0, &] is the radial geodesic segment from p to x (Fig. 6.11); by assumption, y is
defined for all 7 € R.

We begin by showing that y o ] aims at ¢. Since it is minimizing by Proposition
6.11 (noting that every closed geodesic ball is contained in a larger open one), we
need only show that (6.9) holds with b = ¢, or

dg(p.q) =dg(p.x)+dg(x.q). (6.10)

To this end, let 0 : [ag,bo] — M be any admissible curve from p to g. Let o be the
first time o hits S;(p), and let o and 0, denote the restrictions of oy to [ag, ?o] and
[to, bo], respectively (Fig. 6.11). Since every point in Sg(p) is at a distance ¢ from
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Fig. 6.12: Proof that A =T

D, we have Lg(01) > dg(p,o(tg)) = dg(p,x); and by our choice of x we have
Ly (02) > dg(0(th),q) > dg(x,q). Putting these two inequalities together yields

Lg(0) = Lg(01)+ Lg(02) > dg(p.x)+dg(x,q).

Taking the infimum over all such o, we find that dy (p,q) > dg(p,x) + dq(x.q).
The opposite inequality is just the triangle inequality, so (6.10) holds.
Now let T = dg(p,q) and

A=1{bel0,T]: y|[0’b] aims at q}.

We have just shown that ¢ € 4. Let A = sup+A > €. By continuity of the distance
function, it is easy to see that +4 is closed in [0, 7], and therefore A € A. If A =T,
then y|o,7] is a geodesic of length T = dg(p,q) that aims at ¢, and by the remark
above we are done. So we assume A < T and derive a contradiction.

Let y = y(A), and choose 8 > 0 such that there is a closed geodesic ball Bs(y)
around y, small enough that it does not contain g (Fig. 6.12). The fact that A € A
means that

dg(y,(]) :dg(p,q)—dg(p,y) =T-A.

Let z € S5(y) be a point where dg(z,g) attains its minimum, and let 7: [0,§] — M
be the unit-speed radial geodesic from y to z. By exactly the same argument as
before, 7 aims at g, so

dg(z.q) = dg(y.q) —dg(y.2) = (T — A)—8. (6.11)
By the triangle inequality and (6.11),

de(p.z) > dg(p.q) —dg(z.q)
=T—(T—A—8) = A+3.

Therefore, the admissible curve consisting of y |9 4] (of length A) followed by 7 (of
length §) is aminimizing curve from p to z. This means that it has no corners, so z must
lie on y, and in fact, z = y(A + §). But then (6.11) says that
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Fig. 6.13: Cauchy sequences converge

dg(p.q) =T =(A+8)+dg(z,q) =dg(p.2) +dg(z.9),

SO ¥|[0,4+5] aims at g and A 4§ € », which is a contradiction. This completes the
proof of (a).

To prove (b), we need to show that every Cauchy sequence in M converges. Let
(i) be a Cauchy sequence in M. For each i, let y; (t) = exp,(fv;) be a unit-speed
minimizing geodesic from p to g;, and let d; = dg(p,q;), so that g; = exp,(d; v;)
(Fig. 6.13). The sequence (d;) is bounded in R (because Cauchy sequences in a
metric space are bounded), and the sequence (v;) consists of unit vectors in 7, M,
so the sequence of vectors (d;v;) in T, M is bounded. Therefore a subsequence
(d;, vi, ) converges to some v € T, M. By continuity of the exponential map, ¢;, =
exp,,(di, vi, ) — exp,, v, and since the original sequence (¢;) is Cauchy, it converges
to the same limit. O

The next theorem is the main result of this section.

Theorem 6.19 (Hopf-Rinow). A connected Riemannian manifold is metrically
complete if and only if it is geodesically complete.

Proof. Let (M, g) be a connected Riemannian manifold. Suppose first that M is
geodesically complete. Then in particular, it satisfies the hypothesis of Lemma 6.18,
so it is metrically complete.

Conversely, suppose M is metrically complete, and assume for the sake of
contradiction that it is not geodesically complete. Then there is some unit-speed
geodesic y: [0,b) — M that has no extension to a geodesic on any interval [0,5")
for b’ > b. Let (f;) be any increasing sequence in [0,5) that approaches b, and set
qi = y(t;). Since y is parametrized by arc length, the length of y|[,l.,tj] is exactly
|tj —ti|,sodg(qi,q;) <|tj —t;i| and (¢;) is a Cauchy sequence in M. By complete-
ness, (g;) converges to some point g € M.
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Fig. 6.14: y extends past g

Let W be a uniformly §-normal neighborhood of ¢ for some § > 0. Choose j
large enough that t; > b—§ and q; € W (Fig. 6.14). The fact that Bs(g;) is a
geodesic ball means that every unit-speed geodesic starting at ¢ ; exists at least for
t €10,8). In particular, this is true of the geodesic o with 0(0) = ¢; and ¢/(0) =
y'(t;). Define y: [0,¢; +6) — M by

~ y(©). t €[0,b).

y() =
o(t—tj), te(t;—46,tj+90).

Note that both expressions on the right-hand side are geodesics, and they have the

same position and velocity when ¢ = ;. Therefore, by uniqueness of geodesics, the

two definitions agree where they overlap. Since ¢; + 6 > b, ¥ is an extension of y

past b, which is a contradiction. O

A connected Riemannian manifold is simply said to be complete if it is either
geodesically complete or metrically complete; the Hopf—-Rinow theorem then im-
plies that it is both. For disconnected manifolds, we interpret “complete” to mean
geodesically complete, which is equivalent to the requirement that each component
be a complete metric space. As mentioned in the previous chapter, complete mani-
folds are the natural setting for global questions in Riemannian geometry.

We conclude this section by stating three important corollaries, whose proofs are
easy applications of Lemma 6.18 and the Hopf—Rinow theorem.

Corollary 6.20. If M is a connected Riemannian manifold and there exists a point
P € M such that the restricted exponential map exp , is defined on all of Tp M, then
M is complete. O

Corollary 6.21. If M is a complete, connected Riemannian manifold, then any
two points in M can be joined by a minimizing geodesic segment. O

Corollary 6.22. If M is a compact Riemannian manifold, then every maximal
geodesic in M is defined for all time. O
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Fig. 6.15: Lifting geodesics

The Hopf-Rinow theorem and Corollary 6.20 are key ingredients in the follow-
ing theorem about Riemannian covering maps. This theorem will play a key role in
the proofs of some of the local-to-global theorems in Chapter 12.

Theorem 6.23. Suppose (]\z , §) and (M, g) are connected Riemannian manifolds
with M complete, and w: M — M is a local isometry. Then M is complete and
is a Riemannian covering map.

Proof. A fundamental property of covering maps is the path-lifting property (Prop.
A.54(b)): if r is a covering map, then every continuous path y : I — M lifts to a path
Y in M such that 7 o y = y. We begin by proving that 7 possesses the path-lifting
property for geodesics (Fig. 6.15): if p € M is a point in the image of 7, y: [ — M
is any geodesic starting at p, and p is any point in 7~ 1(p), then y has a unique
lift starting at p. The lifted curve is necessarily also a geodesic because 7 is a local
isometry.

To prove the path-lifting property for geodesics, suppose p € w(M) and p €
7 Y(p), and let y: I — M be any geodesic with p = y(0). Let v = y’(0) and
V= (dnz)"'(v) e ;M (which is well defined because d 7w is an isomorphism),
and let ¥ be the geodesic in M with initial point p and initial velocity v. Because M
is complete, ¥ is defined on all of R. Since 7 is a local isometry, it takes geodesics
to geodesics; and since by construction 7 (7(0)) = y(0) and d75(7'(0)) = y'(0),
we must have w oy =y on [, so y|; is a lift of y starting at p.
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To show that M is complete, let p be any point in the image of w. If y: I — M
is any geodesic starting at p, then y has a lift y: I — M. Because M is complete,
7 oy is a geodesic defined for all ¢ that coincides with y on 7, so y extends to all of
R. Thus M is complete by Corollary 6.20.

Next we show that 7 is surjective. Choose some point p € M, write p =n(p),
and let ¢ € M be arbitrary. Because M is connected and complete, there is a mini-
mizing unit-speed geodesic segment y from p to ¢. Letting ¥ be the lift of y starting
at pand r = dg(p.q), we have n()7(r)) = y(r) =q, so q is in the image of 7.

To show that 7 is a smooth covering map, we need to show that every point of M
has a neighborhood U that is evenly covered, which means that 7! (U) is a disjoint
union of connected open sets U, such that 7 |7, - Uy —Uisa diffeomorphism. We
will show, in fact, that every geodesic ball is evenly covered.

Let p € M, andlet U = B¢(p) be a geodesic ball centered at p. Write 7 (p)=
{Pa}aca, and for each « let Uy denote the metric ball of radius ¢ around p, (we are
not claiming that Uy isa geodesic ball). The first step is to show that the various sets
U, are disjoint. For every a # f, there is a minimizing geodesic segment y from py
to pg because M is complete. The projected curve y = 7 oy is a geodesic segment
that starts and ends at p (Fig. 6.16), whose length is the same as that of ¥. Such
a geodesic must leave U and reenter it (since all geodesics passing through p and
lying in U are radial line segments), and thus must have length at least 2¢. This
means that dz(Pq, pg) > 2¢, and thus by the triangle inequality, U, N 17,3 =g.

The next step is to show that 7 =1 (U) = Us U,. If g is any point in Uy, then there
is a geodesic ¥ of length less than & from py to ¢, and then 7 o ¥ is a geodesic of the
same length from p to m (§), showing that 7 (7) € U. It follows that | J, U,
7 1(U).
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Conversely, suppose § € 71 (U), and set ¢ = 7(g). This means that ¢ € U, so
there is a minimizing radial geodesic y in U from q to p, and r = dg(q,p) < e.
Let 7 be the lift of y starting at § (Fig. 6.17). It follows that 7 (¥7(r)) = y(r) = p.
Therefore y(r) = p, for some «, and dz(q, po) < Lg(y) =r <eg,s04 € Us.

It remains only to show that 7 : Uy, > Uisa diffeomorphism for each «. It is
certainly a local diffeomorphism (because r is). It is bijective because its inverse
can be constructed explicitly: it is the map sending each radial geodesic starting at
p to its lift starting at p,. This completes the proof. O

Corollary 6.24. Suppose M and M are connected Riemannian manifolds, and
n: M — M is a Riemannian covering map. Then M is complete if and only if
M is complete.

Proof. A Riemannian covering map is, in particular, a local isometry. Thus if M is
complete, 7 satisfies the hypotheses of Theorem 6.23, which implies that M is also
complete. i _

Conversely, suppose M is complete. Let p € M and v € T, M be arbitrary, and
let p = 71( ﬁ) andv=dn 5(5). Completeness of M implies that the geodesic y with
y(0) = p and y'(0) = v is defined for all 7 € R, and then its lift y : R — M starting
at p'is a geodesic in M with initial velocity v, also defined for all 7. O

Corollary 6.21 to the Hopf—Rinow theorem shows that any two points in a com-
plete, connected Riemannian manifold can be joined by a minimizing geodesic seg-
ment. The next proposition gives a refinement of that statement.

Proposition 6.25. Suppose (M, g) is a complete, connected Riemannian manifold,
and p,q € M. Every path-homotopy class of paths from p to q contains a geodesic
segment y that minimizes length among all admissible curves in the same path-
homotopy class.

Proof. Let m: M — M be the universal covering manifold of M, endowed with
the pullback metric § = 7*g. Given p,q € M and a path o': [0,1] — M from p to
q. choose a point p € 7~ !(p), and let 5: [0,1] — M be the lift of o starting at p,
and set ¢ = & (1). By Corollary 6.21, there is a minimizing g2-geodesic segment y
from p to ¢, and because 7 is a local isometry, y = 7 o} is a geodesic in M from
p to q. If y; is any other admissible curve from p to ¢ in the same path-homotopy
class, then by the monodromy theorem (Prop. A.54(c)), its lift y; starting at p also
ends at . Thus ¥ is no shorter than %, which implies y1 is no shorter thany. 0O

Closed Geodesics

Suppose (M, g) is a connected Riemannian manifold. A closed geodesic in M is a
nonconstant geodesic segment y : [a,b] — M such that y(a) = y(b) and y'(a) =

y'(b).

» Exercise 6.26. Show that a geodesic segment is closed if and only if it extends to a
periodic geodesic defined on all of R.
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Round spheres have the remarkable property that all of their geodesics are closed
when restricted to appropriate intervals. Of course, this is not typically the case,
even for compact Riemannian manifolds; but it is natural to wonder whether closed
geodesics exist in more general manifolds. Much work has been done in Riemannian
geometry to determine how many closed geodesics exist in various situations. Here
we can only touch on the simplest case; these results will be useful in some of the
proofs of local-to-global theorems in Chapter 12.

A continuous path o: [0,1] — M is called a loop if (0) = o(1). Two loops
09,01: [0,1] — M are said to be freely homotopic if they are homotopic through
closed paths (but not necessarily preserving the base point), that is, if there exists a
homotopy H : [0,1] x [0, 1] — M satisfying

H(s,0) =0¢(s) and H(s,1) = o1(s) forall s € [0, 1],

H(0,t) = H(1,t) forall ¢ € [0, 1]. (6.12)

This is an equivalence relation on the set of all loops in M, and an equivalence class
is called a free homotopy class. The trivial free homotopy class is the equivalence
class of any constant path.

» Exercise 6.27. Given a connected manifold M and a point x € M, show that a loop
based at x represents the trivial free homotopy class if and only if it represents the identity
element of 1 (M, x).

The next proposition shows that closed geodesics are easy to find on compact
Riemannian manifolds that are not simply connected.

Proposition 6.28 (Existence of Closed Geodesics). Suppose (M, g) is a compact,
connected Riemannian manifold. Every nontrivial free homotopy class in M is rep-
resented by a closed geodesic that has minimum length among all admissible loops
in the given free homotopy class.

Proof. Problem 6-17. O

The previous proposition guarantees the existence of at least one closed geodesic
on every non-simply-connected compact Riemannian manifold. In fact, it was
proved in 1951 by the Russian mathematicians Lazar Lyusternik and Abram Fet
that closed geodesics exist on every compact Riemannian manifold, but the proof
in the simply connected case is considerably harder. Proofs can be found in [Jos17]
and [KI1i95].

Distance Functions

Suppose (M, g) is a connected Riemannian manifold and S € M is any subset. For
each point x € M, we define the distance from x to S to be

dg(x,8) =inf{dg(x,p): pe S}.
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Lemma 6.29. Suppose (M, g) is a connected Riemannian manifold and S € M is
any subset.

(@) dg(x,S) <dg(x,y)+dg(y,S) forallx,y e M.
(b) x = dg(x,S) is a continuous function on M.

» Exercise 6.30. Prove the preceding lemma.

The simplest example of a distance function occurs when the set S is just a
singleton, S = {p}. Inside a geodesic ball around p, Corollary 6.12 shows that
dg(x,S) = r(x), the radial distance function, and Corollary 6.10 shows that it has
unit gradient where it is smooth (everywhere inside the geodesic ball except at p
itself). The next theorem is a far-reaching generalization of that result.

Theorem 6.31. Suppose (M, g) is a connected Riemannian manifold, S € M is
arbitrary, and f: M — [0,00) is the distance to S, that is, f(x) =dg(x,S) for all
x € M. If f is continuously differentiable on some open subset U C M ~ S, then
|grad fl=1onU.

Proof. Suppose U € M ~ S is an open subset on which f is continuously dif-
ferentiable, and x € U. We will show first that | grad f| x} < 1, and then that
|grad fle| > 1.

To prove the first inequality, we may assume grad f|, # 0, for otherwise the
inequality is trivial. Let v € Ty M be any unit vector, and let y be the unit-
speed geodesic with y(0) = x and y’(0) = v. Then for every positive ¢ sufficiently
small that y|[o ;] is minimizing, Lemma 6.29 gives dg (y(¢),S) < dg(y(t),y(0)) +
dg(y(0),S), or equivalently f(y(¢)) <t+ f(y(0)). Therefore, since f is difteren-

tiable at x,

. f@)— f(y(0)

im <1.
0 t

dt

fr)=1

t=0

In particular, taking v = (grad f|x)/ \ grad f| x| (the unit vector in the direction of
grad f|x), we obtain

dt

(@) = dfx(y'(0)) = (grad f|x,v) = | grad f||.
=0

t

This proves that ]grad fl x‘ <1

To prove the reverse inequality, assume for the sake of contradiction that
|grad fl x|<1. Since we are assuming that grad f is continuous on U, there exist
8,& > Osuchthat B (x) is a closed geodesic ball contained in U and |grad f|<1-§
on B,(x). Let ¢ be a positive constant less than £§. By definition of dg(x,S), there
is an admissible curve o : [0,b] — M (which we may assume to be parametrized by
arc length) such that ¢(0) = x, a(b) € S,and b = Ly () < dg(x,S) +c.

Since we are assuming B¢(x) € U € M ~ S, we have that b > ¢, so |[e,p] is an
admissible curve from () to S. On the one hand,

dg(a(e),S) < Lg(ctlep) =b—& <dg(x,S)+c—e. (6.13)
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On the other hand, for 0 <t < ¢, the fact that «(¢) € Eg(x) implies

d
Ef(a(l))‘ = |(grad floy. @' ()] = |grad flog | I/ ()] < 1-86.

Thus f(a(t)) > f(x)— (1 —35)t for all such ¢. In particular, for ¢ = &, this means
that
dg(a(e),S) > dg(x,8)—(1-0)e. (6.14)

Combining (6.13) and (6.14) yields ¢ > &8, contradicting our choice of c. |

Motivated by the previous theorem, if (M, g) is a Riemannian manifold and U C
M is an open subset, we define a local distance function on U to be a continuously
differentiable function f: U — R such that |grad f|, = 1 in U. Theorem 6.34
and Corollary 6.35 below will justify this terminology. But first, we develop some
important general properties of local distance functions.

Theorem 6.32. Suppose (M, g) is a Riemannian manifold and f is a smooth local
distance function on an open subset U € M. Then Vy,q r(grad ) = 0, and each
integral curve of grad f is a unit-speed geodesic.

Proof. Let F € X(U) denote the unit vector field grad f. The definition of the
gradient shows that for every vector field W, we have

Wf=df(W)=(FW), (6.15)

and therefore
Ff =(F,F)=|grad f|*=1. (6.16)

For every smooth vector field W on U, we have

(W,VpF)y=F(W,F)—(VFW,F) (compatibility with g)
=FWf—([F,W],F)—(VwF,F) ((6.15), symmetry of V)
=FWf—[F,W]f - %W|F|2 ((6.15), compatibility with g)
=WFf—iW|F? (definition of [F, W])
=0 (since Ff = |F]>=1).

Since W is arbitrary, this proves that Vg F = 0.
If y: I — U is an integral curve of F, then the fact that y’ is extendible implies

D:y'(t) = VF Fly@ =0,
so Y is a geodesic. O

Lemma 6.33. Suppose (M, g) is a Riemannian manifold, K C M, and f: K — R
is a continuous function whose restriction to some open set W CK is a smooth local

distance function. For every admissible curve o: [ag,bg]l — K such that
0((00,50)) C W, we have
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Fig. 6.18: Proving that f(x) = d¢(x,S) in a neighborhood of S

Lg(0) = | f(0(bo)) — f(a(a0))l.

Proof. This is proved exactly as in (6.8), noting that the only properties of r we used
in that computation were that it is continuous on the image of o and continuously
differentiable on o ((ao, bo)), and its gradient has unit length there. O

The next theorem and its corollary explain why the name “local distance func-
tion” is justified. Its proof is an adaptation of the proof of Proposition 6.11.

Theorem 6.34. Suppose (M, g) is a Riemannian manifold, U C M is an open sub-
set, SC U, and f: U — [0,00) is a continuous function such that f~1(0) = S
and f is a smooth local distance function on U ~ S. Then there is a neighborhood
Uo C U of S in which f(x) is equal to the distance in M from x to S.

Proof. For each p € §, there are positive numbers €,,6, such that B ,(p)isa
uniformly 6 ,-normal geodesic ball and B¢ ,(p) € U. This means that B, (p) is
contained in the open geodesic ball of radius §, around each of its points. In partic-
ular, B, (p) € Bs, (p), which means that §,, > ¢, and thus every geodesic starting
at a point of B, (p) is defined at least for t € (—¢,,&,). Let Ug be the union of all
of the geodesic balls B, (p) for p € S, which is a neighborhood of S contained in
U (Fig. 6.18).

Let x € Uy be arbitrary, and let ¢ = f(x). We will show that dg(x,S) = c. If
x € §,then dg(x,S) =0 =c, so we may as well assume x ¢ S.

There is some p € S such that x € B¢, (p), which means that dg(x,S) < ¢,
and geodesics starting at x are defined at least on (—&,,&,). Also, if «: [0,b] —
B, (p) is the radial geodesic segment from p to x, it follows from Lemma 6.33 that
Lg(a) > | f(x)— f(p)| = c, and we conclude that ¢ < L, () < &, as well.

Let y: (—¢&p,&p) — U be the unit-speed geodesic starting at x with initial veloc-
ity equal to —grad f|,. By Theorem 6.32 and uniqueness of geodesics, y coincides
with an integral curve of —grad f as long as y(¢) € U ~ §, which is to say as long
as f(y(t)) # 0. For all such ¢ we have

d
/v = (grad flyq). v'(0)) = —|erad [y |* =—1.
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so f(y(t)) = c—t as long as t < ¢, and by continuity, f(y(c)) = 0. This means
that y(c) € S, and y|[o,¢] is a curve segment of length ¢ connecting x with §, so
dg(x,5) <c.

To prove the reverse inequality, suppose «: [a,b] — M is any admissible curve
starting at x and ending at a point of S. Assume first that «(z) € U for all ¢ € [a, b],
and let by € [a,b] be the first time that a(bg) € S. Then Lemma 6.33 shows that
Lg(ar) = Lg(tlfa,p01) = | f(t(bo)) — f(a(a))| = c. On the other hand, suppose
a(t) € M ~ U for some ¢. The triangle inequality implies B ,(x) € Ba,(p) €
U, so there is a first time by € [a,b] such that dg (x,a(bg)) > €. Then Lg(a) >
Lg (a|[a,b01) > g, > c. Taken together, these two inequalities show that L, (a) > ¢
for every such «, which implies dg (x,S) > c. O

See Problem 6-27 for a global version of the preceding theorem.

Corollary 6.35. Let (M, g) be a Riemannian manifold, and let f be a smooth local
distance function on an open subset U C M. If ¢ is a real number such that S =
f~Y(c) is nonempty, then there is a neighborhood Uqy of S in U on which | f(x) —c|
is equal to the distance in M from x to S.

» Exercise 6.36. Prove the preceding corollary.

Distance Functions for Embedded Submanifolds

The most important local distance functions are those associated with embedded
submanifolds. As we will see in this section, such distance functions are always
smooth near the manifold.

Suppose (M, g) is a Riemannian n-manifold (without boundary) and P € M
is an embedded k-dimensional submanifold. Let NP denote the normal bundle of
P in M, and let U € M be a normal neighborhood of P in M, which is the dif-
feomorphic image of a certain open subset V' € NP under the normal exponential
map. (Such a neighborhood always exists by Thm. 5.25.) We begin by constructing
generalizations of the radial distance function and radial vector field (see (6.4) and
(6.5)). Recall the definition of Fermi coordinates from Chapter 5 (see Prop. 5.26).

Proposition 6.37. Let P be an embedded submanifold of a Riemannian manifold
(M, g) and let U be any normal neighborhood of P in M. There exist a unique
continuous function r: U — [0,00) and smooth vector field 9, on U ~ P that
have the following coordinate representations in terms of any Fermi coordinates
(xl,...,xk,vl,...,v”_k)for P on a subset Uy C U :

r(xl,...,xk,vl,...,v"*k):\/(v1)2+---+(v”—k)2, (6.17)
1 n—k
IR N N
r(x,v) ov! r(x,v) dun—k

The function r is smooth on U ~ P, and r? is smooth on all of U.
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Proof. The uniqueness, continuity, and smoothness claims follow immediately from
the coordinate expressions (6.17) and (6.18), so we need only prove that r and 9,
can be globally defined so as to have the indicated coordinate expressions in any
Fermi coordinates.

Let V€ NS be the subset that is mapped diffeomorphically onto U by the
normal exponential map E. Define a function p: V' — [0,00) by p(p,v) = |v]g,
and define r: U — [0,00) by r = po E~!. Any Fermi coordinates for P are
defined by choosing local coordinates (xl e ,xk ) for P and a local orthonormal
frame (E,) for NP, and assigning the coordinates (x!(p),....x*(p),v!,...,v"7K)
to the point E( P,V Eqy| p). (Here we are using the summation convention with
Greek indices running from 1 to n — k.) Because the frame is orthonormal, for each
(p.v) = (p.v*Ealp) € V we have r(E(p.v))> = p(p.v)> = (1) ++++ (0" %),
which shows that r has the coordinate representation (6.17).

To define 9y, let ¢ be an arbitrary pointin U ~ P. Then g = exp ,(v) for a unique
(p,v) € V, and the curve y: [0,1] — U given by y(f) = exp,(fv) is a geodesic
from p to q. Define |
@
which is independent of the choice of coordinates. Proposition 5.26 shows that in
any Fermi coordinates, if we write v = v* Ey |, then y has the coordinate formula
y(t) = (xl, ...,xk,tvl,...,tv"_k), and therefore y’(t) = v*9/0v%|, ). It follows
that d, has the coordinate formula (6.18). |

Or| v (D), (6.19)

By analogy with the special case in which P is a point, we call r the radial
distance function for P and 0, the radial vector field for P.

Theorem 6.38 (Gauss Lemma for Submanifolds). Ler P be an embedded sub-
manifold of a Riemannian manifold (M, g), let U be a normal neighborhood of P
in M, and let r and 0, be defined as in Proposition 6.37. On U ~ P, 0, is a unit
vector field orthogonal to the level sets of r.

Proof. The proof is a dressed-up version of the proof of the ordinary Gauss lemma.
Let g € U ~ P be arbitrary, and let (xl,...,xk,vl,...,v"_k) be the coordinate
representation of ¢ in some choice of Fermi coordinates associated with a local
orthonormal frame (E,) for NP. As in the proof of Proposition 6.37, ¢ = y(1),
where y is the geodesic exp , (tv) for some p € P and v = v*Eqy|, € Ny M. Since
the frame (Ey) is orthonormal, we have

Y Ol = [olg = /)2 + -+ 0" 5)2 = r(g).

Since geodesics have constant speed, it follows that |y’(1)|, = r(g) as well, and
then (6.19) shows that 9, |, is a unit vector.

Next we show that d, is orthogonal to the level sets of r. Suppose ¢ € U ~ P, and
write ¢ = exp,, (Vo) for some pg € P and vo € Np P with vg # 0. Let b =r(q) =
|vog, 80 g lies in the level set 7~ (b). The coordinate representation (6.17) shows
that this is a regular level set, and hence an embedded submanifold of U.
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Let w € T; M be an arbitrary vector tangent to this level set, and leto : (—¢,&) —
U be a smooth curve lying in the same level set, with 6(0) = ¢ and 0’(0) = w. We
can write 0 (5) = expy (5)(v(s)), where x(s) € P and v(s) € Ny () P with [v(s)|g =
b. The initial condition 0 (0) = g translates to x(0) = py and v(0) = vy. Define a
smooth one-parameter family of curves I": (—¢,¢) x[0,b] — M by

I'(s,1) = eXpy(5) (%vl(s),...,év"(s)) .

Since |v(s)|g/b = 1, each [T is a unit-speed geodesic.
Write T'(s,t) = 9, ' (s,t) and S(s,t) = ds1°(s,t) as in the proof of Theorem 6.9.
We have the following endpoint conditions:

d

§0.0)= | x(s)= x'(0);
s=0
T(0,0) = i ex Lvo = lvo;
dr |, Pro\p b
d
S5(0,b) = 7 o(s) =w;
s=0
d t
T(0,b) = o exp p, (EUO) = 3,|q.
t=b

Then the same computation as in (6.7) shows that (d/9¢)(S,T), = 0, and therefore
(w.d,1q)e = (S(0.5).T(0.5))¢ = (S(0.0).T(0.0)) = (1/5)(x"(0). vo). which
is zero because x’(0) is tangent to P and vy is normal to it. This proves that d, is
orthogonal to the level sets of r. O

Corollary 6.39. Assume the hypotheses of Theorem 6.38.

(a) 0, is equal to the gradient of r on U ~ P.

(b) r is a local distance function.

(¢) Each unit-speed geodesic y : [a,b) — U with y'(a) normal to P coincides with
an integral curve of 0, on (a,b).

(d) P has a tubular neighborhood in which the distance in M to P is equal to r.

Proof. By direct computation in Fermi coordinates using formulas (6.17) and
(6.18), 0, (r) = 1, which is equal to |, |§ by the previous theorem. Thus 9, = grad r
on U ~ P by Problem 2-10. Because grad r is a unit vector field, r is a local dis-
tance function. By Proposition 5.26, the geodesics in U that start normal to P are
represented in any Fermi coordinates by ¢ — (xl, ... ,xk, ol ..., tv"_k), and such
a geodesic has unit speed if and only if (v!)? +--- 4 (" 7¥)2 = 1. Another direct
computation shows that each such curve is an integral curve of d, wherever r # 0.
Finally, to prove (d), note that Theorem 6.34 shows that there is some neighborhood
Ug of P in M on which r (x) =dg(x, P);if we take Uy to be a tubular neighborhood

of P in ﬁo, then U, satisfies the conclusion. |

When P is compact, we can say more.
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Theorem 6.40. Suppose (M, g) is a connected Riemannian manifold, P € M is a
compact submanifold, and U, is an e-tubular neighborhood of P. Then U, is also
an g-neighborhood in the metric space sense, and inside U, the distance in M to
P is equal to the function r defined in Proposition 6.37.

Proof. First we show that r can be extended continuously to U, by setting r(g) = ¢
for g € dU,. Indeed, suppose g € dU, and ¢; is any sequence of points in U, converg-
ing to g. Then limsup; r(g;) < e because r(g;) < & for each i. Let ¢ = liminf; r(¢;);
we will prove the result by showing that ¢ = ¢. Suppose for the sake of contra-
diction that ¢ < ¢. By passing to a subsequence, we may assume that r(g;) — c.
We can write g; = exp,, (v;) for p; € P and v; € Np, P, and because P is com-
pact and lim; |v;|g = lim; 7(g;) = ¢, we can pass to a further subsequence and
assume that (p;,v;) — (p,v) € NP with |v|g = ¢ <e&. Then we have ¢ =lim; ¢; =
lim; exp, (v;) = exp,, v, which lies in the open set U, contradicting our assumption
that ¢ € dU,. Henceforth, we regard r as a continuous function on U.

Now to prove the theorem, let W, denote the e-neighborhood of P in the metric
space sense. Suppose first that ¢ € M ~ U, and suppose «: [a,b] — M is any
admissible curve from a point of P to ¢. There is a first time by € [a, b] that «(bg) €
dUg, and then Lemma 6.33 shows that

Lg(@) = Lg(lfa,po)) = |r(e(bo)) —r (@) = e.

Thus ¢ ¢ U, = g ¢ W,, or equivalently W, C U,.

Conversely, suppose g € U,. Then ¢ is connected to P by a geodesic seg-
ment of length r(g), so dg(q, P) < r(q). To prove the reverse inequality, suppose
«: [a,b] — M is any admissible curve starting at a point of P and ending at q. If
a(t) remains in U for all ¢ € [a,b], then Lemma 6.33 shows that

Lg(@) = Lg (elao.61) = Ir(y(0)) =1 (y(a0))| = r(q).

where a is the last time that «(ag) € P. On the other hand, if a(¢) does not remain
in U, then there is a first time by such that a(bg) € dU,, and the argument in the
preceding paragraph shows that Lg(a) > & > r(q). Thus dg(q, P) = r(gq) for all
q € Ue. Since r(q) < ¢ for all such g, it follows also that U, € W,. O

Semigeodesic Coordinates

Local distance functions can be used to build coordinate charts near submanifolds
in which the metric has a particularly simple form. We begin by describing the kind
of coordinates we are looking for.

Let (M, g) be an n-dimensional Riemannian manifold. Smooth local coordinates
(xl, .. ,x") on an open subset U C M are called semigeodesic coordinates if each
x"-coordinate curve ¢ — (x1 e ,x"‘l,t) is a unit-speed geodesic that meets each

level set of x” orthogonally.
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Because of the distinguished role played by the last coordinate function, through-
out the rest of this section we will use the summation convention with Latin indices
running from 1 to n and Greek indices running from 1 ton —1.

We will see below that semigeodesic coordinates are easy to construct. But first,
let us develop some alternative characterizations of them.

Proposition 6.41 (Characterizations of Semigeodesic Coordinates). Let (M, g)
be a Riemannian n-manifold, and let (x L ,x") be smooth coordinates on an open
subset of M. The following are equivalent:

(a) (xi) are semigeodesic coordinates.

(D) |0nlg =1l and (0q.0n) g =0fora=1,....n—1.

(©) |dx"|g =1 and (dx*,dx") g =0 fora=1,....n—1.

(d) |grad x|y = 1 and (grad x*,grad x") , =0 fora =1,...,n—1.

(e) x™ is a local distance function and x", ..., x"~! are constant along the integral
curves of grad x".

() grad x™ = 9,.

Proof. We begin by showing that (b) < (c) < (d) < (e) and (¢) < (f). Note that (b)
is equivalent to the coordinate matrix of g having the block form (3 ‘1)), where the
asterisk represents an arbitrary (n — 1) x (n — 1) positive definite symmetric matrix,
while (c) is equivalent to the inverse matrix having the same form. It follows from
Cramer’s rule that the matrix of g has this form if and only if its inverse does, and
thus (b) is equivalent to (c).

The equivalence of (c) and (d) follows from the definitions of the gradient and of
the inner product on 1-forms: foralli,j =1,...,n,

(dxi, dxj)g = ((dxi)#, (dxj)#)g = (grad xt, gradxj)g.

The equivalence of (d) and (e) also follows from the definition of the gradient:
(grad x*, grad x") ; = dx*(grad x™) = (grad x™)(x) for each ', which means that
x“ is constant along the grad x" integral curves if and only if (grad x*, grad x") ¢, =
0. Finally, by examining the individual components of the coordinate formula
grad x” = g™ 9 7, we see that (c) is also equivalent to (f).

To complete the proof, we show that (a) < (b). Assume first that (a) holds.
Because the x"-coordinate curves have unit speed, it follows that |d,|, = 1. The
tangent space to any x”-level set is spanned at each point by d1,...,0d,—1, and (a)
guarantees that d, is orthogonal to each of these, showing that (b) holds. Con-
versely, if we assume (b), the first part of the proof shows that (f) holds as well,
so |grad x*|g = |9,|g = 1, showing that x” is a local distance function. Thus the
x"-coordinate curves are also integral curves of grad x” and hence are unit-speed
geodesics by Theorem 6.32. The fact that (dy, 9,) = 0 for « = 2,...,n implies that
these geodesics are orthogonal to the level sets of x”, thus proving (a). O

Part (b) of this proposition leads to the following simplified coordinate represen-
tations for the metric and Christoffel symbols in semigeodesic coordinates. Recall
that implied summations with Greek indices run from 1 ton — 1.
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Corollary 6.42. Let (xi) be semigeodesic coordinates on an open subset of a Rie-
mannian n-manifold (M, g).

(a) The metric has the following coordinate expression:
g= (dx")2 + gap(x', . x")dx® dxPB.
(b) The Christoffel symbols of g have the following coordinate expressions:
[y = %, = Tl = Ty =0,

3/3 = —%angaﬂ’

(6.20)
Ffa = an = %gﬁyangayy
Y _ 1Y
Faﬁ = chﬁ’

where for each fixed value of x", the quantities F;/ﬂ are the Christoffel symbols
in (x*) coordinates for the induced metric g on the level set x" = constant.

Proof. Part (a) follows immediately from part (b) of Proposition 6.41, and (b) is
proved by inserting g, = 1 and go, = gna = 0 into formula (5.8) for the Christoffel
symbols. O

Proposition 6.41(e) gives us an effective way to construct semigeodesic coordi-
nates: if r is any smooth local distance function (for example, the distance from
a point or a smooth submanifold), just set x” = r, choose any local coordinates
x1 ..., x™ 1 for a level set of r, and then extend them to be constant along the

integral curves of grad r. Here are some explicit examples.

Example 6.43 (Fermi Coordinates for a Hypersurface). Suppose P is an embed-
ded hypersurface in a Riemannian manifold (M, g), and let (x Lo xn L v) be any
Fermi coordinates for P on an open subset U C M (see (5.25)). In this case, the
function r defined by (6.17) is just r(x',...,x""1v) = W)Y2 =|v|, sovis a
local distance function on U ~ P. It follows from Corollary 6.39 that there is a
neighborhood Uy of P on which |v| is equal to the distance from P. Moreover,
(6.18) reduces to 9, = +d/d,, which is equal to grad |v| by Corollary 6.39, so it
follows from Proposition 6.41(f) that Fermi coordinates for a hypersurface are auto-
matically semigeodesic coordinates. n

Example 6.44 (Boundary Normal Coordinates). Suppose (M, g) is a smooth Rie-
mannian manifold with nonempty boundary. The results in this chapter do not
apply directly to manifolds with boundary, but we can embed M in its double M
(Prop. A.31), extend the metric smoothly to M, and construct Fermi coordinates
(xl, cxtL v) for M in M . By replacing v with —v if necessary, we can arrange
that v>0 in Int M, and then these Fermi coordinates restrict to smooth boundary
coordinates for M that are also semigeodesic coordinates. Such coordinates
are called boundary normal coordinates for M . I
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Fig. 6.19: Polar normal coordinates

Example 6.45 (Polar Normal Coordinates). Polar coordmates for R” are con-
structed by choosing a smooth local parametrization w U — U < S"! for an
open subset U of S"~!, and defining ¥: U x RT — R” by W(Ql,...,e"_l,r) =
ry(0',...,6"1). 1t is straightforward to show that the differential of ¥ van-
ishes nowhere, so ® = ¥~! is a smooth coordinate map on the open subset
U= lf/(ﬁ xR*) € R” ~{0}. Familiar examples are ordinary polar coordinates in
the plane and spherical coordinates in R3. Such coordinates have the property
that the last coordinate function is r(x) = |x|.

Now let (M, g) be a Riemannian n-manifold, p a point in M, and ¢ any normal
coordinate chart defined on a normal neighborhood V' of p. For every choice of polar
coordinates (‘u @) for R” ~ {0}, we obtain a smooth coordinate map ® = 3] o@ on
an open subset of V' ~{p} (see Fig. 6.19). Such coordinates are called polar normal
coordinates. They have the property that the last coordinate function r is the radial
distance function on V, and the other coordinates are constant along the integral
curves of grad r, so they are semigeodesic coordinates. n

Example 6.46 (Polar Fermi Coordinates). Now let P be an embedded subman-
ifold of (M, g), and let ¢ = (xl,...,xk,vl,...,v"_k) be Fermi coordinates on a
neighborhood Uy of a point p € P. Then any polar coordinate map O for R**
can be applied to the variables (vl,...,v"_k) to yield a coordinate chart ® =
(Ide x@) o on an open subset of Uy ~ P, taking values in R* x R"¥~1 x R+,
If we write the coordinate functions as (x1 Lxket L enk, r), it follows from
Proposition 5.26 that each coordinate curve ¢ (xl,...,xkﬁl,...,@”_k,t) is a
unit-speed geodesic. Thus these are semigeodesic coordinates, called polar Fermi
coordinates. The polar normal coordinates described above are just the special case

P={ph. I
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Problems

6-1. Suppose M is a nonempty connected Riemannian 1-manifold. Show that if

M isnoncompact, thenitis isometric to an open interval in R with the Euclidean
metric, while if it is compact, it is isometric to a circle S'(R) = {x € R?:
|x| = R} with its induced metric for some R > 0, using the following steps.

(a) Let y: I — M be any maximal unit-speed geodesic. Show that its im-
age is open and closed, and therefore y is surjective.

(b) Show that if y is injective, then it is an isometry between I with its
Euclidean metric and M .

(¢) Now suppose y(t1) = y(t2) for some t; # t5. In case y'(t1) = v/ (t2),
show that y is periodic, and descends to a global isometry from an
appropriate circle to M.

(d) It remains only to rule out the case y(t;) = y(t2) and y'(¢1) = —y'(t2).
If this occurs, let #g = (¢; +t2)/2, and define geodesics « and § by

a(t) =y(to +1), B(t) = y(to—1).

Use uniqueness of geodesics to conclude that « = f on their common
domain, and show that this contradicts the fact that y is injective on some
neighborhood of 7y.

6-2. Let n be a positive integer and R a positive real number.

6-3.

(a) Prove that the Riemannian distance between any two points p,g in
S™(R) with the round metric is given by

(p.q)

d§R(p,q)= R arccos R

where (-, .) is the Euclidean inner product on R"*1.
(b) Prove that the metric space (S” (R),d gR) has diameter 7 R.

(Used on pp. 39, 359.)

Let n be a positive integer and R a positive real number. Prove that the
Riemannian distance between any two points in the Poincaré ball model
(IB%" (R),g R) of hyperbolic space of radius R is given by

2R*|p—q|?
R>—|pl?)(R>—1qI?) )’

where |- | represents the Euclidean norm in R”. [Hint: First use the result of
Problem 3-5 to show that it suffices to consider the case R = 1. Then use a
rotation to reduce to the case n = 2, and use the group action of Problem 3-8
to show that it suffices to consider the case in which p is the origin.]

dz.(p.q) = R arccosh (1 + (
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6-4. In Chapter 2, we started with a Riemannian metric and used it to define the

6-6.

6-7.

Riemannian distance function. This problem shows how to go back the other
way: the distance function determines the Riemannian metric. Let (M, g) be
a connected Riemannian manifold.

(a) Show thatif y: (—e,&) — M is any smooth curve, then

. dg(y(0),

(b) Show that if ¢ and g are two Riemannian metrics on M such that
dg(p,q) =dz(p,q) forall p,ge M, theng =g.

. Prove Theorem 6.17 (sufficiently small geodesic balls are geodesically con-

vex) as follows.

(a) Let (M, g) be a Riemannian manifold, let p € M be fixed, and let W
be a uniformly normal neighborhood of p. For ¢ > 0 small enough that
B3:(p) € W, define a subset W, € TM xR by

We={(q.v,t) e TM xR :q € Be(p), ve Ty M, |v| =1, |t| < 2¢}.
Define f: W, — R by

f(g.v.1) = dg (p.expy (tv))*.

Show that f is smooth. [Hint: Use normal coordinates centered at p.]

(b) Show that if & is chosen small enough, then 82 f /3t > 0 on W,. [Hint:
Compute f(p,v,t) explicitly and use continuity. Be careful to verify that
& can be chosen independently of v.]

(c) Suppose ¢ is chosen as in (b). Show that if g1,92 € Be(p) and y is a
minimizing geodesic segment from g, to g2, then dg (p, y(t)) attains its
maximum at one of the endpoints of y.

(d) Show that B.(p) is geodesically convex.

Suppose (M, g) is a Riemannian manifold. For each x € M, define the con-
vexity radius of M at x, denoted by conv(x), to be the supremum of all ¢ > 0
such that there is a geodesically convex geodesic ball of radius ¢ centered at
x. Show that conv(x) is a continuous function of x.

We now have two kinds of “metrics” on a connected Riemannian manifold:
the Riemannian metric and the distance function. Correspondingly, there are
two definitions of “isometry” between connected Riemannian manifolds: a
Riemannian isometry is a diffeomorphism that pulls one Riemannian metric
back to the other, and a metric isometry is a homeomorphism that preserves
distances. Proposition 2.51 shows that every Riemannian isometry is a metric
isometry. This problem outlines a proof of the converse. Suppose (M, g) and
(1\7 , §) are connected Riemannian manifolds, and ¢: M — M is a metric
isometry.



Problems 187

(a) Show that for every p € M and v,w € T, M, we have

. dg(exp, 1v,exp,tw) — Jo—wl,.
t—0 t
[Hint: Use the Taylor series for g in Riemannian normal coordinates on
a convex geodesic ball centered at p.]

(b) Show that ¢ takes geodesics to geodesics.

(c) For each p € M, show that there exist an open ball B¢(0) € T), M
and a continuous map ¥ : B:(0) — T,y M satistying y(0) = 0 and
eXPy(p) V (V) = p(exp, v) for all v € B¢ (0).

(d) With v as above, show that |y (v) — ¥ (w)|z = [v—w]g for all v,w €
B¢(0), and conclude from Problem 2-2 that i is the restriction of a
linear isometry.

(e) With p and ¥ as above, show that ¢ is smooth on a neighborhood of p
and do, = V.

(f) Conclude that ¢ is a Riemannian isometry.

6-8. Suppose (M, g) and (M ,§) are connected Riemannian manifolds (not nec-
essarily complete), and for eachi € Z*, ¢;: M — M isa Riemannian isom-
etry such that ¢; converges pointwise to a map ¢: M — M. Show that ¢
is a Riemannian isometry. [Hint: Once you have shown that ¢ is a local
isometry, to show that ¢ is surjective, suppose y is a limit point of ¢(M).
Choose x € M such that ¢(x) lies in a uniformly normal neighborhood of
v, and show that there exists a convergent sequence of points (x;,v;) € TM
such that ¢; (x;) = ¢(x) and ¢; (expxi v,-) =y.]

6-9. Suppose (M, g) is a (not necessarily connected) Riemannian manifold. In
Problem 2-30, you were asked to show that there is a distance function
d: M xM — R that induces the given topology and restricts to the Rie-
mannian distance on each connected component of M. Show that if each
component of M is geodesically complete, then d can be chosen so that
(M,d) is a complete metric space. Show also that if M has infinitely many
components, then d can be chosen so that (M, d) is not complete.

6-10. A curve y: [0,h) —> M (with 0 < b < 00) is said to diverge to infinity if
for every compact set K € M, there is a time 7T € [0,b) such that y(¢) ¢ K
for t > T'. (For those who are familiar with one-point compactifications, this
means that y(¢) converges to the “point at infinity” in the one-point com-
pactification of M ast ' b.) Prove that a connected Riemannian manifold is
complete if and only if every regular curve that diverges to infinity has
infinite length. (The length of a curve whose domain is not compact is just
the supremum of the lengths of its restrictions to compact subintervals.)

6-11. Suppose (M, g) is a connected Riemannian manifold, P € M is a connected
embedded submanifold, and g is the induced Riemannian metric on P.

(a) Show that dg(p.q) = dg(p.q) for p.g € P.
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(b) Prove that if (M, g) is complete and P is closed in M, then (ng) is
complete.

(c) Give an example of a complete Riemannian manifold (M, g) and a con-
nected embedded submanifold P C M that is complete but not closed
in M.

6-12. Let (M, g) be a connected Riemannian manifold.

(a) Suppose there exists § > 0 such that for each p € M, every maximal
unit-speed geodesic starting at p is defined at least on an interval of the
form (—4,8). Prove that M is complete.

(b) Prove that if M has positive or infinite injectivity radius, then it is com-
plete.

(c) Prove that if M is homogeneous, then it is complete.

(d) Give an example of a complete, connected Riemannian manifold that
has zero injectivity radius.

6-13. Let G be a connected compact Lie group. Show that the Lie group expo-
nential map of G is surjective. [Hint: Use Problem 5-8.]

6-14. Let (M, g) be a connected Riemannian manifold.

(a) Show that M is complete if and only if the compact subsets of M are
exactly the closed and bounded ones.
(b) Show that M is compact if and only if it is complete and bounded.

6-15. Let S be the unit 2-sphere minus its north and south poles, and let M =
(0,7) x R. Define g: M — S by ¢q(¢,0) = (sinpcosf, singsinf, cosg),
and let g be the metric on M given by pulling back the round metric: g =
g*g. (Think of M as an infinitely long onion skin wrapping infinitely many
times around an onion.) Prove that the Riemannian manifold (M, g) has diam-
eter 7, but contains infinitely long properly embedded geodesics.

6-16. Suppose (M, g) is a complete, connected Riemannian manifold with positive
or infinite injectivity radius.

(a) Let p € (0,00] denote the injectivity radius of M, and define T°M to be
the subset of TM consisting of vectors of length less than p, and D? to
be the subset {(p,q) : dg(p.q) < p} S M x M. Define E: T"M — D?
by E(x,v) = (x,exp, v). Prove that E is a diffeomorphism.

(b) Use part (a) to prove that if B is a topological space and F,G: B - M
are continuous maps such that dg (F(x),G(x)) <inj(M) for all x € B,
then F' and G are homotopic.

6-17. Prove Proposition 6.28 (existence of a closed geodesic in a free homotopy
class). [Hint: Use Prop. 6.25 to show that the given free homotopy class is
represented by a geodesic loop, i.e., a geodesic whose starting and ending
points are the same. Show that the lengths of such loops have a positive great-
est lower bound; then choose a sequence of geodesic loops whose lengths
approach that lower bound, and show that a subsequence converges uniformly
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6-18.

6-19.

6-20.

6-21.

6-22.

6-23.

to a geodesic loop whose length is equal to the lower bound. Use Problem
6-16 to show that the limiting curve is in the given free homotopy class, and
apply the first variation formula to show that the limiting curve is in fact a
closed geodesic.]

A connected Riemannian manifold (M, g) is said to be k-point homoge-
neous if for any two ordered k-tuples (py,..., px) and (q1,...,qx) of points
in M such that dg(p;.p;) = dg(qi.q;) for all i, j, there is an isometry
¢: M — M suchthat p(p;) =g, fori =1,... k. Show that (M, g) is 2-point
homogeneous if and only if it is isotropic. [Hint: Assuming that M is isotropic,
first show that it is homogeneous by considering the midpoint of a geodesic
segment joining sufficiently nearby points p,q € M, and then use the result
of Problem 6-12(c) to show that it is complete.] (Used on pp. 56, 261.)

Prove that every Riemannian symmetric space is homogeneous. [Hint: Pro-
ceed as in Problem 6-18.] (Used on p. 78.)

A connected Riemannian manifold is said to be extendible if it is isometric
to a proper open subset of a larger connected Riemannian manifold.

(a) Show that every complete, connected Riemannian manifold is nonex-
tendible.

(b) Show that the converse is false by giving an example of a nonextendible
connected Riemannian manifold that is not complete.

Let (M,g) be a complete, connected, noncompact Riemannian manifold.
Define a ray in M to be a geodesic y whose domain is [0, 00), and such that
the restriction of y to [0, 5] is minimizing for every » > 0. Prove that for each
p € M there is aray in M starting at p.

Let (M, g) be a connected Riemannian manifold with boundary. Prove that
(M,dg) is a complete metric space if and only if the following condition
holds: for every geodesic y : [0,h) — M that cannot be extended to a geodesic
on any interval [0,b") with b’ > b, y(t) converges to a point of OM ast  b.

In some treatments of Riemannian geometry, instead of minimizing the
length functional, one considers the following energy functional for an ad-
missible curve y: [a,b] > M:

b
E(y) =1 / Y OPdr.

(Note that E(y) is not independent of parametrization.)

(a) Prove that an admissible curve is a critical point for E (with respect
to proper variations) if and only if it is a geodesic (which means, in
particular, that it has constant speed).

(b) Prove that if y is an admissible curve that minimizes energy among
admissible curves with the same endpoints, then it also minimizes length.
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(c) Prove that if y is an admissible curve that minimizes length among
admissible curves with the same endpoints, then it minimizes energy if
and only if it has constant speed.

[Remark: For our limited purposes, it is easier and more straightforward to
use the length functional. But because the energy functional does not involve
the square root function, and its critical points automatically have constant-
speed parametrizations, it is sometimes more useful for proving the existence
of geodesics with certain properties. ]

6-24. Let (M, g) be a Riemannian manifold. Recall that a vector field X € X(M)
is called a Killing vector field if £ xg = 0 (see Problem 5-22).

(a) Prove that a Killing vector field that is normal to a geodesic at one point
is normal everywhere along the geodesic.

(b) Prove that if a Killing vector field vanishes at a point p, then it is tangent
to geodesic spheres centered at p.

(c) Prove that a Killing vector field on an odd-dimensional manifold cannot
have an isolated zero.

(Used on p. 315.)

6-25. Suppose (M, g) is a Riemannian manifold and f: M — R is a smooth local
distance function. Prove that f is a Riemannian submersion.

6-26. Suppose (M, g) is a complete, connected Riemannian manifold and S € M
is a closed subset.

(a) Show that for every p € M ~ S, there is a geodesic segment from p to a
point of S whose length is equal to dg (p, S).

(b) In case S is a properly embedded submanifold of M, show that every
geodesic segment satisfying the conclusion of (a) intersects S orthogo-
nally.

(c) Give a counterexample to (a) if S is not closed.

6-27. Suppose (M, g) is a complete, connected Riemannian manifold, S € M is a
closed subset, and f: M — R is a continuous function such that f~1(0) =
S and f is smooth with unit gradient on M ~ S. Prove that f(x) = dg(x,S)
forallx e M.

6-28. Suppose (M,g) is a complete, connected Riemannian r-manifold whose
isometry group is a Lie group acting smoothly on M. (The Myers—Steenrod
theorem shows that this is always the case when M is connected, but we have
not proved this.) Prove that if G is a closed subgroup of Iso(M), then G acts
properly on M, using the following outline. Suppose (¢5,) is a sequence in G
and (py,) is a sequence in M such that p,, — po and @, (pm) = qo-

(a) Prove that ¢, (po) — qo-

(b) Let B,(po) be a geodesic ball centered at po; let 0 < & < r; let
(b1,...,by) be an orthonormal basis for 7, M; and let p; = exp,, (eb;)
for i = 1,...,n. Prove that there exist a linear isometry A: Tp,M —
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TgoM and a subsequence (¢, ;) such that g, ; (p;) — exp, (eAb;) for
i =1,...,n. [Hint: Use Prop. 5.20.]

(c) Prove that there is an isometry ¢ € G such that ¢, — ¢ pointwise,
meaning that ¢, ; (x) — @(x) for every x € M.

(d) Prove that ¢, ; — ¢ in the topology of G. [Hint: Define a map F: G —
M™ by F(Y) = (W(po). ¥ (p1)..... ¥ (pn)), where pi,...,pn are
the points introduced in part (b). Show that F is continuous, injective,
and closed, and therefore is a homeomorphism onto its image.]

(Used on p. 349.)

6-29. Suppose (M, g) is a Riemannian n-manifold that admits a nonzero parallel
vector field X. Show that for each p € M, there exist a neighborhood U of
P, a Riemannian (n — 1)-manifold N, and an open interval / € R with its
Euclidean metric such that U is isometric to the Riemannian product N x I.
[Hint: It might be helpful to prove that the 1-form X" is closed and to compute
the Lie derivative £ x g.]

6-30. Suppose (M,g) is a Riemannian n-manifold, p € M, and B.(p) is a
geodesic ball centered at p. Prove that for every § such that 0 < § < ¢,

§
Vol (Eg(p)) =/(; Area(dB,(p))dr,

where Area(dB,(p)) represents the (n — 1)-dimensional volume of dB,(p)
with its induced Riemannian metric.

6-31. Suppose (M, g) is a Riemannian n-manifold, P € M is a compact embedded
submanifold, and U is an e-tubular neighborhood of P for some ¢ > 0. For
0 < § < g, define Ug and Ps by

Us={xeU:dg(x,P) <6},
Ps={xeU:dg(x,P)=25}.
(a) Prove that Uy is a regular domain and Pjg is a compact, embedded sub-

manifold of M for each § € (0,¢).
(b) Generalize the result of Problem 6-30 by proving that

§
Vol(U5)=/ Area(P,)dr,
0

where Area(P,) denotes the (n — 1)-dimensional volume of P, with the
induced Riemannian metric.
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Chapter 7
Curvature

In this chapter, we begin our study of the local invariants of Riemannian metrics.
Starting with the question whether all Riemannian metrics are locally isometric,
we are led to a definition of the Riemannian curvature tensor as a measure of the
failure of second covariant derivatives to commute. Then we prove the main result
of this chapter: a Riemannian manifold has zero curvature if and only if it is flat, or
locally isometric to Euclidean space. Next, we derive the basic symmetries of the
curvature tensor, and introduce the Ricci, scalar, and Weyl curvature tensors. At the
end of the chapter, we explore how the curvature can be used to detect conformal
flatness. As you will see, the results of this chapter apply essentially unchanged to
pseudo-Riemannian metrics.

Local Invariants

For any geometric structure defined on smooth manifolds, it is of great interest to
address the local equivalence question: Are all examples of the structure locally
equivalent to each other (under an appropriate notion of local equivalence)?

There are some interesting and useful structures in differential geometry that
have the property that all such structures on manifolds of the same dimension
are locally equivalent to each other. For example:

e NONVANISHING VECTOR FIELDS: Every nonvanishing vector field can be writ-
tenas X = d/dx! in suitable local coordinates, so they are all locally equivalent.

e RIEMANNIAN METRICS ON A 1-MANIFOLD: Problem 2-1 shows that every
Riemannian 1-manifold is locally isometric to R with its Euclidean metric.

e SYMPLECTIC FORMS: A symplectic form on a smooth manifold M is a closed
2-form w that is nondegenerate at each p € M, meaning that w, (v, w) = 0 for
all w € T, M only if v = 0. By the theorem of Darboux [LeeSM, Thm. 22.13],
every symplectic form can be written in suitable coordinates as ), dx' Adyt.
Thus all symplectic forms on 2n-manifolds are locally equivalent.
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Fig. 7.1: Result of parallel transport along the x ! -axis and the x2-coordinate lines

On the other hand, Problem 5-5 showed that the round 2-sphere and the Euclidean
plane are not locally isometric.

The most important technique for proving that two geometric structures are not
locally equivalent is to find local invariants, which are quantities that must be pre-
served by local equivalences. In order to address the general problem of local equiv-
alence of Riemannian or pseudo-Riemannian metrics, we will define a local invari-
ant for all such metrics called curvature. Initially, its definition will have nothing to
do with the curvature of curves described in Chapter 1, but later we will see that the
two concepts are intimately related.

To motivate the definition of curvature, let us look back at the argument outlined
in Problem 5-5 for showing that the sphere and the plane are not locally isometric.
The key idea is that every tangent vector in the plane can be extended to a parallel
vector field, so every Riemannian manifold that is locally isometric to R? must have
the same property locally.

Given a Riemannian 2-manifold M, here is one way to attempt to construct a
parallel extension of a vector z € T, M: working in any smooth local coordinates
(x!,x?) centered at p, first parallel transport z along the x!-axis, and then parallel
transport the resulting vectors along the coordinate lines parallel to the x2-axis (Fig.
7.1). The result is a vector field Z that, by construction, is parallel along every x2-
coordinate line and along the x!-axis. The question is whether this vector field is
parallel along x!-coordinate lines other than the x!-axis, or in other words, whether
Vi, Z = 0. Observe that Vj, Z vanishes when x2 = 0. If we could show that

Vo, Vo, Z =0, (7.1)

then it would follow that Vj, Z = 0, because the zero vector field is the unique
parallel transport of zero along the x2-curves. If we knew that
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V32V312 = Valvazz, (7.2)

then (7.1) would follow immediately, because Vj,Z = 0 everywhere by construc-
tion. Indeed, on R? with the Euclidean metric, direct computation shows that

V2,90, = Vi, (02 2%) )
= (201 Z%)dx,

and V; . %322 is equal to the same thing, because ordinary second partial deriva-
tives commute. However, (7.2) might not hold for an arbitrary Riemannian metric;
indeed, it is precisely the noncommutativity of such second covariant derivatives
that forces this construction to fail on the sphere. Lurking behind this noncommuta-
tivity is the fact that the sphere is “curved.”

To express this noncommutativity in a coordinate-independent way, let us look
more closely at the quantity VxyVy Z — Vy VXZ when X, Y, and Z are smooth
vector fields. On R? with the Euclidean connection, we just showed that this always
vanishes if X = d; and Y = d;; however, for arbitrary vector fields this may no
longer be true. In fact, in R” with the Euclidean connection we have

Ux Wy Z = Vx (¥ (29)0c) = XY (29) 0.

and similarly Vy Vy Z = YX (Z k). The difference between these two expressions
is (XY (Z*) - YX(Z*))dx = Vix,y1Z. Therefore, the following relation holds for
all vector fields X, Y, Z defined on an open subset of R”:

ﬁxﬁyz—ﬁyﬁxz = ﬁ[X,Y]Z.

Recall that a Riemannian manifold is said to be flat if it is locally isometric
to a Euclidean space, that is, if every point has a neighborhood that is isometric
to an open set in R” with its Euclidean metric. Similarly, a pseudo-Riemannian
manifold is flat if it is locally isometric to a pseudo-Euclidean space. The compu-
tation above leads to the following simple necessary condition for a Riemannian or
pseudo-Riemannian manifold to be flat. We say that a connection V on a smooth
manifold M satisfies the flatness criterion if whenever X,Y, Z are smooth vector
fields defined on an open subset of M, the following identity holds:

VxVyZ—VyVxZ = Vix.yZ. (7.3)

Example 7.1. The metric on the n-torus induced by the embedding in R2" given in
Example 2.21 is flat, because each point has a coordinate neighborhood in which
the metric is Euclidean. I

Proposition 7.2. If (M, g) is a flat Riemannian or pseudo-Riemannian manifold,
then its Levi-Civita connection satisfies the flatness criterion.
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Proof. We just showed that the Euclidean connection on R” satisfies (7.3). By nat-
urality, the Levi-Civita connection on every manifold that is locally isometric to a
Euclidean or pseudo-Euclidean space must also satisfy the same identity. O

The Curvature Tensor

Motivated by the computation in the preceding section, we make the following def-
inition. Let (M, g) be a Riemannian or pseudo-Riemannian manifold, and define a
map R: X(M)xX(M)xX(M) — X(M) by

R(X.Y)Z =VxVyZ—-VyVxZ—VixyZ.

Proposition 7.3. The map R defined above is multilinear over C°° (M), and thus
defines a (1,3)-tensor field on M.

Proof. The map R is obviously multilinear over R. For f € C*°(M),

R(X, fY)Z = VxViyZ—-VyyVxZ —Vix rv1Z
=Vx(fVyZ)— fVyVxZ —=Vyrixyi+xnHrZ
= (Xf)VYZ—}—fVXVyZ—nyVXZ

—fVixy1Z—-(Xf)Vy Z
— fRX.Y)Z.

The same proof shows that R is linear over C°°(M) in X, because R(X,Y)Z =
—R(Y,X)Z from the definition. The remaining case to be checked is linearity over
C° (M) in Z; this is left to Problem 7-1.

By the tensor characterization lemma (Lemma B.6), the fact that R is multilinear
over C*°(M) implies that it is a (1, 3)-tensor field. O

Thanks to this proposition, for each pair of vector fields X,Y € X(M), the map
R(X,Y): (M) — X(M) given by Z — R(X,Y)Z is a smooth bundle endomor-
phism of TM, called the curvature endomorphism determined by X and Y.
The tensor field R itself is called the (Riemann) curvature endomorphism or the
(1, 3)-curvature tensor. (Some authors call it simply the curvature tensor, but we
reserve that name instead for another closely related tensor field, defined below.)

As a (1, 3)-tensor field, the curvature endomorphism can be written in terms of
any local frame with one upper and three lower indices. We adopt the convention
that the /ast index is the contravariant (upper) one. (This is contrary to our default
assumption that covector arguments come first.) Thus, for example, the curvature
endomorphism can be written in terms of local coordinates (xi ) as

R=Rildx' ®dx’ ®dx* ®49,

where the coefficients R; jkl are defined by
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1
R(a,‘,a]’)ak = R,’jk 81.

The next proposition shows how to compute the components of R in coordinates.

Proposition 7.4. Let (M, g) be a Riemannian or pseudo-Riemannian manifold. In
terms of any smooth local coordinates, the components of the (1, 3)-curvature tensor
are given by

Rije! = ;T =9, Tl + ), —Tort (7.4)
Proof. Problem 7-2. O

Importantly for our purposes, the curvature endomorphism also measures the
failure of second covariant derivatives along families of curves to commute. Given a
smooth one-parameter family of curves I : J x I — M, recall from Chapter 6 that
the velocity fields 8, I"(s,1) = (I';)'(t) and 351" (s, 1) = I"®’(s) are smooth vector
fields along I".

Proposition 7.5. Suppose (M, g) is a smooth Riemannian or pseudo-Riemannian
manifold and I": J x I — M is a smooth one-parameter family of curves in M.
Then for every smooth vector field V along I,

DyDV —D¢DsV = R(@s1,0,T")V. (7.5)

Proof. This is a local question, so for each (s,7) € J x I, we can choose smooth
coordinates (x’) defined on a neighborhood of I'(s,?) and write

L(s.t) = (y'(s.0),....y" (s.1)), V(s,t) = Vf(s,z)aj|r(s,t).

Formula (4.15) yields _
av?

D,V=W8i+ViD,8,~.
Therefore, applying (4.15) again, we get
DyD,V = 82Via-JraViD a-+8ViD i +ViDsD0;
s t - 8s81‘ 1 8t sY1 as tY1 s tYr-

Interchanging s and ¢ and subtracting, we see that all the terms except the last cancel:
DDV —D;DgV =V (DsD;d; — D, Dsd;). (7.6)
Now we need to compute the commutator in parentheses. For brevity, let us write

ayk 3)/7
— 9. = . T =9, = Ny
S = 83 = 85 8k, = 3, = 8[ J

Because 0; is extendible,
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and therefore, because Vaj d; is also extendible,

oy’
DyD,d; = Dy (%vaj ai)

32yj 3),1'
=0 g+ v (V0
asar 0+ 5 Vs (Vo i)

2y’ Iy’ dyk
SR VR T GRS
asar 00T T Ty Yok Vo, 0

Interchanging s <> t and j <> k and subtracting, we find that the first terms cancel,
and we get

dy’ dyk
DSDtai —DtDsai = %ay—s (ngva_i ai —V;)j ngai)
ayl ayk
= ———R(0;,0;)0; = R(S,T)0;.
9 s ( k ]) i ( ) i
Finally, inserting this into (7.6) yields the result. O

For many purposes, the information contained in the curvature endomorphism is
much more conveniently encoded in the form of a covariant 4-tensor. We define the
(Riemann) curvature tensor to be the (0, 4)-tensor field Rm = R’ (also denoted by
Riem by some authors) obtained from the (1, 3)-curvature tensor R by lowering its
last index. Its action on vector fields is given by

Rm(X.Y,Z,W)=(R(X.Y)Z,W),. (7.7)
In terms of any smooth local coordinates it is written

Rm = R,-jkldxi Qdx’ @ dx* @ dx’,
where Rk = gimRijx"™ . Thus (7.4) yields

Rijkl =glm(a,-F;';c—BjFi’z+kaFl-’;’,—FﬁcF;'I’,). (7.8)
It is appropriate to note here that there is much variation in the literature with
respect to index positions in the definitions of the curvature endomorphism and
curvature tensor. While almost all authors define the (1, 3)-curvature tensor as we
have, there are a few (notably [dC92, GHL04]) whose definition is the negative of
ours. There is much less agreement on the definition of the (0,4)-curvature tensor:
whichever definition is chosen for the curvature endomorphism, you will see the
curvature tensor defined as in (7.7) but with various permutations of (X,Y,Z, W)
on the right-hand side. After applying the symmetries of the curvature tensor that we
will prove later in this chapter, however, all of the definitions agree up to sign. There
are various arguments to support one choice or another; we have made a choice that
makes equation (7.7) easy to remember. You just have to be careful when you begin
reading any book or article to determine the author’s sign convention.
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The next proposition gives one reason for our interest in the curvature tensor.

Proposition 7.6. The curvature tensor is a local isometry invariant: if (M, g) and
(M g) are Riemannian or pseudo-Riemannian manifolds and ¢: M — M is a
local isometry, then go*Rm = Rm.

» Exercise 7.7. Prove Proposition 7.6.

Flat Manifolds

To give a qualitative geometric interpretation to the curvature tensor, we will show
that it is precisely the obstruction to being locally isometric to Euclidean (or pseudo-
Euclidean) space. (In Chapter 8, after we have developed more machinery, we will
be able to give a far more detailed quantitative interpretation.) The crux of the proof
is the following lemma.

Lemma 7.8. Suppose M is a smooth manifold, and V is any connection on M sat-
isfying the flatness criterion. Given p € M and any vector v € T, M, there exists a
parallel vector field V on a neighborhood of p such that V, = v.

Proof. Let p € M and v € T, M be arbitrary, and let (xl,...,x”) be any smooth
coordinates for M centered at p. By shrinking the coordinate neighborhood if
necessary, we may assume that the image of the coordinate map is an open cube
C.={x:|x'| <e i =1,...,n}. We use the coordinate map to identify the coordi-
nate domain with C,.

Begin by parallel transporting v along the x'-axis; then from each point on the
x!-axis, parallel transport along the coordinate line parallel to the x2-axis; then
successively parallel transport along coordinate lines parallel to the x3 through x"-
axes (Fig. 7.2). The result is a vector field V' defined in C,. The fact that V is
smooth follows from an inductive application of Theorem A.42 to vector fields of
the form Wy ) = 9/dxk — vil"]il. (x)d/dv/ on C, x R™; the details are left as an
exercise.

Since Vyx V is linear over C*°(M) in X, to show that V' is parallel, it suffices
to show that V3,V = 0 for each i = 1,...,n. By construction, V3, V' = 0 on the
x'-axis, V,V =0 on the (x',x?)-plane, and in general Vy, V' = 0 on the slice
My € C, defined by x*¥*1 = ... = x" = 0. We will prove the following fact by
induction on k:

Vs V=-=Vs V=0 onM. (7.9)

For k = 1, this is true by construction, and for kK = n, it means that V' is parallel
on the whole cube C,. So assume that (7.9) holds for some k. By construction,
Vo, 4 V =0 on all of My, and for i <k, the inductive hypothesis shows that
Vj; V = 0 on the hyperplane My C My ;.

Since [dx+1,0i] = 0O, the flatness criterion gives
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Fig. 7.2: Proof of Lemma 7.8

Vak_H (Vai V) = Vai (Vak_H V) =0 on Mk-‘rl'
This shows that Vj, V' is parallel along the x¥+1_curves starting on My. Since Vy, V
vanishes on M} and the zero vector field is the unique parallel transport of zero, we
conclude that Vi, V' is zero on each x**1_curve. Since every point of My is on
one of these curves, it follows that Vy, V' = 0 on all of My . This completes the
inductive step to show that V is parallel. O

» Exercise 7.9. Prove that the vector field V' constructed in the preceding proof is
smooth.

Theorem 7.10. A Riemannian or pseudo-Riemannian manifold is flat if and only if
its curvature tensor vanishes identically.

Proof. One direction is immediate: Proposition 7.2 showed that the Levi-Civita con-
nection of a flat metric satisfies the flatness criterion, so its curvature endomorphism
is identically zero, which implies that the curvature tensor is also zero.

Now suppose (M, g) has vanishing curvature tensor. This means that the cur-
vature endomorphism vanishes as well, so the Levi-Civita connection satisfies the
flatness criterion. We begin by showing that g shares one important property with
Euclidean and pseudo-Euclidean metrics: it admits a parallel orthonormal frame in
a neighborhood of each point.

Let p € M, and choose an orthonormal basis (by,...,b,) for T, M. In the
pseudo-Riemannian case, we may assume that the basis is in standard order (with posi-
tive entries before negative ones in the matrix g;; = g,(b;,b;)). Lemma 7.8 shows
that there exist parallel vector fields Ey,..., E, on a neighborhood U of p such that
E;|p =b; foreachi =1,...,n. Because parallel transport preserves inner products,
the vector fields (£ ;) are orthonormal (and hence linearly independent) in all of U.

Because the Levi-Civita connection is symmetric, we have
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Py
I'(0,¢g) Ir'e,e)
P / /
8,
Py
p=1TI(0,0) Py I(s,0)

Fig. 7.3: The curvature endomorphism and parallel transport around a closed loop

[Ei E;]l = Vg, E; — Vg, E; =0.

Thus the vector fields (Eq,..., E,) form a commuting orthonormal frame on U. The
canonical form theorem for commuting vector fields (Prop. A.48) shows that there
are coordinates (yl, ey y”) on a (possibly smaller) neighborhood of p such that
E; =0/dy" fori =1,...,n. Inany such coordinates, g;; = g(3;,0,) = g(E;, E;) =
+6;;, so the map y = (y!,...,»") is an isometry from a neighborhood of p to an
open subset of the appropriate Euclidean or pseudo-Euclidean space. O

Using similar ideas, we can give a more precise interpretation of the meaning of
the curvature tensor: it is a measure of the extent to which parallel transport around
a small rectangle fails to be the identity map.

Theorem 7.11. Let (M, g) be a Riemannian or pseudo-Riemannian manifold; let 1
be an open interval containing 0; let I': I x I — M be a smooth one-parameter
Sfamily of curves; and let p = I'(0,0), x = 9,17(0,0), and y = 9,1"(0,0). For any
S1,82,11,t2 € I, let Psxll,’,tf: Tres, .0 )M — Trs,..,)M denote parallel transport
along the curve t — I'(s1,t) from time t; to time t,, and let Pssf’}tll cTre M —
Tr(s,,t;)M denote parallel transport along the curve s — I'(s,t1) from time s; to
time s5. (See Fig. 7.3.) Then for every z € T, M,

0,0 8,0 8.e 0,6
PsyoPs 0Py oPyo(z)—z
de

R(x,y)z = lim (7.10)
§,e—0

Proof. Define a vector field Z along I" by first parallel transporting z along the
curve t — [7(0,¢), and then for each 7, parallel transporting Z(0,¢) along the curve
s + I'(s,t). The resulting vector field along I" is smooth by another application
of Theorem A.42 as in the proof of Lemma 7.8; and by construction, it satisfies D,
Z(0,t) =0forallt € I, and Dy Z(s,t) = 0 for all (s,?) € I x I. Proposition 7.5
shows that

R(x,y)z =Dy D, Z(0,0) — D; Ds Z(0,0) = D; D, Z(0,0).


BADALI
Typewritten text
shows that


202 7 Curvature

Thus we need only show that Dy D;Z(0,0) is equal to the limit on the right-hand
side of (7.10).
From Theorem 4.34, we have

P32 (Z(s.€)) = Z(s,0)

D, Z(s,0) = lim (7.11)
e—0 I
PY%(D,Z(8,0))— D; Z(0,0
DyD;Z(0.0) = lim 50 (DeZ( 5)) 20,9 (7.12)
—0

Evaluating (7.11) first at s = § and then at s = 0, and inserting the resulting expres-
sions into (7.12), we obtain

DD, Z(0,0)
Py o Py l(Z(5.6) — Py (Z(8,0) — Po (Z(0,6) + Z(0,0)
_ 51;20 5 . (7.13)

Here we have used the fact that parallel transport is linear, so the e-limit can be
pulled past PSOJ’:.

