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Once upon a time there was a sensible straight line who was
hopelessly in love with a dot. ‘You’re the beginning and the end,
the hub, the core and the quintessence,’ he told her tenderly, but
the frivolous dot wasn’t a bit interested, for she only had eyes for a
wild and unkempt squiggle who never seemed to have anything on
his mind at all. All of the line’s romantic dreams were in vain, until
he discovered . . . angles! Now, with newfound self-expression, he
can be anything he wants to be—a square, a triangle, a
parallelogram . . .And that’s just the beginning!
—Norton Juster (The Dot and the Line: A Romance in Lower
Mathematics 1963)

I came to the position that mathematical analysis is not one of many
ways of doing economic theory: It is the only way. Economic theory
is mathematical analysis. Everything else is just pictures and talk.
—R. E. Lucas, Jr. (2001)

Purpose
The subject matter that modern economics students are expected to master makes signifi-
cant mathematical demands. This is true even of the less technical “applied” literature that
students will be expected to read for courses in fields such as public finance, industrial
organization, and labour economics, amongst several others. Indeed, the most relevant lit-
erature typically presumes familiarity with several important mathematical tools, especially
calculus for functions of one and several variables, as well as a basic understanding of mul-
tivariable optimization problems with or without constraints. Linear algebra is also used to
some extent in economic theory, and a great deal more in econometrics.

The purpose of Essential Mathematics for Economic Analysis, therefore, is to help eco-
nomics students acquire enough mathematical skill to access the literature that is most
relevant to their undergraduate study. This should include what some students will need
to conduct successfully an undergraduate research project or honours thesis.

As the title suggests, this is a book on mathematics, whose material is arranged to allow
progressive learning of mathematical topics. That said, we do frequently emphasize eco-
nomic applications, many of which are listed on the inside front cover. These not only
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help motivate particular mathematical topics; we also want to help prospective economists
acquire mutually reinforcing intuition in both mathematics and economics. Indeed, as the
list of examples on the inside front cover suggests, a considerable number of economic
concepts and ideas receive some attention.

We emphasize, however, that this is not a book about economics or even about
mathematical economics. Students should learn economic theory systematically from
other courses, which use other textbooks. We will have succeeded if they can concentrate
on the economics in these courses, having already thoroughly mastered the relevant
mathematical tools this book presents.

Special Features and Accompanying Material
Virtually all sections of the book conclude with exercises, often quite numerous. There are
also many review exercises at the end of each chapter. Solutions to almost all these exercises
are provided at the end of the book, sometimes with several steps of the answer laid out.

There are two main sources of supplementary material. The first, for both students and
their instructors, is via MyLab. Students who have arranged access to this web site for
our book will be able to generate a practically unlimited number of additional problems
which test how well some of the key ideas presented in the text have been understood.
More explanation of this system is offered after this preface. The same web page also has
a “student resources” tab with access to a Student’s Manual with more extensive answers
(or, in the case of a few of the most theoretical or difficult problems in the book, the only
answers) to problems marked with the special symbol SM .

The second source, for instructors who adopt the book for their course, is an Instructor’s
Manual that may be downloaded from the publisher’s Instructor Resource Centre.

In addition, for courses with special needs, there is a brief online appendix on trigono-
metric functions and complex numbers. This is also available via MyLab.

Prerequisites
Experience suggests that it is quite difficult to start a book like this at a level that is really
too elementary.1 These days, in many parts of the world, students who enter college or uni-
versity and specialize in economics have an enormous range of mathematical backgrounds
and aptitudes. These range from, at the low end, a rather shaky command of elementary
algebra, up to real facility in the calculus of functions of one variable. Furthermore, for
many economics students, it may be some years since their last formal mathematics course.
Accordingly, as mathematics becomes increasingly essential for specialist studies in eco-
nomics, we feel obliged to provide as much quite elementary material as is reasonably
possible. Our aim here is to give those with weaker mathematical backgrounds the chance
to get started, and even to acquire a little confidence with some easy problems they can
really solve on their own.

1 In a recent test for 120 first-year students intending to take an elementary economics course, there
were 35 different answers to the problem of expanding (a + 2b)2.
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To help instructors judge how much of the elementary material students really know
before starting a course, the Instructor’s Manual provides some diagnostic test material.
Although each instructor will obviously want to adjust the starting point and pace of a
course to match the students’ abilities, it is perhaps even more important that each individual
student appreciates his or her own strengths and weaknesses, and receives some help and
guidance in overcoming any of the latter. This makes it quite likely that weaker students
will benefit significantly from the opportunity to work through the early more elementary
chapters, even if they may not be part of the course itself.

As for our economic discussions, students should find it easier to understand them if
they already have a certain very rudimentary background in economics. Nevertheless, the
text has often been used to teach mathematics for economics to students who are studying
elementary economics at the same time. Nor do we see any reason why this material cannot
be mastered by students interested in economics before they have begun studying the subject
in a formal university course.

Topics Covered
After the introductory material in Chapters 1 to 3, a fairly leisurely treatment of standard sin-
gle variable differential calculus is contained in Chapters 4 to 7. This is followed by Chapter
8 on concave and convex functions, by Chapter 9 on optimization, Chapter 10 on integra-
tion, and then by some basic financial models as well as difference and differential equations
in Chapter 11. This may be as far as some elementary courses will go. Students who already
have a thorough grounding in single variable calculus, however, may only need to go fairly
quickly over some special topics in these chapters such as elasticity and conditions for
global optimization that are often not thoroughly covered in standard calculus courses.

We have already suggested the importance for budding economists of the algebra
of matrices and determinants (Chapters 12 and 13), of multivariable calculus (Chapters
14–16), and of optimization theory with and without constraints (Chapters 17–20). These
last nine chapters in some sense represent the heart of the book, on which students with a
thorough grounding in single variable calculus can probably afford to concentrate.

Satisfying Diverse Requirements
The less ambitious student can concentrate on learning the key concepts and techniques
of each chapter. Often, these appear boxed and/or in colour, in order to emphasize their
importance. Problems are essential to the learning process, and the easier ones should defi-
nitely be attempted. These basics should provide enough mathematical background for the
student to be able to understand much of the economic theory that is embodied in applied
work at the advanced undergraduate level.

Students who are more ambitious, or who are led on by more demanding teachers, can
try the more difficult problems. They can also study the more technical material which is
intended to encourage students to ask why a result is true, or why a problem should be
tackled in a particular way. If more readers gain at least a little additional mathematical
insight from working through these more challenging parts of our book, so much the better.
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The most able students, especially those intending to undertake postgraduate study in
economics or some related subject, will benefit from a fuller explanation of some topics
than we have been able to provide here. On a few occasions, therefore, we take the liberty
of referring to our more advanced companion volume, Further Mathematics for Economic
Analysis (usually abbreviated to FMEA). This is written jointly with our colleague Atle
Seierstad in Oslo. In particular, FMEA offers a proper treatment of topics like systems of
difference and differential equations, as well as dynamic optimization, that we think go
rather beyond what is really “essential” for all economics students.

Changes in the Fourth Edition
We have been gratified by the number of students and their instructors from many parts
of the world who appear to have found the first three editions useful.2 We have accord-
ingly been encouraged to revise the text thoroughly once again. There are numerous minor
changes and improvements, including the following in particular:

1. The main new feature is MyMathLab Global,3 explained on the page after this preface,
as well as on the back cover.

2. New exercises have been added for each chapter.

3. Some of the figures have been improved.

Changes in the Fifth Edition
The most significant change in this edition is that, tragically, we have lost the main author
and instigator of this project. Our good friend and colleague Knut Sydsæter died suddenly
on 29th September 2012, while on holiday in Spain with his wife Malinka Staneva, a few
days before his 75th birthday. An obituary written by Jens Stoltenberg, at that time the
Prime Minister of Norway, includes this tribute to Knut’s skills as one of his teachers:

With a small sheet of paper as his manuscript he introduced me and genera-
tions of other economics students to mathematics as a tool in the subject of
economics. With professional weight, commitment, and humour, he was both
a demanding and an inspiring lecturer. He opened the door into the world of
mathematics. He showed that mathematics is a language that makes it possible
to explain complicated relationships in a simple manner.

At a web page that hosts a copy of this obituary one can also find other tributes to Knut,
including some recollections of how previous editions of this book came to be written.4

Despite losing Knut as its main author, it was clear that this book needed to be kept
alive, following desires that Knut himself had often expressed while he was still with us.

2 Different English versions of this book have been translated into Albanian, French, German, Hun-
garian, Italian, Portuguese, Spanish, and Turkish.

3 Superseded by MyLab for this sixth edition.
4 See https://web.stanford.edu/˜hammond/sydsaeter.html

https://web.stanford.edu/%CB%9Chammond/sydsaeter.html
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Fortunately, it had already been agreed that the team of co-authors should be joined by
Andrés Carvajal, a former colleague of Peter’s at Warwick who, at the time of preparing
the Fifth Edition, had just joined the University of California at Davis. Andrés had already
produced a new Spanish version of the previous edition of this book; he has now become a
co-author of this latest English version. It is largely on his initiative that we have taken the
important step of extensively rearranging the material in the first three chapters in a more
logical order, with set theory now coming first.

The other main change is one that we hope is invisible to the reader. Previous edi-
tions had been produced using the “plain TEX” typesetting system that dates back to the
1980s, along with some ingenious macros that Arne had devised in collaboration with
Arve Michaelsen of the Norwegian typesetting firm Matematisk Sats. For technical rea-
sons we decided that the new edition had to be produced using the enrichment of plain TEX
called LATEX that has by now become the accepted international standard for typesetting
mathematical material. We have therefore attempted to adapt and extend some standard
LATEX packages in order to preserve as many good features as possible of our previous
editions.

Changes in the Sixth Edition
For this sixth edition, the surviving authors decided to rearrange the chapters considerably.
Recent previous editions included a chapter on linear programming, which was deferred
until after the two chapters on matrix algebra. Yet the key idea of complementary slackness
had arisen previously in an earlier chapter on nonlinear programming. So we have moved
matrix algebra much further forward, so that it precedes multivariate calculus. This allows
new tools to be used in our treatment of multivariate calculus, and subsequently in the last
four chapters that are now devoted exclusively to optimization.

Not only have the existing chapters been rearranged, however. We have increased their
number from 17 to 20. This is partly because the chapter on constrained optimization has
been split into two. The first part dealing with equality constraints now comes in Chapter
18, before Chapter 19 on linear programming, including its discussion of complementary
slackness. The last part of the earlier chapter on inequality constraints is now the separate
Chapter 20.

The other two extra chapters are new. Chapter 8 considers concave and convex functions
of one variable, including results on supergradients of concave functions and subgradients
of convex functions that play a key role in the theory of optimization. Later chapters extend
some of these results to functions of 2 and then n variables. There is also a brief chapter
(16) on multiple integrals.

Finally, we mention significant additions to Chapter 13 that consider eigenvalues and
quadratic forms. These additions allow a more extensive treatment, based on the Hessian
matrix, of second-order conditions for, in Chapter 15, a function of several variables to be
concave, and in Chapter 17, for a critical point to be a maximum or minimum. As a result,
we can provide a somewhat better discussion in Chapter 20 of how, for the case of concave
programming problems, the Karush–Kuhn–Tucker conditions provide sufficient conditions
for an optimal point.
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1
E S S E N T I A L S O F L O G I C
A N D S E T T H E O R Y

It is clear that economics, if it is to be a science at all, must be a mathematical science.
—William Stanley Jevons1

Arguments in mathematics require tight logical reasoning, and arguments in modern eco-
nomic analysis are no exception to this rule. It is useful for us, then, to present some basic

concepts from logic, as well as a brief section on mathematical proofs.
We precede this with a short introduction to set theory. This is useful not just for its impor-

tance in mathematics, but also because of a key role that sets play in economics: in most
economic models, it is assumed that economic agents pursue some specific goal like profit,
and make an optimal choice from a specified feasible set of alternatives.

The chapter winds up with a discussion of mathematical induction. Occasionally, this
method is used directly in economic arguments; more often, it is needed to understand
mathematical results which economists use.

1.1 Essentials of Set Theory
In daily life, we constantly group together objects of the same kind. For instance, the faculty
of a university signifies all the members of its academic staff. A garden refers to all the
plants that are growing in it. An economist may talk about all Scottish firms with over 300
employees, or all taxpayers in Germany who earned between €50 000 and €100 000 in 2019.
Or suppose a student who is planning what combination of laptop and smartphone to buy
for use in college. The student may consider all combinations whose total price does not
exceed what she can afford. In all these cases, we have a collection of objects that we may
want to view as a whole. In mathematics, such a collection is called a set, and the objects
that belong to the set are called its elements, or its members.

1 The Theory of Political Economy (1871)
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The simplest way to specify a set is to list its members, in any order, between the open-
ing brace { and the closing brace }. An example is the set whose members are the first
three letters in the English alphabet, S = {a, b, c}. Or it might be a set consisting of three
members represented by the letters a, b, and c. For example, if a = 0, b = 1, and c = 2, then
S = {0, 1, 2}. Also, S = {a, b, c} denotes the set of roots of the cubic equation (x − a)(x −
b)(x − c) = 0 in the unknown x, where a, b, and c are any three real numbers. Verbally, the
braces are read as “the set consisting of”.