Now, the fact that Z is parallel along ¢ + I"(0,¢) and along all of the curves
s+ I'(s,t) implies

PR (Z(5.0)) = Pof(Z(0.6) = Z(0.0) = 2.
Z(8.6) = PyE(Z(0.e)) = Py o Py (2).

Inserting these relations into (7.13) yields (7.10). |

Symmetries of the Curvature Tensor

The curvature tensor on a Riemannian or pseudo-Riemannian manifold has a num-
ber of symmetries besides the obvious skew-symmetry in its first two arguments.

Proposition 7.12 (Symmetries of the Curvature Tensor). Ler (M,g) be a Rie-
mannian or pseudo-Riemannian manifold. The (0,4)-curvature tensor of g has the
following symmetries for all vector fields W, X, Y, Z:

(@) Rm(W,X,Y,Z) = —Rm(X,W,Y, Z).

(b) Rm(W,X,Y,Z) = —Rm(W,X,Z.Y).

(c) Rm(W,X.Y,Z) = Rm(Y, Z, W, X).

() Rm(W,X.Y,Z)+Rm(X.Y,W,Z) +Rm(Y,W,X,Z) = 0.

Before we begin the proof, a few remarks are in order. First, as the proof will
show, (a) is a trivial consequence of the definition of the curvature endomorphism;
(b) follows from the compatibility of the Levi-Civita connection with the metric; (d)
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follows from the symmetry of the connection; and (c) follows from (a), (b), and (d).
The identity in (d) is called the algebraic Bianchi identity (or more traditionally
but less informatively, the first Bianchi identity). It is easy to show using (a)—(d)
that a three-term sum obtained by cyclically permuting any three arguments of Rm
is also zero. Finally, it is useful to record the form of these symmetries in terms of
components with respect to any basis:

@) Rijk1 = —Rjiki-

(t") Rijki = —Rijik.

(c") Rijki = Ryiij-

(d) Rijkr + Rjkit + Ryiji = 0.

Proof of Proposition 7.12. Identity (a) is immediate from the definition of the
curvature tensor, because R(W,X)Y = —R(X,W)Y. To prove (b), it suffices to

show that Rm(W, X,Y,Y) = 0 for all Y, for then (b) follows from the expansion of
Rm(W,X,Y +Z,Y + Z) = 0. Using compatibility with the metric, we have

WX|Y > =WQ(VxY.Y)) =2(VwVxY,Y) +2(VxY, Vi Y);
XWI|YP?=XQ(VwY,Y)) =2(VxVwY.Y)+2(Vyp Y, VxY);
W, X]|Y > = 2(Viw,x Y. Y).
When we subtract the second and third equations from the first, the left-hand side
is zero. The terms 2(Vyx Y, Vi Y') and 2(Vy Y, Vx Y') cancel on the right-hand side,
giving
=2(R(W,X)Y,Y)
=2Rm(W,X,Y.,Y).

Next we prove (d). From the definition of Rm, this will follow immediately from
RW,X)Y + RIX, Y)W+ R(Y, W)X =0.

Using the definition of R and the symmetry of the connection, the left-hand side
expands to

(VwVxY —VxVyY —Viw x1Y)
+(VxVy W —=VyVx W —Vix y1W)
+(VvaX—VvaX—V[Y,W]X)

=Vw(VxY =Vy X)+Vx(Vy W =V Y)+ Vy(Vw X —Vx W)
=Vw[X, Y]+ Vx[Y, W]+ Vy[W, X]

—Vw.x1Y —Vix,yiW — Vir,w X
= WX Y]+ [X.[Y. W]+ [Y.[W, X]].



204 7 Curvature

This is zero by the Jacobi identity.
Finally, we show that identity (c) follows from the other three. Writing the alge-
braic Bianchi identity four times with indices cyclically permuted gives

Rm(W,X,Y,Z) +Rm(X,Y,W,Z) +Rm(Y,W,X,Z) =0,
Rn(X,Y,Z,W)+Rm(Y,Z,X,W)+Rm(Z,X,Y,W) =0,
Rn(Y,Z,W,X)+Rm(Z,W,Y,X)+Rm(W.,Y,Z,X) =0,
Rn(Z,W,X,Y)+Rm(W,X,Z.Y)+Rm(X.Z,W,Y) =0.

Now add up all four equations. Applying (b) four times makes all the terms in
the first two columns cancel. Then applying (a) and (b) in the last column yields
2Rm(Y,W,X,Z)—2Rm(X,Z,Y,W) = 0, which is equivalent to (c). |

There is one more identity that is satisfied by the covariant derivatives of the
curvature tensor on every Riemannian manifold. Classically, it was called the sec-
ond Bianchi identity, but modern authors tend to use the more informative name
differential Bianchi identity.

Proposition 7.13 (Differential Bianchi Identity). The total covariant derivative of
the curvature tensor satisfies the following identity:

VRm(X,Y,Z,V,W)+VRm(X,Y,V.W,Z)+VRm(X,Y,W,Z,V)=0. (7.14)
In components, this is
Rijki;m + Rijimk + Rijmi;y = 0. (7.15)
Proof. First of all, by the symmetries of Rm, (7.14) is equivalent to
VRm(Z,V, X, Y, W)+ VRm(V,W,X,Y,Z)+VRm(W,Z,X,Y,V)=0. (7.16)

This can be proved by a long and tedious computation, but there is a standard short-
cut for such calculations in Riemannian geometry that makes our task immeasurably
easier. To prove that (7.16) holds at a particular point p, it suffices by multilinear-
ity to prove the formula when X, Y, Z,V, W are basis vectors with respect to some
frame. The shortcut consists in choosing a special frame for each point p to simplify
the computations there.

Let p be an arbitrary point, let (xi) be normal coordinates centered at p, and let
X,Y,Z,V,W be arbitrary coordinate basis vector fields. These vectors satisfy two
properties that simplify our computations enormously: (1) their commutators vanish
identically, since [9;,0;] = 0; and (2) their covariant derivatives vanish at p, since
r{; (p) = 0 (Prop. 5.24(d)).

Using these facts and the compatibility of the connection with the metric, the first
term in (7.16) evaluated at p becomes
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(VwRm)(Z,V,X,Y) = Vg (Rm(Z,V,X,Y))
=Vw(R(Z, V)X, Y)
= Vi (VzVy X —VyVzX —Viz X, Y)
= (VwVzVy X =V Vy VX, Y).

Write this equation three times, with the vector fields W, Z, V' cyclically permuted.
Summing all three gives

VRn(Z,V,X, Y, W)+ VRm(V,W,X,Y,Z)+ VRm(W,Z,X,Y,V)
=(VwVzVy X =V VyVzX
+VzVyVpw X —=VzVy Vi X
+VyVwVz X -V V2V X, Y)
= (ROW,Z)(Vy X) + R(Z,V)(Vw X) + R(V, W)(VzX), Y)
=0,

where the last line follows because Vy X = Vip X =VzX =0 at p. O

The Ricci Identities

The curvature endomorphism also appears as the obstruction to commutation of
total covariant derivatives. Recall from Chapter 4 that if F is any smooth tensor
field of type (k.I), then its second covariant derivative V2 F = V(V F) is a smooth
(k,l 4+ 2)-tensor field, and for vector fields X and Y, the notation V?{,YF denotes

V2F(...,Y,X). Given vector fields X and Y, let R(X,Y)*: T*M — T*M denote
the dual map to R(X,Y), defined by

(R(X,Y)* n)(Z) = n(R(X,Y)Z).

Theorem 7.14 (Ricci Identities). On a Riemannian or pseudo-Riemannian mani-
fold M, the second total covariant derivatives of vector and tensor fields satisfy the
following identities. If Z is a smooth vector field,

VivZ-VixZ=R(X.Y)Z. (7.17)
If B is a smooth 1-form,
V2 yB—VixB=—R(X,Y)*B. (7.18)

And if B is a smooth (k,l)-tensor field,
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(ViyB-VixB)'.....0" Vi..... V)
=B(R(X,Y)*0' 02, ....0* Vi,... . V}) + -
+B(w',... .o L RX. V) 5 VL ) (1.19)
—B(o',..., 0" RX,Y)V1,Va,..., V) —--
—B(o',..., 0" Vi,.... Vi1, R(X,Y)V)),

for all covector fields w' and vector fields V;i. In terms of any local frame, the
component versions of these formulas read

i i i ym
Z'pg—2Z qp = —Rpgm Z™, (7.20)
_ .m
Bjipa—Bijsap = Rpai” Bm. (7.21)
i-l...i{( N iAl...i{( - _ i1 mi2't'ik o ix iAl --~i{(71m

Ji-J1;pq Ji--Ji1:qp RP‘I’” J1--J1 RP‘I’" Bn...n

o m pildg . o m itk
+ Rpgjy " By, "t Rpgjy B 0 e (1.22)

Proof. For any tensor field B and vector fields X, Y, Proposition 4.21 implies

ViyB—VyxB=VxVyB—Vy,y)B—VyVxB+ Vv, x)B

(7.23)
= VxVyB—VyVxB—Vx.yB,

where the last equality follows from the symmetry of the connection. In particular,
this holds when B = Z is a vector field, so (7.17) follows directly from the definition
of the curvature endomorphism.

Next we prove (7.18). Using (4.13) repeatedly, we compute

(VxVyB)(Z) = X ((Vy B)(2)) = (V¥ B)(Vx Z)
= X(Y(B(Z2))-B(VyZ))—(VyB)(Vx Z)

=XY(B(2))— (VxB)(Vy Z)—B(VxVy Z)— (VY B)(Vx Z).
(7.24)
Reversing the roles of X and Y, we get

(VyVx)(Z2) = YX(B(Z)) = (VY B)(Vx Z) = B(VyVx Z) = (Vx B) (V¥ Z),
(7.25)
and applying (4.13) one more time yields

(Vix.1B)(Z2) = [X.Y1(B(Z)) - B(Vix,v1Z). (7.26)

Now subtract (7.25) and (7.26) from (7.24): all but three of the terms cancel, yielding

(VxVyB—VyVxB—Vixy1B)(Z) = —B(VxVyZ —VyVxZ —Vixy|Z)
= —B(R(X.Y)Z).

which is equivalent to (7.18).
Next consider the action of Vi, y— Vlz, x on an arbitrary tensor product:
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(Viy = Vix)(F®G)
= (VxVy —VyVx —Vix.y])(F ® G)
=VxVyFRG+VyFVxG+VxFRVyG+FQ®VxVyG
—VyVxF®G—-VxFQVyG—-VyF®VxG—-F®VyVxG
—-VixnF®G—-F®Vix1G
=(ViyF-VyxF)®G+F®(VyyG—V;jxG).
A simple induction using this relation together with (7.17) and (7.18) shows that for
all smooth vector fields Wi, ..., Wy and 1-forms 171, e, 771,
(Viy-Vix) (W@ eWion' ®- 1)
= (RX. V)W) @Wo @@ Wi @' @---®@7n' +---
+M @@ W1 ® (RX. V)W) ®n' @ @n'
W@ W ®(—RX.YV)*)" )@@ &n +--
W @W@n' @@y e (- R(X,Y)*n).
Since every tensor field can be written as a sum of tensor products of vector fields

and 1-forms, this implies (7.19).
Finally, the component formula (7.22) follows by applying (7.19) to

(Vi,.£,B—V&, £, B)("....e% Ej.,....E}),

where (E;) and (&') represent a local frame and its dual coframe, respectively, and
using
R(Eq.Ep)Ej = quijm = _quijm»

R(E;, Ep)*e" = Rypm'€™ = —Rpgm' e™.

The other two component formulas are special cases of (7.22). O

Ricci and Scalar Curvatures

Suppose (M, g) is an n-dimensional Riemannian or pseudo-Riemannian manifold.
Because 4-tensors are so complicated, it is often useful to construct simpler tensors
that summarize some of the information contained in the curvature tensor. The most
important such tensor is the Ricci curvature or Ricci tensor, denoted by Rc (or often
Ric in the literature), which is the covariant 2-tensor field defined as the trace of the
curvature endomorphism on its first and last indices. Thus for vector fields X, Y,

Re(X,Y) =t (Z = R(Z,X)Y).
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The components of Rc are usually denoted by R;;, so that

R;j = Rkijk = gkakijm-
The scalar curvature is the function S defined as the trace of the Ricci tensor:

S =trgRc=R;' = g" R;;.

It is probably not clear at this point why the Ricci tensor or scalar curvature might be
interesting, and we do not yet have the tools to give them geometric interpretations.
But be assured that there is such an interpretation; see Proposition 8.32.

Lemma 7.15. The Ricci curvature is a symmetric 2-tensor field. It can be expressed
in any of the following ways:

k k k k
Rij = Riij" = Rix" j = —Rii” j = —Rixj~ -
» Exercise 7.16. Prove Lemma 7.15, using the symmetries of the curvature tensor.

It is sometimes useful to decompose the Ricci tensor into a multiple of the metric
and a complementary piece with zero trace. Define the traceless Ricci tensor of g
as the following symmetric 2-tensor:

0 1
Rc=Rc—-Sg.
n

Proposition 7.17. Let (M, g) be a Riemannian or pseudo-Riemannian n-manifold.
Then trgRc = 0, and the Ricci tensor decomposes orthogonally as

o 1
Rc=Rc+ —Sg. (7.27)
n
Therefore, in the Riemannian case,
Re? = |Re]2 + L2 7.28
|c|g_|c|g+; . (7.28)

Remark. The statement about norms, and others like it that we will prove below,
works only in the Riemannian case because of the additional absolute value signs
required to compute norms in the pseudo-Riemannian case. The pseudo-Riemannian
analogue would be (Rc,Rc), = (Rc,Rc)g + %SZ, but this is not as useful.

Proof. Note that in every local frame, we have
try g = gijg-/i = Sf =n.

It then follows directly from the definition of Re that trg Re =0 and (7.27) holds.
The fact that the decomposition is orthogonal follows easily from the fact that for
every symmetric 2-tensor /1, we have
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kil .
(h.g)=g" g’ hijgk1 = g’ hij = trgh,

and therefore (Ié)c g) = trglé)c = 0. Finally, (7.28) follows from (7.27) and the fact
that (g,g) =trgg =n. O

The next proposition, which follows directly from the differential Bianchi iden-
tity, expresses some important relationships among the covariant derivatives of the
various curvature tensors. To express it concisely, it is useful to introduce another
operator on tensor fields. If 7" is a smooth 2-tensor field on a Riemannian or pseudo-
Riemannian manifold, we define the exterior covariant derivative of T to be the
3-tensor field DT defined by

DT X.Y,Z)=—(VT)(X.Y,Z2)+ (VT)(X.Z,Y). (7.29)
In terms of components, this is
(DT)ijke = =Tijsk + Tiksj -

(This operator is a generalization of the ordinary exterior derivative of a 1-form,
which can be expressed in terms of the total covariant derivative by (dn)(Y,Z) =
—(Vn)(Y,Z)+ (Vn)(Z,Y) by the result of Problem 5-13. The exterior covariant
derivative can be generalized to other types of tensors as well, but this is the only
case we need.)

Proposition 7.18 (Contracted Bianchi Identities). Let (M, g) be a Riemannian or
pseudo-Riemannian manifold. The covariant derivatives of the Riemann, Ricci, and
scalar curvatures of g satisfy the following identities:

trg (VRm) = —D(Rc), (7.30)
trg (VRc) = 3dSS, (7.31)

where the trace in each case is on the first and last indices. In components, this is

Rijit;' = Rk — Rjik. (7.32)
R =18, (7.33)

Proof. Start with the component form (7.15) of the differential Bianchi identity,
raise the index m, and then contract on the indices i,m to obtain (7.32). (Note that
covariant differentiation commutes with contraction by Proposition 4.15 and with
the musical isomorphisms by Proposition 5.17, so it does not matter whether the
indices that are raised and contracted come before or after the semicolon.) Then do
the same with the indices j,k and simplify to obtain (7.33). The coordinate-free
formulas (7.30) and (7.31) follow by expanding everything out in components. O

It is important to note that if the sign convention chosen for the curvature tensor
is the opposite of ours, then the Ricci tensor must be defined as the trace of Rm on
the first and third (or second and fourth) indices. (The trace on the first two or last



210 7 Curvature

two indices is always zero by antisymmetry.) The definition is chosen so that the
Ricci and scalar curvatures have the same meaning for everyone, regardless of the
conventions chosen for the full curvature tensor. So, for example, if a manifold is
said to have positive scalar curvature, there is no ambiguity as to what is meant.

A Riemannian or pseudo-Riemannian metric is said to be an Einstein metric if
its Ricci tensor is a constant multiple of the metric—that is,

Rc = Ag for some constantA. (7.34)

This equation is known as the Einstein equation. As the next proposition shows,
for connected manifolds of dimension greater than 2, it is not necessary to assume
that A is constant; just assuming that the Ricci tensor is a function times the metric
is sufficient.

Proposition 7.19 (Schur’s Lemma). Suppose (M, g) is a connected Riemannian
or pseudo-Riemannian manifold of dimension n > 3 whose Ricci tensor satisfies
Rc = fg for some smooth real-valued function f. Then f is constant and g is an
Einstein metric.

Proof. Taking traces of both sides of Rc = fg shows that [ = %S , so the trace-
less Ricci tensor is identically zero. It follows that VRc = 0. Because the covariant
derivative of the metric is zero, this implies the following equation in any coordinate
chart:

1
0=R;jx— ;S;kgi_r

Tracing this equation on i and k, and comparing with the contracted Bianchi identity
(7.33), we conclude that
1 1
0= ES;j - ;S;j
Because n > 3, this implies S,; = 0. But §;; is the component of VS = d§, so
connectedness of M implies that S is constant and thus so is f. O

Corollary 7.20. If (M, g) is a connected Riemannian or pseudo Riemannian mani-
fold of dimension n > 3, then g is Einstein if and only lch =

Proof. Suppose first that g is an Einstein metric with Re = Ag. Taking traces of both
sides, we find that A = 1 - S, and therefore Re = Re— Ag = 0. Conversely, if Re= 0,
Schur’s lemma implies that g is Einstein. O

By an argument analogous to those of Chapter 6, Hilbert showed (see [Bes87,
Thm. 4.21]) that Einstein metrics are critical points for the total scalar curvature
functional §(g) = [ u S dVg on the space of all metrics on M with fixed volume.
Thus Einstein metrics can be viewed as “optimal” metrics in a certain sense, and as
such they form an appealing higher-dimensional analogue of locally homogeneous
metrics on 2-manifolds, with which one might hope to prove some sort of general-
ization of the uniformization theorem (Thm. 3.22). Although the statement of such
a theorem cannot be as elegant as that of its 2-dimensional ancestor because there
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are known examples of smooth, compact manifolds that admit no Einstein metrics
[Bes87, Chap. 6], there is still a reasonable hope that “most” higher-dimensional
manifolds (in some sense) admit Einstein metrics. This is an active field of current
research; see [Bes87] for a sweeping survey of Einstein metrics.

The term “Einstein metric” originated, as you might guess, in physics: the central
assertion of Einstein’s general theory of relativity is that physical spacetime is mod-
eled by a 4-manifold that carries a Lorentz metric whose Ricci curvature satisfies
the following Einstein field equation:

1
Re—>Sg=T. (7.35)

where 7 is a certain symmetric 2-tensor field (the stress—energy tensor) that
describes the density, momentum, and stress of the matter and energy present at
each point in spacetime. It is shown in physics books (e.g., [CB09, pp. 51-53]) that
(7.35) is the variational equation for a certain functional, called the Einstein—Hilbert
action, on the space of all Lorentz metrics on a given 4-manifold. Einstein’s theory
can then be interpreted as the assertion that a physically realistic spacetime must be
a critical point for this functional.

In the special case T = 0, (7.35) reduces to the vacuum Einstein field
equation Rc = %S g. Taking traces of both sides and recalling that tr, ¢ = dimM =
4, we obtain S = 2.5, which implies S = 0. Therefore, the vacuum Einstein equation
is equivalent to Rc = 0, which means that g is a (pseudo-Riemannian) Einstein met-
ric in the mathematical sense of the word. (At one point in the development of the
theory, Einstein considered adding a term Ag to the left-hand side of (7.35), where
A is a constant that he called the cosmological constant. With this modification the
vacuum Einstein field equation would be exactly the same as the mathematicians’
Einstein equation (7.34). Einstein soon decided that the cosmological constant
was a mistake on physical grounds; however, researchers in general relativity have
recently begun to believe that a theory with a nonzero cosmological constant might in
fact have physical relevance.)

Other than these special cases and the obvious formal similarity between (7.35)
and (7.34), there is no direct connection between the physicists’ version of the
Einstein equation and the mathematicians’ version. The mathematical interest in
Riemannian Einstein metrics stems more from their potential applications to uni-
formization in higher dimensions than from their relation to physics.

Another approach to generalizing the uniformization theorem to higher dimen-
sions is to search for metrics of constant scalar curvature. These are also critical
points of the total scalar curvature functional, but only with respect to variations of
the metric with fixed volume within a given conformal equivalence class. Thus it
makes sense to ask whether, given a metric g on a manifold M, there exists a metric
g conformal to g that has constant scalar curvature. This is called the Yamabe prob-
lem, because it was first posed in 1960 by Hidehiko Yamabe, who claimed to have
proved that the answer is always yes when M is compact. Yamabe’s proof was
later found to be in error, and it was two dozen years before the proof was finally
completed by Richard Schoen; see [LP87] for an expository account of Schoen’s
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solution. When M is noncompact, the issues are much subtler, and much current
research is focused on determining exactly which conformal classes contain metrics
of constant scalar curvature.

The Weyl Tensor

As noted above, the Ricci and scalar curvatures contain only part of the information
encoded into the curvature tensor. In this section, we introduce a tensor field called
the Weyl tensor, which encodes all the rest.

We begin by considering some linear-algebraic aspects of tensors that have the
symmetries of the curvature tensor. Suppose V' is an n-dimensional real vector
space. Let R(V*) C T#(V*) denote the vector space of all covariant 4-tensors T
on V that have the symmetries of the (0,4) Riemann curvature tensor:

(a T(w,x,y,z)=-T(x,w,y,2).

b) T(w,x,y,z)=-T(w,x,z,y).

() T(w,x,y,z)=T(y,z,w,x).

@ T(w,x,y,z2)+ T(x,y,w,z)+T(y,w,x,z) =0.

(As the proof of Prop. 7.12 showed, (c) follows from the other three symmetries, so
it would suffice to assume only (a), (b), and (d); but it is more convenient to include
all four symmetries in the definition.) An element of R(V *) is called an algebraic
curvature tensor on V.

Proposition 7.21. If the vector space V has dimension n, then

nz(nz— 1).

dimR(V*) = —

(7.36)
Proof. Let B(V*) denote the linear subspace of T#(V *) consisting of tensors satis-
fying properties (a)—(c), and let X2 (AZ(V)*) denote the space of symmetric bilinear
forms on the vector space A2(V) of alternating contravariant 2-tensors on V. Define
amap @: 2(A*(V)*) — B(V*) as follows:

®(B)(w,x,y,z) = B(wAx, yAz).

It is easy to check that @(B) satisfies (a)—(c), so @(B) € B(V™*), and that @ is a
linear map. In fact, it is an isomorphism, which we prove by constructing an inverse
for it. Choose a basis (by,...,b,) for V, so the collection {h; Abj :i < j} is a basis
for A%(V). Define a map ¥: B(V*) — £2(A2(V)*) by setting

'I/(T)(bi /\b_/, bk /\bl) = T(bi,bj,bk,bl)

when i < j and k < [, and extending by bilinearity. A straightforward computation
shows that ¥ is an inverse for @.



The Weyl Tensor 213

The upshot of the preceding construction is that

D(G)+1)  nn—Dn2—n+2)
2 - 8 ’

dim B(V*) = dim (2*(A*(V)*)) = (

where we have used the facts that dim A(V) = (}) = n(n—1)/2 and the dimension
of the space of symmetric bilinear forms on a vector space of dimension m is
m(m+1)/2.

Now consider the linear map 7 : B(V*) — T#(V*) defined by

a(T)(w,x,y,z) = %(T(w,x,y,z) +T(x,y,w,z)+ T(y,w,x,z)).

By definition, R (V' *) is equal to the kernel of 7. In fact, 7 is equal to the restriction
to B(V*) of the operator Alt: T*(V*) — A*(V*) defined by (B.9): thanks to the
symmetries (a)—(c), the 24 terms in the definition of Alt7T can be arranged in three
groups of eight in such a way that all the terms in each group reduce to one of the
terms in the definition of 7. Thus the image of 7 is contained in A4( V*). In fact, the
image is all of A*(V*): every T € A*(V*) satisfies (a)—(c) and thus lies in B(V*),
and (7)) = AltT = T for each such tensor.
Therefore, using the rank—nullity theorem of linear algebra, we conclude that

nn—1)m>-n+2) B (n)

dim R(V*) = dim B(V*) —dim A*(V*) = - :

and simplification yields (7.36). O

Let us now assume that our vector space V is endowed with a (not necessarily
positive definite) scalar product g € £2(V*). Let trg : R(V*) — Z?(V*) denote the
trace operation (with respect to g) on the first and last indices (so that, for example,
Rc = trg (Rm)). It is natural to wonder whether this operator is surjective and what
its kernel is, as a way of asking how much of the information contained in the
Riemann curvature tensor is captured by the Ricci tensor. One way to try to answer
the question is to attempt to construct a right inverse for the trace operator—a linear
map G : Z2(V*) — R(V*) such that trg (G(S)) = S forall § € Z2(V*).

Such an operator must start with a symmetric 2-tensor and construct a 4-tensor,
using only the given 2-tensor and the metric. It turns out that there is a natural way
to construct an algebraic curvature tensor out of two symmetric 2-tensors, which we
now describe. Given &,k € X?(V*), we define a covariant 4-tensor 4 ®k, called the
Kulkarni—-Nomizu product of h and k, by the following formula:

hdk(w,x,y,z) =h(w,z2)k(x,y)+h(x,y)k(w,z)
—h(w,y)k(x,z)—h(x,2)k(w,y). (7.37)

In terms of any basis, the components of & ® k are

(hOk)ijim = himkji +hjikim —hitk jm —hjmkir.
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(It should be noted that the Kulkarni—-Nomizu product must be defined as the nega-
tive of this expression when the Riemann curvature tensor is defined as the negative
of ours.)

Lemma 7.22 (Properties of the Kulkarni-Nomizu Product). Let V be an n-
dimensional vector space endowed with a scalar product g, let h and k be sym-
metric 2-tensors on V, let T be an algebraic curvature tensor on V, and let trg
denote the trace on the first and last indices.

(a) h ® k is an algebraic curvature tensor.

b hdk=kdh.

() trg(h®g) = (n—2)h+ (trgh)g.

(d) trg(gg) =2(n—1)g.

() (T, hdgg = 4(trg T h)g.

(f) In case g is positive definite, |g ®h|§ =4(n —2)|h|§ + 4(trgh)>.

Proof. Itis evident from the definition that 4 ® k has three of the four symmetries of
an algebraic curvature tensor: it is antisymmetric in its first two arguments and also
in its last two, and its value is unchanged when the first two and last two arguments
are interchanged. Thus to prove (a), only the algebraic Bianchi identity needs to
be checked. This is a straightforward computation: when & ® k(w, x, y, z) is written
three times with the arguments w, x, y cyclically permuted and the three expressions
are added together, all the terms cancel due to the symmetry of & and k.

Part (b) is immediate from the definition. To prove (c), choose a basis and use the
definition to compute

(trg(h®g))j1 = g™ (himgj1 + N j1gim—hi1gjm—hjmgir)
=hi'gji+nhji—hj—hj,

which is equivalent to (c). Then (d) follows from (c) and the fact that trg g = n.
The proofs of (e) and (f) are left to Problem 7-9. O

Here is the primary application of the Kulkarni-Nomizu product.

Proposition 7.23. Let (V, g) be an n-dimensional scalar product space with n > 3,
and define a linear map G : £2(V*) — R(V*) by

1 trgh
G(h)—n_z(h—z(n_l)g)®g. (7.38)

Then G is a right inverse for trg, and its image is the orthogonal complement of the
kernel of trg in R(V™).

Proof. The fact that G is a right inverse is a straightforward computation based
on the definition and Lemma 7.22(c,d). This implies that G is injective and trg
is surjective, so the dimension of ImG is equal to the codimension of Ker(trg),
which in turn is equal to the dimension of Ker(trg)J-. If T € R(V?*) is an algebraic
curvature tensor such that trg 7 = 0, then Lemma 7.22(e) shows that (T, G(h)) =0,
so it follows by dimensionality that ImnG = Ker(trg)J-. O
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Now suppose g isaRiemannian or pseudo-Riemannian metric. Define the Schouten
tensor of g, denoted by P, to be the following symmetric 2-tensor field:

p=—(r S :
a2\ T2 n®)

and define the Weyl tensor of g to be the following algebraic curvature tensor field:

W=Rm—PDg

1
=Rm———RcD g+

n—2 2i—)n—25°%

Proposition 7.24. For every Riemannian or pseudo-Riemannian manifold (M, g) of
dimension n > 3, the trace of the Weyl tensor is zero, and Rm = W + P ® g is the
orthogonal decomposition of Rm corresponding to R(V*) = Ker(try) @ Ker(trg)J'.

Proof. This follows immediately from Proposition 7.23 and the fact that P ® g =
G(Rc) = G(trg Rm). O

These results lead to some important simplifications in low dimensions.

Corollary 7.25 Let V be an n-dimensional real vector space.

(@) Ifn =00rn =1, then R(V*) = {0}.

(b) If n =2, then R(V™) is 1-dimensional, spanned by g ® g.

(¢) If n =3, then R(V*) is 6-dimensional, and G : X*>(V*) — R(V*) is an iso-
morphism.

Proof. The dimensional results follow immediately from Proposition 7.21. In the
case n = 2, Lemma 7.22(d) shows that try (g ® g) = 2g # 0, which implies that
g O g is nonzero and therefore spans the 1-dimensional space R(V'*).

Now consider n = 3. Proposition 7.23 shows that trg oG is the identity, which
means that G : £2(V*) — R(V*) is injective. On the other hand, Proposition 7.21
shows that dim R(V*) = 6 = dim X2(V*), so G is also surjective. O

The next corollary shows that the entire curvature tensor is determined by the
Ricci tensor in dimension 3.

Corollary 7.26 (The Curvature Tensor in Dimension 3). On every Riemannian
or pseudo-Riemannian manifold (M, g) of dimension 3, the Weyl tensor is zero, and
the Riemann curvature tensor is determined by the Ricci tensor via the formula

Rm=POg=RcOg—3SgDg. (7.39)

Proof. Corollary 7.25 shows that G: X2(V*) — R(V*) is an isomorphism in
dimension 3. Since trg oG is the identity, it follows that tr, is also an isomorphism.
Because trg W is always zero by Proposition 7.24, it follows that W is always zero.
Formula (7.39) then follows from the definition of the Weyl tensor. |

In dimension 2, the definitions of the Weyl and Schouten tensors do not make
sense; but we have the following analogous result instead.
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Corollary 7.27 (The Curvature Tensor in Dimension 2). On every Riemannian or
pseudo-Riemannian manifold (M, g) of dimension 2, the Riemann and Ricci tensors
are determined by the scalar curvature as follows:
Rm:%Sg@g, Rc:%Sg.

Proof. In dimension 2, it follows from Corollary 7.25(b) that there is some scalar
function f such that Rm = fg ® g. Taking traces, we find from Lemma 7.22(d) that
Rc =trg(Rm) =2fg,and then S = try (Rc) = 2f trg(g) = 4f. The results follow
by substituting f = %S back into these equations. O

Although the traceless Ricci tensor is always zero on a 2-manifold, this does not
imply that S is constant, since the proof of Schur’s lemma fails in dimension 2.
Einstein metrics in dimension 2 are simply those with constant scalar curvature.

Returning now to dimensions greater than 2, we can use (7.27) to further decom-
pose the Schouten tensor into a part determined by the traceless Ricci tensor and a
purely scalar part. The next proposition is the analogue of Proposition 7.17 for the
full curvature tensor.

Proposition 7.28 (The Ricci Decomposition of the Curvature Tensor). Let (M, g)
be a Riemannian or pseudo-Riemannian manifold of dimension n > 3. Then the
(0,4)-curvature tensor of g has the following orthogonal decomposition:

1 o 1
Rm=W + ——R —S . 7.40
" +n—2 C®g+2n(n—1) g§08 ( )
Therefore, in the Riemannian case,
1 o 2
Rm|2 =|W|2+ ——|R —|S 2
IRm|> = | |g+(n_2)2| c@g}g+4n2(n_l)2| gogl;
(7.41)
=|W|2+i|15c]2+#52
& p=2"""%" nm-1)

Proof. The decomposition (7.40) follows immediately by substituting (7.27) into
the definition of the Weyl tensor and simplifying. The decomposition is orthogonal
thanks to Lemma 7.22(e), and (7.41) follows from Lemma 7.22(f). O

Curvatures of Conformally Related Metrics

Recall that two Riemannian or pseudo-Riemannian metrics on the same manifold
are said to be conformal to each other if one is a positive function times the other.
For example, we have seen that the round metrics and the hyperbolic metrics are all
conformal to Euclidean metrics, at least locally.

If g and g are conformal metrics on a smooth manifold M, there is no reason to
expect that the curvature tensors of g and g should be closely related to each other.
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But it is a remarkable fact that the Weyl tensor has a very simple transformation law
under conformal changes of metric. In this section, we derive that law.

First we need to determine how the Levi-Civita connection changes when a met-
ric is changed conformally. Given conformal metrics g and g, we can always write
g = 2/ g for some smooth real-valued function f.

Proposition 7.29 (Conformal Transformation of the Levi-Civita Connection).
Let (M, g) be a Riemannian or pseudo-Riemannian n-manifold (with or without
boundary), and let § = €2/ g be any metric conformal to g. If V and V denote the
Levi-Civita connections of g and g, respectively, then

VxY = VxY +(Xf)Y +(Yf)X —(X.Y), grad f, (7.42)

where the gradient on the right-hand side is that of g. In any local coordinates, the
Christoffel symbols of the two connections are related by

Tjj =T + fa8} + £58F =" fagij. (7.43)
where f.; = 0; f is the ith component of V f = df = f.;dx".

Proof. Formula (7.43) is a straightforward computation using formula (5.10) for the
Christoffel symbols in coordinates, and then (7.42) follows by expanding everything
in coordinates and using (7.43). O

This result leads to transformation laws for the various curvature tensors.

Theorem 7.30 (Conformal Transformation of the Curvature). Ler g be a Rie-
mannian or pseudo-Riemannian metric on an n-manifold M with or without
boundary, f € C®(M), and & = e*/ g. In the Riemannian case, the curvature
tensors of g (represented with tildes) are related to those of g by the following for-
mulas:

Rin =/ (Rm=(V2 /)0 g +(df ®df) 0 g—31df 12 (D). (7.44)
Re=Re—(n—2)(V*f)+(n—2)df ®@df)— (Af +(n—2)|df|2)g. (7.45)
S=e 2 (S=2—DAf—(n—1)(n—2)df2). (7.46)

where the curvatures and covariant derivatives on the right are those of g, and
A f =div(grad f) is the Laplacian of f defined in Chapter 2. If in addition n > 3,
then
P=P-V>f+(df ®df)—Lldf2g. (7.47)
W =ew. (7.48)

In the pseudo-Riemannian case, the same formulas hold with each occurrence of

|df|§, replaced by (df.df ) .
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Proof. We begin with (7.44). The plan is to choose local coordinates and insert for-
mula (7.43) for the Christoffel symbols into the coordinate formula (7.8) for the co-
efficients of the curvature tensor. As in the proof of the differential Bianchi identity,
we can make the computations much more tractable by computing the components
of these tensors at a point p € M in normal coordinates for g centered at p, so that
the equations g;; = §;;, 0xgi; = 0, and Fikj = 0 hold at p. This has the following
consequences at p:

Jij = 9;9i f,

f‘ikj = f;,»Sj? + f85 — &M fugis,
Om Tl = 0m Tl + fimd} + fijm8F — &' famgis.
Riji' = 0;T% —9,T}.

Now start with

- , - o
R =e fglm(air;';c_a,r;;;+F§’kr;;—r{;€r;';).

Inserting the relations above and simplifying, we eventually obtain

Rijrs = €/ (Rijkl —(fia18jk + [fjk&i1 — fikgit — fiji1 &ik)
+(foi fugje + fij fue&in — fi fk &1 — fij fugik)
— 8" fim fip(gi18jk —gikgjz)),

which is the coordinate version of (7.44). (See Problem 5-14 for the formula for the
Laplacian in terms of covariant derivatives.) The rest of the formulas follow easily
from this, using the identities of Lemma 7.22 and the fact that 3/ = ¢=2/ g/, 1O

The next corollary begins to explain the geometric significance of the Weyl ten-
sor. Recall that a Riemannian manifold is said to be locally conformally flat if
every point has a neighborhood that is conformally equivalent to an open subset of
Euclidean space. Similarly, a pseudo-Riemannian manifold is locally conformally
flat if every point has a neighborhood conformally equivalent to an open set in a
pseudo-Euclidean space.

Corollary 7.31. Suppose (M, g) is a Riemannian or pseudo-Riemannian manifold
of dimension n > 3. If g is locally conformally flat, then its Weyl tensor vanishes
identically.

Proof. Suppose (M, g) is locally conformally flat. Then for each p € M there exist
a neighborhood U and an embedding ¢: U — R” such that ¢ pulls back a flat
(Riemannian or pseudo-Riemannian) metric on R” to a metric of the form g =
2/ g. This implies that  has zero Weyl tensor, because its entire curvature tensor
is zero. By virtue of (7.48), the Weyl tensor of g is also zero. O
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Thus a necessary condition for a smooth manifold of dimension at least 3 to
be locally conformally flat is that its Weyl tensor vanish identically. As Theorem
7.37 below will show, in dimensions 4 and higher, this condition is also sufficient.
But in 3 dimensions, Corollary 7.26 shows that the Weyl tensor vanishes identically
on every manifold, so to understand that case, we must introduce one more tensor
field. On a Riemannian or pseudo-Riemannian manifold, the Coftton tensor is
defined as the negative of the exterior covariant derivative of the Schouten tensor:
C = —DP. This is the 3-tensor field whose expression in terms of any local frame is

Cijk = Pijx — Pik;j- (7.49)

Proposition 7.32. Suppose (M, g) is a Riemannian or pseudo-Riemannian mani-
fold of dimension n > 3, and let W and C denote its Weyl and Cotton tensors,
respectively. Then

tre (VW) = (n-3)C, (7.50)

where the trace is on the first and last indices of the 5-tensor VW .

Proof. Writing W = Rm— P ® g and using the component form of the first con-
tracted Bianchi identity (7.32), we obtain
Wijki' = Rjky — Rjik — Pity' g jk — Pjs' €ir + Pirs' €j1 + Pjis’ gik. (151

Note that ij;igil = Pjj,; and P_jl;igik = Pj;.x. To simplify the other two terms,
we use the definition of the Schouten tensor and the second contracted Bianchi
identity (7.33) to obtain that

Pai=— (R == g} =L
il; ) il; z(n_l)gzl _2(71—1) HE

The analogous formula holds for P; k;i . When we insert these expressions into (7.51)
and simplify, we find that the terms involving derivatives of the Ricci and scalar
curvatures combine to yield

Wijkr, = (n=2)(Pjit = Pjizi) = Pjkt + Pjik = (n—3)Cjg,
which is the component version of (7.50). O

Corollary 7.33. Suppose (M, g) is a Riemannian or pseudo-Riemannian manifold.
If dimM > 4 and the Weyl tensor vanishes identically, then so does the Cotton
tensor. O

The next proposition expresses another important feature of the Cotton tensor.

Proposition 7.34 (Conformal Invariance of the Cotton Tensor in Dimension 3).
Suppose (M. g) is a Riemannian or pseudo-Riemannian 3-manifold, and g = e*/ g
for some f € C®(M). If C and C denote the Cotton tensors of g and g, respec-
tively, then C=CcC.
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Proof. Problem 7-10. O

Corollary 7.35. If (M, g) is a locally conformally flat 3-manifold, then the Cotton
tensor of g vanishes identically.

» Exercise 7.36. Prove this corollary.

The real significance of the Weyl and Cotton tensors is explained by the following
important theorem.

Theorem 7.37 (Weyl-Schouten). Suppose (M, g) is a Riemannian or pseudo-
Riemannian manifold of dimension n > 3.

(a) If n > 4, then (M, g) is locally conformally flat if and only if its Weyl tensor is
identically zero.

(b) If n = 3, then (M, g) is locally conformally flat if and only if its Cotton tensor
is identically zero.

Proof. The necessity of each condition was proved in Corollaries 7.31 and 7.35. To
prove sufficiency, suppose (M, g) satisfies the hypothesis appropriate to its dimen-
sion; then it follows from Corollaries 7.26 and 7.33 that the Weyl and Cotton tensors
of g are both identically zero. Every metric g = er g conformal to g also has zero
Weyl tensor, and therefore its curvature tensor is Rm=Po g. We will show that in
a neighborhood of each point, the function f can be chosen to make P =0, which
implies that Rm = 0 and therefore g is flat.
From (7.47), it follows that P =0ifand only if

P—V?f+(df ®df)—3(df.df )¢ =0. (7.52)

This equation can be written in the form V(df) = A(df'), where A is the map from
1-tensors to symmetric 2-tensors given by

AE) = (E®EH—5(E8E g+ P,

or in components,
A)ij = Ei&j — 36mE™ gij + Pij. (7.53)

We will solve this equation by first looking for a smooth 1-form £ that satisfies
V& = A(§). In any local coordinates, if we write § = &; dx/, this becomes an
overdetermined system of first-order partial differential equations for the n unknown
functions &1,...,&,. (A system of differential equations is said to be overdetermined
if there are more equations than unknown functions.) If £ is a solution to V& = A(§)
on an open subset of M, then the Ricci identity (7.21) shows that A(§) satisfies

AE)ijk — AE)iksj = Eisji —Eiky = Rjki' &1 (7.54)

Lemma 7.38 below shows that this condition is actually sufficient: more precisely,
V& = A(§) has a smooth solution in a neighborhood of each point, provided that for
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every smooth covector field &, the covariant derivatives of A(§) satisfy A(§);j.x —
A&)ik,; = R_ikilél when A(§);; is substituted for &;,; wherever it appears.
To see that this condition is satisfied, differentiate (7.53) to obtain

Aijke—Aiksj
=&kkj + &k —Emuc€™ gij —&isjk —Eibksy +EmiiE" Gik + Cijk-
Now substitute the right-hand side of (7.53) (with appropriate index substitutions)

for &;.; wherever it appears, subtract R jkil &7, and use the relation Rm =W + P D g.
After extensive cancellations, we obtain

AE)ij ke —AE) ik — Rji &1 = —Wiri'& + Ciji.. (7.55)

Our hypotheses guarantee that the right-hand side is identically zero, so there is a
solution £ to V& = A(£) in a neighborhood of each point.

Because A(§);; is symmetric in i and j, it follows that the ordinary deriva-
tives 0;& = &.; + 1" Ek are also symmetric, and thus & is a closed 1-form. By
the Pomcare lemma, 1n some (possibly smaller) neighborhood of each point, there
is a smooth function f such that § = df = V f; this f is the function we seek. O

Here is the lemma that was used in the proof of the preceding theorem.

Lemma 7.38. Let (M, g) be a Riemannian or pseudo-Riemannian manifold, and
consider the overdetermined system of equations

VE = A(§), (7.56)

where A: T*M — T?T*M is a smooth map satisfying the following compatibility
condition: for any smooth covector field &, the 3-tensor field V(A(§)) satisfies the
following identity when A(§) is substituted for VE wherever it appears:

AE)ijke — AE)ik:j = Rjki' &1 (7.57)

Then for every p € M and every covector 19 € T; M, there is a smooth solution to
(7.56) on a neighborhood of p satisfying &, = no.

Proof. Let p € M be given. In smooth local coordinates (x*) on a neighborhood of
P, (7.56) is equivalent to the overdetermined system

3%‘1 (X)

a;jj (x.§(x)),

where
ajj (x,8) = ijj (x)éx + A(S)i]"

An application of the Frobenius theorem [LeeSM, Prop. 19.29] shows that there is
a smooth solution to this overdetermined system in a neighborhood of p with &,
arbitrary, provided that
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Ba,-j 30,']' aa,-k aa,-k

= Wik | Gdik 758
axk T Te T T s T g (7.58)

By virtue of the chain rule, this identity means exactly that the first derivatives
d(aij (x,£(x)))/dx*, after substituting ax;(x,£(x)) in place of d&(x)/dx’, are
symmetric in the indices j,k. Because &, = 9;§ — ['}}&m, this substitution is
equivalent to substituting A(§)x; for &, wherever it occurs. After expanding the
hypothesis (7.57) in terms of Christoffel symbols, we find after some manipulation
that it reduces to (7.58). |

Because all Riemannian 1-manifolds are flat, the only nontrivial case that is not
addressed by the Weyl-Schouten theorem is that of dimension 2. Smooth coordi-
nates that provide a conformal equivalence between an open subset of a Riemannian
or pseudo-Riemannian 2-manifold and an open subset of R? are called isothermal
coordinates, and it is a fact that such coordinates always exist locally. For the Rie-
mannian case, there are various proofs available, all of which involve more machin-
ery from partial differential equations and complex analysis than we have at our dis-
posal; see [Che55] for a reasonably elementary proof. For the pseudo-Riemannian
case, see Problem 7-15. Thus every Riemannian or pseudo-Riemannian 2-manifold
is locally conformally flat.

Problems

7-1. Complete the proof of Proposition 7.3 by showing that R(X,Y)(fZ) =
fR(X,Y)Z for all smooth vector fields X,Y,Z and smooth real-valued
functions f.

7-2. Prove Proposition 7.4 (the formula for the curvature tensor in coordinates).

7-3. Show that the curvature tensor of a Riemannian locally symmetric space is
parallel: VRm = 0. (Used on pp. 297, 351.)

7-4. Let M be a Riemannian or pseudo-Riemannian manifold, and let (xi) be
normal coordinates centered at p € M. Show that the following holds at p:

1
Rijri = 3 (0;0:8ik +0: 0k g1 —0i018 jk — 0,0k &it) -

7-5. Let V be the Levi-Civita connection on a Riemannian or pseudo-Riemannian
manifold (M, g), and let w;’ be its connection 1-forms with respect to a local
frame (E;) (Problem 4-14). Define a matrix of 2-forms 2;/, called the cur-
vature 2-forms, by

. 1 .
Qi = Rui’ e né,
2
where (si ) is the coframe dual to (E;). Show that the curvature 2-forms
satisfy Cartan’s second structure equation:
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7-6.

7-8.

7-9.

7-10.

Qi =dw? —wi* NS

[Hint: Expand R(Ey, E;)E; in terms of V and ;]

Suppose (M1, g1) and (M>, g») are Riemannian manifolds, and M7 x M5 is
endowed with the product metric g = g1 @ g» as in (2.12). Show that the
Riemann curvature, Ricci curvature, and scalar curvature of g are given by
the following formulas:

Rm = 7] Rmy + 7y Rmo,
Rc = nt{Req + w5 Rea,
S =NTS1 +.7TikS2,

where Rm;, Rc;, and S; are the Riemann, Ricci, and scalar curvatures of
(M;,gi), and 7r; : My x M, — M, is the projection. (Used on pp. 257, 261.)

. Suppose (M, g) is a Riemannian manifold and u € C*°(M). Use (5.29) and

(7.21) to prove Bochner’s formula:
A(%|gradu|2) = |V2u}2 + (grad(Au), gradu) ~+ Rc(gradu, gradu).

LICHNEROWICZ’S THEOREM: Suppose (M, g) is a compact Riemannian
n-manifold, and there is a positive constant « such that the Ricci tensor of
g satisfies Re(v,v) > «|v|? for all tangent vectors v. If A is any positive
eigenvalue of M, then A > n«/(n —1). [Hint: Use Probs. 2-23(c), 5-15, and
7-7.]

Prove parts (e) and (f) of Lemma 7.22 (properties of the Kulkarni-Nomizu
product).

Prove Proposition 7.34 (conformal invariance of the Cotton tensor in dimen-
sion 3).

. Let (M, g) be a Riemannian manifold of dimension n > 2. Define the con-

Jormal Laplacian L: C*°(M) — C° (M) by the formula

4(n—1)
Lu=-— A Su,
u (n—2) u+su

where A is the Laplace-Beltrami operator of g and S is its scalar curvature.
Prove that if § = ¢2/ g for some f € C®(M), and L denotes the conformal
Laplacian with respect to g, then for every u € C*°(M),

enJZFZqu = L(en%zfu>.

Conclude that a metric ¢ conformal to g has constant scalar curvature A
if and only if it can be expressed in the form § = ¢*/ =2 g where ¢ is a
smooth positive solution to the Yamabe equation:

n+2

Lo =Apn=2. (7.59)
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7-12. Let M be a smooth manifold and let V be any connection on 7M. We can
define the curvature endomorphism of V by the same formula as in the
Riemannian case: R(X,Y)Z = VxVyZ —VyVxZ —V|xy)Z. Then V is
said to be a flat connection if R(X,Y)Z = 0. Prove that the following are
equivalent:

(a) Vis flat.

(b) For every point p € M, there exists a parallel local frame defined on a
neighborhood of p.

(c) For all p,q € M, parallel transport along an admissible curve segment y
from p to g depends only on the path-homotopy class of y.

(d) Parallel transport around any sufficiently small closed curve is the iden-
tity; that is, for every p € M, there exists a neighborhood U of p such that
if y: [a,b] — U is an admissible curve in U starting and ending at p, then
Pup: TyM — T, M is the identity map.

7-13. Let G be a Lie group with a bi-invariant metric g. Show that the following
formula holds whenever X, Y, Z are left-invariant vector fields on G:

R(X.Y)Z = %[Z,[X,Y]].

(See Problem 5-8.)

7-14. Suppose 7 : (1\7 ,§) — (M, g) is a Riemannian submersion. Using the nota-
tion and results of Problem 5-6, prove O’Neill’s formula:

Rm(W.X.Y.Z)ow = Rm(W.X.¥.Z) - %([W,)’(’]V, [7.21")

- %([W, 78.2)" )+ %([W,Z]V, [%.71")

(Used on p. 258.)

7-15. Suppose (M, g) is a 2-dimensional pseudo-Riemannian manifold of signature
(1,1),and pe M.

(a) Show that there is a smooth local frame (E1, E>) in a neighborhood of
p such that g(E1,E1) = g(E,, E;) =0.

(b) Show that there are smooth coordinates (x,y) in a neighborhood of
p such that (dx)? — (dy)? = fg for some smooth, positive real-valued
function f. [Hint: Use Prop. A.45 to show that there exist coordinates
(t,u) in which E; = d/0t¢, and coordinates (v, w) in which E, = d/dv,
andsetx =u+w,y =u—w.]

(c) Show that (M, g) is locally conformally flat.
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Chapter 8
Riemannian Submanifolds

This chapter has a dual purpose: first to apply the theory of curvature to Riemann-
ian submanifolds, and then to use these concepts to derive a precise quantitative
interpretation of the curvature tensor.

After introducing some basic definitions and terminology concerning Riemann-
ian submanifolds, we define a vector-valued bilinear form called the second fun-
damental form, which measures the way a submanifold curves within the ambient
manifold. We then prove the fundamental relationships between the intrinsic and
extrinsic geometries of a submanifold, including the Gauss formula, which relates
the Riemannian connection on the submanifold to that of the ambient manifold, and
the Gauss equation, which relates their curvatures. We then show how the second
fundamental form measures the extrinsic curvature of submanifold geodesics.

Using these tools, we focus on the special case of hypersurfaces, and use the
second fundamental form to define some real-valued curvature quantities called the
principal curvatures, mean curvature, and Gaussian curvature. Specializing even
more to hypersurfaces in Euclidean space, we describe various concrete geomet-
ric interpretations of these quantities. Then we prove Gauss’s Theorema Egregium,
which shows that the Gaussian curvature of a surface in R can be computed intrin-
sically from the curvature tensor of the induced metric.

In the last section, we introduce the promised quantitative geometric interpreta-
tion of the curvature tensor. It allows us to compute sectional curvatures, which are
just the Gaussian curvatures of 2-dimensional submanifolds swept out by geodesics
tangent to 2-planes in the tangent space. Finally, we compute the sectional curva-
tures of our frame-homogeneous model Riemannian manifolds—Euclidean spaces,
spheres, and hyperbolic spaces.

The Second Fundamental Form

Suppose (M, g) is a Riemannian submanifold of a Riemannian manifold (M , §)
Recall that this means that M is a submanifold of M endowed with the induced metric
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226 8 Riemannian Submanifolds

g =138 (where 1py: M — M is the inclusion map). Our goal in this chapter is
to study the relationship between the geometry of M and that of M.

Although we focus our attention in this chapter on embedded submanifolds for
simplicity, the results we present are all local, so they apply in much greater gener-
ality. In particular, if M C M is an immersed submanifold, then every point of M
has a neighborhood in M that is embedded in M, so the results of this chapter can
be applied by restricting to such a neighborhood. Even more generally, if (M, g)
is any Riemannian manifold and F': M — M is an isometric immersion (meaning
that F*g = g), then again every point p € M has a neighborhood U € M such that
F|y is an embedding, so the results apply to F(U) € M. We leave it to the reader
to sort out the minor modifications in notation and terminology needed to handle
these more general situations.

The results in the first section of this chapter apply virtually without modification
to Riemannian submanifolds of pseudo-Riemannian manifolds (ones on which the
induced metric is positive definite), so we state most of our theorems in that case.
Recall that when the ambient metric g is indefinite, this includes the assumption
that the induced metric g = 1}, is positive definite. Some of the results can also
be extended to pseudo-Riemannian submanifolds of mixed signature, but there are
various pitfalls to watch out for in that case; so for simplicity we restrict to the
case of Riemannian submanifolds. See[O’N83]for a thorough treatment of pseudo-
Riemannian submanifolds.

Also, most of these results can be adapted to manifolds and submanifolds with
boundary, simply by embedding everything in slightly larger manifolds without
boundary, but one might need to be careful about the statements of some of the
results when the submanifold intersects the boundary. Since the interaction of sub-
manifolds with boundaries is not our primary concern here, for simplicity we state
all of these results in the case of empty boundary only. "

Throughout this chapter, therefore, we assume that (M §) is a Riemannian

or pseudo-Riemannian manifold of dimension m, and (M, g) is an embedded n-
dimensional Riemannian submanifold of M. We call M the ambient manifold. We
will denote covariant derivatives and curvatures associated with (M, g) in the usual
way (V, R, Rm, etc.), and write those associated with (M g) with tildes (V R Rm
etc.). We can unambiguously use the inner product notation (v, w) to refer either
to g or to g, since g is just the restriction of g to pairs of vectors in TM.
__Our first main task is to compare the Levi-Civita connection of M with that of
M . The starting point for doing so is the orthogonal decomposition of sections of
the ambient tangent bundle ™ | into tangential and orthogonal components. Just
as we did for submanifolds of R” in Chapter 4, we define orthogonal projection
maps called tangential and normal projections:

T TM|y — TM,
L. TM|y — NM.

In terms of an adapted orthonormal frame (E1,..., E,,) for M in M , these are just
the usual projections onto span(Eq,..., E,) and span(Ey,+1,..., En
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Fig. 8.1: The second fundamental form

so both projections are smooth bundle homomorphisms (i.e., they are linear on fibers
and map smooth sections to smooth sections). If X is a section of 7'M |y, we often
use the shorthand notations X" = 77X and X+ = 71X for its tangential and
normal projections.

If X,Y are vector fields in X(M), we can extend them to vector fields on an
open subset of M (still denoted by X and Y'), apply the ambient covariant derivative
operator V, and then decompose at points of M to get

VxY = (VxY) + (Vx¥)*. (8.1)

We wish to interpret the two terms on the right-hand side of this decomposition.
Let us focus first on the normal component. We define the second fundamental
Jorm of M to be the map II: X(M)x X(M) — I'(NM) (read “two”) given by

(X,Y) = (V7)™

where X and Y are extended arbitrarily to an open subset of M (Fig. 8.1). Since 7+
maps smooth sections to smooth sections, II(X, Y') is a smooth section of NM.

The term first fundamental form, by the way, was originally used to refer to the
induced metric g on M. Although that usage has mostly been replaced by more
descriptive terminology, we seem unfortunately to be stuck with the name “second
fundamental form.” The word “form” in both cases refers to bilinear form, not dif-
ferential form.

Proposition 8.1 (Properties of the Second Fundamental Form). Suppose (M, g)
is an embedded Riemannian submanifold of a Riemannian or pseudo-Riemannian
manifold (Mgf') andlet XY € X(M).

(a) II(X,Y) is independent of the extensions of X and Y to an open subset of M.
(b) (X, Y) is bilinear over C*°(M) in X and Y .

(¢) I(X,Y) is symmetric in X and Y .

(d) The value of II(X,Y) at a point p € M depends only on X, and Y.
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Proof. Choose particular extensions of X and Y to a neighborhood of M in M,
and for simplicity denote the extended vector fields also by X and Y. We begin
by proving that II(X,Y) is symmetric in X and ¥ when defined in terms of these
extensions. The symmetry of the connection V implies

X, Y)—1(Y, X) = (Vx ¥ =¥y X)" =[x, Y]~

Since X and Y are tangent to M at all points of M, so is their Lie bracket (Cor.
A.40). Therefore [X, Y]+ = 0, so II is symmetric.

Because V x Y|, depends only on X, it follows that the value of II(X,Y) at p
depends only on X, and in particular is independent of the extension chosen for X'
Because Vx Y is linear over C*° (M) in X, and every f € C°°(M) can be extended
to a smooth function on a neighborhood of M in M, it follows that II( X, Y') is linear

over C*°(M) in X. By symmetry, the same claims hold for Y. O

As a consequence of the preceding proposition, for every p € M and all vectors
v,w e T, M, it makes sense to interpret II(v,w) as the value of II(V, W) at p,
where V' and W are any vector fields on M such that V, = v and W, = W, and we
will do so from now on without further comment. _

We have not yet identified the tangential term in the decomposition of VyY.
Proposition 5.12(b) showed that in the special case of a submanifold of a Euclidean
or pseudo-Euclidean space, it is none other than the covariant derivative with respect
to the Levi-Civita connection of the induced metric on M. The following theorem
shows that the same is true in the general case. Therefore, we can interpret the
second fundamental form as a measure of the difference between the intrinsic Levi-
Civita connection on M and the ambient Levi-Civita connection on M.

Theorem 8.2 (The Gauss Formula). Suppose (M, g) is an embedded Riemannian
submanifold of a Riemannian or pseudo-Riemannian manifold (1\7 , §) If X,Y €
X (M) are extended arbitrarily to smooth vector fields on a neighborhood of M in
M, the following formula holds along M :

VxY = VxY +1I(X.Y).

Proof. Because of the decomposition (8.1) and the definition of the second funda-
mental form, it suffices to show that (V x Y)T = VxY atall points of M.
Defineamap V' : 2(M) x X(M) — %X(M) by

VIY = (VxY)T,

where X and Y are extended arbitrarily to an open subset of M. We examined
a special case of this construction, in which g is a Euclidean or pseudo-Euclidean
metric, in Example 4.9. It follows exactly as in that example that VT is a connection
on M, and exactly as in the proofs of Propositions 5.8 and 5.9 that it is symmetric
and compatible with g. The uniqueness of the Riemannian connection on M then
shows that VI = V. O
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The Gauss formula can also be used to compare intrinsic and extrinsic covariant
derivatives along curves. If y: I — M is a smooth curve and X is a vector field
along y that is everywhere tangent to M, then we can regard X as either a vector
field along y in M or a vector field along y in M. We let D;X and D, X denote
its covariant derivatives along y as a curve in M and as a curve in M, respectively.
The next corollary shows how the two covariant derivatives are related.

Corollary 8.3 (The Gauss Formula Along a Curve). Suppose (M, g) is an em-
bedded Riemannian submanifold of a Riemannian or pseudo-Riemannian manifold
(1\7, §), andy: I — M is a smooth curve. If X is a smooth vector field along y that
is everywhere tangent to M, then

DX = DX +11(y. X). (8.2)

Proof. Foreachty € I, we can find an adapted orthonormal frame (E1, s En)ina
neighborhood of y(fy). (Recall that our default assumption is that dim M = m and
dimM = n.) In terms of this frame, X can be written X (1) = > ;_, X'(t)E; ly@)-
Applying the product rule and the Gauss formula, and using the fact that each vector
field E; is extendible, we get

n
DX =) (X'Ei+ X'V, E)

i=1

n
=Y (X'E;+ X'Vy E; + X'I(y'. E;))
i=1
=D X +1(y". X). O

Although the second fundamental form is defined in terms of covariant deriva-
tives of vector fields tangent to M, it can also be used to evaluate extrinsic covari-
ant derivatives of normal vector fields, as the following proposition shows. To ex-
press it concisely, we introduce one more notation. For each normal vector field
N € T'(NM), we obtain a scalar-valued symmetric bilinear form Iy : X(M) x
X(M)— C®(M) by

Iy (X,Y) = (NII(X,Y)). (8.3)

Let Wy : X(M) — X(M) denote the self-adjoint linear map associated with this
bilinear form, characterized by

(Wy(X),Y)=1Iny(X,Y) = (N,II(X,Y)). (8.4)

The map Wy is called the Weingarten map in the direction of N. Because the
second fundamental form is bilinear over C*° (M), it follows that Wy is linear over
C°°(M) and thus defines a smooth bundle homomorphism from TM to itself.

Proposition 8.4 (The Weingarten Equation). Suppose (M, g) is an embedded Rie-
mannian submanifold of a Riemannian or pseudo-Riemannian manifold (M , §) For
every X €e X(M) and N € T'(NM), the following equation holds:
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= T
(VxN) " =Wy (X). (8.5)
when N is extended arbitrarily to an open subset of M.

Proof. Note that at points of M, the covariant derivative VxN is independent of the
choice of extensions of X and N by Proposition 4.26. Let Y € X(M) be arbitrary,
extended to a vector field on an open subset of M. Since (N, Y) vanishes identically
along M and X is tangent to M, the following holds at points of M:

0=X(N.Y)
=(VxN,Y)+(N,VxY)
=(VxN.Y)+(N,VxY +1I(X.Y))
=(VxN.Y)+(N.II(X.Y))
=(VxN.Y)+(Wn(X).Y).

Since Y was an arbitrary vector field tangent to M, this implies
= T = T
0=(VxN+Wyn(X)) =(VxN) +Wn(X),

which is equivalent to (8.5). O

In addition to describing the difference between the intrinsic and extrinsic con-
nections, the second fundamental form plays an even more important role in de-
scribing the difference between the curvature tensors of M and M. The explicit
formula, also due to Gauss, is given in the following theorem.

Theorem 8.5 (The Gauss Equation). Suppose (M, g) is an embedded Riemann-
ian submanifold of a Riemannian or pseudo-Riemannian manifold (M ,gf) For
all W, X,Y,Z € X(M), the following equation holds:

Rm(W,X.Y,Z) = Rm(W,X.Y,Z)— (I(W, Z),I[(X.Y)) + (I(W.Y),II(X. Z)).

Proof. Let W, X,Y,Z be extended arbitrarily to an open subset of M. At points of
M , using the definition of the curvature and the Gauss formula, we get
Rm(W,X.,Y,Z) = (VwVxY —VxVwY —Vwx1Y, Z)
= (Vw(VxY +1(X.Y))— Vx (VwY +1I(W.Y))
—Viw.x1Y, Z).
Apply the Weingarten equation to each of the terms involving II (with II(X,Y) or
(W, Y) playing the role of N) to get
Rm(W,X.Y,Z) = (VwVxY,Z)—(I(X,Y),1(W, Z))
—(VxVwY.Z)+ (W, Y).1(X, Z2)) - (Viw,x) Y. Z).
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Decomposing each term involving V into its tangential and normal components, we
see that only the tangential component survives, because Z is tangent to M. The
Gauss formula allows each such term to be rewritten in terms of V, giving

Rm(W,X.,Y,Z) = (VwVxY,Z)— (VxVwY,Z) — (Viw.x1¥. Z)
—(II(X,Y),IL(W, Z)) + (I(W,Y),1I(X, Z))
= (R(W,X)Y,Z)
—(II(X,Y),Il(W, Z)) 4+ (I(W,Y),1I(X, Z)). o

There is one other fundamental submanifold equation, which relates the normal
part of the ambient curvature endomorphism to derivatives of the second fundamen-
tal form. We will not have need for it, but we include it here for completeness. To
state it, we need to introduce a connection on the normal bundle of a Riemannian
submanifold.

If (M, g) is a Riemannian submanifold of a Riemannian or pseudo-Riemannian
manifold (M.g), the normal connection V+: X(M)x I'(NM) — T'(NM) is
defined by

VEN = (VxN)™,
where N is extended to a smooth vector field on a neighborhood of M in M.

Proposition 8.6. If (M, g) is an embedded Riemannian submanifold of a Riemann-
ian or pseudo-Riemannian manifold (M ,§) then V* is a well-defined connection
in NM, which is compatible with g in the sense that for any two sections N1, N,
of NM and every X € X(M), we have

1 1
X(N1.N2) = (Vy N1, N2)+(N1. V¥ Na).
» Exercise 8.7. Prove the preceding proposition.

We need the normal connection primarily to make sense of tangential covariant
derivatives of the second fundamental form. To do so, we make the following def-
initions. Let F — M denote the bundle whose fiber at each point p € M is the
set of bilinear maps T, M x T, M — N, M . It is easy to check that F' is a smooth
vector bundle over M, and that smooth sections of F correspond to smooth maps
X(M)xX(M) — I'(NM) that are bilinear over C°°(M ), such as the second fun-
damental form. Define a connection V¥ in F as follows: if B is any smooth section
of F,let V;? B be the smooth section of F' defined by

(VEB)(Y.Z)=Vx(B(Y,.Z))— B(VxY, Z) - B(Y. Vx Z).
» Exercise 8.8. Prove that V¥ is a connection in F.

Now we are ready to state the last of the fundamental equations for submanifolds.
This equation was independently discovered (in the special case of surfaces in R3)
by Karl M. Peterson (1853), Gaspare Mainardi (1856), and Delfino Codazzi (1868—
1869), and is sometimes designated by various combinations of these three names.
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For the sake of simplicity we use the traditional but historically inaccurate name
Codazzi equation.

Theorem 8.9 (The Codazzi Equation). Suppose (M, g) is an embedded Riemann-
ian submanifold of a Riemannian or pseudo-Riemannian manifold (M , §) For all
W,X,Y € X(M), the following equation holds:

(Rw, x)Y)" = (VEU)(X,Y)— (VEI)(W,Y). (8.6)

Proof. 1t suffices to show that both sides of (8.6) give the same result when we take
their inner products with an arbitrary smooth normal vector field N along M:

(RW, Xx)Y, N)=((VHI)(X.Y), N)—((VEI)(W.Y), N). (8.7)

We begin as in the proof of the Gauss equation: after extending the vector fields
to a neighborhood of M and applying the Gauss formula, we obtain
Rn(W,X,Y,N) = (Vi (Vx¥ +1I(X,Y)) = Vx (VY + (W, Y))
~ViwxY. N).
Now when we expand the covariant derivatives, we need only pay attention to the
normal components. This yields
Rm(W,X.,Y,N)
=(IL(W,VxY)+ (VHI) (X.Y) + 1 (Vw X,Y) +11(X,VyY), N)

—(I(X, VwY) + (VEI) (W, Y) + (VX W,Y) +IL(W,VxY), N)
—(II([W. X].Y). N).

The terms involving Vx Y and V'Y cancel each other in pairs, and three other
terms sum to zero because Viy X — Vx W —[W, X] = 0. What remains is (8.7). O

Curvature of a Curve

By studying the curvatures of curves, we can give a more geometric interpreta-
tion of the second fundamental form. Suppose (M, g) is a Riemannian or pseudo-
Riemannian manifold, and y: I — M is a smooth unit-speed curve in M . We define
the (geodesic) curvature of y as the length of the acceleration vector field, which is
the function k: I — R given by

k(1) =|Dey'(0)].

If y is an arbitrary regular curve in a Riemannian manifold (not necessarily of unit
speed), we first find a unit-speed reparametrization ¥ = y o ¢, and then define the
curvature of y at ¢ to be the curvature of ¥ at ¢ ~!(¢). In a pseudo-Riemannian
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manifold, the same approach works, but we have to restrict the definition to curves
y such that |y’(¢)| is everywhere nonzero. Problem 8-6 gives a formula that can
be used in the Riemannian case to compute the geodesic curvature directly without
explicitly finding a unit-speed reparametrization.

From the definition, it follows that a smooth unit-speed curve has vanishing
geodesic curvature if and only if it is a geodesic, so the geodesic curvature of a
curve can be regarded as a quantitative measure of how far it deviates from being a
geodesic. If M = R” with the Euclidean metric, the geodesic curvature agrees with
the notion of curvature introduced in advanced calculus courses.

Now suppose (M , g) is a Riemannian or pseudo-Riemannian manifold and
(M, g) is a Riemannian submanifold. Every regular curve y: I — M has two dis-
tinct geodesic curvatures: 1t3 intrinsic curvature k as a curve in M, and its extrinsic
curvature K as a curve in M. The second fundamental form can be used to compute
the relationship between the two.

Proposition 8.10 (Geometric Interpretation of II). Suppose (M, g) is an embed-
ded Riemannian submanifold of a Riemannian or pseudo-Riemannian manifold
(M,g‘) peEM,andveT,M.

(a) (v, v) is the g-acceleration at p of the g-geodesic y,.
(b) If v is a unit vector, then |Il(v,v)| is the g-curvature of yy at p.

Proof. Suppose y: (—&,&) — M is any regular curve with y(0) = p and y'(0) = v.
Applying the Gauss formula (Corollary 8.3) to the vector field y’ along y, we obtain

Dy’ = Doy +11(y'.y)).
If y is a g-geodesic in M, this formula simplifies to
Dyy' =1(y".y").
Both conclusions of the proposition follow from this. O

Note that the second fundamental form is completely determined by its values of
the form II(v, v) for unit vectors v, by the following lemma.

Lemma 8.11. Suppose V' is an inner product space, W is a vector space, and
B,B": V xV — W are symmetric and bilinear. If B(v,v) = B’(v,v) for every
unit vector v € V, then B = B’.

Proof. Every vector v € V can be written v = A0 for some unit vector U, so the
bilinearity of B and B’ implies B(v,v) = B’(v,v) for every v, not just unit vectors.
The result then follows from the following polarization identity, which is proved in
exactly the same way as its counterpart (2.2) for inner products:

B(v,w):%(B(v+u),v+w)—B(v—w,v—w)). O
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Because the intrinsic and extrinsic accelerations of a curve are usually different,
it is generally not the case that a g-geodesic that starts tangent to M stays in M ;
Just think of a sphere in Euclidean space, for example. A Riemannian submanifold
(M, g) of (M , §) is said to be fotally geodesic if every g-geodesic that is tangent to
M at some time #, stays in M for all ¢ in some interval (ty — &,y + €).

Proposition 8.12. Suppose (M, g) is an embedded Riemannian submanifold of a
Riemannian or pseudo-Riemannian manifold (M , §) The following are equivalent:

(a) M is totally geodesic in M. _
(b) Every g-geodesic in M is also a g-geodesic in M.
(¢) The second fundamental form of M vanishes identically.

Proof. We will prove (a) = (b) = (¢) = (a). First assume that M _is totally
geodesic. Let y: I — M be a g-geodesic. Foreachty € I,lety: T — M bethe g g-
geodesic with Y (fg) = y(tp) and y’(t9) = y'(t9). The hypothesis implies that there
is some open interval I containing to such that y(t) € M for t € Iy. On Iy, the
Gauss formula (8.2) for ¥’ reads

O—D,y =D,y —l—II(y y)

Because the first term on the right is tangent to M and the second is normal, the two
terms must vanish individually. In particular, D;¥’ = 0 on I, which means that y
is also a g-geodesic there. By uniqueness of geodesics, therefore, y = ¥ on Iy, so it
follows in turn that y is a g-geodesic there. Since the same is true in a neighborhood
of every ty € I, it follows that y is a g-geodesic on its whole domain.

Next assume that every g-geodesic is a g-geodesic. Let p € M and v € T, M be
arbitrary, and let y = y,,: I — M be the g-geodesic with y(0) = p and y’'(0) = v.
The hypothesis implies that y is also a g-geodesic. Thus ﬁty’ = D;y’ =0, so the
Gauss formula yields II(y’,y’) = 0 along y. In particular, II(v,v) = 0. By Lemma
8.11, this implies that Il is identically zero.

Finally, assume that [l = 0, and let y: I — M be a g-geodesic such that y(tg) €
M and y'(tg) € TM forsome tg € I.Lety: I — M be the g-geodesic with the same
initial conditions: y(fo) = ¥(to) and y’(to) = ¥'(to). The Gauss formula together
with the hypothesis I = 0 implies that D;y'= D;y'=0, so y is also a g-geodesic.
By uniqueness of geodesics, therefore, ¥ = y on the intersection of their domains,
which implies that Y (¢) lies in M for ¢ in some open interval around #y. O

Hypersurfaces

Now we specialize the preceding considerations to the case in which M is a hyper-
surface (i.e., a submanifold of codimension 1) in M. Throughout this section, our
default assumption is that (M, g) is an embedded n-dimensional Riemannian sub-
manifold of an (n 4 1)-dimensional Riemannian manifold (M ,§) (The analogous
formulas in the pseudo-Riemannian case are a little different; see Problem 8-19.)
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In this situation, at each point of M there are exactly two unit normal vectors.
In terms of any local adapted orthonormal frame (Eq,..., E,+1), the two choices
are + E, 4. In a small enough neighborhood of each point of M, therefore, we can
always choose a smooth unit normal vector field along M.

If both M and M are orientable, we can use an orientation to pick out a global
smooth unit normal vector field along all of M. In general, though, this might or
might not be possible. Since all of our computations in this chapter are local, we
will always assume that we are working in a small enough neighborhood that a
smooth unit normal field exists. We will address as we go along the question of how
various quantities depend on the choice of normal vector field.

The Scalar Second Fundamental Form and the Shape Operator

Having chosen a distinguished smooth unit normal vector field N' on the hypersur-
face M C M, we can replace the vector-valued second fundamental form II by a
simpler scalar-valued form. The scalar second fundamental form of M is the sym-
metric covariant 2-tensor field 4 € F(ZzT*M ) defined by & = Il (see (8.3)); in
other words,

h(X,Y) = (N,II(X,Y)). (8.8)

Using the Gauss formula ﬁx Y = VxY +1I(X,Y) and noting that Vy Y is orthog-
onal to N, we can rewrite the definition as

h(X,Y)=(N.VxY). (8.9)

Also, since N is a unit vector spanning NM at each point, the definition of / is
equivalent to
I(X,Y)=h(X,Y)N. (8.10)

Note that replacing N by —N multiplies by —1, so the sign of 4 depends on which
unit normal is chosen; but % is otherwise independent of the choices.

The choice of unit normal field also determines a Weingarten map Wy : X(M) —
X (M) by (8.4); in the case of a hypersurface, we use the notation s = Wy and call
it the shape operator of M . Alternatively, we can think of s as the (1, 1)-tensor field
on M obtained from 4 by raising an index. It is characterized by

(sX,Y)=h(X.,Y) forall X,Y € X(M).
Because £ is symmetric, s is a self-adjoint endomorphism of 7'M, that is,
(sX.Y)=(X,sY) forall X,Y € X(M).

As with £, the sign of s depends on the choice of N.

In terms of the tensor fields /# and s, the formulas of the last section can be
rewritten somewhat more simply. For this purpose, we will use two tensor operations
defined in Chapter 7: the Kulkarni-Nomizu product of symmetric 2-tensors £,k is
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hdk(w,x,y,z)=h(w,2)k(x,y)+h(x,y)k(w,z)
—h(w,y)k(x,z)—h(x,z)k(w,y),

and the exterior covariant derivative of a smooth symmetric 2-tensor field T is
(DT)(x,y,2) = =(VT)(x,y,2) + (VT)(x,z, ).

Theorem 8.13 (Fundamental Equations for a Hypersurface). Suppose (M, g) is
a Riemannian hypersurface in a Riemannian manifold (M E) and N is a smooth
unit normal vector field along M .

(a) THE GAUSS FORMULA FOR A HYPERSURFACE: If X, Y € X(M) are extended
to an open subset of M, then

VxY =VxY +h(X,Y)N.

(b) THE GAUSS FORMULA FOR A CURVE IN A HYPERSURFACE: Ify: [ - M
is a smooth curve and X : I — TM is a smooth vector field along y, then

DX =D;X +h(y',X)N.

(C) THE WEINGARTEN EQUATION FOR A HYPERSURFACE: For every X €
E(M), )
VN = —sX. 8.11)

(d) THE GAUSS EQUATION FOR A HYPERSURFACE: Forall W, X,Y,Z € X(M),
Rm(W,X,Y,Z) = Rm(W,X,Y,Z)— L(hoh)(W, X, Y, Z).

(¢) THE CODAZZ1 EQUATION FOR A HYPERSURFACE: Forall W, X,Y € X(M),

Rm(W,X,Y,N) = (Dh)(Y,W, X). (8.12)

Proof. Parts (a), (b), and (d) follow immediately from substituting (8.10) into the
general versions of the Gauss formula and Gauss equation. To prove (c), note first
that the general version of the Weingarten equation can be written (6 xN )T =—sX.
Since (6XN,N) = %X(|N|2) = 0, it follows that %XN is tangent to M, so (c)
follows.

To prove the hypersurface Codazzi equation, note that the fact that N is a unit
vector field implies
— 2 _ L
0=X|N|z = Z(VXN, N)g.

Since N spans the normal bundle, this implies that N is parallel with respect to the
normal connection. Moreover,
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(VHI)(X,Y) = Vip (II(X,Y)) - II(Vw X, Y) —1I(X, Vi ¥)
= Vi (h(X,Y)N) =1(Vw X,Y) —TI(X, Vi Y)
- (W(h(X,Y))—h(VWX,Y)—h(X, VWY))N
=V (h)(X,Y)N.

Inserting this into the general form (8.6) of the Codazzi equation and using the fact
that V/ is symmetric in its first two indices yields

Rm(W.X.Y.N) = Vi (h)(X.Y) = Vx (h)(W.Y)
= (Vh)(X,Y,W)—(Vh)(W,Y,X)
= (Vh)(Y,X,W)—(Vh)(Y,W,X),

which is equivalent to (8.12). O

Principal Curvatures

At every point p € M, we have seen that the shape operator s is a self-adjoint linear
endomorphism of the tangent space T, M. To analyze such an operator, we recall
some linear-algebraic facts about self-adjoint endomorphisms.

Lemma 8.14. Suppose V is a finite-dimensional inner product space ands: V —V
is a self-adjoint linear endomorphism. Let C denote the set of unit vectors in V.
There is a vector vy € C where the function v — (sv,v) achieves its maximum
among elements of C, and every such vector is an eigenvector of s with eigenvalue
)LO = (Svo,v()).

» Exercise 8.15. Use the Lagrange multiplier rule (Prop. A.29) to prove this lemma.

Proposition 8.16 (Finite-Dimensional Spectral Theorem). Suppose V is a finite-
dimensional inner product space and s: V — V is a self-adjoint linear endomor-
phism. Then V' has an orthonormal basis of s-eigenvectors, and all of the eigenval-
ues are real.

Proof. The proof is by induction on n = dim V. The n = 1 result is easy, so assume
that the theorem holds for some » > 1 and suppose dimV = n + 1. Lemma 8.14
shows that s has a unit eigenvector by with a real eigenvalue Ag. Let B C V be
the span of by. Since s(B) C B, self-adjointness of s implies s(B+) € B+. The
inductive hypothesis applied to s|g. implies that B+ has an orthonormal basis
(b1,...,by) of s-eigenvectors with real eigenvalues, and then (bg, b1, ...,b,) is the
desired basis of V. O

Applying this proposition to the shape operator s: T, M — T, M, we see that
s has real eigenvalues k1, ...,k;,, and there is an orthonormal basis (b1, ...,b,) for
Tp M consisting of s-eigenvectors, with sb; = k;b; for each i (no summation). In
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this basis, both & and s are represented by diagonal matrices, and & has the expres-
sion
h(v,w) = kvlw! +-- + 0" w".

The eigenvalues of s at a point p € M are called the principal curvatures
of M at p, and the corresponding eigenspaces are called the principal directions.
The principal curvatures all change sign if we reverse the normal vector, but the
principal directions and principal curvatures are otherwise independent of the choice
of coordinates or bases.

There are two combinations of the principal curvatures that play particularly
important roles for hypersurfaces. The Gaussian curvature is defined as K = det(s),
and the mean curvature as H = (1/n)tr(s) = (1/n)trg (h). Since the determinant
and trace of a linear endomorphism are basis-independent, these are well defined
once a unit normal is chosen. In terms of the principal curvatures, they are

1
K =x1Kk3++kp, H=;(K1+---+Kn),

as can be seen by expressing s in terms of an orthonormal basis of eigenvectors. If
N isreplaced by —N, then H changes sign, while K is multiplied by (—1)".

Computations in Semigeodesic Coordinates

Semigeodesic coordinates (Prop. 6.41) provide an extremely convenient tool for
computing the invariants of hypersurfaces.

Let (M, g) bean (n+1)-dimensional Riemannian manifold, and let (x1,....x™ )
be semigeodesic coordinates on an open subset U € M. (For example, they might
be Fermi coordinates for the hypersurface My = v~1(0); see Example 6.43.) For
each real number a such that v=!(a) # @, the level set M, = v~!(a) is a properly
embedded hypersurface in U. Let g, denote the induced metric on M,. Corollary
6.42 shows that g is given by

n
g=dv’+ Z ga,g(xl,...,x”,v)dx“dxﬂ. (8.13)
a,B=1
The restrictions of (xl, ...,x™) give smooth coordinates for each hypersurface M,,

and in those coordinates the induced metric g, is given by g, = gopdx® dxP|y—a.
(Here we use the summation convention with Greek indices running from 1 to n.)
The vector field d, = 9,41 restricts to a unit normal vector field along each hyper-
surface M.

As the next proposition shows, semigeodesic coordinates give us a simple for-
mula for the second fundamental forms of all of the submanifolds M, at once.

Proposition 8.17. With notation as above, the components in (xl,...,x")-coor—
dinates of the scalar second fundamental form, the shape operator, and the mean
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curvature of (Mg, g4) (denoted by hgy,sq,and Hy, respectively) with respect to the
normal N = 0y are given by

1
(ha)aﬁ = _Eavgaﬁ

)
v=a

1
(Sa)% - _Egayavgyﬂ ’v=a’

1
H, = _Zgaﬂavgaﬂ

v=a

Proof. The normal component of ﬁaa dg is fg;lav, which Corollary 6.42 shows

is equal to —éav 8ap0r (noting that the roles of g and g in that corollary are being
played here by g and g,, respectively). Equation (8.9) evaluated at points of M,
gives 5

(ha)aﬂ = <V8a 3,37 N)g = (_ %avgaﬁ 0y, av)g; = _%avgaﬂ~

The formulas for s, and H, follow by using (g*?) (the inverse matrix of (gq;)) to
raise an index and then taking the trace. O

Minimal Hypersurfaces

A natural question that has received a great deal of attention over the past century is
this: Given a simple closed curve C in R3, is there an embedded or immersed sur-
face M with 0M = C that has least area among all surfaces with the same bound-
ary? If so, what is it? Such surfaces are models of the soap films that are produced
when a closed loop of wire is dipped in soapy water.

More generally, we can consider the analogous question for hypersurfaces in
Riemannian manifolds. Suppose M is a compact codimension-1 submanifold with
nonempty boundary in an (n + 1)-dimensional Riemannian manifold (M ,§). By
analogy with the case of surfaces in R, it is traditional to use the term area to
refer to the n-dimensional volume of M with its induced Riemannian metric, and
to say that M is area-minimizing if it has the smallest area among all compact
embedded hypersurfaces in M with the same boundary. One key observation is the
following theorem, which is an analogue for hypersurfaces of Theorem 6.4 about
length-minimizing curves.

Theorem 8.18. Let M be a compact codimension-1 submanifold with nonempty
boundary in an (n + 1)-dimensional Riemannian manifold (M ,g) If M is area-
minimizing, then its mean curvature is identically zero.

Proof. Let g denote the induced metric on M. The fact that M minimizes area
among hypersurfaces with the same boundary means, in particular, that it minimizes
area among small perturbations of M in a neighborhood of a single point. We will
exploit this idea to prove that M must have zero mean curvature everywhere.

Let p € Int]\i[ be arbitrary, let (xl e X v) be Fermi coordinates for M on an
open set UcM containing p (see Example 6.43), and let U = UNM. By taking
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Fig. 8.2: The hypersurface M;

U sufficiently small, we can arrange that U is a regular coordinate ball in M (see p.
374) and UNoOM = &. We use (xl, ... ,x”) as coordinates on M, and observe the
summation convention with Greek indices running from 1 to n.

Let ¢ be an arbitrary smooth real-valued function on M with compact support in
U . For sufficiently small ¢, define a set M; € M by

M, =M~U)U{zeU:v(z) =to(x'(2),....x"(2))} .

(See Fig. 8.2.) Then M, is an embedded smooth hypersurface in M, which agrees
with M outside of U and which coincides with the graph of v = /¢ in U. Let
fi:U— U be the graph parametrization of M; N U, given in Fermi coordinates by

fi(xtx") = (xt X re(x). (8.14)
Using this map, for each ¢ we can define a diffeomorphism F;: M — M, by

z € M ~suppo,

Fiz) = f,(z) sel.

For each ¢, let g, = L;‘mg denote the induced Riemannian metric on M;, and
let g; = F;*g; = F;*g denote the pulled-back metric on M. When ¢ = 0, we have
My = M, and both go and gy are equal to the induced metric g on M. Since &
is given by (8.13) in Fermi coordinates, a simple computation shows that in U,
g+ = F;* g has the coordinate expression g; = (g:)ap dx“ dxP, where

(81)ap = (x) (x) + gap (x.10(x)), (8.15)

while on M ~ U, g; is equal to g and thus is independent of .

Since each M; is a smooth hypersurface with the same boundary as M, our
hypothesis guarantees that Area(M;, g;) achieves a minimum at z = 0. Because F;
is an isometry from (M, g;) to (M;, g;), we can express this area as follows:

Area(M,,g;) = Area(M, g;) = Area(M ~ U, g) + Area (U, g;).
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The first term on the right is independent of #, and we can compute the second term
explicitly in coordinates (x',....x") on U:

Area(U,g,)z/ Jdetg, dx'-.-dx",
U

where det g; denotes the determinant of the matrix ((g,)aﬁ) defined by (8.15). The
integrand above is a smooth function of ¢ and (xl e ,x”), so the area is a smooth
function of . We have

d Area(M,.2)) / 0
— rea(M;,g;) = | —
dr |, e8| o

Jdetg; dx!---dx"
=0

1 d
— —(det -1/2 7
/Uz(eg) 2

(The differentiation under the integral sign is justified because the integrand is
smooth and has compact support in U.)

To compute the derivative of the determinant, note that the expansion by minors
along, say, row o shows that the partial derivative of det with respect to the matrix
entry in position («, f) is equal to the cofactor cof B and thus by the chain rule,

(8.16)

(detg;)dx'---dx".
=0

9t (gt)otﬂ- (8.17)

0
(detg;) = cof*P —
Uli=o

t=0 9

On the other hand, Cramer’s rule shows that the («, ) component of the inverse
matrix is given by g*# = (det g)_lcof"‘ﬂ. Thus from (8.17) and (8.15) we obtain

g
ap 25
ot v ¢

0

(detgr) = (detg)g® 2
0

3|, (g1)ap = (detg)g

t= t=

Inserting this into (8.16) and using the result of Proposition 8.17, we conclude that

1 0
Area(tht):/ E(detg)l/2gaﬂ%(pdxl...dxn
U v

=0 (8.18)

= —n/ HodVyg,
U

where H is the mean curvature of (M, g). Since Area (M, g;) attains a minimum at
t = 0, we conclude that fU HodVg = 0 for every such ¢.

Now suppose for the sake of contradiction that H(p) #0.If H(p)>0, we can let ¢
be a smooth nonnegative bump function that is positive at p and supported in a small
neighborhood of p on which H > 0. The argument above shows that |, v HedVy =
0, which is impossible because the integrand is nonnegative on U and positive on an
open set. A similar argument rules out H(p) < 0. Since p was an arbitrary point in
Int M, we conclude that H = 0 on Int M, and then by continuity on allof M. O
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Because of the result of Theorem 8.18, a hypersurface (immersed or embed-
ded, with or without boundary) that has mean curvature identically equal to zero is
called a minimal hypersurface (or a minimal surface when it has dimension 2). It is
an unfortunate historical accident that the term “minimal hypersurface” is defined in
this way, because in fact, a minimal hypersurface is just a critical point for the area,
not necessarily area-minimizing. It can be shown that as in the case of geodesics, a
small enough piece of every minimal hypersurface is area-minimizing.

As a complement to the above theorem about hypersurfaces that minimize area
with fixed boundary, we have the following result about hypersurfaces that minimize
area while enclosing a fixed volume.

Theorem 8.19. Suppose (ﬂg) is a Riemannian (n + 1)-manifold, D C M isa
compact regular domain, and M = 0D. If M has the smallest surface area among
boundaries of compact regular domains with the same volume as D, then M has
constant mean curvature (computed with respect to the outward unit normal).

Proof. Let g denote the induced metric on M. Assume for the sake of contradiction
that the mean curvature H of M is not constant, and let p,g € M be points such
that H(p) < H(q).

Since M is compact, it has an e-tubular neighborhood for some ¢ > 0 by Theorem
5.25. As in tlle prqious proof, let (xl,...,x”, v)j)e Fermi coordinates for M on
an open set U € M containing p, and let U = U N M. We may assume that U
is a regular coordinate ball in M and the image of the chart is a set of the form
U x (—¢, &) for some open subseti? C R”. Similarly, let (y',...,y", w) be Fermi
coordinates for M on an open set W C M containing ¢ and satisfying the analogous
conditions, and let W = W N M. By replacing v with its negative if necessary,
we can arrange that D N U is the set where v < 0, and similarly for w. Also, by
shrinking both domains, we can assume that the mean curvature of M satisfies H <
HyonU and H > H, on W, where Hy, H, are constants such that H(p) < H; <
H, < H(q).

Let ¢ and ¥ be smooth real-valued functions on M, with ¢ compactly supported
in U and ¢ compactly supported in W, and satisfying |, pedVey = fW YdVe =1.
For sufficiently small s,¢ € R, define a subset Dy ; C M as follows:

Dy =1{zeU:v(2) <sp(x'(2),....x"(2))}

U{ze W:w(z) < tlﬂ(yl(z),...,y"(z))}
U(D~(Tuw)),

and let M;; = 0Dy, so Dgo = D and My = M (see Fig. 8.3). For sufficiently
small s and ¢, the set Dy, is a regular domain and M, is a compact smooth hy-
persurface, and Vol(Dy,,) and Area(M;,) are both smooth functions of (s,¢). For
convenience, write V(s,7) = Vol(Dy,) and A(s,t) = Area(M,,;).

The same argument that led to (8.18) shows that

04 dA
—(0,0)=—n/ HodV,, —(0,0):—}1[ HydV,.
s U ot w
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Fig. 8.3: The domain Dy ;

To compute the partial derivatives of the volume, we just note that if we hold # =0
fixed and let s vary, the only change in volume occurs in the part of Dy ; contained
in U, so the fundamental theorem of calculus gives

1% d -
—(0,0) = — Vol(DsoNU
s (0,0 ds|,_, o ( 5,0 )
d so(x)
= — / Vdetg(x,v)dv | dx'---dx"
dS s=0JU —e

s(x)

d
:/(d_ mdv)dxl...dxn
U S |g=0J—¢
= [ etVaEFE O axt v = [ pave=1,
g U

where the differentiation under the integral sign in the third line is justified just
like (8.16), and in the last line we used the fact that gog(x) = g4p(x,0) in these
coordinates. Similarly, dV/9d¢(0,0) = 1.

Because V(0,0) = Vol(D) and 9V /9¢(0,0) # 0, the implicit function theorem
guarantees that there is a smooth function A: (—§,8) — R for some § > 0 such that
V(s,A(s)) = Vol(D). The chain rule then implies

0= 4 V(s.A(s)) = a—V(O,O) —i—)\’(O)a—V(O,O) =141/(0).
ds |4 s ot

Thus A'(0) = —1.
Our hypothesis that M minimizes area implies that
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A A
o=L1 aeasn =200+ 02 0.0
ds |s—o s ot
:—n/ H(pdVg—i-n/ Hy dVyg,
U w

and thus [, Hpd Vg = [, HY dVg. But our choice of U and V together with
the fact that [, 9 dVy = [}, ¥ dV, =1 guarantees that [, HpdVy < H; < H, <
Jw HY dVy, which is a contradiction. O

We do not pursue minimal or constant-mean-curvature hypersurfaces any further
in this book, but you can find a good introductory treatment in [CM11].

Hypersurfaces in Euclidean Space

Now we specialize even further, to hypersurfaces in Euclidean space. In this section,
we assume that M C R”*! is an embedded n-dimensional submanifold with the
induced Riemannian metric. The Euclidean metric will be denoted as usual by g,
and covariant derivatives and curvatures associated with g will be indicated by a
bar. The induced metric on M will be denoted by g.

In this setting, because Rm = 0, the Gauss and Codazzi equations take even sim-
pler forms:

sh®h = Rm, (8.19)
Dh =0, (8.20)

or in terms of a local frame for M,

hithjx —hixhji = Rijk. (8.21)
hij;k —h,-k;j =0. (8.22)

In particular, this means that the Riemann curvature tensor of a hypersurface
in R”*! is completely determined by the second fundamental form. A symmetric
2-tensor field that satisfies Dh = 0 is called a Codazzi tensor, so (8.20) can be
expressed succinctly by saying that 4 is a Codazzi tensor.

» Exercise 8.20. Show that a smooth 2-tensor field 2 on a Riemannian manifold is a
Codazzi tensor if and only if both 4 and VA are symmetric.

The equations (8.19)—(8.20) can be viewed as compatibility conditions for the
existence of an embedding or immersion into Euclidean space with prescribed first
and second fundamental forms. If (M, g) is a Riemannian n-manifold and % is a
given smooth symmetric 2-tensor field on M, then Theorem 8.13 shows that these
two equations are necessary conditions for the existence of an isometric immersion
M — R™*! for which & is the scalar second fundamental form. (Note that an im-
mersion is locally an embedding, so the theorem applies in a neighborhood of each
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Np

y(@)
h(v,v)N, = y”(0)

Fig. 8.4: Geometric interpretation of &(v, v)

point.) It is a remarkable fact that the Gauss and Codazzi equations are actually
sufficient, at least locally. A sketch of a proof of this fact, called the fundamental
theorem of hypersurface theory, can be found in [Pet16, pp. 108—109].

In the setting of a hypersurface M C R"*!, we can give some very concrete
geometric interpretations of the quantities we have defined so far. We begin with
curves. For every unit vectorv € T, M, lety = y,: I — M be the g-geodesic in M
with initial velocity v. Then the Gauss formula shows that the ordinary Euclidean
acceleration of y at 0 is y”(0) = D;y’(0) = h(v,v) N, (Fig. 8.4). Thus |h(v,v)] is
the Euclidean curvature of y at 0, and & (v, v) = (y”(0), Np) > 0 if and only if y”(0)
points in the same direction as N,. In other words, A (v, v) is positive if y is curving
in the direction of N, and negative if it is curving away from N,.

The next proposition shows that this Euclidean curvature can be interpreted in
terms of the radius of the “best circular approximation,” as mentioned in Chapter 1.

Proposition 8.21. Suppose y : I — R™ is a unit-speed curve, ty € I, and k (ty) 7 0.

(a) There is a unique unit-speed parametrized circle ¢ : R — R™, called the oscu-
lating circle at y(t,), with the property that ¢ and y have the same position,
velocity, and acceleration at t = ty.

(b) The Euclidean curvature of y at ty is k(to) = 1/R, where R is the radius of
the osculating circle.

Proof. An easy geometric argument shows that every circle in R” with center g and
radius R has a unit-speed parametrization of the form

t—1o . (t—1
0= q+Reos(—2 Jo+ Rsin(—2 Ju.
c¢(t) =q+ Rcos R v+ R sin A w

where (v, w) is a pair of orthonormal vectors in R”. By direct computation, such a
parametrization satisfies

1
ct)=q+Rv, ) =w, () =~

Thus if we put
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_ 1 _ 1
ly"(to)l K (to)’

we obtain a circle satisfying the required conditions, and its radius is equal to
1/k(to) by construction. Uniqueness is left as an exercise. O

v = —R)/”(l()), w = J//(IO)’ q= V(ZO)_ Ruv,

» Exercise 8.22. Complete the proof of the preceding proposition by proving uniqueness
of the osculating circle.

Computations in Euclidean Space

When we wish to compute the invariants of a Euclidean hypersurface M € R?*1,
it is usually unnecessary to go to all the trouble of computing Christoffel symbols.
Instead, it is usually more effective to use either a defining function or a parametriza-
tion to compute the scalar second fundamental form, and then use (8.21) to compute
the curvature. Here we describe several contexts in which this computation is not too
hard.

Usually the computations are simplest if the hypersurface is presented in terms of
a local parametrization. Suppose M C R”*1 is a smooth embedded hypersurface,
and let X : U — R”*! be a smooth local parametrization of M. The coordinates
(ul e u”) on U C R” thus give local coordinates for M. The coordinate vector
fields 9; = d/0u’ push forward to vector fields dX (d;) on M, which we can view as
sections of the restricted tangent bundle TR” 1|/, or equivalently as R”*!-valued
functions. If we think of X (u) = (X! (u)...., X""!(u)) as a vector-valued function
of u, these vectors can be written as

qu (31) = B,X(u) = (8,~X1(u),...,8,~X"+1(u)).

For simplicity, write X; = 0; X.

Once these vector fields are computed, a unit normal field can be computed
as follows: Choose any coordinate vector field 9/0x/0 that is not contained in
span (X1, ..., X,) (there will always be one, at least in a neighborhood of each point).
Then apply the Gram—Schmidt algorithm to the local frame (Xi,...,X,,d/0x/0)
along M to obtain an adapted orthonormal frame (E1,..., E,+1). The two choices
of unit normal are N = £ E, 4.

The next proposition gives a formula for the second fundamental form that is
often easy to use for computation.

Proposition 8.23. Suppose M C R™**! is an embedded hypersurface, X : U — M
is a smooth local parametrization of M, (X1,...,X,) is the local frame for TM
determined by X, and N is a unit normal field on M. Then the scalar second fun-
damental form is given by

92X >
(8.23)

h(Xf’Xf)=<W’N
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Proof. Letug= (u(l) e ug) be an arbitrary point of U and let p = X (uo) € M . For
eachi €{l,...,n},the curve y(t) = X (ué,...,ug +t,...,u’3) is a smooth curve in
M whose initial velocity is X;. Regarding the normal field N as a smooth map
from M to R*t1, we have

i _
37 V(X (o) = (N 0y)'(0) = Vx, N(X(uo)).

Because X; = 0X/du/ is tangent to M and N is normal, the following expression
is zero forallu € U:

X
<W(u)~ N(X(u))>~

Differentiating with respect to u’ and using the product rule for ordinary inner prod-
ucts in R”*! yields

92 9 _
0= (gt 00 VYD) 700, T o N X))

By the Weingarten equation (8.11), the last term on the right becomes

(X (), =s(Xi (u))) = —h(X; (u), X; (u)).
Inserting this above yields (8.23). O

Here is an application of this formula: it shows how the principal curvatures give
a concise description of the local shape of an embedded hypersurface by approxi-
mating the surface with the graph of a quadratic function.

Proposition 8.24. Suppose M C R"*! is a Riemannian hypersurface. Let p € M,
and let k1, ...k, denote the principal curvatures of M at p with respect to some
choice of unit normal. Then there is an isometry ¢: R*"*1 — R" ¥ that takes p
to the origin and takes a neighborhood of p in M to a graph of the form x"T1 =
f(x,...,x™), where

f(x) = (;cl(xl)2 + ook (X)) + O(|x]3). (8.24)

Proof. Replacing M by its image under a translation and a rotation (which are
Euclidean isometries), we may assume that p is the origin and T, M is equal to the
span of (d1,...,0,). Then after reflecting in the (xl e ,x")-hyperplane if neces-
sary, we may assume that the chosen unit normal is (0,...,0,1). By an orthogonal
transformation in the first n variables, we can also arrange that the scalar second fun-
damental form at 0 is diagonal with respect to the basis (d1,...,d,), with diagonal
entries (Kq,...,Kp).

It follows from the implicit function theorem that there is some neighborhood
U of 0 such that M NU is the graph of a smooth function of the form x"™1 =
f(x',....x") with £(0) =0. A smooth local parametrization of M is then given by
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X(u)= (ul, oou, f(u)), and the fact that To M is spanned by (B/Bxl, e a/ax")
guarantees that d; £(0) = --- = 9, £(0) = 0. Because X; = d/dx’ at 0, Proposition
8.23 then yields

d 0 _ azf B azf
h(@ﬁ) _<(0,...,o, T (0)),(0,...,0,1)>_ 2 (0).

It follows from our normalization that the matrix of second derivatives of f at 0
is diagonal, and its diagonal entries are the principal curvatures of M at that point.
Then (8.24) follows from Taylor’s theorem. O

Here is another approach. When it is practical to write down a smooth vector
field N = Nd; on an open subset of R”*1 that restricts to a unit normal vector
field along M, then the shape operator can be computed straightforwardly using the
Weingarten equation and observing that the Euclidean covariant derivatives of N
are just ordinary directional derivatives in Euclidean space. Thus for every vector
X = X/9; tangent to M, we have

n+1
sX =-VyN =— Z X7 (;N")9;. (8.25)
i,j=1

One common way to produce such a smooth vector field is to work with a local
defining function for M : Recall that this is a smooth real-valued function defined
on some open subset U C R"*! such that U N M is a regular level set of F (see
Prop. A.27). The definition ensures that grad F' (the gradient of F' with respect to
g) is nonzero on some neighborhood of M N U, so a convenient choice for a unit
normal vector field along M is

_grad F
" |grad F|

Here is an application.

Example 8.25 (Shape Operators of Spheres). The function F: R"*! — R
defined by F(x) = |x|? is a smooth defining function for each sphere S™(R). The
gradient of this function is grad F = 2, x' 0;, which has length 2R along S"(R).

The smooth vector field
n+1

1 .
N = E;X’ai

thus restricts to a unit normal along S” (R). (It is the outward pointing normal.) The
shape operator is now easy to compute:

n+1 1
_ J(q. vy — —
sX = R”Z:lx (0;x1)0; = =2 X.
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Therefore s = (—1/R)Id. The principal curvatures, therefore, are all equal to —1/R,
and it follows that the mean curvature is H = —1/R and the Gaussian curvature is
(—1/R)". I

For surfaces in R3, either of the above methods can be used. When a parametriza-
tion X is given, the normal vector field is particularly easy to compute: because X
and X» span the tangent space to M at each point, their cross product is a nonzero
normal vector, so one choice of unit normal is

X1XX2

_ A1x42 (8.26)
|X1 X X2|

Problems 8-1, 8-2, and 8-3 will give you practice in carrying out these computations
for surfaces presented in various ways.

The Gaussian Curvature of a Surface Is Intrinsic

Because the Gaussian and mean curvatures are defined in terms of a particular
embedding of M into R”*!, there is little reason to suspect that they have much to
do with the intrinsic Riemannian geometry of (M, g). The next exercise illustrates
the fact that the mean curvature has no intrinsic meaning.

» Exercise 8.26. Let M| C R3 be the plane {z = 0}, and let M> € R3 be the cylinder
{x?+ y? = 1}. Show that M| and M, are locally isometric, but the former has mean
curvature zero, while the latter has mean curvature :l:%, depending on which normal is
chosen.

The amazing discovery made by Gauss was that the Gaussian curvature of a
surface in R3 is actually an intrinsic invariant of the Riemannian manifold (M, g).
He was so impressed with this discovery that he called it Theorema Egregium, Latin
for “excellent theorem.”

Theorem 8.27 (Gauss’s Theorema Egregium). Suppose (M,g) is an embedded
2-dimensional Riemannian submanifold of R3. For every p € M, the Gaussian
curvature of M at p is equal to one-half the scalar curvature of g at p, and thus
the Gaussian curvature is a local isometry invariant of (M, g).

Proof. Let p € M be arbitrary, and choose an orthonormal basis (by,b,) for T, M.
In this basis g is represented by the identity matrix, and the shape operator has
the same matrix as the scalar second fundamental form. Thus K(p) = det (s;) =

det (h;7), and the Gauss equation (8.21) reads
Rmp (b1,b2,b3.b1) = hi1has —hi2hay = det(h;;) = K(p).

On the other hand, Corollary 7.27 shows that Rm = %S g ® g, and thus by the defi-
nition of the Kulkarni-Nomizu product we have
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Fig. 8.5: A plane section

Rmp(by,by.ba,b1) = 1S(p) (2811822 —2812821) = 2 S(p). o

Motivated by the Theorema Egregium, for an abstract Riemannian 2-manifold
(M, g), not necessarily embedded in R3, we define the Gaussian curvature to be
K = %S , where S is the scalar curvature. If M is a Riemannian submanifold of R3,
then the Theorema Egregium shows that this new definition agrees with the original
definition of K as the determinant of the shape operator. The following result is a
restatement of Corollary 7.27 using this new definition.

Corollary 8.28. If (M, g) is a Riemannian 2-manifold, the following relationships
hold:

Rm=3Kgnhg,  Rec=Kg, S =2K. O

Sectional Curvatures

Now, finally, we can give a quantitative geometric interpretation to the curvature
tensor in dimensions higher than 2. Suppose M is a Riemannian n-manifold (with
n >2), pisapoint of M, and V C T, M is a star-shaped neighborhood of zero
on which exp,, is a diffeomorphism onto an open set U € M. Let /1 be any 2-
dimensional linear subspace of 7, M. Since IT NV is an embedded 2-dimensional
submanifold of V, it follows that S7 = exp, (IT N'V') is an embedded 2-dimensional
submanifold of U € M containing p (Fig. 8.5), called the plane section determined
by IT. Note that Sy7 is just the set swept out by geodesics whose initial velocities lie
in [T, and T, Sp7 is exactly I7.

We define the sectional curvature of II, denoted by sec(IT), to be the intrinsic
Gaussian curvature at p of the surface Sp7 with the metric induced from the embed-
ding S € M. If (v, w) is any basis for [T, we also use the notation sec(v,w) for
sec(IT).

The next theorem shows how to compute the sectional curvatures in terms of the
curvature of (M, g). To make the formula more concise, we introduce the following
notation. Given vectors v, w in an inner product space V', we set
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v Aw| = |v]2|w]?— (v, w)2. (8.27)

It follows from the Cauchy—Schwarz inequality that |[v A w| > 0, with equality if
and only if v and w are linearly dependent, and |v A w| = 1 when v and w are
orthonormal. (One can define an inner product on the space A?(V) of contravariant
alternating 2-tensors, analogous to the inner product on forms defined in Problem
2-16, and this is the associated norm; see Problem 8-33(a).)

Proposition 8.29 (Formula for the Sectional Curvature). Let (M, g) be a Rie-
mannian manifold and p € M. If v,w are linearly independent vectors in T, M,
then the sectional curvature of the plane spanned by v and w is given by

Rmpy(v,w,w,v)

sec(v,w) = AW

(8.28)
Proof. Let IT € T, M be the subspace spanned by (v, w). For this proof, we de-
note the induced metric on Sy by g, and its associated curvature tensor by Rm. By
definition, sec(v, w) is equal to K (p), the Gaussian curvature of g at p.

We show first that the second fundamental form of Sy7 in M vanishes at p. To
see why, let z € IT be arbitrary, and let y = y, be the g-geodesic with initial velocity
z, whose image lies in Sy for ¢ sufficiently near 0. By the Gauss formula for vector
fields along curves,

0= D,y =Dy +11(y".y").

Since the two terms on the right-hand side are orthogonal, each must vanish iden-
tically. Evaluating at t = 0 gives II(z,z) = 0. Since z was an arbitrary element of
IT =T, (Sp) and Il is symmetric, polarization shows that Il = 0 at p. (We cannot in
general expect II to vanish at other points of S;7—it is only at p that all g-geodesics
starting tangent to Syy remain in Sy7.) The Gauss equation then tells us that the
curvature tensors of M and Sy are related at p by

Rmp(u,v,w,x) = E;zp(u,v,w,x)

whenever u,v,w,x € I1.
Now choose an orthonormal basis (by,b,) for I1. Based on the observations
above, we see that the sectional curvature of I7 is

A~

K(p)=1S(p)
=1 Rmp (bi.bj.b;.by)
i,j=1
= 3Rmp (b1.b2.ba.by) + Rmyp (b2.by.by.b2)
= Rm (b1,ba,by.b1) = Rm, (b1, by, by, by).

To see how to compute this in terms of an arbitrary basis, let (v, w) be any basis for
IT. The Gram—Schmidt algorithm yields an orthonormal basis as follows:
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by = —

]
b . w—(w,b1>b1
27 w—(w.by)b|

Then by the preceding computation,

K(p) =Rmp(b1,b,b2,b1)
v ow—(w,b1)by w—{(w,b1)b; v
”(Mww—(w,bl)bu’|w—<w,b1>b1|’m)
_ Rmp(v,w,w,v)
B |v|2|w—(w,b1)b1|2’

(8.29)

where we have used the fact that Rm(v,by,-,-) = Rm(-,-,b1,v) = 0 because b is
a multiple of v. To simplify the denominator of this last expression, we substitute
b1 = v/|v| to obtain

[ [w — (w, b1 )b > = Jv]? (|w|2_2(W,v)2 (w,v)l)

|vf? |vf?

= P |w*—(v.w)? = v Awl.
Inserting this into (8.29) proves the theorem. O

» Exercise 8.30. Suppose (M, g) is a Riemannian manifold and § = Ag for some pos-
itive constant A. Use Theorem 7.30 to prove that for every p € M and plane IT C T, M,
the sectional curvatures of IT with respect to g and g are related by sec(IT) = A~ ! sec(IT).

Proposition 8.29 shows that one important piece of quantitative information pro-
vided by the curvature tensor is that it encodes the sectional curvatures of all plane
sections. It turns out, in fact, that this is a/l of the information contained in the curva-
ture tensor: as the following proposition shows, the sectional curvatures completely
determine the curvature tensor.

Proposition 8.31. Suppose Ri and R, are algebraic curvature tensors on a finite-
dimensional inner product space V. If for every pair of linearly independent vectors

v,wev,
Ri(v,w,w,v) B Ry(v,w,w,v)

lvAaw]2 |[vAw|?
then R = R».

Proof. Let Ry and R, be tensors satisfying the hypotheses, and set D = Ry — R;.
Then D is an algebraic curvature tensor, and D(v,w,w,v) = 0 for all v,w € V.
(This is true by hypothesis when v and w are linearly independent, and it is true by
the symmetries of D when they are not.) We need to show that D = 0.

For all vectors v, w, x, the symmetries of D give
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0=DWw+w,x,x,v+w)
= D(v,x,x,v)+ D(v,x,x,w)+ D(w,x,x,v) + D(w,x,x,w)
=2D(v,x,x,w).

From this it follows that

0=Dw,x+u,x+u,w)
=D, x,x,w)+ D, x,u,w)+ D(v,u,x,w)+ D(v,u,u,w)
= D(v,x,u,w)+ D(v,u,x,w).

Therefore D is antisymmetric in every adjacent pair of arguments. Now the alge-
braic Bianchi identity yields

0=DWw,w,x,u)+ D(w,x,v,u)+ D(x,v,w,u)
=D, w,x,u)—D(w,v,x,u)— D(v,x,w,u)
=3D(v,w,x,u). O

We can also give a geometric interpretation of the Ricci and scalar curvatures on
a Riemannian manifold. Since the Ricci tensor is symmetric and bilinear, Lemma
8.11 shows that it is completely determined by its values of the form Rc(v,v) for
unit vectors v.

Proposition 8.32 (Geometric Interpretation of Ricci and Scalar Curvatures).
Let (M, g) be a Riemannian n-manifold and p € M.

(a) For every unit vector v € T, M, Rcp(v,v) is the sum of the sectional curva-
tures of the 2-planes spanned by (v,b3),...,(v,by), where (by,...,by) is any
orthonormal basis for T, M with by = v.

(b) The scalar curvature at p is the sum of all sectional curvatures of the 2-planes
spanned by ordered pairs of distinct basis vectors in any orthonormal basis.

Proof. Given any unit vector v € T, M, let (b;,...,b,) be as in the hypothesis. Then
Rcp(v,v) is given by

n n
Rep(v,v) = Ri1(p) = Rl ¥ (p) = ZRmp(bbblablabk) = Zsec(bl,bk)-
k=1 k=2

For the scalar curvature, we let (b1, ...,b,) be any orthonormal basis for 7, M, and
compute

S(p) =R/ (p) =) Rep(bj.bj)= Y Rmp(bx.bj.bj.by)
=1 jk=1

=Zsec(bj,bk). .

Jj#k
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One consequence of this proposition is that if (M, g) is a Riemannian manifold
in which all sectional curvatures are positive, then the Ricci and scalar curvatures
are both positive as well. The analogous statement holds if “positive” is replaced by
“negative,” “nonpositive,” or “nonnegative.”

If the opposite sign convention is chosen for the curvature tensor, then the right-
hand side of formula (8.28) has to be adjusted accordingly, with Rm (v, w,v, w)
taking the place of Rm, (v, w,w,v). This is so that whatever sign convention is
chosen for the curvature tensor, the notion of positive or negative sectional, Ricci,
or scalar curvature has the same meaning for everyone.

Sectional Curvatures of the Model Spaces

We can now compute the sectional curvatures of our three families of frame-
homogeneous model spaces. A Riemannian metric or Riemannian manifold is said
to have constant sectional curvature if the sectional curvatures are the same for all
planes at all points.

Lemma 8.33. If a Riemannian manifold (M, g) is frame-homogeneous, then it has
constant sectional curvature.

Proof. Frame homogeneity implies, in particular, that given two 2-planes at the
same or different points, there is an isometry taking one to the other. The result
follows from the isometry invariance of the curvature tensor. O

Thus to compute the sectional curvature of one of our model spaces, it suffices
to compute the sectional curvature for one plane at one point in each space.

Theorem 8.34 (Sectional Curvatures of the Model Spaces). The following Rie-
mannian manifolds have the indicated constant sectional curvatures:

(a) (R",g) has constant sectional curvature 0.
(b) (S” (R),§R) has constant sectional curvature 1/ R?.
(c) (H™(R), gR) has constant sectional curvature —1/R?.

Proof. First we consider the simplest case: Euclidean space. Since the curvature
tensor of R” is identically zero, clearly all sectional curvatures are zero. This is also
easy to see geometrically, since each plane section is actually a plane, which has
zero Gaussian curvature.

Next consider the sphere S”(R). We need only compute the sectional curvature
of the plane IT spanned by (d1,03) at the point (0,...,0,1). The geodesics with
initial velocities in IT are great circles in the (x!,x2,x"*1) subspace. Therefore
Sy is isometric to the round 2-sphere of radius R embedded in R3. As Example
8.25 showed, S?(R) has Gaussian curvature 1/R?. Therefore S"(R) has constant
sectional curvature equal to 1/R2.

Finally, the proof for hyperbolic spaces is left to Problem 8-28. O
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Note that for every real number c, exactly one of the model spaces listed above
has constant sectional curvature c. These spaces will play vital roles in our compar-
ison and local-to-global theorems in the last two chapters of the book.

» Exercise 8.35. Show that the metric on real projective space RIP” defined in Example
2.34 has constant positive sectional curvature.

Since the sectional curvatures determine the curvature tensor, one would expect
to have an explicit formula for the full curvature tensor when the sectional curvature
is constant. Such a formula is provided in the following proposition.

Proposition 8.36. A Riemannian metric g has constant sectional curvature c if and
only if its curvature tensor satisfies

Rm = %cg Dg.
In this case, the Ricci tensor and scalar curvature of g are given by the formulas
Rc=mn—1)cg; S =nmn-1)c,
and the Riemann curvature endomorphism is
R(v,w)x = c({w,x)v—(v,x)w).
In terms of any basis,
Rijki = c(gi1gjk — gik&j1); Rij = (n—1)cgi;.

Proof. Problem 8-29. O

The basic concepts of Riemannian metrics and sectional curvatures in arbitrary
dimensions were introduced by Bernhard Riemann in a famous 1854 lecture at
Gottingen University [Spi97, Vol. II, Chap. 4]. These were just a few of the seminal
accomplishments in his tragically short life.

Problems

8-1. Suppose U is an open set in R” and f: U — R is a smooth function. Let
M = {(x, f(x)) : x € U} € R"*! be the graph of f, endowed with the
induced Riemannian metric and upward unit normal (see Example 2.19).

(a) Compute the components of the shape operator in graph coordinates, in
terms of f and its partial derivatives.

(b) Let M C R™*! be the n-dimensional paraboloid defined as the graph
of f(x) = |x|?. Compute the principal curvatures of M.

(Used on p. 361.)
8-2. Let (M,g) be an embedded Riemannian hypersurface in a Riemannian

manifold (A? ,g), let F be a local defining function for M, and let N =
grad F/|grad F|.
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(a) Show that the scalar second fundamental form of M with respect to the
unit normal N is given by

V2F(X.,Y)

h(X,Y)=
( ) | grad F |

forall X,Y € X(M).
(b) Show that the mean curvature of M is given by

1 dF
H=——divg [ 227 ),
n | grad F |

where n = dim M and divg is the divergence operator of g (see Prob-
lem 5-14). [Hint: First prove the following linear-algebra lemma: If V' is
a finite-dimensional inner product space, w € V is a unit vector, and
A:V — V is a linear map that takes wt 0 wt, then tI'(A|wl) =trB,
where B: V — V is defined by Bx = Ax — (x,w)Aw.]

8-3. Let C be an embedded smooth curve in the half-plane H = {(r,z) : r > 0},
and let Sc € IR3 be the surface of revolution determined by C as in Example
2.20. Let y(t) = (a(t),b(t)) be a unit-speed local parametrization of C, and
let X be the local parametrization of S¢ given by (2.11).

(a) Compute the shape operator and principal curvatures of Sc in terms of
a and b, and show that the principal directions at each point are tangent
to the meridians and latitude circles.

(b) Show that the Gaussian curvature of S¢ at a point X(z,0) is equal to

—a"(1)/a(1).

8-4. Show that there is a surface of revolution in R3 that has constant Gaussian
curvature equal to 1 but does not have constant principal curvatures. [Remark:
We will see in Chapter 10 that this surface is locally isometric to S (see Cor.
10.15), so this gives an example of two nonflat hypersurfaces in R> that are
locally isometric but have different principal curvatures.]

8-5. Let S € R3 be the paraboloid given by z = x? 4 y2, with the induced metric.
Prove that § is isotropic at only one point. (Used on p. 56.)

8-6. Suppose (M, g) is a Riemannian manifold, and y: I — M is a regular (but
not necessarily unit-speed) curve in M. Show that the geodesic curvature of
yattrelis

[y (1) A Dy’ (1)

Iy (O

where the norm in the numerator is the one defined by (8.27). Show also that

in R3 with the Euclidean metric, the formula can be written

ly' @) xy" @]
ly' @I

k(t) =

k(t) =
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8-7.

8-8.

8-9.

8-10.

For w > 0, let M,, € R3 be the surface of revolution obtained by revolving
the curve y(¢) = (wcosh(¢/w),t) around the z-axis, called a catenoid. Show
that M, is a minimal surface for each w.

For h > 0, let C;, € R3 be the one-dimensional submanifold {(x, y,z): x2+
y2 =1, z = £h}; itis the union of two unit circles lying in the z = £/ planes.
Let hy = 1/sinhc, where ¢ is the unique positive solution to the equation
ctanhc = 1. Prove that if & < hg, then there are two distinct positive values
w; < wy such that the portions of the catenoids M,,, and My, lying in the
region |z| < h are minimal surfaces with boundary Cj (using the notation of
Problem 8-7), while if 4 = hy, there is exactly one such value, and if & > hy,
there are none. [Remark: This phenomenon can be observed experimentally.
If you dip two parallel wire circles into soapy water, as long as they are close
together they will form an area-minimizing soap film in the shape of a portion
of a catenoid (the one with the larger “waist,” M,,, in the notation above). As
you pull the circles apart, the “waist” of the catenoid gets smaller, until the
ratio of the distance between the circles to their diameter reaches hy &~ 0.6627,
at which point the film will burst and the only soap film that can be formed is
two disjoint flat disks.]

Let M € R"*! be a Riemannian hypersurface, and let N be a smooth unit
normal vector field along M. At each point p € M, N, € T,R"*! can be
thought of as a unit vector in R”*1 and therefore as a point in S”. Thus each
choice of unit normal vector field defines a smooth map v: M — S”, called
the Gauss map of M. Show that v*dV§ = (=1)"K dVg, where K is the
Gaussian curvature of M.

Suppose g = g1 @ g2 is a product metric on M| x M, as in (2.12). (See also
Problem 7-6.)

(a) Show that for each point p; € M;, the submanifolds M; x {p,} and
{p1} x M, are totally geodesic.

(b) Show that sec(/T) = 0 for every 2-plane [T C T, , p,) (M1 x M>) spanned
by V1 € Tlel and v, € szMz.

(c) Show that if M and M, both have nonnegative sectional curvature, then
My x M, does too; and if My and M, both have nonpositive sectional
curvature, then M; x M, does too.

(d) Now suppose (M;, g;) has constant sectional curvature ¢; for i = 1,2;
let n; = dim M;. Show that (M, g) is Einstein if and only if ¢; (n; — 1) =
c2(np—1); and (M, g) has constant sectional curvature if and only if
ny=np=1orcy =c,=0.

(Used on p. 366.)

. Suppose M C R? is a smooth surface, p € M, and N, is a normal vector to

M at p. Show that if IT C R3 is any affine plane containing p and parallel
to N, then there is a neighborhood U of p in R3 such that M NITNU
is a smooth embedded curve in [1, and the principal curvatures of M at
p are equal to the minimum and maximum signed Euclidean curvatures of
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these curves as I1 varies. [Remark: This justifies the informal recipe for
computing principal curvatures given in Chapter 1.] _

8-12. Suppose : (M,g) — (M, g) is a Riemannian submersion, and (M, g) has
all sectional curvatures bounded below by a constant ¢. Use O’Neill’s for-
mula (Problem 7-14) to show that the sectional curvatures of (M,g) are
bounded below by the same constant.

8-13. Let p: S?**1 — CP" be the Riemannian submersion described in Exam-
ple 2.30. In this problem, we identify C"*1 with R2"+2 by means of coor-
dinates (x',y!,...,x"T1 y"*T1) defined by z/ = x/ +iy/.

(a) Show that the vector field

9 9
S = Xj _— J D
ay’ J ax’
on C"*! is tangent to S?"*! and spans the vertical space V; at each
point z € S?"*1_ (The implicit summation here is from 1 to n + 1.)
(b) Show that for all horizontal vector fields W, Z on S?"+1,

W,Z2]Y = —do(W,Z)S =2(W,JZ)S,
where w is the 1-form on C"*! given by

w:Sb=ijdyj—yjdxj,
J

and J: TC"*! — TC"*1 is the real-linear orthogonal map given by

9 9 .0 .0
J J — bj b = J —_— J I
(a dxJ + ay’ ) ¢ ay’ axJ
(This is just multiplication by i = +/—1 in complex coordinates. Notice
that J o J = —Id.)
(c) Using O’Neill’s formula (Problem 7-14), show that the curvature tensor
of CIP" satisfies

for every ¢ € CP" and w,x,y,z € T,CP", where W,X,y,Z are hor-
izontal lifts of w, x, y, z to an arbitrary point § € p~!(g) € S?**1.

(d) Using the notation of part (c), show that for orthonormal vectors w,x €
T,CP", the sectional curvature of the plane spanned by {w,x} is

sec(w,x) =1 +3<1§,J)7)2.
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8-14.

8-15.

8-16.

8-17.

8-18.

8-19.

8-20.

(e) Show that for n > 2, the sectional curvatures at each point of CIP” take
on all values between 1 and 4, inclusive, and conclude that CP” is not
frame-homogeneous.

(f) Compute the Gaussian curvature of CP!.

(Used on pp. 56, 262, 367.)

Show that a Riemannian 3-manifold is Einstein if and only if it has constant
sectional curvature.

Suppose (M, g) is a 3-dimensional Riemannian manifold that is homoge-
neous and isotropic. Show that g has constant sectional curvature. Show that
the analogous result in dimension 4 is not true. [Hint: See Problem 8-13.]

For each a > 0, let g, be the Berger metric on SU(2) defined in Problem 3-10.
Compute the sectional curvatures with respect to g, of the planes spanned by
(X,Y), (Y,Z),and (Z, X). Prove that if a # 1, then (SU(2), g,) is homoge-
neous but not isotropic anywhere. (Used on p. 56.)

Let G be a Lie group with a bi-invariant metric g (see Problem 7-13).

(a) Suppose X and Y are orthonormal elements of Lie(G). Show that
sec(Xp.Yp) = H[X, Y]]2 for each p € G, and conclude that the sec-
tional curvatures of (G, g) are all nonnegative.

(b) Show that every Lie subgroup of G is totally geodesic in G.

(c) Now suppose G is connected. Show that G is flat if and only if it is
abelian.

(Used on p. 282.)

Suppose (M, g) is a Riemannian hypersurface in a Riemannian manifold
(M,g), and N is a unit normal vector field along M. We say that M is
convex (with respect to N) if its scalar second fundamental form satisfies
h(v,v) <0 for all v € TM. Show that if M is convex and M has sectional
curvatures bounded below by a constant ¢, then all sectional curvatures of M
are bounded below by c.

Suppose (M, g) is a Riemannian hypersurface in an (n + 1)-dimensional
Lorentz manifold (M , §), and N is a smooth unit normal vector field along
M . Define the scalar second fundamental form h and the shape operator s
by requiring that II(X,Y) = A(X,Y)N and (sX,Y) =h(X,Y) forall X,Y €
X(M). Prove the following Lorentz analogues of the formulas of Theorem
8.13 (with notation as in that theorem):

(a) GAUSS FORMULA: VyY = VxY 4+ h(X,Y)N.

(b) GAUSS FORMULA FOR A CURVE: D; X = D; X +h(y',X)N.

(c) WEINGARTEN EQUATION: §XN =s5X.

(d) GAUSs EQUATION: Rm(W, X,Y,Z) = (Rm+ 1h®h)(W,X.Y, Z).
(e) CoDAZZI EQUATION: Rm(W, X,Y,N) = —(Dh)(Y, W, X).

Suppose (1\7 ,g) is an (n + 1)-dimensional Lorentz manifold, and assume
that g satisfies the Einstein field equation with a cosmological constant:
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8-21.

8-22.

8 Riemannian Submanifolds

Re— %§§+ Ag =T, where A is a constant and 7" is a smooth symmetric
2-tensor field (see p. 211). Let (M, g) be a Riemannian hypersurface in M,
and let & be its scalar second fundamental form as defined in Problem 8-19.
Use the results of Problem 8-19 to show that g and / satisfy the following
Einstein constraint equations on M :

S —2A—|h|2 + (g h)* = 2p,
divh—d (trg k) = J,

where S is the scalar curvature of g, div/h the divergence of & with respect
to g as defined in Problem 5-16, p is the function p = T(N,N), and J is
the 1-form J(X) = T (N, X). [Remark: When J and p are both zero, these
equations, known as the vacuum Einstein constraint equations, are neces-
sary conditions for g and /4 to be the metric and second fundamental form
of a Riemannian hypersurface in an (n + 1)-dimensional Lorentz manifold
satisfying the vacuum Einstein field equation with cosmological constant A.
It was proved in 1950 by Yvonne Choquet-Bruhat that these conditions are
also sufficient; for a proof, see [CB09, pp. 166—168].]

For every linear endomorphism 4: R” — R”, the associated quadratic form
is the function Q : R” — R defined by Q(x) = (Ax, x). Prove that

1
dVe = —(tr A)Vol(S™1).
Sn_lQ Ve n(r )Vol(S" 1)

[Hint: Show that fg,—1 X' x/ dVg = 0 when i # j by examining the effect
of the isometry

elxh XX e (X =X X,
and compute [g,—1 (xi)degc; using the fact that ), (x")2 =1 on the
sphere.] [Remark: It is a standard fact of linear algebra that the trace of A
is independent of the choice of basis. This gives a geometric interpretation to

the trace as n times the average value of the associated quadratic form Q.]
(Used on p. 313.)

Let (M, g) be a Riemannian n-manifold and p € M. Proposition 8.32 gave
a geometric interpretation of the Ricci curvature at p based on a choice of
orthonormal basis. This problem describes an interpretation that does not
refer to a basis. For each unit vector v € T, M, prove that

n—1
7 1 "\ ) dVA,
Vol (S"~2) /wesL see(v.w)

v

Rcp(v,v) =

where S;- denotes the set of unit vectors in 7, M that are orthogonal to v and
g denotes the Riemannian metric on SvL induced from the flat metric g, on
T, M. [Hint: Use Problem 8-21.]
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8-23. Suppose (M, g) is a connected n-dimensional Riemannian manifold, and a
Lie group G acts isometrically and effectively on M. Problem 5-12 showed
that dimG < n(n + 1)/2. Prove that if equality holds, then g has constant
sectional curvature.

8-24. Let (M,g) be a connected Riemannian manifold. Recall the definition of
k-point homogeneous from Problem 6-18. Prove the following:

(a) If (M, g) is homogeneous, then it has constant scalar curvature.

(b) If (M, g) is 2-point homogeneous, then it is Einstein.

(c) If (M, g) is 3-point homogeneous, then it has constant sectional curva-
ture.

8-25. For i = 1,2, suppose (M;, g;) is a Riemannian manifold of dimension n; >
2 with constant sectional curvature ¢;; and let g = g1 @ g» be the product
metric on M = M x M,. Show that the Weyl tensor of g is given by

. 1+
T 2n—1)(n—-2)

=201 = )2 = Dy © by + 1101y = Dha G2 ),

(ﬂz(nz— Dh; ®hy

where n = ny +ny and h; = n)g; for i = 1,2. Conclude that (M,g) is
locally conformally flat if and only if ¢, = —c;. (See also Problem 7-6.)
(Used on p. 67.)

8-26. Let (M, g) be a 4-dimensional Riemannian manifold. Given p € M and an
orthonormal basis (b;) for 7, M, prove that the Weyl tensor at p satisfies

1 1
Wiz = g(klz +k3q) — g(k13 +kia+koz +koa),

where k;; is the sectional curvature of the plane spanned by (b,- b j).

8-27. Prove that the Fubini-Study metric on CPP? is not locally conformally flat.
[Hint: Use Problems 8-13 and 8-26.]

8-28. Complete the proof of Theorem 8.34 by showing in two ways that the hy-
perbolic space of radius R has constant sectional curvature equal to —1/R?.

(a) In the hyperboloid model, compute the second fundamental form of
H"(R) € R™! at the point (0,...,0, R), and use either the general form
of the Gauss equation (Thm. 8.5) or the formulas of Problem 8-19.

(b) In the Poincaré ball model, use formula (7.44) for the conformal trans-
formation of the curvature to compute the Riemann curvature tensor at
the origin.

8-29. Prove Proposition 8.36 (curvature tensors on constant-curvature spaces).

8-30. Suppose M C R™*1 is a hypersurface with the induced Riemannian metric.
Show that the Ricci tensor of M satisfies
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8-31.

8-32.

8-33.

8 Riemannian Submanifolds
Re(v,w) = (anv —s%v, w),

where H and s are the mean curvature and shape operator of M, respec-
tively, and s2v = s(sv).

For 1 < k < n, show that any k points in the hyperbolic space H"(R) lie
in a totally geodesic (k — 1)-dimensional submanifold, which is isometric to
H*~1(R).

Suppose (M, g) is a Riemannian manifold and G is a Lie group acting
smoothly and isometrically on M. Let S € M be the fixed point set of G,
that is, the set of points p € M such that ¢(p) = p for all ¢ € G. Show
that each connected component of S is a smoothly embedded totally geodesic
submanifold of M. (The reason for restricting to a single connected comp-
onent is that different components may have different dimensions.)

Suppose (M, g) is a Riemannian manifold. Let A%(TM) denote the bundle
of 2-vectors (alternating contravariant 2-tensors) on M.

(a) Show that there is a unique fiber metric on A2(TM) that satisfies

(wax, yAz)=(w,y)(x.z) = (w,z){x,y)

for all tangent vectors w, x at every pointg € M.
(b) Show that there is a unique bundle endomorphism R: A%2(TM) —
A2(TM), called the curvature operator of g, that satisfies

(R(wAx),yAz)=—Rm(w,x,y,z) (8.30)

for all tangent vectors w,x, y,z at a point of M, where the inner prod-
uct on the left-hand side is the one described in part (a).

(c) A Riemannian metric is said to have positive curvature operator if R is
positive definite, and negative curvature operator if R is negative def-
inite. Show that positive curvature operator implies positive sectional
curvature, and negative curvature operator implies negative sectional
curvature. [Remark: This is the reason for the negative sign in (8.30).
If the Riemann curvature tensor is defined as the negative of ours, the
negative sign should be omitted.]

(d) Show that the converse need not be true, by using the results of Problem
8-13 to compute the following expression on CIP? with the Fubini—
Study metric:

(RwAx+yAz), wAx+yAnz),

where w,Xx,y,z are orthonormal vectors at an arbitrary point of CP2?,
chosen so that their horizontal lifts satisfy y = Jw and Z = JX.
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Chapter 9
The Gauss—Bonnet Theorem

All the work we have done so far has been focused on purely local properties of
Riemannian manifolds and their submanifolds. We are finally in a position to prove
our first major local-to-global theorem in Riemannian geometry: the Gauss—Bonnet
theorem. The grandfather of all such theorems in Riemannian geometry, it is a local-
to-global theorem par excellence, because it asserts the equality of two very differ-
ently defined quantities on a compact Riemannian 2-manifold: the integral of the
Gaussian curvature, which is determined by the local geometry, and 27 times the
Euler characteristic, which is a global topological invariant. Although in this form
it applies only in two dimensions, it has provided a model and an inspiration for
innumerable local-to-global results in higher-dimensional geometry, some of which
we will prove in Chapter 12.

This chapter begins with some not-so-elementary notions from plane geome-
try, leading up to a proof of Hopf’s rotation index theorem, which expresses the
intuitive idea that the velocity vector of a simple closed plane curve, or more gen-
erally of a “curved polygon,” makes a net rotation through an angle of exactly 2=
as one traverses the curve counterclockwise. Then we investigate curved polygons
on Riemannian 2-manifolds, leading to a far-reaching generalization of the rota-
tion index theorem called the Gauss—Bonnet formula, which relates the exterior an-
gles, geodesic curvature of the boundary, and Gaussian curvature in the interior of
a curved polygon. Finally, we use the Gauss—Bonnet formula to prove the global
statement of the Gauss—Bonnet theorem.

Some Plane Geometry

Look back for a moment at the three local-to-global theorems about plane geometry
stated in Chapter 1: the angle-sum theorem, the circumference theorem, and the total
curvature theorem. When looked at correctly, these three theorems all turn out to be
manifestations of the same phenomenon: as one traverses a simple closed plane
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y'(a) =y’ (b)

Fig. 9.1: A closed curve with y"(a) = y’(b)

curve, the velocity vector makes a net rotation through an angle of exactly 2z. Our
task in the first part of this chapter is to make these notions precise.

Throughout this section, y : [a,bh] — R? is an admissible curve in the plane. We
say that y is asimple closed curve if y(a) = y(b) but y isinjective on [a, b). We do not
assume that y has unit speed; instead, we define the unit tangent vector field of y as
the vector field T along each smooth segment of y given by

_ Yo
'

Since each tangent space to R? is naturally identified with R? itself, we can think
of T as a map into R2, and since T has unit length, it takes its values in St

If y is smooth (or at least continuously differentiable), we define a tangent an-
gle function for y to be a continuous function 0: [a,b] — R such that T'(¢) =
(cos6(z),sin6(z)) for all ¢ € [a,b]. It follows from the theory of covering spaces
that such a function exists: the map ¢g: R — S! given by ¢(s) = (coss,sins) is
a smooth covering map, and the path-lifting property of covering maps (Prop.
A.54(b)) ensures that there is a continuous function 6: [a,b] — R that satisfies
q(6(t)) = T(¢). By the unique lifting property (Prop. A.54(a)), a lift is uniquely
determined once its value at any single point is determined, and thus any two lifts
differ by a constant integral multiple of 2.

If y is a continuously differentiable simple closed curve such that y'(a) = y’(b)
(Fig.9.1), then (cos B (a),sinf(a)) = (cos(b),sinbB(b)), so 6(b) — 6(a) must be an
integral multiple of 27z. For such a curve, we define the rotation index of y to be
the following integer:

T(r)

1
p(y) = E(G(b) —0(a)).

where 6 is any tangent angle function for y. For any other choice of tangent angle
function, 6(a) and 6(b) would change by addition of the same constant, so the
rotation index is independent of the choice of 6.

We would also like to extend the definition of the rotation index to certain piece-
wise regular closed curves. For this purpose, we have to take into account the
“jumps” in the tangent angle function at corners. To do so, suppose y : [a,bh] — R?
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T(a;)

i

Fig. 9.2: An exterior angle Fig. 9.3: A cusp vertex

is an admissible simple closed curve, and let (ao,...,ar) be an admissible parti-
tion of [a, b]. The points y(a;) are called the vertices of y, and the curve segments
Ylla;_,.a;] are called its edges or sides.

At each vertex y(a;), recall that y has left-hand and right-hand velocity vec-
tors denoted by y’(a;) and y’(a;"), respectively; let T'(a;") and T'(a;") denote the
corresponding unit vectors. We classify each vertex into one of three categories:

e If T(a;) # £T(a;"), then y(a;) is an ordinary vertex.
e If T(a;) = T(a]"), then y(a;) is a flat vertex.
o If T(a;) = —T(a;"), then y(a;) is a cusp vertex.

At each ordinary vertex, define the exterior angle at y(a;) to be the oriented mea-
sure &; of the angle from 7T'(a;") to T(ai+ ), chosen to be in the interval (—, 7r), with
a positive sign if (7'(a;"). T (a;")) is an oriented basis for R?, and a negative sign
otherwise (Fig.9.2). At a flat vertex, the exterior angle is defined to be zero. At a
cusp vertex, there is no simple way to choose unambiguously between 7w and —m
(Fig. 9.3), so we leave the exterior angle undefined. The vertex y(a) = y(b) is han-
dled in the same way, with T'(b) and T (a) playing the roles of 7'(a;") and T(al-‘" ),
respectively. If y(a;) is an ordinary or a flat vertex, the interior angle at y(a;) is
defined to be 6; = m — ¢&;; our conventions ensure that 0 < 0; < 27.

The curves we wish to consider are of the following type: a curved polygon in
the plane is an admissible simple closed curve without cusp vertices, whose image
is the boundary of a precompact open set 2 C R?. The set 2 is called the interior
of y (not to be confused with the topological interior of its image as a subset of R2,
which is the empty set).

Suppose y: [a,b] — R? is a curved polygon. If y is parametrized so that at
smooth points, y’ is positively oriented with respect to the induced orientation on
052 in the sense of Stokes’s theorem, we say that y is positively oriented (Fig.9.4).
Intuitively, this means that y is parametrized in the counterclockwise direction, or
that £2 is always to the left of y.

We define a fangent angle function for a curved polygon y to be a piecewise
continuous function 0: [a,b] — R that satisfies T'(z) = (cos€(¢),sin6(¢)) at each
point ¢ where y is smooth, that is continuous from the right at each a; with
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Fig. 9.4: A positively oriented curved polygon
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Fig. 9.5: Tangent angle at a vertex Fig. 9.6: Tangent angle function
O(a;) = lim 0(¢t) +¢;, 9.1)
t a;

and that satisfies
0(b) = lim 0(t) + &, (9.2)
t/'b

where &y, is the exterior angle at y (). (See Figs. 9.5 and 9.6.) Such a function always
exists: start by defining 6(¢) for ¢ € [a,a) to be any lift of 7" on that interval; then on
[ay,az) define O(¢) to be the unique lift that satisfies (9.1), and continue by induc-
tion, ending with 6(b) defined by (9.2). Once again, the difference between any two
such functions is a constant integral multiple of 2. We define the rotation index of
ytobe p(y) = % (G(b) - G(a)) just as in the smooth case. As before, p(y) is an in-
teger, because the definition ensures that (cos6(b),sin8(b)) = (cosf(a),sinf(a)).

The following theorem was first proved by Heinz Hopf in 1935. (For a readable
version of Hopf’s proof, see [Hop89, p. 42].) It is frequently referred to by the
German name given to it by Hopf, the Umlaufsatz.

Theorem 9.1 (Rotation Index Theorem). The rotation index of a positively ori-
ented curved polygon in the plane is +1.
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T(a)=T(®)

Fig. 9.7: The curve y after changing the parameter interval and translating y (a) to the origin

Proof. Let y: [a,b] — R? be such a curved polygon. Assume first that all the ver-
tices of y are flat. This means, in particular, that y’ is continuous and y’(a) = y’(b).
Since y(a) = y(b), we can extend y to a continuous map from R to R? by requiring
it to be periodic of period b —a, and our hypothesis y’(a) = y’(b) guarantees that
the extended map still has continuous first derivatives. Define T'(z) = y'(¢)/|y’(¢)]
as before.

Let 0: R — R be any lift of 7: R — S'. Then 0|, 5] is a tangent angle function

for y, and thus 6(b) = 0(a) + 27p(y). If we set g(t) =0(t+b—a)—2mp(y), then
(cosg(t),sing(l)) = (cosO(t +b—a),sinf(t +b—a)) =T(t+b—a)=T(t),

s0 6 is also a lift of 7. Because g(a) = 0(a), it follows that 6 = 0, or in other words
the following equation holds for all ¢ € R:

Ot +b—a)=0(t)+2mp(y). (9.3)

If a; is an arbitrary point in [a,b] and by = a, + b —a, then y|[4, 5,1 is also a
positively oriented curved polygon with only flat vertices, and 0|4, 5,] is a tangent
angle function for it. Note that (9.3) implies

0(b1) —6(ar) = 0(a1 +b—a)—06(ar) = (6(a1) +27p(y)) — 0(ar) = 27p(y).

SO ¥ |[a,,b,] has the same rotation index as y|[4,5]. Thus we obtain the same result by
restricting y to any closed interval of length b —a.

Using this freedom, we can assume that the parameter interval [«,b] has been
chosen so that the y-coordinate of y achieves its minimum at # = a. Moreover, by a
translation in the x y-plane (which does not change y’ or 8), we may as well assume
that y(a) is the origin. With these adjustments, the image of y remains in the closed
upper half-plane, and T'(a) = T'(b) = (1,0) (Fig. 9.7). By adding a constant integral
multiple of 27 to 6 if necessary, we can also assume that 8(a) = 0.

Next, we define a continuous secant angle function, denoted by ¢(t1,1,), repre-
senting the angle between the positive x-direction and the vector from y(t1) to y(¢2).
To be precise, let A C R2 be the triangular region A = {(t1,t;) :a <t; <t < b}
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Fig. 9.8: The domain of ¢ Fig. 9.9: The secant angle function

(Fig.9.8), and define amap V: A — S! by
y(t2) —y(11)

ly(t2) —y(t)|’
T(t1), =t

~T(b), (t1.12) = (a,b).

11 <ty and (t1,12) # (a,b);
V()=

The function V' is continuous at points where t; <, and (¢1,1,) # (a,b), because
y is continuous and injective there. To see that it is continuous elsewhere, note that
for t; < t,, the fundamental theorem of calculus gives

1

1
V(lz)—J/(ll):/O %V(ll-i-s(lz—ll))dS:/o Y (t1+s(t2—11)) (12 —11) ds,

and thus

'V(tz)—y(tl) V0

h—1

1
< /0 ¥/ (11 +s(t2—11)) = ¥'(1) | ds.

Because y’ is uniformly continuous on the compact set [a,b], this last expression
can be made as small as desired by taking (#1,#,) close to (¢,¢). It follows that

y(t2) —y(t1) _

Y (1),
(t1.12)—>(2.1) Ih—1
1<ty

and therefore
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lim  V(i.6) = y(t2) —y(t1)

(t1,62)—> (t.0) )=o) y() =y ()]
1<ty 1 <tr
_ y(t2) —y(t1) ‘V(tz)_)’(fl)
= 1m
(t1,12)—>(t,1) a—1h 1 —1h
1<ty
y' (1)
= =T@t) = V(t.1).
[y’ ()]

Similarly, because 7 is continuous,

lim V(t1,tr) = lim T(ty) =T () = V(¢,1).
(t1,12)—>(t,1) 11—t
t1 =t
It follows that V' is continuous at (z,1).
To prove that V' is continuous at (a,b), recall that we have extended y to be
periodic of period b —a. The argument above gives

y(t2)—y(t1+b—a)

lim V(t1,tr) = lim
(t1,t2)—>(a,b) (t1.12)—>b) |y(t2) —y(t1 +b—a)l
1<t 1<tz

§2) —y(s
= RAC Y ASI VR S NP
152> 0.b) [y(s2) =y (s1)]
S1>852
Thus V' is continuous.

Since A is simply connected, Corollary A.57 guarantees that V: A — S! has a
continuous lift ¢ : A — R, which is unique if we require ¢(a,a) = 0 (Fig. 9.9). This
is our secant angle function.

We can express the rotation index in terms of the secant angle function as follows:

1 1 1
p(y) = Z(G(b)—e(a)) = E(<ﬂ(b,b)—<ﬂ(a,a)) =5, ¢b.b).

Observe that along the side of A where 11 = a and t, € [a,b], the vector V(a,t;)
has its tail at the origin and its head in the upper half-plane. Since we stipulate that
¢(a,a) = 0, we must have ¢(a,t,) € [0,7] on this segment. By continuity, there-
fore, ¢(a,b) = & (since ¢(a,b) represents the tangent angle of —7'(b) = (—1,0)).
Similarly, on the side where ¢, = b, the vector V (¢, b) has its head at the origin and
its tail in the upper half-plane, so ¢(t1,b) € [r,27]. Therefore, since ¢(b,b) repre-
sents the tangent angle of 7'(b) = (1,0), we must have ¢(b,b) = 27 and therefore
p(y) = 1. This completes the proof for the case in which y’ is continuous.

Now suppose y has one or more ordinary vertices. It suffices to show there is a
curve with a continuous velocity vector field that has the same rotation index as y.
We will construct such a curve by “rounding the corners” of y. It will simplify the
proof somewhat if we choose the parameter interval [a, b] so that y(a) = y(b) is not
one of the ordinary vertices.
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Fig. 9.10: Isolating the change in the tangent angle at a vertex

e

Fig. 9.11: Rounding a corner

Let y(a;) be any ordinary vertex, let &; be its exterior angle, and let o be a
positive number less than %(n —|&;|). Recall that 6 is continuous from the right
at a; and lim; »,; 0(t) = 0(a;) — &;. Therefore, we can choose § small enough that
|6(t) — (0(a;) —&;)| <« when t € (a; —6,a;), and |0(t) —O(a;)| < @ when t €
(ai,a; +6).

The image under y of [a,b]~ (a; —§,a; + ) is a compact set that does not contain
y(a;), so we can choose r small enough that y does not enter B, (y(a;)) except when
t € (a;—8,a; +8). Lett; € (a; —8,a;) denote a time when y enters B, (y(a;)), and
tr € (a;,a; + &) a time when it leaves (Fig. 9.10). By our choice of §, the total
change in 6(¢) is not more than & when ¢ € [t1,a;), and again not more than & when
t € (a;,17]. Therefore, the total change A8 in 6(¢) during the time interval [¢1,7,] is
between &; — 2« and g; 4+ 2a, which implies —7 < A0 < 7.

Now we simply replace y|[;, +,] With a smooth curve segment o that has the same
velocity as y at y(¢1) and y(f2), and whose tangent angle increases or decreases
monotonically from 6(#1) to 8(t2); an arc of a hyperbola will do (Fig.9.11). Since
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Fig. 9.12: A curved polygon on a surface

the change in tangent angle of o is between —m and m and represents the angle
between T'(¢1) and T'(#;), it must be exactly Af. Repeating this process for each
vertex, we obtain a new curved polygon with a continuous velocity vector field
whose rotation index is the same as that of y, thus proving the theorem. O

From the rotation index theorem, it is not hard to deduce the three local-to-global
theorems mentioned at the beginning of the chapter as corollaries. (The angle-sum
theorem is immediate; for the total curvature theorem, the trick is to show that 6'(z)
is equal to the signed curvature of y; the circumference theorem follows from the to-
tal curvature theorem as mentioned in Chapter 1.) However, instead of proving them
directly, we will prove a general formula, called the Gauss—Bonnet formula, from
which these results and more follow easily. You will easily see how the statement
and proof of Theorem 9.3 below can be simplified in case the metric is Euclidean.