Since a set is fully specified by listing all its members, two sets A and B are considered
equal if they contain exactly the same elements: each element of A is an element of B; con-
versely, each element of B is an element of A. In this case, we write A = B. Consequently,
{1, 2, 3} = {3, 2, 1}, because the order in which the elements are listed has no significance;
and {1, 1, 2, 3} = {1, 2, 3}, because a set is not changed if some elements are listed more
than once.

The symbol “∅” denotes the set that has no elements. It is called the empty set. Note that
it is the, and not an, empty set. This is so, following the principle that a set is completely
defined by listing all its members: there can only be one set that contains no elements.
The empty set is the same, whether it is being studied by a child in elementary school who
thinks about cows that can jump over the moon, or by a physicist at CERN who thinks about
subatomic particles that move faster than the speed of light—or, indeed, by an economics
student reading this book!

Specifying a Property
Not every set can be defined by listing all its members, however. For one thing, some sets
are infinite—that is, they contain infinitely many members. Such infinite sets are rather
common in economics. Take, for instance, the budget set that arises in consumer theory.
Suppose there are two goods with quantities denoted by x and y. Suppose these two goods
can be bought at prices per unit that equal p and q, respectively. A consumption bundle is
a pair of quantities of the two goods, (x, y). Its value at prices p and q is px + qy. Suppose
that a consumer has an amount m to spend on the two goods. Then the budget constraint is
px + qy ≤ m, assuming that the consumer is free to underspend. If one also accepts that the
quantity consumed of each good must be nonnegative, then the budget set, which will be
denoted by B, consists of all those consumption bundles (x, y) satisfying the three inequal-
ities px + qy ≤ m, x ≥ 0, and y ≥ 0. This set is illustrated in Fig. 4.4.12. Standard notation
for it is

B = {(x, y) : px + qy ≤ m, x ≥ 0, y ≥ 0} (1.1.1)

The two braces { and } are still used to denote “the set consisting of”. However, instead
of listing all the members, which is impossible for the infinite set of points in the trian-
gular budget set B, it is specified in two parts. First, before the colon, (x, y) is used to
denote the typical member of B, here a consumption bundle that is specified by listing
the respective quantities of the two goods. The colon is read as “such that”.2 Second,
after the colon, the three properties that these typical members must satisfy are all listed.

2 Alternative notation for “such that” is |.
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This completes the specification of B. Indeed, Eq. (1.1.1) is an example of the general
specification:

S = {typical member : defining properties}

Note that it is not just infinite sets that can be specified by properties like this—finite sets
can too. Indeed, some finite sets almost have to be specified in this way, such as the set of
all human beings currently alive.

Set Membership
As we stated earlier, sets contain members or elements. Some convenient standard notation
is used to express the relation between a set and its members. First,

x ∈ S

indicates that x is an element of S. Note the special “belongs to” symbol ∈ (which is a
variant of the Greek letter ε, or “epsilon”).

To express the fact that x is not a member of S, we write x /∈ S. For example, d /∈ {a, b, c}
says that d is not an element of the set {a, b, c}.

To see how set membership notation can be applied, consider again the example of a
first-year college student who must buy both a laptop and a smartphone. Suppose that there
are two types of each device, “cheap” and “expensive”. Suppose too that the student cannot
afford to combine the expensive smartphone with the expensive laptop. Then the set of three
combinations that the student can afford is {cheap laptop and cheap smartphone, expensive
laptop and cheap smartphone, cheap laptop and expensive smartphone}. Thus, the student
is restricted to choosing one of the three combinations in this set. If we denote the choice
by s and the affordable set by B, we can say that the student’s choice is constrained by
the requirement that s ∈ B. If we denote by t the unaffordable combination of an expen-
sive laptop and an expensive smartphone, we can express this unaffordability by writing
t /∈ B.

Let A and B be any two sets. Set A is a subset of B if it is true that every member of A is
also a member of B. When that is the case, we write A ⊆ B. In particular, A ⊆ A and ∅ ⊆ A.
Recall that two sets are equal if they contain the same elements. From the definitions, we
see that A = B when, and only when, both A ⊆ B and B ⊆ A.

To continue the previous example, suppose that the student can make do with a cheap
smartphone, so she chooses not to buy an expensive one. Having made this choice, she
only needs to decide which laptop to buy in addition to the cheap smartphone. Let A denote
the set {cheap laptop and cheap smartphone, expensive laptop and cheap smartphone} of
options the student has not ruled out. Then we have A ⊆ B.

Set Operations
Sets can be combined in many different ways. Especially important are three operations:
the union, intersection, and the difference of any two sets A and B, as shown in Table 1.1.1.
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Table 1.1.1 Elementary set operations

Notation Name The set that consists of:

A ∪ B A union B all elements belonging to at least one of the sets A and B

A ∩ B A intersection B all elements belonging to both A and B

A \ B A minus B all elements belonging to set A, but not to B

In symbols:

A ∪ B = {x : x ∈ A or x ∈ B}
A ∩ B = {x : x ∈ A and x ∈ B}
A \ B = {x : x ∈ A and x /∈ B}

It is important to notice that the word “or” in mathematics is inclusive, in the sense that the
statement “x ∈ A or x ∈ B” allows for the possibility that x ∈ A and x ∈ B are both true.

E X A M P L E 1.1.1 Let A = {1, 2, 3, 4, 5} and B = {3, 6}. Find A ∪ B, A ∩ B, A \ B, and B \ A.3

Solution: A ∪ B = {1, 2, 3, 4, 5, 6}, A ∩ B = {3}, A \ B = {1, 2, 4, 5}, B \ A = {6}.

As an economic example, considering everybody who worked in California during the
year 2019. Let A denote the set of all those workers who have an income of at least $35 000
for the year; let B denote the set of all who have a net worth of at least $200 000. Then
A ∪ B would be those workers who earned at least $35 000 or who had a net worth of at
least $200 000, whereas A ∩ B are those workers who earned at least $35 000 and who also
had a net worth of at least $200 000. Finally, A \ B would be those who earned at least
$35 000 but whose net worth was less than $200 000.

If two sets A and B have no elements in common, they are said to be disjoint. Thus, the
sets A and B are disjoint if A ∩ B = ∅.

A collection of sets is often referred to as a family of sets. When considering a certain
family of sets, it is often natural to think of each set in the family as a subset of one particular
fixed setU, hereafter called the universal set. In the previous example, the set of all residents
of California in 2019 would be an obvious choice for a universal set.

If A is a subset of the universal set U, then according to the definition of difference, U \ A
is the set of elements of U that are not in A. This set is called the complement of A in U and
is denoted by Ac.4 When finding the complement of a set, it is very important to be clear
about which universal set is being used.

E X A M P L E 1.1.2 Let the universal set U be the set of all students at a particular university. Among
these, let F denote the set of female students, M the set of all mathematics students, C the set
of students in the university choir, B the set of all biology students, and T the set of all tennis

3 Here and throughout the book, we often write the examples in the form of exercises. We strongly
suggest that you first attempt to solve the problem, while covering the solution, and then gradually
reveal the proposed solution to see if you are right.

4 Other ways of denoting the complement of A include �A and Ã.
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players. Describe the members of the following sets: U \ M, M ∪ C, F ∩ T , M \ (B ∩ T),
and (M \ B) ∪ (M \ T).

Solution: U \ M consists of those students who are not studying mathematics, M ∪ C of
those students who study mathematics and/or are in the choir. The set F ∩ T consists of
those female students who play tennis. The set M \ (B ∩ T) has those mathematics students
who do not both study biology and play tennis. Finally, the last set (M \ B) ∪ (M \ T) has
those students who either are mathematics students not studying biology or mathematics
students who do not play tennis. Can you see that the last two sets must be equal?5

Venn Diagrams
When considering how different sets may be related, it is often both instructive and
extremely helpful to represent each set by a region in a plane. Diagrams constructed in this
manner are called Venn diagrams.6

For pairs of sets, the definitions discussed in the previous section can be illustrated as in
Fig. 1.1.1. By using the definitions directly, or by illustrating sets with Venn diagrams, one
can derive formulas that are universally valid regardless of which sets are being considered.
For example, the formula A ∩ B = B ∩ A follows immediately from the definition of the
intersection between two sets.

A < BC # A A > B

A

B

C

A A

B

A

B

A   B

Figure 1.1.1 Four Venn diagrams

When dealing with three general sets A, B, and C, it is important to draw the Venn
diagram so that all possible relations between an element and each of the three sets are
represented. In other words, as in Fig. 1.1.3, the following eight different regions should all
be nonempty:7

1. (A ∩ B) \ C 2. (B ∩ C) \ A 3. (C ∩ A) \ B 4. A \ (B ∪ C)

5. B \ (C ∪ A) 6. C \ (A ∪ B) 7. (A ∩ B) ∩ C 8. ((A ∪ B) ∪ C)c

5 For arbitrary sets M, B, and T , it is true that (M \ B) ∪ (M \ T) = M \ (B ∩ T). It should become
easier to verify this equality after you have studied the following discussion of Venn diagrams.

6 Named after the English mathematician John Venn (1834–1923), who was the first to use them
extensively.

7 That is, all should be nonempty unless something more is known about the relation between the
three sets. For example, one might have specified that the sets must be disjoint, meaning that A ∩
B ∩ C = ∅. In this case region (7) in Fig. 1.1.3 disappears.
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A B

C

Figure 1.1.2 Venn diagram for A ∩ (B ∪ C)

A B

C

(1)

(2)
(3)

(4)

(5)

(6)(8)

(7)

Figure 1.1.3 Venn diagram for three sets

Venn diagrams are particularly useful when limited to no more than three sets. For
instance, consider the following possible relationship between the three sets A, B, and C:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (1.1.2)

Using only the definitions in Table 1.1.1, it is somewhat difficult to verify that Eq. (1.1.2)
holds for all sets A, B, C. Using a Venn diagram, however, it is easily seen that the two sets
on the left- and right-hand sides of (1.1.2) are both represented by the region made up of
the three regions that are shaded in both Fig. 1.1.2 and Fig. 1.1.3. This confirms Eq. (1.1.2).
Similar reasoning allows one to prove that

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (1.1.3)

Using either the definition of intersection and union or appropriate Venn diagrams,
one can see that A ∪ (B ∪ C) = (A ∪ B) ∪ C and that A ∩ (B ∩ C) = (A ∩ B) ∩ C. Conse-
quently, in such cases it does not matter where the parentheses are placed, so they can be
dropped and the expressions written as A ∪ B ∪ C and A ∩ B ∩ C. That said, note that the
parentheses cannot generally be removed in the two expressions on the left-hand sides of
Eqs (1.1.2) and (1.1.3). This is because A ∩ (B ∪ C) is generally not equal to (A ∩ B) ∪ C,
and A ∪ (B ∩ C) is generally not equal to (A ∪ B) ∩ C. 8

Notice, however, that this way of representing sets in the plane becomes unmanageable
if four or more sets are involved. This is because a Venn diagram with, for example, four
sets would have to contain 24 = 16 regions.9

Georg Cantor
The founder of set theory is Georg Cantor (1845–1918), who was born in Saint Peters-
burg but moved to Germany at the age of eleven. He is regarded as one of history’s great
mathematicians. This is not because of his contributions to the development of the useful,
but relatively trivial, aspects of set theory outlined above. Rather, Cantor is remembered
for his profound study of infinite sets. Below we try to give just a hint of his theory’s
implications.

8 For practice, demonstrate this fact by considering the case where A = {1, 2, 3}, B = {2, 3}, and
C = {4, 5}, or by using a Venn diagram.

9 One can show that a Venn diagram with n sets would have to contain 2n regions.
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A collection of individuals are gathering in a room that has a certain number of chairs.
How can we find out if there are exactly as many individuals as chairs? One method would
be to count the chairs and count the individuals, and then see if they total the same num-
ber. Alternatively, we could ask all the individuals to sit down. If they all have a seat to
themselves and there are no chairs unoccupied, then there are exactly as many individuals
as chairs. In that case each chair corresponds to an individual and each individual corre-
sponds to a chair—i.e., there is a “one-to-one correspondence” between individuals and
chairs.

Generally mathematicians say that two sets of elements have the same cardinality, if
there is a one-to-one correspondence between the sets. This definition is also valid for
sets with an infinite number of elements. Cantor struggled for three years to prove a sur-
prising implication of this definition—that there are as many points in a square as there
are points on one of its edges of the square, in the sense that the two sets have the same
cardinality.10

E X E R C I S E S F O R S E C T I O N 1 . 1

1. Let A = {2, 3, 4}, B = {2, 5, 6}, C = {5, 6, 2}, and D = {6}.
(a) Determine which of the following six statements are true: 4 ∈ C; 5 ∈ C; A ⊆ B;

D ⊆ C; B = C; and A = B.

(b) List all members of each of the following eight sets: A ∩ B; A ∪ B; A \ B; B \ A;
(A ∪ B) \ (A ∩ B); A ∪ B ∪ C ∪ D; A ∩ B ∩ C; and A ∩ B ∩ C ∩ D.

2. Let F, M, C, B, and T be the sets in Example 1.1.2.

(a) Describe the following sets: F ∩ B ∩ C, M ∩ F, and ((M ∩ B) \ C) \ T .

(b) Write the following statements in set terminology:

(i) All biology students are mathematics students.

(ii) There are female biology students in the university choir.