The Gauss—Bonnet Formula

We now direct our attention to the case of an oriented Riemannian 2-manifold
(M, g). In this setting, an admissible simple closed curve y : [a,b] — M is called a
curved polygon in M if the image of y is the boundary of a precompact open set
§£2 C M, and there is an oriented smooth coordinate disk containing £ under whose
image y is a curved polygon in the plane (Fig.9.12). As in the planar case, we call
§2 the interior of y. A curved polygon whose edges are all geodesic segments is
called a geodesic polygon.

For a curved polygon y in M, our previous definitions go through almost
unchanged. We say that y is positively oriented if it is parametrized in the direc-
tion of its Stokes orientation as the boundary of §2. On each smooth segment of y,
we define the unit tangent vector field T (t) = y'(t) /|y’ (¢)|g. If y(a;) is an ordinary
or flat vertex, we define the exterior angle of y at y(a;) as the oriented measure ¢;
of the angle from T'(a;") to T(al.Jr ) with respect to the g-inner product and the given
orientation of M ; explicitly, this is

_dVg(T(a)). T(a]))
dve(T(@;). T(@}))]

i 94

arccos (T (a;y). T(a;r))g.
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The corresponding interior angle of y at y(a;) is 6; = w —¢;. Exterior and interior
angles at y(a) = y(b) are defined similarly.

We need a version of the rotation index theorem for curved polygons in M. Sup-
pose y: [a,b] — M 1is a curved polygon and £2 is its interior, and let (U, ¢) be an
oriented smooth chart such that U contains £2. Using the coordinate map ¢ to trans-
fer y, £2, and g to the plane, we may as well assume that g is a metric on some
open subset U € R?, and y is a curved polygon in U. Let (E1, E,) be the ori-
ented orthonormal frame for g obtained by applying the Gram—Schmidt algorithm
to (dx, dy), so that £} is a positive scalar multiple of d, everywhere in U.

We define a tangent angle function for y to be a piecewise continuous function
0: [a,b] — R that satisfies

T(t) = cosO(t)Erly ) + sin0(1) Ez|,

at each ¢ where y’ is continuous, and that is continuous from the right and satisfies
(9.1) and (9.2) at vertices. The existence of such a function follows as in the planar
case, using the fact that

T(t) = ul(t)El|y(t) + uZ(Z)E2|y(t) (95)

for a pair of piecewise continuous functions u1,u5 : [a,b] — R that can be regarded
as the coordinate functions of a map (u1,us): [a,b] — S! because T has unit
length.

The rotation index of y is p(y) = % (O(b) — O(a)). Because of the role played
by the specific frame (E;, E,) in the definition, it is not obvious that the rotation
index has any coordinate-independent meaning; however, the following easy conse-
quence of the rotation index theorem shows that it does not depend on the choice of
coordinates.

Lemma 9.2. If M is an oriented Riemannian 2-manifold, the rotation index of every
positively oriented curved polygon in M is +1.

Proof. If we use the given oriented coordinate chart to regard y as a curved polygon
in the plane, we can compute its tangent angle function either with respect to g or
with respect to the Euclidean metric g. In either case, p(y) is an integer because
0(a) and 0(b) both represent the angle between the same two vectors, calculated
with respect to some inner product. Now for 0 < s <1, let g; = sg + (1 —s)g. By
the same reasoning, the rotation index pg, () with respect to gy is also an integer
for each s, so the function f(s) = pg, (y) is integer-valued.

In fact, the function f is continuous in s, as can be deduced easily from the
following observations: (1) Our preferred gs-orthonormal frame (E fs) , ES))
depends continuously on s, as can be seen from the formulas (2.5)—(2.6) used to
implement the Gram—Schmidt algorithm. (2) On every interval [a;_1,a;] where y is
smooth, the functions u; and u, satisfying the gs-analogue of (9.5) can be expressed
asu;(t,s) = (Ts(t), E;S) |V(t))gv’ where T (¢t) = y'(t)/|y’(t)|g,- Thus u; and u5 de-
pend continuously on (¢,5) € [d,-_l ,a;] x[0, 1], so the function (u1,uz): [a;—1,a;] X
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y(@)

Fig. 9.13: N(t) is the inward-pointing normal

[0,1] — S! has a continuous lift §: [a;_1,a;] % [0,1] — R, uniquely determined by
its value at one point. (3) At each vertex, it follows from formula (9.4) that the
exterior angle depends continuously on gj.

Because f is continuous and integer-valued, it follows that pe(y) = f(1) =
f(0) = pz(y) = 1, which was to be proved. O

From this point onward, we assume for convenience that our curved polygon y
is given a unit-speed parametrization, so the unit tangent vector field 7'(¢) is equal
to y'(¢). There is a unique unit normal vector field N along the smooth portions
of y such that (y'(¢), N(¢)) is an oriented orthonormal basis for T}y M for each ¢.
If y is positively oriented as the boundary of £2, this is equivalent to N being the
inward-pointing normal to 052 (Fig.9.13). We define the signed curvature of y at
smooth points of y by

en (1) = (Dyy' (). N ().

By differentiating |y’(t)|§, = 1, we see that D;y’(¢) is orthogonal to y’(¢), and there-
fore we can write D;y’(t) = kn (£)N(t), and the (unsigned) geodesic curvature of
y is k(t) = |kn(¢)|. The sign of kx(¢) is positive if y is curving toward §2, and
negative if it is curving away.

Theorem 9.3 (The Gauss—-Bonnet Formula). Let (M, g) be an oriented Riemann-
ian 2-manifold. Suppose 'y is a positively oriented curved polygon in M, and 2 is
its interior. Then

k
/KdA+/KNds+Zs,~=2n, 9.6)

$2 Y i=1
where K is the Gaussian curvature of g, dA is its Riemannian volume form,
€1,...,& are the exterior angles of y, and the second integral is taken with respect

to arc length (Problem 2-32).

Proof. Let (ay,...,a;) be an admissible partition of [a, b], and let (x, y) be oriented
smooth coordinates on an open set U containing £2. Let 0: [a,b] — R be a tangent
angle function for y. Using the rotation index theorem and the fundamental theorem
of calculus, we can write
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" 0'(t)dt. (9.7)

k k
2 =0(b)—0(a) =) & +Z/

i=1 i=1v4i—1

To prove (9.6), we need to derive a relationship among 6, ky, and K.

Let (E1, E;) be the oriented g-orthonormal frame obtained by applying the
Gram—Schmidt algorithm to (d/dx,d/dy) as before. Then by definition of 6 and
N, the following formulas hold at smooth points of y:

Y'(t) = cosO(t) E1ly )+ sin0(t) Ezly )
N(t) = —sin0(t) E1l|y@) +cos0(t) Ezly ).

Differentiating y’ (and omitting the ¢ dependence from the notation for simplicity),
we get

D;y' = —(sin6)0'E; + (cos @)V, Ey + (cos0)0' E> + (sinf)V, E,

9.8
=60'N + (cos0)V, Ey + (sin0)V, E,. ©8)

Next we analyze the covariant derivatives of E£1 and E,. Because (E1, E3) is an
orthonormal frame, for every vector v we have

0=V, |Ei|> =2(VyE . Ey),
0=V, |Es|> =2(VyEa, E»),
0=Vy(E1,Es) = (VyE1, Es) + (E1.Vy E5).

The first two equations show that V, E; is a multiple of E; and V, E5 is a multiple
of E;. Define a 1-form w by

w() = (E1, Vo E3) = —(Vy Ey, Es).
It follows that the covariant derivatives of the basis vectors are given by

VyE1 = —0(v) Ez;

9.9)
VUEZ = a)(v)El.
Thus the 1-form @ completely determines the connection in U. (In fact, when the
connection is expressed in terms of the local frame (E1, E3) as in Problem 4-14, this
computation shows that the connection 1-forms are just = -2 =0, v =
% = 0; but it is simpler in this case just to derive the result directly as we have
done.)

Using (9.8) and (9.9), we can compute
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kN = (D:y',N)
= (0'N,N)+cosO(V, E;,N)+sin6(V, E>,N)
=0 —cosO{w(y)Ez,N)+sin0{w(y)E{,N)
=0 —cos>Ow(y’)—sin O w(y’)
=0"—w().

Therefore, (9.7) becomes

k k k
271228,-4-2/ KN(t)dt—i-Z/

i=1 i=17%-1 i=174%i-1

k
=Zs,~+/x1vds+/a).
i=1 Y 4

The theorem will therefore be proved if we can show that

/w:/ KdA. (9.10)
y 2

Because £2 is a smooth manifold with corners (see [LeeSM, pp.415-419]), we
can apply Stokes’s theorem and conclude that the left-hand side of (9.10) is equal
to [, dw. The last step of the proof is to show that dw = K d A. This follows from
the general formula relating the curvature tensor and the connection 1-forms given
in Problem 7-5; but in the case of two dimensions we can give an easy direct proof.
Since (E1, E») is an oriented orthonormal frame, it follows from Proposition 2.41
that dA(E1, E2) = 1. Using (9.9), we compute

aj aj

w(y'(t))dt

KdA(Ey,E;) = K = Rm(Ey, E3, E3, Eq)
=(VE, Ve, E2— Vg, Vi E>— Vg, B Ea. E1)
= (VE, (0(E2) E1) = Vi, (@(E1) E1) —o((E1, E2))E1, E))
= (E1(0(E2))E1 + (E2)VE, Ey — Ex(w(E1)) Ey
— w(EN)VE, Ey—o([E1. E2))Ey. Ey)
= E1(w(E2)) — Ex(w(E1)) —o([E1, E2])
— dw(E1, E»).

This completes the proof. O

The three local-to-global theorems of plane geometry stated in Chapter 1 follow
from the Gauss—Bonnet formula as easy corollaries.

Corollary 9.4 (Angle-Sum Theorem). The sum of the interior angles of a Euclidean
triangle is 1. O

Corollary 9.5 (Circumference Theorem). The circumference of a Euclidean circle
of radius R is 2 R. O
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OO A

(a) Valid intersections (b) Invalid intersections

Fig. 9.14: Valid and invalid intersections of triangles in a triangulation

Corollary 9.6 (Total Curvature Theorem). If y: [a,b] — R? is a smooth, unit-
speed, simple closed curve such that y'(a) = y'(b), and N is the inward-pointing
normal, then

b
/ K (1)dt = 2. 0
a

The Gauss—Bonnet Theorem

It is now a relatively easy matter to “globalize” the Gauss—Bonnet formula to obtain
the Gauss—Bonnet theorem. The link between the local and global results is pro-
vided by triangulations, so we begin by discussing this construction borrowed from
algebraic topology.

Let M be a smooth, compact 2-manifold. A curved triangle in M is a curved
polygon with exactly three edges and three vertices. A smooth triangulation of M
is a finite collection of curved triangles with disjoint interiors such that the union of
the triangles with their interiors is M, and the intersection of any pair of triangles (if
not empty) is either a single vertex of each or a single edge of each (Fig. 9.14). Every
smooth, compact surface possesses a smooth triangulation. In fact, it was proved by
Tibor Radé [Rad25] in 1925 that every compact topological 2-manifold possesses
a triangulation (without the assumption of smoothness of the edges, of course), in
which every edge belongs to exactly two triangles. There is a proof for the smooth
case that is not terribly hard, based on choosing geodesic triangles contained in
convex geodesic balls (see Problem 9-5).

If M is a triangulated 2-manifold, the Euler characteristic of M (with respect
to the given triangulation) is defined to be

x(M)=V —E+F,

where V' is the number of vertices in the triangulation, £ is the number of edges,
and F is the number of faces (the interiors of the triangles). It is an important result
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of algebraic topology that the Euler characteristic is in fact a topological invariant,
and is independent of the choice of triangulation (see [LeeTM, Cor. 10.25]), but we
do not need that result here.

Theorem 9.7 (The Gauss—Bonnet Theorem). If (M, g) is a smoothly triangulated
compact Riemannian 2-manifold, then

/ KdA=2ny(M),
M

where K is the Gaussian curvature of g and d A is its Riemannian density.

Proof. We may as well assume that M is connected, because if not we can prove
the theorem for each connected component and add up the results.

First consider the case in which M is orientable. In this case, we can choose an
orientation for M, and then | u K dA gives the same result whether we interpret
dA as the Riemannian density or as the Riemannian volume form, so we will use
the latter interpretation for the proof. Let {§2; :i = 1,..., F'} denote the faces of the
triangulation, and for each 7, let {y;; : j = 1,2,3} be the edges of §2; and {6;; : j =
1,2,3} its interior angles. Since each exterior angle is 7 minus the corresponding
interior angle, applying the Gauss—Bonnet formula to each triangle and summing
over i gives

F F 3 F 3 F
Z/Q'KdA—i—ZZ[ knds+Y D (r—0;) =Y 2. 9.11)

i=1 i=1j=1"Yij i=1j=1 i=1

Note that each edge integral appears exactly twice in the above sum, with oppo-
site orientations, so the integrals of «x all cancel out. Thus (9.11) becomes

F 3
KdA+3nF — 0;; =2nF. 9.12)
/ >3,

i=1j=1

Note also that each interior angle ¢;; appears exactly once. At each vertex, the angles
that touch that vertex must have interior measures that add up to 27 (Fig. 9.15); thus
the angle sum can be rearranged to give exactly 27 V. Equation (9.12) thus can be
written

/ KdA =27V —xF. 9.13)
M

Finally, since each edge appears in exactly two triangles, and each triangle has
exactly three edges, the total number of edges counted with multiplicityis 2E = 3F,
where we count each edge once for each triangle in which it appears. This means
that F =2E —2F, so (9.13) finally becomes

/ KdA =2V —-2rnE +2rxF =2nx(M).
M
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Fig. 9.15: Interior angles at a vertex add up to 27

Now suppose M is nonorientable. Then Proposition B.18 shows that there is an ori-
entable connected smooth manifold M that admits a 2-sheeted smooth covering
7: M — M, and Exercise A.62 shows that M is compact. If we endow M with the
metric @ = 7*g, then the Riemannian density of g is given by dA = 7*dA, and
its Gaussian curvature is K = 7*K, so 7*(KdA) = K dA. The result of Problem
2-14 shows that [ KdA =2 [,, K dA.

To compare Euler characteristics, we will show that the given triangulation of M
“lifts” to a smooth triangulation of M. To see this, let y be any curved triangle in
M and let §2 be its interior. By definition, this means that there exists a smooth chart
(U, p) whose domain contains £2 and whose image is a disk D C R2, and such that
(p(ﬁ) = 29, where 2, is the interior of a curved triangle yo in R2. Then ¢! is an
embedding of D into M, which restricts to a diffeomorphism F : £y — £2. Because
D is simply connected, it follows from Corollary A.57 that ¢! (and therefore also
F) has a lift to M, which is smooth because 7 is a local diffeomorphism; and
because the covering is two-sheeted, there are exactly two such lifts F;, F,. Each
lift is injective because 7 o F; = F, which is injective, and their images are disjoint
because if two lifts agree at a point, they must be identical. From this it is straightfor-
ward to verify that the lifted curved triangles form a triangulation of M with twice
as many vertices, edges, and faces as that of M, and thus y LM\ ) = 2y(M). Substi-
tuting these relations into the Gauss—Bonnet theorem for M and dividing through
by 2, we obtain the analogous relation for M. O

The significance of this theorem cannot be overstated. Together with the classi-
fication theorem for compact surfaces, it gives us very detailed information about
the possible Gaussian curvatures for metrics on compact surfaces. The classification
theorem [LeeTM, Thms. 6.15 and 10.22] says that every compact, connected, ori-
entable 2-manifold M is homeomorphic to a sphere or a connected sum of 7 tori,
and every nonorientable one is homeomorphic to a connected sum of 7 copies of the
real projective plane RIP2; the number 7 is called the genus of M. (The sphere is
said to have genus zero.) By constructing simple triangulations, one can show that
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the Euler characteristic of an orientable surface of genus n is 2 —2n, and that of a
nonorientable one is 2 —n. The following corollary follows immediately from the
Gauss—Bonnet theorem.

Corollary 9.8 Let (M, g) be a compact Riemannian 2-manifold and let K be its
Gaussian curvature.

(a) If M is homeomorphic to the sphere or the projective plane, then K > 0 some-
where.

(b) If M is homeomorphic to the torus or the Klein bottle, then either K =0 or K
takes on both positive and negative values.

(¢) If M is any other compact surface, then K < 0 somewhere. O

This corollary has a remarkable converse, proved in the mid-1970s by Jerry Kaz-
dan and Frank Warner: If K is any smooth function on a compact 2-manifold M
satisfying the necessary sign condition of Corollary 9.8, then there exists a Rie-
mannian metric on M for which K is the Gaussian curvature. The proof is a deep
application of the theory of nonlinear partial differential equations. (See [Kaz85] for
a nice expository account.)

In Corollary 9.8 we assumed we knew the topology of M and drew conclusions
about the possible curvatures it could support. In the following corollary we reverse
our point of view, and use assumptions about the curvature to draw conclusions
about the topology of the manifold.

Corollary 9.9 Let (M, g) be a compact Riemannian 2-manifold and K its Gaussian
curvature.

(a) If K > 0 everywhere on M, then the universal covering manifold of M is
homeomorphic to S?, and w,(M) is either trivial or isomorphic to the two-
element group 7./ 2.

(b) If K < 0 everywhere on M, then the universal covering manifold of M is
homeomorphic to R?, and (M) is infinite.

Proof. Suppose first that M has positive Gaussian curvature. From the Gauss—
Bonnet theorem, M has positive Euler characteristic. The classification theorem
for compact surfaces shows that the only such surfaces are the sphere (with trivial
fundamental group) and the projective plane (with fundamental group isomorphic
to Z/2), both of which are covered by the sphere.

On the other hand, suppose M has nonpositive Gaussian curvature. Then its Euler
characteristic is nonpositive, so it is either an orientable surface of genus n > 1 or
a nonorientable one of genus n > 2. Thus the universal covering space of M is
R? if M is the torus or the Klein bottle, and B? in all other cases (see [LeeTM,
Thm. 12.29]), both of which are homeomorphic to R2. The fact that the universal
covering space is noncompact implies that the universal covering map has infinitely
many sheets by the result of Exercise A.62, and then Proposition A.61 shows that
1(M) is infinite. O
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Much of the effort in contemporary Riemannian geometry is aimed at generaliz-
ing the Gauss—Bonnet theorem and its topological consequences to higher dimen-
sions. As we will see in the next few chapters, most of the interesting results have
required the development of different methods.

However, there is one rather direct generalization of the Gauss—Bonnet theorem
that deserves mention. For a compact manifold M of any dimension, the Euler
characteristic of M, denoted by y(M), can be defined analogously to that of a
surface and is a topological invariant (see [LeeTM, Thm. 13.36]). It turns out that
it is always zero for an odd-dimensional compact manifold, but it is a nontrivial
invariant in each even-dimensional case.

The Chern—Gauss—Bonnet theorem equates the Euler characteristic of an even-
dimensional compact oriented Riemannian manifold to a certain curvature integral.
Versions of this theorem were proved by Heinz Hopf in 1925 for an embedded Rie-
mannian hypersurface in Euclidean space, and independently by Carl Allendoerfer
and Werner Fenchel in 1940 for an embedded Riemannian submanifold of any
Euclidean space (well before Nash’s 1956 proof that every Riemannian manifold
has such an embedding). Finally, an intrinsic proof for the general case was discov-
ered by Shiing-Shen Chern in 1944 (see [Spi79, Vol. 5] for a complete discussion
with references). The theorem asserts that for each 2n-dimensional oriented inner
product space V, there exists a basis-independent function

Pf: R(V*) — A2(V*),

called the Pfaffian, with the property that for every oriented compact Riemannian
2n-manifold M,

/ Pf(Rm) = 2n)" y(M).
M

(Depending on how the Pfaffian is defined, you will see different choices of nor-
malization constants on the right-hand side of this equation.) For example, in four
dimensions, the theorem can be written in terms of familiar curvature quantities as
follows:

/ (IRm|*> —4|Rc|> + S?) d Vg = 327 x(M). (9.14)
M

In a certain sense, this might be considered a very satisfactory generalization of
Gauss—Bonnet. The only problem with this result is that the relationship between the
Pfaffian and sectional curvatures is obscure in higher dimensions, so it is very hard
to interpret the theorem geometrically. For example, after he proved the version
of the theorem for Euclidean hypersurfaces, Hopf conjectured in the 1930s that
every compact even-dimensional manifold that admits a metric with strictly positive
sectional curvature must have positive Euler characteristic; to date, the conjecture is
known to be true in dimensions 2 and 4, but it is still open in higher dimensions (see
[Petl6, p. 320]).
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Problems

9-1.

9-2.

9-3.

9-5.

Let (M,g) be an oriented Riemannian 2-manifold with nonpositive Gaus-
sian curvature everywhere. Prove that there are no geodesic polygons with
exactly 0, 1, or 2 ordinary vertices. Give examples of all three if the curvature
hypothesis is not satisfied.

Let (M, g) be a Riemannian 2-manifold. If y is a geodesic polygon in M
with n vertices, the angle excess of y is defined as

EQ) = (Zei)—(n—z)n,
im1

where 01,...,6, are the interior angles of y. Show that if M has constant
Gaussian curvature K, then every geodesic polygon has angle excess equal to
K times the area of the region bounded by the polygon.

Given h € (=R, R), let Cj, be the circle in S?(R) € R3 where z = h (where
we label the standard coordinates in R3 as (x, v,2)), and let §2 be the subset
of S2(R) where z > h. Compute the signed curvature of Cy, and verify the
Gauss—Bonnet formula in this case.

. Let T € R3 be the torus of revolution obtained by revolving the circle

(r —2) +z2 = 1 around the z-axis (see p. 19). Compute the Gaussian curva-
ture of T and verify the Gauss—Bonnet theorem in this case.

This problem outlines a proof that every compact smooth 2-manifold has a
smooth triangulation.

(a) Show thatitsufficestoprovethatthere existfinitely many convex geodesic
polygons whose interiors cover M, and each of which lies in a uni-
formly normal convex geodesic ball. (A curved polygon is called con-
vex if the union of the polygon and its interior is a geodesically convex
subset of M .)

(b) Using Theorem 6.17, show that there exist finitely many points vy, ...,
v and a positive number ¢ such that the geodesic balls B3¢ (v;) are
geodesically convex and uniformly normal, and the balls B, (v; ) cover M .

(c) For each i, show that there is a convex geodesic polygon in B3 (v;)
whose interior contains B¢ (v;). [Hint: Let the vertices be sufficiently
nearby points on the circle of radius 2¢ around v;.]

(d) Prove the result.

(Used on p. 276.)

.Let M CR3bea compact, embedded, 2-dimensional Riemannian subman-

ifold. Show that M cannot have K < 0 everywhere. [Hint: Look at a point
where the distance from the origin takes a maximum.]
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9-7.

9-8.

9-9.

9-10.

9-11.

9-12.

9-13.

9 The Gauss—Bonnet Theorem

Suppose M is either the 2-sphere of radius R or the hyperbolic plane of
radius R for some R > 0. Show that similar triangles in M are congruent.
More precisely, if y; and y, are geodesic triangles in M such that corre-
sponding side lengths are proportional and corresponding interior angles are
equal, then there exists an isometry of M taking y; to .

Use the Gauss—Bonnet theorem to prove that every compact connected Lie
group of dimension 2 is isomorphic to the direct product group S' x S!.
[Hint: See Problem 8-17.]

(a) Show that there is an upper bound for the areas of geodesic triangles in
the hyperbolic plane H?(R), and compute the least upper bound.

(b) Two distinct maximal geodesics in the hyperbolic plane H? are said to be
asymptotically parallel if they have unit-speed parametrizations y1, Y2 :
R — H? such that dg (y1(7),y2(2)) remains bounded as ¢ — +o00 or as
t — —o0. Anideal triangle in H? is a region whose boundary consists of
three distinct maximal geodesics, any two of which are asymptotically
parallel to each other. Show that all ideal triangles have the same finite
area, and compute it. Be careful to justify any limits.

THE GAUSS—BONNET THEOREM FOR SURFACES WITH BOUNDARY: Sup-
pose (M, g) is a compact Riemannian 2-manifold with boundary, endowed
with a smooth triangulation such that the intersection of each curved triangle
with M , if not empty, is either a single vertex or a single edge. Then

/KdA+/ kyds =2my(M),
M M

where ky is the signed geodesic curvature of dM with respect to the inward-
pointing normal N.

Suppose g is a Riemannian metric on the cylinder S! x [0, 1] such that both
boundary curves are totally geodesic. Prove that the Gaussian curvature of
g either is identically zero or attains both positive and negative values. Give
examples of both possibilities.

Prove the plane curve classification theorem (Theorem 1.5). [Hint: Show that
every smooth unit-speed plane curve y(t) = (x(¢), y(¢)) satisfies the second-
order ODE y”(t) = kx (t) N(t), where N is the unit normal vector field given
by N(t) = (—y'(¢),x'(¢)).] (Used on p. 4.)

Use the four-dimensional Chern—Gauss—Bonnet formula (9.14) to prove that
a compact 4-dimensional Einstein manifold must have positive Euler char-
acteristic unless it is flat.
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Chapter 10
Jacobi Fields

Our goal for the remainder of this book is to generalize to higher dimensions some
of the geometric and topological consequences of the Gauss—Bonnet theorem. We
need to develop a new approach: instead of using Stokes’s theorem and differential
forms to relate the curvature to global topology as in the proof of the Gauss—Bonnet
theorem, we study the way that curvature affects the behavior of nearby geodesics.
Roughly speaking, positive curvature causes nearby geodesics to converge, while
negative curvature causes them to spread out (Fig. 10.1). In order to draw topological
consequences from this fact, we need a quantitative way to measure the effect of
curvature on a one-parameter family of geodesics.

We begin by deriving the Jacobi equation, which is an ordinary differential equa-
tion satisfied by the variation field of any one-parameter family of geodesics. A
vector field satisfying this equation along a geodesic is called a Jacobi field. We
then introduce conjugate points, which are pairs of points along a geodesic where
some nontrivial Jacobi field vanishes. Intuitively, if p and g are conjugate along a
geodesic, one expects to find a one-parameter family of geodesic segments that start
at p and end (almost) at g.

After defining conjugate points, we prove a simple but essential fact: the points
conjugate to p are exactly the points where exp, fails to be a local diffeomorphism.
We then derive an expression for the second derivative of the length functional
with respect to proper variations of a geodesic, called the second variation formula.
Using this formula, we prove another essential fact about conjugate points: once a
geodesic passes its first conjugate point, it is no longer minimizing. The converse of
this statement, however, is untrue: a geodesic can cease to be minimizing before it
reaches its first conjugate point. In the last section of the chapter, we study the set
of points where geodesics starting at a given point p cease to minimize, called the
cut locus of p.

In the next two chapters, we will derive geometric and topological consequences
of these facts.
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Fig. 10.1: Geodesics converge in positive curvature, and spread out in negative curvature

The Jacobi Equation

Let (M, g) be an n-dimensional Riemannian or pseudo-Riemannian manifold. In
order to study the effect of curvature on nearby geodesics, we focus on variations
through geodesics. Suppose, therefore, that /7, K € R are intervals, y: [ — M isa
geodesic, and I": K x I — M is a variation of y (as defined in Chapter 6). We say
that I" is a variation through geodesics if each of the main curves I'y(z) = I'(s,t)
is also a geodesic. (In particular, this requires that I" be smooth.) Our first goal is to
derive an equation that must be satisfied by the variation field of a variation through
geodesics.

Theorem 10.1 (The Jacobi Equation). Let (M, g) be a Riemannian or pseudo-
Riemannian manifold, let y be a geodesic in M, and let J be a vector field along
y. If J is the variation field of a variation through geodesics, then J satisfies the
following equation, called the Jacobi equation:

D}J+R(J.y)y =0. (10.1)

Proof. Write T(s,t) = 0,1 (s,t) and S(s,t) = d51(s,t) as in Chapter 6. The
geodesic equation tells us that
DtT =0

for all (s,¢). We can take the covariant derivative of this equation with respect to s,
yielding
DsD,T =0.

Using Proposition 7.5 to commute the covariant derivatives along I", we compute
0= DsD;:T
=D:;D;T+ R(S,T)T
- DtDtS + R(S, T)T,
where the last step follows from the symmetry lemma. Evaluating at s = 0, where
S$(0,7) = J(¢t) and T(0,¢) = y’(t), we get (10.1). O

A smooth vector field along a geodesic that satisfies the Jacobi equation is called
a Jacobi field. As the following proposition shows, the Jacobi equation can be writ-
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ten as a system of second-order linear ordinary differential equations, so it has a
unique solution given initial values for J and D, J at one point.

Proposition 10.2 (Existence and Uniqueness of Jacobi Fields). Let (M, g) be a
Riemannian or pseudo-Riemannian manifold. Suppose I C R is an interval, y: [ —
M is a geodesic, a € I, and p = y(a). For every pair of vectors v,w € T, M, there
is a unique Jacobi field J along y satisfying the initial conditions

J(@) =, D;J(a) =w.

Proof. Choose a parallel orthonormal frame (E;) along y, and write v = v’ E; (a),
w = w'E;(a),and y'(¢) = y' (1)E;(2) in terms of this frame. Writing an unknown
vector field J € X(y) as J(¢t) = J'(¢) E; (t), we can express the Jacobi equation as

JO) + R ()7 (0)y*(0)y' (1) = 0.

This is a system of n linear second-order ODEs for the n functions J i1 —>R.
Making the substitution W* = J* converts it to the following equivalent first-order
linear system for the 2n unknown functions (J LW ):

Jit)y=wi@),
Wi(t) = =R’ (y)) I (1) y* )y’ @).

Then Theorem 4.31 guarantees the existence and uniqueness of a smooth solution
on the whole interval / with arbitrary initial conditions J’(a) = v', Wi(a) = w'.
Since D, J(a) = J'(a)E;(a) = Wi(a)E;(a) = w, it follows that J(t) = J (t) E; (¢)
is the desired Jacobi field. O

Given a geodesic y, let (y) € X(y) denote the set of Jacobi fields along y.

Corollary 10.3. Suppose (M, g) is a Riemannian or pseudo-Riemannian manifold
of dimension n, and y is any geodesic in M. Then §(y) is a 2n-dimensional linear
subspace of X(y).

Proof. Because the Jacobi equation is linear, (y) is a linear subspace of X(y). Let
p = y(a) be any point on y, and consider the linear map from g(y)to T,M & T, M
by sending J to (J(a), D;J(a)). The preceding proposition says precisely that this
map is bijective. O

The following proposition is a converse to Theorem 10.1; it shows that each
Jacobi field along a geodesic segment tells us how some family of geodesics
behaves, at least to first order along y.

Proposition 10.4. Let (M, g) be a Riemannian or pseudo-Riemannian manifold,
and let y: I — M be a geodesic. If M is complete or I is a compact interval,
then every Jacobi field along vy is the variation field of a variation of y through
geodesics.
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Proof. Let J be aJacobi field along y. After applying a translation in ¢ (which does
not affect either the fact that y is a geodesic or the fact that J is a Jacobi field), we
can assume that the interval I contains 0, and write p = y(0) and v = ’(0). Note
that this implies y(t) = exp,(tv) forallz € I.

Choose a smooth curve o: (—¢,&) — M and a smooth vector field V' along o
satisfying

o(0) = p, V() =v,
o’(0) = J(0), DV (0) = D;J(0),

where Dy and D, denote covariant differentiation along o and y, respectively. (They
are easily constructed in local coordinates around p.) We wish to define a variation
of y by setting

I(s.1) = exp, 5 (tV(9)). (10.2)

If M is geodesically complete, this is defined for all (s,¢) € (—¢, &) x I. On the other
hand, if I is compact, the fact that the domain of the exponential map is an open
subset of TM that contains the compact set {(p,tv) : ¢t € I} guarantees that there is
some § > 0 such that I"(s,) is defined for all (s,7) € (—§,8) x I.

Note that

I(0,1) = expy o) (V(0)) = exp, (tv) = y(1), (10.3)
I'(5,0) = expy () (0) = 0 (s). (10.4)
In particular, (10.3) shows that I" is a variation of y. The properties of the exponen-
tial map guarantee that I is a variation through geodesics, and therefore its variation

field W(t) = 051" (0,1) is a Jacobi field along y.
Now, (10.4) implies

ad

I'(s,0) =o'(0) = J(0).
s=0
If we can show that D; W(0) = D, J(0) as well, it then follows from the uniqueness
of Jacobi fields that W = J, and the proposition is proved.
Formula (10.2) shows that each main curve [5(¢) is a geodesic whose initial
velocity is V(s), so

I(t) = V(s).

0
BtF(s,O) = E
t=0

It follows from the symmetry lemma that D;ds1" = D;d,I", and our choice of V
gives

D,W(0) = D,;d;I'(0,0) = D33, I"(0,0) = D3V (0) = D, J(0).

It follows that W = J, as claimed. O
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J() Jl

Fig. 10.2: Tangential Jacobi fields

Proposition 10.5 (Local Isometry Invariance of Jacobi Fields). Suppose (M, g)
and (M g) are Riemannian or pseudo-Riemannian manifolds and ¢ : M — M is
a local isometry. Lety: I — M and y: I — M be geodesics related by y = ¢ oy,
and let J € X(y), J e %()7) be related by d,)(J(t)) = f(t)for allt € I. Then

J is a Jacobi field if and only if J is.

» Exercise 10.6. Prove the preceding proposition.

Basic Computations with Jacobi Fields

There are various situations in which Jacobi fields can be computed explicitly. We
begin by describing the most important of these.

Tangential and Normal Jacobi Fields

Along every geodesic y: I — M, there are always two Jacobi fields that we can
write down immediately (see Fig. 10.2). Because D;y’ =0 and R(y’,y’)y’ =0 by
antisymmetry of R, the vector fields Jo(¢) = y’(¢) and J1(¢t) = ty’(¢) both satisfy
the Jacobi equation by direct computation. If 7 is compact or M is complete, the
vector field Jy is the variation field of the variation I"(s,¢) = y(s +¢), while J; is
the variation field of I"(s,t) = y((1 + s)t). Therefore, these two Jacobi fields just
reflect the possible reparametrizations of y, and do not tell us anything about the
behavior of geodesics other than y itself.

To distinguish these trivial cases from more informative ones, we make the
following definitions. Given a regular curve y: I — M, for each t € I we let

Ty(z)M C TyM denote the one-dimensional subspace spanned by y’(¢), and

Ty(Z)M its orthogonal complement. A tangential vector field along y is a vector

field V € X(y) such that V(¢) € T (t)M for all ¢, and a normal vector field along
y is one such that V(¢) € T. (t)M for all ¢. Thus a normal Jacobi field along y is
a Jacobi field J satisfying J(z) L y/(¢) for all ¢. Let X1 (y) and ¥ T (y) denote the
spaces of smooth normal and tangential vector fields along y, respectively. When y

is a geodesic, 1 (y) and g7 (y) denote the spaces of normal and tangential Jacobi
fields along y, respectively.
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Proposition 10.7. Let (M, g) be a Riemannian or pseudo-Riemannian manifold.
Suppose y: I — M is a geodesic and J is a Jacobi field along y. Then the fol-
lowing are equivalent:

(a) J is a normal Jacobi field.

(b) J is orthogonal to y' at two distinct points.

(¢) Both J and D;J are orthogonal to y' at one point.

(d) Both J and D,J are orthogonal to y' everywhere along y.

Proof. Define a function f: I — R by f(t) = (J(t),y'(t)), so that f(¢) =0 if and
only if J(¢) L y’(z). Using compatibility with the metric and the fact that D,y’ = 0,
we compute
f// — (th-],)//)
=—=(R(7.¥)v"¥')
=—Rm(J,y'.y'.y') =0

by the symmetries of the curvature tensor. Thus, by elementary calculus, f is an
affine function of ¢.

Note that f/(¢) = (D;J(t),y’(t)), which vanishes at ¢ if and only if D,J(r) L
y'(¢). It follows that J(a) and D, J(a) are orthogonal to y’(a) for some a € I if and
only if f and its first derivative vanish at a, which happens if and only if f = 0.
Similarly, J is orthogonal to y’ at two points if and only if f vanishes at two points,
which happens if and only if f is identically zero. If this is the case, then f’ =0 as
well, which implies that both J and D, J are orthogonal to y’ for all ¢. O

Corollary 10.8. Suppose (M, g) is a Riemannian or pseudo-Riemannian n-manifold
andy: I — M is any nonconstant geodesic. Then §*-(y) is a (2n —2)-dimensional
subspace of §(y), and 7 (y) is a 2-dimensional subspace. Every Jacobi field can
be uniquely decomposed as a sum of a tangential Jacobi field plus a normal Jacobi
field.

Proof. As we noted in the proof of Corollary 10.3, for every a € I, the map from
Fy) to TyyM & Tyoy M given by J +— (J(a), D;J(a)) is an isomorphism, and
Proposition 10.7 shows that g+ (y) is exactly the preimage of the subspace consist-
ing of all pairs (v,w) € Ty)M @ Ty )M such that (v,y’(a)) = (w,y'(a)) = 0.
Because this subspace has dimension 21 — 2, it follows that g (y) has the same
dimension.

On the other hand, ¢ T (y) contains Jo(¢) = y’(¢) and J;(¢) = ty’(t), which are
linearly independent over R because y’(z) never vanishes, so it is a subspace of
dimension at least 2. Because $1(y)N g (y) = {0}, the dimension of ¢ T (y) must
be exactly 2, and we have a direct sum decomposition g(y) = $+(»)® 4" (p).
This implies that every J € g (y) has a unique decomposition J = J++ J T, with
Jtedt(y)andJ T e dT(y). O
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Fig. 10.3: The variation of Lemma 10.9

Jacobi Fields Vanishing at a Point

For many purposes, we will be primarily interested in Jacobi fields that vanish at a
particular point. For these, there are some useful explicit formulas.

Lemma 10.9. Let (M, g) be a Riemannian or pseudo-Riemannian manifold, I € R
an interval containing 0, and y: 1 — M a geodesic. Suppose J: I — M is
a Jacobi field such that J(0) = 0. If M is geodesically complete or I is com-
pact, then J is the variation field of the following variation of y through geodesics
(Fig. 10.3):

I(s.1) =exp, (1(v+sw)), (10.5)

where p = y(0), v = y'(0), and w = D, J(0).

Proof. The proof of Proposition 10.4 showed that J is the variation field of a vari-
ation I of the form (10.2), with ¢ any smooth curve satisfying o(0) = p and
0’(0) = 0, and V a smooth vector field along o with V(0) = v and D;V(0) = w. In
this case, we can take o(s) = p and V(s) = v+sw € T, M, yielding (10.5). O

This result leads to some explicit formulas for all of the Jacobi fields vanishing
at a point.

Proposition 10.10 (Jacobi Fields Vanishing at a Point). Ler (M,g) be a Rie-
mannian or pseudo-Riemannian n-manifold and p € M. Suppose y: I — M is
a geodesic such that 0 € I and y(0) = p. For every w € T, M, the Jacobi field J
along y such that J(0) = 0 and D, J(0) = w is given by

J(1)=d(exp,),,(tw), (10.6)
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Fig. 10.4: A Jacobi field in normal coordinates

where v = y'(0), and we regard tw as an element of Ty, (Tp M) by means of the
canonical identification Ty, (TyM) = Tp,M. If (x’) are normal coordinates on a
normal neighborhood of p containing the image of y, then J is given by the formula

J(t) = tw' 3| (10.7)

y(@)’
where w' d; |0 is the coordinate representation of w.

Proof. Under the given hypotheses, Lemma 10.9 showed that the restriction of J
to any compact interval containing O is the variation field of a variation I" through
geodesics of the form (10.5). Using the chain rule to compute J(¢) = d517(0,¢),
we arrive at (10.6). Because every ¢ in the domain of y is contained in some such
compact interval, the formula holds for all such .

In normal coordinates, the coordinate representation of the exponential map is
the identity, so I can be written explicitly in coordinates as

L(s,t)= (" +swh),... . 1" +sw").

(See Fig. 10.4.) Differentiating I" (s, ) with respect to s and setting s = 0 shows that
its variation field J is given by (10.7). O

Corollary 10.11. Suppose (M, g) is a Riemannian or pseudo-Riemannian manifold
and U is a normal neighborhood of p € M. For each q € U ~{p}, every vector in
Ty M is the value of a Jacobi field J along a radial geodesic such that J vanishes

at p.
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Fig. 10.5: The graph of s,

Proof. Let (x') be normal coordinates on U. Giveng = (¢',....q") € U ~{p} and
w=w'0;|g € T;M, the curve y(t) = (tq",...,1¢") is a radial geodesic satisfying
y(0) = p and y(1) = q. The previous proposition showed that J(¢) = tw' ;| is
a Jacobi field along y. Because J(0) = 0 and J(1) = w, the result follows. O

Jacobi Fields in Constant-Curvature Spaces

For metrics with constant sectional curvature, we have a different kind of explicit
formula for Jacobi fields—this one expresses a Jacobi field as a scalar multiple of
a parallel vector field. To handle the various cases concisely, for each ¢ € R, let us
define a function s.: R — R (Fig. 10.5) by

t, ifc =0;
.t . 1
se(t) = Rsmﬁ, 1fc:ﬁ>0; (10.8)

t 1
Rsinh—, ifc=—-—— <0.
R R2

Proposition 10.12 (Jacobi Fields in Constant Curvature). Suppose (M, g) is a
Riemannian manifold with constant sectional curvature c, and y is a unit-speed
geodesic in M. The normal Jacobi fields along y vanishing at t = 0 are the vector
fields of the form

J(@t) =ksc(t)E(t), (10.9)
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where E is any parallel unit normal vector field along vy, k is an arbitrary constant,
and s is defined by (10.8). The initial derivative of such a Jacobi field is

D, J(0) = kE(0), (10.10)

and its norm is
[J()] = sc(@)[|D: J(0)]. (10.11)

Proof. Since g has constant curvature, its curvature endomorphism is given by the
formula of Proposition 8.36:

R(v,w)x = c({w,x)v— (v, x)w).

Substituting this into the Jacobi equation, we find that a normal Jacobi field J satis-
fies
0= D2 +c((y'. vV —(J.7)y)

(10.12)
=D?J +cl,

where we have used the facts that |y|> = 1 and (J,y’) = 0.

Since (10.12) says that the second covariant derivative of J is a multiple of J
itself, it is reasonable to try to construct a solution by choosing an arbitrary parallel
unit normal vector field E along y and setting J(¢) = u(¢) E(¢) for some function u
to be determined. Plugging this into (10.12), we find that J is a Jacobi field if and
only if u is a solution to the differential equation

u” (1) +cu(t) =0.

It is an easy matter to solve this ODE explicitly. In particular, the solutions satisfying
u(0) = 0 are constant multiples of s.. This construction yields all the normal Jacobi
fields vanishing at 0, since there is an (n — 1)-dimensional space of them, and the
space of parallel normal vector fields has the same dimension.

To prove the last two statements, suppose J is given by (10.9), and compute

D;J(0) = ks (0)E(0) = kE(0),

since 52.(0) = 1 in every case. Because E is a unit vector field, | D, J(0)| = |k|, and
(10.11) follows. O

Here is our first significant application of Jacobi fields. Because every tangent
vector in a normal neighborhood is the value of a Jacobi field vanishing at the origin
by Corollary 10.11, Proposition 10.12 yields explicit formulas for constant-
curvature metrics in normal coordinates. To set the stage, we will rewrite the
Euclidean metric on R” in a form that is somewhat more convenient for these comp-
utations.

Let 7: R” ~ {0} — S"~! be the radial projection

w(x) = (10.13)

b
x|’
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and define a symmetric 2-tensor field on R” ~ {0} by

g=n%g, (10.14)
where g is the round metric of radius 1 on S"~1.

Lemma 10.13. On R" ~ {0}, the metric g defined by (10.14) and the Euclidean
metric g are related by
g=dr’+r%g, (10.15)

where r(x) = |x| is the Euclidean distance from the origin.

Proof. Example 2.24 observed that the map @ : R x,S"~! — R” < {0} given by
P(p,w) = pw (10.16)

is an isometry when RT x, S"~1 has the warped product metric dp? @ p?>¢ and
R” ~ {0} has the Euclidean metric (see also Problem 2-4). Because @~ !(x) =
(r(x),7(x)), this means that g = (¢~1)*(dp? ® p?&) = dr* +r2g. O

Theorem 10.14 (Constant-Curvature Metrics in Normal Coordinates). Suppose
(M, g) is a Riemannian manifold with constant sectional curvature c. Given p € M,
let (xi) be normal coordinates on a normal neighborhood U of p; let r be the radial
distance function on U defined by (6.4); and let g be the symmetric 2-tensor defined
in x-coordinates by (10.14). On U ~{p}, the metric g can be written

g =dr*+s5.(r)?g, (10.17)

where s. is defined by (10.8).

Proof. Let g denote the Euclidean metric in x-coordinates, and let g. denote the
metric defined by the formula on the right-hand side of (10.17). By the properties
of normal coordinates, at points of U ~ {p}, all three metrics g, g, and g, make the
radial vector field d, a unit vector orthogonal to the level sets of r. Thus we need
only show that g(w1,w;) = g.(w1,w,) when wy,w, are tangent to a level set of r,
and by polarization it suffices to show that g(w,w)=g.(w,w) for every such
vector w. Note that if w is tangent to a level set r = b, then formulas (10.17) and
(10.15) imply
sc(b) 2
b2
Let g € U~{p} and w € T;M, and assume that w is tangent to the r-level
set containing ¢. Let b = dy(p.q), and let y: [0,b] — U be the unit-speed radial
geodesic from p to g, so the coordinate representation of y is

_ L 1 L n
y(@) = (bq e pd )

where (ql, ... ,q") is the coordinate representation of g. Let J € X(y) be the vector
field along y given by

ge(w.w) = sc(b)’g(w,w) = g(w, w).
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Fig. 10.6: Local isometry constructed from normal coordinate charts

I .
J(t) = ZU)Iai|V(’)’ (10.18)

where w'd; |4 is the coordinate representation for w. By Proposition 10.10, J is a
Jacobi field satisfying D;J(0) = (1/b)w'd;|,, and it follows from the definition
that J(b) = w. Because J is orthogonal to y’ at p and ¢, it is normal by Proposition
10.7. Thus by Proposition 10.12,

lwlg = [J(B)[; = s5c(b)*|DJ(O)];

1 .
=sc(b)2ﬁ‘w’8i|p‘ sc(b)2 w2 = [wl,. o

Corollary 10.15 (Local Uniqueness of Constant-Curvature Metrics). Let (M, g)
and (M g) be Riemannian manifolds of the same dimension with constant sectional
curvature c. For all points p € M, pe M, there exist neighborhoods U of p and U
of p and an isometry ¢ : U — U.

Proof. Choose p € M and p € M, and let U and U be geodesic balls of small
radius ¢ around p and p, respectively. Riemannian normal coordinates give maps
V: U — Be(0) CR" and ¥ : U — B(0) € R”, under which both metrics are
given by formula (10.17) on the complement of the origin (Fig. 10.6). At the origin,
gij = &ij = 6ij. Therefore 1}‘1 o v is the required local isometry. O

Corollary 10.16 (Constant-Curvature Metrics as Warped Products). Suppose
(M, g) is a Riemannian manifold with constant sectional curvature c, and U is a
geodesic ball of radius b centered at p € M. Then U ~{p} is isometric to a warped
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product of the form (0,b) x5, S"~1, where (0,b) C R has the Euclidean metric, and
S"~1 is the unit sphere with the round metric g.

Proof. By virtue of Theorem 10.14, we may consider g to be a metric on the ball
of radius b in R” given by formula (10.17). Let @: (0,h) x S"™! — U ~{p} and
7: R" <~ {0} — S ! be the maps defined by (10.16) and (10.13). Because 7 o
@ restricts to the identity on {p} x S"~! for each fixed p, it follows that @*g =
d*r*g = g, and thus

D* g =dp’> ®sc(p)’§. O

The next corollary describes a formula for integration in polar coordinates with
respect to a constant-curvature metric. It will be useful in our proofs of volume
comparison theorems in the next chapter.

Corollary 10.17 (Polar Decomposition of Integrals). Suppose (M,g) is a Rie-
mannian manifold with constant sectional curvature ¢, and U is an open or closed
geodesic ball of radius b around a point p € M. If f: U — R is any bounded
integrable function, then the integral of f over U can be expressed as

/Uf Ve = /S /0 " Jod(p.rseloy " dpavy,

where dVy is the Riemannian density of g, and ®: (0,b) x S"™! — U ~{p} is
defined in normal coordinates by (10.16).

Proof. Because every geodesic ball is orientable, we might as well choose an ori-
entation on U and interpret dVy as a differential form. Since the boundary of a
geodesic ball has measure zero, it does not matter whether U is open or closed.
Similarly, integrating over U ~ {p} instead of U does not change the value of the
integral. The claim therefore follows from Corollary 10.16 together with the result
of Problem 2-15, which shows that the volume form of the warped product metric
dp® @ s.(p)?g can be written sc(p)”_ldp/\dVg. O

Locally Symmetric Spaces

Here is another application of the theory of Jacobi fields. Recall that a Riemannian
manifold is a locally symmetric space if every p € M has a neighborhood that
admits a point reflection at p. Problem 7-3 showed that every locally symmetric
space has parallel curvature tensor. Now we can prove the converse. The key is the
following lemma due to Elie Cartan. We will use the lemma again in Chapter 12 to
prove a more global result (see Thm. 12.6).

Lemma 10.18. Suppose (M, g) is a Riemannian manifold with parallel curvature
tensor, and for some points p, p € M we are given a linear map A: T,M — TsM
satisfying A*(gp) = gp and A*(Rmp) = Rm . Then there exist a neighborhood U
of p and a local isometry ¢ : U — M such that (p) = p and dg, = A. If M is
complete, then U can be taken to be any normal neighborhood of p.



296 10 Jacobi Fields

Proof. The hypothesis means that VRm = 0, and because covariant differentia-
tion commutes with raising and lowering indices, the curvature endomorphism is
also parallel. If M is complete, let U be any normal neighborhood of p; other-
wise choose U = B.(p), where ¢ > 0 is chosen small enough that both B.(p)
and B.(p) are geodesic balls. Our choice guarantees that ¢ = exp 504 oexp;1 is
a smooth map from U into M, and it satisfies ¢(p) = p and dy, = A. We will
show that |dg,(x)|g = |x|¢ for every tangent vector x at every point g € U. It then
follows by polarization that (dg,(x),deg(y))e = (x,y)e forall x,y € T, M, and
thus p*g = g.

Because d¢, = A is a linear isometry, we have |dg,(x)|; = |x|g forx e T, M,
so we need only consider points ¢ # p. Letg € U ~{p} and x € T, M be arbitrary.
Let y: [0,1] — U be the radial geodesic from p to ¢, given explicitly by y(t) =
exp, (tv) for some v € Tp M. It follows from Corollary 10.11 that there is a Jacobi
field J along y such that J(0) = 0 and J(1) = x; and Proposition 10.10 shows
that it is of the form J(¢) = d(expp)tv(tw) for some w € T, M. Let U = A(v)
and W = A(w) € T M, and define y () = exp;(¢v) and f(t) = d(expp);p (1) for
t €0, 1]. Then ¥ is a geodesic from p = ¢(p) to ¢(q), and J is a Jacobi field along
9.1t follows from the definition of ¢ and the chain rule (using the fact that d4, = A
because A is linear) that dg, od (exp P )v = d(expp)5 0 A, and thus

J(1) = d(exp)s(h) = d(exps)s 0 A(w)
=dggod(exp,), W) =dpg(J(1)) = dgg(x).

so to prove the theorem it suffices to show that |f(1) |g =|J(1)|g-

Let (Eq,..., E,) be a parallel orthonormal frame along y, and let (El e, E,,)

be the parallel orthonormal frame along y such that E; (0) = A(E;(0)). At points of
y, we can express the curvature endomorphism in terms of the frame (E;) as

R(Ei(t), Ej(t))Ex(t) = Riji' (t) E1(¢),

for some smooth functions R; jkl : [0,1] — R. The parallel curvature hypothesis and
the fact that each E; is parallel imply

0= (D/R)(E; (1), E; (1)) Ex (1) = Dy (R(E; (1), E; (1) Ex (1)) = (Riji') (1) E1 1),

so in fact the coefficients R,-jkl(t) are constant in . The same argument shows
that the curvature endomorphism has constant coefficients along ¥ in terms of the
frame (E,) Because our hypotheses guarantee that the coefficients of the two cur-
vature endomorphisms agree at t = 0, they are in fact the same constants along both
geodesics; we write those constants henceforth as R; jkl.

Also, we can write J(¢) = Ji(¢)E;(¢) and f(t) =J (t)E,- (t) for some smooth
functions J?, Ji [0,1] — R. The Jacobi equations for J and J , written in terms of
our parallel frames, read
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(I (0) + R T 1)/ vF =0,
(TN (0) + Riji! T (1) vF = 0.

Proposition 10.10 shows that D,J(O) =w, Wthh we can write as w = w! E; (0).
It also follows that D,J(O) =w=Alw)=w El (0), so the functions J* and J!
satisfy the same system of differential equations with the same initial conditions
JH0) = J! (0) =0 and (Jl)/(O) = (JAI)/(O) = w!. Uniqueness of ODE solutions
implies J! (1) = J! (¢) for all ¢, and in particular J/ (1) = J! (1). Because the frames
(E;) and (E,) are orthonormal, we have

n n

TR =Y (M) =Y (Fm)* =T,

i=1 i=1
thus completing the proof. O

Theorem 10.19 (Characterization of Locally Symmetric Spaces). A Riemannian
manifold is a locally symmetric space if and only if its curvature tensor is parallel.

Proof. One direction is taken care of by Problem 7-3. To prove the converse, sup-
pose (M, g) is a Riemannian manifold with VRm = 0. Let p € M be arbitrary, and
let U be a geodesic ball centered at p. The linear map A = —Id: T,M — T, M
satisfies A*gp = gp,and forall w,x,y,z € T, M, we have

(A*Rmp)(w’x»Y»Z) :Rmp(_w’_x’_y’_z) =Rmp(w’x’y’z)'

It follows that A = —1Id satisfies the hypotheses of Lemma 10.18 with p = p, and
thus there is a local isometry ¢ : U — M such that ¢(p) = p and d¢, = —Id. Since
a local isometry takes geodesics to geodesics, ¢(U) is also a geodesic ball centered
at p of the same radius as U, so ¢ actually maps U to U. If we take the radius of U
small enough, then ¢ is an isometry from U to itself. O

Conjugate Points

Our next application of Jacobi fields is to study the question of when the exponential
map is a local diffeomorphism.

Suppose (M, g) is a Riemannian or pseudo-Riemannian manifold and p € M.
The restricted exponential map exp,, is defined on an open subset &, € T M, and
because it is a smooth map between manifolds of the same dimension, the inverse
function theorem guarantees that it is a local diffeomorphism in a neighborhood of
each of its regular points (points v € T, M where d (exp » )U is surjective and thus
invertible). To see where this fails, we need to identify the critical points of exp,,
(the points where its differential is singular). Proposition 5.19(d) guarantees that 0
is a regular point, but it may well happen that it has critical points elsewhere in &,.
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\T,;S"(R)

S|

Q/ €pr

N

Fig. 10.7: The exponential map of the sphere

_J®

Fig. 10.8: Conjugate points

An enlightening example is provided by the sphere S"(R) (Fig. 10.7). All
geodesics starting at a given point p meet at the antipodal point, which is at a dis-
tance of 7R along each geodesic. The exponential map is a diffeomorphism on the
ball B;gr(0) € T,S"(R), but every point on the boundary of that ball is a critical
point. Moreover, Proposition 10.12 shows that each Jacobi field on S (R) vanishing
at p has its first zero precisely at distance 7 R.

On the other hand, formula (10.7) shows that if U is a normal neighborhood of
p (the image of a star-shaped open set on which exp,, is a diffeomorphism), then no
Jacobi field that vanishes at p can vanish at any other point in U. We might thus be
led to expect a relationship between zeros of Jacobi fields and critical points of the
exponential map.

Let (M,g) be a Riemannian or pseudo-Riemannian manifold, y: I — M a
geodesic, and p = y(a), g = y(b) for some a,b € I. We say that p and ¢ are
conjugate along y if there is a Jacobi field along y vanishing att =aq andt = b
but not identically zero (Fig. 10.8). The order (or multiplicity) of conjugacy is the
dimension of the space of Jacobi fields vanishing at @ and b. From the existence
and uniqueness theorem for Jacobi fields, there is an n-dimensional space of Jacobi
fields that vanish at a; since tangential Jacobi fields vanish at most at one point, the
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order of conjugacy of two points along y can be at most n — 1. This bound is sharp:
Proposition 10.12 shows that if y is a geodesic joining antipodal points p and g on
S™(R), then there is a Jacobi field vanishing at p and ¢ for each parallel normal
vector field along y; thus in that case p and ¢ are conjugate to order exactly n — 1.

The most important fact about conjugate points is that they are the images of
critical points of the exponential map, as the following proposition shows.

Proposition 10.20. Suppose (M, g) is a Riemannian or pseudo-Riemannian mani-
fold, peM,andv e &, CTpM. Let y = y,: [0,1] = M be the geodesic segment
y(t) = exp,(tv), and let ¢ = y(1) = exp,(v). Then v is a critical point of exp,, if
and only if q is conjugate to p along y.

Proof. Suppose first that v is a critical point of exp,. Then there is a nonzero vector
w € Ty (T, M) such that d(expp)v(w) = 0. Because 7, M is a vector space, we
can identify T,,(T, M) with T, M as usual and regard w as a vector in 7, M. Let
I" be the variation of y defined by (10.5), and let J(¢) = d51"(0,¢) be its variation
field. We can compute J(1) as follows:

J(1)=0sI'(0,1) = 8% exp,(v+sw) =d(exp,), (w)=0.
s=0

Thus J is a nontrivial Jacobi field vanishing at # = 0 and # = 1, so ¢ is conjugate to
p along y.

Conversely, if ¢ is conjugate to p along y, then there is some nontrivial Jacobi
field J along y such that J(0) = 0 and J(1) = 0. Lemma 10.9 shows that J is the
variation field of a variation of y of the form (10.5) with w = D;J(0) € T, M, and
the computation in the preceding paragraph shows that d (exp » )v (w)=J(1)=0.
Thus v is a critical point for exp,,. O

As Proposition 10.2 shows, the “natural” way to specify a unique Jacobi field
is by giving its initial value and initial derivative. However, in Corollary 10.11 and
Proposition 10.20, we had to construct Jacobi fields along a geodesic satisfying
J(0) =0and J(1) = w for some specific vector w. More generally, one can pose the
two-point boundary problem for Jacobi fields: given v € T),(;) M and w € T, ) M,
find a Jacobi field J along y such that J(a¢) = v and J(b) = w. Another interesting
property of conjugate points is that they are the obstructions to solving the two-point
boundary problem, as the next proposition shows.

Proposition 10.21 (The Two-Point Boundary Problem for Jacobi Fields). Sup-
pose (M, g) is a Riemannian or pseudo-Riemannian manifold, and y : [a,b] — M
is a geodesic segment. The two-point boundary problem for Jacobi fields along y is
uniquely solvable for every pair of vectors v € T,y M and w € T, )M if and only
if y(a) and y(b) are not conjugate along y.

Proof. Problem 10-8. O



300 10 Jacobi Fields

The Second Variation Formula

Our next task is to study the question of which geodesic segments are minimizing.
In the remainder of the chapter, because of the complications involved in studying
lengths on pseudo-Riemannian manifolds, we restrict our attention to the Riemann-
ian case.

In our proof that every minimizing curve is a geodesic, we imitated the first-
derivative test of elementary calculus: if a geodesic y is minimizing, then the first
derivative of the length functional must vanish for every proper variation of . Now
we imitate the second-derivative test: if y is minimizing, the second derivative must
be nonnegative. First, we must compute this second derivative. In keeping with clas-
sical terminology, we call it the second variation of the length functional.

Theorem 10.22 (Second Variation Formula). Suppose (M, g) is a Riemannian
manifold. Let y : [a,b] — M be a unit-speed geodesic segment, I' : J x[a,b] - M
a proper variation of y, and V its variation field. The second variation of Lg (Iy) is
given by the following formula:

d2

b
= Lg(rs)=/ (|D,VJ'|2—Rm(VJ',)/,)/,Vl))dt, (10.19)

s=0
where VL is the normal component of V.

Proof. Asusual, write T = d,I" and S = 951", and let (ay,...,ax) be an admissible
partition for I". We begin, as we did when computing the first variation formula,
by restricting to a rectangle J X [a;_1,a;] where I" is smooth. From (6.3) we have,

for every s,
d @i (D,S,T)dl

d_SLg(Fs“ai—l,ai]) = /ail (T, T)1/2"

Differentiating again with respect to s, and using the symmetry lemma and Propo-
sition 7.5, we obtain

d2
FLg(FS“ai—lﬂi])
4 ((DyD;S,T) (D;S,DsT) 1(D;S.TV2(DsT,T)
- [ (GEE e )
_/ai ((DtDsS-l-R(S»T)S»T) (D:S,D,S) (D,S,T)Z)d
ai_

i—

7| 7| T

Now restrict to s = 0, where |T| = 1:
2

ds?

a;
Le(Tlasa) = [ (DDLS.T) = Rm(S.T.1.5)
di—1 (10.20)

+|D;S|?—(D;S,T)*)dt

s=0

5s=0



The Second Variation Formula 301

Because D; T = D;y’ = 0 when s = 0, the first term in (10.20) can be integrated
as follows:

t=a;

a; ai
/ (D; DS, T)dt :/ —(DyS,T)dt = (DS, T) . (10.21)
ai—1 ai—1 dt t=a;—

Notice that S(s,¢) = 0 for all s at the endpoints t = a9 = a and t = ay = b because
I" is a proper variation, so DgS = 0 there. Moreover, along the boundaries {t = a; }
of the smooth regions, DgS = Dy(dsI") depends only on the values of I" when
t = a;, and it is smooth up to the line {t = a;} from both sides; therefore DS is
continuous for all (s,7). Thus when we insert (10.21) into (10.20) and sum over i,
the boundary contributions from the first term all cancel, and we get

2

b
e Lg(rs)zfa (ID¢S|>—(D;S.T)>~Rm(S,T.T,S))dt

§=0 ; s=0 (10.22)
- / (IDV2 = (DeV.y'Y = Rm(V.y' .y V) dt.
a

Every vector field V along y can be written uniquely as V = V T + V1, where
VT is tangential and V' is normal. Explicitly,

vTi=.yyy: vi=v-vT
Because Dy’ = 0, it follows that
D,(V")=(DV.y')y' =((D:V);  D(V')=(D, V)"
Therefore,
DV =[(DV)T 24D V)2 = (D V.y)? + DV
Also, the fact that Rm(y’, Y-, ) = Rm(-, -y, y’) = 0 implies
Rm(V,y' .y . V)= Rm(V+t,y' y' v,

Substituting these relations into (10.22) gives (10.19). |

It should come as no surprise that the second variation depends only on the nor-
mal component of V', because the tangential component of V' contributes only to a
reparametrization of y, and length is independent of parametrization. For this rea-
son, we will generally restrict our attention to variations of the following type: if y
is an admissible curve, a variation of y is called a normal variation if its variation
field is a normal vector field along y.

Given a geodesic segment y: [a,b] — M, we define a symmetric bilinear form
I, called the index form of y, on the space of normal vector fields along y by



302 10 Jacobi Fields

b
I(V,W) = / ((Dt V,DiW)—Rm(V,y',y, W)) dt. (10.23)
a
You should think of I(V, W) as a sort of “Hessian” or second derivative of the length
functional. Because every proper normal vector field along y is the variation field
of some proper normal variation, the preceding theorem can be rephrased in terms
of the index form in the following way.

Corollary 10.23. Suppose (M, g) is a Riemannian manifold. Let y : [a,b] — M be
a unit-speed geodesic, I a proper normal variation of y, and V its variation field.
The second variation of Lg (') is I(V, V). If y is minimizing, then 1(V,V) > 0 for
every proper normal vector field along y. O

The next proposition gives another expression for I, which makes the role of the
Jacobi equation more evident.

Proposition 10.24. Let (M, g) be a Riemannian manifold and let y : [a,b] — M be
a geodesic segment. For every pair of piecewise smooth normal vector fields V, W
along y,

b
I(V,W) = —/ (DEV + R(V.y"y',W)dt
! i—b k—1
=) {ADV . W(ap)), (10.24)

t=a

+<DtV5W)

i=1

where (ay, ...,ar) is an admissible partition for V and W, and A; D,V is the jump
in D,V att = a;.

Proof. On every subinterval [a;_1,a;] where V and W are smooth,

d
= (D;V W) =(D}V W)+ (D;V.D;W).

Thus, by the fundamental theorem of calculus,

a; a; aj
/ (D;V,D;W)dt = —[ (DFV.W)dt+ (D, V. W)
ai—1 ai—1 a;—q
Summing over i, and noting that W is continuous at t = a; fori =1,...,k—1, we
get (10.24). |

Corollary 10.25. If y is a geodesic segment and V is a proper normal piecewise
smooth vector field along y, then 1(V,W) = 0 for every proper normal piecewise
smooth vector field W along y if and only if V is a Jacobi field.

Proof. Problem 10-11. O
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Geodesics Do Not Minimize Past Conjugate Points

We can use the second variation formula to prove another extremely important fact
about conjugate points: no geodesic is minimizing past its first conjugate point. The
geometric intuition is as follows. Suppose y : [a,c] — M is a minimizing geodesic
segment, and y(b) is conjugate to y(a) along y for some a < b < c. If J is a Jacobi
field along y that vanishes at = a and ¢ = b, then there is a variation of y through
geodesics, all of which start at y(a). Since J(b) = 0, we can expect them to end
“almost” at y(b). If they really did all end at y(b), we could construct a broken
geodesic by following some Iy from y(a) to y(b) and then following y from y(b)
to y(c), which would have the same length and thus would also be a minimizing
curve. But this is impossible: as the proof of Theorem 6.4 shows, a broken geodesic
can always be shortened by rounding the corner.

The problem with this heuristic argument is that there is no guarantee that we
can construct a variation through geodesics that actually end at y(b). The proof of
the following theorem is based on an “infinitesimal” version of rounding the corner
to obtain a shorter curve.

Given a geodesic segment y: [a,c] — M, we say that y has a conjugate point
if there is some b € (a, c] such that y(b) is conjugate to y(a) along y, and y has an
interior conjugate point if there is such a b € (a,c).

Theorem 10.26. Let (M, g) be a Riemannian manifold and p,q € M. If y is a unit-
speed geodesic segment from p to q that has an interior conjugate point, then there
exists a proper normal vector field X along y such that [(X,X) < 0. Therefore, y
is not minimizing.

Proof. Suppose y: [a,c] — M is a unit-speed geodesic segment, and y(b) is con-
jugate to y(a) along y for some a < b < c¢. This means that there is a nontrivial
normal Jacobi field J along y that vanishes at t = a and t = b. Define a vector field
V along all of y by

J(t), tela,b];

O=10" rcpal

This is a proper, normal, piecewise smooth vector field along y.

Let W be a smooth proper normal vector field along y such that W(b) is equal to
the jump AD,V att = b (Fig. 10.9). Such a vector field is easily constructed with
the help of an orthonormal frame along y and a bump function. Note that AD,;V =
—D; J(b) is not zero, because otherwise J would be a Jacobi field satisfying J(b) =
D;J(b) = 0, and thus would be identically zero.

For small positive ¢, let X, =V + ¢W. Then

I(Xe, X)) =I(V +eW,V 4+eW)
=1V, V)+2eI(V.W)+I(W,W).

Since V satisfies the Jacobi equation on each subinterval [a,b] and [b,c], and
V(b) =0, (10.24) gives
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Fig. 10.9: Constructing a vector field X with I(X,X) <0

I(V.V)=—(AD,V.,V(b)) =0.

Similarly,
I(V.W)=—(AD, V. W(b)) = = WD)
Thus
[(Xe, X,) = =26 |[W(Db) > + LW, W).
If we choose ¢ small enough, this is strictly negative. O

There is a partial converse to the preceding theorem, which says that a geodesic
without conjugate points has the shortest length among all nearby curves in any
proper variation. Before we prove it, we need the following technical lemma.

Lemma 10.27. Let y: [a,b] — M be a geodesic segment, and suppose J, and
Jo are Jacobi fields along y. Then (D;J1(t), J2(t)) — (J1(2), D; J2(2)) is constant
along y.

Proof. Let f(t) = (D;J1(t),J2(t)) — (J1(t), D¢ J2(2)). Using the Jacobi equation,
we compute

F/(t) = (D7 J1(t). Jo(t)) + (D J1 (1), Dy I (1))
—(DyJ1(t), Dy J2(t)) — (J1(t). D} J2(1))
= —Rm(J1(1),Y'(1),Y (1), Jo()) + Rm(J2(2), ¥ (1), Y1), J1 () = O,

where the last equality follows from the symmetries of the curvature tensor. O

Theorem 10.28. Let (M, g) be a Riemannian manifold. Suppose y: [a,b] — M is
a unit-speed geodesic segment without interior conjugate points. If V' is any proper
normal piecewise smooth vector field along y, then I1(V, V) > 0, with equality if and
only if V is a Jacobi field. In particular, if y(b) is not conjugate to y(a) along vy,
then I(V,V) >0 unless V=0.

Proof. To simplify the notation, we can assume (after replacing ¢ by ¢t —a) that
a=0.Let p =y(0),and let (wy,...,w,) be an orthonormal basis for 7, M, chosen
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so that wy = y’(0). For each o = 2,...,n, let J, be the unique normal Jacobi field
along y satisfying J(0) = 0 and D; J4(0) = wy,.

Our assumption that y has no interior conjugate points guarantees that no linear
combination of the J,(#)’s can vanish for any ¢ € (0,b), and thus (J4(¢)) forms a
basis for the orthogonal complement of y'(¢) in T, ;) M for each such ¢. Thus, given
V as in the statement of the theorem, for ¢ € (0,b) we can write

V(t) =v*(t)Ja(t) (10.25)

for some piecewise smooth functions v*: (0,b) — R . (Here and in the remainder
of this proof, the summation convention is in effect, with Greek indices running
from 2 ton.)

In fact, each function v* has a piecewise smooth extension to [0, b]. To see why,
let (xi) be the normal coordinates centered at p determined by the basis (w;). For
sufficiently small # > 0, we can express J(¢) and V' (¢) in normal coordinates as

d
Ju(t)=t— , a=2,...,n,
Ixa |y (r)

d
V(t) = v¥(t)Jo (1) = tv*(1) T o
o ly(t

(The formula for Jy(¢) follows from Prop. 10.10.) Because V is smooth on [0, §)
for some § > 0 and V(0) = 0, it follows from Taylor’s theorem that the components
of V(¢)/t extend smoothly to [0,§), which shows that v* is smooth there. Because
V(b) =0, it follows similarly that v* extends smoothly to ¢ = b as well. (If Jo(b) =
0, the argument is the same as for + = 0, while if not, it is even easier.)

Let (ag,...,ar) be an admissible partition for V. On each subinterval (a;—1,a;)
where V' is smooth, define vector fields X and Y along y by

X =v¥*DyJy, Y =0%Jy.

Then D;V = X 4+ Y on each such interval, and the fact that V' is piecewise smooth
implies that D, V', X, and Y extend smoothly to [a;_1,a;] for each i, with one-sided
derivatives at the endpoints.

To compute I(V,V), we will use the following identity, which holds on each
subinterval [a;_1,a;]:

d
|D:VI>=Rm(V,y'.y'. V)= E(V,X>+|Y|2. (10.26)

Granting this for now, we use the fundamental theorem of calculus to compute
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k a;
I(V,V) = Z/‘ (ID: V> = Rm(V.y',y',V))dt

i=1Y4%-1

k
=Y (n.X)

i=1

t=a; b 2
+f Y |2 dt,
I=a;— 0

where the boundary terms are to be interpreted as limits from above and below.
Because X and V' are both continuous on [0, ], the boundary terms att=ay, ..., dx—1
all cancel, and because V(0) = V(b) = 0, the boundary terms at t =0 and t = b
are both zero. It follows that I(V,V) = fob |Y|?dt > 0.1f I(V,V) =0, then Y is
identically zero on (0,b). Since the J,,’s are linearly independent there, this implies
that v* = 0 for each «, so each v¥ is constant. Thus V is a linear combination of
Jacobi fields with constant coefficients, so it is a Jacobi field.
It remains only to prove (10.26). Note that

%(V,X) = (D, V.X)+(V.D;X) = (X +Y,X)+(V.D, X). (10.27)

The Jacobi equation gives
DX =0*DyJy + v"‘DIZJa =0*D;Jy —v*R(Jy,y)y = 0D Jo— R(V,y))y .
Therefore,

(DX, V)= (ﬁ“D,Ja,vﬂ Jg)—Rm(V,y'.y" V). (10.28)

Because (D;Jy, Jg) — (Jo, D: Jg) = 0 at t = 0, it follows from Lemma 10.27 that
(DyJo,Jg) = (Ju, D; Jg) all along y. Thus we can simplify the first term in (10.28)
as follows:

(09D Jo,vP Jg) = 0vP (D, Jy, Jg) = 0%vP (Jy, D, Jp)
= (0 Jy,vP D, Jg) = (¥, X).

Inserting this into (10.28), and then inserting the latter into (10.27) yields

d
%(V,X) =(X+Y,X)+ (Y, X)—Rm(V,y',y',V)

= |X + Y|2 - |Y|2 _Rm(Vv y/v y/v V)v
which is equivalent to (10.26). O

The next corollary summarizes the results of Theorems 10.26 and 10.28.

Corollary 10.29. Let (M, g) be a Riemannian manifold, and let y: [a,b] — M be
a unit-speed geodesic segment.

(a) If y has an interior conjugate point, then it is not minimizing.
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Fig. 10.10: Geodesics on the cylinder

(b) If y(a) and y(b) are conjugate but y has no interior conjugate points, then
for every proper normal variation I' of y, the curve Iy is strictly longer
than y for all sufficiently small nonzero s unless the variation field of I is
a Jacobi field.