(iii) No tennis player studies biology.

(iv) Those female students who neither play tennis nor belong to the university choir all study
biology.

3. A survey revealed that 50 people liked coffee and 40 liked tea. Both these figures include 35 who
liked both coffee and tea. Finally, ten did not like either coffee or tea. How many people in all
responded to the survey?

4. Make a complete list of all the different subsets of the set {a, b, c}. How many are there if the
empty set and the set itself are included? Do the same for the set {a, b, c, d}.

5. Determine which of the following formulas are true. If any formula is false, find a counter example
to demonstrate this, using a Venn diagram if you find it helpful.

10 In 1877, in a letter to German mathematician Richard Dedekind (1831–1916), Cantor wrote of
this result: “I see it, but I do not believe it.”
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(a) A \ B = B \ A (b) A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ C

(c) A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ C (d) A \ (B \ C) = (A \ B) \ C

6. Use Venn diagrams to prove that: (a) (A ∪ B)c = Ac ∩ Bc; and (b) (A ∩ B)c = Ac ∪ Bc

7. If A is a set with a finite number of distinct elements, let n(A) denote its cardinality, defined as
the number of elements in A. If A and B are arbitrary finite sets, prove the following:

(a) n(A ∪ B) = n(A) + n(B) − n(A ∩ B) (b) n(A \ B) = n(A) − n(A ∩ B)

8. A thousand people took part in a survey to reveal which newspaper, A, B, or C, they had read on
a certain day. The responses showed that 420 had read A, 316 had read B, and 160 had read C.
These figures include 116 who had read both A and B, 100 who had read A and C, and 30 who
had read B and C. Finally, all these figures include 16 who had read all three papers.

(a) How many had read A, but not B?

(b) How many had read C, but neither A nor B?

(c) How many had read neither A, B, nor C?

(d) Denote the complete set of all people in the survey by U. Applying the notation in Exercise 7,
we have n(A) = 420 and n(A ∩ B ∩ C) = 16, for example. Describe the numbers given in the
previous answers using the same notation. Why is

n(U \ (A ∪ B ∪ C)) = n(U) − n(A ∪ B ∪ C)?

9.SM [HARDER] The equalities proved in Exercise 6 are particular cases of the De Morgan’s laws. State
and prove these two laws:

(a) The complement of the union of any family of sets equals the intersection of all the sets’
complements.

(b) The complement of the intersection of any family of sets equals the union of all the sets’
complements.

1.2 Essentials of Logic
Mathematical models play a critical role in the empirical sciences, including modern eco-
nomics. This has been a useful development, but demands that practitioners exercise great
care. Otherwise errors in mathematical reasoning, which are all too easy to make, can easily
lead to nonsensical conclusions.

Here is a typical example of how faulty logic can lead to an incorrect answer. The
example involves square roots, which are briefly discussed after the example.

E X A M P L E 1.2.1 Suppose that we want to find all the values of x for which the following equality is
true: x + 2 = √

4 − x.
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Squaring each side of the equation gives (x + 2)2 = (
√

4 − x)2. Expanding the left-hand
side while using the definition of square root yields x2 + 4x + 4 = 4 − x. Rearranging this
last equation gives x2 + 5x = 0. Cancelling x results in x + 5 = 0, and therefore x = −5.

According to this reasoning, the answer should be x = −5. Let us check this. For
x = −5, we have x + 2 = −3. Yet

√
4 − x = √

9 = 3, so this answer is incorrect.11

This example highlights the dangers of routine calculation without adequate thought. It
may be easier to avoid similar mistakes after studying the structure of logical reasoning,
which we discuss in the rest of this subsection.

A Reminder about Square Roots
The square root

√
a of a nonnegative number a is the (unique) nonnegative number x such

that x2 = a. Thus, in particular,
√

9 = 3, because 3 is the only nonnegative number whose
square is 9.

Some older mathematical writing may claim that a positive number has two square roots,
one positive and the other negative. For instance,

√
64 could be either 8 or −8. Allowing

two values like this has now become obsolete, as it easily leads to confusion. For example,√
49 + √

25 could mean any of the four numbers 7 + 5, 7 − 5, −7 + 5, and −7 − 5. To
avoid such confusion, instead of

√
a we use the more explicit notation ±√

a to denote the
set {√a, −√

a} consisting, in case a > 0, of the two distinct solutions to x2 = a.
So remember that

√
a always denotes the unique nonnegative solution of the equation

x2 = a. Of course, if a is negative, then it has no square root at all (as long as we insist that
the square root must be a real number).

Propositions
Assertions that are either true or false are called statements, or propositions. Most of the
propositions in this book are mathematical ones, but other kinds may arise in daily life. “All
individuals who breathe are alive” is an example of a true proposition, whereas the assertion
“all individuals who breathe are healthy” is a false proposition. Note that if the words used
to express such an assertion lack precise meaning, it will often be difficult to tell whether
it is true or false. For example, the assertion “67 is a large number” is neither true nor false
without a precise definition of “large number”.

The assertion “x2 − 1 = 0” includes the variable x. For an assertion like this, by substi-
tuting various real numbers for the variable x, we can generate many different propositions,
some true and some false. For this reason we say that the assertion is an “open proposi-
tion”. In fact, the particular proposition x2 − 1 = 0 happens to be true if x = 1 or −1, but
not otherwise. Thus, an open proposition is not simply true or false. Instead, it is neither
true nor false until we choose a particular value for the variable. Or for several variables in
case of assertions like x2 + y2 = 1.

11 Note the wisdom of checking your answer whenever you think you have solved an equation. In
Example 1.2.4, below, we explain how the error arose.
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Implications
In order to keep track of each step in a chain of logical reasoning, it often helps to use
implication arrows. Suppose P and Q are two propositions such that whenever P is true,
then Q is necessarily true. In this case, we usually write

P =⇒ Q

This can be read as “P implies Q”, but it can also be read as “if P, then Q”; or “Q is a
consequence of P”; or “Q if P”. Furthermore, since in this case Q cannot be false while P
is true, the implication can also be read as “P only if Q”. The symbol ⇒ is an implication
arrow, which points in the direction of the logical implication. Thus P ⇒ Q can also be
written as Q ⇐ P.

E X A M P L E 1.2.2 Here are some examples of correct implications:12

(a) x > 2 ⇒ x2 > 4 (b) xy = 0 ⇒ (either x = 0 or y = 0)

(c) S is a square ⇒ S is a rectangle (d) She lives in Paris ⇒ She lives in France

In certain cases where the implication P ⇒ Q is valid, it may also be possible to draw a
logical conclusion in the other direction: Q ⇒ P (or P ⇐ Q). In such cases, we can write
both implications together in a single logical equivalence:

P ⇐⇒ Q

We then say that “P is equivalent to Q”. Because both “P if Q” and “P only if Q” are
true, we also say that “P if and only if Q”, which is often written as “P iff Q” for short.
Unsurprisingly, the symbol ⇔ is called an equivalence arrow.

In Example 1.2.2, we see that the implication arrow in (b) could be replaced with the
equivalence arrow, because it is also true that x = 0 or y = 0 implies xy = 0. Note, how-
ever, that no other implication in Example 1.2.2 can be replaced by the equivalence arrow,
because:

(a) even if x2 is larger than 4, it is not necessarily true that x is larger than 2 (for instance,
x might be −3);

(c) a rectangle is not necessarily a square;
(d) there are millions of people who live in France but not in Paris.

E X A M P L E 1.2.3 Here are three examples of correct equivalences:

(a) (x < −2 or x > 2) ⇐⇒ x2 > 4 (b) xy = 0 ⇐⇒ (x = 0 or y = 0)

(c) A ⊆ B ⇐⇒ (Bc ⊆ Ac)

12 Of course, in part (d) we are talking about Paris, France, rather than Paris, Texas, or Paris, Ontario.
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The Contrapositive Principle
Suppose P and Q are propositions such that the implication P ⇒ Q is valid. This means
that if P is true, then Q must also be true. From this it follows that if Q is false, then P is
also false. Therefore we have the implication (not Q ⇒ not P).

We have just shown that P ⇒ Q implies that (not Q ⇒ not P). Suppose we replace P by
not Q and Q by not P in this implication. The new implication that results is (not Q ⇒ not P)

implies (not not P ⇒ not not Q). But (not not P) is true if and only if (not P) is false, in
other words if and only if P is true. In the same way we can see that (not not Q) is the same
as Q.

Thus we have shown that P ⇒ Q implies (not Q ⇒ not P), and that (not Q ⇒ not P)

implies P ⇒ Q. We formalize this result as follows:

T H E C O N T R A P O S I T I V E P R I N C I P L E

The statement P ⇒ Q is logically equivalent to the statement

not Q ⇒ not P

This principle is often useful when proving mathematical results.

Necessity and Sufficiency
There are other commonly used ways of expressing the statement that proposition P implies
proposition Q, or the alternative statement that P is equivalent to Q. Thus, if proposition
P implies proposition Q, we say that P is a “sufficient condition” for Q; after all, for Q to
be true, it is sufficient that P be true. Accordingly, we know that if P is satisfied, then it is
certain that Q is also satisfied. In this case, because Q must necessarily be true if P is true,
we say that Q is a “necessary condition” for P. Hence:

N E C E S S A R Y A N D S U F F I C I E N T C O N D I T I O N S

(a) P ⇒ Q means both that P is a sufficient condition for Q and, equivalently,
that Q is a necessary condition for P.

(b) The corresponding verbal expression for P ⇔ Q is that P is a necessary
and sufficient condition for Q.

It is worth noting how important it is to distinguish between the three propositions “P is
a necessary condition for Q”, “P is a sufficient condition for Q”, and “P is a necessary and
sufficient condition for Q”. To emphasize this point, consider the propositions:

Living in France is a necessary condition for a person to live in Paris.



�

� �

�

14 C H A P T E R 1 / E S S E N T I A L S O F L O G I C A N D S E T T H E O R Y

and

Living in Paris is a necessary condition for a person to live in France.

The first proposition is clearly true. But the second is false,13 because it is possible to
live in France, but outside Paris. What is true, though, is that

Living in Paris is a sufficient condition for a person to live in France.

In the following pages, we shall repeatedly refer to necessary conditions, to sufficient
conditions, as well as to necessary and sufficient conditions—i.e., conditions that are both
necessary and sufficient. Understanding these three, and the differences between them, is
a necessary condition for understanding much of economic analysis. It is not a sufficient
condition, alas!

E X A M P L E 1.2.4 In solving Example 1.2.1, why did we need to check that the values we found were
actually solutions? To answer this, we must analyse the logical structure of our analysis.
Using implication arrows marked by letters, we can express the “solution” proposed there
as follows:

x + 2 = √
4 − x

(a)=⇒ (x + 2)2 = 4 − x

(b)=⇒ x2 + 4x + 4 = 4 − x

(c)=⇒ x2 + 5x = 0

(d)=⇒ x(x + 5) = 0

(e)=⇒ [x = 0 or x = −5]

Implication (a) is true, because a = b ⇒ a2 = b2 and (
√

a)2 = a. It is important to note,
however, that the implication cannot be replaced by an equivalence: if a2 = b2, then either
a = b or a = −b; it need not be true that a = b. Implications (b), (c), (d), and (e) are also
all true; moreover, all could have been written as equivalences, though this is not necessary
in order to find the solution. In the end, therefore, we have obtained a chain of implications
that leads from the equation x + 2 = √

4 − x to the proposition “x = 0 or x = −5”.
Because the implication (a) cannot be reversed, there is no corresponding chain of impli-

cations going in the opposite direction. All we have done is verify that if the number x
satisfies x + 2 = √

4 − x, then x must be either 0 or −5; no other value can satisfy the given
equation. However, we have not yet shown that either 0 or −5 really satisfies the equation.
Only after we try inserting 0 and −5 into the equation do we see that x = 0 is the only
solution.

Looking back at Example 1.2.4, we can now see that two errors were committed. First,
the implication x2 + 5x = 0 ⇒ x + 5 = 0 is wrong, because x = 0 is also a solution of x2 +
5x = 0. Second, it is logically necessary to check if 0 or −5 really satisfies the equation.

13 As is the proposition Living in France is equivalent to living in Paris.
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E X E R C I S E S F O R S E C T I O N 1 . 2

1. There are many other ways to express implications and equivalences, apart from those already
mentioned. Use appropriate implication or equivalence arrows to represent the following propo-
sitions:

(a) The equation 2x − 4 = 2 is fulfilled only when x = 3.

(b) If x = 3, then 2x − 4 = 2.

(c) The equation x2 − 2x + 1 = 0 is satisfied if x = 1.

(d) If x2 > 4, then |x| > 2, and conversely.

2. Determine which of the following formulas are true. If any formula is false, find a counter example
to demonstrate this, using a Venn diagram if you find it helpful.

(a) A ⊆ B ⇔ A ∪ B = B (b) A ⊆ B ⇔ A ∩ B = A

(c) A ∩ B = A ∩ C ⇒ B = C (d) A ∪ B = A ∪ C ⇒ B = C

(e) A = B ⇔ (x ∈ A ⇔ x ∈ B)

3. In each of the following implications, where x, y, and z are numbers, decide: (i) if the implication
is true; and (ii) if the converse implication is true.

(a) x = √
4 ⇒ x = 2 (b) (x = 2 and y = 5) ⇒ x + y = 7

(c) (x − 1)(x − 2)(x − 3) = 0 ⇒ x = 1 (d) x2 + y2 = 0 ⇒ x = 0 or y = 0

(e) (x = 0 and y = 0) ⇒ x2 + y2 = 0 (f) xy = xz ⇒ y = z

4. Consider the proposition 2x + 5 ≥ 13.

(a) Is the condition x ≥ 0 necessary, or sufficient, or both necessary and sufficient for the inequal-
ity to be satisfied?

(b) Answer the same question when x ≥ 0 is replaced by x ≥ 50.

(c) Answer the same question when x ≥ 0 is replaced by x ≥ 4.

5.SM [HARDER] If P is a statement, its negation is that statement which is true when P is false, and false
when P is true. For example, the negation of the statement 2x + 3y ≤ 8 is 2x + 3y > 8. For each
of the following six propositions, state the negation as simply as possible.

(a) x ≥ 0 and y ≥ 0.

(b) All x satisfy x ≥ a.

(c) Neither x nor y is less than 5.

(d) For each ε > 0, there exists a δ > 0 such that B is satisfied.

(e) No one can help liking cats.

(f) Everyone loves somebody some of the time.
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1.3 Mathematical Proofs
In mathematics, the most important results are called theorems. Constructing logically valid
proofs for these results often can be very complicated.14 In this book, we often omit formal
proofs of theorems. Instead, the emphasis is on providing a good intuitive grasp of what
the theorems tell us. That said, it is still useful to understand something about the different
types of proof that are used in mathematics.

Every mathematical theorem can be formulated as one or more implications of the
form

P =⇒ Q (∗)

where P represents a proposition, or a series of propositions, called premises (“what we
already know”), and Q represents a proposition or a series of propositions that are called
the conclusions (“what we want to know”).

Usually, it is most natural to prove a result of the type (∗) by starting with the premises P
and successively working forward to the conclusions Q; we call this a direct proof. Some-
times, however, it is more convenient to prove the implication P ⇒ Q by a contrapositive
or indirect proof. In this case, we begin by supposing that Q is not true, and on that basis
demonstrate that P cannot be true either. This is completely legitimate, because of the con-
trapositive principle set out in Section 1.2.

The method of indirect proof is closely related to an alternative one known as proof by
contradiction or reductio ad absurdum. According to this method, in order to prove that
P ⇒ Q, one assumes that P is true and Q is not, and develops an argument that leads to
something that cannot be true. So, since P and the negation of Q lead to something absurd,
it must be that whenever P holds, so does Q.

E X A M P L E 1.3.1 Show that −x2 + 5x − 4 > 0 ⇒ x > 0.

Solution: We can use any of the three methods of proof:

(a) Direct proof : Suppose −x2 + 5x − 4 > 0. Adding x2 + 4 to each side of the inequality
gives 5x > x2 + 4. Because x2 + 4 ≥ 4, for all x, we have 5x > 4, and so x > 4/5. In
particular, x > 0.

(b) Contrapositive proof : Suppose x ≤ 0. Then 5x ≤ 0 and so −x2 + 5x − 4, as a sum of
three nonpositive terms, is itself nonpositive.

(c) Proof by contradiction: Assume that −x2 + 5x − 4 > 0 and x ≤ 0 are true simulta-
neously. Then, as in the first step of the direct proof, we have 5x > x2 + 4. But since
5x ≤ 0, as in the first step of the contrapositive proof, we are forced to conclude that 0 >

14 For example, the “four-colour theorem” considers any map that divides a plane into several regions,
and the problem of colouring these regions in order that no two adjacent regions have the same
colour. As its name suggests, the theorem states that at most four colours are needed. The result
was conjectured in the mid 19th century. Yet proving this involved checking hundreds of thousands
of different cases. Not until the 1980s did a sophisticated computer program make possible a proof
that mathematicians now generally accept as correct.
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x2 + 4. Since the latter cannot possibly be true, we have proved that −x2 + 5x − 4 > 0
and x ≤ 0 cannot be both true, so that −x2 + 5x − 4 > 0 ⇒ x > 0, as desired.

Deductive and Inductive Reasoning
The methods of proof just outlined are all examples of deductive reasoning—that is, reason-
ing based on consistent rules of logic. In contrast, many branches of science use inductive
reasoning. This process draws general conclusions based only on a few (or even many)
observations. For example, the statement that “the price level has increased every year
for the last n years; therefore, it will surely increase next year too” demonstrates induc-
tive reasoning. This inductive approach is of fundamental importance in the experimental
and empirical sciences, despite the fact that conclusions based upon it never can be abso-
lutely certain. Indeed, in economics, such examples of inductive reasoning (or the implied
predictions) often turn out to be false, with hindsight.

In mathematics, inductive reasoning is not recognized as a form of proof. Suppose, for
instance, that students in a geometry course are asked to show that the sum of the angles
of a triangle is always 180 degrees. Suppose they painstakingly measure as accurately
as possible, say, one thousand different triangles, and demonstrate that in every case the
sum of the angles is 180 degrees. This would not prove the assertion. At best, it would
represent a very good indication that the proposition is true, yet it is not a mathemati-
cal proof. Similarly, in business economics, the fact that a particular company’s profits
have risen for each of the past 20 years is no guarantee that they will rise once again this
year.

E X E R C I S E S F O R S E C T I O N 1 . 3

1. Which of the following statements are equivalent to the (dubious) statement: “If inflation
increases, then unemployment decreases”?

(a) For unemployment to decrease, inflation must increase.

(b) A sufficient condition for unemployment to decrease is that inflation increases.

(c) Unemployment can only decrease if inflation increases.

(d) If unemployment does not decrease, then inflation does not increase.

(e) A necessary condition for inflation to increase is that unemployment decreases.

2. Analyse the following epitaph, using logic:

Those who knew him, loved him. Those who loved him not, knew him not.

Might this be a case where poetry is better than logic?

3. Use the contrapositive principle to show that if x and y are integers and xy is an odd number, then
x and y are both odd.
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1.4 Mathematical Induction
Unlike inductive reasoning, mathematical induction is a form of argument that relies
entirely on logic. It sees widespread use in proving formulas and even theorems that
involve natural numbers. Consider, for example, the sum of the first n odd numbers. A
little calculation shows that for n = 1, 2, 3, 4, 5 one has

1 = 1 = 12

1 + 3 = 4 = 22

1 + 3 + 5 = 9 = 32

1 + 3 + 5 + 7 = 16 = 42

1 + 3 + 5 + 7 + 9 = 25 = 52

This suggests a general pattern, with the sum of the first n odd numbers equal
to n2:

P(n) : 1 + 3 + 5 + · · · + (2n − 1) = n2 (∗)

We call Eq. (∗) the induction hypothesis, a proposition that we denote by P(n). To
prove that P(n) really is valid for general n, we can proceed as follows. First, start
with the base case, denoted by P(1), which states that the formula (∗) is correct when
n equals 1.

Next, the key induction step involves showing that, for any k ≥ 1, if P(k) is true, then
it follows that P(k + 1) is true. In other words, one proves that P(k) ⇒ P(k + 1). To do
this, simply add the (k + 1)th odd number, which is 2k + 1, to each side of (∗). This
gives

1 + 3 + 5 + · · · + (2k − 1) + (2k + 1) = k2 + (2k + 1) = (k + 1)2

But this is precisely P(k + 1) in which: (i) the left-hand side of formula (∗) ends, not with
the kth odd number 2k − 1, but with the (k + 1)th odd number 2k + 1; (ii) the right-hand
side of (∗) has been “stepped up” from k2 to (k + 1)2. This completes the proof of the
“induction step” showing that, if P(k) holds because the sum of the first k odd numbers
really is k2, then P(k + 1) holds because the sum of the first k + 1 odd numbers equals
(k + 1)2.

Given the base case stating that formula (∗) is valid for n = 1, this “induction step”
implies that (∗) is valid for general n. This is because, if (∗) holds for n = 1, the induction
step we have just shown implies that it holds also for n = 2; that if it holds for n = 2,
then it also holds for n = 3; . . . ; that if it holds for n, then it holds also for n + 1; and
so on.

A proof of this type is called a proof by induction.15 It requires showing: (i) first that the
formula is indeed valid in the base case when n = 1; (ii) second that, if the formula is valid
when n = k, then it is also valid when n = k + 1, which is the induction step. It follows by
induction that the formula is valid for all natural numbers n.

15 Arguments by induction can be traced as far back as ancient Greek philosophers and mathemati-
cians, including Plato and Euclid.
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E X A M P L E 1.4.1 Prove by induction that, for all positive integers n,

3 + 32 + 33 + 34 + · · · + 3n = 1
2 (3n+1 − 3) (∗∗)

Solution: In the base case when n = 1, both sides are 3. For the induction step, suppose
that (∗∗) is true for n = k. Then adding the next term 3k+1 to each side of (∗∗) gives

3 + 32 + 33 + 34 + · · · + 3k + 3k+1 = 1
2 (3k+1 − 3) + 3k+1 = 1

2 (3k+2 − 3)

But this is precisely (∗∗) restated for n = k + 1 instead of k. So, by induction, (∗∗) is true
for all n.

Following these examples, the general structure of an induction proof can be explained
as follows. The aim is to prove that a logical statement, for instance a mathematical formula
P(n) that depends on n, is true for all natural numbers n. In the two previous examples, the
respective statements P(n) were

P(n) : 1 + 3 + 5 + · · · + (2n − 1) = n2

and

P(n) : 3 + 32 + 33 + 34 + · · · + 3n = 1
2 (3n+1 − 3)

The steps required in each proof are as follows. First, as the base case, verify that P(1) is
valid, which means that the formula is correct for n = 1. Second, prove that for each natural
number k, if P(k) is true, then it follows that P(k + 1) must be true. Here, the fact that P(k)
is true is called the induction hypothesis, and the move from P(k) to P(k + 1) is called the
induction step of the proof. When P(1) is true and the induction step has been proved for
an arbitrary natural number k, we can conclude, by induction, that statement P(n) is true
for all n.

The general principle can be formulated as follows:

T H E P R I N C I P L E O F M A T H E M A T I C A L I N D U C T I O N

For each natural number n, let P(n) denote a statement that depends on n. Sup-
pose that:

(a) P(1) is true; and

(b) for each natural number k, if P(k) is true then P(k + 1) is true.

It follows that P(n) is true for all natural numbers n.

The principle of mathematical induction seems intuitively obvious. If the truth of P(k)
for each k implies the truth of P(k + 1), then because P(1) is true, it follows that P(2) must
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be true, which, in turn, means that P(3) is true, and so on indefinitely.16 That is, we have
established the infinite chain of implications

P(1) ⇒ P(2) ⇒ P(3) ⇒ · · · ⇒ P(k) ⇒ P(k + 1) ⇒ · · ·
The principle of mathematical induction can easily be extended to the case when a statement
P(n) is true for each integer greater than or equal to an arbitrary integer n0. Indeed, suppose
we can prove that P(n0) is valid and moreover that, for each k ≥ n0, if P(k) is true, then
P(k + 1) is true. It follows that P(n) is true for all n ≥ n0.

E X E R C I S E S F O R S E C T I O N 1 . 4

1. Prove by induction that for all natural numbers n,

1 + 2 + 3 + · · · + n = 1
2

n(n + 1) (∗)

2. Prove by induction that

1
1 · 2

+ 1
2 · 3

+ 1
3 · 4

+ · · · + 1
n(n + 1)

= n
n + 1

(∗∗)

3. After noting that the sum 13 + 23 + 33 = 36 is divisible by 9, prove by induction that the sum
n3 + (n + 1)3 + (n + 2)3 of three consecutive cubes is always divisible by 9.

4. Let P(n) be the statement:

Any collection of n people in one room all have the same income.

Find what is wrong with the following “induction argument”:

P(1) is obviously true. Suppose P(n) is true for some natural number n. We will then prove that
P(n + 1) is true. So take any collection of n + 1 people in one room and send one of them outside.
The remaining n people all have the same income by the induction hypothesis. Bring the person
back inside and send another outside instead. Again the remaining people will have the same
income. But then all the n + 1 people will have the same income. By induction, this proves that
all n people have the same income.

R E V I E W E X E R C I S E S

1. Let A = {1, 3, 4}, B = {1, 4, 6}, C = {2, 4, 3}, and D = {1, 5}. Find A ∩ B; A ∪ B; A \ B; B \ A;
(A ∪ B) \ (A ∩ B); A ∪ B ∪ C ∪ D; A ∩ B ∩ C; and A ∩ B ∩ C ∩ D.

16 Here is an analogy: Consider climbing a ladder with an infinite number of steps. Suppose you can
climb the first step and suppose, moreover, that after each step, you can always climb the next.
Then you are able to climb up to any step. Literally, induction arguments prove general statements
step by step!
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2. Let the universal set be � = {1, 2, 3, 4, . . . , 11}, and define A = {1, 4, 6} and B = {2, 11}. Find
A ∩ B; A ∪ B; � \ B; Ac.

3.SM A liberal arts college has one thousand students. The numbers studying various languages are:
English 780; French 220; and Spanish 52. These figures include 110 who study English and
French, 32 who study English and Spanish, 15 who study French and Spanish. Finally, all these
figures include ten students taking all three languages.