(¢) If y has no conjugate points, then for every proper normal variation I of y,
the curve Iy is strictly longer than y for all sufficiently small nonzero s. O

There is a far-reaching quantitative generalization of Theorems 10.26 and 10.28,
called the Morse index theorem, which we do not treat here. The index of a geodesic
segment is defined to be the maximum dimension of a linear space of proper normal
vector fields along the segment on which 7 is negative definite. Roughly speaking,
the index is the number of independent directions in which y can be deformed to
decrease its length. (Analogously, the index of a critical point of a function on R”
is defined as the number of negative eigenvalues of its Hessian.) The Morse index
theorem says that the index of every geodesic segment is finite, and is equal to the
number of its interior conjugate points counted with multiplicity. (Proofs can be
found in [Mil63, CEOS8, dC92].)

Cut Points

Theorem 10.26 showed that once a geodesic passes its first conjugate point, it ceases
to be minimizing. The converse, however, is not true: a geodesic can cease to be
minimizing without reaching a conjugate point. For example, on the cylinder S' x R
with the product metric, there are no conjugate points along any geodesic; but no
geodesic segment that wraps more than halfway around the cylinder is minimizing
(Fig. 10.10).

Therefore it is useful to make the following definitions. Suppose (M, g) is a
complete, connected Riemannian manifold, p is a point of M, and v € T, M . Define
the cut time of (p,v) by

tew(p,v) = sup {b > 0 : the restriction of y, to [0,b] is minimizing},
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where y, is the maximal geodesic starting at p with initial velocity v. Because y, is
minimizing as long as its image stays inside a geodesic ball (Prop. 6.11), fcy(p,v)
is always positive; but it might be 4oc.

If 7ou(p,v) < o0, the cut point of p along y, is the point y (feu(p.v)) € M.
The cut locus of p, denoted by Cut(p), is the set of all g € M such that ¢ is the
cut point of p along some geodesic. Because the question whether a geodesic
is minimizing is independent of parametrization, the cut point of p along y, is the
same as the cut point along y,, for every positive constant A, so we may as well
restrict attention to unit vectors v. Theorem 10.26 says that the cut point (if it exists)
occurs at or before the first conjugate point along every geodesic.

The determination of the cut locus of a point is typically very difficult; but the
next example gives some special cases in which it is relatively simple.

Example 10.30 (Cut Loci).

() If (S"(R). &R) is a sphere with a round metric, the cut locus of every point
p € S"(R) is the singleton set containing only the antipodal point — p.

(b) On a product space S” (R) x R™ with the product metric, the cut locus of every
point (p, x) is the set {—p} x R™. The case n = m = 1 is illustrated in Figure
10.10. i

» Exercise 10.31. Verify the claims in the preceding example.

Proposition 10.32 (Properties of Cut Times). Suppose (M, g) is a complete, con-
nected Riemannian manifold, p € M, and v is a unit vector in T,M. Let ¢ =
teu(p,v) € (0,00].

(@) If 0 < b < c, then yy|[0,5] has no conjugate points and is the unique unit-speed
minimizing curve between its endpoints.

(D) If ¢ < 00, then yy|o,c] is minimizing, and one or both of the following condi-
tions are true:

e v, (c) is conjugate to p along y,.
e There are two or more unit-speed minimizing geodesics from p to y,(c).

Proof. Suppose first that 0 < b < ¢. By definition of ., (p,v), there is a time b’
such that b < b" < ¢ and yy|[o,p] is minimizing. Then y,(f) cannot be conjugate
to p along y, for any 0 < ¢ < b (Thm. 10.26), and y;|[9 5] is minimizing because
a shorter admissible curve from p to y,(b) could be combined with yy|[p 51 to
produce a shorter admissible curve from p to y,(b’), contradicting the fact that
Yvl[0,7] 1S minimizing.

To see that yy|[,5] is the unique unit-speed minimizing curve between its end-
points, suppose for the sake of contradiction that o : [0,h] — M is another. Note
that o’(b) # y,,(b), since otherwise o and y,, would agree on [0, b] by uniqueness of
geodesics. Define a new unit-speed admissible curve y: [0,b'] — M that is equal to
o(t) fort € [0,b] and equal to y, (¢) for ¢ € [b,b’]. Then ¥ has length b/, so it is also
a minimizing curve from p to y,(b’); but it is not smooth at t = b, contradicting the
fact that minimizing curves are smooth geodesics. This completes the proof of (a).
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Now suppose ¢ < co. By definition of ., (p,v), there is a sequence of times
b; /' ¢ such that the restriction of y, to [0,b;] is minimizing. By continuity of the
distance function, therefore,

g (p.yo(c)) = lim de (p.yu(br)) = lim by =c.

which shows that y, is minimizing on [0, c]. To prove that one of the options in
(b) must hold, assume that y,(c) is not conjugate to p along y,. We will prove the
existence of a second unit-speed minimizing geodesic from p to y,(c).

Let (b;) be a sequence of real numbers such that b; N\ ¢. By definition of cut time,
Yvl[0,5;] 1S not minimizing, so for each i there is a unit-speed minimizing geodesic
0;: [0,a;] = M such that 0; (0) = p, 0;(a;) = yy(b;), and a; < b;.Set w; =0/(0) €
Tp, M, so each w; is a unit vector. By compactness of the unit sphere, after passing
to a subsequence we may assume that w; converges to some unit vector w. Since the
a;’s are all positive and bounded above by by, by passing to a further subsequence,
we may also assume that a; converges to some number a. Then by continuity of the
exponential map, 0;(a;) = exp,(a;w;) converges to exp,(aw). But we also know
that 0; (a;) = yv(b;), which converges to yy(c), so exp,(aw) = yy(c). Moreover,
by continuity of the distance function,

¢ = dg(p.yo()) = lim dg(p.0i(@) = lim a; = a.

Thus o: [0,c] — M given by o(f) = exp,(fw) is also a unit-speed minimizing
geodesic from p to y,(c). We need to show that it is not equal to y,.

The assumption that y,(c) is not conjugate to p along y, implies that cv is a
regular point of exp,, (Prop. 10.20), so exp,, is injective in some neighborhood V/
of cv. Note that expp(a,-wi) = expp(b,-v) for each i, while a; w; # b;v, since w;
and v are unit vectors and a; < b;. Since b;v converges to cv, we conclude that
b;v € V for sufficiently large i, and thus by injectivity a; w; ¢ V for these values of
i. Therefore cw = lim; oo a; w; # cv, which implies w # v and thus o # y,, as
claimed. O

Next we examine how the cut time varies as the initial point and initial velocity
of the geodesic vary. Recall that the unit tangent bundle of a Riemannian manifold
(M,g)isthesubset UTM = {(p,v) e TM : |v|g =1} € TM. In the next theorem,
we interpret continuity of a function into (0, co] using the usual definition of infinite
limits as in ordinary calculus.

Theorem 10.33. Suppose (M, g) is a complete, connected Riemannian manifold.
The function t.,;: UTM — (0,00] is continuous.

Proof. Let (p,v) € UTM be arbitrary, and let (p;,v;) be any sequence in UTM
converging to (p,v). Put ¢; = tey(pi, vi), and

b = liminfc¢;, ¢ = limsupgc;.
i—o00 i—00



310 10 Jacobi Fields

We will show that ¢ < t.y(p,v) < b, which implies ¢; — tcy(p,v).

To show that ¢ <t (p,v), suppose first that ¢ < co. By passing to a subse-
quence, we may assume that ¢; is finite for each i and ¢; — c. Proposition 10.32
shows that y,, is minimizing on [0,¢;]. By continuity of the exponential map,
exp(pi,civi) — exp(p,cv) as i — oo, and therefore by continuity of the distance
function we have

dg(p.exp(p,cv)) = il_i)rgodg(pi,eXp(Pi,Civi)) = ilirgoci =c.

This shows that y, is minimizing on [0, c], and therefore z.,(p,v) > ¢, as claimed.

Now suppose ¢ = oco. Again, by passing to a subsequence, we may assume
¢; — oo. It follows that for every positive number cg, the geodesic y,, is mini-
mizing on [0, co] for i sufficiently large, and it follows by continuity as above that
Y 18 minimizing on [0, c]. Since c¢o was arbitrary, this means that z.,,(p, v) = oc.

Next we show that 7., (p,v) < b. If b = o0, there is nothing to prove, so assume
b < 0o. Again by passing to a subsequence, we may assume that ¢; is finite for each
i and ¢; — b. By virtue of Proposition 10.32, either there are infinitely many indices
i for which y,, (c;) is conjugate to p; along y,,, or there are infinitely many i for
which there exists a second minimizing unit-speed geodesic o; from p; to vy, (¢;).

In the first case, because conjugate points are critical values of the restricted
exponential map, which can be detected in coordinates by the vanishing of a deter-
minant of a matrix of first derivatives, it follows by continuity that y, () is also a
critical value, and thus y, () is conjugate to p along y,,. Then Theorem 10.26 shows
that ., (p,v) <b.

In the second case, let w; be the unit vector in T, M such that o; = y,,, . Because
the components of w; with respect to a local orthonormal frame lie in S"~!, by
passing to a subsequence we may assume (p;.w;) — (p,w). If y,(b) is conjugate
to p along yy, then .y (p,v) < b as above, so we may assume that y, () is not a
conjugate point. This means that hv is a regular point of the restricted exponential
map exp,,. Since the set of such regular points is an open subset of 7'M, there is
some ¢ > 0 such that exp,, is injective on the g-neighborhood of ¢;w; for all i
sufficiently large. This implies that |c;w; —c; v;|g > € for all such i, and therefore
the limits bw and bv are distinct. Thus yy, |[o p] is another minimizing geodesic from
p to yy(b), which by Proposition 10.32 implies that 7., (p,v) < b. O

Given p € M, we define two subsets of 7, M as follows: the tangent cut locus
of p is the set
TCL(p) = {v eT,M:|v| = tcut(p,v/|v|)},

and the injectivity domain of p is
ID(p) = {v eTpM :|v| < tcm(p,v/|v|)}.

It is immediate that TCL(p) = dID(p), and Cut(p) = exp, (TCL(p)). Further
properties of Cut(p) and ID(p) are described in the following theorem.
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Theorem 10.34. Let (M, g) be a complete, connected Riemannian manifold and
peM.

(a) The cut locus of p is a closed subset of M of measure zero.
(b) The restriction of exp,, to ID(p) is surjective.
(¢) The restriction of exp, to ID(p) is a diffeomorphism onto M ~ Cut(p).

Proof. To prove that the cut locus is closed, suppose (g;) is a sequence of points
in Cut(p) converging to some g € M. Write ¢; = exp,,(feu(p,vi)v;) for unit
vectors v;. By compactness of the unit sphere, we may assume after passing to
a subsequence that v; converges to some unit vector v, and by Theorem 10.33,
teur(p,v) = lim; 00 feue(p, v; ). Because convergent sequences in a metric space are
bounded, the sequence (Z..(p,v;)) is bounded, and therefore z.,(p,v) < co. By
continuity of the exponential map, therefore, ¢ must be equal to exp, (feu (P, v)),
which shows that ¢ € Cut(p), and thus Cut(p) is closed.

To see that Cut(p) has measure zero, note first that in any polar coordinates
(91, ....0""1.r) on T, M, the set TCL(p) can be expressed locally as the graph of
the continuous function r = tcut(p, @n,..., 9"_1)), using the fact that 61,...,6m 1
form smooth local coordinates for the unit sphere in 7, M . Since graphs of continu-
ous functions have measure zero (see, for example, [LeeSM, Prop. 6.3]), it follows
that TCL(p) is a union of finitely many sets of measure zero and thus has measure
zero in T, M ; and because smooth maps take sets of measure zero to sets of measure
zero (see [LeeSM, Prop. 6.4]), Cut(p) = exp,, (TCL( p)) has measure zero in M.
This proves (a).

Part (b) follows from the fact that every point of M can be connected to p by a
minimizing geodesic. To prove (c), note that it follows easily from the definitions
that exp,, (ID( p)) = M ~ Cut(p). Also, the definition of ID(p) guarantees that no
point in exp,, (ID(p)) can be a cut point of p, and thus no such point can be a
conjugate point either. The absence of cut points implies that exp,, is injective on
ID(p), and the absence of conjugate points implies that it is a local diffeomorphism
there. Together these two facts imply that it is a diffeomorphism onto its image. O

The preceding theorem leads to the following intriguing topological result about
compact manifolds.

Corollary 10.35. Every compact, connected, smooth n-manifold is homeomorphic
to a quotient space of B" by an equivalence relation that identifies only points on
the boundary.

Proof. Let M be a compact, connected, smooth n-manifold, let p be any point of
M, and let g be any Riemannian metric on M . Because a compact metric space has
finite diameter, every unit vector in 7, M has a finite cut time, no greater than the
diameter of M. Let B1(0) € T, M denote the closed unit ball in 7, M, and define a

map f: El(O) — ID(p) by

v
feuc| P —) v, v#D0,
f) = ( lvlg
0 v=0.
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It follows from Theorem 10.33 that f is continuous, and it is easily seen to be
bijective, so it is a homeomorphism by the closed map lemma (Lemma A.4).
Since every orthonormal basis for 7, M yields a homeomorphism of B1(0) with
B", it follows that ID(p) is homeomorphic to B" and the homeomorphism takes
TCL(p) = dID(p) to S*~ 1.

By Theorem 10.34, exp,, restricts to a surjective map from ID(p) to M, and it
is a quotient map by the closed map lemma. It follows that M is homeomorphic to
the quotient of ID(p) by the equivalence relation v ~ w if and only if exp,(v) =
exp,(w). Since exp,, is injective on ID(p) and the images of ID(p) and dID(p) =
TCL(p) are disjoint, the equivalence relation identifies only points on the boundary
of ID(p). O

Recall from Chapter 6 that the injectivity radius of M at p, denoted by inj(p),
is the supremum of all positive numbers a such that exp , is a diffeomorphism from
B4(0) € T, M toits image. The injectivity radius is closely related to the cut locus,
as the next proposition shows.

Proposition 10.36. Let (M, g) be a complete, connected Riemannian manifold. For
each p € M, the injectivity radius at p is the distance from p to its cut locus if the
cut locus is nonempty, and infinite otherwise.

Proof. Given p € M, let d denote the distance from p to its cut locus, with the
convention that d = oo if the cut locus is empty. Let a € (0,00] be arbitrary, and
let B, C T, M denote the set of vectors v € T, M with |v|, <a (so By =T, M if
a = o0o). We will show that the restriction of exp, to B, is a diffeomorphism onto
its image if and only if @ < d, from which the result follows.

First suppose a < d. By definition of d, no point of the form exp , (v) with v € B,
can be a cut point of p, so B, C ID(p). It follows from Theorem 10.34(c) that exp,,
is a diffeomorphism from B, onto its image.

On the other hand, if @ > d, then p has a cut point ¢ whose distance from p
is less than a. It follows from the definition of cut points that the radial geodesic
from p to ¢ is not minimizing past ¢, so Proposition 6.11 shows that there is no
geodesic ball of radius greater than dg (p.¢). In particular, the restriction of exp,, to
B, cannot be a diffeomorphism onto its image. O

Proposition 10.37. Let (M, g) be a complete, connected Riemannian manifold. The
function inj: M — (0, 00] is continuous.

Proof. Let p € M be arbitrary. Proposition 10.32(b) shows that for each point g €
Cut(p), there is a minimizing unit-speed geodesic y, from p to ¢ whose length is
tew(p,v), and therefore the distance from p to Cut(p) is the infimum of the cut
times of unit-speed geodesics starting at p. By the previous proposition, therefore,

inj(p) = inf {teu(p,v) : v € Ty M with [v]g = 1}.

Suppose (p;) is a sequence in M converging to a point p € M. As in the proof of
Theorem 10.33, we will prove that inj(p; ) — inj(p) by showing that ¢ <inj(p) <b,
where
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b = liminf inj(p;), ¢ = limsup inj(p;).
i—00 i—>00

First we show that inj(p) < b. By passing to a subsequence, we may assume
inj(p;) — b. By compactness of the unit sphere, for each i there is a unit vector v; €
Ty, M such that inj(p;) = fcu(pi,vi), and after passing to a further subsequence,
we may assume (p;,v;) — (p,v) for some v € T, M. By continuity of #, we have
teut(p,v) = lim; tey(pi, v;) = b, so inj(p) < b.

Next we show that inj(p) > c¢. Once again, by passing to a subsequence of
the original sequence (p;), we may assume inj(p;) — c. Suppose for the sake of
contradiction that inj(p) < ¢, and choose c¢ such that inj(p) < co < c. Let w be a
unit vector in 7, M such that ¢, (p, w) = inj(p). We can choose some sequence of
unit vectors w; € Tp; M such that (p;, w;) — (p,w), 0 tew(pi, Wi) = tew(p, W) =
inj(p). For i sufficiently large, this implies #.,(p;, w;) < ¢o < ¢, contradicting the
facts that t.(p;, w;) > inj(p;) and inj(p;) — c. O

Problems

10-1. Suppose (M,g) is a Riemannian manifold and p € M. Show that the
second-order Taylor series of g in normal coordinates centered at p is

1
8ij (X) =bij — 3 > Rikij(p)x*x' + 0(1x ).
.l

[Hint: Let y () = (tv!,...,tv"™) be aradial geodesic starting at p, let J(¢) =
tw'd; |, () be a Jacobi field along y, and compute the first four 7-derivatives
of |J(t)|? at t = 0 in two ways.]

10-2. Suppose (M, g) is a Riemannian manifold and p € M. Let S € M be the
2-dimensional submanifold obtained by applying the exponential map to a
plane IT € T, M, as on page 250. For sufficiently small r, let A(r) be the
area of the geodesic disk of radius r about p in S with its induced metric.
Using the results of Problems 10-1 and 8-21, find the Taylor series of A(r)
to fourth order in 7. Then use this result to express sec(I7) in terms of a
limit involving the difference 772 — A(r).

10-3. Extend the result of Proposition 10.12 by finding a basis for the space of
all Jacobi fields along a geodesic in the constant-curvature case, not just the
normal ones that vanish at 0.

10-4. Prove that the volume of the round sphere S (R) is given for n > 0 by
Vol (S™(R)) = &, R", where
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22k+1 kk!

T”', n=2k kel
B BETST

2]Tk+1

T, n=2k+l,k€Z

(The volume of a compact 0-manifold is just the number of points.)

(a) First show that it suffices to prove the volume formula for R = 1.
(b) Use Corollary 10.17 to prove the recurrence relation

Vol(S"*!) = 0, Vol(S"),
where

T
On =/ (sinr)* dr.
0

(c) By differentiating the function (sinr)” cosr, prove that
y g p

n
n+1

On+1 = Opn—1,

and use this to prove that

2
0,0p—1 = —.

(d) Prove the result by induction on k.
(Used on p. 342.)

10-5. For r > 0, let B, (0) denote the ball of radius r in Euclidean space (R”, §),
n > 1. Prove that Vol (B,(0)) = %an_lr”, with a,—; as in Problem 10-4.

10-6. Let p be a point in a Riemannian z#-manifold (M, g). Use the results of
Problems 10-1 and 8-21 to show that as r \ 0,

1 S(p)r?
Vol(B,(p)) = ;an—lrn (1 - % + 0(r3)),

where S(p) is the scalar curvature of g at p and o, is as in Problem 10-4.

10-7. Suppose (M, g) is a Riemannian manifold with nonpositive sectional cur-
vature. Prove that no point of M has conjugate points along any geodesic.
[Hint: Consider derivatives of |J(¢)|?> when J is a Jacobi field.] (Used on
p. 333.)

10-8. Prove Proposition 10.21 (solvability of the two-point boundary problem).

10-9. Suppose (M, g) is a Riemannian manifold and My, M, € M are embedded
submanifolds. Let y: [a,b] — M be a unit-speed geodesic segment that
meets M7 orthogonally at t = a and meets M, orthogonally at ¢t = b, and
let I': K x [a,b] — M be a normal variation of y such that I"(s,a) € M,
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and I"(s,b) € M, for all 5. Prove the following generalization of the second
variation formula:
dz b 2 roa
S| L= (IDvP=Rm(v.y.y.v))dr
s a

H{IL(V(5).V(1)).y' ()= (L1 (V(a). V(a)).Y'(@)).

5s=0

where V is the variation field of I", and II; is the second fundamental form
of M; fori =1,2. (Used on p. 365.)

10-10. Prove the following theorem of Theodore Frankel [Fra61], generalizing the
well-known fact that any two great circles on S? must intersect: Suppose
(M, g) is a complete, connected Riemannian manifold with positive sec-
tional curvature. If My, M, € M are compact, totally geodesic subman-
ifolds such that dim M; +dim M, > dim M, then M, N M, # &. [Hint:
Assuming that the intersection is empty, show that there exist a shortest
geodesic segment y connecting M and M, and a parallel vector field along
y that is tangent to M; and M, at the endpoints; then apply the second
variation formula of Problem 10-9 to derive a contradiction.]

10-11. Prove Corollary 10.25 (/(V,W) = 0 for all W if and only if V is a Jacobi
field). [Hint: Adapt the proof of Theorem 6.4.]

10-12. Let (M, g) be a Riemannian manifold. Suppose y: [a,b] — M is a unit-
speed geodesic segment with no interior conjugate points, J is a normal
Jacobi field along y, and V is any other piecewise smooth normal vector
field along y such that V(a) = J(a) and V(b) = J(b).

(a) Show that I(V,V) > I(J,J).
(b) Now assume in addition that y(b) is not conjugate to y(a) along y.
Show that I(V,V)=1(J,J)ifand only if V = J.

10-13. Suppose (M, g) is a Riemannian manifold and X € X(M) is a Killing vec-
tor field (see Problems 5-22 and 6-24). Show that if y: [a,b] — M is any
geodesic segment, then X restricts to a Jacobi field along y.

10-14. Suppose P is an embedded submanifold of a Riemannian manifold M, and
y: I — M is a geodesic that meets P orthogonally at# = a for somea € I.
A Jacobi field J along y is said to be transverse to P if its restriction to each
compact subinterval of I containing a is the variation field of a variation of
y through geodesics that all meet P orthogonally at f = a.

(a) Prove that the tangential Jacobi field J(t) = (t —a)y’(¢) along y is
transverse to P.
(b) Prove that a normal Jacobi field J along y is transverse to P if and
only if
J(a) e Ty@P and D, J(a)+Wy@(J(a) LTyaP,

where W,/(q) is the Weingarten map of P in the direction of y’(a).
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10-15.

10-16.

10-17.

10-18.

10 Jacobi Fields

(c) When M has dimension n, prove that the set of transverse Jacobi fields
along y is an n-dimensional linear subspace of g (y), and the set of
transverse normal Jacobi fields is an (n — 1)-dimensional subspace of
that.

(Used on p. 342.)

Let (x!,...,x™) be any semigeodesic coordinates on an open subset U in a
Riemannian n-manifold (M, g) (see Prop. 6.41 and Examples 6.43-6.46),
and let y(r) = (x',...,x"~!,7) be an x"-coordinate curve defined on some
interval /. Prove that for all constants (a',...,a"""!), the following vector
field along y is a normal Jacobi field along y that is transverse to each of
the level sets of x” (in the sense defined in Problem 10-14):

n—1
]
_ i
J(@) = izg 1a "

Suppose P is an embedded k-dimensional submanifold of a Riemannian n-
manifold (M, g), and (xl,...,xk,vl,...,v"_k) are Fermi coordinates for
P on some open subset Uy € M. For fixed (x',v7),let y: I — M be the
curve with coordinate representation y(r) = (x!,....x*,rvl,. . rv"k);
Proposition 5.26 shows that y is a geodesic that meets P orthogonally at
t = 0. Prove that the Jacobi fields along y that are transverse to P are
exactly the vector fields of the form

y(2)

n—k 9
J(t)_Za W thf 57

i=1 j=1 y(t)

for arbitrary constants a®,...,ak b, ... b7k,

Suppose P is an embedded submanifold of a Riemannian manifold (M, g),
and U is a normal neighborhood of P in M. Prove that every tangent vector
to U ~ P is the value of a transverse Jacobi field: more precisely, for each
q € U~ P and each w € T, M, there is a g-geodesic segment y : [0,h] = U
such that y(0) € P, y’(0) L Ty (o) P, and y(b) = g, and a Jacobi field J
along y that is transverse to P and satisfies J(b) = w. [Hint: Use Problem
10-16.]

Suppose (M;,g1) and (M», g,) are Riemannian manifolds, f: M; — R™
is a smooth positive function, and M X s M, is the resulting warped product
manifold. Let go € M> be arbitrary, let y: I — M, be a g;-geodesic, and let
y: I — My x ¢ M, bethe curve y(t) = (y(t),qo). It follows from the result
of Problem 5-7 that y is a geodesic meeting each submanifold {y(z)} x M,
orthogonally. Given any fixed vector w € Ty, M>, define a vector field J
along y by J(t) = (0,w) € Ty ;) M1 @ Ty, M>. Prove that J is a Jacobi field
that is transverse to each submanifold {y(z)} x M, (in the sense defined in
Problem 10-14).
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10-19. Suppose P is an embedded submanifold in a Riemannian manifold (M, g).
A point ¢ € M is said to be a focal point of P if it is a critical value of the
normal exponential map E: &p — M (see p. 133). Show that ¢ is a focal
point of P if and only if there exist a geodesic segment y : [0,b] — M that
starts normal to P and ends at ¢ and a nontrivial Jacobi field J € J(y)
that is transverse to P in the sense defined in Problem 10-14 and satisfies
J(b) = 0. (If this is the case, we say that q is a focal point of P along y.)

10-20. Suppose (M, g) is a Riemannian manifold with nonpositive sectional curv-
ature, and P C M is a totally geodesic embedded submanifold. Prove that
P has no focal points. [Hint: See Problem 10-7.] (Used on p. 370.)

10-21. Determine the cut locus of an arbitrary point in the n-torus T” with the flat
metric of Examples 2.21 and 7.1.

10-22. Suppose (M, g) is a connected, compact Riemannian manifold, p € M,
and C € M is the cut locus of p. Prove that C is homotopy equivalent to

M ~{p}.

10-23. Let (M, g) be a complete Riemannian manifold, and suppose p,q € M are
points such that d (p,q) is equal to the distance from p to its cut locus.

(a) Prove that either ¢ is conjugate to p along some minimizing geodesic
segment, or there are exactly two minimizing geodesic segments from
ptogq,say yi,y2: [0,b] = M, such that y{(b) = —y;(b).

(b) Now suppose in addition that inj(p) = inj(M). Prove that if ¢ is not
conjugate to p along any minimizing geodesic, then there is a unit-
speed closed geodesic y : [0,2b] — M such that y(0) = y(2b) = p
and y(b) = g, where b = dg(p.q).

(Usedon p. 343.) (q € Cut(p).)

10-24. Let (M, g) be a complete Riemannian manifold and p € M. Show that
inj(p) is equal to the radius of the largest open ball in 7, M on which exp,,
is injective.

(Used on p. 166.)
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Chapter 11
Comparison Theory

The purpose of this chapter is to show how upper or lower bounds on curvature can
be used to derive bounds on other geometric quantities such as lengths of tangent
vectors, distances, and volumes. The intuition behind all the comparison theorems
is that negative curvature forces geodesics to spread apart faster as you move away
from a point, and positive curvature forces them to spread slower and eventually to
begin converging.

One of the most useful comparison theorems is the Jacobi field comparison
theorem (see Thm. 11.9 below), which gives bounds on the sizes of Jacobi fields
based on curvature bounds. Its importance is based on four observations: first, in a
normal neighborhood of a point p, every tangent vector can be represented as the
value of a Jacobi field that vanishes at p (by Cor. 10.11); second, zeros of Jacobi
fields correspond to conjugate points, beyond which geodesics cannot be minimizing;
third, Jacobi fields represent the first-order behavior of families of geodesics; and
fourth, each Jacobi field satisfies a differential equation that directly involves the
curvature.

In the first section of the chapter, we set the stage for the comparison theorems
by showing how the growth of Jacobi fields in a normal neighborhood is controlled
by the Hessian of the radial distance function, which satisfies a first-order differ-
ential equation called a Riccati equation. We then state and prove a fundamental
comparison theorem for Riccati equations.

Next we proceed to derive some of the most important geometric comparison the-
orems that follow from the Riccati comparison theorem. The first few comparison
theorems are all based on upper or lower bounds on sectional curvatures. Then we
explain how some comparison theorems can also be proved based on lower bounds
for the Ricci curvature. In the next chapter, we will see how these comparison the-
orems can be used to prove significant local-to-global theorems in Riemannian ge-
ometry.

Since all of the results in this chapter are deeply intertwined with lengths and
distances, we restrict attention throughout the chapter to the Riemannian case.
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Jacobi Fields, Hessians, and Riccati Equations

Our main aim in this chapter is to use curvature inequalities to derive consequences
about how fast the metric grows or shrinks, based primarily on size estimates for
Jacobi fields. But first, we need to make one last stop along the way.

The Jacobi equation is a second-order differential equation, but comparison the-
ory for differential equations generally works much more smoothly for first-order
equations. In order to get the sharpest results about Jacobi fields and other geomet-
ric quantities, we will derive a first-order equation, called a Riccati equation, that is
closely related to the Jacobi equation.

Let (M, g) be an n-dimensional Riemannian manifold, let U be a normal neigh-
borhood of a point p € M, and let r: U — R be the radial distance function as
defined by (6.4). The Gauss lemma shows that the gradient of » on U ~ {p} is the
radial vector field 0,.

On U ~{p}, we can form the symmetric covariant 2-tensor field V27 (the covari-
ant Hessian of r) and the (1, 1)-tensor field #, = V(d,). Because d, = gradr =
(Vr)¥ and V commutes with the musical isomorphisms (Prop. 5.17), we have

W, =V (0,) = V((Vr)F) = (V2r)F.

In other words, ¢, is obtained from V?2r by raising one of its indices.

Using Proposition B.1, we can also interpret the (1,1)-tensor field J, as an
element of I'(End(TM |y~yp)) (that is, a field of endomorphisms of TM over
U ~{p}), defined by

Hr(w) = Vyu 0, (11.1)

for all w € TM |y~{py- The endomorphism field #, is called the Hessian operator
of r. It is related to the (0,2)-Hessian by

(Hr(v),w) = (Vzr)(v,w), forallg e U ~{p}andv,w € T;M. (11.2)

The next lemma summarizes some of its basic algebraic properties.

Lemma 11.1. Let r, 0, and J, be defined as above.

(a) H, is self-adjoint.

(b) #,(9r) = 0.

(¢) The restriction of Hy to vectors tangent to a level set of r is equal to the shape
operator of the level set associated with the normal vector field N = —0,.

Proof. Since the covariant Hessian V2r is symmetric, equation (11.2) shows that
the Hessian operator is self-adjoint. Part (b) follows immediately from the fact that
Hr(0r) = V,, 0, = 0 because the integral curves of d, are geodesics.

Next, note that d, is a unit vector field normal to each level set of r by the Gauss
lemma, so (c) follows from the Weingarten equation 8.11. O

Problem 11-1 gives another geometric interpretation of V2r, as the radial deriva-
tive of the nonconstant components of the metric in polar normal coordinates.
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The Hessian operator also has a close relationship with Jacobi fields.

Proposition 11.2. Suppose (M, g) is a Riemannian manifold, U € M is a normal
neighborhood of p € M, and r is the radial distance functionon U. If y : [0,b] — U
is a unit-speed radial geodesic segment starting at p, and J € §(y) is a normal
Jacobi field along y that vanishes at t = 0, then the following equation holds for all
t €(0,b]:

D J(t) = Hr(J(2)). (11.3)

Proof. Let v =y'(0), so |v|g = 1 and y(1) = exp,(tv). Proposition 10.10 shows
that
J(@) = d(expp)tv(lw),

where D, J(0) = w = w'd;| ,. Because we are assuming that J is normal, it follows
from Proposition 10.7 that w L v.

Because w L v ensures that w is tangent to the unit sphere in T, M at v, we
can choose a smooth curve o: (—¢,&) — T, M that satisfies |o(s)|g = 1 for all
s € (—e&,¢), with initial conditions ¢(0) = v and ¢’/(0) = w. (As always, we are
using the canonical identification between Ty, (7, M) and T, M.) Define a smooth
family of curves I": (—¢,&) x[0,b] — M by I'(s,t) = exp,(to(s)). Then I"(0,1) =
exp,(tv) = (), so I' is a variation of y. The stipulation that |o(s)|; = 1 ensures
that each main curve I'x(¢t) = I"(s,t) is a unit-speed radial geodesic, so its velocity
satisfies the following identity for all (s,¢):

0, (s,t)=(Iy) () = a,|m,t). (11.4)
The chain rule yields
0,17 (0,1) = d(expp)m(o)(lcf’(O)) =d(exp,),, (tw) = J(1),
so J is the variation field of I". By the symmetry lemma,
D,J(t) = D;35I(0,t) = Ds0;I"(0,1). (11.5)

This last expression is the covariant derivative of 3, I'(s, ) along the curve I"® (s) =
I'(s,t) evaluated at s = 0. Since the velocity of this curve at s = 0 is d;17(0,7) =
J(¢) and 9, I"(s,t) = 0, is an extendible vector field by (11.4), we obtain

D;0,I"(0,1) = v1"(t)/(o)(ar) = vJ(t)(ar) = H, (J(2)).

Combining this with (11.5) yields the result. O

In order to compare the Hessian operator of an arbitrary metric with those of the
constant-curvature models, we need the following explicit formula for the constant-
curvature case.

Proposition 11.3. Suppose (M, g) is a Riemannian manifold, U € M is a normal
neighborhood of p € M, and r is the radial distance function on U. Then g has
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constant sectional curvature ¢ on U if and only if the following formula holds at all
points of U ~{p}:
se(r)

r =
se(r)
where s. is defined by (10.8), and for each q € U ~{p}, w,: TyM — T, M is the
orthogonal projection onto the tangent space of the level set of r (equivalently, onto
the orthogonal complement of 9, |4).

T, (11.6)

Proof. First suppose g has constant sectional curvature ¢ on U. Let ¢ € U ~{p},
and let y: [0,b] — U be the unit-speed radial geodesic from p to ¢, so b = r(q).
Let (Ey,..., E,) be a parallel orthonormal frame along y, chosen so that E,(t) =
Y'(t) = 0r|y (). It follows from Proposition 10.12 that fori = 1,...,n —1, the vector
fields J; (t) = sc(t) E; (¢) are normal Jacobi fields along y that vanish at = 0. The
assumption that U is a normal neighborhood of p means that U = exp, (V) for
some star-shaped neighborhood V of 0 € T, M, and every point of V' is a regular
point for exp ,,. Thus Proposition 10.20 shows that p has no conjugate points along
y, which implies that 5. (¢) # 0 for ¢ € (0,b]. (For ¢ < 0, this is automatic, because
sc vanishes only at 0; but in the case ¢ = 1/R2 > 0, it means that b < 7R.)
For 1 <i <n—1, we use Proposition 11.2 to compute

D Ji(t) = H,(Ji (1) = 5c () Hr (Ei(1)).
On the other hand, because each E; is parallel along y,
D Ji(1) = sc(t) Ei (1)

Comparing these two equations at ¢ = b and dividing by s.(b), we obtain

o Se®) o se(b) '
H(Ei (b)) = se(b) Ei(b) = se(b) (E; (b)).
On the other hand, Lemma 11.1(b) shows that
_ _ o Sed)
Hyr (En (b)) = Hy (3r|q) =0= se(b) 7 (En (D)),

because 7, (E, (b)) = m,(0r|4) = 0. Since (E; (b)) is a basis for T; M, this proves
(11.6).

Conversely, suppose J#; is given by (11.6). Let y be a radial geodesic starting at
p, and let J be a normal Jacobi field along y that vanishes at # = 0. By Proposi-
tion 11.2, D, J(t) = H, J(t) = s.(¢)J(t)/sc(t). A straightforward computation then
shows that s.(t) "' J(¢) is parallel along y. Thus we can write every such Jacobi field
in the form J(¢) = ks.(t) E(¢) for some constant k and some parallel unit normal
vector field E along y. Proceeding exactly as in the proof of Theorem 10.14, we
conclude that g is given by formula (10.17) in these coordinates, and therefore has
constant sectional curvature c. O
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Fig. 11.1: The graph of s../s.

For convenience, we record the exact formulas for the quotient s../s. that ap-
peared in the previous proposition (see Fig. 11.1):

g if ¢ =0;
sh(t 1 t 1
c()z —cot—, ifc=—>0;
sc(t) R R R?
1 t . 1
—coth—, ifc=—-—— <0.
R R R?

Now we are in a position to derive the first-order equation mentioned at the begin-
ning of this section. (Problem 11-3 asks you to show, with a different argument, that
the conclusion of the next theorem holds for the Hessian operator of every smooth
local distance function, not just the radial distance function in a normal neighbor-
hood.) This theorem concerns the covariant derivative of the endomorphism field
H, along a curve y. We can compute the action of D;#, on every V € X(y) by
noting that ¢, (V(¢)) is a contraction of J#, ® V(¢), so the product rule implies
Dy (3, (V) = (D Hp )V + Hp (D V).

Theorem 11.4 (The Riccati Equation). Let (M, g) be a Riemannian manifold; let
U be a normal neighborhood of a point p € M ; letr : U — R be the radial distance
function; and let y: [0,b] — U be a unit-speed radial geodesic. The Hessian oper-
ator H, satisfies the following equation along y|.p), called a Riccati equation:

D Hy +H>+ R, =0, (11.7)
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where J2 and R, are the endomorphism fields along y defined by J2(w) =
Hy (Hr(w)) and Ry (w) = R(w, )/)y’, with R the curvature endomorphism of g.

Proof. Let tg € (0,b] and w € Ty )M be arbitrary. We can decompose w as w =
¥y + z, where y is a multiple of 9, and z is tangent to a level set of r. Since (11.7)
is an equation between linear operators, we can prove the equation by evaluating it
separately on y and z.

Because y is a unit-speed radial geodesic, its velocity is equal to d,, and thus
D;0, = 0 along y. It follows that (D;#,)(3;) = D¢(H#,(9,)) — H(D;9,) = 0.
Since all three terms on the left-hand side of (11.7) annihilate 9,, the equation holds
when applied to any multiple of 9.

Next we consider a vector z € T),(;,) M that is tangent to a level set of r, and thus
by the Gauss lemma orthogonal to y’(¢). By Corollary 10.11, z can be expressed as
the value at ¢ = t¢ of a Jacobi field J along y vanishing at ¢ = 0. Because J(0) and
J (o) are orthogonal to y’, it follows that J is a normal Jacobi field, so Proposition
11.2 shows that D, J(t) = J,(J(t)) for all ¢ € [0, b]. Differentiation yields

DIZJ = D(Hr(J)) = (DeHy)J + H(DeJ) = (D Hr)J + He (Hr(T)).
On the other hand, the Jacobi equation gives D?J = —R,/(J), so
(D¢ Hy + HP + Ry)(J) = 0.

Evaluating this at t =ty proves the result. O

The Riccati equation is named after Jacopo Riccati, an eighteenth-century Italian
mathematician who studied scalar differential equations of the form v’ + pv? 4+
qv +r =0, where p,q,r are known functions and v is an unknown function of one
real variable. As is shown in some ODE texts, a linear second-order equation in one
variable of the form au” + bu’ 4+ cu = 0 can be transformed to a Riccati equation
wherever u # 0 by making the substitution v = u’/u. The relation (11.3) generalizes
this, and allows us to replace the analysis of the second-order linear Jacobi equation
by an analysis of the first-order nonlinear Riccati equation.

The primary tool underlying all of our geometric comparison theorems is a fun-
damental comparison theorem for solutions to Riccati equations. It says, roughly,
that a larger curvature term results in a smaller solution, and vice versa. When we
apply this to (11.3), it will yield an analogous comparison for Jacobi fields.

In the statement and proof of this theorem, we will compare self-adjoint en-
domorphisms by comparing the quadratic forms they determine. Given a finite-
dimensional inner product space V' and self-adjoint endomorphisms A,B: V — V,
the notation A < B means that (Av,v) < (Bv,v) for all v € V, or equivalently
that B — A is positive semidefinite. In particular, B > 0 means that B is positive
semidefinite. Note that the square of every self-adjoint endomorphism is positive
semidefinite, because (B?v,v) = (Bv, Bv) > 0 forallv € V.

Theorem 11.5 (Riccati Comparison Theorem). Suppose (M, g) is a Riemann-
ian manifold and y: [a,b] — M is a unit-speed geodesic segment. Suppose 1,7
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are self-adjoint endomorphism fields along y |4 p] that satisfy the following Riccati
equations:
Din+n*+0=0, D+ +5 =0, (11.8)

where o and G are continuous self-adjoint endomorphism fields along y satisfying
6(t)>a(t) forallt €la,b]. (11.9)

Suppose further that limsy\ 4 ('ﬁ(l) — n(t)) exists and satisfies

lim ((t)—n@) 0.
Then
n(t) <n(t) forallte (a,b].

To prove this theorem, we will express the endomorphism fields 7, 7, o, and ¢ in
terms of a parallel orthonormal frame along y . In this frame, they become symmetric
matrix-valued functions, and then the Riccati equations for  and 77 become ordinary
differential equations for these matrix-valued functions. The crux of the matter is the
following comparison theorem for solutions to such matrix-valued equations.

Let M(n,R) be the space of all n x n real matrices, viewed as linear endomor-
phisms of R”, and let S(n,R) € M(n,R) be the subspace of symmetric matrices,
corresponding to self-adjoint endomorphisms of R” with respect to the standard
inner product.

Theorem 11.6 (Matrix Riccati Comparison Theorem). Suppose H, H: (a,b] —
S(n,R) satisfy the following matrix Riccati equations:

H +H?>+S=0, H+H*+S5=0, (11.10)
where S, S : [a,b] — S(n,R) are continuous and satisfy
S(t)>S(t) forallt€la,b]. (11.11)

Suppose further that lims\ 4 (ﬁ (t)—-H (t)) exists and satisfies

tli\n; (H(t)-H(1)) <0. (11.12)
Then 5
H(t) < H(t) forallt € (a.b]. (11.13)

Proof. Define functions A4, B: (a,b] — S(n,R) by
~ 1 ~
Ay=H(@t)—H(®), B(t) =—§(H(t)+H(t)).

The hypothesis implies that A extends to a continuous matrix-valued function (still
denoted by A) on [a,b] satisfying A(a) < 0. We need to show that A(z) < 0 for all
t € (a,b].
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Simple computations show that the following equalities hold on (a, b]:
A'=BA+AB—-S+S,
B = %(ﬁ2+§+H2+S).
Our hypotheses applied to these formulas imply

A’ < BA+ AB, (11.14)
B’ >k 1d, (11.15)

where the last inequality holds for some (possibly negative) real number k because
H? and H? are positive semidefinite and S and S are continuous on all of [a,b] and
thus bounded below. Therefore, for every ¢ € (a, b],

b
B(t) = B(b)—/ B'(u)du
< B(b)— (b—1)k 1d < B(b) + |b—a] |k|1d,

(11.16)

which shows that B(¢) is bounded above on (a, b]. Let K be a constant large enough
that B(t) — K 1d is negative definite for all such z.
Define a continuous function f: [a,h] x S"~! — R by

ft,x) = e 2K (A(t)x, x).

To prove the theorem, we need to show that f(z,x) <0 for all (¢, x) € [a,b] x S*™L.
Suppose this is not the case; then by compactness of [a,h] x S"~!, f takes on a
positive maximum at some (¢, Xo) € [a,b] x S*~1. Since f(a,x) = 0 for all x,
we must have a < to < b. Because (A(fo)x,x) < (A(tg)xo.xo) for all x € S*71,
it follows from Lemma 8.14 that x¢ is an eigenvector of A(fy) with elgenvalue
Ao = (A(to)xo,X0) > 0.

Since f is differentiable at (fg,x¢) and f(t,x0) < f(to,xo) fora <t < to, we

have af S (t,x0) — f(to, x0)
. 1,x9) — j(fo, X0
Bt(O’xO) t;l}tlo P—y >

(We have to take a one-sided limit here to accommodate the fact that 7y might equal
b.) On the other hand, from (11.14) and the fact that A(zy) and B(tp) are self-adjoint,
we have

%(lo,xo) = 72K ((A'(tg)x0.x0) — 2K (A(to)X0. X0))

< 2Kt ((B(to) A(to)x0,x0) + (A(to) B(to)x0,x0) —2K (A(t9)x0,X0))
— 02Kt (2(A(to)xo0, B(tg)xo) — 2K (A(to)x0, X0))
= ¢ K10 (209 (x0. (B(t) — K 1d)xo)) < 0.

These two inequalities contradict each other, thus completing the proof. O
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Proof of Theorem 11.5. Suppose 1, 7, 0, and & are self-adjoint endomorphism fields
along y satisfying the hypotheses of the theorem. Let (Eq,..., E,) be a parallel
orthonormal frame along y, and let H, H: (a,b] = S(n,R) and s.S: [a,b] —
S(n,R) be the symmetric matrix-valued functions defined by

n(t)(Ei (1)) = H] (1) E; (1), T()(Ei(t)) = H ()E; (1),
o()(Ei(t) = S} (1) E; (1), 5(1)(Ei () = S/ ()E; (1)

Because D, E; = 0, the Riccati equations (11.8) reduce to the ordinary differen-
tial equations (11.10) for these matrix-valued functions. Theorem 11.6 shows that
H(t) < H(t) for all ¢ € (a,b], which in turn implies that 7(¢) < n(z). O

Comparisons Based on Sectional Curvature

Now we are ready to establish some comparison theorems for metric quantities
based on comparing sizes of Hessian operators and Jacobi fields for an arbitrary
metric with those of the constant-curvature models.

The most fundamental comparison theorem is the following result, which com-
pares the Hessian of the radial distance function with its counterpart for a constant-
curvature metric.

Theorem 11.7 (Hessian Comparison). Suppose (M, g) is a Riemannian n-mani-
fold, p € M, U is a normal neighborhood of p, and r is the radial distance function
onU.

(a) If all sectional curvatures of M are bounded above by a constant c, then the
following inequality holds in Uy ~{p}:

)
! ~ se(r)

where s. and 1, are defined as in Proposition 11.3, and Uy = U if ¢ <0,
while Uy={qg e U :r(q) <R} ifc =1/R?>>0.

(D) If all sectional curvatures of M are bounded below by a constant c, then the
following inequality holds in all of U ~{p}:

Ty, (11.17)

/
o, < S (11.18)
se(r)
Proof. Let (xl, .. ,x”) be Riemannian normal coordinates on U centered at p, let

r be the radial distance function on U, and let s, be the function defined by (10.8).
Let Uy C U be the subset on which s, (r) > 0; when ¢ < 0, this is all of U, but when
¢ =1/R? > 0, itis the subset where r < 7R. Let #¢ be the endomorphism field on
Uo ~{p} given by
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A
T Sc(r)nr.

Let ¢ € Up ~ {p} be arbitrary, and let y: [0,b] — Uy be the unit-speed radial
geodesic from p to g. Note that at every point y(¢) for 0 < ¢ < b, the endomorphism
field 7, can be expressed as 7, (w) = w —(w,d;)d, = w— (w,y’)y’, and in this
form it extends smoothly to an endomorphism field along all of y. Moreover, since
Dy’ = 0 along y, it follows that D, 7, = 0 along y as well. Therefore, direct com-
putation using the facts that s” = —cs, and 77 = 7, shows that J¢ satisfies the
following Riccati equation along y|(o,5]:

D JE+ (HE)? +cmp = 0.
On the other hand, Theorem 11.4 shows that J¢, satisfies
D Hy + HE+ R, = 0.

The sectional curvature hypothesis implies that R,» < c7r, in case (a) and R, > ¢,
in case (b), using the facts that R,/ (y’) =0 = 7, (y), and (R, (w), w) = sec(y’, w)
if w is a unit vector orthogonal to y’.

In order to apply the Riccati comparison theorem to #, and ¢, we need to show
that J, — J¢ has a finite limit along y as # \{ 0. A straightforward series expansion
shows that no matter what c is,

s5¢(r)/sc(r)=1/r+ O(r) (11.19)

as r \( 0. We will show that J, satisfies the analogous estimate:
1
Hy = —1 + O(r). (11.20)
r

The easiest way to verify (11.20) is to note that on U ~ {p}, #, has the following
coordinate expression in normal coordinates:

Hr = g"(90kr — T 0mr)d; ® dx*.

Now 9,7 = x™/r, which is bounded on U ~ {p}, and 305 r = O(r~'). Moreover,
g% =689 4+ 0(r?) and F;.” = O(r), so H, is equal to 8§ (3;0dxr)d; ® dx* plus
terms that are O(r) in these coordinates. But this last expression is exactly the coor-
dinate expression for #, in the case of the Euclidean metric in normal coordinates,
which Proposition 11.3 shows is equal to (1/r)7,. This proves (11.20), from which
we conclude that #, — J¢ approaches zero along y as # \ 0.

If the sectional curvatures of g are bounded above by ¢, then the arguments above
show that the hypotheses of the Riccati comparison theorem are satisfied along
Ylio,p) With (1) = Hyly o), 0(1) = Ryrly ), 1) = Hi lyoy, and G (1) = c7r [y (o). It
follows that J#, > HS at ¢ = y(b), thus proving (a).
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On the other hand, if the sectional curvatures are bounded below by c, the same
argument with the roles of #, and JS reversed shows that #, < #f on Up. It
remains only to show that Uy = U in this case. If ¢ <0, this is automatic. If ¢ =
1/R? > 0, then s.(r)/sc(r) — —oo as r /' wR; since K, is defined and smooth in
all of U ~ {p} and bounded above by #, it must be the case that r < 7R in U,
which implies that Uy = U. O

Corollary 11.8 (Principal Curvature Comparison). Suppose (M,g) is a Rie-
mannian n-manifold, p € M, U is a normal neighborhood of p, r is the radial
distance function on U, and s. and 7, are defined as in Proposition 11.3.

(a) If all sectional curvatures of M are bounded above by a constant c, then the
principal curvatures of the r-level sets in Uy~ {p} (with respect to the inward
unit normal) satisfy

!
s.(r
G

~ose(r) ,
where Uy = U if ¢ <0, while Uy ={q € U : r(q) < wR} ifc = 1/R? > 0.
(D) If all sectional curvatures of M are bounded below by a constant c, then the

principal curvatures of the r-level sets in U ~{p} (with respect to the inward
unit normal) satisfy

EAG)
= se(r)
Proof. This follows immediately from the fact that the shape operator of each r-
level set is the restriction of #, by Lemma 11.1(c). |

Because Jacobi fields describe the behavior of families of geodesics, the next
theorem gives some substance to the intuitive notion that negative curvature tends
to make nearby geodesics spread out, while positive curvature tends to make them
converge. More precisely, an upper bound on curvature forces Jacobi fields to be at
least as large as their constant-curvature counterparts, and a lower curvature bound
constrains them to be no larger.

Theorem 11.9 (Jacobi Field Comparison). Suppose (M, g) is a Riemannian man-
ifold, y: [0,b] — M is a unit-speed geodesic segment, and J is any normal Jacobi
field along y such that J(0) = 0. For each c € R, let s. be the function defined by
(10.8).

(a) If all sectional curvatures of M are bounded above by a constant c, then
|J(1)] = s¢(1)| Dy J(0)] (11.21)

forallt €[0,by], where by = b if c <0, and by = min(b, nR) if c = l/R2 > 0.
(b) If all sectional curvatures of M are bounded below by a constant c, then

|J(@)] < se()| Dy J(0)] (11.22)

forallt € [0,b;], where by is chosen so that y(b,) is the first conjugate point
to y(0) along y if there is one, and otherwise by = b.
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Proof. 1If D;J(0) =0, then J vanishes identically, so we may as well assume that
D;J(0) # 0. Let by be the largest time in (0, b] such that y has no conjugate points
in (0,b9) and s.(¢) > 0 for t € (0,by). Let p = y(0), and assume temporarily
that )/([O,bo)) is contained in a normal neighborhood U of p. Define a function
f:(0,bp) — R by

f(0) =log (sc() "I @)]).

Differentiating with respect to ¢ and using D;J = H#,(J), we get

d d D.J,J ! He(J),J !
7= Lrog1s1-Logs. = (Dot J) s (D). I) s
dt |-,|2 Sc |J|2 Sc
Under hypothesis (a), it follows from the Hessian comparison theorem that f/(¢) >
0 for all ¢ € (0,bg), so f(t) is nondecreasing, and thus so is sc(z)~!|J(¢)|. Simi-
larly, under hypothesis (b), we get f’(¢) < 0, which implies that s.(z)~1|J(¢)] is
nonincreasing.
Next we consider the limit of s.(¢)"!|J(t)| as ¢t \ 0. Two applications of
I’Hopital’s rule yield
|72 2D J.J) . 2(D2J.J)+2|D;J?
lim — = lim ——— = lim
N0 §2 N0 28Lse N0 2slsc + 2512
_ i R I) + 20D P
TN 2slsc + 2512

)

provided the last limit exists. Since J — 0, s, — 0, and sé — 1 as ¢ N\ 0, this last
limit does exist and is equal to | D, J(0)|?. Combined with the derivative estimates
above, this shows that the appropriate conclusion (11.21) or (11.22) holds on (0, bg),
and thus by continuity on [0, bg], when y ([0, bo)) is contained in a normal neighbor-
hood of p.

Now suppose Y is an arbitrary geodesic segment, not assumed to be contained in
a normal neighborhood of p. Let v = y’(0), so that y(¢) = exp,,(tv) for ¢ € [0,b],
and define by as above. The definition ensures that y(¢) is not conjugate to y(0) for
t € (0,Do), and therefore exp,, is a local diffeomorphism on some neighborhood of
theset L = {tv:0 <t < bo}. Let W C T\, M be a convex open set containing L on
which exp,, is a local diffeomorphism, and let g = exp}, g, which is a Riemannian
metric on W that satisfies the same curvature estimates as g (Fig. 11.2). By construc-
tion, W is a normal neighborhood of 0, and exp,, is a local isometry from (W, §)
to (M, g). The curve y(t) =tv for t € [0,byp) is a radial geodesic in W, and Propo-
sition 10.5 shows that the vector field J () = (exp p) (J(2)) is a Jacobi field
along ¥ that vanishes at ¢ = 0. Therefore, for 7 € (0,bp), the preceding argument
implies that ‘J(t)}g > Sc (t)|DtJ(O)}~ in case (a) and ‘J(t)| <S¢ (l)]D,J(O)|~ in
case (b). This implies that the concluswns of the theorem hold for J on the 1nterva1
(0,b¢) and thus by continuity on [0, bo].

To complete the proof, we need to show that by > b; in case (a) and by > b, in
case (b). Assuming the hypothesis of (a), suppose for contradiction that bg<b;. The
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Fig. 11.2: Pulling the metric back to T, M

only way this can occur is if y(bg) is conjugate to y(0) along y, while s.(bg)>0.
This means that there is a nontrivial normal Jacobi field J € ¢ (y) satisfying J(0) =
0 = J(bp). But the argument above showed that every such Jacobi field satisfies
|J ()| = s¢(2)| Dy J(0)] for t € [0,bg] and thus |J (bg)| > s¢(bo)| D; J(0)| > 0, which
is a contradiction. Similarly, in case (b), suppose by < b». Then s.(bg) = 0, but y(bg)
is not conjugate to y(0) along y. If J is any nontrivial normal Jacobi field along y
that vanishes at = 0, the argument above shows that |J ()| < s.(¢t)|D;J(0)| for
t €0,bo], so |J(bo)| < sc(bo)| Ds J(0)| = 0; but this is impossible because y (bg) is
not conjugate to y(0). O

There is a generalization of the preceding theorem, called the Rauch comparison
theorem, that allows for comparison of Jacobi fields in two different Riemannian
manifolds when neither is assumed to have constant curvature. The statement and
proof can be found in [CEOS, K1i95].

Because all tangent vectors in a normal neighborhood are values of Jacobi fields
along radial geodesics, the Jacobi field comparison theorem leads directly to the
following comparison theorem for metrics.

Theorem 11.10 (Metric Comparison). Let (M, g) be a Riemannian manifold, and
let (U, (xi)) be any normal coordinate chart for g centered at p € M. For each
¢ € R, let g denote the constant-curvature metric on U ~{p} given in the same
coordinates by formula (10.17).

(a) Suppose all sectional curvatures of g are bounded above by a constant c. If
¢ <0, thenforallg € U~{p}andallw € TyM, we have g(w,w) > gc(w,w).
If ¢ = 1/R? > 0, then the same holds, provided that dg(p,q) < 7R.
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(b) If all sectional curvatures of g are bounded below by a constant c, then for all
qeU~{p}andallw e T;M, we have g(w,w) < g.(w,w).

Proof. Letq € U ~{p}, satisfying the restriction dg (p,q) < 7R if we are in case (a)
and ¢ = 1/R2 > 0, but otherwise arbitrary; and let b = dg(p.q). Given w € Ty M,
we can decompose w as a sum w = y + z, where y is a multiple of the radial
vector field d, and z is tangent to the level set r = b. Then g.(y,z) = 0 by direct
computation, and the Gauss lemma shows that g(y,z) =0, so

gw,w)=g(y,y)+g(z,2),
gc(w»w) = gc(y»y) +gc(z»2)-

Because 9, is a unit vector with respect to both g and g, it follows that g(y,y) =
gc(y,y). So it suffices to prove the comparison for z.

There is a radial geodesic y: [0,b] — U satisfying y(0) = p and y(b) = ¢, and
Corollary 10.11 shows that z = J(b) for some Jacobi field J along y vanishing at
¢t = 0, which is normal because it is orthogonal to ¢’ at t = 0 and t = b. Proposition
10.10 shows that J has the coordinate formula J(¢) = ta’d; () for some constants
(a1 s ,a”). Since the coordinates (xi) are normal coordinates for both g and g.,
it follows that y is also a radial geodesic for g., and the same vector field J is also
a normal Jacobi field for g, along y. Therefore, g(z,z) = |J(b)|§, and g.(z,z) =

|J (b)|§c. In case (a), our hypothesis guarantees that s (b) > 0, so

g(z,2) = |J(B)]2 = |sc(b)|?| D; J(O)|§ (Jacobi field comparison theorem)
= |s.(b)|? |D,J(0)|§C (since g and g, agree at p)
= |J(b)|§C =gc(z,2) (by Prop. 10.12).

In case (b), the same argument with the inequalities reversed shows that g(z,z) <
g c (Z ’ z ) . I:I

The next three comparison theorems (Laplacian, conjugate point, and volume
comparisons) can be proved equally easily under the assumption of either an upper
bound or a lower bound for the sectional curvature, just like the preceding theorems.
However, we state these only for the case of an upper bound, because we will prove
stronger theorems later in the chapter based on lower bounds for the Ricci curvature
(see Thms. 11.15, 11.16, and 11.19).

The first of the three is a comparison of the Laplacian of the radial distance func-
tion with its constant-curvature counterpart. Our primary interest in the Laplacian of
the distance function stems from its role in volume and conjugate point comparisons
(see Thms. 11.14, 11.16, and 11.19 below); but it also plays an important role in the
study of various partial differential equations on Riemannian manifolds.

Theorem 11.11 (Laplacian Comparison I). Suppose (M, g) is a Riemannian n-
manifold whose sectional curvatures are all bounded above by a constant c. Suppose
p € M, U is a normal neighborhood of p, r is the radial distance function on U,
and s. is defined as in Proposition 11.3. Then on Uy ~{p}, we have
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Se(r)
Sc(r),

where Uy = U if c <0, while Uy =1{q € U :r(q) < nR} ifc = 1/R*> > 0.

Ar>(n-—1)

Proof. By the result of Problem 5-14, Ar = try (V?r) = tr (¥, ). The result then
follows from the Hessian comparison theorem, using the fact that tr(sw,) =n—1,
which can be verified easily by expressing , locally in an adapted orthonormal
frame for the r-level sets. O

The next theorem shows how an upper curvature bound prevents the formation
of conjugate points. It will play a decisive role in the proof of the Cartan—-Hadamard
theorem in the next chapter.

Theorem 11.12 (Conjugate Point Comparison I). Suppose (M, g) is a Riemann-
ian n-manifold whose sectional curvatures are all bounded above by a constant c. If
¢ <0, then no point of M has conjugate points along any geodesic. If c = 1/ R* > 0,
then there is no conjugate point along any geodesic segment shorter than wR.

Proof. The case ¢ <0 is covered by Problem 10-7, so assume ¢ = 1/ R? > 0. Let
y: [0,b] — M be a unit-speed geodesic segment, and suppose J is a nontrivial
normal Jacobi field along y that vanishes at + = 0. The Jacobi field comparison
theorem implies that |J(z)| > (constant) sin(t/R) > 0 as longas 0 <7 < 7 R. O

The last of our sectional curvature comparison theorems is a comparison of vol-
ume growth of geodesic balls. Before proving it, we need the following lemma,
which shows how the Riemannian volume form is related to the Laplacian of the
radial distance function.

Lemma 11.13. Suppose (M, g) is a Riemannian manifold and (xi) are Riemannian
normal coordinates on a normal neighborhood U of p € M. Let detg denote the
determinant of the matrix (g;;) in these coordinates, let r be the radial distance
function, and let 0, be the unit radial vector field. The following identity holds on

U~{p}:
Ar = d,log (r"~"/detg). (11.23)

Proof. Corollary 6.10 to the Gauss lemma shows that the vector fields gradr and
d, are equal on U ~ {p}. Comparing the components of these two vector fields in
normal coordinates, we conclude (using the summation convention as usual) that
.. xi
Hoir=—.
870, ,

Based on the formula for Ar from Proposition 2.46, we compute
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where the first term in the last line follows by direct computation using r =
(Zi (xi)z)l/z. This is equivalent to (11.23). O

The following result was proved by Paul Giinther in 1960 [Giin60]. (Giinther also
proved an analogous result in the case of a lower sectional curvature bound, but that
result has been superseded by the Bishop—Gromov theorem, Thm. 11.19 below.)

Theorem 11.14 (Giinther’s Volume Comparison). Suppose (M, g) is a connected
Riemannian n-manifold whose sectional curvatures are all bounded above by a
constant ¢. Given p € M, let §¢ = inj(p) if ¢ <0, and 89 = min(xR,inj(p)) if
¢ = 1/R? > 0. For every positive number § < 8, let Vg (§) denote the volume of the
geodesic ball Bs(p) in (M, g), and let V. (§) denote the volume of a geodesic ball
of radius § in the n-dimensional Euclidean space, hyperbolic space, or sphere with
constant sectional curvature c. Then for every 0 < § < 8¢, we have

Vg (8) = V.(8), (11.24)

and the quotient V¢ (8)/ V¢ (8) is a nondecreasing function of § that approaches 1 as
8\ 0. If equality holds in (11.24) for some § € (0,8¢), then g has constant sectional
curvature ¢ on the entire geodesic ball Bg(p).

Proof. The volume estimate (11.24) follows easily from the metric comparison the-
orem, which implies that the determinants of the metrics g and g, in normal coor-
dinates satisfy /detg > /detg.. If that were all we needed, we could stop here;
but to prove the other statements, we need a more involved argument, which inci-
dentally provides another proof of (11.24) that does not rely directly on the metric
comparison theorem, and therefore can be adapted more easily to the case in which
we have only an estimate of the Ricci curvature (see Thm. 11.19 below).

Let (x') be normal coordinates on Bj, (p) (interpreted as all of M if §o = c0).
Using these coordinates, we might as well consider g to be a Riemannian metric
on an open subset of R” and p to be the origin. Let g denote the Euclidean metric
in these coordinates, and let g, denote the constant-curvature metric in the same
coordinates, given on the complement of the origin by (10.17).

The Laplacian comparison theorem together with Lemma 11.13 shows that

s¢(r)

dylog (r"~'y/detg) = Ar > (n— I)SC( )
o(r

= 9, log (sc(r)" ™). (11.25)
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Thus log (r"—1 Jdetg/s. (r)"_l) is a nondecreasing function of r along each radial
geodesic, and so is the ratio r"~!/detg/s.(r)"~!. To compute the limit as r N\ 0,
note that g;; = d;; at the origin, so /det g converges uniformly to 1 as r \ 0. Also,

for every c, we have s¢(r)/r — L asr \,0,so r"~ 1 /detg/s.(r)"! — 1.
We can write d V, = (/detg d Vz. Corollary 10.17 in the case ¢ = 0 shows that

§
Vg(8)=/sn71/‘0 (Vdetg) o @(p.w)p" ' dpd Vs,

where @(p,w) = pw for p € (0,8y) and w € S"~1. The same corollary shows that

V,(8) =/SH /Ossc(p)"‘ldpdVg = (/Oasc(p)”“ dp) (fSl dvg,).

Therefore,

§
Ve () _ /Sn_lfo (Vdetg)o®(p,w)p" " dpdVy

Ve®) ( /Ossc o1 dp) ( /Si dvgo)

P
1 /0 A(p.w)se(p)"" dp
- VOl(Sn_l) sn—1

3 dVg;, (11.26)
/ se(p)y™dp
0

where we have written

(Vdetg) o P(p,w)p" !
se(p)n! .

The argument above (together with the fact that r o @ = p) shows that A(p,w) is a
nondecreasing function of p for each w, which approaches 1 uniformly as p N\ 0.

We need to show that the quotient in parentheses in the last line of (11.26) is also
nondecreasing as § increases. Suppose 0 < §; < 8. Because A is nondecreasing, we
have

Ap.w) =

81 8

A(p.0)se ()" dp / “se(p)Vdp

81

81 82
< (/ se(p)"! dp) A8y, @) (/ sc(p)”_ldp>
0 81

81 8§
< /0 se(p)" " dp /8 A(p.0)se(0)" dp.
1

and therefore (suppressing the dependence of the integrands on p and w for brevity),
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51 81 5
= As'ldp / st dp—i—/ s"Vdp
0 0 81

81 81 81 3
< /\s?_ld,o/ s?_ldp+[ sg_ldp[ Asttdp
0 0 0 81

81 8>
=/ sf_ldp/ AstLdp.
0 0

Evaluating (11.26) at §; and §, and inserting the inequality above shows that the
ratio Vol (§)/ Vol (8) is nondecreasing as a function of §, and it approaches 1 as
8\ O because A(p,w) — 1 as p \ 0. It follows that Vg (§) > V. (6) for all § € (0, 8o].

It remains only to consider the case in which the volume ratio is equal to 1 for
some §. If A(p,w) is not identically 1 on the set where 0 < p < §, then it is strictly
greater than 1 on a nonempty open subset, which implies that the volume ratio
in (11.26) is strictly greater than 1; so Volg (§) = Vol.(§) implies A(p,w) =1 on
(0,8) x S, and pulling back to U via @~ shows that r*~! \/detg = s.(r)" ' on
Bs(p). By virtue of (11.25), we have Ar = (n—1)s..(r)/sc(r), or in other words,
tr(Hy) = tr((s.(r)/sc (r)) ;). It follows from the Hessian comparison theorem that
the endomorphism field #, — (s..(r)/sc(r)) 7 is positive semidefinite, so its eigen-
values are all nonnegative. Since its trace is zero, the eigenvalues must all be zero.
In other words, #, = (s..(r)/sc(r))m, on the geodesic ball Bs(p). It then follows
from Proposition 11.3 that g has constant sectional curvature ¢ on that ball. O

Comparisons Based on Ricci Curvature

All of our comparison theorems so far have been based on assuming an upper or
lower bound for the sectional curvature. Itis natural to wonder whether anything can be
said if we weaken the hypotheses and assume only bounds on other curvature quan-
tities such as Ricci or scalar curvature.

It should be noted that except in very low dimensions, assuming a bound on Ricci
or scalar curvature is a strictly weaker hypothesis than assuming one on sectional
curvature. Recall Proposition 8.32, which says that on an n-dimensional Rieman-
nian manifold, the Ricci curvature evaluated on a unit vector is a sum of n — 1 sec-
tional curvatures, and the scalar curvature is a sum of n(n — 1) sectional curvatures.
Thus if (M, g) has sectional curvatures bounded below by c, then its Ricci curvature
satisfies Rc(v,v) > (n — 1)c for all unit vectors v, and its scalar curvature satisfies
S > n(n — 1)c, with analogous inequalities if the sectional curvature is bounded
above. However, the converse is not true: an upper or lower bound on the Ricci cur-
vature implies nothing about individual sectional curvatures, except in dimensions
2 and 3, where the entire curvature tensor is determined by the Ricci curvature (see
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Cors. 7.26 and 7.27). For example, in every even dimension greater than or equal to
4, there are compact Riemannian manifolds called Calabi-Yau manifolds that have
zero Ricci curvature but nonzero sectional curvatures (see, for example, [Bes87,
Chap. 11)).

In this section we investigate the extent to which bounds on the Ricci curva-
ture lead to useful comparison theorems. The strongest theorems of the preceding
section, such as the Hessian, Jacobi field, and metric comparison theorems, do not
generalize to the case in which we merely have bounds on Ricci curvature. How-
ever, it is a remarkable fact that Laplacian, conjugate point, and volume comparison
theorems can still be proved assuming only a lower (but not upper) bound on the
Ricci curvature. (The problem of drawing global conclusions from scalar curvature
bounds is far more subtle, and we do not pursue it here. A good starting point for
learning about that problem is [Bes87].)

The next theorem is the analogue of Theorem 11.11.

Theorem 11.15 (Laplacian Comparison II). Let (M, g) be a Riemannian n-mani-
fold, and suppose there is a constant ¢ such that the Ricci curvature of M satisfies
Re(v,v) = (n—1)c for all unit vectors v. Given any point p € M, let U be a normal
neighborhood of p and let r be the radial distance function on U. Then the following
inequality holds on Uy ~{p}:

s¢(r)

where s¢ is defined by (10.8), and Uy = U if c <0, while Uy ={q € U :r(q) < 7R}
ifc=1/R*>0.

Ar<(n-1) (11.27)

Proof. Letq € Uy ~{p} be arbitrary, and let y : [0,b] — Uj be the unit-speed radial
geodesic from p to g. We will show that (11.27) holds at y(¢) for 0 <t < b.

Because covariant differentiation commutes with the trace operator (since it is
just a particular kind of contraction), the Riccati equation (11.7) for #, implies the
following scalar equation along y for Ar = tr (](r):

d
EN +tr(H?) +trRy =0. (11.28)

We need to analyze the last two terms on the left-hand side. We begin with the
last term. In terms of any local orthonormal frame (E;), we have

n n

trR, = Z(RV/(Ei)’Ei) = Z(R(Ei,y/))//,Ei) = ZRm(Ei,)//,]//,Ei)

i=1 i=1 i=1

=Re(y'.y").

To analyze the Jfrz term, let us set

Hy=H, — Ty (11.29)
n
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We compute

. 2
tr(H2) =tr(H7) - nA_rl tr(H, om,) — nA_rl tr(m, o H,) + (;A_ri)z tr(n?).

To simplify this, note that 77 = 7, because 7, is a projection, and thus tr(7?) =
tr(my) =n—1. Also, #,(9d,) = 0 implies that #, o, = H,; and since K, is self-
adjoint, (#;v,09,), = (v, H0;), = 0 for all v, so the image of J; is contained in
the orthogonal complement of 8,, and it follows that 7, o J#, = J¢, as well. Thus
the last three terms in the formula for tr (]€ ) combine to yield

(Ar)?

tr(J(’f) =tr(J€,2)— PR

Solving this for tr (Jfrz), substituting into (11.28), and dividing by n — 1, we obtain

d [ A Ar \2  tr(H#2) +Re(y,y
— i ") () + Rey y)zo. (11.30)
dt \n—1 n—1 n—1

Let H(t) = s.(t)/sc(t), so that
H' @)+ H({)*+c=0.

We wish to apply the 1 x 1 case of the matrix Riccati comparison theorem (Thm.
11.6) with H(t) as above, S(t) = c,

A= YO and S = tr (7 )|y(t)+RC(V(t)J/(t))
n—1 n—1

Note that e}’% f is positive semidefinite, which means that all of its eigenvalues are
nonnegative, so its trace (which is the sum of the eigenvalues) is also nonnegative.
(This is the step that does not work in the case of an upper bound on Ricci curvature.)
Thus our hypothesis on the Ricci curvature guarantees that S(1)>cforalls € (0, b].

To apply Theorem 11.6, we need to verify that S has a continuous exten-
sion to [0,b] and that H (1) — H(r) has a nonnegative limit as ¢ N\, 0. Recall
that we showed in (11.19) and (11.20) that s..(r)/s.(r) = 1/r + O(r) and #, =
(1/r)my + O(r) as r ™\ 0. This implies that Ar =te(H) =m—1)/r + 0(r)
and therefore both Jf ly@) and H(t)— H(1) approach 0 and S(t) approaches
Rc(y'(0),7'(0))/(n—1) > ¢ as ¢t \ 0. Therefore, we can apply Theorem 11.6 to
conclude that H (t) < H(t) for ¢t € (0,b]. Since y(b) = g was arbitrary, this com-
pletes the proof. O

The next theorem and its two corollaries will be crucial ingredients in the proofs
of our theorems in the next chapter about manifolds with positive Ricci curvature
(see Thms. 12.28 and 12.24).
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Theorem 11.16 (Conjugate Point Comparison II). Let (M, g) be a Riemannian n-
manifold, and suppose there is a positive constant ¢ = 1/ R? such that the Ricci cur-
vature of M satisfies Rc(v,v) > (n—1)c for all unit vectors v. Then every geodesic
segment of length at least TR has a conjugate point.

Proof. Let U be a normal neighborhood of an arbitrary point p € M. The second
Laplacian comparison theorem (Thm. 11.15) combined with Lemma 11.13 shows

that ,
5¢(r)

ar 10g (rn—1 /detg) =Ar < (}’l— 1)S (7’)

on the subset Uy € U where r < mR. Since r"~!/detg/s.(r)" ! — 1 as r \ 0,
this implies that 7"~ 1 /detg/s.(r)"~! < 1 everywhere in Uy, or equivalently,

Vdetg <s.(r)"" /L (11.31)

Suppose U contains a point ¢ where r > R, and let y : [0,b] — U be the unit-speed
radial geodesic from p to g. Because s, (7R) =0, (11.31) shows that detg(y(¢)) —
0ast / wR, and therefore by continuity detg = 0 at y(b), which contradicts the
fact that detg > 0 in every coordinate neighborhood. The upshot is that no normal
neighborhood can include points where r > 7 R.

Now suppose y: [0,b] — M is a unit-speed geodesic with b > 7R, and assume
for the sake of contradiction that y has no conjugate points. Let p=y(0) and v=y'(0),
so y(1) = exp,(tv) forz € [0,b]. As in the proof of Theorem 11.9, because y has no
conjugate points, we can choose a star-shaped open subset W C T, M containing
the set L = {tv:0 <1t < bo} € Tp,M on which exp » is a local diffeomorphism,
and let g be the pulled-back metric exp, g on W, which satisfies the same curvature
estimates as g. Then ¥ (f) = tv is a radial g-geodesic in W of length greater than or
equal to w R, which contradicts the argument in the preceding paragraph. O

= 0, log (s. (r)”_l)

Corollary 11.17 (Injectivity Radius Comparison). Let (M, g) be a Riemannian
n-manifold, and suppose there is a positive constant ¢ = 1/R? such that the Ricci
curvature of M satisfies Rc(v,v) > (n — 1)c for all unit vectors v. Then for every
point p € M, we have inj(p) < nR.