(a) How many study English and French, but not Spanish?

(b) How many study English, but not French?

(c) How many study no languages?

4.SM Let x and y be real numbers. Consider the following implications and decide in each case: (i) if
the implication is true; and (ii) if the converse implication is true.

(a) x = 5 and y = −3 ⇒ x + y = 2 (b) x2 = 16 ⇒ x = 4

(c) (x − 3)2(y + 2) is a positive number ⇒ y is greater than −2 (d) x3 = 8 ⇒ x = 2

5. [HARDER] (If you are not yet familiar with inequalities and with nth powers, see Sections 2.2 and
2.6 in Chapter 2.) Prove the following result, known as Bernoulli’s inequality:17 for every real
number x ≥ −1 and every natural number n, one has (1 + x)n ≥ 1 + nx.

17 Named after Jacob Bernoulli (1654–1705), one of a large extended family of prominent mathe-
maticians and other scholars.
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A L G E B R A

God made the integers, all else is the work of Man.
—Leopold Kronecker1

The main topic covered in this chapter is elementary algebra. Nevertheless, we also briefly
consider a few other topics that you might find the need to review. Indeed, tests reveal

that even students with a good background in mathematics often benefit from a brief review
of what they had learned in the past. These students should browse through the material in
this chapter, and do some of the less simple exercises. Students with a weaker background
in mathematics, however, or those who have been away from mathematics for a long time,
should read the text carefully and then do most of the exercises. Finally, those students who
have considerable difficulties with this chapter should turn to a more elementary book on
algebra.

2.1 The Real Numbers
We start by reviewing some important facts and concepts concerning numbers. The basic
numbers are the natural numbers:

1, 2, 3, 4, . . .

also called positive integers. Of these, the multiples of 2 are the even numbers 2, 4,
6, 8, . . . , whereas 1, 3, 5, 7, . . . are the odd numbers. Though familiar, such numbers
are in reality rather abstract and advanced concepts. Civilization crossed a significant
threshold when it grasped the idea that a flock of four sheep and a collection of four
stones have something in common, namely “fourness”. This idea came to be represented
by symbols such as the primitive :: (still used on dominoes, dice, and playing cards), the
Roman numeral IV, and eventually the modern 4. Most children grasp this key notion

1 Attributed; circa 1886.
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even while quite young, and then continually refine it as they develop their mathematical
skills.

The positive integers, together with 0 and the negative integers −1, −2, −3, −4, . . . ,
make up the integers, which are

0, ±1, ±2, ±3, ±4, . . .

They can be represented on a number line like the one shown in Fig. 2.1.1, where the arrow
gives the direction in which the numbers increase.

25 24 23 22 21 0 1 2 3 4 5

Figure 2.1.1 The number line

The rational numbers are those like 3/5 that can be written in the form a/b, where a and
b are both integers and b �= 0. Any integer n is also a rational number, because n = n/1.
Other examples of rational numbers are

1
2

,
11
70

,
125

7
, −10

11
, 0 = 0

1
, −19, −1.26 = −126

100

The rational numbers can also be represented on the number line. Suppose that we first
mark 1/2 and all the multiples of 1/2. Next we mark 1/3 and all the multiples of 1/3, then
all the multiples of 1/4, and so forth. You can be excused for thinking that “finally” there
will be no gaps left in which one can find other points on the line. But in fact this is quite
wrong. The ancient Greeks already understood that “holes” would remain in the number
line even after all the rational numbers had been marked off. For instance, there are no
integers p and q such that

√
2 = p/q. Hence,

√
2 is not a rational number.2

The rational numbers are therefore insufficient for measuring all possible lengths, let
alone areas and volumes. This deficiency can be remedied by extending the concept of
numbers to allow for the so-called irrational numbers. As explained below, this extension
can be carried out rather naturally by using decimal notation.

The way most people write numbers today is called the decimal, or base 10 system. It is
a positional system with 10 as the base number. Every natural number can be written using
only the symbols, 0, 1, 2, . . . , 9, which are called (decimal) digits.3 The positional decimal
system uses a list of decimal digits to represent a sum of powers of 10. For example,

1 984 = 1 · 103 + 9 · 102 + 8 · 101 + 4 · 100

Each natural number can be uniquely expressed in this manner. With the use of the signs
+ and −, all integers, positive or negative, can be written in the same way. Decimal points
also enable us to express rational numbers that are not natural numbers. For example,

3.1415 = 3 + 1
101

+ 4
102

+ 1
103

+ 5
104

2 The first full proof that has survived appeared in Euclid’s Elements, dating from around the year
300 BCE.

3 You may recall that a digit is either a finger or a thumb, and that most humans and indeed other
primates have ten digits.
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Rational numbers that can be written exactly using only a finite number of decimal places
are called finite decimal fractions.

Each finite decimal fraction is a rational number, but not every rational number can
be written as a finite decimal fraction. We must also allow infinite decimal fractions
such as

100
3

= 33.333 . . .

where the three dots at the end indicate that the digit 3 is repeated indefinitely.
If the decimal fraction is a rational number, then it will always be periodic or recurring

—that is, after a certain place in the decimal expansion, it either stops or continues by
repeating indefinitely a finite sequence of digits. For example,

11
70

= 0.1 571428︸ ︷︷ ︸ 571428︸ ︷︷ ︸ . . .

using notation which indicates that the sequence 571428 of six successive digits is repeated
infinitely often.

Our definition of a real number follows from the previous discussion. We define a
real number as an arbitrary infinite decimal fraction. Hence, a real number is of the form
x = ±m.α1α2α3 . . . , where m is a nonnegative integer, and for each natural number n, the
symbol αn indicates a decimal digit that belongs to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.4

We have already identified the periodic decimal fractions with the rational numbers.
In addition, there are infinitely many new numbers given by nonperiodic decimal frac-
tions. These new numbers are called irrational numbers. Examples include the numbers√

2, −√
5, π, 2

√
2, and 0.12112111211112 . . . .5

We mentioned earlier that each rational number can be represented by a unique point on
the number line. Even after all the rational numbers have been positioned on this line, there
are still some “holes” which can be “filled up” with irrational numbers. Thus, an unbroken
and endless straight line with an origin and a positive unit of length constitutes a satisfactory
model for the real numbers. We frequently state that there is a one-to-one correspondence
between the real numbers and the points on a number line. For this reason, one often speaks
of the “real line” rather than the “number line”.

Both the set of rational numbers as well as the complementary set of irrational numbers
are said to be “dense” in the number line. This means that between any two different real
numbers, no matter how close they are to each other, we can always find both a rational and
an irrational number—in fact, we can always find infinitely many of each.

When applied to the real numbers, each of the four basic arithmetic operations
of addition, subtraction, multiplication and division always results in a unique real number.
The only exception is that we cannot divide by 0: in words usually attributed to the

4 It is worth noting that any finite decimal fraction (except 0) can also be written as an infinite decimal
fraction with a tail entirely of repeated 9s. For instance, 5.347 = 5.346999 . . . .

5 In general, mathematicians find it very difficult to show that a number which seems evidently irra-
tional really is. For example, whereas it has been known since the year 1776 that π is irrational, it
took until 1927 to determine that 2

√
2 is irrational. For many other numbers the challenge of proving

their irrationality remains.
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American stand-up comedian Steven Wright, “Black holes are where God divided by
zero.”

D I V I S I O N B Y Z E R O

The ratio a/0 is not defined for any real number a.

This exception is very important; it should not be confused with the fact that 0/b = 0
for all b �= 0. Notice especially that 0/0 is not defined as any real number. For example,
if a car requires 60 litres of fuel to go 600 kilometres, then its fuel consumption is
60/600 = 10 litres per 100 kilometres. However, if told that a car uses 0 litres of fuel to go
0 kilometres, we know nothing about its fuel consumption; 0/0 is completely undefined.

E X E R C I S E S F O R S E C T I O N 2 . 1

1. Which of the following statements are true?

(a) 1984 is a natural number. (b) −5 is to the right of −3 on the number line.

(c) −13 is a natural number. (d) There is no natural number that is not rational.

(e) 3.1415 is not rational. (f) The sum of two irrational numbers is irrational.

(g) −3/4 is rational. (h) All rational numbers are real.

2. Explain why the infinite decimal expansion

1.01001000100001000001 . . .

is not a rational number.

2.2 Integer Powers
You should recall that we often write 34 instead of the fourfold product 3 · 3 · 3 · 3. Further-
more, the number 1

2 · 1
2 · 1

2 · 1
2 · 1

2 can be written as
( 1

2

)5
, and (−10)3 is the triple product

(−10)(−10)(−10) = −1000. Indeed, if a is any real number and n is any natural number,
then an is defined by

an = a · a · . . . · a︸ ︷︷ ︸
n factors

The expression an is called the nth power of a; here a is the base, and n is the exponent.
For example, we have a2 = a · a, and x4 = x · x · x · x. When a = p/q and n = 5 we have(

p
q

)5

= p
q

· p
q

· p
q

· p
q

· p
q

By convention, the first power a1 = a is a “product” with only one factor.
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We usually drop the multiplication sign if this is unlikely to create misunderstanding.
For example, we write abc instead of a · b · c, but it is safest to keep the multiplication sign
in expressions with decimal points like 1.053 = 1.05 · 1.05 · 1.05.

For any real number a �= 0, we also define its “zeroth” power a0 = 1. Thus, 50 = 1;
(−16.2)0 = 1; and (x · y)0 = 1, if x · y �= 0. But in case a = 0, we do not assign a numerical
value to a0: the expression 00 is undefined.

We also need to define powers with negative exponents. What do we mean by 3−2? It
turns out that the sensible definition is to set 3−2 equal to 1/32 = 1/9. In general,

a−n = 1
an

whenever n is a natural number and a �= 0. In particular, a−1 = 1/a. In this way we have
defined ax for all integers x, regardless of whether x is positive, negative, or zero.

Properties of Powers
There are some rules for powers that you really must not only know by heart, but also
understand why they are true. The two most important are:

P R O P E R T I E S O F P O W E R S

For any real number a, and any integer numbers r and s:

ar · as = ar+s

while
(ar)s = ars

Note carefully what these rules say. According to the first rule, powers with the same
base are multiplied by adding the exponents. For example,

a3 · a5 = a · a · a︸ ︷︷ ︸
3 factors

· a · a · a · a · a︸ ︷︷ ︸
5 factors

= a · a · a · a · a · a · a · a︸ ︷︷ ︸
3 + 5 = 8 factors

= a8 = a3 + 5

Here is an example of the second rule:

(a2)4 = a · a︸︷︷︸
2 factors

· a · a︸︷︷︸
2 factors

· a · a︸︷︷︸
2 factors

· a · a︸︷︷︸
2 factors︸ ︷︷ ︸

4 factors

= a · a · a · a · a · a · a · a︸ ︷︷ ︸
4 · 2 = 8 factors

= a8 = a2·4

Division of two powers with the same nonzero base goes like this:

ar ÷ as = ar

as
= ar 1

as
= ar · a−s = ar−s
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Thus we divide two powers with the same base by subtracting the exponent in the
denominator from that in the numerator.6 For example, a3 ÷ a5 = a3−5 = a−2.

Finally, note that

(ab)r = ab · ab · . . . · ab︸ ︷︷ ︸
r factors

= a · a · . . . · a︸ ︷︷ ︸
r factors

· b · b · . . . · b︸ ︷︷ ︸
r factors

= arbr

and

(a
b

)r = a
b

· a
b

· . . . · a
b︸ ︷︷ ︸

r factors

=
r factors︷ ︸︸ ︷

a · a · . . . · a
b · b · . . . · b︸ ︷︷ ︸

r factors

= ar

br
= arb−r

These rules can be extended to cases where there are several factors. For instance,

(abcde)r = arbrcrdrer

We saw that (ab)r = arbr. What about (a + b)r? One of the most common errors com-
mitted in elementary algebra is to equate this to ar + br. For example, (2 + 3)3 = 53 = 125,
but 23 + 33 = 8 + 27 = 35. Thus, in general, (a + b)r �= ar + br.

E X A M P L E 2.2.1 Simplify the expressions:

(a) xpx2p, where p is an integer (b) ts ÷ ts−1, where t �= 0 and s is an integer

(c) a2b3a−1b5, where a �= 0 (d)
tptq−1

trts−1
, where t �= 0 and p, q, r, s are integers

Solution:

(a) xpx2p = xp+2p = x3p

(b) ts ÷ ts−1 = ts−(s−1) = ts−s+1 = t1 = t

(c) a2b3a−1b5 = a2a−1b3b5 = a2−1b3+5 = a1b8 = ab8

(d) Finally,

tp · tq−1

tr · ts−1
= tp+q−1

tr+s−1
= tp+q−1−(r+s−1) = tp+q−1−r−s+1 = tp+q−r−s

E X A M P L E 2.2.2 If x−2y3 = 5, compute x−4y6, x6y−9, and x2y−3 + 2x−10y15.

Solution: First, note that x−2y3 = 5 is only possible if x �= 0 and y �= 0. Now, in computing
x−4y6, how can we make use of the assumption that x−2y3 = 5? A moment’s reflection
might lead you to see that (x−2y3)2 = x−4y6, and hence x−4y6 = 52 = 25. Similarly,

x6y−9 = (x−2y3)−3 = 5−3 = 1/125

6 An important motivation for introducing the definitions a0 = 1 and a−n = 1/an is that we want
the properties of powers to be valid for negative and zero exponents as well as for positive ones.
For example, we want ar · as = ar+s to be valid when r = 5 and s = 0. This requires that a5 · a0 =
a5+0 = a5, so we must choose a0 = 1. If an · am = an+m is to be valid when m = −n, we must have
an · a−n = an+(−n) = a0 = 1. Because an · (1/an) = 1, we must define a−n to be 1/an.
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and
x2y−3 + 2x−10y15 = (x−2y3)−1 + 2(x−2y3)5 = 5−1 + 2 · 55 = 6250.2

E X A M P L E 2.2.3 It is easy to make mistakes when dealing with powers. The following examples high-
light some common sources of confusion.

(a) There is an important difference between (−10)2 = (−10)(−10) = 100, and −102 =
−(10 · 10) = −100. The square of minus 10 is not equal to minus the square of 10.

(b) Note that (2x)−1 = 1/(2x). Here the product 2x is raised to the power of −1. On the
other hand, in 2x−1 only x is raised to the power −1, so 2x−1 = 2 · (1/x) = 2/x.

(c) The volume of a ball with radius r is 4
3πr3. What will the volume be if the radius is

doubled? The new volume is

4
3
π(2r)3 = 4

3
π(2r)(2r)(2r) = 4

3
π8r3 = 8

(
4
3
πr3

)

so the volume is 8 times the initial one. If we made the mistake of “simplifying” (2r)3

to 2r3, the result would imply only a doubling of the volume; this should be contrary
to common sense.

Percentages and Compound Interest
Powers are used in practically every branch of applied mathematics, including economics.
To illustrate their use, recall how they are needed to calculate compound interest.

First, recall that the percentage 1% means one in a hundred, or 0.01. So 23%,
for example, is 23 · 0.01 = 0.23. Then we can calculate 23% of 4000 as either
4000 · 23/100 = 920 or, equivalently, as 4000 · 0.23 = 920. It may be also be worth
pointing out a subtlety of percentages that is often overlooked by those who know
rather little mathematics. This is that, for example, it takes an increase of 100% to
reverse an earlier decrease of 50%, and a decrease of 50% to offset an earlier increase
of 100%.7

Now suppose you deposit $1 000 in a bank account paying 8% interest at the end of
each year. After one year you will have earned $1 000 · 0.08 = $80 in interest, so the total
amount in your bank account will be $1 080. This can be rewritten as

1000 + 1000 · 8
100

= 1000
(

1 + 8
100

)
= 1000 · 1.08

Suppose this new amount of $1 080 is left in the bank for another year at an interest
rate of 8%. After a second year, the extra interest will be $1 000 · 1.08 · 0.08. So the total
amount will have grown to

1000 · 1.08 + (1000 · 1.08) · 0.08 = 1000 · 1.08(1 + 0.08) = 1000 · (1.08)2

7 Compare review exercise 20 at the end of the chapter.
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Extending this argument in an obvious way, we see that each year the amount will
increase by the factor 1.08, and that at the end of t years it will have grown to $1 000 ·
(1.08)t.

If the original amount is $K and the interest rate is p% per year, by the end of the first
year, the amount will be K + K · p/100 = K(1 + p/100) dollars. The growth factor per
year is thus 1 + p/100. In general, after t (whole) years, the original investment of $K will
have grown to an amount

K
(

1 + p
100

)t

when the interest rate is p% per year and interest is added to the capital every year—that is,
there is compound interest.

This example illustrates a general principle:

E X P O N E N T I A L G R O W T H

A quantity K which increases by p% per year will have increased after t years to

K
(

1 + p
100

)t

Here 1 + p/100 is called the growth factor for a growth of p%.

If you see an expression like (1.08)t you should immediately be able to recognize
it as the amount to which $1 has grown after t years when the interest rate is 8% per
year. How should you interpret (1.08)0? Suppose you deposit $1 at 8% per year, and
leave the amount in the account for 0 years. Then you still have only $1, because there
has been no time to accumulate any interest. This explains why (1.08)0 must necessarily
equal 1.8

E X A M P L E 2.2.4 A new car has been bought for $30 000 and is assumed to decrease in value (depre-
ciate) by 15% per year over a six-year period. What is its value after six years?

Solution: After one year its value is down to

30 000 − 30 000 · 15
100

= 30 000 ·
(

1 − 15
100

)
= 30 000 · 0.85 = 25 500

After two years its value is $30 000 · (0.85)2 = $21 675, and so on. After six years we
realize that its value must be $30 000 · (0.85)6 ≈ $11 314.

8 Note that 1000 · (1.08)5 is the amount you will have in your account after five years if you invest
$1 000 at 8% interest per year. Using a calculator shows that you will have approximately $1 469.33.
A rather common mistake is to put 1000 · (1.08)5 = (1000 · 1.08)5 = (1080)5. This is one trillion
(1012) times the right answer!
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This example illustrates a general principle:

E X P O N E N T I A L D E C L I N E

A quantity K which decreases by p% per year will have shrunk after t years to

K
(

1 − p
100

)t

Here 1 − p/100 is the growth factor that results from a decline of p% per year.
(Note that a growth factor that is less than 1 indicates shrinkage.)

Do We Really Need Negative Exponents?
How much money should you have deposited in a bank five years ago in order to have $1 000
today, given that the interest rate has been 8% per year over this period? If we call this
amount x, the requirement is that x · (1.08)5 must equal $1 000, or that x · (1.08)5 = 1000.
Dividing by 1.085 on both sides yields

x = 1000
(1.08)5

= 1000 · (1.08)−5

which is approximately $681. Thus, $(1.08)−5 is what you should have deposited five years
ago in order to have $1 today, given the constant interest rate of 8%.

In general, $P(1 + p/100)−t is what you should have deposited t years ago in order to
have $P today, if the interest rate has been p% every year.

E X E R C I S E S F O R S E C T I O N 2 . 2

1. Compute the following numbers: (a) 103; (b) (−0.3)2; (c) 4−2; and (d) (0.1)−1.

2. Write as powers of 2 the following numbers: (a) 4; (b) 1; (c) 64; and (d) 1/16.

3. Write as powers the following numbers:

(a) 15 · 15 · 15 (b)
(− 1

3

) (− 1
3

) (− 1
3

)
(c) 1

10 (d) 0.0000001

(e) t t t t t t (f) (a − b)(a − b)(a − b) (g) a a b b b b (h) (−a)(−a)(−a)

4. Expand and simplify the following expressions:

(a) 25 · 25 (b) 38 · 3−2 · 3−3 (c) (2x)3 (d) (−3xy2)3

(e)
p24p3

p4p
(f)

a4b−3

(a2b−3)2
(g)

34(32)6

(−3)1537
(h)

pγ (pq)σ

p2γ+σ qσ−2
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5. Expand and simplify the following expressions:

(a) 20 · 21 · 22 · 23 (b)
(

4
3

)3

(c)
42 · 62

33 · 23

(d) x5x4 (e) y5y4y3 (f) (2xy)3

(g)
102 · 10−4 · 103

100 · 10−2 · 105
(h)

(k2)3k4

(k3)2
(i)

(x + 1)3(x + 1)−2

(x + 1)2(x + 1)−3

6. The formula for the surface area of a sphere with radius r is 4πr2.

(a) By what factor will the surface area increase if the radius is tripled?

(b) If the radius increases by 16%, by how many % will the surface area increase?

7. Suppose that a and b are positive, while m and n are integers. Which of the following equalities
are true and which are false?

(a) a0 = 0 (b) (a + b)−n = 1/(a + b)n (c) am · am = a2m

(d) am · bm = (ab)2m (e) (a + b)m = am + bm (f) an · bm = (ab)n+m

8. Complete the following implications:

(a) xy = 3 =⇒ x3y3 = . . . (b) ab = −2 =⇒ (ab)4 = . . .

(c) a2 = 4 =⇒ (a8)0 = . . . (d) n integer implies (−1)2n = . . .

9. Compute the following: (a) 13% of 150; (b) 6% of 2400; and (c) 5.5% of 200.

10. Give economic interpretations to each of the following expressions and then use a calcula-
tor to find the approximate values: (a) $50 · (1.11)8; (b) €10 000 · (1.12)20 ; and (c) £5 000 ·
(1.07)−10.

11. A box containing five balls costs €8.50. If the balls are bought individually, they cost €2.00 each.
How much cheaper is it, in percentage terms, to buy the box as opposed to buying five individual
balls?

12. (a) £12 000 is deposited in an account earning 4% interest per year. What is the amount after 15
years?

(b) If the interest rate is 6% each year, how much money should you have deposited in a bank
five years ago in order to have £50 000 today?

13. A quantity increases by 25% each year for three years. How much is the combined percentage
growth p over the three-year period?

14. A firm’s annual profit increased by 20% between the years 2010 and 2011, but then it decreased
by 17% between the years 2011 and 2012.

(a) Which of the two years 2010 and 2012 had the higher annual profit?

(b) What percentage decrease in profits from 2011 to 2012 would imply that annual profits were
equal in the two years 2010 and 2012?
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2.3 Rules of Algebra
You are no doubt already familiar with the most common rules of algebra. We have already
used some in this chapter. Nevertheless, it may be useful to recall those that are most
important.

R U L E S O F A L G E B R A

If a, b, and c are arbitrary numbers, then:

(a) a + b = b + a (b) (a + b) + c = a + (b + c)

(c) a + 0 = a (d) a + (−a) = 0

(e) ab = ba (f) (ab)c = a(bc)

(g) 1 · a = a (h) aa−1 = 1 for a �= 0

(i) (−a)b = a(−b) = −ab (j) (−a)(−b) = ab

(k) a(b + c) = ab + ac (l) (a + b)c = ac + bc

E X A M P L E 2.3.1 These rules are used in the following equalities:

(a) 5 + x2 = x2 + 5 (b) (a + 2b) + 3b = a + (2b + 3b) = a + 5b

(c) x · 1
3 = 1

3 · x = 1
3 x (d) (xy)y−1 = x(yy−1) = x

(e) (−3)5 = 3(−5) = −(3 · 5) = −15 (f) (−6)(−20) = 120

(g) 3x(y + 2z) = 3xy + 6xz (h) (t2 + 2t)4t3 = t24t3 + 2t4t3 = 4t5 + 8t4

The rules of algebra specified in the previous box can be combined in several ways to
give, for example:

a(b − c) = a[b + (−c)] = ab + a(−c) = ab − ac

which implies, when b = c, that a · 0 = a(b − b) = ab − ab = 0

x(a + b − c + d) = xa + xb − xc + xd

(a + b)(c + d) = ac + ad + bc + bd

Figure 2.3.1 provides a geometric argument for the last of these algebraic rules for the case
in which the numbers a, b, c, and d are all positive. The rule says that the area (a + b)(c + d)

of the large rectangle is the sum of the areas of the four small rectangles.
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c d

c 1 d

b

a

a 1 b

ac

bc bd

ad

Figure 2.3.1 (a + b)(c + d) = ac + ad + bc + bd

The following three rules are so often used that you should definitely memorize them.

Q U A D R A T I C I D E N T I T I E S

(a + b)2 = a2 + 2ab + b2

(a − b)2 = a2 − 2ab + b2

a2 − b2 = (a + b)(a − b)

The last of these is called the difference-of-squares formula. The proofs are very easy.
For example, (a + b)2 means (a + b)(a + b), which equals aa + ab + ba + bb = a2 +
2ab + b2.

E X A M P L E 2.3.2 Expand the following expressions:

(a) (3x + 2y)2 (b) (1 − 2z)2 (c) (4p + 5q)(4p − 5q)

Solution:

(a) (3x + 2y)2 = (3x)2 + 2(3x)(2y) + (2y)2 = 9x2 + 12xy + 4y2

(b) (1 − 2z)2 = 1 − 2 · 1 · 2 · z + (2z)2 = 1 − 4z + 4z2

(c) (4p + 5q)(4p − 5q) = (4p)2 − (5q)2 = 16p2 − 25q2

We often encounter parentheses with a minus sign in front. Because (−1)x = −x, we
have

−(a + b − c + d) = −a − b + c − d

In words: When removing a pair of parentheses with a minus in front, change the signs of
all the terms within the parentheses—do not leave any out.

We saw how to multiply two factors such as (a + b) and (c + d). How do we compute
products like this when there are several factors? Here is an example:

(a + b)(c + d)(e + f ) = [(a + b)(c + d)](e + f )

= (ac + ad + bc + bd)(e + f )

= (ac + ad + bc + bd)e + (ac + ad + bc + bd)f

= ace + ade + bce + bde + acf + adf + bcf + bdf
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E X A M P L E 2.3.3 Expand the expression (r + 1)3. Use the solution to compute by how much the
volume of a ball with radius r metres expands if the radius increases by one metre.