Proof. Every radial geodesic segment in a geodesic ball is minimizing, but the pre-
ceding theorem shows that no geodesic segment of length 7w R or greater is minimiz-
ing. Thus no geodesic ball has radius greater than wR. O

Corollary 11.18 (Diameter Comparison). Let (M, g) be a complete, connected
Riemannian n-manifold, and suppose there is a positive constant ¢ = 1/R? such
that the Ricci curvature of M satisfies Rc(v,v) > (n — 1)c for all unit vectors v.
Then the diameter of M is less than or equal to T R.

Proof. This follows from the fact that any two points of M can be connected by a
minimizing geodesic segment, and the conjugate point comparison theorem implies
that no such segment can have length greater than wR. O
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Our final comparison theorem is a powerful volume estimate under the assump-
tion of a lower bound on the Ricci curvature. We will use it in the proof of Theorem
12.28 in the next chapter, and it plays a central role in many of the more advanced
results of Riemannian geometry.

A weaker version of this result was proved by Paul Giinther in 1960 [Giin60]
for balls within the injectivity radius under the assumption of a lower bound on
sectional curvature; it was improved by Richard L. Bishop in 1963 (announced in
[Bis63], with a proof in [BC64]) to require only a lower Ricci curvature bound; and
then it was extended by Misha Gromov in 1981 [Gro07] to cover all metric balls in
the complete case, not just those inside the injectivity radius.

Theorem 11.19 (Bishop—Gromov Volume Comparison). Let (M, g) be a con-
nected Riemannian n-manifold, and suppose there is a constant ¢ such that the
Ricci curvature of M satisfies Rc(v,v) > (n — 1)c for all unit vectors v. Let p € M
be given, and for every positive number 8, let V4 (§) denote the volume of the metric
ball of radius § about p in (M, g), and let V. (§) denote the volume of a metric ball
of radius § in the n-dimensional Euclidean space, hyperbolic space, or sphere with
constant sectional curvature c. Then for every 0 < § <inj(p), we have

Vg (8) < Ve(5), (11.32)

and the quotient Vg (8)/ V. (8) is a nonincreasing function of 8 that approaches 1 as
8\ 0. If (M, g) is complete, the same is true for all positive 8, not just § < inj(p).
In either case, if equality holds in (11.32) for some §, then g has constant sectional
curvature on the entire metric ball of radius § about p.

Proof. First consider § < inj(p), in which case a metric ball of radius § in M is
actually a geodesic ball. With the exception of the first and last paragraphs, the proof
of Theorem 11.14 goes through with all of the inequalities reversed, and with the
first Laplacian comparison theorem replaced by its counterpart Theorem 11.15, to
show that V,(§)/ V¢ (6) is a nonincreasing function of § that approaches 1 as § \ 0,
and (11.32) follows.

In case M is complete, exp,, is defined and smooth on all of 7}, M. Theorem
10.34 shows that Cut(p) has measure zero in M and exp, maps the open subset
ID(p) € T, M diffeomorphically onto the complement of Cut(p) in M. Therefore,
for every & > 0, the metric ball of radius § is equal to exp,, (Bs(0) NID(p)) up to
a set of measure zero, where Bj(0) denotes the §-ball about 0 in 7, M. Using an
orthonormal basis to identify (7, M, g,) with (R", g), we can compute the volume
of a metric §-ball as

Vg(8)=/ exp, dV, =/ VdetgdVg,
ID(p)NBs(0) ID(p)NBs(0)

where detg denotes the determinant of the matrix of g in the normal coordinates
determined by the choice of basis.

Let @: Rt xS" ! — T, M ~ {0} = R" < {0} be the map @(p,w) = pw as in
Corollary 10.17, and define 5.: R — [0,00) by 5¢(p) = s¢(p) if ¢ <0, while in
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the case ¢ = l/R2 >0,

SC(p)1 p<NR9

3 =
c(p) 0 0> 7R

Corollary 11.18 shows that the cut time of every unit vector in 7, M is less than or

equal to wR. Thus 5. (p) > 0 whenever @(p,w) € ID(p), and we can define ARt x
S"~! - R by

(vdetg) o d(p.w)p""
A(p,w) = Se(p)n1 . ®(p.w) €ID(p),

0, D(p,w) ¢ ID(p),

and just as in the proof of Theorem 11.14, we can write
8 ~
o= [ [ Teomerdeav,

§
o = [ [ s tdpavy.
sn—1 Jo

The arguments of Theorem 11.14 (with inequalities reversed) show that for each
w € S™71, the function X(p, ®) is nonincreasing in p for all positive p, and it follows
just as in that proof that V,(§)/V.(6) (now interpreted as a ratio of volumes of
metric balls) is nonincreasing for all § > 0 and approaches 1 as § N\ 0, and (11.32)
follows.

Finally, suppose V (8) = V(8) for some § > 0, and assume first that § < inj(p).
An argument exactly analogous to the one at the end of the proof of Theorem 11.14
shows that A(p,w) = 1 everywhere on the set where 0 < p < §. Combined with
Lemma 11.13, this implies that

5e(r)
se(r)
everywhere on Bg(p) ~{p}. This means that along each unit-speed radial geodesic

¥, the function u(2) = (Ar)|, )/ (n —1) = s.(1)/sc(t) satisfies u’ +u* 4+ ¢ = 0 by
direct computation. Comparing this to (11.30), we conclude that

Ar=(n—1) (11.33)

tr (J%%) +Re(y'.y")
n—1

=cC

on B3 (p)~{p}. Since tr (J%f) > 0and Re(y',y") = (n—1)c everywhere, this is pos-
sible only if tr (J( f) vanishes identically there. Because J2 is positive semidefinite
and its trace is zero, it must vanish identically, which by definition of #, means
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Ar sh(r)

[4
— 7, = Tr.
n—1""""s.(r)" "

r

Proposition 11.3 then shows that g has constant sectional curvature ¢ on Bg(p).

Now suppose (M, g) is complete. The argument of Theorem 11.14 then shows
that X(p,a)) = | everywhere on the set where 0 < p < § and 5.(p) > 0. In view of
the definition of A, this implies in particular that ID(p) N Bs(0) contains all of the
points in Bg(0) where 5.(r) > 0. In case ¢ <0, 5.(r) = s.(r) > 0 everywhere, so
ID(p) N Bs(0) = Bs(0) and therefore the metric ball of radius § around p is actually
a geodesic ball, and the argument above applies.

In case ¢ = 1/R? > 0, if § < 7R, then 5,(r) = 5.(r) > 0 on Bs(0), and once
again we conclude that the metric §-ball is a geodesic ball. On the other hand, if
8 > R, then the diameter comparison theorem (Cor. 11.18) shows that the metric
ball of radius § is actually the entire manifold. The fact that the volume ratio is
nonincreasing implies that Vg (wR) = V,(wR), and the argument above shows that
g has constant sectional curvature ¢ on the metric ball of radius wR. Since the
closure of that ball is all of M, the result follows by continuity. O

The next corollary is immediate.

Corollary 11.20. Suppose (M, g) is a compact Riemannian manifold and there is a
positive constant ¢ = 1/ R? such that the Ricci curvature of M satisfies Rc(v,v) >
(n —1)c for all unit vectors v. Then the volume of M is no greater than the vol-
ume of the n-sphere of radius R with its round metric, and if equality holds, then
(M, g) has constant sectional curvature c. O

(For explicit formulas for the volumes of n-spheres, see Problem 10-4.)

Problems

11-1. Let (M, g) be a Riemannian manifold, and let U be a normal neighborhood
of p € M. Use Corollary 6.42 to show that in every choice of polar normal
coordinates (91, U L r) on a subset of U ~ {p} (see Example 6.45), the
covariant Hessian of r is given by

n—1

V== " (3,84p)d0% d6”.

a,f=1

N | —

11-2. Prove the following extension to Proposition 11.2: Suppose P is an embed-
ded submanifold of a Riemannian manifold (M, g), U is a normal neigh-
borhood of P in M, and r is the radial distance function for P in U (see
Prop. 6.37). If y: [0,b] — U is a geodesic segment with y(0) € P and y’(0)
normal to P, and J is a Jacobi field along y that is transverse to P in the
sense of Problem 10-14, then D, J(t) = #,(J(¢)) for all ¢ € [0, b].
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11-3.

Let (M, g) be a Riemannian manifold, and let f be any smooth local dis-
tance function defined on an open subset U € M. Let F = grad f (so the
integral curves of F' are unit-speed geodesics), and let # r = VI (the Hes-
sian operator of f). Show that # s satisfies the following Riccati equation
along each integral curve y of F:

DiHy+H7+ Ry =0, (11.34)

where R,/ (w) = R(w,y")y’. [Hint: Let W be any smooth vector field on U,
and evaluate VF Vi F in two different ways.]

. Let (M, g) be a compact Riemannian manifold. Prove that if R, L are posi-

tive numbers such that all sectional curvatures of M are less than or equal to
1/R? and all closed geodesics have lengths greater than or equal to L, then

inj(M) > min (nR, %L)

[Hint: Assume not, and use the result of Problem 10-23(b).]

. TRANSVERSE JACOBI FIELD COMPARISON THEOREM: Let P be an em-

bedded hypersurface in a Riemannian manifold (M, g). Suppose y : [0,b] —
M is a unit-speed geodesic segment with y(0) € P and y’(0) normal to
P, and J is a normal Jacobi field along y that is transverse to P. Let
A = h(J(0), J(0)), where h is the scalar second fundamental form of P with
respect to the normal —y’(0). Let ¢ be a real number, and let u: R — R be
the unique solution to the initial value problem

u’(t) +cu(t) =0,
u(0) = 1, (11.35)
W'(0) = A.

In the following statements, the principal curvatures of P are computed with
respect to the normal —y’(0).

(a) If all sectional curvatures of M are bounded above by ¢, all principal
curvatures of P at y(0) are bounded below by A, and u(¢) # 0 for ¢ €
(0,b), then |J(¢)| = u(t)|J(0)| for all ¢ € [0, ].

(b) If all sectional curvatures of M are bounded below by ¢, all principal
curvatures of P at y(0) are bounded above by A, and J(¢) # 0 for ¢ €
(0,b), then |J(¢)| <u(z)|J(0)| for all ¢ € [0, b].

[Hint: Mimic the proof of Theorem 11.9, using the results of Problems 11-3
and 11-2.]

. Suppose P is an embedded hypersurface in a Riemannian manifold (M, g)

and N is a unit normal vector field along P. Suppose the principal curva-
tures of P with respect to —N are bounded below by a constant A, and the
sectional curvatures of M are bounded above by —A2. Prove that P has no
focal points along any geodesic segment with initial velocity N, for p € P.
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11-7. Suppose P is an embedded hypersurface in a Riemannian manifold (M, g)
and N is a unit normal vector field along P. Suppose the sectional curva-
tures of M are bounded below by a constant ¢, and the principal curvatures
of P with respect to —N are bounded above by a constant A. Let u be the
solution to the initial value problem (11.35). Prove that if b is a positive real
number such that u(b) = 0, then P has a focal point along every geodesic
segment with initial velocity N, for some p € P and with length greater
than or equal to b.
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Chapter 12
Curvature and Topology

In this final chapter, we bring together most of the tools we have developed so far to
prove some significant local-to-global theorems relating curvature and topology of
Riemannian manifolds.

We focus first on constant-curvature manifolds. The main result here is the
Killing—Hopf theorem, which shows that every complete, simply connected mani-
fold with constant sectional curvature is isometric to one of our frame-homogeneous
model spaces. A corollary of the theorem then shows that the ones that are not sim-
ply connected are just quotients of the models by discrete groups of isometries. The
technique used to prove this result also leads to a global characterization of sym-
metric spaces in terms of parallel curvature tensors.

Next we turn to nonpositively curved manifolds. The primary result is the
Cartan—Hadamard theorem, which topologically characterizes complete, simply
connected manifolds with nonpositive sectional curvature: they are all diffeomor-
phic to R”. After proving the main result, we prove two other theorems, due to
Cartan and Preissman, that place severe restrictions on the fundamental groups of
complete manifolds with nonpositive or negative curvature.

Finally, we address the case of positive curvature. The main theorem is Myers’s
theorem, which says that a complete manifold with Ricci curvature bounded below
by a positive constant must be compact and have a finite fundamental group and
diameter no larger than that of the sphere with the same Ricci curvature. The bor-
derline case is addressed by Cheng’s maximal diameter theorem, which says that the
diameter bound is achieved only by a round sphere. These results are supplemented
by theorems of Milnor and Synge, which further restrict the topology of manifolds
with nonnegative Ricci and positive sectional curvature, respectively.

Manifolds of Constant Curvature

Our first major local-to-global theorem is a global characterization of complete man-
ifolds of constant curvature. If (M, g) has constant sectional curvature, Corollary

© Springer International Publishing AG 2018 345
J. M. Lee, Introduction to Riemannian Manifolds, Graduate Texts
in Mathematics 176, https://doi.org/10.1007/978-3-319-91755-9_12


http://crossmark.crossref.org/dialog/?doi=&domain=pdf

346 12 Curvature and Topology

Fig. 12.1: Analytic continuation of a local isometry

10.15 shows that each point of M has a neighborhood that is isometric to an open
subset of one of the constant-curvature model spaces of Chapter 3. In order to turn
that into a global result, we use a technique modeled on the theory of analytic con-
tinuation in complex analysis.

Suppose (M., g) and (1\//} , §) are Riemannian manifolds of the same dimension
and ¢ : U — M is alocal isometry defined on some connected open subset U C M .
Ify : [0,1] — M is a continuous path such that y(0) € U, then an analytic continua-
tion of ¢ along y is a family of pairs {(Uy, /) : 1 € [0, 1]}, where U, is a connected
neighborhood of y(¢) and ¢; : Uy — M is a local isometry, such that g9 = ¢ on
Uo N U, and for each ¢ € [0, 1] there exists § > 0 such that |t —#;| < § implies that
y(t1) € U; and that ¢; agrees with ¢;;, on U; N U;, (see Fig. 12.1). Note that we
require ¢; and ¢y, to agree where they overlap only if 7 and #; are sufficiently close;
in particular, if y is not injective, the values of the analytic continuation may dif-
fer at different times at which y returns to the same point. However, as the next
lemma shows, all analytic continuations along the same path will end up with the same
value.

Lemma 12.1 (Uniqueness of Analytic Continuation). With (M, g), (1\2 .8), and ¢
as above, if {(Us,¢r)} and {(U/,¢;)} are two analytic continuations of ¢ along the
same path y : [0,1] = M, then @1 = ¢} on a neighborhood of y(1).

Proof. Let T be the set of all 7 € [0, 1] such that ¢; = ¢, on a neighborhood of y (7).
Then 0 € T, because both ¢ and ¢ agree with ¢ on a neighborhood of y(0). We
will show that 7™ is open and closed in [0, 1], from which it follows that 1 € 7, which
proves the lemma.

To see that it is open, suppose ¢ € T . By the definition of analytic continuation,
there is some § > 0 such that if #; € [0, 1] and [t; —#| < §, then ¢y, and ¢; both agree
with ¢, on a neighborhood of y(¢), so [0,1] N (t =8, + ) C T . Thus T is open.

To see that it is closed, suppose ¢ is a limit point of 7. There is a sequence t; — ¢
such that #; € T, which means that ¢;, = go,’l, on a neighborhood of #; for each i.
By definition of analytic continuation, for i large enough, we have y(#;) € U, N U/
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and ¢, = ¢, = <p,’i = ¢; on a neighborhood of y(;). In particular, this means that
@ (v (1)) = ¢;(y(t;)) and d(¢;)y;) = d(¢;)y@;) for each such i. By continuity,
therefore, ¢; (y(¢)) = ¢;(y(t)) and d(¢;)y ) = d(¢;)y (). Proposition 5.22 shows
that ¢; = ¢, on a neighborhood of y(¢),sot € 7. O

The previous lemma shows that all analytic continuations along the same path
end up with the same value. But when we consider analytic continuations along dif-
ferent paths, this may not be the case. The next theorem gives a sufficient condition
for analytic continuations along two different paths to result in the same value.

Theorem 12.2 (Monodromy Theorem for Local Isometries). Ler (M,g) and
(M ,§) be connected Riemannian manifolds. Suppose U is a neighborhood of a
point p € M and ¢ : U — M is a local isometry that can be analytically continued
along every path starting at p. If yo, y1 : [0,1] = M are path-homotopic paths from
p to a point ¢ € M, then the analytic continuations along yy and y; agree in a
neighborhood of q.

Proof. Suppose yg and y; are path-homotopic, and let H : [0,1] x[0,1] — M be a
path homotopy from yg to y;. Write Hg(t) = H(t,s), so that Hy = yo, H1 = y1,
and H(0) = p and Hg(1) = g for all s € [0, 1]. The hypothesis implies that for
each s € [0, 1], there is an analytic continuation of ¢ along H, which we denote by
(UL, 0 1 e[0,1]}.

Consider the function P : [0, 1] — M given by P(s) = (pfs) (¢). Given s € [0,1],
if 57 is sufficiently close to s, it follows from compactness of Hy([0,1]) that the

same family {(U,(S),wz(s)) :1 € [0,1]} serves as an analytic continuation along Hy .

This means that P(s) is locally constant as a function of s, so <pfl)(q) = gofo) (9).
Since a path from p to ¢ can easily be modified near g to yield a path from p to
any point ¢’ sufficiently nearby, and the same analytic continuation works for the
modified path, it follows from the same argument that (pfl) (¢ = (pio) (¢") for all ¢’
in a neighborhood of ¢. O

Corollary 12.3. Let (M, g) and (1\//} , §) be simply connected, complete Riemannian
manifolds. Suppose U is a connected neighborhood of a point p € M and ¢ : U —
M is a local isometry that can be analytically continued along every path starting
at p. Then there is a global isometry @ : M — M whose restriction to U agrees
with ¢.

Proof. Letq € M be arbitrary. We wish to define @(q) to be the value of an analytic
continuation of ¢ along a path from p to ¢. The fact that M is simply connected
means that all paths from p to g are path-homotopic, so the monodromy theorem
implies that all such analytic continuations agree in a neighborhood of ¢; thus @
is well defined. Because it is a globally defined local isometry and M is complete,
it follows from Theorem 6.23 that @ is a Riemannian covering map. Since M is
simply connected, every covering of M is bijective by Corollary A.59, so @ is a
bijective local isometry and thus a global isometry. O
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Fig. 12.2: Proof of the Killing—Hopf theorem

The next theorem, due to Wilhelm Killing and Heinz Hopf, is the main result of
this section.

Theorem 12.4 (Killing—-Hopf). Let (M, g) be a complete, simply connected Rie-
mannian n-manifold with constant sectional curvature, n > 2. Then M is isometric
to one of the model spaces R", S™*(R), and H" (R).

Proof. Given (M, g) satisfying the hypotheses, let (1\7 ,§) be the Euclidean space,
sphere, or hyperbolic space with the same constant sectional curvature as M. Note
that M is simply connected in each case. Let p € M be arbitrary. Corollary 10.15
shows that there exist an open subset V' € M containing p, an open subset V C M,
and an isometry ¢ : V — V. If we can show that ¢ can be analytically continued
along every path starting at p, then we can conclude from Corollary 12.3 that there
exists a global isometry @ : M — M , thus proving the theorem.

To that end, let y : [0,1] — M be a path starting at p. Corollary 10.15 shows that
for each ¢ € [0, 1], there is a neighborhood of y (¢) that is isometric to an open subset
of M. After shrinking the neighborhoods if necessary, we may assume by Theorem
6.17 that each such neighborhood is a convex geodesic ball. By compactness, we
can choose a partition (zg,...,f+1) of [0,1] and a finite sequence of such balls
Bo,..., B such that y([t;,t;+1]) € B; foreachi =0,...,k. After shrinking By and
adding more points to the partition if necessary, we can also assume By C V.

We wish to construct local isometries V; : Bj — M such that successive ones
agree on overlaps. Begin with Yo = ¢|p,. By our choice of By, there is some
isometry B; from B;p to an open subset of M. Note that By N By is an intersec-
tion of geodesically convex sets and thus is connected, and it is nonempty because
it contains y(f1). The composition ¥ o ;! is an isometry from B1(Bo N By) to
Yo(Bo N By), both of which are connected open subsets of M, so by Problem
5-11(c), it is the restriction of a global isometry ¥ : M — M (Fig. 12.2). Let
Y1 =Wopf;: By — M. Our choice of ¥ guarantees that ¥1|g,nB, = YolBonB; -
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Proceeding similarly by induction, we can define ¥; : B; — M fori = 2,...,k,such
that v; agrees with ¥;_; on B; N B;_;.

Now we define the analytic continuation of ¢ as follows: start with (U;,¢;) =
(Bo, Vo) for 0 <t <t;, and thereafter let (U;, ;) = (B;, ;) fort; <t <tj4q.1Itis
easy to verify that this family of maps does the job. O

Corollary 12.5 (Characterization of Constant-Curvature Manifolds). The com-
plete, connected, n-dimensional Riemannian manifolds of constant sectional curva-
ture are, up to isometry, exactly the Riemannian quotients of the form M /I, where
M is one of the constant-curvature model spaces R", S"(R), or H"(R), and I is
a discrete subgroup of 1so ( ) that acts freely on M.

Proof. First suppose (M, g) is a complete, connected Riemannian n-manifold with
constant sectional curvature, and let 7 : M — M be its universal covering rrgmifold
with the pullback metric § = 7n*g. The preceding theorem shows that (M , §) is
isometric to one of the model spaces, so we might as well take it to be one of
the models. Proposition C.20 shows that the group I of covering automorphisms
acts freely and properly on M, and Corollary 2.33 shows that M is isometric to
M /I". Moreover, if ¢ is any covering automorphism, then 7 o¢ = 77, and so ¢*g =
p*n*g =n*g =g, thus I acts isometrically, so it is a subgroup of Iso (1\7)

To show that I” is discrete, suppose {¢; } C I' is an infinite set with an accumula-
tion point in Iso(M). (Note that Problem 5-11 shows that Iso (M , §) is a Lie group
acting smoothly on M in each case, so it makes sense to talk about the topology of
the isometry group.) Since the action of I is free, for every point p € M the set
{¢i (p)} is infinite, and by continuity of the action it has an accumulation point in
M . But this is impossible, since the points {¢; (p)} all project to the same point in
M under the covering map 7, and so form a closed discrete set. Thus I” is discrete
in Iso(ﬂ ).

Conversely, suppose M is one of the model spaces and I is a discrete subgroup
of Iso (M ) that acts freely on M. Then I is a closed Lie subgroup of Iso (Ml by
Proposition C.9, so the result of Problem 6-28 shows that it acts properly on M. It
then follows from Proposition 2.32 that M /I" is a smooth manifold and has a unique
Riemannian metric such that the quotient map = : M — M /I" is a Riemannian
covering, and M /I" is complete by Corollary 6.24. Since a Riemannian covering is
in particular a local isometry, M /T has constant sectional curvature. O

A complete, connected Riemannian manifold with constant sectional curvature
is called a space form. A space form is called spherical, Euclidean, or hyperbolic,
depending on whether its sectional curvature is positive, zero, or negative, respec-
tively. The preceding corollary, combined with the characterization of the isometry
groups of the simply connected model spaces given in Problem 5-11, essentially
reduces the classification of space forms to the group-theoretic problem of classify-
ing the discrete subgroups of E(n), O(n + 1), and O™ (n, 1) that act without fixed
points. Nevertheless, the group-theoretic problem is still far from easy.

The spherical space forms were classified in 1972 by Joseph Wolf [Woll1]; the
proof is intimately connected with the representation theory of finite groups. Al-
though in even dimensions there are only spheres and projective spaces (see Problem
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12-2), the situation in odd dimensions is far more complicated. Already in dimen-
sion 3 there are many interesting examples: some notable ones are the lens spaces
obtained as quotients of S3 € C? by cyclic groups rotating the two complex coordi-
nates through different angles, and the quotients of SO(3) (which is diffeomor-
phic to RIP3 and is therefore already a quotient of S®) by the dihedral groups,
the symmetry groups of regular 3-dimensional polyhedra.

The complete classification of Euclidean space forms is known only in low
dimensions. Problem 12-3 shows that every compact 2-dimensional Euclidean space
form is diffeomorphic to the torus or the Klein bottle. It turns out that there are 10
classes of nondiffeomorphic compact Euclidean space forms of dimension 3, and 75
classes in dimension 4. The fundamental groups of compact Euclidean space forms
are examples of crystallographic groups—discrete groups of Euclidean isometries
with compact quotients, which have been studied extensively by physicists as well
as geometers. (A quotient of R” by a crystallographic group is a space form, pro-
vided it is a manifold, which is true whenever the group is torsion-free.) In higher
dimensions, the classification is still elusive. The main things that are known are
two results proved by Ludwig Bieberbach in the early twentieth century: (1) every
compact Euclidean space form is a quotient of a flat torus by a finite group of
isometries, and (2) in each dimension, there are only finitely many diffeom-
orphism classes of compact Euclidean space forms. See [Wolll] for proofs of
the Bieberbach theorems and acomplete survey of the state of the art.

In addition to the question of classifying Euclidean space forms up to diffeomor-
phism, there is also the question of classifying the different flat Riemannian metrics
on a given manifold up to isometry. Problem 12-5 shows, for example, that there is
a three-parameter family of nonisometric flat Riemannian metrics on the 2-torus.

Finally, the study of hyperbolic space forms is a vast and rich subject in its own
right. A good introduction is the book [Rat06].

Symmetric Spaces Revisited

The technique of analytic continuation of local isometries can also be used to derive
a fundamental global result about symmetric spaces. Theorem 10.19 showed that
locally symmetric spaces are characterized by having parallel curvature. The next
theorem is a global version of that result.

Theorem 12.6. Suppose (M, g) is a complete, simply connected Riemannian mani-
fold with parallel Riemann curvature tensor. Then M is a symmetric space.

Proof. Let p be an arbitrary point of M. Theorem 10.19 shows that M is locally
symmetric, so there is a point reflection ¢ : U — U defined on some connected
neighborhood U of p. If we can show that ¢ can be analytically continued along
every path starting at p, then Corollary 12.3 shows that ¢ extends to a global isom-
etry @ : M — M ; because it agrees with ¢ on U, it satisfies d @, = d¢, = —Id, so
it is a point reflection.
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Lety : [0, 1] = M be a path starting at p. By compactness, we can find a partition
(to,---,tx4+1) of [0,1] and convex geodesic balls By, ..., B such that y([t;,ti+1]) €
B; for each i = 0,...,k, with By chosen small enough that By € U. As in the
proof of Theorem 12.4, we will construct local isometries ¥; : B; — M such that
successive ones agree on overlaps.

Begin with Yo = ¢|p,, and let p; = y(#1) and g1 = Vo(p1). Because v is a
local isometry, the linear map d o, : Tp, M — Ty, M satisfies (d¥olp, )*gq, =
gp, and (dVolp,)*Rmy, = Rmy,. Lemma 10.18 then shows that there is a local
isometry ¥y : By — M that satisfies Y1 (p1) = Yo(p1) and dv1|p, = dVro|p, . and it
follows from Proposition 5.22 that ¥, and ¢ agree on the connected open set By N
B;. Proceeding by induction, we obtain local isometries v; : B; — M satisfying
VilB;_,nB; = V¥i—1|B,_,nB;. Then the analytic continuation of ¢ is defined just as
in the last paragraph of the proof of Theorem 12.4, thus completing the proof. O

Corollary 12.7. Suppose (M, g) is a complete, connected Riemannian manifold.
The following are equivalent:

(a) M has parallel curvature tensor.

(b) M is a locally symmetric space.

(¢) M is isometric to a Riemannian quotient 1\7/1", where M is a (globally) sym-
metric space and I' is a discrete Lie group that acts freely, properly, and iso-
metrically on M.

Proof. Theorem 10.19 shows that (a) < (b). To show that (a) = (c), assume that
M has parallel curvature tensor, and let (1\7 gr') be its gniversal covering manifold
with the pullback metric. Since the covering map 7 : M — M is a local isometry,
M also has parallel curvature tensor, and Corollary 6.24 shows that it is complete.
Then Theorem 12.6 shows that M is asymmetric space. If welet I" denote the covering
automorphism group with the discrete topology, then Proposition C.20 shows that
I' is a discrete Lie group acting smoothly, freely, and properly on M, and it acts
isometrically because the pullback metric is invariant under all covering automor-
phisms. Finally, Corollary 2.33 shows that M is isometric to M /I".

Finally, we show that (¢c) = (a). If M is isometric to a Riemannian quotient of the
form M /I as in (c), then the quotient map M—>M /I is a Riemannian covering
by Proposition 2.32. Since M has parallel curvature tensor by the result of Problem
7-3, so does M. O

An extensive treatment of the structure and classification of symmetric spaces
can be found in [HelO1].

The analytic continuation technique used in this section was introduced in 1926
by Elie Cartan, in the same paper [Car26] in which he first defined symmetric spaces
and proved many of their properties. The technique was generalized in 1956 by War-
ren Ambrose [Amb56] to allow for isometries between more general Riemannian
manifolds with varying curvature; and then in 1959 it was generalized further by
Noel Hicks [Hic59] to manifolds with connections in their tangent bundles, not nec-
essarily Riemannian ones. The resulting theorem is known as the Cartan—-Ambrose—
Hicks theorem. We do not pursue it further, but a statement and proof can be found
in [CEO8].
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Manifolds of Nonpositive Curvature

Our next major local-to-global theorem provides a complete topological characteri-
zation of complete, simply connected manifolds of nonpositive sectional curvature.
This was proved in 1928 by Elie Cartan, generalizing earlier proofs for surfaces by
Hans Carl Friedrich von Mangoldt and Jacques Hadamard. As with many other such
theorems, tradition has given it a title that is not entirely historically accurate, but is
generally recognized by mathematicians.

Theorem 12.8 (Cartan-Hadamard). If (M, g) is a complete, connected Riemann-
ian manifold with nonpositive sectional curvature, then for every point p € M, the
map exp, : TpM — M is a smooth covering map. Thus the universal covering
space of M is diffeomorphic to R, and if M is simply connected, then M itself is
diffeomorphic to R".

Proof. By Theorem 11.12, the assumption of nonpositive curvature guarantees that
p has no conjugate points along any geodesic. Therefore, by Proposition 10.20,
exp,, is a local diffeomorphism on all of 7, M.

Let g be the (variable-coefficient) 2-tensor field exp; g defined on T, M. Be-
cause exp, is a local diffeomorphism, g is a Riemannian metric, and exp, is a local
isometry from (7, M,g) to (M,g). Note that each line 7 — v in T, M is a g-
geodesic, so (T, M, g) is complete by Corollary 6.20. It then follows from Theorem
6.23 that exp,, is a smooth covering map. The remaining statements of the theorem
follow immediately from uniqueness of the universal covering space. O

Because of this theorem, a complete, simply connected Riemannian manifold
with nonpositive sectional curvature is called a Cartan—Hadamard manifold. The
basic examples are Euclidean and hyperbolic spaces. The next two propositions
show that Cartan-Hadamard manifolds share many basic geometric properties with
these model spaces. A line in a Riemannian manifold is the image of a nonconstant
geodesic that is defined on all of R and restricts to a minimizing segment between
any two of its points.

Proposition 12.9 (Basic Properties of Cartan-Hadamard Manifolds). Suppose
(M, g) is a Cartan—Hadamard manifold.

(a) The injectivity radius of M is infinite.

(b) The image of every nonconstant maximal geodesic in M is a line.

(c) Any two distinct points in M are contained in a unique line.

(d) Every open or closed metric ball in M is a geodesic ball.

(e) For every point g € M, the function r (x) = dg(q. x) is smooth on M ~{q} and
r(x)? is smooth on all of M.

Proof. These properties follow from Lemma 6.8, Proposition 6.11, and Corollaries
6.12 and 6.13, together with the fact that M is a normal neighborhood of each of its
points. O
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Suppose A4, B, C are three points in a Cartan—Hadamard manifold that are non-
collinear (meaning that they are not all contained in a single line). The geodesic
triangle A ABC determined by the points is the union of the images of the (unique)
geodesic segments connecting the three points. (In the present context, we do not
require that a geodesic triangle bound a two-dimensional region, as we did in
Chapter 9.) If AABC is a geodesic triangle, we denote the angle in 74 M formed
by the initial velocities of the geodesic segments from A to B and 4 to C by LA
(or LCAB if necessary to avoid ambiguity), and similarly for the other angles.

Proposition 12.10. Suppose AABC is a geodesic triangle in a Cartan—Hadamard
manifold (M, g), and let a,b,c denote the lengths of the segments opposite the ver-
tices A, B, and C, respectively. The following inequalities hold:

(@) ¢ > a®+b*—2abcos LC.
(b) LA+ 4B+ ZC <.

If the sectional curvatures of g are all strictly negative, then strict inequality holds
in both cases.

Proof. Problem 12-7. O

Another consequence of the Cartan—-Hadamard theorem is that there are strin-
gent topological restrictions on which manifolds can carry metrics of nonpositive
sectional curvature. The next corollary is immediate.

Corollary 12.11. No simply connected compact manifold admits a metric of non-
positive sectional curvature. O

With a little more work, we can obtain a much more powerful result.

Corollary 12.12. Suppose M and N are positive-dimensional compact, connected
smooth manifolds, at least one of which is simply connected. Then M X N does not
admit any Riemannian metric of nonpositive sectional curvature.

Proof. Suppose for the sake of contradiction that M is simply connected and g is a
metricon M x N with nonpositive sectional curvature. If N is the universal covering
manifold of N, then there is a universal covering map 7 : M x N — M x N, and
7* g is a complete metric of nonpositive sectional curvature on M x N. The Cartan—
Hadamard theorem shows that M x N is diffeomorphic to a Euclidean space.

Since M is simply connected, it is orientable (Cor. B.19). Let u be a smooth
orientation m-form for M, where m = dim M. Then pu is closed because there are
no nontrivial (m + 1)-forms on M, but Stokes’s theorem shows that u is not exact,
because [ > 0. On the other hand, if we let p : M x N — M denote the projec-
tion on the first factor, then the form p*u is exact on M x N, because every closed
m-form on a Euclidean space is exact.

Choose an arbitrary point yg € N and definec: M — M x N by o(x) = (x,y0);
it is a diffeomorphism onto its image 6 (M) = M x {yo}, which is a compact em-
bedded submanifold of M x N. By diffeomorphism invariance of the integral,
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/ p*/t=f 0*(p*u)=f (poo)*/L:/ w>0,
a(M) M M M

because p oo = Id. But p*u is exact on M x N, which implies fa(M) p*nu=0,a
contradiction. O

Example 12.13. By the preceding corollary, every metric on S x S” must have posi-
tive sectional curvature somewhere, provided m > 2 and n > 1, because both spheres
are compact and S™ is simply connected. I

With a little more algebraic topology, one can obtain more information. A topo-
logical space whose higher homotopy groups i (M) all vanish for k > 1 is called
aspherical.

Corollary 12.14. If M is a smooth manifold that admits a metric of nonpositive
sectional curvature, then M is aspherical.

Proof. Suppose M admits a nonpositively curved metric, so its universal covering
space is diffeomorphic to R” by Cartan—-Hadamard. Since R” is contractible, it is
aspherical. Since covering maps induce isomorphisms on 7z for kK > 1 (see [Hat02,
Prop. 4.1]), it follows that M is aspherical as well. O

Cartan’s Torsion Theorem

In addition to the topological restrictions on nonpositively curved manifolds im-
posed directly by the Cartan-Hadamard theorem, it turns out that there is a stringent
restriction on the fundamental groups of such manifolds (Corollary 12.18 below).
In preparation for the proof, we need the following two lemmas, both of which are
interesting in their own right.

Lemma 12.15. Suppose (M, g) is a Cartan—Hadamard manifold. Given g € M, let
f M —[0,00) be the function f(x) = %dg (x.q)2. Then f is strictly geodesically
convex, in the sense that for every geodesic segment y : [0,1] — M, the following
inequality holds for all t € (0,1):

Sy(@) <(A=0)f(y(0)) +1f(y(1)). (12.1)

Proof. We can write f(x) = %r(x)z, where r is the radial distance function from
q with respect to any normal coordinates, and Proposition 12.9 shows that f is
smooth on all of M. The Hessian comparison theorem implies that #, > (1/r)m,
on M ~{q}, and therefore

Hyr=V(grad f) =V (r gradr) = gradr @ dr +rH, > gradr @ dr + m,.

The expression on the right-hand side above is actually equal to the identity operator,
as can be checked by applying it separately to d, = gradr and an arbitrary vector
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perpendicular to d,. Therefore (J s (v),v) > |v|? for all tangent vectors to M ~ {g},
and by continuity, the same holds at g as well.
Now suppose y : [0,1] = M is a geodesic segment. By the chain rule,

d
27/ 0®) = dfo('0) = {grad fly). v'(0)).
and thus (using the fact that y’ is parallel along y)

d2

23/ 0) = (Vyoerad flyw. ') = (¢ ©).y' 1) > 0.

Therefore, the function f oy is strictly convex on [0, 1], and (12.1) follows. O

Lemma 12.16. Suppose (M, g) is a Cartan—Hadamard manifold and S is a com-
pact subset of M containing more than one point. Then there is a unique closed ball
of minimum radius containing S.

Proof. Because S is compact, it is bounded. Let § = diam(S), and let go be any
point of S, so that S € Bj(qo). Let co be the infimum of the radii of closed metric
balls containing S, and let (Ec,. (p,-)) be a sequence of closed balls containing S
such that ¢; N\ ¢g as i — oo. For i large enough that ¢; < 2§, the fact that g € S C
Ec,» (pi) implies dg (pi,qo) < c¢; <28, so each of the points p; lies in the compact
ball B,s(qo). After passing to a subsequence, we may assume that p; converges to
some point pg € M.

To show that S C ECO (po), suppose g € S, and let € > 0 be arbitrary. If i is large
enough that d, (p;, po) < &/2 and ¢; < co+¢/2, then

dg(q.po) <dg(q.pi) +dg(pi,po) <ci+e/2=<co+e.

Since & was arbitrary, this shows that d, (¢, po) < co, and thus § C Eco (po).

Now we need to show that Eco (po) is the unique closed ball of radius ¢y contain-
ing S. Suppose to the contrary that ECO (pg) is another such ball. Let y : [0,1] - M
be the geodesic segment from pg to py, and let m = y(%) be its midpoint. Let g € S
be arbitrary, and let ' : M — [0,00) be the function f(x) = %dg (¢,x)?. Lemma
12.15 implies that

3dg(q.m)* = f(m) < 3 f(po) + 5. (py) = 5(3¢5) +3(3¢3) = 3¢

Thus for every ¢ € S, we have dq(q,m) < co. Since S is compact, the contin-
uous function dg(-,m) takes on a maximum value by < ¢ on §, showing that
S C Ebo (m). This contradicts the fact that c¢ is the minimum radius of a ball con-
taining S. O

Let us call the center of the smallest enclosing ball the 1-center of the set S.
(The term is borrowed from optimization theory, where the “I-center problem” is
the problem of finding a location for a single production facility that minimizes
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the maximum distance to any client. Some Riemannian geometry texts refer to the
I-center of a set S € M as its “circumcenter” or “center of gravity,” but these terms
seem inappropriate, because the 1-center does not coincide with the classical mean-
ing of either term for finite subsets of the Euclidean plane.)

Theorem 12.17 (Cartan’s Fixed-Point Theorem). Suppose (M, g) is a Cartan—
Hadamard manifold and G is a compact Lie group acting smoothly and isomet-
rically on M. Then G has a fixed point in M, that is, a point py € M such that

@-po= poforall ¢ €G.

Proof. Let gy € M be arbitrary, and let S = G - g¢ be the orbit of g¢. If S contains
only the point gg, then g is a fixed point, so we may assume that the orbit contains
at least two points. Because S is the image of the continuous map from G to M
given by ¢ = ¢ - qo, it is compact, so by Lemma 12.16, there is a unique smallest
closed geodesic ball containing S. Let pg be the center of this ball (the 1-center of
S), and let cq be its radius.

Now let g9 € G be arbitrary, and note that ¢q - S is the set of all points of the
form ¢g - ¢ - go for ¢ € G. As ¢ ranges over all of G, so does @@, so this image set
is exactly the orbit of g¢. In other words, ¢o - S = S.

Because G acts by isometries, ¢ « Eco (po) = Eco (90 * po). Thus ECO (¢o - po) is
a closed ball of the same radius c¢ containing ¢g - S = S, so by uniqueness of the
1-center we must have ¢ - pg = po. Since @y was arbitrary, this shows that pg is a
fixed point of G. O

Cartan’s fixed-point theorem has important applications to Lie theory (where it is
used to prove that all maximal compact subgroups of a Lie group are
conjugate to each other). But our interest in the theorem is that it leads to the next
corollary, also due to Cartan. If G is a group, an element ¢ € G is called a torsion
element if ¢* = 1 for some integer k > 1. A group is said to be torsion-free if the
only torsion element is the identity.

Corollary 12.18 (Cartan’s Torsion Theorem). Suppose (M, g) is a complete, con-
nected Riemannian manifold with nonpositive sectional curvature. Then w1(M) is
torsion-free.

Proof. Let (1\7 , §) be the universal covering manifold of M with the pullback met-
ric. Then (A7 , g) is a Cartan—-Hadamard manifold, and M is isometric to a Riemann-
ian quotient M /I, where I' is subgroup of Iso (1\7 , §), isomorphic to 71 (M) and
acting freely on M.

Suppose ¢ is a torsion element of I". Then the cyclic group generated by ¢ is
finite, and thus is a compact 0-dimensional Lie group with the discrete topology,
acting smoothly on M because isometries are smooth. Cartan’s fixed-point theorem
shows that it has a fixed point. Because I" acts freely, this implies that ¢ is the
identity. Thus I is torsion-free, and the same is true of 7y (M). O
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Preissman’s Theorem

Taken together, the Cartan—-Hadamard theorem and Cartan’s torsion theorem put
severe restrictions on the possible topologies of manifolds that can carry nonposi-
tively curved metrics. If we make the stronger assumption of strictly negative sec-
tional curvature, we can restrict the topology even further. The following theorem
was first proved in 1943 by Alexandre Preissman [Pre43].

Theorem 12.19 (Preissman). If (M, g) is a compact, connected Riemannian man-
ifold with strictly negative sectional curvature, then every nontrivial abelian sub-
group of w1 (M) is isomorphic to 7.

Before proving Preissman’s theorem, we need two more lemmas. Suppose (M, g)
is a complete Riemannian manifold and ¢ : M — M is an isometry. A geodesic
y : R — M is called an axis for ¢ if ¢ restricts to a nontrivial translation along y,
that is, if there is a nonzero constant ¢ such that ¢(y(z)) = y(¢ +c¢) for all t € R.
An isometry with no fixed points that has an axis is said to be axial.

Example 12.20 (Axial Isometries). In R? with its Euclidean metric, every nontrivial
translation (x,y) — (x +a,y + b) is axial, and every line parallel to the vector
adx + bd, is an axis. In the upper half-plane model of the hyperbolic plane, every
dilation (x, y) = (cx,cy) for ¢ # 1 is axial, and the geodesic y(r) = (0,e?) is an
axis. On the other hand, the horizontal translations (x, y) — (x +a, y) are not axial
for the hyperbolic plane, because no geodesic is invariant under such an isometry. /

As the next lemma shows, there is a close relation between axes and closed
geodesics. This lemma will also prove useful in the proof of Synge’s theorem later
in the chapter.

Lemma 12.21. Suppose (M, g) is a compact, connected Riemannian manifold, and
7 M — M is its universal covering manifold endowed with the metric § = n*g.
Then every covering automorphism of w has an axis, which restricts to a lift of a
closed geodesic in M that is the shortest admissible path in its free homotopy class.

Proof. Let ¢ be any nontrivial covering automorphism of 7, so it is also an isometry
of (M g) Every continuous path ¢ : [0,1] — M from a point X € M to its image
¢(5c') projects to a loop 0 = w oG in M. We begin by showing that the set of all
loops obtained from ¢ in this way is exactly one free homotopy class. Suppose
09,07 : [O,Q — M are two such loops, so that o; = 7 05; for each i, where &; is
a path in M from X; to ¢(X;) (Fig. 12.3). For i = 0.1, let x; = 7(X;), s0 0; is a
loop based at x;. Choose a path & from Xg to X1, and let B = ¢ o@, which is a path
from (p(xo) to (p(xl) ando =mod = n o 3, a path from x¢ to x; in M. Because
M is simply connected, the two paths &~ -G « ,g and &7 from X; to go(fc' 1) are path-
homotopic, and therefore so are their images o' - 0 - @ and 0. An easy argument
shows that the loops o' - 0 - & and oy are freely homotopic, by a homotopy that
gradually shrinks the “tail” « to a point, so it follows that oy and o, are freely
homotopic.
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01

Fig. 12.3: Defining a free homotopy class

Conversely, let 0y and o7 be freely homotopic loops based at xo and x; in M,
respectively, and suppose one of them, say 0y, is of the form 09 = 7 05y for some
path & from a point X¢ to ¢ ()?0) in M . We need to show that o is also of this form. The
fact that the loops are freely homotopic means that there is a homotopy H : [0, 1] x
[0,1] — M satisfying H(s,0) = oo(s), H(s,1) = o01(s), and H(0,¢) = H(1,t) for
all 7. Let o : [0,1] — M be the path a(¢) = H(0,t) = H(1,t) from x¢ to x;. The
existence of such a homotopy implies that the two loops o~ ! - 0 - @ and o based
at x; are path-homotopic (see [LeeTM, Lemma 7.17]). By the monodromy theorem
(Prop. A.54(c)), their lifts starting at X; both end at the same point. Let ; be the
lift of oy starting at the point X1 = @(1), let & be the lift of & starting at Xo, and
let B = @ oa. Then @ 1.5 B isalift of @~ !« 0p -« starting at X1, and it ends at
B(H)=¢ (55 1). The monodromy theorem therefore implies that 31 is a path from X,
to ¢(f1), as claimed.

We have shown that the covering automorphism ¢ determines a unique free
homotopy class in M. It is not the trivial class, because that class contains the con-
stant loop, which cannot be the image of a path from a point X to go()"c’) because
¢ has no fixed points. Since M is compact, Proposition 6.28 shows that there is
a closed geodesic y : [0,1] — M that is the shortest admissible path in this free
homotopy class. This means, in particular, that there is a lift ¥ of y that satisfies
y() = go()7(0)). Because M is complete, y extends to a geodesic in M defined
on all of R. Let y9,%; : R — M be the geodesics defined by yo(f) = ¢ o ¥(¢) and
y1(1) =y (1 +1). Then yo(0) = (1) = y1(0), and
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Fig. 12.4: Uniqueness of the axis in the negative curvature case

d5(1)(76(0)) = d 7501y 0 dp50) (7(0)) (definition of 7)
= d75(0) (37/(0)) (because r o9 = 1)
=y'(0) (becausem oy = y)
=y'(D) (yis a closed geodesic)
= dryy (7'(1) (7 oy = yagain)
= dmy) (71(0)) (definition of 7).

The fact that d 75y is injective then implies ¥(0) = 1 (0), so by uniqueness of
geodesics we have Yo = 91, or in other words ¢(¥(1)) = 7(t 4+ 1) for all t € R.
Thus ¥ is an axis for ¢. O

In general, an axis of an isometry need not be unique, as we saw in the case
of translations of R? in Example 12.20. However, as the next lemma shows, the
situation is different in the case of negatively curved Cartan-Hadamard manifolds.

Lemma 12.22. Suppose (M, g) is a Cartan—Hadamard manifold with strictly neg-
ative sectional curvature. If ¢ : M — M is an axial isometry, then its axis is unique
up to reparametrization.

Proof. Let ¢ : M — M be an axial isometry, and suppose y1, ¥, : R — M are both
axes for ¢. After reparametrizing the geodesics if necessary, we can assume that ¢
translates both geodesics by time 1.

Suppose first that the two axes do not intersect. Then the points A = y;1(0), B =
y1(1) = ¢p(A), C = y»(0), and D = y,(1) = ¢(C) are all distinct (Fig. 12.4). Let o
be the geodesic segment from A to C, so that ¢ oo is the geodesic segment from B
to D, forming a “geodesic quadrilateral” ABD C. Because ¢ preserves angles, the
angles ZCAB and ZABD are supplementary, as are ZACD and ZCDB. Thus the
angle sum of ABDC is exactly 2.

On the other hand, Proposition 12.10 shows that the geodesic triangles AABC
and A BCD have angle sums strictly less than &. The angle ZACD is no larger
than the sum ZACB + ZBCD: one way to see this is to note that Problem 6-2
shows that the angle between two unit vectors v, w € T¢ M, namely arccos(v, w),
is exactly equal to the Riemannian distance between v and w regarded as points on
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the unit sphere in 7¢ M with its round metric, so we can apply the triangle inequality
for distances on the sphere. Similarly, ZABD < ZABC + ZCBD. Thus the sum
of the four angles of ABDC is strictly less than 277, which is a contradiction.

It follows that y; and y, must intersect at some point, say x = y1(t1) = y2(2).
But then ¢(x) = y1(t1 + 1) = y2(t2 + 1) is another intersection point, so Proposition
12.9(c) shows that y, must be a reparametrization of y;. O

Proof of Preissman’s Theorem. Suppose (M, g) satisfies the hypotheses of the the-
orem, and let 7 : M — M be its universal covering, with the metric g = 7*g. Then
(M ,§) is a Cartan—Hadamard manifold with strictly negative curvature. Because
the fundamental group of M based at any point is isomorphic to the group of cov-
ering automorphisms of 7 (see Prop. C.22), it suffices to show that every nontrivial
abelian group of covering automorphisms is isomorphic to Z. Let H be such a
group. "

Let ¢ be any non-identity element of H, and let y : R — M be the axis for ¢,
which we may give a unit-speed parametrization. Thus there is a nonzero constant ¢
such that ¢(y(t)) = y(t 4+ ¢) for all z € R. If ¢ is any other element of H, then for
allr € R we have

e (@) = v (e(y) = vy +c)),

which shows that ¥ oy is also an axis for ¢. Since axes are unique by Lemma
12.22, this means that ¥ o y is a (unit-speed) reparametrization of y. It cannot be a
backward reparametrization (one satisfying ¢ o y(¢) = y(—t 4+ a)), because then
would be a nontrivial covering automorphism having y(a/2) as a fixed point, while
the only covering automorphism with a fixed point is the identity. Thus there must
be some a € R such that ¥ (y(¢)) = y(t +a) forall t € R.

Define a map F : H — R as follows: for each ¢ € H, let F(y) be the unique
constant a such that ¥ (y(t)) = y(t +a) for all t € R. A simple computation shows
that F(y1 oya) = F(¥1) + F(¥2), so F is a group homomorphism. It is injective
because F'(¥) = 0 implies that ¥ fixes every point in the image of y, so it must be
the identity. Thus F'(H) is an additive subgroup of R isomorphic to H.

Now let b be the infimum of the set of positive elements of F(H ). If b = 0, then
there exists ¥ € H such that 0 < F(y) < inj(M), and then 7 oy is a unit-speed
geodesic in M satisfying 7 o y(a) = 7 o y(0), where a = F (), which contradicts
the fact that 0 < @ < inj(M). Thus b > 0. If b ¢ F(H), there is a sequence of
elements ¥; € H such that F(y;) \ b, and then for sufficiently large i < j we
have 0 < F(y; o 1//171) < inj(M), which leads to a contradiction as before. Thus b
is the smallest positive element of F(H), and then it is easy to verify that F(H)
consists exactly of all integral multiples of b, so it is isomorphic to Z. O

The most important consequence of Preissman’s theorem is the following corol-
lary.

Corollary 12.23. No product of positive-dimensional connected compact manifolds
admits a metric of strictly negative sectional curvature.

Proof. Problem 12-8. O



Manifolds of Positive Curvature 361

Manifolds of Positive Curvature

Finally, we consider manifolds with positive curvature. The most important fact
about such manifolds is the following theorem, which was first proved in 1941 by
Sumner B. Myers [Mye41], building on earlier work of Ossian Bonnet, Heinz Hopf,
and John L. Synge.

Theorem 12.24 (Myers). Let (M,g) be a complete, connected Riemannian n-
manifold, and suppose there is a positive constant R such that the Ricci curvature of
M satisfies Rc(v,v) > (n— 1)/ R? for all unit vectors v. Then M is compact, with
diameter less than or equal to R, and its fundamental group is finite.

Proof. The diameter comparison theorem (Cor. 11.18) shows that the diameter of
M is no greater than wR. To show that M is compact, we just choose a base point
p and note that every point in M can be connected to p by a geodesic segment
of length at most 7 R. Therefore, exp,, : Brr(0) — M is surjective, so M is the
continuous image of a compact set. ~

To prove the statement about the fundamental group, let 7 : M — M denote the
universal covering space of M, with the metric g = 7 *g. Then (]\7 , §) is complete
by Corollary 6.24, and g also has Ricci curvature satisfying the same lower bound,
so M is compact by the argument above. By Proposition A.61, for every p € M
there is a one-to-one correspondence between 1 (M, p) and the fiber 7~ 1(p).
If 71(M, p) were infinite, therefore, 7 Y(p) would be an infinite discrete closed
subset of M, contradicting the compactness of M. Thus 7, (M, p) is finite. O

In case the manifold is already known to be compact, the hypothesis can be
relaxed.

Corollary 12.25. Suppose (M, g) is a compact, connected Riemannian n-manifold
whose Ricci tensor is positive definite everywhere. Then M has finite fundamental

group.

Proof. Because the unit tangent bundle of M is compact by Proposition 2.9, the
hypothesis implies that there is a positive constant ¢ such that Rc(v,v) > ¢ for all
unit tangent vectors v. Thus the hypotheses of Myers’s theorem are satisfied with
(n—1)/R*>=c. O

On the other hand, it is possible for complete, noncompact manifolds to have
strictly positive Ricci or even sectional curvature, as long as the curvature gets arbi-
trarily close to zero, as the following example shows.

» Exercise 12.26. Letn > 2, and let M € R”T! be the paraboloid {(x!,...,x",y):

¥ = |x|?} with the induced metric (see Problem 8-1). Show that M has strictly positive
sectional and Ricci curvatures everywhere, but is not compact.

One of the most useful applications of Myers’s theorem is to Einstein metrics.

Corollary 12.27. If (M, g) is a complete Einstein manifold with positive scalar cur-
vature, then M is compact.
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Proof. 1If g is Einstein with positive scalar curvature, then Rc = %S g satisfies the
hypotheses of Myers’s theorem with (n —1)/R? = %S . O

In 1975, Shiu-Yuen Cheng proved the following theorem [Che75], showing that
the diameter inequality in Myers’s theorem is an equality only for a round sphere.

Theorem 12.28 (Cheng’s Maximal Diameter Theorem). Suppose (M, g) satisfies
the hypotheses of Myers’s theorem and diam(M) = wR. Then (M, g) is isometric

to (S"(R).&R).

Proof. By Myers’s theorem, M is compact, and thus by continuity of the distance
function there are points pi, p» € M such that dg (p1, p2) = diam(M) = 7 R. For
i =12and 0 <d < xR, let Bs(p;) denote the open metric ball in M of radius
8 about p;, and let Bg denote a metric ball in (S" (R),§R) of the same radius.
The Bishop—Gromov theorem shows that the ratio Vol(Bs(p;))/ Vol(§ 3) is a non-
increasing function of § for each i, which implies the following inequality for
0<8<nR:

Vol(Bs (pi) _ Vol(Bs(pi)) _ Vol(Bs) _ Vol(Bj)
Vol(M) ~ Vol(Bar(Pi) ~ Nol(Brg)  VOIS"(R)

(12.2)

Now suppose 81,8, are positive numbers such that §; + 8, = wR. The fact that
dg(p1,p2) = R together with the triangle inequality implies that B, (p1) and
Bs, (p2) are disjoint, so

Vol(Bs, (p1)) + Vol(Bs, (p2)) < Vol(M). (12.3)

On the other hand, Vol(Bj, ) + Vol (Bs,) = Vol(S™(R)) (think of balls centered at
the north and south poles), so (12.2) and (12.3) imply

= Vol(Bs, (p1)) +Vol(Bs, (p2)) _ Vol(Bs,) +Vol(Bs,)
- Vol(M) - Vol(S™(R)) N

Thus the inequalities above are equalities, so in particular equality holds in (12.3).
Moreover, the boundary of a metric ball has measure zero because it is contained in
the image of a sphere under the exponential map, so we also have

Vol(Bs, (p1)) + Vol(Bs, (p2)) = Vol(M). (12.4)

Next we will show that dg (p1,9) +dg(p2.q) =dg(p1, p2) =R forallg e M.
Suppose not: by the triangle inequality, the only way this can fail is if there is a
point ¢ such that dg(p1.q) + dg(p2.q) > wR. Choosing §; < dg(p1.q) and §, <
dg(p2.q) such that §; + 8, = wR, we see that ¢ is not in the closed set Egl (p1) U
E,gz (p2), so there is a neighborhood of ¢ disjoint from that set (Fig. 12.5). But any
such neighborhood would have positive volume, contradicting (12.4).

Suppose y : [0,00) — M is a unit-speed geodesic starting at pq, and choose ¢ > 0
small enough that y|[o ] is minimizing. Then dg(p1,y(€)) = ¢, and there is also a
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Fig. 12.5: A step in the proof of the maximal diameter theorem

minimizing unit-speed geodesic y, from y(¢) to p,, whose length is dg (p2,y(g)) =
R —¢. The piecewise regular curve consisting of y|[o ¢ followed by a unit-speed
reparametrization of y, is an admissible curve from p; to p, of length 7R, and
is therefore minimizing; thus it is a (smooth) geodesic, and in fact coincides with
y, which is therefore minimizing on [0, 7 R]. This shows that the cut time of every
unit-speed geodesic starting at p; is at least 7R, so the injectivity radius inj(py) is
at least wR; and then the injectivity radius comparison theorem (Cor. 11.17) shows
that it is exactly wR. Thus M ~{p,} = Brr(p1) is a geodesic ball around p;. An
analogous argument shows that M ~ {p;} is a geodesic ball around p,.

The upshot of these observations is that the distance functions r1(q) = dg(p1,9)
and r2(q) = dg(p2.q) are both smooth on M ~{p, p»}, and because their sum is
constant, they satisfy Ar; = —Ar,. Elementary trigonometric identities show that
the function s. defined by (10.8) with ¢ = 1/R satisfies s, (7R —t) = s.(¢) and
sl.(wR—t) = —s.(t), so the Laplacian comparison theorem (Thm. 11.15) applied to
r1 and rp = wR —ry yields

/ /
Ary <(n— l)sc(rl) =—(n— 1)sc(r2) <—Ary = Ary.

se(r1) se(r2) —

Thus both inequalities are equalities. Arguing exactly as in the last part of the proof
of the Bishop—Gromov theorem, we conclude that (M, g) has constant sectional
curvature 1/R?, and thus by Corollary 12.5 it admits a (finite-sheeted) Riemannian
covering by (S" (R).& R). Since the injectivity domain of p; is the entire ball of ra-
dius 7R, on which the metric has the form (10.17) in normal coordinates, it follows
from Theorem 10.34 that the volume of M is equal to that of (S™(R), gr). Problem
2-14 then shows that the covering is one-sheeted, so it is a global isometry. O

If we weaken the hypothesis to require merely that the Ricci curvature be nonneg-
ative instead of positive definite, there are still nontrivial topological consequences.
Let I" be a finitely generated group. We say that I" has polynomial growth if there
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exist a finite generating set S C I" and positive real numbers C, k such that for every
positive integer m, the number of distinct elements of I" that can be expressed as
products of at most m elements of S and their inverses is no larger than Cm*. The
order of polynomial growth of such a group is the infimum of such values of k. It
is easy to check that Z" has polynomial growth of order n; in fact, using the funda-
mental theorem on finitely generated abelian groups [DF04, p. 158], one can show
that every finitely generated abelian group has polynomial growth of order equal to
its free rank.

The following theorem, proved in 1968 by John Milnor [Mil68], shows in effect
that fundamental groups of complete manifolds with nonnegative Ricci curva-
ture are not too far from being abelian, at least when they are finitely generated.
(Milnor conjectured in the same paper that the fundamental group of such a mani-
fold is always finitely generated. This is true in the compact case, because compact
manifolds are homotopy equivalent to finite CW complexes [Hat02, Cor. A.12],
and these have finitely generated fundamental groups, as shown, for example, in
[LeeTM, Thm. 10.15]. But the conjecture has not been proved in the noncompact
case.) By contrast, Milnor proved in the same paper that the fundamental group of
a negatively curved compact manifold never has polynomial growth, and that was
extended in 1970 by André Avez [Ave70] to the case of a nonpositively curved
compact manifold as long as it is not flat.

Theorem 12.29 (Milnor). Suppose (M, g) is a complete, connected Riemannian
n-manifold with nonnegative Ricci curvature. Every finitely generated subgroup of
w1 (M) has polynomial growth of order at most n.

Proof. Problem 12-11. O

Corollary 12.30. If M is a connected smooth manifold whose fundamental group
is free on more than one generator, then M admits no complete Riemannian metric
with nonnegative Ricci curvature.

» Exercise 12.31. Prove this corollary.

The corollary implies, for example, that a plane with two or more punctures does
not admit a complete metric with nonnegative Gaussian curvature.

On the other hand, if we strengthen the hypothesis and assume positive sectional
curvature, then we can reach a stronger conclusion. The following theorem was
proved in 1936 by John L. Synge [Syn36].

Theorem 12.32 (Synge). Suppose (M,g) is a compact, connected Riemannian
n-manifold with strictly positive sectional curvature.

(a) If n is even and M is orientable, then M is simply connected.
(b) If n is odd, then M is orientable.

Proof. Suppose for the sake of contradiction that the appropriate hypothesis holds
but the conclusion is false. Let 7 : M — M be the universal covering manifold of
M with the pullback metric g = 7*g. We can give M the pullback orientation in the
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eﬂy{en-dimensional case; in the odd-dimensional case, just choose an ( oriengtion on
M . In either case, there is a nontrivial covering automorphism ¢ : M — M ; in the
even-dimensional case, it is orientation-preserving, and in the odd-dimensional case
we can choose it to be orientation-reversing. By Lemma 12.21, there is a geodesic
y:R— M that is an axis for @, and y = 7 oy restricts to a closed geodesic in M
that minimizes length in its free homotopy class. After reparametrizing if necessary,
we may assume that ¢ (7(r)) = 7(t + 1) forall 1 € R. Let Xo = 7(0), X1 = 7(1) =
(p(fo),gld X =ir(5c'o) =£(5€1).

Let P : Tg,M — T%, M be parallel transport along ¥|[o,1], and let P : Tx M —
T M be parallel transport along y|[o,1]. Because local isometries preserve paral-
lelism, the following diagram commutes, and all four maps are linear isometries:

~ P —_
Te,M —— Tz, M

d]T;gOJ Jdn;gl
TxM —P> T M.

Because d Vz applied to a parallel frame is constant, Pis orientation-preserving. In
the even-dimensional case, the vertical maps are both orientation-preserving, so P
is too. In the odd-dimensional case, the fact that d 5, = d 75, o dgz, implies that
the two vertical maps induce opposite orientations on Tx M, so P is orientation-
reversing.

The upshot is that in each case, P is a linear isometry of 7, M whose determinant
is (—1)". Note that the determinant is the product of the eigenvalues of P, counted
with multiplicities. Since the real eigenvalues of a linear isometry are £1, and the
others come in conjugate pairs whose product is 1, the equation det P = (—1)"
implies that the multiplicity of —1 has the same parity as n, and therefore the multi-
plicity of +1 must be even. We know that y’(0) is a + 1-eigenvector, so there must
be another independent +1-eigenvector v € T M, which we can take to be orthog-
onal to y’(0). Extending v by parallel transport yields a nontrivial parallel normal
vector field V' € X(y) satisfying V(0) = V(1).

Consider the variation of y defined by I'(s,7) = exp, ) (sV(¢)). Because V(0) =
V (1), this is a variation through admissible loops. The first variation formula (6.1)
shows that the first derivative of L, (I's) at s = 0 is zero, because y is a geodesic and
the boundary terms cancel. We can then apply the general version of the second vari-
ation formula given in Problem 10-9, with the image of the geodesic s > exp, (sv)
playing the role of M; and M>. Because this is a totally geodesic submanifold, its
second fundamental form vanishes, and we obtain

d2

b
— L (r):/ D.VI?=Rm(V.,y'.y'.V))dt.
ds?|,_, ° g (l ad )
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Because V is parallel along y and sec(V,y’) > 0 for all ¢, this second derivative is
strictly negative, which implies that L, (Is) < Lg(y) for sufficiently small s. But
this contradicts the fact that y minimizes length in its free homotopy class. O

The next corollary shows that there are only two possibilities for fundamental
groups of positively curved compact manifolds in the even-dimensional case. (Com-
pare this to Problem 12-2, which shows that the only even-dimensional manifolds
that admit complete metrics of constant positive curvature are spheres and real pro-
jective spaces.)

Corollary 12.33. Suppose (M, g) is a compact, connected, even-dimensional Rie-
mannian manifold with strictly positive sectional curvature. If M is orientable, then
w1(M) is trivial, and if not, then w1 (M) = 7./2.

Proof. The orientable case is part of Synge’s theorem. If M is nonorientable, it has
a two-sheeted orientable covering manifold M; Synge’s theorem shows that M is
simply connected, so it is the universal covering space of M. Because each fiber of
the universal covering has the same cardinality as 71 (M), it follows that 71 (M) is
isomorphic to the two-element group Z /2. O

The preceding corollary implies, for example, that RP” x RIP” has no metric of
positive sectional curvature for any n > 2, because its fundamental group is isomor-
phicto Z/2x 7 /2.

For odd-dimensional compact manifolds, not many topological obstructions to
the existence of positively curved metrics are known, apart from orientability and
finiteness of 7;. And in the simply connected case, almost nothing is known. There
are many examples of simply connected compact manifolds that admit metrics of
nonnegative sectional curvature (for example, products of nonnegatively curved,
simply connected compact manifolds, by the result of Problem 8-10); but there is
not a single known example of a simply connected compact manifold that admits
a metric of nonnegative sectional curvature but not one of positive sectional curva-
ture. It was conjectured by Heinz Hopf in the early 1930s that S? x S? admits no
positively curved metric, and it is reasonable to extend the conjecture to every prod-
uct of positive-dimensional simply connected compact manifolds that both admit
nonnegatively curved metrics; but nobody has come up with an example of such a
product for which the conjecture can be proved or disproved.

Further Results

We end the book with a brief look at some other local-to-global theorems about man-
ifolds with positive or nonnegative curvature, whose proofs are beyond our scope.

Some of the most powerful applications of comparison theory have been to prove
“pinching theorems.” Given a positive real number §, a Riemannian manifold is said
to be §-pinched if there exists a positive constant ¢ such that all sectional curvatures
satisfy
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8¢ <sec(IT) <c.

It is said to be strictly §-pinched if at least one of the inequalities is strict. The
following celebrated theorem was originally proved by Marcel Berger and Wilhelm
Klingenberg in the early 1960s [Ber60, Kli61].

Theorem 12.34 (The Sphere Theorem). A complete, simply connected, Riemann-
ian n-manifold that is strictly %-pinched is homeomorphic to S™.

This result is sharp, at least in even dimensions, because the Fubini—Study met-
rics on complex projective spaces are %—pinched (Problem 8-13).

For noncompact manifolds, there is the following remarkable theorem of Jeff
Cheeger and Detlef Gromoll [CG72].

Theorem 12.35 (The Soul Theorem). If (M, g) is a complete, connected, noncom-
pact Riemannian manifold with nonnegative sectional curvature, then there exists a
compact totally geodesic submanifold S € M (called a soul of M) such that M is
diffeomorphic to the normal bundle of S in M. If M has strictly positive sectional
curvature, then S is a point and M is diffeomorphic to a Euclidean space.

Even if we assume only nonnegative Ricci curvature, something nontrivial can be
said in the noncompact case. The next theorem is also due to Cheeger and Gromoll
[CGT71]. Recall that a line in a Riemannian manifold is the image of a nonconstant
geodesic defined on R whose restriction to each compact subinterval is minimizing.

Theorem 12.36 (The Splitting Theorem). If (M, g) is a complete, connected, non-
compact Riemannian manifold with nonnegative Ricci curvature, and M contains a
line, then there is a Riemannian manifold (N, h) with nonnegative Ricci curvature
such that M is isometric to the Riemannian product N x R.

The proofs of all three of the above theorems, which can be found, for example,
in [Pet16], are elaborate applications of comparison theory.

All of our comparison theorems, and indeed most of the things we have proved
about Riemannian manifolds, are based on the analysis of ordinary differential
equations—the geodesic equation, the parallel transport equation, the Jacobi equa-
tion, and the Riccati equation. Using techniques of partial differential equations can
lead to much stronger conclusions in some cases. For instance, in 1982, Richard
Hamilton [Ham82] proved the following striking result about 3-manifolds.

Theorem 12.37 (Hamilton’s 3-Manifold Theorem). Suppose M is a simply con-
nected compact Riemannian 3-manifold with positive definite Ricci curvature. Then
M is diffeomorphic to S3.

He followed it up four years later [Ham86] with an analogous result about 4-
manifolds, with Ricci curvature replaced by the curvature operator described in
Problem 8-33.

Theorem 12.38 (Hamilton’s 4-Manifold Theorem). Suppose M is a simply con-
nected compact Riemannian 4-manifold with positive curvature operator. Then M
is diffeomorphic to S*.
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Much more recently, Christoph Bohm and Burkhard Wilking [BWO08] extended
this result to all dimensions.

Theorem 12.39 (Bohm—Wilking). Every simply connected compact Riemannian
manifold with positive curvature operator is diffeomorphic to a sphere.

The method of proof of these three sphere theorems was to start with an initial
metric go, and then define a one-parameter family of metrics {g; : ¢ > 0} evolving
according to the following partial differential equation, called the Ricci flow:

ad

8= —2Rc,

where Rc; is the Ricci curvature of g;. Under the appropriate curvature assumption
on go, the metric g; can be rescaled to converge to a metric with constant positive
sectional curvature as ¢t — oo, and then it follows from the Killing—Hopf theorem
that the original manifold must be diffeomorphic to a sphere. Since Hamilton first
introduced it, this technique has been vastly generalized by Hamilton and others,
culminating in 2003 in a proof by Grigory Perelman of the Thurston geometrization
conjecture described in Chapter 3.

The Ricci flow has also been used to improve the original %-pinched sphere theo-
rem significantly. The techniques used to prove the original theorem were not strong
enough to prove that M is diffeomorphic to S", leaving open the possibility that
there might exist strictly %—pinched metrics on exotic spheres (topological spheres
with nonstandard smooth structures). In 2009, Simon Brendle and Richard Schoen
[BS09] were able to use Ricci-flow techniques to close this gap. They also were
able to prove the theorem under a weaker hypothesis: a Riemannian metric g is said
to be pointwise §-pinched if for every p € M, there exists a positive number c¢(p)
such that

Sc(p) <sec(IT) < c(p)

for every 2-plane IT C T, M, and strictly pointwise §-pinched if at least one of the
inequalities is strict at each point.

Theorem 12.40 (Differentiable Sphere Theorem). Let (M, g) be a compact, sim-
ply connected Riemannian manifold of dimension n > 4. If M is strictly pointwise
%-pinched, then it is diffeomorphic to S™ with its standard smooth structure.

For a nice exposition of the proof, see the recent book [Brel0].

Problems

12-1.  Suppose (M, g) is a simply connected (but not necessarily complete) Rie-
mannian n-manifold with constant sectional curvature. Prove that there ex-
ists an isometric immersion from M into one of the model spaces R”,
S™(R), H*(R).
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12-2.

12-3.

12-4.

12-5.

12-6.

12-7.

12-8.

12-9.

Provethatifn is even, then every orientation-preserving orthogonal linear map
from R”*! to itself fixes at least one point of the unit sphere, and use this
to prove that every even-dimensional spherical space form is isometric to
either a round sphere or a real projective space with a constant multiple of
the metric defined in Example 2.34. (Used on p. 349.)

Show that every compact 2-dimensional Euclidean space form is diffeomor-
phic to the torus or the Klein bottle, and every noncompact one is diffeo-
morphic to R2, ST x R2, or the open Mobius band (see Example 2.35).

A lattice in R” is an additive subgroup A C R” of the form
A={mvy+---+muyv, :mq,...,my € L},

for some basis (vq,...,v,) of R”. Let T” denote the n-torus.

(a) Show that if g is a flat Riemannian metric on T”, then (T",g) is iso-
metric to a Riemannian quotient of the form R” /A for some lattice A,
acting on R” by vector addition.

(b) Show that two such quotients R” /A; and R"” /A, are isometric if and
only if A, = A(A;) for some A € O(n).

CLASSIFICATION OF FLAT TORI: Let T2 = S! x S! denote the 2-torus.
Show that if g is a flat Riemannian metric on T2, then (Tz, g) is isometric
to one and only one Riemannian quotient R?/ A, where A is a lattice gener-
ated by a basis of the form ((,0), (b,c)), witha >0,0<b <a/2,c >0,
and b? + ¢2? > 4?. [Hint: Given a lattice A C R2, let v; be an element of
A~{(0,0)} of minimal norm; let v, be an element of A~ (v;) of minimal
norm (where (v;) is the cyclic subgroup generated by v), chosen so that
the angle between vy and v is less than or equal to 77/2; and then apply a
suitable orthogonal transformation. ]

Suppose (M, g) is a complete, connected Riemannian manifold, and p,q €
M . Proposition 6.25 showed that every path-homotopy class of paths from
p to g contains a geodesic segment y. Show that if M has nonpositive sec-
tional curvature, then y is the unique geodesic segment in the given path
homotopy class.

Prove Proposition 12.10 (inequalities for triangles in Cartan—-Hadamard
manifolds). [Hint: Compare with appropriate triangles in Euclidean space.]
Prove Corollary 12.23 (nonexistence of negatively curved metrics on com-
pact product manifolds).

Prove the following generalization of the Cartan—-Hadamard theorem, due
to Robert Hermann [Her63]: Suppose (M, g) is a complete, connected Rie-
mannian manifold with nonpositive sectional curvature, and P € M is a
connected, properly embedded, totally geodesic submanifold. If for some
x € P, the homomorphism 71 (P, x) — w1 (M, x) induced by the inclusion
P — M is surjective, then the normal exponential map £ : NP — M is a
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12-10.

12-11.

12-12.

12-13.
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diffeomorphism. [Hint: Mimic the proof of the Cartan-Hadamard theorem,
using the result of Problem 10-20.]