Solution:

(r + 1)3 = [(r + 1)(r + 1)] (r + 1) = (r2 + 2r + 1)(r + 1) = r3 + 3r2 + 3r + 1

A ball with radius r metres has a volume of 4
3πr3 cubic metres. If the radius increases by

one metre, its volume expands by

4
3π(r + 1)3 − 4

3πr3 = 4
3π(r3 + 3r2 + 3r + 1) − 4

3πr3 = 4
3π(3r2 + 3r + 1)

Algebraic Expressions
Expressions involving letters such as 3xy − 5x2y3 + 2xy + 6y3x2 − 3x + 5yx + 8 are called
algebraic expressions. We call 3xy, −5x2y3, 2xy, 6y3x2, −3x, 5yx, and 8 the terms in the
expression that is formed by adding all the terms together. The numbers 3, −5, 2, 6, −3,
and 5 are the numerical coefficients of the first six terms. Two terms where only the numer-
ical coefficients are different, such as −5x2y3 and 6y3x2, are called terms of the same type.
In order to simplify expressions, we collect terms of the same type. Then within each term,
we put any numerical coefficients at the front, succeeded by the letters in alphabetical order.
Thus,

3xy − 5x2y3 + 2xy + 6y3x2 − 3x + 5yx + 8 = x2y3 + 10xy − 3x + 8

E X A M P L E 2.3.4 Expand and simplify the expression:

(2pq − 3p2)(p + 2q) − (q2 − 2pq)(2p − q)

Solution: The expression equals

2pqp + 2pq2q − 3p3 − 6p2q − (q22p − q3 − 4pqp + 2pq2)

= 2p2q + 4pq2 − 3p3 − 6p2q − 2pq2 + q3 + 4p2q − 2pq2

= −3p3 + q3

Factoring
When we write 49 = 7 · 7 and 672 = 2 · 2 · 2 · 2 · 2 · 3 · 7, we have factored the two num-
bers 49 and 672 respectively. Algebraic expressions can often be factored in a similar way:
to factor an expression means to express it as a product of simpler factors. For example,
6x2y = 2 · 3 · x · x · y and 5x2y3 − 15xy2 = 5 · x · y · y(xy − 3).9

9 Note that 9x2 − 25y2 = 3 · 3 · x · x − 5 · 5 · y · y does not factor 9x2 − 25y2. A correct factoring is
9x2 − 25y2 = (3x − 5y)(3x + 5y).
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E X A M P L E 2.3.5 Factor each of the following expressions:

(a) 5x2 + 15x (b) −18b2 + 9ab

(c) K(1 + r) + K(1 + r)r (d) δL−3 + (1 − δ)L−2

Solution:

(a) 5x2 + 15x = 5x(x + 3)

(b) −18b2 + 9ab = 9ab − 18b2 = 3 · 3b(a − 2b)

(c) K(1 + r) + K(1 + r)r = K(1 + r)(1 + r) = K(1 + r)2

(d) δL−3 + (1 − δ)L−2 = L−3[δ + (1 − δ)L]

The quadratic identities can often be used in reverse for factoring. They sometimes
enable us to factor expressions that otherwise appear to have no factors.

E X A M P L E 2.3.6 Factor each of the following expressions:

(a) 16a2 − 1 (b) x2y2 − 25z2

(c) 4u2 + 8u + 4 (d) x2 − x + 1
4

Solution:

(a) 16a2 − 1 = (4a + 1)(4a − 1)

(b) x2y2 − 25z2 = (xy + 5z)(xy − 5z)

(c) 4u2 + 8u + 4 = 4(u2 + 2u + 1) = 4(u + 1)2

(d) x2 − x + 1
4 = (x − 1

2 )2

Sometimes finding a factoring requires a little inventiveness, as in this example:

4x2 − y2 + 6x2 + 3xy = (4x2 − y2) + 3x(2x + y)

= (2x + y)(2x − y) + 3x(2x + y)

= (2x + y)(2x − y + 3x)

= (2x + y)(5x − y)

Although it might be difficult, perhaps even impossible, to factor a given algebraic expres-
sion, it is very easy to verify a suggested factoring: simply multiply the factors. For example,
one can simply expand (x − a)(x − b) to check that

x2 − (a + b)x + ab = (x − a)(x − b)

Most algebraic expressions cannot be factored. For example, there is no way to write
x2 + 10x + 50 as a product of simpler factors.10

10 Unless we introduce “complex” numbers, that is.
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E X E R C I S E S F O R S E C T I O N 2 . 3

1. Expand and simplify the following expressions:

(a) −3 + (−4) − (−8) (b) (−3)(2 − 4) (c) (−3)(−12)(− 1
2 )

(d) −3[4 − (−2)] (e) −3(−x − 4) (f) (5x − 3y)9

(g) 2x
( 3

2x

)
(h) 0 · (1 − x) (i) −7x

2
14x

2. Expand and simplify the following expressions:

(a) 5a2 − 3b − (−a2 − b) − 3(a2 + b) (b) −x(2x − y) + y(1 − x) + 3(x + y)

(c) 12t2 − 3t + 16 − 2(6t2 − 2t + 8) (d) r3 − 3r2s + s3 − (−s3 − r3 + 3r2s)

3. Expand and simplify the following expressions:

(a) −3(n2 − 2n + 3) (b) x2(1 + x3) (c) (4n − 3)(n − 2)

(d) 6a2b(5ab − 3ab2) (e) (a2b − ab2)(a + b) (f) (x − y)(x − 2y)(x − 3y)

(g) (ax + b)(cx + d) (h) (2 − t2)(2 + t2) (i) (u − v)2(u + v)2

4.SM Expand and simplify the following expressions:

(a) (2t − 1)(t2 − 2t + 1) (b) (a + 1)2 + (a − 1)2 − 2(a + 1)(a − 1)

(c) (x + y + z)2 (d) (x + y + z)2 − (x − y − z)2

5. Expand the following expressions:

(a) (x + 2y)2 (b)
( 1

x − x
)2

(c) (3u − 5v)2 (d) (2z − 5w)(2z + 5w)

6. Complete the following expressions:

(a) 2012 − 1992 = (b) If u2 − 4u + 4 = 1, then u = (c)
(a + 1)2 − (a − 1)2

(b + 1)2 − (b − 1)2
=

7. Compute 10002/(2522 − 2482) without using a calculator.

8. Verify the following cubic identities, which are occasionally useful:

(a) (a + b)3 = a3 + 3a2b + 3ab2 + b3 (b) (a − b)3 = a3 − 3a2b + 3ab2 − b3

(c) a3 − b3 = (a − b)(a2 + ab + b2) (d) a3 + b3 = (a + b)(a2 − ab + b2)

9. Factor the following expressions:

(a) 21x2y3 (b) 3x − 9y + 27z (c) a3 − a2b

(d) 8x2y2 − 16xy (e) 28a2b3 (f) 4x + 8y − 24z

(g) 2x2 − 6xy (h) 4a2b3 + 6a3b2 (i) 7x2 − 49xy

(j) 5xy2 − 45x3y2 (k) 16 − b2 (l) 3x2 − 12
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10. Factor the following expressions:

(a) a2 + 4ab + 4b2 (b) K2L − L2K (c) K−4 − LK−5

(d) 9z2 − 16w2 (e) − 1
5 x2 + 2xy − 5y2 (f) a4 − b4

11. Factor the following expressions:

(a) x2 − 4x + 4 (b) 4t2s − 8ts2 (c) 16a2 + 16ab + 4b2

(d) 5x3 − 10xy2 (e) 5x + 5y + ax + ay (f) u2 − v2 + 3v + 3u

(g) P3 + Q3 + Q2P + P2Q (h) K3 − K2L (i) KL3 + KL

(j) L2 − K2 (k) K2 − 2KL + L2 (l) K3L − 4K2L2 + 4KL3

2.4 Fractions
Recall that

a ÷ b = a
b

← numerator
← denominator

For example, 5 ÷ 8 = 5
8 . For typographical reasons we often write 5/8 instead of 5

8 . Of
course, we can write 5 ÷ 8 = 0.625 to express the fraction as a decimal number. The frac-
tion 5/8 is called a proper fraction because 5 is less than 8. The fraction 19/8 is an improper
fraction because the numerator is larger than (or equal to) the denominator. An improper
fraction can be written as a mixed number:11

19
8

= 2 + 3
8

= 2
3
8

The most important properties of fractions are listed below, followed by simple numeri-
cal examples. It is absolutely essential for you to master these rules, so you should carefully
check that you both know and understand each of them.

P R O P E R T I E S O F F R A C T I O N S

Let a, b, and c be any numbers, with the proviso that b, c, and d are �= 0 when-
ever they appear in a denominator. Then,

(a)
a · c\
b · c\ = a

b
(b)

−a
−b

= (−a) · (−1)

(−b) · (−1)
= a

b

(c) −a
b

= (−1)
a
b

= (−1)a
b

= −a
b

(d)
a
c

+ b
c

= a + b
c

(e)
a
b

+ c
d

= a · d + b · c
b · d

(f) a + b
c

= a · c + b
c

(g) a · b
c

= a · b
c

(h)
a
b

· c
d

= a · c
b · d

(i)
a
b

÷ c
d

= a
b

· d
c

= a · d
b · c

11 Here 2 3
8 means 2 plus 3

8 . On the other hand, 2 · 3
8 = 2·3

8 = 3
4 (by the rules reviewed in what

follows). Note, however, that 2 x
8 also means 2 · x

8 ; the notation 2x
8 or 2x/8 is obviously preferable

in this case. Indeed, 19
8 or 19/8 is probably better than 2 3

8 because it also helps avoid ambiguity.



�

� �

�

S E C T I O N 2 . 4 / F R A C T I O N S 39

E X A M P L E 2.4.1 The following expressions illustrate the nine properties of fractions, one by one:

(a)
21
15

= 7 · 3\
5 · 3\ = 7

5
(b)

−5
−6

= 5
6

(c) −13
15

= (−1)
13
15

= (−1)13
15

= −13
15

(d)
5
3

+ 13
3

= 18
3

= 6

(e)
3
5

+ 1
6

= 3 · 6 + 5 · 1
5 · 6

= 23
30

(f) 5 + 3
5

= 5 · 5 + 3
5

= 28
5

(g) 7 · 3
5

= 21
5

(h)
4
7

· 5
8

= 4 · 5
7 · 8

= 4\ · 5
7 · 2 · 4\ = 5

14

(i)
3
8

÷ 6
14

= 3
8

· 14
6

= 3\ · 2\ · 7
2\ · 2 · 2 · 2 · 3\ = 7

8

Of the nine properties in the box above, property (a) is especially important. It is the rule
used to reduce fractions by factoring the numerator and the denominator, then cancelling
common factors—that is, dividing both the numerator and denominator by the same nonzero
quantity.12

E X A M P L E 2.4.2 Simplify the expressions:

(a)
5x2yz3

25xy2z
(b)

x2 + xy
x2 − y2

(c)
4 − 4a + a2

a2 − 4

Solution: For (a), note that

5x2yz3

25xy2z
= 5\ · x\ · x · y\ · z\ · z · z

5\ · 5 · x\ · y\ · y · z\ = xz2

5y

For (b),
x2 + xy
x2 − y2

= x(x + y)
(x − y)(x + y)

= x
x − y

and for (c)
4 − 4a + a2

a2 − 4
= (a − 2)(a − 2)

(a − 2)(a + 2)
= a − 2

a + 2

E X A M P L E 2.4.3 When we simplify fractions, only common factors can be removed. A frequently
occurring error is illustrated in the following expression:

Wrong! → 2x\ + 3y
x\y

= 2 + 3y\
y\ = 2 + 3

1
= 5

In fact, the numerator and the denominator in the fraction (2x + 3y)/xy do not have any
common factors. But a correct simplification is this: (2x + 3y)/xy = 2/y + 3/x.

Another common error is:

Wrong! → x
x2 + 2x

= x
x2

+ x
2x

= 1
x

+ 1
2

A correct way of simplifying the fraction is to cancel the common factor x, which yields
the fraction 1/(x + 2).

12 When we use property (a) in reverse, we are expanding the fraction. For example, 5/8 =
5 · 125/8 · 125 = 625/1000 = 0.625.
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Properties (d), (e), and (f) in the previous box are those used to add fractions. Note that
we can derive (e) from (a) and (d). Indeed:

a
b

+ c
d

= a · d
b · d

+ c · b
d · b

= a · d + b · c
b · d

An easy extension shows that, for example,

a
b

− c
d

+ e
f

= adf
bdf

− cbf
bdf

+ ebd
bdf

= adf − cbf + ebd
bdf

(∗)

If the numbers b, d, and f have common factors, the computation carried out in (∗) involves
unnecessarily large numbers. We can simplify the process by first finding the least or lowest
common denominator, or LCD, of the fractions. To do so, factor each denominator com-
pletely; the LCD is the product of all the distinct factors that appear in any denominator,
each raised to the highest power to which it gets raised in any denominator. The use of the
LCD is demonstrated in the following example.