Give a counterexample to show that Myers’s theorem is false in dimensions
greater than 2 if we replace the lower bound on Ricci curvature by a positive
lower bound on scalar curvature.

Prove Theorem 12.29 (Milnor’s theorem on the fundamental group of a man-
ifold with nonnegative Ricci curvature) as follows: Let 7 : M — M be the
universal covering space of M, and give M the pullback metric §=n*g.
Because the covering automorphism group is isomorphic to w1(M) (Prop.
C.22), itsuffices to prove the result for every finitely generated subgroup of the
automorphism group. Let I” be such asubgroup, andlet S = {¢1,...,¢pnN }bea
finite generating set. Choose a base point p € M.Foreachi =1,....N, let
d; be the Riemannian distance from p to ¢; (p), and let D = max(dy,...,dy).
For each nonidentity element v € I", define the length of ¥ to be the small-
est integer m such Y can be expressed as a product of m elements of S and
their inverses.

(a) Show that there exists ¢ > 0 such that for any two distinct elements
Y1, W2 € I', the metric balls B.(¥1(p)) and B¢(¥2(p)) are disjoint.

(b) Show that if ¢ € I" has length m, then B.(Y¥(p)) € Bmp+e(Pp)-

(c) Use the Bishop—Gromov theorem to prove that the number of distinct
elements of I" of length at most m is bounded by a constant times m”.

Prove that there is no compact manifold that admits both a metric of positive
definite Ricci curvature and a metric of nonpositive sectional curvature.

Suppose (M, g) is a complete Riemannian manifold. Recall that a line in M
is the image of a nonconstant geodesic defined on all of R that is minimizing
between every pair of its points.

(a) Show that if (M, g) has strictly positive sectional curvature, then M
contains no lines. [Hint: Given a geodesic y : R — M, leta : R — R be
a smooth positive function such that «(¢) is smaller than the minimum
sectional curvature at y(¢) for each ¢, and let u : R — R be the solution
to the initial value problem u” + au = 0 with u(0) = 1 and u’(0) = 0.
Prove that there are numbers @ < 0 < b such that u(a) = u(b) =0, and
evaluate I(V, V') for a vector field of the form V() = u(¢) E(¢) along
¥ l[a,b]» Where E is a parallel unit normal vector field.]

(b) Give an example of a complete nonflat Riemannian manifold with non-
negative sectional curvature that contains a line.



Appendix A
Review of Smooth Manifolds

This book is designed for readers who already have a solid understanding of
basic topology and smooth manifold theory, at roughly the level of [LeeTM] and
[LeeSM]. In this appendix, we summarize the main ideas of these subjects that
are used throughout the book. It is included here as a review, and to establish our
notation and conventions.

Topological Preliminaries

An n-dimensional topological manifold (or simply an n-manifold) is a second-
countable Hausdorff topological space that is locally Euclidean of dimension n,
meaning that every point has a neighborhood homeomorphic to an open subset of
R”. Given an n-manifold M, a coordinate chart for M is a pair (U, ¢), where
U € M is an open set and ¢: U — Uisa homeomorphism from U to an open
subset U € R, If p € M and (U, ¢) is a chart such that p € U, we say that (U, ¢)
is a chart containing p.

We also occasionally need to consider manifolds with boundary. An n-dimen-
sional topological manifold with boundary is a second-countable Hausdorff space
in which every point has a neighborhood homeomorphic either to an open subset
of R" or to a (relatively) open subset of the half-space R = {(x',....x") e R":
x™ > 0}. A pair (U, ), where U is an open subset of M and ¢ is a homeomorphism
from U to an open subset of R” or R", is called an interior chart if ¢(U) is an
open subset of R” or an open subset of R’ that does not meet dJR’, = {x € R’} :
x" = 0}; and it is called a boundary chart if ¢(U) is an open subset of R’ with
e(U)NOR’. # @. A point p € M is called an interior point of M if it is in the
domain of an interior chart, and it is a boundary point of M if it is in the domain
of a boundary chart taking p to a point of IR’} .

Notice that our convention is that a manifold without further qualification is al-
ways assumed to be a manifold without boundary, and the term “manifold with
boundary” encompasses ordinary manifolds as a special case. But for clarity, we
© Springer International Publishing AG 2018 371
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sometimes use redundant phrases such as “manifold without boundary” for an ordi-
nary manifold, and “manifold with or without boundary” when we wish to empha-
size that the discussion applies equally well in either case.

Proposition A.1. [LeeTM, Props. 4.23 & 4.64] Every topological manifold with or
without boundary is locally path-connected and locally compact.

Proposition A.2. [LeeTM, Thm. 4.77] Every topological manifold with or without
boundary is paracompact.

If M and N are topological spaces, a map F': M — N is said to be a closed
map if for each closed subset K € M, the image set F'(K) is closed in N, and an
open map if for each open subset U C M, the image set F(U) is openin N. Itis a
quotient map if it is surjective and V' C N is open if and only if F~!(V) is open.

Proposition A.3. [LeeTM, Prop. 3.69] Suppose M and N are topological spaces,
and F: M — N is a continuous map that is either open or closed.

(a) If F is surjective, it is a quotient map.
(b) If F is injective, it is a topological embedding.
(¢) If F is bijective, it is a homeomorphism.

The next lemma often gives a convenient shortcut for proving that a map is
closed.

Lemma A.4 (Closed Map Lemma). [LeeTM, Lemma 4.50] If F is a continuous
map from a compact space to a Hausdorff space, then F is a closed map.

Here is another condition that is frequently useful for showing that a map is
closed. A map F: M — N between topological spaces is called a proper map if
for each compact subset K C N, the preimage F~!(K) is compact.

Proposition A.5 (Proper Continuous Maps Are Closed). [LeeTM, Thm. 4.95]
Suppose M is a topological space, N is a locally compact Hausdorff space, and
F: M — N is continuous and proper. Then F is a closed map.

Fundamental Groups

Many of the deepest theorems in Riemannian geometry express relations between
local geometric properties and global topological properties. Because the global
properties are frequently expressed in terms of fundamental groups, we summarize
some basic definitions and properties here.

Suppose M and N are topological spaces. If Fy, F;: M — N are continuous
maps, a homotopy from Fy to Fy is a continuous map H: M x[0,1] — N that
satisfies H(x,0) = Fy(x) and H(x,1) = F;(x) for all x € M. If there exists such a
homotopy, we say that Fy and F are homotopic.

We are most interested in homotopies in the following situation. If M is a topo-
logical space, a path in M is a continuous map «: [0,1] - M. If p = «(0) and
q = a(1), we say that « is a path from p to q.1f ap and o are both paths from p to
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q, a path homotopy from a¢ to o1 is a continuous map H : [0,1] x [0,1] — M that
satisfies

H(s,0) = ao(s) and H(s,1) = ay(s) forall s € [0, 1],
H(0,t) = pand H(1,t) =¢q forall ¢ € [0,1].

If there exists such a path homotopy, then oy and oy are said to be path-homotopic;
this is an equivalence relation on the set of all paths in M from p to g. The
equivalence class of a path «, called its path class, is denoted by [«].

Paths o and B that satisfy (1) = B(0) are said to be composable; in this case,
their product is the path o - B: [0, 1] — M defined by

a(2s), 0<s<1,
o-pls) = B2s—1), 1 ssle.
Path products are well defined on path classes: if [«g] = [«¢1] and [Bo] = [B1], and
ag and B are composable, then so are oy and S, and [etg - Bo] = [e1 - B1]. Thus we
obtain a well-defined product of path classes by [«] - [B] = [« - B].

A path from a point p to itself is called a loop based at p. If M is a topological
space and p € M, then any two loops based at p are composable, and the set of
path classes of loops based at p is a group under path class products, called the
Jfundamental group of M based at p and denoted by m1(M, p). The class of the
constant path ¢, (s) = p is the identity element, and the class of the reverse path
a~1(s) = a(1 —ys) is the inverse of [a]. (Although multiplication of path classes is
associative, path products themselves are not, so a multiple product such as o - 8 - y
is to be interpreted as (« - ) - y.)

Proposition A.6 (Induced Homomorphisms). [LeeTM, Prop. 7.24 & Cor. 7.26]
Suppose M and N are topological spaces and p € M. If F: M — N is a contin-
uous map, then the map Fy: w1 (M, p) — w1 (N, F(p)) defined by F«([a]) = [F o]
is a group homomorphism called the homomorphism induced by F . If F is a homeo-
morphism, then Fy is an isomorphism.

A topological space M is said to be simply connected if it is path-connected and
for some (hence every) point p € M, the fundamental group 1 (M, p) is trivial.

» Exercise A.7. Show that if M is a simply connected topological space and p,q are
any two points in M, then all paths in M from p to g are path-homotopic.

A continuous map F: M — N is said to be a homotopy equivalence if there is
a continuous map G: N — M such that G o F and F oG are both homotopic to
identity maps.

Proposition A.8 (Homotopy Invariance of the Fundamental Group). [LeeTM,
Thm. 7.40] Suppose M and N are topological spaces and F: M — N is a
homotopy equivalence. Then for every point p € M, the induced homomorphism
Fy: mi(M, p) — m1 (N, F(p)) is an isomorphism.
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Smooth Manifolds and Smooth Maps

The setting for the study of Riemannian geometry is provided by smooth manifolds,
which are topological manifolds endowed with an extra structure that allows us to
differentiate functions and maps. First, we note that when U is an open subset of R”,
amap F: U — R¥ is said to be smooth (or of class C ) if all of its component
functions have continuous partial derivatives of all orders. More generally, if the
domain U is an arbitrary subset of R”, not necessarily open (such as a relatively
open subset of R’i), then F is said to be smooth if for each x € U, F has a smooth
extension to a neighborhood of x in R”. A diffeomorphism is a bijective smooth
map whose inverse is also smooth.

If M is a topological n-manifold with or without boundary, then two coordinate
charts (U, @), (V,¥) for M are said to be smoothly compatible if both of the transition
maps Y op~ ! and g oy~ are smooth where they are defined (on (U N V) and
¥ (U NV), respectively). Since these maps are inverses of each other, it follows that
both transition maps are in fact diffeomorphisms. An atlas for M is a collection
of coordinate charts whose domains cover M. It is called a smooth atlas if any
two charts in the atlas are smoothly compatible. A smooth structure on M is a
smooth atlas that is maximal, meaning that it is not properly contained in any larger
smooth atlas. A smooth manifold is a topological manifold endowed with a specific
smooth structure; and similarly, a smooth manifold with boundary is a topological
manifold with boundary endowed with a smooth structure. (We usually just say “M is
a smooth manifold,” or “M is a smooth manifold with boundary,” with the smooth
structure understood from the context.) If M is a set, a smooth manifold structure
on M is a second countable, Hausdorff, locally Euclidean topology together with a
smooth structure making it into a smooth manifold.

» Exercise A.9. Let M be a topological manifold with or without boundary. Show that
every smooth atlas for M is contained in a unique maximal smooth atlas, and two smooth
atlases determine the same smooth structure if and only if their union is a smooth atlas.

The manifolds in this book are always assumed to be smooth. As in most parts
of differential geometry, the theory still works under weaker differentiability as-
sumptions (such as k times continuously differentiable), but such considerations are
usually relevant only when one is treating questions of hard analysis that are beyond
our scope.

If M is a smooth manifold with or without boundary, then every coordinate chart
in the given maximal atlas is called a smooth coordinate chart for M or just asmooth
chart. The set U is called a smooth coordinate domain; if its image is an open ball
in R”, it is called a smooth coordinate ball. If in addition ¢ extends to a smooth
coordinate map ¢’: U’ — R” on an open set U’ 2 U such that ¢/(U) is the closure
of the open ball ¢(U) in R”, then U is called a regular coordinate ball. In this
case, U is diffeomorphic to a closed ball and is thus compact.

Proposition A.10. [LeeSM, Prop. 1.19] Every smooth manifold has a countable ba-
sis of regular coordinate balls.



Smooth Manifolds and Smooth Maps 375

Given a smooth chart (U, ¢) for M, the component functions of ¢ are called local
coordinates for M , and are typically written as (x',...,x"), (x?), or x, depending
on context. Although, formally speaking, a coordinate chart is a map from an open
subsetU € M toR”,itiscommon whenoneis working inthe domain of a specific chart
to use the coordinate map to identify U with its image in R”, and to identify a point
in U with its coordinate representation (x1 e ,x") e R”.

In this book, we always write coordinates with upper indices, as in (xi), and
expressions with indices are interpreted using the Einstein summation convention:
if in some monomial term the same index name appears exactly twice, once as an
upper index and once as a lower index, then that term is understood to be summed
over all possible values of that index (usually from 1 to the dimension of the space).
Thus the expression a’v; is to be read as > a'v;. As we will see below, index posi-
tions for other sorts of objects such as vectors and covectors are chosen whenever
possible in such a way that summations that make mathematical sense obey the rule
that each repeated index appears once up and once down in each term to be summed.

Because of the result of Exercise A.9, to define a smooth structure on a manifold,
it suffices to exhibit a single smooth atlas for it. For example, R” is a topological
n-manifold, and it has a smooth atlas consisting of the single chart (]R" , Ian). More
generally, if V' is an n-dimensional vector space, then every basis (by,...,b,) for
V yields a linear basis isomorphism B: R" — V by B(x!,....x") = x'b;, whose
inverse is a global coordinate chart, and it is easy to check that all such charts are
smoothly compatible. Thus every finite-dimensional vector space has anatural smooth
structure, which we call its standard smooth structure. We always consider R” or
any other finite-dimensional vector space to be a smooth manifold with this structure
unless otherwise specified.

If M is a smooth n-manifold with or without boundary and W C M is an open
subset, then W has a natural smooth structure consisting of all smooth charts (U, ¢)
for M such that U € W, so every open subset of a smooth n-manifold is a smooth n-
manifold in a natural way, and similarly for manifolds with boundary. If M1,..., M
are smooth manifolds of dimensions n1,...,ng, respectively, then their Cartesian
product My X --- x My has a natural smooth atlas consisting of charts of the form
(Uy x++-x Uk, 91 x-+- X @), where (U;, ¢;) is a smooth chart for M;; thus the prod-
uct space is a smooth manifold of dimension ny + -+ + ng.

Suppose M and N are smooth manifolds with or without boundary. A map
F: M — N is said to be smooth if for every p € M, there exist smooth charts
(U, ) for M containing p and (V,v) for N containing F(p) such that F(U) C V
and the composite map ¥ o F o ™! is smooth from ¢(U) to ¥ (V). In particular, if
N is an open subset of R¥ or R’i with its standard smooth structure, we can take
to be the identity map of N, and then smoothness of F' just means that each point
of M is contained in the domain of a chart (U, ¢) such that F o¢~! is smooth.
It is an easy consequence of the definition that identity maps, constant maps, and
compositions of smooth maps are all smooth. A map F: M — N is said to be a
diffeomorphism if it is smooth and bijective and F~!': N — M is also smooth.

If F: M — N is smooth, and (U, ¢) and (V,y) are any smooth charts for M
and N respectively, the map F = Vo F op~!is a smooth map between appropriate
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subsets of R” or R'_j_, called a coordinate representation of F . Often, in keeping
with the practice of using local coordinates to identify an open subset of a manifold
with an open subset of R”, we identify the coordinate representation of F with (the
restriction of) F itself, and write things like “F is given in local coordinates by
F(x,y) = (xy,x —y),” when we really mean that F is given by this formula for
suitable choices of charts in the domain and codomain.

We let C*°(M,N) denote the set of all smooth maps from M to N, and
C°°(M) the vector space of all smooth functions from M to R. For every function
f: M — R or R¥, we define the support of f, denoted by supp f, to be the closure
of the set {x e M : f(x) # 0}. If A € M is a closed subset and U C M is an
open subset containing A, then a smooth bump function for A supported in U is a
smooth function f: M — R satisfying 0 < f(x) <1forallx e M, f|4 =1, and
supp f CU.

If U = {Uy}aeq is an indexed open cover of M, then a smooth partition of
unity subordinate to U is an indexed family {4 }4ec4 of functions ¥, € C®°(M)
satisfying

e 0<yy(x)<lforallo € Aandall x € M.

e supp Yo € U, foreach a € A.

e The family of supports {supp ¥y }aca 18 locally finite: every point of M has a
neighborhood that intersects supp ¥, for only finitely many values of «.

e > seaVa(x)=1forallx e M.

Proposition A.11 (Existence of Partitions of Unity). [LeeSM, Thm. 2.23] If M is
a smooth manifold with or without boundary and U = {Uqy }e 4 is an indexed open
cover of M, then there exists a smooth partition of unity subordinate to U.

Proposition A.12 (Existence of Smooth Bump Functions). [LeeSM, Prop. 2.25]
If M is a smooth manifold with or without boundary, A C M is a closed subset, and
U C M is an open subset containing A, then there exists a smooth bump function
for A supported in U.

Tangent Vectors

Let M be a smooth manifold with or without boundary. There are various equiv-
alent ways of defining tangent vectors on M. The following definition is the most
convenient to work with in practice. For every point p € M, a tangent vector at p
is a linear map v: C*°(M) — R that is a derivation at p, meaning that for all
f.g € C*®(M) it satisfies the product rule

v(fg) = f(pvg +g(pvf. (A.1)

The set of all tangent vectors at p is denoted by T, M and called the tangent space
at p.

Suppose M is n-dimensional and ¢ : U — U C R” is a smooth coordinate chart
on some open subset U € M . Writing the coordinate functions of ¢ as (x L ,x"),
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we define the coordinate vectors 3/9x'|,, ..., d/9x"|, by
d d
8 ; = 8 F (f 090_1). (A2)
Xlp X lop)

These vectors form a basis for 7), M, which therefore has dimension n. When there
can be no confusion about which coordinates are meant, we usually abbreviate
d/3x"|, by the notation d; | ,. Thus once a smooth coordinate chart has been chosen,
every tangent vector v € T, M can be written uniquely in the form

V=00, = 0'01]p -+ 0"l p, (A3)

where the components v!,...,v" are obtained by applying v to the coordinate func-
tions: v/ = v(x").

On a finite-dimensional vector space V' with its standard smooth manifold struc-
ture, there is a natural (basis-independent) identification of each tangent space 7,V
with V' itself, obtained by identifying a vector v € V' with the derivation D],
defined by
d

at|,_, f(p+tv).

D, |p (f) =
In terms of the coordinates (x') induced on V' by any basis, this is the correspon-
dence (vl,...,v”) <) vi8i|p.
If F: M — N is a smooth map and p is any point in M, we define a linear map
dF,: TyM — Tgp)N, called the differential of F at p, by

dF,(v)f =v(foF), veTlT,M.

» Exercise A.13. Given a smooth map F: M — N and a point p € M, show that
dF, is a well-defined linear map from T, M to Tr(p)N. Show that the differential of
the identity is the identity, and the differential of a composition is given by d(G o F) , =
dG F(p)© dF, p-

Once we have chosen local coordinates (x’) for M and (y’) for N, we find
by unwinding the definitions that the coordinate representation of the differential is
given by the Jacobian matrix of the coordinate representation of F, which is its
matrix of first-order partial derivatives:

9 PYali 9
de Ulﬁ' = (p)l)la—l .
Xlp Y2 \F(p)

For every p € M, the dual vector space to T, M is called the cotangent space
at p. This is the space T; M = (T, M)* of real-valued linear functionals on 7, M,
called (tangent) covectors at p. For every f € C®°(M) and p € M, there is a
covector dfp € Ty M called the differential of f at p, defined by

dfp(v) =vf forallve T, M. (A4)
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Submanifolds

The theory of submanifolds is founded on the inverse function theorem and its corol-
laries.

Theorem A.14 (Inverse Function Theorem for Manifolds). [LeeSM, Thm. 4.5]
Suppose M and N are smooth manifolds and F: M — N is a smooth map. If the
linear map d F), is invertible at some point p € M, then there exist connected neigh-
borhoods Uy of p and Vy of F(p) such that F|y,: Uy — Vj is a diffeomorphism.

The most useful consequence of the inverse function theorem is the following. A
smooth map F': M — N is said to have constant rank if the linear map dF), has
the same rank at every point p € M.

Theorem A.15 (Rank Theorem). [LeeSM, Thm. 4.12] Suppose M and N are
smooth manifolds of dimensions m and n, respectively, and FF: M — N is a smooth
map with constant rank r. For each p € M there exist smooth charts (U, ) for M
centered at p and (V, V) for N centered at F(p) such that F(U) C V, in which F
has a coordinate representation of the form

ﬁ(xl,...,x',xrﬂ,...,xm) = (xl,...,xr,O,...,O). (A.5)

Here are the most important types of constant-rank maps. In all of these defini-
tions, M and N are smooth manifolds, and F': M — N is a smooth map.

e [ is a submersion if its differential is surjective at each point, or equivalently
if it has constant rank equal to dim V.

e F is an immersion if its differential is injective at each point, or equivalently if
it has constant rank equal to dim M .

e F is alocal diffeomorphism if every point p € M has a neighborhood U such
that F'|y is a diffeomorphism onto an open subset of N, or equivalently if F' is
both a submersion and an immersion.

e F is a smooth embedding if it is an injective immersion that is also a topologi-
cal embedding (a homeomorphism onto its image, endowed with the subspace

topology).

Theorem A.16 (Local Embedding Theorem). [LeeSM, Thm. 4.25] Every smooth
immersion is locally an embedding: if F: M — N is a smooth immersion, then for
every p € M, there is a neighborhood U of p in M such that F |y is an embedding.

Theorem A.17 (Local Section Theorem). [LeeSM, Thm. 4.26] Suppose M and
N are smooth manifolds and w: M — N is a smooth map. Then 1 is a smooth
submersion if and only if every point of M is in the image of a smooth local section
of w (amap o: U — M defined on some open subset U € N, with w oo = Idy).

Proposition A.18 (Properties of Submersions). [LeeSM, Prop. 4.28] Let M and
N be smooth manifolds and let w: M — N be a smooth submersion.
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(a) m is an open map.
(D) If 7 is surjective, it is a quotient map.

Proposition A.19 (Uniqueness of Smooth Quotients). [LeeSM, Thm. 4.31] Sup-
pose M, N1, and N, are smooth manifolds, and w1: M — Ny and ny: M — N,
are surjective smooth submersions that are constant on each other’s fibers. Then
there exists a unique diffeomorphism F: Ny — N such that F oy = m».

Theorem A.20 (Global Rank Theorem). [LeeSM, Thm. 4.14] Suppose M and N
are smooth manifolds, and F : M — N is a smooth map of constant rank.

(a) If F is surjective, then it is a smooth submersion.
(b) If F is injective, then it is a smooth immersion.
(¢) If F is bijective, then it is a diffeomorphism.

Suppose M is a smooth manifold with or without boundary. An immersed n-
dimensional submanifold of M is a subset M C M endowed with a topology that
makes it into an n-dimensional topological manifold and a smooth structure such
that the inclusion map M — M is a smooth immersion. It is called an embedded
submanifold if the inclusion is a smooth embedding, or equivalently if the given
topology on M is the subspace topology. Immersed and embedded submanifolds
with boundary are defined similarly. In each case, the codimension of M is the
difference dim M —dim M. A submanifold of codimension 1 is known as a hyper-
surface. Without further qualification, the word submanifold means an immersed
submanifold, which includes an embedded one as a special case.

An embedded submanifold with or without boundary is said to be properly em-
bedded if the inclusion map is proper.

Proposition A.21. [LeeSM, Prop. 5.5] If M is a_smooth manifold with or without
boundary, then an embedded submanifold M < M is properly embedded if and only
if it is a closed subset of M.

A properly embedded codimension-0 submanifold with boundary in M is called
aregular domain.

Proposition A.22 (Slice Coordinates). [LeeSM, Thms. 5.8 & 5.51] Let M be
a smooth m-manifold without boundary and let M C M be an embedded n-
dimensional submanifold with or without boundary. Then for each p € M there
exist a neighborhood U of p in M and smooth coordinates (xl,...,xm) for M on
U such that M N U is a set of one of the following forms:

(xelU:x"t =...=x™ =0} ifp¢ oM,

MnU = (xeU:x"t'=...=x" =0and x" >0} if peciM.

In such a chart, ()c1 e ,x") form smooth local coordinates for M.
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Coordinates satisfying either of these conditions are called slice coordinates;
when it is necessary to distinguish them, coordinates satisfying the second condition
are referred to as boundary slice coordinates.

If M is an immersed submanifold, then Theorem A.16 shows that every point of
M has a neighborhood U in M that is embedded in M, so we can construct slice
coordinates for U (but they need not be slice coordinates for M ).

» Exercise A.23. Suppose M is a smooth manifold and M c M is an embedded sub-
manifold. Show that every smooth function f : M — R can be extended to a smooth
function on a neighborhood of M in M whose restriction to M is f; and if M is also
closed in M, then the neighborhood can be taken to be all of M. [Hint: Extend f locally
in slice coordinates by letting it be independent of (x"T!,...,x"), and patch together
using a partition of unity.]

Here is the way that most submanifolds are presented. Suppose @ M — N is
any map. Every subset of the form @71 ({y}) C M for some y € N is called a level
set of @, or the fiber of ® over y. The simpler notation ®~!(y) is also used for a
level set when there is no likelihood of ambiguity.

T heorem A.24 (Constant-Rank Level Set Theorem) [LeeSM, Thm. 5.12] Sup-
pose M and N are smooth manifolds, and @ : M — N is a smooth map with con-
stant rank r. Every level set of ® is a properly embedded submanifold of codimen-
sionr in M.

Corollary A.25 (Submersion Level Set Theorem) [LeeSM, Cor. 5.13] Suppose
M and N are smooth manifolds, and @ : M—Nisa smooth submersion. Every
level set of @ is a properly embedded submanifold of M, whose codimension is
equal to dim N.

In fact, a map does not have to be a submersion, or even to have constant rank, for
its level sets to be embedded submanifolds. If @ : M —Nisa smooth map, a point
pE M is called a regular point of @ if the linear map d®,: T), M — T¢(p)N is
surjective, and p is called a critical point of @ if it is not. A point ¢ € N is called a
regular value of ® if every point of ®!(c) is a regular point of @, and a critical
value otherwise. A level set @1 (c) is called a regular level set of @ if c is a regular
value of @.

Corollary A.26 (Regular Level SeL Theorem). [LeeSM, Cor. 5.14] Let M and N
be smooth manifolds, and let : M — N be a smooth map. Every regular level
set of @ is a properly embedded submanifold of M whose codimension is equal to
dimN.

Suppose M is a smooth manifold and M C M is an embedded codimension-k
submanifold. A smoothmap @: M — R¥ is called a defining function for M if M
is a regular level set of @. More generally, if ¢: U — R¥ is a smooth map defined
on an open subset U € M such that M N U is a regular level set of @, then @ is
called a local defining function for M . The following is a partial converse to the
submersion level set theorem.
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Proposntlon A.27 (Existence of Local Deﬁnlng Functions). [LeeSM, Prop. 5.16]
Suppose M is a smooth manifold and M C M is an embedded submanifold of
codimension k. For each point p € M, there exist a neighborhood U of p in M and
a smooth submersion ®: U — R¥ such that M N\ U is a level set of ®.

If M C M is a submanifold (immersed or embedded), the inclusion map ¢: M —
M induces an injective linear map dip,: TpM — T)p M for each P € M. 1tis stan-
dard practice to identify T, M with its image d p(T M)ycT, M, thus regarding
Tp M as a subspace of T, M The next proposition gives two handy ways to identify
this subspace in the embedded case.

Proposition A.28 (Tangent Space to a Submanifold). [LeeSM, Props. 5.37 &
5.38] Suppose M is a smooth  manifold, M M is an embedded submanifold, and
p € M. As a subspace of T M, the tangent space T, M is characterized by

T,M = {UGTM vf—OwheneverfGC‘x’( andf|M—0}
If D is a local defining function for M on a neighborhood of p, then
TyM =Kerd ®,.

Proposition A.29 (Lagrange Multiplier Rule). Let M be a smooth m-manifold
and M € M be an embedded hypersurface. Suppose f € C °°( ) and p e M is
a point at which f attains a local maximum or minimum value among points in M .
If @: U — R is a local defining function for M on a neighborhood U of p, then
there is a real number A (called a Lagrange multiplier) such that df, = Ad ®,.

» Exercise A.30. Prove the preceding proposition. [Hint: One way to proceed is to begin
by showing that there are smooth functions x!,...,x” ™1 on a neighborhood of p such
that (x1,...,x" 1, @) are local slice coordinates for M .]

In treating manifolds with boundary, many constructions can be simplified
by viewing a manifold with boundary as being embedded in a larger manifold
without boundary. Here is one way to do that.

If M is a topological manifold with nonempty boundary, the double of M is the
quotient space D (M) formed from the disjoint union of two copies of M (say M,
and M,), by identifying each point in dM; with the corresponding point in dM,.

Proposition A.31. [LeeSM, Example 9.32] Suppose M is a smooth manifold with
nonempty boundary. Then D(M) is a topological manifold without boundary, and
it has a smooth structure such that the natural maps M — My — D(M ) and M —
M, — D(M) are smooth embeddings. Moreover, D(M) is compact if and only if
M is compact, and connected if and only if M is connected.
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Vector Bundles

Suppose M is a smooth manifold with or without boundary. The tangent bundle
of M, denoted by T'M, is the disjoint union of the tangent spaces at all points of M :
TM = [],ep TpM. This set can be thought of both as a union of vector spaces
and as a manifold in its own right. This kind of structure, called a vector bundle,
is extremely common in differential geometry, so we take some time to review the
definitions and basic properties of vector bundles.

For any positive integer k, a smooth vector bundle of rank k is a pair of smooth
manifolds E and M with or without boundary, together with a smooth surjective
map 7 : E — M satisfying the following conditions:

(i) For each p € M, the set E, = n~!(p) is endowed with the structure of a
k-dimensional real vector space.

(i1) For each p € M, there exist a neighborhood U of p and a diffeomorphism
@: 771 (U) - U x R¥ such that 7y o @ = 7, where ny: U xRF — U is
the projection onto the first factor; and for each ¢ € U, @ restricts to a linear
isomorphism from £, to {g} x R* ~ Rk,

The space M is called the base of the bundle, E is called its total space, and
is its projection. Each set £, = 77 1(p) is called the fiber of E over p, and each
diffeomorphism @ : 7~ (U) — U x R¥ described above is called a smooth local
trivialization.

It frequently happens that we are presented with a collection of vector spaces
(such as tangent spaces), one for each point in a manifold, that we would like to
“glue together” to form a vector bundle. There is a shortcut for showing that such
a collection forms a vector bundle without first constructing a smooth manifold
structure on the total space. As the next lemma shows, all we need to do is to exhibit
the maps that we wish to regard as local trivializations and check that they overlap
correctly.

Lemma A.32 (Vector Bundle Chart Lemma). [LeeSM, Lemma 10.6] Let M be a
smooth manifold with or without boundary, and suppose that for each p € M we
are given a real vector space Ep, of some fixed dimension k. Let E = || pem Ep
(the disjoint union of all the spaces E ), and let w: E — M be the map that takes
each element of E, to the point p. Suppose furthermore that we are given

(i) an indexed open cover {Uy }yeca of M ;
(ii) for each a € A, a bijective map ®y: 7~ (Uy) — Uy x R whose restriction
to each E, is a linear isomorphism from E, to {p} x RF =~ R¥;
(iii) for each o, B € A such that Uy N Ug # @, a smooth map tap: Uy N Upg —
GL(k,R) such that the composite map @y o <1>ﬂ_1 from (Uy NUg) X RF 10 itself
has the form

Py 0@y (p,) = (P, Tap (PIV). (A.6)

Then E has a unique smooth manifold structure making it a smooth vector
bundle of rank k over M, with 7t as projection and the maps ®, as smooth local
trivializations.
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The smooth GL (k,R)-valued maps t,g of this lemma are called transition func-
tions for E .

If 7 : E — M isasmooth vector bundle over M, then asection of E isacontinuous
map o: M — E such that w oo = Idyy, or equivalently, o(p) € E, for all p. If
U C M is an open set, then a local section of E over U is a continuous map
o: U — E satistfying the analogous equation w o0 = Idy . A smooth (local or global)
section of E is just a section that is smooth as a map between smooth manifolds. If we
need to speak of “sections” that are not necessarily continuous, we use the following
terminology: arough (local) section of E isamap o : U — E defined on some open
set U € M, not necessarily smooth or even continuous, such that 7 oo = Idy .

A local frame for E is an ordered k-tuple (o71,...,0%) of local sections over an
open set U whose values at each p € U constitute a basis for E,. Itis called a global
Jrame if U = M . If 7 is a (local or global) section of E and (oy,...,0%) is a local
frame for £ over U C M, then the value of 7 at each p € U can be written

w(p) = 7' (p)oi(p)

for some functions t',...,7¥: U — R, called the component functions of o with

respect to the given frame.
The next lemma gives a criterion for smoothness that is usually easy to verify in
practice.

Lemma A.33 (Local Frame Criterion for Smoothness). [LeeSM, Prop. 10.22]
Let m: E — M be a smooth vector bundle, and let t: M — E be a rough section.
If (07) is a smooth local frame for E over an open subset U C M, then t is smooth
on U if and only if its component functions with respect to (0;) are smooth.

If E — M is a smooth vector bundle, then the set of smooth sections of E,
denoted by I'(E), is a vector space (usually infinite-dimensional) under pointwise
addition and multiplication by constants. Its zero element is the zero section { de-
fined by {(p) =0 € E, for all p € M. For every section o of E, the support of o
is the closure of the set {p € M : o (p) # 0}.

Given a smooth vector bundle 7wg: E — M, a smooth subbundle of E is a
smooth vector bundle wp : D — M, in which D is an embedded submanifold (with
or without boundary) of E and np = ng D such that for each p € M, the subset
D, = DN E, is alinear subspace of E,, and the vector space structure on D, is
the one inherited from E,. Given a collection of subspaces D, C E,, one for each
p € M, the following lemma gives a convenient condition for checking that their
union is a smooth subbundle.

Lemma A.34 (Local Frame Criterion for Subbundles). [LeeSM, Lemma 10.32]
Let m: E — M be a smooth vector bundle, and suppose that for each p € M
we are given a k-dimensional linear subspace D, C E,. Suppose further that
each p € M has a neighborhood U on which there are smooth local sections
O1...,0k: U — E such that 01(q),...,0r(q) form a basis for Dy at each q € U.
Then D = UpeM D, C E is a smooth subbundle of E.
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Suppose M is a smooth manifold with or without boundary, and M C M is
an immersed or embedded submanifold with or without boundary. If £ — M
is any smooth rank-k vector bundle over M, we obtain a smooth vector bundle
7wla: E|m — M of rank k over M, called the restriction of E to M, whose total
space is E|p = m (M), whose fiber at each p € M is exactly the fiber of E, and
whose local trivializations are the restrictions of the local trivializations of E. (See
[LeeSM, Example 10.8].)

Every smooth section of E restricts to a smooth section of E|js. Conversely, the
next exercise shows that in most cases, smooth sections of E|js extend to smooth
sections of E, at least locally near M.

» Exercise A.35. Suppose M is a smooth manifold, £ — M is a smooth vector bundle,
and M C M is an embedded submanifold. Show that every smooth section of the restricted
bundle E|js can be extended to a smooth section of E on a neighborhood of M in M ;
and if M is closed in M, the neighborhood can be taken to be all of M .

The Tangent Bundle and Vector Fields

We continue to assume that M is a smooth manifold with or without boundary. In
this section, we see how the theory of vector bundles applies to the particular case
of the tangent bundle.

Given any smooth local coordinate chart (U, (x')) for M, we can define a local
trivialization of TM over U by letting @ : 7~ !(U) — U x R" be the map sending
veT,Mto (p, !, ..., v”)), where via/axi | p is the coordinate representation for
v. Given another such chart ((7 . (55‘)) for M, we obtain a corresponding local triv-
ialization @ (v) = (p, @',..., '15”)), where v = 3'9/0%"| ,. The transformation law
for coordinate vectors shows that

0w

V= (o

so the transition function between two such charts is given by the smooth matrix-
valued function (85(7 /ox! ) Thus the chart lemma shows that these local trivializa-
tions turn 7’M into a smooth vector bundle.

A smooth coordinate chart (xi) for M also yields smooth local coordinates
(x....x" vl v") on n 1 (U) € TM, called natural coordinates for TM , by
following the local trivialization @ with the map U x R” — R” x R”" that sends
(p. (v1,....0") to (x1(p),....x"(p),v',....0").

A section of TM is called a vector field on M . To avoid confusion between the
point p € M at which a vector field is evaluated and the action of the vector field on
a function, we usually write the value of a vector field X at pe M as X, € T,M,
or, if it is clearer (for example if X itself has one or more subscripts), as X | .

For example, if (U, (x')) is a smooth coordinate chart for M, for each i we get
a smooth coordinate vector field on U, denoted by d/dx" (and often abbreviated by
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d; if no confusion results), whose value at p € U is the coordinate vector 3/dx'|,
defined above. Each coordinate vector field is smooth because its coordinate rep-

resentation in natural coordinates is (x',...,x") > (x!,...,x",0,...,0,1,0,...,0).
The vector fields d1, ..., d, form a smooth local frame for TM , called a coordinate
frame.

It follows from Lemma A.33 that a vector field is smooth if and only if its com-
ponents are smooth with respect to some smooth local frame (such as a coordinate
frame) in a neighborhood of each point. It is standard to use the notation X(M) as
another name for I'(T'M), the space of all smooth vector fields on M.

Now suppose M and N are smooth manifolds with or without boundary, and
F: M — N is a smooth map. We obtain a smooth map dF: TM — TN, called the
global differential of F , whose restriction to each tangent space 7, M is the linear
map d I, defined above. In general, the global differential does not take vector fields
to vector fields. In the special case that X € X(M) and Y € X (V) are vector fields
such that d F(X ) = YF(p) for all p € M, we say that the vector fields X and Y are
F-related.

Lemma A.36. [LeeSM, Prop. 8.19 & Cor. 8.21] Let F: M — N be a diffeomor-
phism between smooth manifolds with or without boundary. For every X € X(M),
there is a unique vector field Fx X € X(N), called the pushforward of X, that is
F-related to X. For every f € C°°(N), it satisfies

((FX)f)o F = X(f oF). (A7)

Suppose X € X(M). Given a real-valued function f € C°°(M), applying X to
f yields a new function Xf € C*°(M) by Xf(p) = X, f. The defining equation
(A.1) for tangent vectors translates into the following product rule for vector fields:

X(fg)=fXg+gXf (A.8)

Amap X: C®(M) — C*®(M) is called a derivation of C*>° (M) (as opposed to a
derivation at a point) if it is linear over R and satisfies (A.8) for all f,g € C*°(M).

Lemma A.37. [LeeSM, Prop. 8.15] Let M be a smooth manifold with or without
boundary. Amap D: C®°(M) — C>®(M) is a derivation if and only if it is of the
form Df = Xf for some X € X(M).

Given smooth vector fields X,Y € X(M), define a map [X,Y]: C*(M) —
C>(M) by
[X.Y]f = X(Y[)-Y(X]).
A straightforward computation shows that [X, Y] is a derivation of C*°(M), and

thus by Lemma A.37 it defines a smooth vector field, called the Lie bracket of X
and Y.

Proposition A.38 (Properties of Lie Brackets). [LeeSM, Prop. 8.28] Let M be a
smooth manifold with or without boundary and X,Y,Z € X(M).



386 Review of Smooth Manifolds

(a) [X,Y] is bilinear over R as a function of X and Y .

(b) [X,Y] = —[Y, X] (antisymmetry).

) [X,[Y,Z]|+ Y.[Z,. X]] + | Z,[X, Y]] = 0 (Jacobi identity).

(d) For f,.g € C*(M), [fX,gY]= fe[X. Y]+ (/XY —(g¥[)X.

Proposition A.39 (Naturality of Lie Brackets). [LeeSM, Prop. 8.30 & Cor. 8.31]
Let F: M — N be a smooth map between manifolds with or without boundary, and
let X1,X, € X(M) and Y1,Y, € X(N) be vector fields such that X; is F-related
to Y; for i = 1,2. Then [X1, X3] is F-related to [Y1,Y>]. In particular, if F is a
diffeomorphism, then Fy[X1,X3] = [F« X1, F« X2].

Now suppose M is a smooth manifold with or without boundary and M C M
is an immersed or embedded submanifold with or without boundary. The bundle
T M| s, obtained by restricting T M to M, is called the ambient tangent bundle.
It is a smooth bundle over M whose rank is equal to the dimension of M. The
tangent bundle 7M is naturally viewed as a smooth subbundle of TMW, and
smooth vector fields on M can also be viewed as smooth sections of 7M. A
vector field X € %(M ) always restricts to a smooth section of 7'M |z, and it re-
stricts to a smooth section of TM if and only if it is tangent to M, meaning that
X,eTyMC TPM foreach p e M.

Corollary A.40 LBrackets of Vector Fields Tangent to Submanifolds). [LeeSM,
Cor. 8.32] Let M be a smooth manifold and let M be an immersed submanifold
with or without boundary in M. If Y1 and Y, are smooth vector fields on M that
are tangent to M, then [Y1,Y3] is also tangent to M.

» Exercise A.41. Let M be a smooth manifold with or without boundary and let M C
M be an embedded submanifold with or without boundary. Show that a vector field X €
X(M) is tangent to M if and only if (X f)|as = O whenever f € C° (M) is a function
that vanishes on M.

Integral Curves and Flows

A curve in a smooth manifold M (with or without boundary) is a continuous map
y: 1 — M, where I C R is some interval. If y is smooth, then for each 7y € I we
obtain a vector y'(to) = dyy, (d /dt| ,0), called the velocity of y at time tg. It acts
on functions by

Y'(to) f = (f oy) (to).

In any smooth local coordinates, the coordinate expression for y’(fg) is exactly the
same as it would be in R”: the components of y’(fp) are the ordinary ¢-derivatives
of the components of y.
If X € X(M),thenasmoothcurvey: I — M iscalled anintegral curve of X ifits
velocity at each point is equal to the value of X there: y'(¢) = X, () foreacht € I.
The fundamental fact about vector fields (at least in the case of manifolds without
boundary) is that there exists a unique maximal integral curve starting at each point,
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varying smoothly as the point varies. These integral curves are all encoded into a
global object called a flow, which we now define.

Given a smooth manifold M (without boundary), a flow domain for M is an
open subset D C R x M with the property that for each p € M, the set DP) =
{t e R: (¢, p) € D} is an open interval containing 0. Given a flow domain D and a
map 6: D — M, foreacht e R welet My ={p € M : (¢, p) € D}, and we define
maps 6; : M; — M and 0?): D) — M by 6,(p) = 0P (r) = 0(t, p).

A flow on M is a continuous map 6: D — M, where D C R x M is a flow
domain, that satisfies

Bo = Id,
0; 00s(p) = 0:+5s(p) wherever both sides are defined.

If 6 is a smooth flow, we obtain a smooth vector field X € X(M) defined by X, =
(6 (0), called the infinitesimal generator of 6.

Theorem A.42 (Fundamental Theorem on Flows). [LeeSM, Thm. 9.12] Ler X
be a smooth vector field on a smooth manifold M (without boundary). There is a
unique smooth maximal flow 0: D — M whose infinitesimal generator is X. This
flow has the following properties:

(a) For each p € M, the curve 0P): DP) — M is the unique maximal integral
curve of X starting at p.

(b) If s € DP), then DOE-P) is the interval DP) —s = {l‘ —s:te i)(p)}.

(¢) For each t € R, the set My is open in M, and 0, M; — M_, is a diffeomor-
phism with inverse 0_;.

Although the fundamental theorem guarantees only that each point lies on an
integral curve that exists for a short time, the next lemma can often be used to prove
that a particular integral curve exists for all time.

Lemma A.43 (Escape Lemma). Suppose M is a smooth manifold and X € X(M).
If y: I — M is a maximal integral curve of X whose domain I has a finite least
upper bound b, then for every ty € I, y([to,b)) is not contained in any compact
subset of M.

» Exercise A.44. Prove the escape lemma.

Proposition A.45 (Canonical Form for a Vector Field). [LeeSM, Thm. 9.22] Let
X be a smooth vector field on a smooth manifold M, and suppose p € M is a point
where X, # 0. There exist smooth coordinates (xi) on some neighborhood of p in
which X has the coordinate representation 9/dx".

The fundamental theorem on flows leads to a way of differentiating one vector
field along the flow of another. Suppose M is a smooth manifold, X,Y € X(M),
and 6 is the flow of X . The Lie derivative of Y with respect to X is the vector field
£xY defined by
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d d(0-0)6, ) (Yo, ) =¥,
(£xY)p=— _Od(e_,)er(p)(ygt(p)) 46060 (Vo) ~Yp

=1
¢ t—0 t

This formula is useless for computation, however, because typically the flow of
a vector field is difficult or impossible to compute explicitly. Fortunately, there is
another expression for the Lie derivative that is much easier to compute.

Proposition A.46. [LeeSM, Thm. 9.38] Suppose M is a smooth manifold and
X.,Y € X(M). The Lie derivative of Y with respect to X is equal to the Lie bracket
[X,Y].

One of the most important applications of the Lie derivative is as an obstruction
to invariance under a flow. If 6 is a smooth flow, we say that a vector field Y is
invariant under 0 if (6;).Y =Y wherever the left-hand side is defined.

Proposition A.47. [LeeSM, Thm. 9.42] Let M be a smooth manifold and X €
X(M). A smooth vector field is invariant under the flow of X if and only if its
Lie derivative with respect to X is identically zero.

A k-tuple of vector fields X1, ..., X is said to commute it [X;, X ;] = 0 for each
iand j.

Proposition A.48 (Canonical Form for Commuting Vector Fields). [LeeSM,
Thm. 9.46] Let M be a smooth n-manifold, and let (X1,..., X) be a linearly inde-
pendent k-tuple of smooth commuting vector fields on an open subset W C M. For
each p € W, there exists a smooth coordinate chart (U, (xi)) centered at p such
that X; = 8/8xif0ri =1,...,k.

Smooth Covering Maps

A covering map is a surjective continuous map 7 : M — M between connected and
locally path-connected topological spaces, for which each point of M has connected
neighborhood U that is evenly covered, meaning that each connected component of
7~ 1(U) is mapped homeomorphically onto U by 7. It is called a smooth covering
map if M and M are smooth manifolds with or without boundary and each com-
ponent of 7~ (U) is mapped diffeomorphically onto U . For every evenly covered
open set U € M, the components of 7! (U) are called the sheets of the covering
over U.
Here are the main properties of covering maps that we need.

Proposition A.49 (Elementary Properties of Smooth Covering Maps). [LeeSM,
Prop. 4.33]

(a) Every smooth covering map is a local diffeomorphism, a smooth submersion,
an open map, and a quotient map.



Smooth Covering Maps 389

(b) An injective smooth covering map is a diffeomorphism.
(¢) A topological covering map is a smooth covering map if and only if it is a local
diffeomorphism.

Proposition A.50 A covering map is a proper map if and only if it is finite-sheeted.
» Exercise A.51. Prove the preceding proposition.

Example A.52 (A Covering of the n-Torus). The n-torus is the manifold T" =
S x---x S!, regarded as the subset of R?" defined by (x!)? + ()62)2

(x2"~ 1)2 + (x2")2 = 1. The smooth map X : R” — T" given by X(u!, ”) =
(cosul,sinu!,... ,cosu”, sinu™) is a smooth covering map. /

Ifr: M —> Misa covering map and F': B — M is a continuous map from a
topological space B into M, then a lift of F is a continuous map F': B — M such
that ro F = F.

Proposition A.53 (Lifts of Smooth Maps are Smooth). /f 7 : M — M is a smooth
covering map, B is a smooth manifold with or without boundary, and F: B — M
is a smooth map, then every lift of F is smooth.

Proof. Since 7 is a smooth submersion, every lift F: B — M can be written locally
as ' = o o F, where ¢ is a smooth local section of 7 (see Thm. A.17). |

Proposition A.54 (Lifting Properties of Covering Maps). Suppose r : MM
is a covering map.

(a) UNIQUE LIFTING PROPERTY [LeeTM, Thm. 11.12] If B is a connected topo-
logical space and F: B — M is a continuous map, then any two lifts of F
that agree at one point are identical.

(b) PATH LIFTING PROPERTY [LeeTM, Cor. 11.14] Suppose f: [0,1] - M
is a continuous path. For every pen 1( 1(0)), there exists a unique lift
f [0,1] — M of f such thatf(O)

(c) MONODROMY THEOREM [LeeTM, Thm 11. 15] Suppose f,g:[0,1] > M
are path- homotoplc paths and f g:[0,1] — M are their lifts starting at the
same point. Then f and g are path-homotopic and f(l) =g(1).

Theorem A.55 (Injectivity Theorem). [LeeTM, Thm. 11.16] If 7 : M—>Misa
covering map, then for each point X € M, the induced fundamental group homo-
morphism Ty : 71 (M)"c') — nl(M,n(f)) is injective.

Theorem A.56 (Lifting Criterion). [LeeTM, Thm. 11.18] Suppose n : M — M is
a covering map, B is a connected and locally path-connected topological space, and
F: B — M is a continuous map. Given b € B and X € M such that 7r(3c") = F(b),
the map F has a lift to M if and only if Fy (7{1 (B,b)) C 7y (7{1 (ﬂ,f))
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Corollary A.57 (Lifting Maps from Simply Connected Spaces). [LeeTM, Cor.
11.19] Suppose w: M — M and F: B — M satisfy the hypotheses of Theorem
A.56, and in addition B is simply connected. Then every continuous map F: B —
M has a lift to M. Given any b € B, the lift can be chosen to take b to any point in
the fiber over F(b).

Corollary A.58 (Covering Map Homeomorphism Criterion). A covering map
7 M —> M is a homeomorphism if and only if the induced homomorphism
Ty Tq (M x) — m1 (M, (X)) is surjective for some (hence every) X € M. A
smooth covering map is a diffeomorphism if and only if the induced homomorphism
is surjective.

Proof. By Theorem A.56, the hypothesis implies that the identity map Id: M — M
has a lift Id: M — M, which in this case is a continuous inverse for . If 7 is a
smooth covering map, then the lift is also smooth. O

Corollary A.59 (Coverings of Simply Connected Spaces). [LeeTM, Cor. 11.33]
If M is a simply connected manifold with or without boundary, then every cover-
ing of M is a homeomorphism, and if M is smooth, every smooth covering is a
diffeomorphism.

Proposition A.60 (Existence of a Universal Covering Manifold). [LeeSM, Cor.
4.43] If M is a connected smooth manifold, then there exist a simply connected
smooth manifold M, called the universal covering manifold of M, and a smooth
covering map w: M — M. It is unique in the sense that if M’ is any other simply
connected smooth manifold that admits a smooth covermg map 7’ - M' — M, then
there exists a diffeomorphism @ : M — M’ such that v’ o ® = 7.

Proposition A.61. [LeeTM, Cor. 11.31] With r : M — M as in the previous propo-
sition, each fiber of w has the same cardinality as the fundamental group of M.

» Exercise A.62. Suppose 7 : M—>Misa covering map. Show that M is compact if
and only if M is compact and 7 is a finite-sheeted covering.

We will revisit smooth covering maps at the end of Appendix C.



Appendix B
Review of Tensors

Of all the constructions in smooth manifold theory, the ones that play the most
fundamental roles in Riemannian geometry are fensors and tensor fields. Most of
the technical machinery of Riemannian geometry is built up using tensors; indeed,
Riemannian metrics themselves are tensor fields. This appendix offers a brief review
of their definitions and properties. For a more detailed exposition of the material
summarized here, see [LeeSM].

Tensors on a Vector Space

We begin with tensors on a finite-dimensional vector space. There are many ways of
constructing tensors on a vector space, but for simplicity we will stick with the most
concrete description, as real-valued multilinear functions. The simplest tensors are
just linear functionals, also called covectors.

Covectors

Let V' be an n-dimensional vector space (all of our vector spaces are assumed to be
real). When we work with bases for V, it is usually important to consider ordered
bases, so will assume that each basis comes endowed with a specific ordering. We
use parentheses to denote ordered k-tuples, and braces to denote unordered ones, so
an ordered basis is designated by either (by,...,b,) or (b;), and the corresponding
unordered basis by {b1,...,b,} or {b;}.

The dual space of V, denoted by V*, is the space of linear maps from V' to R.
Elements of the dual space are called covectors or linear functionals on V. Under
the operations of pointwise addition and multiplication by constants, V* is a vector

space.
Suppose (b1, ...,b,) is an ordered basis for V. For each i = 1,...,n, define a

covector ' € V* by
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B (b)) = 5.
where 83 is the Kronecker delta symbol, defined by

; 1 ifi=j
1 __ )
Sf 10 ifi # . (B.1)
It is a standard exercise to prove that (ﬁ Lo ,3") is a basis for V'*, called the dual

basis to (b;). Therefore, V* is finite-dimensional, and its dimension is the same as
that of V. Every covector w € V* can thus be written in terms of the dual basis as

w=w;p’, (B.2)

where the components w; are defined by w; = w(b;). The action of w on an arbi-
trary vector v = v'bh; € V is then given by

o) = a)jvj. (B.3)

(Here and throughout the rest of this appendix we use the Einstein summation con-
vention; see p. 375.)

Every vector v € V uniquely determines a linear functional on V*, by @ + w(v).
Because we are assuming V' to be finite-dimensional, it is straightforward to show that
this correspondence gives a canonical (basis-independent) isomorphism between V
and V** (the dual space of V*). Givenw € V* and v € V, we can denote the natural
action of @ on v either by the traditional functional notation w(v), or by either of the
more symmetric notations (w, v) or (v, ). The latter notations are meant to emphasize
thatitdoes not matter whether we think of the resulting number as the effect of the linear
functional w acting on the vector v, or as the effect of v € V'** acting on the covector
. Note that when applied to a vector and a covector, this pairing makes sense without
any choice of an inner producton V.

Higher-Rank Tensors on a Vector Space

Now we generalize from linear functionals to multilinear ones. If V1,...,V, and W
are vector spaces, amap F: V) x---x Vx — W is said to be multilinear if it is linear
as a function of each variable separately, when all the others are held fixed:

!

F(vi,...,avi +a'v},....,vg) =aF(vy,...,0i,...,0) + @ F(v1,...,0},...,0).

Given a finite-dimensional vector space V', a covariant k-tensor on V is a mul-
tilinear map
F:Vx--xV —=R.

—_—
k copies

Similarly, a contravariant k-tensor on V is a multilinear map
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F:V*x---xV* >R.

~——
k copies

We often need to consider tensors of mixed types as well. A mixed tensor of type
(k, 1), also called a k-contravariant, l-covariant tensor, is a multilinear map

F: VX xV*xVx---xV >R.

———— | ——

k copies I copies

Actually, in many cases it is necessary to consider real-valued multilinear functions
whose arguments consist of k covectors and / vectors, but not necessarily in the
order implied by the definition above; such an object is still called a tensor of type
(k,I). For any given tensor, we will make it clear which arguments are vectors and
which are covectors.

The spaces of tensors on V' of various types are denoted by

T*(V*) = {covariant k-tensors on V };
Tk(V) = {contravariant k-tensors on V'};
T(k’l)(V) = {mixed (k,[)-tensors on V'}.
The rank of a tensor is the number of arguments (vectors and/or covectors) it takes.
By convention, a O-tensor is just a real number. (You should be aware that the no-
tation conventions for describing the spaces of covariant, contravariant, and mixed

tensors are not universally agreed upon. Be sure to look closely at each author’s
conventions.)

Tensor Products

There is a natural product, called the tensor product, linking the various ten-
sor spaces over V: if F € T®D(V) and G € T®D(V), the tensor F ® G €
7*+p.1+9) () is defined by

F®G(a)1,...,wk+p,v1,...,vl+q)

= F(a)l,...,wk,vl,...,vl)G(wk+1,...,a)k+p,vl+1,...,vl+q).

The tensor product is associative, so we can unambiguously form tensor products of
three or more tensors on V. If (b;) is a basis for V' and (/31 ) is the associated dual

basis, then a basis for 7®-D (V) is given by the set of all tensors of the form
biy ® - ®bj, 11 @@, (B.4)

as the indices i, j4 range from 1 to n. These tensors act on basis elements by
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biy @+ @by @ BN @@ BB ..., B by, b)) = 8;1 8K 8]1 8]

It follows that 7% (/) has dimension n¥ ! where n = dim V. Every tensor F €
7% (V) can be written in terms of this basis (using the summation convention) as

F=Flp, @ .0b, 0" 0B, (B.5)

where o
...l i i .
Fi = F(,B LB k,b_,-l,...,b_”).

If the arguments of a mixed tensor F occur in a nonstandard order, then the
horizontal as well as vertical positions of the indices are significant and reflect which
arguments are vectors and which are covectors. For example, if A4 is a (1,2)-tensor
whose first argument is a vector, second is a covector, and third is a vector, its basis
expression would be written

A=A B @b @B~
where _ _
Al = A(bi. B/ . by). (B.6)

There are obvious identifications among some of these tensor spaces:

TOOWV)=T°(V)=T°(V*) =R,

TSROV =T (V) =V,

TODW)=T"(V*) = V", (B.7)
r&Ow) =14W),

TOR Wy =Tk1™).

A less obvious, but extremely important, identification is the following:
TUD (V) >~ End(V),

where End(V') denotes the space of linear maps from V to itself (also called the
endomorphisms of V). This is a special case of the following proposition.

Proposition B.1. Let V' be a finite-dimensional vector space. There is a natural
(basis-independent) isomorphism between T ®+1D (V) and the space of multilinear
maps

V*X oo X VXV xoooxV = V.

k copies [ copies

» Exercise B.2. Prove Proposition B.1. [Hint: In the special case k = 0, = 1, consider
the map @ : End(V) — T (I-D (V') defined by letting @A be the (1, 1)-tensor defined by
PA(w,v) = w(Av). The general case is similar.]
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We can use the result of Proposition B.1 to define a natural operation called
trace or contraction, which lowers the rank of a tensor by 2. In one special case,
it is easy to describe: the operator tr: 7(1D(V) — R is just the trace of F when
it is regarded as an endomorphism of V, or in other words the sum of the di-
agonal entries of any matrix representation of F. Since the trace of a linear en-
domorphism is basis-independent, this is well defined. More generally, we define
tr: TRALIED () 5 7®RD (V) by letting (tr F) (o', ..., 0%, vy, ..., v;) be the trace
of the (1, 1)-tensor

F(a)l,...,a)k, V1,0, ) € T,
In terms of a basis, the components of tr I are

P = L.
In other words, just set the last upper and lower indices equal and sum. Even more
generally, we can contract a given tensor on any pair of indices as long as one is
contravariant and one is covariant. There is no general notation for this operation,
so we just describe it in words each time it arises. For example, we can contract the
tensor A with components given by (B.6) on its first and second indices to obtain a
covariant 1-tensor B whose components are By = Aiik.

» Exercise B.3. Show that the trace on any pair of indices (one upper and one lower) is
a well-defined linear map from T *+ 114D (V) to T®-D (V).

Symmetric Tensors

There are two classes of tensors that play particularly important roles in differential
geometry: the symmetric and alternating tensors. Here we discuss the symmetric
ones; we will take up alternating tensors later in this appendix when we discuss
differential forms.

If V is a finite-dimensional vector space, a covariant tensor F € T*(V*) is said
to be symmetric if its value is unchanged by interchanging any pair of arguments:

Fi,...,vioo0v5,000) = F(ur, .. v, 00,0, .0, V)

whenever 1 <i < j < k. It follows immediately that the value is unchanged un-
der every rearrangement of the arguments. If we denote the components of F with
respect to a basis by Fj, . ;. , then F' is symmetric if and only if its components are
unchanged by every permutation of the indices iy,...,ix. Every O-tensor and every
1-tensor are vacuously symmetric. The set of symmetric k-tensors on V is a linear
subspace of T5(V*), which we denote by K (V*).

A tensor product of symmetric tensors is generally not symmetric. However,
there is a natural product of symmetric tensors that does yield symmetric tensors.
Given a covariant k-tensor F, the symmetrization of F is the k-tensor Sym F de-
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fined by
1
(SymF)(vy,...,vx) = . Z F (Vo(1)-- -+ Vo (k)) s
’ geSy
where Sy is the group of all permutations of {1,...,k}, called the symmetric group

on k elements. 1t is easy to check that SymF is symmetric, and SymF = F if and
only if F is symmetric. Then if F' and G are symmetric tensors on V, of ranks k
and [, respectively, their symmetric product is defined to be the (k 4 /)-tensor FG
(denoted by juxtaposition without an explicit product symbol) given by

FG =Sym(F ® G).

The most important special case is the symmetric product of two 1-tensors, which
can be characterized as follows: if @ and 7 are covectors, then

wn=2(@RN+NQw).

(To prove this, just evaluate both sides on an arbitrary pair of vectors (v, w), and
use the definition of wn.) If w is any 1-tensor, the notation w? means the symmetric
product ww, which in turn is equal to ® ® .

Tensor Bundles and Tensor Fields

On a smooth manifold M with or without boundary, we can perform the same linear-
algebraic constructions on each tangent space 7, M that we perform on any vector
space, yielding tensors at p. The disjoint union of tensor spaces of a particular type
at all points of the manifold yields a vector bundle, called a tensor bundle.

The most fundamental tensor bundle is the cotangent bundle, defined as

T*M = ]_[ TIM.
PEM

More generally, the bundle of (k,1)-tensors on M is defined as

T®DTM = [ 7%D(T,M).
PEM

As special cases, the bundle of covariant k-tensors is denoted by TXT*M =
TOTM, and the bundle of contravariant k-tensors is denoted by TKTM =
T®OT M . Similarly, the bundle of symmetric k-tensors is

sErem = [ shTpm).
PEM
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There are the usual identifications among these bundles that follow from (B.7): for
example, T'TM = TOOTM = TM and T'T*M = TOVTM = SI1T*M =
T*M.

» Exercise B.4. Show that each tensor bundle is a smooth vector bundle over M, with a
local trivialization over every open subset that admits a smooth local frame for TM .

A tensor field on M is a section of some tensor bundle over M (see p. 383 for the
definition of a section of a bundle). A section of T!T*M = TODTM (a covariant
1-tensor field) is also called a covector field. As we do with vector fields, we write
the value of a tensor field F at p € M as F, or F|,. Because covariant tensor
fields are the most common and important tensor fields we work with, we use the
following shorthand notation for the space of all smooth covariant k-tensor fields:

TE(M) =T(T*T*M).

The space of smooth 0O-tensor fields is just C*°(M).

Let (E;) = (E1,..., Ey) be any smooth local frame for TM over an open sub-
set U € M. Associated with such a frame is the dual coframe, which we typi-
cally denote by (g!,...,&"); these are smooth covector fields satisfying &' (E;) =
8’] For example, given a coordinate frame (8/ ox',...,0/ 8x") over some open
subset U € M, the dual coframeis (dx!....,dx™), where dx' is the differential of the
coordinate function x’.

In terms of any smooth local frame (E;) and its dual coframe (¢'), the tensor
fields £;, ® ---Q Ej;, ® &)1 ®---® &/t form a smooth local frame for T®-D (T*M).
In particular, in local coordinates (xi ), a (k,l)-tensor field F has a coordinate
expression of the form

F=Fjl 0, @@, ®dx @@ dx, (B.8)

where each coefficient F' 111171( is a smooth real-valued function on U.

» Exercise B.5. Suppose F : M — T ®-DT M is arough (k,[)-tensor field. Show that
F is smooth on an open set U € M if and only if whenever !,.. ., ¥ are smooth covec-
tor fields and Xq,..., X; are smooth vector fields defined on U, the real-valued function
F(o0',...,0%,X1,...,X;), defined on U by

F(wla-"swksxla-"sxl)(p)=FP(wl|p7"-5wk|P9X1|I75"'9Xl|p)’

is smooth.

An important property of tensor fields is that they are multilinear over the space
of smooth functions. Suppose F € F(T(k’l)TM ) is a smooth tensor field. Given
smooth covector fields o', ..., w* € 71(M) and smooth vector fields X;,...,X; €
X (M), Exercise B.5 shows that the function F (a)l, Lok X, X;) is smooth,
and thus F induces a map
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F: T'M)x--xTYM) xEM)x--xX(M)— C®(M).

k factors [ factors

It is easy to check that this map is multilinear over C *° (M), that is, for all functions
u,v € C*(M) and smooth vector or covector fields «, 8,

F(..ua+vB,..)=uF(. a.)+vF(.. B...).

Even more important is the converse: as the next lemma shows, every such map that
is multilinear over C °°(M) defines a tensor field. (This lemma is stated and proved
in [LeeSM] for covariant tensor fields, but the same argument works in the case of
mixed tensors.)

Lemma B.6 (Tensor Characterization Lemma). [LeeSM, Lemma 12.24] A map

F: T M)x---xTH M) xEM)x---xX(M)— C®(M)

k factors [ factors

is induced by a smooth (k,1)-tensor field as above if and only if it is multilinear over
C°(M). Similarly, a map

F: T M)x--xTUM) xEM)x--xE(M)—> X(M)

k factors 1 factors

is induced by a smooth (k + 1,1)-tensor field as in Proposition B.1 if and only if it
is multilinear over C*°(M).

Because of this result, it is common to use the same symbol for both a tensor
field and the multilinear map on sections that it defines, and to refer to either of
these objects as a tensor field.

Pullbacks of Tensor Fields

Suppose F': M — N is a smooth map and A is a covariant k-tensor field on N.
For every p € M, we define a tensor dF(A) € Tk (TyM), called the pointwise
pullback of A by F at p, by

dFy(A)(v1.....v0) = A(dFp(v1).....dFp(vi))

for vy,...,vx € Tp M ; and we define the pullback of A by F to be the tensor field
F*A on M defined by
(F*A), = dF;(AF(p)).

Proposition B.7 (Properties of Tensor Pullbacks). [LeeSM, Prop. 12.25] Suppose
F: M — N and G: P — M are smooth maps, A and B are covariant tensor fields
on N, and f is a real-valued function on N.



Tensor Bundles and Tensor Fields 399

(@) F*(fB)=(foF)F*B.

(b) F¥*(A By=F*AQ F*B.

(¢) F¥*(A+ B)=F*A+ F*B.

(d) F*B is a (continuous) tensor field, and it is smooth if B is smooth.
() (FoG)*B =G*(F*B).

(H (0dy)*B = B.

If f is a continuous real-valued function (i.e., a O-tensor field), the pullback F* f
is just the composition f o F.

The following proposition shows how pullbacks are computed in local coordi-
nates.

Proposition B.8. [LeeSM, Cor. 12.28] Let F: M — N be smooth, and let B be a
covariant k-tensor fieldon N. If p € M and (y’) are smooth coordinates for N on
a neighborhood of F(p), then F* B has the following expression in a neighborhood

of p:

F* (B, .ixdy" @---®dy'*) = (Bi iy o F)d (y" o F) ®---®d (y™ o F).

Lie Derivatives of Tensor Fields

We can extend the notion of Lie derivatives to tensor fields. This can be done for
mixed tensor fields of any rank, but for simplicity we restrict attention to covariant
tensor fields. Suppose X is a smooth vector field on M and @ is its flow. If 4 is a
smooth covariant tensor field on M, the Lie derivative of A with respect to X is
the smooth covariant tensor field £ xy A defined by

d ()} (Ao, (»)) — Ap

d
(£xA), = — t

dt |,

s
0(9z A)p = }E}})

Proposition B.9. [LeeSM, Thm. 12.32] Suppose M is a smooth manifold, X €
X(M), and A is a smooth covariant k-tensor field on M. For all smooth vector
fields Z+, ..., Zy,

(ExANZy,... Z1) = X(A(Z1,..., Zy))
—A(EXZ1,Zos o Zi)— AZ1, Ex L Zk) = — A(Z1s . Ex Z1).

As we did for vector fields, we say that a covariant tensor field A is invariant
under a flow 0 if (6;)*A = A wherever it is defined. The next proposition is a
tensor analogue of Proposition A.47.

Proposition B.10. [LeeSM, Thm. 12.37] Let M be a smooth manifold and X €
X(M). A smooth covariant tensor field is invariant under the flow of X if and only
if its Lie derivative with respect to X is identically zero.
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Differential Forms and Integration

In addition to symmetric tensors, the other class of tensors that play a special role
in differential geometry is that of alternating tensors, which we now define. Let
V be a finite-dimensional vector space. If F is a covariant k-tensor on V, we say
that F is alternating if its value changes sign whenever two different arguments are
interchanged:

Fr,....vi,.., v, 00) = —F(ur,...,0j,...,0;,...,0%).

The set of alternating covariant k-tensors on V' is a linear subspace of TX(V*),
denoted by A¥(V*). If F € A*(V*), then the effect of an arbitrary permutation of
its arguments is given by

F(vg)s--- Vo)) = (sgno) F(vy,...,vk),

where sgn o represents the sign of the permutation o € Sg, which is 41 if ¢ is even
(i.e., can be written as a composition of an even number of transpositions), and —1
if o is odd. The components of F with respect to any basis change sign similarly
under a permutation of the indices. All O-tensors and 1-tensors are alternating.

Analogously to the symmetrization operator defined above, if F' is any covariant
k-tensor on V', we define the alternation of F by

1
(ALF) (1, vp) = 7 > (sgn o) F (Vo(1).-- - Vo(h)) - (B.9)
: oESK

Again, it is easy to check that Alt F is alternating, and Alt F = F if and only if F is
alternating. Given w € AK(V*) and n € A!(V*), we define their wedge product by

kD)
@AT= T

Alt(w ®1).

It is immediate that w A 1 is an alternating (k 4 [)-tensor. The wedge product is
easily seen to be bilinear and anticommutative, which means that

wAn=(=D*nrw, forw € A¥(V*)and n e AL(V¥).

It is also the case, although not so easy to see, that it is associative; see [LeeSM,
Prop. 14.11] for a proof. If (b;) is a basis for V and (B") is the dual basis, the wedge
products B A--- A Bik as (i1,...,ix) range over strictly increasing multi-indices,
form a basis for A%(V*), which therefore has dimension (Z) =n!/ (k!(n - k)!),
where n = dim V. In terms of these basis elements, the wedge product satisfies

BUA-ABE(Djy .. b)) :det(s’]g).

k

More generally, if ol,...,of are any covectors and vy,..., Vg are any vectors, then
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w1A~-~/\a)k(v1,...,vk)=det(wi(vj))~ (B.10)

The wedge product can be defined analogously for contravariant alternating ten-
sors o € AP(V), B € A4(V), simply by regarding «, B, and o A S as alternating
multilinear functionals on V'*.

The convention we use for the wedge product is referred to in [LeeSM] as the
determinant convention. There is another convention that is also in common use,
the Alf convention, which amounts to multiplying the right-hand side of (B.10) by a
factor of 1/k!. The choice of which definition to use is a matter of taste, though there
are various reasons to justify each choice depending on the context. The determinant
convention is most common in introductory differential geometry texts, and is used,
for example, in [Boo86, Cha06, dC92, LeelJeff09, LeeSM, Pet16, Spi79, Tul1]. The
Alt convention is used in [KN96] and is more common in complex differential geom-
etry.

Given an alternating k-tensor w € A¥(V*) and a vector v € V, we define an
alternating (k — 1)-tensor v | w by

(vdo)(wi,...,wg—1) = 0V, W1, ..., Wg—1).

The operation w +— v | @ is known as interior multiplication by v, and is also
denoted by w +— i,w. By convention, v 1w = 0 when w is a O-tensor. Direct com-
putation shows that i, o7, = 0, and i, satisfies the following product rule for an
alternating k-tensor @ and an alternating /-tensor 7:

iv(@AD) = (iyw) AN+ (=DFw A (iyn). (B.11)

If M is a smooth manifold with or without boundary, the subbundle of TkT*M
consisting of alternating tensors is denoted by A¥T* M, and an alternating tensor
field on M is called a differential k-form, or just a k-form. The space of all smooth
k-forms is denoted by QK (M) =T (Ak ™M ) Because every 1-tensor field is alter-
nating, Q! (M) is the same as the space 7' (M) of smooth covector fields.

Exterior Derivatives

The most important operation on differential forms is the exterior derivative, defined
as follows. Suppose M is a smooth n-manifold with or without boundary, and (xi)
are any smooth local coordinates on M. A smooth k-form w can be expressed in
these coordinates as

— o A Jk
w= Z Ojy o XV A N d X

J1<-<jk

and then we define the exterior derivative of w, denoted by dw, to be the (k + 1)-
form defined in coordinates by
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" dwi ) ) )
do = Z Z—wg;'lﬁ'jkdx’Adx“A---/\dx]k.

J1<=<Jk i=1

For a 0-form f (a smooth real-valued function), this reduces to

n 8f ;
df=Zde ,

i=1
which is exactly the differential of f defined by (A.4).

Proposition B.11 (Properties of Exterior Differentiation). [LeeSM, Thm. 14.24]
Suppose M is a smooth n-manifold with or without boundary.

(a) For each k = 0,...,n, the operator d : Q¥ (M) — QFtY (M) is well defined,
independently of coordinates.

(b) d is linear over R.

(¢c)dod =0.

(d) If o € QK(M) and n € QL (M), then

dwnan) =dorn+(—D)*o rdny.

Proposition B.12 (Exterior Derivative of a 1-form). [LeeSM, Prop. 14.29] If w is
a smooth 1-form and X,Y are vector fields, then

do(X.Y) = X(o(Y)) = Y(o(X)) —o([X.Y]).

Proposition B.13 (Naturality of the Exterior Derivative). [LeeSM, Prop. 14.26]
If F: M — N is a smooth map, then for each k, the pullback map F*: Q¥(N) —
QK (M) commutes with d : for all w € QF(N),

F*(dw) = d(F*). (B.12)

A smooth differential form w € Q¥ (M) is closed if dw = 0, and exact if there
exists a smooth (k — 1)-form n on M such that w = dn. The fact that d od =
0 implies that every exact form is closed, but the converse is not true in general.
However, the next lemma gives an important special case in which it is true. If V
is a vector space, a subset S C V is said to be star-shaped with respect to a point
x € § if for every y € S, the line segment from x to y is contained in S.

Lemma B.14 (The Poincaré Lemma). [LeeSM, Thm. 17.14] If U is a star-shaped
open subset of R”, then for k > 1, every closed k-form on U is exact.
Orientations

If V is a finite-dimensional vector space, an orientation of V is an equivalence
class of ordered bases for V', where two ordered bases are considered equivalent
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if the transition matrix that expresses one basis in terms of the other has posi-
tive determinant. Every vector space has exactly two orientations. Once an orien-
tation is chosen, a basis is said to be positively oriented if it belongs to the chosen
orientation, and negatively oriented if not. The standard orientation of R" is the one
determined by the standard basis (eq,...,e,), where e; is the vector (0,...,1,...,0)
with 1 in the ith place and zeros elsewhere.

If M is a smooth manifold, an orientation for M is a choice of orientation for
each tangent space that is continuous in the sense that in a neighborhood of every
point there is a (continuous) local frame that determines the given orientation at
each point of the neighborhood. If there exists an orientation for M, we say that
M is orientable. An oriented manifold is a smooth orientable manifold together
with a choice of orientation. If M is an oriented n-manifold, then a smooth
coordinate chart (U, (x")) is said to be an oriented chart if the coordinate frame
(8/ ax1,....0/ 8x”) is positively oriented at each point. Exactly the same definitions
apply to manifolds with boundary.

Proposition B.15 (Orientation Determined by an n-Form). [LeeSM, Prop. 15.5]
Let M be an n-manifold with or without boundary. Every nonvanishing n-form
w € Q"(M) determines a unique orientation of M by declaring an ordered basis
(b1,....by) for T, M to be positively oriented if and only if L p (b1, ..., b,) > 0. Con-
versely, if M is oriented, there is a smooth nonvanishing n-form that determines the
orientation in this way.

Because of this proposition, a nonvanishing n-form on a smooth n-manifold is
called an orientation form. If in addition M is oriented and p determines the given
orientation, we say that u is positively oriented.

Suppose M and N are both smooth n-manifolds with or without boundary and
F: M — N is alocal diffeomorphism. If N is oriented, we define the pullback
orientation on M induced by F to be the orientation determined by F*u, where
W is any positively oriented orientation form for N. If both M and N are oriented,
we say that F is orientation-preserving if the pullback orientation is equal to the
given orientation on M, and orientation-reversing if the pullback orientation is the
opposite orientation.

Proposition B.16 (Orientation of a Hypersurface). [LeeSM, Prop. 15.21] Sup-
pose M is an oriented smooth n-manifold with or without boundary, S € M is a
smooth immersed hypersurface, and N is a continuous vector field along S (i.e.,
a continuous map N : S — TM such that N, € T,M for each p € S). If N is
nowhere tangent to S, then S has a unique orientation determined by the (n —1)-
form *(N 1 w), where t: S < M is inclusion and | is any positively oriented
orientation form for M .

A special case of the preceding proposition occurs when M is a manifold with
boundary and the hypersurface in question is the boundary of M. In that case we
declare a vector field N along dM to be outward-pointing if for each p € IM,
there is a smooth curve y: (—&,0] — M such that y(0) = p and y’(0) = N, and
N, ¢ T,(0M). We can always construct a global smooth outward-pointing vector
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field by taking —d/dx" in boundary coordinates in a neighborhood of each boundary
point, and gluing together with a partition of unity. Since an outward-pointing vector
field is nowhere tangent to dM , we have the following proposition.

Proposition B.17 (Induced Orientation on a Boundary). [LeeSM, Prop. 15.24]
If M is an oriented smooth manifold with boundary, then dM is orientable, and it
has a canonical orientation (called the induced orientation or Stokes orientation)
determined by (*(N 1 ), where t: M — M is inclusion, N is any outward-

pointing vector field along M, and p is any positively oriented orientation form
for M.

Proposition B.18 (Orientation Covering Theorem). [LeeSM, Thm. 15.41] If M
is a connected, nonorientable smooth manifold, then there exist an oriented smooth
manifold M and a two-sheeted smooth covering map 7: M — M, called the
orientation covering of M.

Corollary B.19. Every simply connected smooth manifold is orientable.

Proof. Corollary A.59 shows that a simply connected manifold does not admit two-
sheeted covering maps. O

Integration of Differential Forms

Suppose first that @ is a (continuous) n-form on an open subset U € R" or R’} . It
can be written @ = f dx' A--- Adx™ for some continuous real-valued function f,
and we define the integral of  over U to be the ordinary multiple integral

/a):/ f(xl,...,x”)dxl---dx”,
U U

provided the integral is well defined. This will always be the case, for example, if f
is continuous and has compact support in U.

In general, if @ is a compactly supported n-form on a smooth 7-manifold M
with or without boundary, we define the infegral of @ over M by choosing finitely
many oriented smooth coordinate charts {U; }f'(=1 whose domains cover the support
of w, together with a smooth partition of unity {wl}f ; subordinate to this cover,

and defining

/Mw = i/U (o7") Wio).

i=1

where 0,- = ¢; (U;), and the integrals on the right-hand side are defined as above.
Proposition 16.5 in [LeeSM] shows that this definition does not depend on the
choice of oriented charts or partition of unity.

Proposition B.20 (Properties of Integrals of Forms). [LeeSM, Prop. 16.6] Sup-
pose M and N are nonempty oriented smooth n-manifolds with or without bound-
ary, and w,n are compactly supported n-forms on M.
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(a) LINEARITY: If a,b € R, then

/aw—}—bn:a/ a)—i—b/ n.
M M M

(b) ORIENTATION REVERSAL: If —M denotes M with the opposite orientation,

then
/ a):—/ o,
-M M

(c) POSITIVITY: If w is a positively oriented orientation form, then fM w > 0.
(d) DIFFEOMORPHISM INVARIANCE: If F: N — M is an orientation-preserving
or orientation-reversing diffeomorphism, then

/ F*w if F is orientation-preserving,
N
f a) -
M * e . .
- / Fw if F is orientation-reversing.
N

Theorem B.21 (Stokes’s Theorem). [LeeSM, Thm. 16.11] If M is an oriented
smooth n-manifold with boundary and w is a compactly supported smooth (n —1)-

form on M, then
/ do :/ o. (B.13)
M oM

In the statement of this theorem, dM is understood to have the Stokes orientation,
and the right-hand side is interpreted as the integral of the pullback of w to M.
The following special case is frequently useful.

Corollary B.22. [LeeSM, Cor. 16.13] Suppose M is a compact oriented smooth
n-manifold (without boundary). Then the integral of every exact n-form on M is
zero.

Densities

On an oriented n-manifold with or without boundary, n-forms are the natural objects
to integrate. But in order to integrate on a nonorientable manifold, we need closely
related objects called densities.

If V is an n-dimensional real vector space, a density on V is a function

w: Vx--xV —->R

————
n copies

satisfying the following formula for every linearmap 7: V — V:

w(Tvy,...,Tvy) = |detT| u(vy,...,vp). (B.14)
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A density u is said to be positive if ju(vy,...,v,) > 0 whenever (vy,...,v,) is a
basis of V; it is clear from (B.14) that if this is true for some basis, then it is true
for every one. Every nonzero alternating n-tensor  determines a positive density
| 4| by the formula

|| (V1,...,00) = |u(vy,...,0,)].

The set D (V') of all densities on V is a 1-dimensional vector space, spanned by ||
for any nonzero alternating n-tensor [.
When M is a smooth manifold with or without boundary, the set

oM = || D(T,M)
pPEM

is called the density bundle of M. It is a smooth rank-1 vector bundle, with
|d x' A AdX" | as a smooth local frame over any smooth coordinate chart. A den-
sity on M is a (smooth) section p of £ M ; in any local coordinates, it can be written

nw=u |dx1/\---/\dx”|

for some locally defined smooth function u.

Under smooth maps, densities pull back in the same way as differential forms:
Suppose F: M — N is a smooth map between n-manifolds with or without bound-
ary, and p is a density on N. The pullback of p is the density F*u on M defined by

(F*10)p @1 vn) = (@ Fp(u1). ... .dFp(va).

In coordinates, this satisfies

F*(u |dy' A--Ady"|) = (wo F)|det DF| |[dx" A--- A dx"

, (B.15)

where DF represents the matrix of partial derivatives of F in these coordinates.
Because the pullback formula (B.15) is exactly analogous to the change of vari-
ables formula for multiple integrals, we can define the integral of a compactly sup-
ported density on a smooth manifold with or without boundary in exactly the same
way as the integral of an n-form is defined on an oriented manifold, except that now
there is no need to have an orientation. Thus if ; = u |dx!---dx"| is a smooth den-
sity that is compactly supported in an open set ' C R”, we define the integral of

by
[/L:/udxl---dx”.
v 14

It follows from (B.15) that the value of this integral is diffeomorphism-invariant, so
we can define the integral of a compactly supported density on a smooth manifold
with or without boundary by breaking it up with a partition of unity and integrating
each term in coordinates as above.



Appendix C
Review of Lie Groups

Lie groups play many important roles in Riemannian geometry, both as examples of
Riemannian manifolds and as isometry groups of other manifolds. In this appendix,
we summarize the main facts about Lie groups that are used in this book. For details,
consult [LeeSM], especially Chapters 7, 8, 20, and 21.

Definitions and Properties

A Lie group is a smooth manifold G that is also a group in the algebraic sense, with
the property that the multiplication map m: G x G — G given by m(¢1,¢2) = @102
and the inversion map i : G — G given by i (¢) = ¢~ ! are smooth. For generic Lie
groups, we usually denote the identity element by e, unless there is a more specific
common notation for a particular group.

Given a Lie group G, each ¢ € G defines amap L,: G — G, called left trans-
lation, by L, (¢") = ¢¢'. Itis a diffeomorphism with inverse L 1. Similarly, right
translation R,: G — G is the diffeomorphism R, (¢") = ¢'¢, with inverse R 1.

A subgroup H C G that is endowed with a topology and smooth structure making
it into a Lie group and an immersed or embedded submanifold of G is called a Lie
subgroup of G.

If G and H are Lie groups, a group homomorphism F: G — H that is also a
smooth map is called a Lie group homomorphism. 1t is a Lie group isomorphism it
it has an inverse that is also a Lie group homomorphism. A Lie group isomorphism
from G to itself is called an automorphism of G .

Proposition C.1. [LeeSM, Thms. 7.5 & 21.27] Suppose F : G — H is a Lie group
homomorphism.

(a) F has constant rank.
(b) The kernel of F is an embedded Lie subgroup of G.
(c) The image of F is an immersed Lie subgroup of H.

© Springer International Publishing AG 2018 407
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Example C.2 (Lie Groups).

(a) Every countable group with the discrete topology is a zero-dimensional Lie
group, called a discrete Lie group.

(b) R™ and C”" are Lie groups under addition.

(c) The sets R*, RT, and C* of nonzero real numbers, positive real numbers, and
nonzero complex numbers, respectively, are Lie groups under multiplication.

(d) The unit circle S' € C is a 1-dimensional Lie group under complex multipli-
cation, called the circle group.

(e) Given Lie groups Gry,..., Gy, their direct product group is the Lie group
whose underlying manifold is G X --- X G, and whose multiplication is given
by (g1,..-,8k) (g’lg;c) = (glg’l,...,gkg]’c). For example, the n-torus is
the n-fold product group T" = S! x---x S!. The 2-torus is often simply called
the torus.

(f) The general linear groups GL(n,R) and GL(n,C), consisting of all invert-
ible n x n real or complex matrices, respectively, are Lie groups under matrix
multiplication. The identity element in both cases is the n x n identity matrix,
denoted by /,,. More generally, if V' is an n-dimensional real or complex vec-
tor space, the group GL(V') of invertible linear maps from V to itself is a Lie
group isomorphic to GL(n,R) or GL(n, C).

(g) The real and complex special linear groups are the subgroups SL(n,R) C
GL(n,R) and SL(n,C) € GL(n,C) consisting of matrices of determinant 1.

(h) The orthogonal group O(n) € GL(n,R) is the subgroup consisting of orthog-
onal matrices, those that satisfy AT A = I,,, where AT is the transpose of A.
The special orthogonal group is the subgroup SO(n) = O(n) NSL(n,R).

(i) Similarly, the unitary group U(n) C GL(n,C) is the subgroup consisting of
complex unitary matrices, those that satisfy A*4 = I,,, where A* = AT is
the conjugate transpose of A, called its adjoint. The special unitary group is
SU(n) =U(n)NSL(n,C). I

If G is a Lie group and V is a finite-dimensional vector space, a Lie group ho-
momorphism p: G — GL(V) is called a (finite-dimensional) representation of G .
It is said to be faithful if it is injective.

The Lie Algebra of a Lie Group

Suppose G is a Lie group. A vector field X on G is said to be left-invariant if it
is invariant under all left translations, meaning that (Lg)+«X = X for every g € G.
Similarly, X is right-invariant if it is invariant under all right translations.

We denote the set of all smooth left-invariant vector fields on G by Lie(G). It
is a vector subspace of X(G) that is closed under Lie brackets (see [LeeSM, Prop.
8.33]). Thus it is an example of a Lie algebra: a vector space g endowed with a bilin-
ear operation [-,-]: g X g — g, called the bracket, that is antisymmetric (meaning
[X,Y] = —[Y, X]) and satisfies the Jacobi identity:
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X, [V Z|+ 1Y, [Z, X]|+ [Z.[X, Y]] =0.

With the Lie bracket structure that it inherits from X(G), the Lie algebra Lie(G) is
called the Lie algebra of G .

Proposition C.3. [LeeSM, Thm. 8.37] Let G be a Lie group with identity e. The
evaluation map X + X, is a vector space isomorphism from Lie(G) to T,G, so
Lie(G) has the same dimension as G itself.

If g is a Lie algebra, a Lie subalgebra of g is a vector subspace f) C g that is
closed under Lie brackets, and is thus a Lie algebra with the restriction of the same
bracket operation. Given Lie algebras g1 and g5, a Lie algebra homomorphism is a
linear map F: gq; — q» that preserves brackets: F([X,Y]) = [F(X), F(Y)]. A Lie
algebra isomorphism is an invertible Lie algebra homomorphism, and a Lie algebra
automorphism is a Lie algebra isomorphism from a Lie algebra to itself.

Example C.4 (Lie Algebras).

(a) If M is a smooth positive-dimensional manifold, the space X (M) of all smooth
vector fields on M is an infinite-dimensional Lie algebra under the Lie bracket.

(b) The vector space gl(n,R) of all n x n real matrices is an n2-dimensional
Lie algebra under the commutator bracket [A, B] = AB — BA. The canoni-
cal identification of both gl(n,R) and Lie(GL(n,R)) with the tangent space
to GL(n,R) at the identity yields a Lie algebra isomorphism gl(n,R) =~
Lie(GL(n,R)) [LeeSM, Prop. 8.41].

(c) Similarly, the space gl(n,C) of n x n complex matrices is a 2n2-dimensional
(real) Lie algebra under the commutator bracket, isomorphic to the Lie algebra
of GL(n,C) [LeeSM, Prop. 8.48].

(d) The space o(n) of skew-symmetric n X n real matrices is a Lie subalgebra of
gl(n,R), isomorphic to the Lie algebra of O(n) [LeeSM, Example 8.47].

(e) If V is a vector space, the space gl(V') of all linear maps from V to itself is a
Lie algebra under the commutator bracket [A, B] = Ao B— Bo A. In case V
is finite-dimensional, gl(1) is isomorphic to the Lie algebra of the Lie group
GL(V).

(f) A Lie algebra in which all brackets are zero is called an abelian Lie algebra.
Every vector space can be made into an abelian Lie algebra by defining all
brackets to be zero. The Lie algebra of a connected Lie group is abelian if and
only if the group is abelian (see [LeeSM, Problems 8-25 and 20-7]). VA

The following proposition shows that every Lie group homomorphism induces a
Lie algebra homomorphism between the respective Lie algebras.

Proposition C.5 (The Induced Lie Algebra Homomorphism). [LeeSM, Thm.
8.44] Let G and H be Lie groups, and let ¢ and Yy be their Lie algebras. Given
a Lie group homomorphism F : G — H, there is a unique Lie algebra homomor-
phism Fy: g — b, called the induced Lie algebra homomorphism of F, with the
property that for each X € g, the vector field Fx X € by is F-related to X.
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Proposition C.6 (Properties of Induced Homomorphisms). [LeeSM, Prop. 8.45]
Let G, H, K be Lie groups.

(@) (Idg)* = IdLie(G) : Lie(G) — Lie(G).
BD)IfF1: G— H and F»: H — K are Lie group homomorphisms, then

(Fo0F1)s« = (F2)x 0 (F1)«: Lie(G) — Lie(K).

(¢) Isomorphic Lie groups have isomorphic Lie algebras.

The Exponential Map of a Lie Group

If G is a Lie group, a Lie group homomorphism from R (with its additive group
structure) to G is called a one-parameter subgroup of G . (Note that the term “one-
parameter subgroup” refers, confusingly, to a homomorphism, not to a Lie subgroup
of G. But the image of a one-parameter subgroup is always a Lie subgroup of di-
mension at most 1.) Theorem 20.1 of [LeeSM] shows that for every X € Lie(G),
the integral curve of X starting at the identity is a one-parameter subgroup, called
the one-parameter subgroup generated by X, and every one-parameter subgroup
is of this form.

The exponential map of G is the map exp®: Lie(G) — G defined by setting
exp®(X) = y(1), where y is the integral curve of X starting at e. (The exponential
map is more commonly denoted simply by exp, but we use the notation exp® to
distinguish the Lie group exponential map from the Riemannian exponential map,
introduced in Chapter 5.)

Proposition C.7 (Properties of the Lie Group Exponential Map). [LeeSM, Props.
20.5 & 20.8] Let G be a Lie group and let g be its Lie algebra.

(a) exp®: g — G is smooth.

(b) For every X € g, the map y: R — G defined by y(t) = exp® (tX) is the one-
parameter subgroup generated by X .

(¢) The differential (d exp? ) o' Tog = TeG is the identity map, under the canon-
ical identifications of Tog and T,G with g.

The exponential map is the key ingredient in the proof of the following funda-
mental result.

Theorem C.8 (Closed Subgroup Theorem). [LeeSM, Thm. 20.12 & Cor. 20.13]
Suppose G is a Lie group and H C G is a subgroup in the algebraic sense. Then H
is an embedded Lie subgroup of G if and only if it is closed in the topological sense.

An important special case of the closed subgroup theorem is that of a discrete
subgroup, that is, a subgroup that is discrete in the subspace topology.

Proposition C.9. [LeeSM, Prop. 21.28] Every discrete subgroup of a Lie group is a
closed Lie subgroup of dimension zero.
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Adjoint Representations

Let G be a Lie group and g its Lie algebra. For every ¢ € G, conjugation by
¢ gives a Lie group automorphism C,: G — G, called an inner automorphism,
by Cp(¥) = et Let Ad(p) = (Cp)«: @ — g be the induced Lie algebra au-
tomorphism. It follows from the definition that Cy, 0 Cy, = Cy,¢,, and therefore
Ad(¢1) oAd(¢2) = Ad(p1¢2); in other words, Ad: G — GL(g) is a representation,
called the adjoint representation of G. Proposition 20.24 in [LeeSM] shows that
Ad is a smooth map.

Example C.10 (Adjoint Representations of Lie Groups).

(a) If G is an abelian Lie group, then C,, is the identity map for every ¢ € G, so
the adjoint representation is trivial: Ad(¢) = Idg forall ¢ € G.

(b) Suppose G is a Lie subgroup of GL(n,R). Then for each A € G, the conju-
gation map C4(B) = ABA™! is the restriction to G of a linear map from the
space M(n,R) of n x n matrices to itself. Its differential, therefore, is given
by the same formula: Ad(4)X = AXA™! forevery A € G and X € Lie(G) C
gl(n,R). I

There is also an adjoint representation for Lie algebras. If g is any Lie algebra, a
representation of g is a Lie algebra homomorphism from g to g[(V'), the Lie algebra
of all linear endomorphisms of some vector space V. For each X € g, define a
map ad(X): g - g by ad(X)Y = [X,Y]. This defines ad as a map from g to gl(g),
and a straightforward computation shows that it is a representation of g, called the
adjoint representation of g.

The next proposition shows how the two adjoint representations are related.

Proposition C.11. [LeeSM, Thm. 20.27] Let G be a Lie group and g its Lie
algebra, and let Ad: G — GL(g) and ad: g — gl(g) be their respective adjoint
representations. The induced Lie algebra representation Ady: g — gl(g) is given
by Ad, = ad.

Group Actions on Manifolds

The most important applications of Lie groups in differential geometry involve their
actions on other manifolds.

First we consider actions by abstract groups, not necessarily endowed with a
smooth manifold structure or even a topology. Let G be a group and M a set.
A left action of G on M is a map G x M — M, usually written (¢, p) — ¢ - p,
satisfying ¢ - (p2 - p) = (p192)-p and e« p = p for all 91,0, € G and p € M,
where e is the identity element of G. Similarly, a right action of G on M is a map
M x G — M satisfying (p-¢1)-¢2 = p-(¢1¢92) and p-e = p. In some cases, it will
be important to give a name to an action such as 8 : G x M — M, in which case we
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write 6, (p) in place of ¢ - p, with a similar convention for right actions. Since right
actions can be converted to left actions and vice versa by setting ¢ - p = p-¢~ 1,
for most purposes we lose no real generality by restricting attention to left actions.
(But there are also situations in which right actions arise naturally.)

Given an action of G on M, for each p € M the isotropy subgroup at p is
the subgroup G, € G consisting of all elements that fix p: thatis, G, = {p € G :
@ - p = p}. The group action is said to be free if ¢ - p = p for some ¢ € G and
p € M implies ¢ = e, or in other words, if G, = {e} for every p. It is said to be
effective if o1 - p = ¢, - p for all p if and only if ¢; = @5, or equivalently, if the only
element of G that fixes every element of M is the identity. For effective actions, each
element of G is uniquely determined by the map p + ¢ - p. In such cases, we will
sometimes use the same notation ¢ to denote either the element ¢ € G or the map
p — ¢ - p. The action is said to be transitive if for every pair of points p,q € M,
there exists ¢ € G suchthatp .- p =gq.

If M is a smooth manifold, an action by a group G on M is said to be an action
by diffeomorphisms if for each ¢ € G, the map p — ¢ - p is a diffeomorphism
of M. If G is a Lie group, an action of G on a smooth manifold M is said to be
a smooth action if the defining map G x M — M is smooth. In this case, it is
also an action by diffeomorphisms, because each map p + ¢ - p is smooth and has
p+ ¢~ ' pasaninverse. If G is any countable group, an action by G on M is an
action by diffeomorphisms if and only if it is a smooth action when G is regarded
as a O-dimensional Lie group with the discrete topology.

Example C.12 (Semidirect Products). Group actions provide an important way to
construct Lie groups out of other Lie groups. Suppose H and N are Lie groups
and 8: H x N — N is a smooth left action of H on N by automorphisms of N,
meaning that for each & € H, the map 8,: N — N given by 6,(n) =h-nis a
Lie group automorphism. The semidirect product of H and N determined by 6,
denoted by N xg H, is the Lie group whose underlying manifold is the Cartesian
product N x H, and whose group multiplication is (n,h)(n’,h’) = (n Op(n'), hh’). I

» Exercise C.13. Verify that N xg H is indeed a Lie group with the multiplication de-
fined above, and with (e, e) as identity and (n,h) ™! = (6,—1 (n=1), A1),

Now suppose G is a Lie group, and M and N are smooth manifolds endowed
with G-actions (on the left, say). Amap F: M — N is said to be equivariant with
respect to the given G actions if F(p-x)=¢.F(x)forallgo € Gand x € M.

Theorem C.14 (Equivariant Rank Theorem). [LeeSM, Thm. 7.25] Suppose M, N
are smoothmanifolds, and G is a Lie group acting smoothly and transitively on M and
smoothly on N. If F: M — N is a smooth G-equivariant map, then F has con-

smooth immersion, and if it is bijective, it is a diffeomorphism.

A smooth action of G on M is said to be a proper action if the map G x M —
M x M defined by (¢, x) — (¢ - x, x) is a proper map, meaning that the preimage of
every compact set is compact. The following characterization is usually the easiest
way to prove that a given action is proper.
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Proposition C.15. [LeeSM, Prop. 21.5] Suppose G is a Lie group acting smoothly
on a smooth manifold M. The action is proper if and only if the following condition
is satisfied: if (p;) is a sequence in M and (¢;) is a sequence in G such that both
(pi) and (¢; - pi) converge, then a subsequence of (¢;) converges.

Corollary C.16. Every smooth action by a compact Lie group on a smooth manifold
is propetr.

Proof. If G is a compact Lie group, then every sequence in G has a convergent
subsequence, so every smooth G-action is proper by the preceding proposition. O

The next theorem is the most important application of proper actions. If a group
G actsonamanifold M, theneach p € M determinesasubsetG-p ={p-p: ¢ € G},
called the orbit of p. Because two orbits are either identical or disjoint, the orbits
form a partition of G. The set of orbits is denoted by M /G, and with the quotient
topology it is called the orbit space of the action.

Theorem C.17 (Quotient Manifold Theorem). [LeeSM, Thm. 21.10] Suppose G
is a Lie group acting smoothly, freely, and properly on a smooth manifold M. Then
the orbit space M/G is a topological manifold whose dimension is equal to the
difference dim M —dim G, and it has a unique smooth structure with the property
that the quotient map w: M — M/ G is a smooth submersion.

Example C.18 (Real Projective Spaces). For each nonnegative integer 7, the n-
dimensional real projective space, denoted by RP”, is defined as the set of one-
dimensional linear subspaces of R”*1. It can be identified with the orbit space of
R”*1 < {0} under the action of the group R* of nonzero real numbers given by scalar
multiplication: A - (x!,...,x"*1) = (Ax',...,Ax"T1). It is easy to check that this
action is smooth and free. To see that it is proper, we use Proposition C.15. Suppose
(x;) is a sequence in R”*1 < {0} and (;) is a sequence in R* such that x; — x €
R"*1<{0} and A;x; — y € R*T1 < {0}. Then |A;| = |A;x;|/|x;| converges to the
nonzero real number |y|/|x|. Thus the numbers A; all lie in a compact set of the
form {1 :1/C <|A| < C} for some positive number C, so a subsequence converges
to a nonzero real number. Therefore, by the quotient manifold theorem, RP” has
a unique structure as a smooth n-dimensional manifold such that the quotient map
R**+1 < {0} — RP” is a smooth submersion. n

Example C.19 (Complex Projective Spaces). Similarly, the n-dimensional com-
plex projective space, denoted by CP”, is the set of 1-dimensional complex sub-
spaces of C"*1, identified with the orbit space of C**! < {0} under the C*-action
given by A -z = Az. The same argument as in the preceding example shows that this
action is smooth, free, and proper, so CP” is a smooth 2n-dimensional manifold
and the quotient map 7 : C"*! < {0} — CP" is a smooth submersion. /I

Group Actions and Covering Spaces

There is a close connection between smooth covering maps and smooth group
actions. To begin, suppose M and M are smooth manifolds and w: M — M
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is a smooth covering map. A covering automorphism of w is a diffeomorphism
@: M — M such that w o ¢ = m; the set of all covering automorphisms is a
group under composition, called the covering automorphism group and denoted
by Auty (M).

Proposition C.20. [LeeSM, Prop. 21.12] Let 7: M — M be a smooth covering
map. With the discrete topology, Auty (M ) is a discrete Lie group acting smoothly,
freely, and properly on M.

Because of the requirement that a covering automorphism ¢ satisfy 7 op = m, it
follows that ¢ restricts to an action on each fiber of 7. The next proposition describes
the conditions in which this action is transitive. A covering map w: M — M is
called a normal covering if the image of the homomorphism 7, : my (M ,)~c) —
71 (M, 7 (X)) is a normal subgroup of 71 (M, 7(X)). (Note that every universal cov-
ering is a normal covering, because the trivial subgroup is always normal.)

Proposition C.21. [LeeTM, Cor. 12.5] If r: M — M is a smooth covering map,
then the automorphism group of 7 acts transitively on each fiber of w if and only if
7 is a normal covering.

The universal covering is the most important special case.

Proposition C.22 (Automorphisms of the Universal Covering). [LeeTM, Cor.
12.9] Suppose M is a connected smooth manifold and  : M — M is its univer-
sal covering. Then Auty (1\7 ) is isomorphic to the fundamental group of M, and it
acts transitively on each fiber of 1.

The next theorem, which is an application of the quotient manifold theorem, is a
partial converse to Proposition C.20.

Proposition C.23. [LeeSM, Thm. 21.13] Suppose M is a connected smooth mani-
fold and I is a discrete Lie group acting smoothly, freely, and properly on M. Then
the orbit space M /T has a unique smooth manifold structure such that the quotient
map M—>M /I is a smooth normal covering map.

Example C.24 (The Universal Covering of RP"). The two-element group I" =
{£1} acts smoothly, freely, and properly on S” by multiplication, and thus S" /I" is
a smooth manifold and the quotient map 7 : S” — S"/I" is a two-sheeted smooth
normal covering map. Note also that the quotient map R”*! < {0} — RP” defined
in Example C.18 restricts to a surjective smooth map ¢: S” — RP”, which is a
submersion because each point of S” is in the image of a smooth local section. Since
q and 7 are constant on each other’s fibers, Proposition A.19 shows that there is a
diffeomorphism S” /I" — RP", and ¢ is equal to the composition S” — S"/I" —
RP”. Since this is a smooth normal covering map followed by a diffeomorphism, ¢
is also a smooth normal covering map. Thus S” is the universal covering space of
RP”, and the fundamental group of RPP” is isomorphic to {£1}. I
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+, ] (commutator bracket), 409

+,+] (Lie bracket), 385
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392

(+,+) (scalar product), 40
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A

A™* (adjoint of a matrix), 408

AT (transpose of a matrix), 408

A(T M) (set of connections on T M), 94

ad (adjoint representation of a Lie algebra),
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Ad (adjoint representation of a Lie group),
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Alt (alternating projection), 400

Aut (M ) (covering automorphism group),
414

B

b (flat), 26-28

B.(p) (geodesic ball), 163
B.(p) (closed geodesic ball), 163
B (R) (Poincaré ball), 62

© Springer International Publishing AG 2018

C

C (Cotton tensor), 219

C *° (infinitely differentiable), 374

C° (M) (smooth real-valued functions),
376

C>° (M, N) (smooth maps), 376

CP" (complex projective space), 413

conv(x) (convexity radius at x), 186

Cut(p) (cut locus of p), 308

D

8" (Kronecker delta), 392

A (Laplacian), 32

9/9x (coordinate vector field), 384

9/0x'|, (coordinate vector), 377

d; (coordinate vector field), 384

0;|p (coordinate vector), 377

0, (radial vector field), 158, 179

dsI" (velocity of a transverse curve), 152,
197

d; I' (velocity of a main curve), 152, 197

V (covariant derivative), 89

V- (normal connection), 231

\val (tangential connection), 93, 228

V2u (covariant Hessian), 100

Vg(’ y (second total covariant derivative),
99

V F (total covariant derivative), 97

Vx Y (covariant derivative), 89

d (exterior derivative), 401

D (exterior covariant derivative), 209, 236

d* (adjoint of d), 52

dF ), (differential of a map), 377

dg(p,q) (Riemannian distance), 36

dg(p,S) (distance to a subset), 174

D M (density bundle), 406

D) (domain of 7)), 387
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Dy (covariant derivative along transverse
curves), 153

Dy (covariant derivative along a curve), 101

dV, (Riemannian density), 31

d Vg (Riemannian volume form), 30

div X (divergence of X)), 32

E

e (identity of a Lie group), 407

E (normal exponential map), 133

& (domain of the exponential map), 128

E |y (restriction of a bundle), 384

E(n) (Euclidean group), 57

&p (domain of the normal exponential
map), 133

&, (domain of the restricted exponential
map), 128

End(V') (space of endomorphisms), 394

exp (exponential map), 128

exp© (exponential map of a Lie group), 410

exp,, (restricted exponential map), 128

F

p* v (pullback of a connection), 110

D~ ({y}) (level set), 380

@1 (») (level set), 380

F (induced fundamental group homomor-
phism), 373

F (induced Lie algebra homomorphism),
409

F .. (pushforward of vector fields), 385

F* (pullback of a density), 406

F* (pullback of a tensor field), 398

F G (symmetric product of F and G), 396

G

y’ (velocity vector), 386

y’ (a,-i) (one-sided velocity vectors), 34

yv (geodesic with initial velocity v), 105

I'(E) (smooth sections of E), 89, 383

F,{‘j (connection coefficients), 91, 123

I'(s,t) (family of curves), 152

£ (pullback of the round metric), 293

g (Euclidean metric), 12

g (round metric), 16, 58

£ r (round metric of radius R), 58

£ (hyperbolic metric), 66

£ r (hyperbolic metric of radius R), 62, 66

gij (metric coefficients), 13

gi/ (inverse of g;;), 26

GL(n,C) (complex general linear group),
408

GL(n,R) (general linear group), 408

gl(n,R) (matrix Lie algebra), 409

Notation Index

gl (V) (Lie algebra of linear maps), 409

[G1,G>] (group generated by commuta-
tors), 72

g18f 2g2 (warped product metric), 20

g1 © g2 (product metric), 20

GL(V) (group of invertible linear maps),
408

grad f (gradient of f), 27

H
h (scalar second fundamental form), 235
H (mean curvature), 238
H" (hyperbolic space), 66
H" (R) (hyperbolic space of radius R), 62,
66
H,, (Heisenberg group), 72
o

J, (traceless Hessian operator), 337

J; (Hessian operator), 320

H"5(R) (pseudohyperbolic space), 79
Hol(p) (holonomy group), 150

Hol®(p) (restricted holonomy group), 150

1

iy (interior multiplication), 401

1, (identity matrix), 408

I(V, W) (index form), 301

ID(p) (injectivity domain), 310

II (second fundamental form), 227

Il (second fundamental form in direction
N), 229

inj(M) (injectivity radius of M), 166

inj(p) (injectivity radius at p), 165

Iso(M, g) (isometry group), 13

Iso, (M, g) (isotropy group of a point), 56

J

& (y) (space of Jacobi fields), 285

gL (y) (normal Jacobi fields), 287
4T (y) (tangential Jacobi fields), 287

K

k (Cayley transform), 66

Kk (geodesic curvature), 232

ki (principal curvatures), 4

kN (signed curvature), 273

K (Gaussian curvature), 238

K" (R) (Beltrami-Klein model), 62

L

AKT*M (bundle of alternating tensors),
401

AK(V*) (space of alternating tensors), 400

L4 (y) (Iength of curve), 34

Lie(G) (Lie algebra of left-invariant vector
fields on G), 408
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M

|| (density associated with an n-form),
406

—M (M with opposite orientation), 405

M/ G (orbit space), 413

M(n x k,R) (space of matrices), 48

M(n,R) (space of n X n matrices), 411

N
N, M (normal space), 16
NM (normal bundle), 16

(0]

w;i’ (connection 1-forms), 113

QK (M) (space of k-forms), 401

O(M) (orthonormal bases on M), 56

O(n) (orthogonal group), 408

O(n, 1) (Lorentz group), 67

ot (n,1) (orthochronous Lorentz group),
67

O(n + 1) (orthogonal group), 58

P

71 (M, p) (fundamental group), 373
1 (normal projection), 226

7 T (tangential projection), 226

P (Schouten tensor), 215

P,)(;,I (parallel transport operator), 108

Q

g (pseudo-Euclidean metric), 43, 79
ég's) (pseudohyperbolic metric), 79
ag.s) (pseudospherical metric), 79

R

o(y) (rotation index), 264

r (radial distance function), 158, 179

R (curvature endomorphism), 196

R”™ (Euclidean space), 12, 57

R”S (pseudo-Euclidean space), 43, 79

RP” (real projective space), 413

R(V*) (space of algebraic curvature ten-
sors), 212

R(X,Y) (curvature endomorphism), 196

R(X,Y)™ (curvature endomorphism), 205

Rc (Ricci tensor), 207

Rm (curvature tensor), 198

S

SKT*M (bundle of symmetric tensors),
396

Sk (V*) (space of symmetric tensors), 395

s (shape operator), 235

S (scalar curvature), 208

421

Sc¢ (surface of revolution), 20

Sc(p) (geodesic sphere), 163

S (unit n-sphere), 16

S™(R) (n-sphere of radius R), 58

S+ (orthogonal complement), 10, 40

S”S(R) (pseudosphere), 79

SL(n,C) (complex special linear group),
408

SL(n,R) (special linear group), 408

SO(n) (special orthogonal group), 408

SU(n) (special unitary group), 408

sec(IT) (sectional curvature), 8, 250

sec(v, w) (sectional curvature), 250

sgn (sign of a permutation), 400

Sol (3-dimensional solvable Lie group), 72

supp f (support of f), 376
Sym (symmetrization), 395

T

T (torsion tensor), 112, 121

T7" (n-torus), 389

TM (tangent bundle), 382

T M |5y (ambient tangent bundle), 386

T, M (tangent space), 376

T]:EI)M (space of vectors tangent to a
curve), 287

M (space of vectors normal to a

curve), 287

Tk (M) (space of tensor fields), 397

TXTM (bundle of contravariant k-
tensors), 396

TXT*M (bundle of covariant k-tensors),
396

T* (V) (space of contravariant k-tensors),
393

T5(V*) (space of covariant k-tensors),
393

T®DTM (bundle of mixed tensors), 396

T ®-D (V') (space of mixed tensors), 393

TCL(p) (tangent cut locus), 310

tr (trace of a tensor), 395

trg (trace with respect to g), 28

s
Ty(t)

U
U(n) (unitary group), 408
U’ (Poincaré half-space), 62

A\

V* (dual space of V), 391

|[v Aw]| (norm of an alternating 2-tensor),
250

Vi (R™) (Stiefel manifold), 48

Vol(M) (volume of a Riemannian mani-
fold), 30
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w
W (Weyl tensor), 215
W (Weingarten map in direction N), 229

X

X (semidirect product), 412

x (M) (Euler characteristic), 276, 280
X (M) (space of vector fields), 385

Notation Index

X (normal projection of X), 227

% (y) (normal vector fields along a curve),
287

X (tangential projection of X), 227

X7 (y) (tangential vector fields along a
curve), 287

X(y) (space of vector fields along a curve),
100



Subject Index

Symbols

(1, 1)-Hessian, 320

1-center, 355

2-point homogeneous, 189, 261
3-point homogeneous, 261

A
abelian Lie algebra, 409
absolute derivative, 102
acceleration
in R”, 86
of a curve in a manifold, 103
of a plane curve, 2
tangential, 86
action, see group action
adapted frame, 16
adjoint matrix, 408
adjoint representation
of a Lie algebra, 411
of a Lie group, 68, 411
admissible curve, 34
admissible family, 152
admissible loop, 150
admissible partition
for a curve, 34
for a family of curves, 152
for a vector field along a curve, 108
affine connection, 91
aims at a point, 167
algebraic Bianchi identity, 203
algebraic curvature tensor, 212
Alt convention for wedge product, 401
alternating tensor, 400
alternation, 400
ambient manifold, 226
ambient tangent bundle, 386
Ambrose, Warren, 351
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analytic continuation of a local isometry,

346
angle
between vectors, 10, 12
of a geodesic triangle, 353
tangent, 264, 265
angle excess, 281
angle-sum theorem, 2, 271, 275
anti-de Sitter space, 80
universal, 83
anti-self-dual, 50
anticommutative, 400
antipodal points, 144
arc length, parametrization by, 35
arc-length function, 35
area-minimizing hypersurface, 239
area of a hypersurface, 239
aspherical, 354
asymptotically parallel, 282
atlas, 374
automorphism of a Lie group, 407
inner, 411
Avez, André, 364
axial isometry, 357
axis for an isometry, 357

B
Bohm, Christoph, 368
Bohm—Wilking theorem, 368
backward reparametrization, 34
ball
geodesic, 158, 163
metric, 163
Poincaré, 62
regular coordinate, 374
smooth coordinate, 374
volume of, 314
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base of a vector bundle, 382
basis isomorphism, 375
Beltrami—Klein model, 62
Berger sphere, 81, 259
Berger, Marcel, 81, 367
bi-invariant metric, 67, 147

curvature of, 224, 259

existence of, 70

exponential map of, 147
Bianchi identity

algebraic, 203

contracted, 209

differential, 204

first, 203

second, 204
Bieberbach, Ludwig, 350
bilinear form, 40
Bishop, Richard L., 340
Bishop—Gromov theorem, 340
Bochner’s formula, 223
Bonnet, Ossian, 361
boundary chart, 371
boundary normal coordinates, 183
boundary of a manifold with boundary, 371
boundary problem, two-point, 299
boundary slice coordinates, 380
bounded subset, 39
bracket

commutator, 409

in a Lie algebra, 408
Brendle, Simon, 368
bump function, 376
bundle

normal, 16

of tensors, 396

vector, 382

C
CR manifold, 46
Calabi—Yau manifold, 337
calculus of variations, 152
canonical form
for a nonvanishing vector field, 387
for commuting vector fields, 388
Carathéodory metric, 47
Carnot—Carathéodory metric, 46
Cartan’s first structure equation, 113
Cartan’s fixed-point theorem, 356
Cartan’s second structure equation, 222
Cartan’s torsion theorem, 356
Cartan, Elie, 113, 222, 295, 351, 352
Cartan—Ambrose—Hicks theorem, 351
Cartan—-Hadamard manifold, 352
Cartan—Hadamard theorem, 8, 352

Subject Index

catenoid, 257
Cauchy—Riemann manifold, 46
Cayley transform, 66
central projection, 63
chart, 371
containing a point, 371
smooth, 374
Cheeger, Jeff, 367
Cheng’s maximal diameter theorem, 362
Cheng, Shiu-Yuen, 362
Chern, Shiing-Shen, 280
Chern—Gauss—Bonnet theorem, 280
Choquet-Bruhat, Yvonne, 260
Christoffel symbols, 123, 124
circle classification theorem, 2
circle group, 408
circumference theorem, 2, 271, 275
Clarke, Chris J. S., 117
classification theorem, 2
circle, 2
compact surfaces, 74
constant-curvature metrics, 8, 349, 350
plane curve, 3, 282
closed form, 402
closed geodesic, 173, 174, 317, 343
closed geodesic ball, 158
closed map, 372
closed subgroup theorem, 410
Codazzi equation, 232
for a hypersurface, 236, 259
Codazzi tensor, 244
codimension, 379
coframe, 397
commutator bracket, 409
commuting vector fields, 388
canonical form, 388
comparison theorem
Bishop—Gromov, 340
conjugate point, 333, 339
diameter, 339
Giinther, 334
Hessian, 327
injectivity radius, 339
Jacobi field, 329
Laplacian, 332, 337
metric, 331
principal curvature, 329
Riccati, 324-327
volume, 334, 340
compatibility with a metric, 118
complete Riemannian manifold, 170
geodesically, 131, 166
metrically, 39, 166
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complex projective space, 24, 82, 258, 367,
413
component functions, 383
composable paths, 373
conformal diffeomorphism, 59
conformal invariance
of the Cotton tensor, 219
of the Weyl tensor, 217
conformal Laplacian, 223
conformal metrics, 59
conformal transformation, 59
of the curvature, 217
of the Levi-Civita connection, 217
conformally equivalent metrics, 59
conformally flat, locally, 59, 218
hyperbolic space, 66
spheres, 61
conformally related metrics, 59
congruent, 2, 142
conjugate point, 298
critical point of exp o 299
geodesic not minimizing past, 303
conjugate point comparison theorem, 333,
339
connection, 89
Euclidean, 92
existence of, 93
flat, 224
in a vector bundle, 89
in components, 91
in the tangent bundle, 91
Koszul, 89
naturality of, 125
normal, 231
on a manifold, 91
on tensor bundles, 95-97
Riemannian, 122, 123
tangential, 92-93
connection 1-forms, 113, 274, 275
connection coefficients, 91
transformation law for, 92
constant Gaussian curvature, 6
constant mean curvature, 242
constant rank, 378
constant sectional curvature, 254
characterization of, 8
classification, 349, 350
formula for curvature tensor, 255
formula for metric, 293
local uniqueness, 294
model spaces, 8
uniqueness, 348
constant-speed curve, 35
constraint equations, Einstein, 260

contracted Bianchi identity, 209
contraction, 395
contravariant tensor, 392
control theory, 46
convex hypersurface, 259
convex subset, 281
convex, geodesically, 166, 281
convexity radius, 186
coordinate representation, 376
coordinate ball
regular, 374
smooth, 374
coordinate chart, 371
smooth, 374
coordinate domain, 374
coordinate frame, 385
coordinate vector, 377
coordinate vector field, 384
coordinates, 375
boundary slice, 380
Fermi, 136
graph, 18
have upper indices, 375
local, 375
natural, on tangent bundle, 384
normal, 132
polar Fermi, 184
polar normal, 184
semigeodesic, 181, 182
slice, 379, 380
standard, on R”, 12
cosmological constant, 211
cotangent bundle, 396
cotangent space, 377
Cotton tensor, 219
conformal invariance of, 219
covariant derivative, 89
along a curve, 101-103
exterior, 209, 236
of tensor field, 95-97
second, 99
total, 98
covariant Hessian, 100, 112, 320
covariant tensor, 392
covector, 377, 391
covector field, 397
covering automorphism, 414
covering automorphism group, 414
covering map, 171, 388
homeomorphism criterion, 390
normal, 414
Riemannian, 24, 25
smooth, 388
universal, 390
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critical point, 27, 157, 210, 380
of the exponential map, 299
critical value, 380
crystallographic groups, 350
curl, 52
curvature, 2-8, 196
conformal transformation of, 217
constant sectional, 8, 254, 255, 294, 348,
349
Gaussian, 5-6, 238
geodesic, 232
mean, 238
of a curve in a manifold, 232, 233
of a plane curve, 2
principal, 4, 237
Ricci, 207
Riemann, 196, 198
scalar, 208
sectional, 8, 250, 251
signed, 3, 273
curvature 2-forms, 222
curvature endomorphism, 196, 224
curvature operator, 262
curvature tensor, 196, 198
determined by sectional curvatures, 252
is isometry invariant, 199
symmetries of, 202
curve, 33, 386
admissible, 34
in a manifold, 33
piecewise regular, 33
plane, 2
smooth, 33
curve segment, 33
curved polygon, 265, 271
curved triangle, 276
cusp vertex, 265
cut locus, 308
and injectivity radius, 312
tangent, 310
cut point, 308
cut time, 307, 308
is continuous, 309
cylinder, principal curvatures, 4

D

§-pinched, 366
pointwise, 368
strictly, 367

Darboux theorem, 193

de Sitter space, 80

defining function, 380
local, 248, 380

del, 89
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delta, Kronecker, 10, 392
density, 405-406
on a manifold, 406
on a vector space, 405
pullback of, 406
Riemannian, 31
density bundle, 406
derivation, 376
of C*° (M), 385
determinant convention for wedge product,
401
diameter, 39
diameter comparison theorem, 339
diffeomorphism, 375
in R", 374
local, 378
difference tensor, 94
differentiable sphere theorem, 368
differential
global, 385
of a function, 377, 402
of a map, 377
differential Bianchi identity, 204
differential form, 401
closed, 402
exact, 402
dihedral groups, 350
direct product of Lie groups, 408
directional derivative of a vector field on
R”, 86
Dirichlet eigenvalue, 51
Dirichlet’s principle, 52
discrete Lie group, 408
discrete subgroup, 410
disjoint union, 382
distance function, 174
has geodesic integral curves, 176
has unit gradient, 175
local, 176
distance, Riemannian, 36
on a disconnected manifold, 36, 53
diverge to infinity, 187
divergence, 32
in coordinates, 32
in terms of covariant derivatives, 148
of a tensor field, 149
divergence theorem, 32, 50
domain of the exponential map, 128
dot product, 9
double elliptic geometry, 144
double of a manifold, 381
dual basis, 392
dual coframe, 397
dual space, 391
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E
&-tubular neighborhood, 133
edge of a curved polygon, 265
effective group action, 412
eigenfunction of the Laplacian, 51
eigenvalue of the Laplacian, 51

Dirichlet, 51

Neumann, 51
Einstein constraint equations, 260
Einstein equation, 210
Einstein field equation, 211, 259
Einstein metric, 210, 361

2-dimensional, 216
Einstein summation convention, 375
Einstein, Albert, 43, 211
Einstein—Hilbert action, 211
embedded submanifold, 379
embedding, 378

isometric, 15
endomorphism

curvature, 196

equivalent to a (1, 1) tensor, 394

of a vector space, 394
energy functional, 189
equivariant map, 412
equivariant rank theorem, 412
escape lemma, 387
Euclidean connection, 92
Euclidean geodesics, 137
Euclidean group, 57
Euclidean metric, 12, 57
Euclidean space, 57

sectional curvature of, 254
Euclidean space form, 349
Euclidean triangle, 2
Euclidean, locally, 371
Euler characteristic, 276, 280
Euler-Lagrange equation, 157
evenly covered neighborhood, 388
exact form, 402
existence and uniqueness

for linear ODEs, 106

of geodesics, 103

of Jacobi fields, 285
exponential map

differential of, 128

domain of, 128

naturality of, 130

normal, 133

of a bi-invariant metric, 147

of a Lie group, 147, 410

of a Riemannian manifold, 128
extendible Riemannian manifold, 189
extendible vector fields, 100

extension
of functions, 380
of sections of vector bundles, 384
exterior angle, 265, 271
exterior covariant derivative, 209, 236
exterior derivative, 401-402
naturality of, 402
extrinsic curvature of a curve, 233

F
F -related, 385
faithful representation, 408
family of curves, 152
admissible, 152
Fermi coordinates, 136, 178
polar, 184
Fermi, Enrico, 136
fiber
of a map, 380
of a vector bundle, 382
fiber metric, 29
on a tensor bundle, 29
on differential forms, 49
figure eight, 100, 101, 112
Finsler metric, 47
first Bianchi identity, 203
first fundamental form, 227
first structure equation, 113
first variation, 154
flat (b), 26-28
flat connection, 224
flat metric, 12, 195, 200
flat vertex, 265
flatness criterion, 195
flow, 387
fundamental theorem on, 387
flow domain, 387
focal point, 317
form
bilinear, 40
closed, 402
exact, 402
forward reparametrization, 34
frame
coordinate, 385
global, 383
local, 383
frame-homogeneous, 56, 79
locally, 74
Frankel, Theodore, 315
free group action, 412
free homotopy class, 174
trivial, 174
freely homotopic, 174
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Fubini-Study metric, 24, 82, 367
curvature of, 258
functional, 151
length, 151
linear, 391
fundamental form
first, 227
second, 227
fundamental group, 373
homotopy invariance, 373
fundamental theorem
of hypersurface theory, 245
of Riemannian geometry, 122
on flows, 387

G
Gauss equation, 230

for a hypersurface, 236, 259
Gauss formula, 228

along a curve, 229

for a curve in a hypersurface, 236, 259

for a hypersurface, 236, 259
Gauss lemma, 159
for submanifolds, 179
Gauss map, 257
Gauss’s Theorema Egregium, 5, 249
Gauss, Carl Friedrich, 5
Gauss—Bonnet formula, 273
Gauss—Bonnet theorem, 6, 277
Gaussian curvature, 5, 238
constant, 6
is isometry invariant, 249
of an abstract 2-manifold, 250
general linear group, 408
general relativity, 43, 211
generating curve, 18
genus, 278
geodesic, 7, 103
closed, 173, 174, 317, 343
existence and uniqueness of, 103
is locally minimizing, 165
maximal, 104
naturality of, 125
on Euclidean space, 105, 137
on hyperbolic spaces, 138
on spheres, 137
pseudo-Riemannian, 124
radial, 133, 161
Riemannian, 124
with a conjugate point, 303
with respect to a connection, 103
geodesic ball, 158, 163
closed, 158
geodesic curvature, 232

Subject Index

geodesic equation, 103
geodesic loop, 188
geodesic polygon, 75, 271
geodesic segment, 104

in path-homotopy class, 173
geodesic sphere, 158, 163
geodesic triangle, 353
geodesic vector field, 129
geodesically complete, 131, 166

equivalent to metrically complete, 169

geodesically convex, 166, 281
geometrization conjecture, 77, 368
global differential, 385

global frame, 383

gradient, 27, 45

Gram—Schmidt algorithm, 10, 16, 42, 251

graph coordinates, 18
graph of a smooth function, 18
graph parametrization, 18
Grassmann manifold, 48, 82
Grassmannian, 48, 82
Gray, Alfred, 136
great circle, 137
great hyperbola, 138
Green'’s identities, 51
Greene, Robert, 117
Gromoll, Detlef, 367
Gromov, Misha, 340
group action, 411

by diffeomorphisms, 412

by isometries, 23

effective, 412

free, 412

isometric, 23

left, 411

proper, 412

right, 411

smooth, 412

transitive, 412
Giinther, Paul, 334, 340

Glinther’s volume comparison theorem, 334

H
Hadamard, Jacques, 352
half-cylinder, principal curvatures, 5
half-space, Poincaré, 62
Hamilton’s 3-manifold theorem, 367
Hamilton’s 4-manifold theorem, 367
Hamilton, Richard, 367
harmonic function, 51
Heisenberg group, 72
Hermann, Robert, 369
Hessian

covariant, 100, 112, 320
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of length functional, 302
Hessian comparison theorem, 327
Hessian operator, 320
Hicks, Noel, 351
Hilbert, David, 142
Hodge star operator, 50, 52, 53
holonomy, 150

restricted, 150
homogeneous

2-point, 189, 261

3-point, 261

k-point, 189

locally, 74

homogeneous Riemannian manifold, 55

homogeneous space, 72
homomorphism
Lie algebra, 409
Lie group, 407
homotopic maps, 372
homotopic, freely, 174
homotopy, 372
homotopy equivalence, 373
Hopf, Heinz, 266, 361
Hopf-Rinow theorem, 169
horizontal index position, 394
horizontal lift, 21
horizontal tangent space, 21
horizontal vector field, 21
hyperbolic metric, 62-67
hyperbolic plane, 6, 66
hyperbolic space, 62-67
distance function of, 185
locally conformally flat, 66
sectional curvature of, 254
hyperbolic space form, 349
hyperbolic stereographic projection, 65
hyperboloid model, 62
hypersurface, 234, 379

1
ideal triangle, 282
immersed submanifold, 379
with boundary, 379
immersion, 378
isometric, 15
index
of a geodesic segment, 307
of a scalar product, 42
upper and lower, 375
index form, 301, 302
index positions, 375, 394
induced homomorphism
of fundamental groups, 373
of Lie algebras, 409
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induced metric, 15

on a submanifold, 15
induced orientation, 404
infinitesimal generator, 387
injectivity domain, 310
injectivity radius, 165, 188, 312

and cut locus, 312

continuity of, 312
injectivity radius comparison theorem, 339
injectivity theorem for covering maps, 389
inner automorphism, 411
inner product, 9

of tensors, 29
inner product space, 10
integral

of a function, 30

with respect to arc length, 53
integral curve, 386
integral of an n-form, 404
integration by parts, 51, 149
interior angle, 2, 265, 272
interior chart, 371
interior multiplication, 31, 401
interior of a curved polygon, 265, 271
interior of a manifold with boundary, 371
interpretation of an axiomatic system, 143
intrinsic curvature of a curve, 233
intrinsic property, 4
invariant inner product, 69
invariant metric, 23
invariant under a flow, 388, 399
invariant, local, 194
inverse function theorem, 378
inward-pointing normal, 273
irreducible symmetric space, 79
isometric embedding, 15
isometric group action, 23
isometric immersion, 15
isometric manifolds, 12
isometries

of Euclidean space, 57, 147

of hyperbolic spaces, 67, 147

of spheres, 58-59, 147
isometry, 4, 12

axial, 357

linear, 11

local, 171

metric, 186

of a Riemannian manifold, 13

Riemannian, 186
isometry group, 13

of Euclidean space, 57, 147

of hyperbolic spaces, 67, 147

of spheres, 58-59, 147
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isomorphism of Lie groups, 407
isothermal coordinates, 222
isotropic, 56

at a point, 56
isotropy representation, 56
isotropy subgroup, 56, 412

J
Jacobi equation, 284
Jacobi field, 284
existence and uniqueness, 285
normal, 287, 288
on constant-curvature manifolds, 291
tangential, 287
transverse, 315, 317
Jacobi field comparison theorem, 329
Jacobi identity, 386, 408
Jacobian matrix, 377
jumps in tangent angle, 264

K

k-point homogeneous, 189, 261
Kazdan, Jerry, 279

Killing vector field, 150, 190, 315
Killing—Hopf theorem, 348

Klein bottle, 76

Klingenberg, Wilhelm, 367
Kobayashi metric, 47

Koszul connection, 89

Koszul’s formula, 123

Kronecker delta, 10, 392
Kulkarni-Nomizu product, 213, 235

L
Lagrange multiplier, 381
Laplace—Beltrami operator, 32
Laplacian, 32
conformal, 223
Dirichlet eigenvalue of, 51
eigenfunction of, 51
eigenvalue of, 51
in coordinates, 32
Neumann eigenvalue of, 51
Laplacian comparison theorem, 332, 337
latitude circle, 18
lattice, 369
law of inertia, Sylvester’s, 42
left action, 411
left-invariant metric, 67
left-invariant vector field, 408
left translation, 407
length
additivity of, 34
isometry invariance of, 34

Subject Index

of a curve, 34
of a group element, 370
of a vector, 10, 12
parameter independence of, 34
length functional, 151
lens space, 350
level set, 380
Levi-Civita connection, 122
naturality of, 125
Levi-Civita, Tullio, 115
Lichnerowicz’s theorem, 223
Lie algebra, 408
abelian, 409
of a Lie group, 409
Lie algebra automorphism, 409
Lie algebra homomorphism, 409
induced, 409
Lie algebra isomorphism, 409
Lie bracket, 385
naturality of, 386
of vectors tangent to a submanifold, 386
Lie derivative, 112
and Lie bracket, 388
of a tensor field, 399
of a vector field, 387
Lie group, 407
direct product of, 408
discrete, 408
semidirect product of, 412
Lie group homomorphism, 407
Lie group isomorphism, 407
Lie subalgebra, 409
Lie subgroup, 407
lift of a map, 389
from simply connected spaces, 390
lifting criterion for covering maps, 389
lifting property
path, 389
unique, 389
line in a Riemannian manifold, 352, 367,
370
linear connection, 91
linear functional, 391
linear isometry, 11
linear ODEs, 106
local coordinates, 375
local defining function, 248, 380
local diffeomorphism, 378
local distance function, 176
local frame, 383
local invariant, 194
local isometry, 12, 171
local parametrization, 17
local section, 383
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of a submersion, 378
local-to-global theorem, 2
local trivialization, 382
local uniqueness of constant-curvature met-
rics, 294
locally conformally flat, 59, 218
2-manifolds, 222
hyperbolic space, 66
spheres, 61
locally Euclidean, 371
locally finite, 376
locally frame-homogeneous, 74
locally homogeneous, 74
locally minimizing curve, 157
locally symmetric space, 78, 222, 295, 350
and parallel curvature, 297
loop, 174, 373
geodesic, 188
Lorentz group, 67
Lorentz metric, 43
existence of, 44
lowering an index, 26

M

main curve, 152

manifold
smooth, 374

topological, 371
with boundary, 371
without boundary, 372
matrix Lie algebra, 409
matrix Riccati comparison theorem, 325
maximal diameter theorem, 362
maximal geodesic, 104
mean curvature, 238
meridian, 18
metric
bi-invariant, 68, 147, 224, 259
Carathéodory, 47
Carnot—Carathéodory, 46
Euclidean, 12, 57
fiber, 29
Finsler, 47
Fubini-Study, 24, 82, 258, 367
hyperbolic, 62-67
induced by an immersion, 15
Kobayashi, 47
Lorentz, 43
on a tensor bundle, 29
on differential forms, 49
product, 20
pseudo-Riemannian, 42
Riemannian, 1, 11
round, 16, 58
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semi-Riemannian, 42
singular Riemannian, 46
sub-Riemannian, 46
metric ball, 163
metric comparison theorem, 331
metric connection, 118
metric isometry, 186
metric space, 39
metrically complete, 39, 166
equivalent to geodesically complete, 169
Milnor’s theorem on growth of the funda-
mental group, 364
Milnor, John, 72, 364
minimal hypersurface, 242
minimal surface, 242
minimizing curve, 151
is a geodesic, 156, 165
locally, 157
Minkowski metric, 43
Minkowski space, 43
mixed tensor, 393
Mobius band, 25
model of an axiomatic system, 143
model Riemannian manifolds, 55
monodromy theorem
for local isometries, 347
for paths, 389
Morse index theorem, 307
multilinear, 392
over C°° (M), 398
multiplicity of conjugacy, 298
Munkres, James, 77
musical isomorphisms, 26
commute with covariant derivatives, 126
Myers’s theorem, 8, 361
Myers, Sumner B., 13, 361
Myers—Steenrod theorem, 13

N
n-manifold, 371
n-torus, 389, 408
flat metric on, 19
nabla, 89
Nash embedding theorem, 117
Nash, John, 117
natural coordinates on the tangent bundle,
384
naturality
of geodesics, 125
of the exponential map, 130
of the Levi-Civita connection, 125
of the Lie bracket, 386
negative definite, 40
negatively oriented basis, 403
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Neumann eigenvalue, 51
nilpotent Lie group, 72
noncollinear, 353
nondegenerate 2-tensor, 193
nondegenerate bilinear form, 40
nondegenerate z-tuple of vector fields, 41
nondegenerate subspace, 41
nonvanishing vector field, 193
norm

on a vector space, 47

on an inner product space, 10

pseudo-Riemannian, 40
normal bundle, 16

pseudo-Riemannian, 45
normal connection, 231
normal coordinates, 132

polar, 184

pseudo-Riemannian, 132

Riemannian, 132
normal covering map, 414
normal exponential map, 133
normal Jacobi field, 287, 288
normal neighborhood

of a point, 131

of a submanifold, 133
normal projection, 17, 226
normal space, 16
normal variation, 301
normal vector, 16, 44

outward-pointing, 17
normal vector field, 16

along a curve, 287

(0]
O’Neill’s formula, 224
one-parameter family of curves, 152
one-parameter subgroup, 410
one-sided velocity vectors, 34
open geodesic ball, 158
open map, 372
open Mobius band, 25
orbit, 413
orbit space, 413
order of conjugacy, 298
ordered basis, 391
ordinary differential equation, 103
linear, 106
ordinary vertex, 265
orientable manifold, 403
orientation, 402
and coordinates, 403
and n-forms, 403
continuous, 403
induced, 404

Subject Index

of a boundary, 404

of a curved polygon, 265

of a hypersurface, 403

of a manifold, 403

of R”, 403
orientation covering, 404
orientation form, 403
orientation-preserving, 403
orientation-reversing, 403
oriented basis, 403
oriented coordinate chart, 403
oriented manifold, 403
orthochronous Lorentz group, 67
orthogonal complement, 10
orthogonal group, 58, 408

special, 408
orthogonal vectors, 10, 12, 40
orthonormal basis, 10

standard order for, 79
orthonormal frame, 14

for pseudo-Riemannian metric, 43
orthonormal vectors, 10, 41
osculating circle, 3, 245
outward-pointing normal, 17
outward-pointing vector field, 403
overdetermined system, 220

P
parallel frame, 109
parallel lines, 143
parallel tensor field, 105, 110
parallel transport, 107-110
along admissible curve, 109
determines the connection, 109
parallel vector field, 105, 108, 110, 146
parametrization
by arc length, 35
graph, 18
of a submanifold, 17
parametrized curve, 33
partition of an interval, 33
partition of unity, 11, 376
path, 372
path class, 373
path-homotopic, 373
path homotopy, 373
path-lifting property, 171, 264, 389
Perelman, Grigori, 77
Pfaffian, 280
piecewise regular curve segment, 33
piecewise smooth vector field, 108, 153
pinching theorems, 366
plane curve, 2
plane curve classification theorem, 3, 282
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plane section, 250
Poincaré ball, 62
Poincaré disk, 80
Poincaré half-space, 62
point reflection, 77
pointwise conformal metrics, 59
pointwise §-pinched, 368
pointwise pullback, 398
polar coordinates, 184
polar Fermi coordinates, 184
polar normal coordinates, 184
polarization identity, 10
polygon

curved, 265, 271

geodesic, 75, 271
polynomial growth, 363
positive density, 406
positively oriented basis, 403

positively oriented curved polygon, 265,

271
positively oriented 7-form, 403
Preissman’s theorem, 357
Preissman, Alexandre, 357

principal curvature comparison theorem,

329
principal curvatures, 4, 237
principal directions, 238
product metric, 20
warped, 20, 146
product of paths, 373
product rule
for connections, 89
for divergence operator, 51
for Euclidean connection, 118
product, direct, 408
projection
central, 63
hyperbolic stereographic, 65
normal, 17, 226
of a vector bundle, 382
stereographic, 59
tangential, 17, 226
projective plane, 145
projective space
complex, 24, 82, 258, 367, 413
real, 25, 255, 413
proper group action, 412
proper map, 372
proper variation, 152
proper vector field along a curve, 153
properly embedded, 379
pseudo-Euclidean space, 43, 79
pseudo-Riemannian geodesics, 124
pseudo-Riemannian metric, 42

pseudo-Riemannian normal
coordinates, 132

pseudo-Riemannian submanifold, 44
pseudohyperbolic space, 79, 83
pseudosphere, 79, 83
pullback, 398, 399

of a connection, 110

of a density, 406

of an exterior derivative, 402

pointwise, 398
pullback orientation, 403
pushforward of a vector field, 110, 385

Q
quadratic form, 260, 324

quotient manifold theorem, 413
quotient map, 372

R
Rad¢, Tibor, 276
radial distance function

for a point, 158

for a submanifold, 179
radial geodesics, 133

are minimizing, 161
radial vector field

for a point, 158

for a submanifold, 179
raising an index, 26
rank

constant, 378

of a smooth map, 378

of a tensor, 393

of a vector bundle, 382
rank theorem, 378

equivariant, 412

global, 379
Rauch comparison theorem, 331
ray in a Riemannian manifold, 189
real projective space, 25, 255, 413
regular coordinate ball, 374
regular curve, 33
regular domain, 30, 379
regular level set, 27, 380
regular point of a smooth map, 27, 380
regular value of a smooth map, 380
related vector fields, 385
relativity

general, 43, 211

special, 43
reparametrization, 34

backward, 34

forward, 34

of an admissible curve, 34

433
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representation
of a Lie algebra, 411
of a Lie group, 408
rescaling lemma, 127
restricted exponential map, 128
restricted holonomy, 150
Riccati comparison theorem, 324-327
matrix, 325
Riccati equation, 323, 343
Riccati, Jacopo, 324
Ricci curvature, 207-209
geometric interpretation of, 253
Ricci decomposition of the curvature tensor,
216
Ricci flow, 368
Ricci identities, 205
Ricci tensor, 207-209
geometric interpretation of, 253
Riemann curvature endomorphism, 196
Riemann curvature tensor, 198
Riemann, Bernhard, v, 47, 255
Riemannian connection, 122-125
Riemannian covering, 24, 25
Riemannian density, 31
Riemannian distance, 36
isometry invariance of, 37
on a disconnected manifold, 36, 53
Riemannian geodesics, 124
Riemannian isometry, 186
Riemannian manifold, 1, 11
with boundary, 11
Riemannian metric, 1, 11
existence of, 11
Riemannian normal coordinates, 132
Riemannian submanifold, 15, 225, 226
of a pseudo-Riemannian manifold, 44
Riemannian submersion, 22, 146, 224, 258
Riemannian symmetric space, 77, 189
locally, 78, 222, 295
Riemannian volume form, 30
is parallel, 126
right action, 411
right-invariant metric, 67
right-invariant vector field, 408
right translation, 407
rigid motion, 2
rotation index, 264
of a curved polygon, 266, 272
rotation index theorem, 266
for a curved polygon, 272
rough section, 383
round metric, 16

Subject Index

S
SSS theorem, 2
scalar curvature, 208
geometric interpretation of, 253
scalar product, 40
scalar product space, 40
scalar second fundamental form, 235, 259
Schoen, Richard, 211, 368
Schouten tensor, 215
Schur’s lemma, 210
secant angle function, 267
second Bianchi identity, 204
second covariant derivative, 99
second fundamental form, 227
geometric interpretation of, 233
scalar, 235, 259
second structure equation, 222
second variation formula, 300
section
of a submersion, 378
of a vector bundle, 383
smooth, 383
sectional curvature, 8, 250, 251
constant, 254
determines the curvature tensor, 252
of Euclidean space, 254
of hyperbolic spaces, 254
of spheres, 254
segment, curve, 33
self-dual, 50
semi-Riemannian metric, 42
semicolon between indices, 98
semidirect product, 57, 412
semigeodesic coordinates, 181, 182
shape operator, 235, 259
sharp (), 26-28
sheets of a covering, 388
side of a curved polygon, 265
side-side-side theorem, 2
sign conventions for curvature tensor, 198
sign of a permutation, 400
signature of symmetric bilinear form, 42
signed curvature, 3
of curved polygon, 273
simple closed curve, 264
simply connected space, 373
covering of, 390
single elliptic geometry, 145
singular Riemannian metric, 46
slice coordinates, 379, 380
boundary, 380
smooth atlas, 374
smooth chart, 374
smooth coordinate ball, 374
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smooth coordinate chart, 374
smooth coordinate domain, 374
smooth covering map, 388
smooth curve, 33
smooth group action, 412
smooth manifold, 374
with boundary, 374
smooth manifold structure, 374
smooth map, 374, 375
smooth structure, 374
smooth subbundle, 383
smoothly compatible, 374
solvable Lie group, 72
soul theorem, 367
space form, 349-350
Euclidean, 349
hyperbolic, 349
spherical, 349
special linear group, 408
special orthogonal group, 408
special relativity, 43
special unitary group, 408
spectral theorem, 237
speed of a curve, 35
sphere, 58
Berger, 81, 259
distance function, 185
geodesic, 158, 163
is locally conformally flat, 61
principal curvatures of, 6
round, 16, 58
sectional curvature, 254
volume of, 314
sphere theorem, 367
differentiable, 368
spherical coordinates, 19
spherical space form, 349
splitting theorem, 367
standard basis of R"?, 403
standard coordinates on R” | 12

standard order for orthonormal basis, 79

standard orientation of R”, 403

standard smooth structure, 375

star operator, 50, 52, 53

star-shaped, 128, 402

Steenrod, Norman E., 13

stereographic projection, 59
hyperbolic, 65

is a conformal diffeomorphism, 61

Stiefel manifold, 48
Stokes orientation, 404
Stokes’s theorem, 265, 405
stress-energy tensor, 211
strictly §-pinched, 367

structure equation

first, 113

second, 222
sub-Riemannian metric, 46
subalgebra, Lie, 409
subbundle, 383
subgroup, Lie, 407
subinterval of a partition, 33
submanifold

embedded, 379

immersed, 379

pseudo-Riemannian, 44

Riemannian, 15, 44

tangent space to, 381

with boundary, 379
submersion, 378

Riemannian, 22, 146, 224, 258
subordinate to a cover, 376
summation convention, 375
support

of a function, 376

of a section of a vector bundle, 383

surface of revolution, 18
geodesics, 145, 256
Sylvester’s law of inertia, 42
symmetric connection, 112, 121
symmetric group, 396
symmetric product, 396
symmetric space, 77, 189, 350
irreducible, 79
locally, 78, 222, 295, 297, 350
symmetric tensor, 395, 396
symmetries
of Euclidean space, 57, 147
of hyperbolic spaces, 67, 147
of spheres, 58-59, 147
of the curvature tensor, 202
symmetrization, 395
symmetry lemma, 154
symplectic form, 193
Synge’s theorem, 364
Synge, John L., 361, 364

T

tangent angle function, 264, 265, 272

tangent bundle, 382
tangent covector, 377
tangent cut locus, 310
tangent space, 376

to a submanifold, 381
tangent to a submanifold, 386
tangent vector, 376
tangential acceleration, 86

tangential connection, 92-93, 117, 228
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tangential directional derivative, 87
tangential projection, 17, 226
tangential vector field along a curve, 287
tensor

alternating, 400

contravariant, 392

covariant, 392

mixed, 393

on a manifold, 396

symmetric, 395
tensor bundle, 396
tensor characterization lemma, 398
tensor field, 397

along a curve, 101
tensor product, 393
Theorema Egregium, S, 249
Thurston geometrization

conjecture, 77, 368

topological manifold, 371

with boundary, 371
torsion 2-forms, 113
torsion element of a group, 356
torsion-free group, 356
torsion tensor, 112, 121
torus, 389, 408

flat metric on, 19, 195, 369

n-dimensional, 20, 389, 408
total covariant derivative, 98

commutes with musical isomorphisms,

126

components of, 98
total curvature theorem, 3, 271, 276
total scalar curvature functional, 210, 211
total space of a vector bundle, 382
totally geodesic, 234
trace

of a tensor, 395

of an endomorphism, 260

with respect to g, 28
traceless Ricci tensor, 208
transition function, 383
transition map, 374
transitive group action, 412

on fibers, 23
translation, left and right, 407
transport, parallel, 107-110
transverse curve, 152
transverse Jacobi field, 315, 317
triangle

Euclidean, 2

ideal, 282
triangulation, 276
trivial free homotopy class, 174
tubular neighborhood, 133
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two-point boundary problem, 299

U
Umlaufsatz, 266
uniform tubular neighborhood, 133
uniformization theorem, 6

for compact surfaces, 74
uniformly §-normal, 163
uniformly normal, 163
unique lifting property, 389
uniqueness of constant-curvature metrics,

294

unit-speed curve, 19, 35
unit tangent bundle, 14
unit tangent vector field, 264, 271
unitary group, 408

special, 408
universal anti-de Sitter space, 83
universal covering manifold, 390
upper half-plane, 80
upper half-space, 62
upper indices on coordinates, 375

A\
vacuum Einstein field equation, 211
variation
first, 154
normal, 301
of a curve, 152
proper, 152
second, 300
through geodesics, 284
variation field, 153
variational equation, 157
variations, calculus of, 152
vector bundle, 382
section of, 383
subbundle, 383
zero section, 383
vector field, 384
along a curve, 100
along a family of curves, 152
canonical form for, 387, 388
commuting, 388
coordinate, 384
Lie algebra of, 409
nonvanishing, 193
normal, along a curve, 287
piecewise smooth, 108
proper, 153
tangential, along a curve, 287
vector, tangent, 376
velocity, 33, 86, 87, 386
vertex
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cusp, 265
flat, 265
of a curve, 265
ordinary, 265
vertical action, 23
vertical index position, 394
vertical tangent space, 21
vertical vector field, 21
volume
of a ball, 314
of a Riemannian manifold, 30
of a sphere, 313
volume comparison theorem
Bishop—Gromov, 340
Giinther, 334
volume form, 30
von Mangoldt, Hans Carl Friedrich, 352

W
Warner, Frank, 279

warped product, 20, 146
wedge product, 400

Alt convention, 401

determinant convention, 401
Weingarten equation, 229

for a hypersurface, 236, 259
Weingarten map, 229, 315
Weyl-Schouten theorem, 220
Weyl tensor, 215

conformal invariance of, 217
Wilking, Burkhard, 368
Wolf, Joseph, 349

Y
Yamabe equation, 223
Yamabe problem, 211

Z
zero section, 383
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