E X A M P L E 2.4.4 Simplify the following expressions:

(a)
1
2

− 1
3

+ 1
6

(b)
2 + a
a2b

+ 1 − b
ab2

− 2b
a2b2

(c)
x − y
x + y

− x
x − y

+ 3xy
x2 − y2

Solution:

(a) Because 6 = 2 · 3, the LCD is 6, and so

1
2

− 1
3

+ 1
6

= 1 · 3
2 · 3

− 1 · 2
2 · 3

+ 1
2 · 3

= 3 − 2 + 1
6

= 2
6

= 1
3

(b) Here the LCD is a2b2, and so

2 + a
a2b

+ 1 − b
ab2

− 2b
a2b2

= (2 + a)b
a2b2

+ (1 − b)a
a2b2

− 2b
a2b2

= 2b + ab + a − ba − 2b
a2b2

= a
a2b2

= 1
ab2

(c) Because x2 − y2 = (x + y)(x − y), the LCD is (x + y)(x − y), and so

x − y
x + y

− x
x − y

+ 3xy
x2 − y2

= (x − y)(x − y)
(x − y)(x + y)

− (x + y)x
(x + y)(x − y)

+ 3xy
(x − y)(x + y)

= x2 − 2xy + y2 − x2 − xy + 3xy
(x − y)(x + y)

= y2

x2 − y2

The expression 1 − 5−3
2 means that from the number 1, we subtract the number 5−3

2 =
2
2 = 1, so 1 − 5−3

2 = 0. Alternatively,

1 − 5 − 3
2

= 2
2

− (5 − 3)

2
= 2 − (5 − 3)

2
= 2 − 5 + 3

2
= 0

2
= 0
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In the same way,
2 + b
ab2

− a − 2
a2b

means that we subtract (a − 2)/a2b from (2 + b)/ab2:

2 + b
ab2

− a − 2
a2b

= (2 + b)a
a2b2

− (a − 2)b
a2b2

= (2 + b)a − (a − 2)b
a2b2

= 2(a + b)

a2b2

It is a good idea first to enclose in parentheses the numerators of the fractions, as in the next
example.

E X A M P L E 2.4.5 Simplify the expression:

x − 1
x + 1

− 1 − x
x − 1

− −1 + 4x
2(x + 1)

Solution:

x − 1
x + 1

− 1 − x
x − 1

− −1 + 4x
2(x + 1)

= (x − 1)

x + 1
− (1 − x)

x − 1
− (−1 + 4x)

2(x + 1)

= 2(x − 1)2 − 2(1 − x)(x + 1) − (−1 + 4x)(x − 1)

2(x + 1)(x − 1)

= 2(x2 − 2x + 1) − 2(1 − x2) − (4x2 − 5x + 1)

2(x + 1)(x − 1)

= x − 1
2(x + 1)(x − 1)

= 1
2(x + 1)

Next, we prove property (i) in the previous box by writing (a/b) ÷ (c/d) as a ratio of
fractions:

a
b

÷ c
d

=
a
b
c
d

= b · d · a
b

b · d · c
d

=
b\ · d · a

b\
b · d\· c

d\
= d · a

b · c
= a · d

b · c

When we deal with fractions of fractions, we should be sure to emphasize which is the
fraction line of the dominant fraction. For example,

a
b
c

= a ÷ b
c

= ac
b

(∗)

whereas a
b

c
= a

b
÷ c = a

bc
(∗∗)

Of course, it is safer to write a
b/c or a/(b/c) in the first case, and a/b

c or (a/b)/c in the second
case.13

13 As a numerical example of (∗) and (∗∗), note that
1
3
5

= 5
3

, whereas
1
3

5
= 1

15
.
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E X E R C I S E S F O R S E C T I O N 2 . 4

1. Simplify the following expressions:

(a)
3
7

+ 4
7

− 5
7

(b)
3
4

+ 4
3

− 1 (c)
3
12

− 1
24

(d)
1
5

− 2
25

− 3
75

(e) 3
3
5

− 1
4
5

(f)
3
5

· 5
6

(g)
(

3
5

÷ 2
15

)
· 1

9
(h)

(
2
3

+ 1
4

)
÷

(
3
4

+ 3
2

)

2. Simplify the following expressions:

(a)
x

10
− 3x

10
+ 17x

10
(b)

9a
10

− a
2

+ a
5

(c)
b + 2

10
− 3b

15
+ b

10

(d)
x + 2

3
+ 1 − 3x

4
(e)

3
2b

− 5
3b

(f)
3a − 2

3a
− 2b − 1

2b
+ 4b + 3a

6ab

3. Cancel common factors in the following expressions:

(a)
325
625

(b)
8a2b3c
64abc3

(c)
2a2 − 2b2

3a + 3b
(d)

P3 − PQ2

(P + Q)2

4. If x = 3/7 and y = 1/14, find the simplest forms of the following fractions:

(a) x + y (b)
x
y

(c)
x − y
x + y

(d) 13
2x − 3y
2x + 1

5.SM Simplify the following expressions:

(a)
1

x − 2
− 1

x + 2
(b)

6x + 25
4x + 2

− 6x2 + x − 2
4x2 − 1

(c)
18b2

a2 − 9b2
− a

a + 3b
+ 2

(d)
1

8ab
− 1

8b(a + 2)
(e)

2t − t2

t + 2
·
(

5t
t − 2

− 2t
t − 2

)
(f) 2 − a

(
1 − 1

2a

)
0.25

6.SM Simplify the following expressions:

(a)
2
x

+ 1
x + 1

− 3 (b)
t

2t + 1
− t

2t − 1
(c)

3x
x + 2

− 4x
2 − x

− 2x − 1
x2 − 4

(d)
1/x + 1/y

1/xy
(e)

1/x2 − 1/y2

1/x2 + 1/y2
(f)

a/x − a/y
a/x + a/y

7. Verify that x2 + 2xy − 3y2 = (x + 3y)(x − y), and then simplify the expression:

x − y
x2 + 2xy − 3y2

− 2
x − y

− 7
x + 3y

8.SM Simplify the following expressions:

(a)
(

1
4

− 1
5

)−2

(b) n − n

1 − 1
n

(c)
1

1 + xp−q
+ 1

1 + xq−p

(d)

1
x − 1

+ 1
x2 − 1

x − 2
x + 1

(e)

1
(x + h)2

− 1
x2

h
(f)

10x2

x2 − 1
5x

x + 1
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2.5 Fractional Powers
Textbooks and research articles in economics frequently include mathematical expressions
involving powers with fractional exponents such as K1/4L3/4 and Ar2.08p−1.5. How do we
define ax when x is a rational number? Of course, we would like the usual rules for powers
still to apply.

You probably know the meaning of ax if x = 1/2. In fact, if a is nonnegative and x = 1/2,
then we define ax = a1/2 as equal to

√
a, the square root of a. Thus, a1/2 = √

a is defined as
the nonnegative number that when multiplied by itself gives a. This definition makes sense
because a1/2 · a1/2 = a1/2+1/2 = a1 = a. Note that any real number r multiplied by itself
must always be nonnegative, whether r is positive, negative, or zero. Hence, if a ≥ 0,

a1/2 = √
a

For example,
√

16 = 161/2 = 4 because 42 = 16, whereas
√

1/25 = 1/5 because (1/5)2 =
(1/5) · (1/5) = 1/25.

P R O P E R T I E S O F S Q U A R E R O O T S

(i) If a and b are nonnegative numbers, then
√

ab = √
a
√

b.

(ii) If a is nonnegative and b is positive, then

√
a
b

=
√

a√
b

.

Of course, these two rules can also be written as (ab)1/2 = a1/2b1/2 and (a/b)1/2 =
a1/2/b1/2. For example,

√
16 · 25 = √

16 · √
25 = 4 · 5 = 20, and

√
9/4 = √

9/
√

4 =
3/2.

Note that formulas (i) and (ii) are not valid if a or b or both are negative. For example,√
(−1)(−1) = √

1 = 1, whereas
√−1 · √−1 is not defined (unless one uses complex

numbers).
It is important to recall that, in general, (a + b)r �= ar + br. For r = 1/2, this implies

that we generally have14 √
a + b �= √

a + √
b

Note also that (−2)2 = 4 and 22 = 4, so both x = −2 and x = 2 are solutions of the
equation x2 = 4. Therefore we have x2 = 4 if and only if x = ±√

4 = ±2. Note, however,
that the symbol

√
4 means only 2, not −2.

We can use a calculator to find that
√

2 ÷ √
3 ≈ 1.414 ÷ 1.732 ≈ 0.816. Yet doing the

calculation this way is unnecessarily tedious because it involves two different approximate
square roots, at least one of which needs to be stored somewhere part way through. A
simpler alternative finds that

√
2 ÷ √

3 = √
2 ÷ 3 ≈ √

0.667 ≈ 0.817. Suppose, however,
that we “rationalize the denominator” by multiplying both numerator and denominator by

14 The following observation illustrates just how frequently this fact is overlooked: During an exami-
nation in a basic course in mathematics for economists, 22% of students simplified

√
1/16 + 1/25

incorrectly and claimed that it was equal to 1/4 + 1/5 = 9/20 = 0.45. It is actually equal to√
(25/400) + (16/400) = √

41/400 = √
41/20 ≈ 0.32.
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the same term (
√

3) in order to remove all square roots from the denominator. The process
is then easier because it involves only one square root:

√
2√
3

=
√

2 · √
3√

3 · √
3

=
√

2 · 3
3

=
√

6
3

≈ 2.449
3

≈ 0.816

Sometimes the difference-of-squares formula of Section 2.3 can be used to eliminate
square roots from the denominator of a fraction. Here is an example:

1√
5 + √

3
=

√
5 − √

3(√
5 + √

3
) (√

5 − √
3
) =

√
5 − √

3
5 − 3

= 1
2

(√
5 − √

3
)

The nth Root
What do we mean by a1/n, where n is a natural number, and a is positive? For example, what
does 51/3 mean? Suppose we insist that the second property (ar)s = ars of powers that we
introduced in Section 2.2 should still apply here. Then we must have (51/3)3 = 51 = 5,
which implies that x = 51/3 must solve the equation x3 = 5. It can be shown that this kind
of equation has a unique positive solution which we denote by 3

√
5, the cube root of 5.

Therefore, we must define 51/3 as 3
√

5.
In general, one has (a1/n)n = a1 = a. Thus, we should define the fractional power x =

a1/n so that it solves xn = a. Again, this equation can be shown to have a unique positive
solution.15 This solution we denote by n

√
a, the nth root of a, implying that:

n
√

a = a1/n

T H E n T H R O O T

If a is positive and n is a natural number, then n
√

a is the unique positive number
that, raised to the nth power, gives a—that is,(

n
√

a
)n = a

E X A M P L E 2.5.1 Compute the following fractional powers:

(a) 3
√

27 (b) (1/32)1/5 (c) (0.0001)0.25 = (0.0001)1/4

Solution:

(a) 3
√

27 = 3, because 33 = 27

(b) (1/32)1/5 = 1/2 because (1/2)5 = 1/32

(c) (0.0001)1/4 = 0.1 because (0.1)4 = 0.0001

15 Following Example 7.10.3, one way to prove this uses the intermediate value theorem, a result
which appears later as Theorem 7.10.1. Examples 2.6.4 and 2.10.3 later in this chapter suggest
alternative proofs, first of uniqueness, then of existence.
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E X A M P L E 2.5.2 An amount $5 000 in an account has increased to $10 000 in 15 years. What constant
yearly interest rate p has been used?

Solution: After 15 years the amount of $5 000 has grown to 5000(1 + p/100)15, so we
have the equation

5000
(

1 + p
100

)15 = 10 000

or, equivalently, (
1 + p

100

)15 = 2

In general, (at)1/t = a1 = a for t �= 0. Raising each side to the power of 1/15 yields

1 + p
100

= 21/15

or p = 100(21/15 − 1). With a calculator we find p ≈ 4.73.

We proceed to define ap/q whenever p is an integer, q is a natural number, and a is
positive. Consider first 52/3. We have already defined 51/3. We now define 52/3 in order
to satisfy once again the second property of powers set out in Section 2.2, namely that
(ar)s = ars. In the case considered here, this requires that 52/3 = (51/3)2. So we must define

52/3 as
(

3
√

5
)2

.
In general, for any positive number a, whenever p is an integer and q is a natural number,

we define
ap/q = (

a1/q)p = (
q
√

a
)p

Using the second property of powers yet again, this definition implies that

ap/q = (
a1/q)p = (

ap)1/q = q
√

ap

Thus, to compute ap/q, we could: either first take the qth root of a and then raise the result
to the power p; or first raise a to the power p and then take the qth root of the result. We
obtain the same answer either way.16 For example,

47/2 = (47)1/2 = 163841/2 = 128 = 27 = (41/2)7

E X A M P L E 2.5.3 Compute the numbers:

(a) 163/2 (b) 16−1.25 (c)
( 1

27

)−2/3

Solution:

(a) 163/2 = (161/2)3 = 43 = 64

(b) 16−1.25 = 16−5/4 = 1
165/4 = 1(

4√16
)5 = 1

25 = 1
32

(c) (1/27)−2/3 = 272/3 =
(

3
√

27
)2 = 32 = 9

16 Tests reveal that many students, while they are able to handle quadratic identities, nevertheless
make mistakes when dealing with more complicated powers. Here are examples taken from tests:
(a) (1 + r)20 is not equal to 120 + r20. (b) If u = 9 + x1/2, it does not follow that u2 = 81 + x;
instead u2 = 81 + 18x1/2 + x. (c) (ex − e−x)p is not equal to exp − e−xp, unless p = 1.
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E X A M P L E 2.5.4 Here are two practical illustrations of why we need powers with rational exponents:

(a) The formula S ≈ 4.84V2/3 gives the approximate surface area S of a ball as a function
of its volume V—see Exercise 11.

(b) Let Y be the net national product, K be capital stock, L be labour, and t be time. A for-
mula like Y = 2.262K0.203L0.763(1.02)t often appears in studies of national economic
growth. Thus, powers with fractional exponents do often arise in economics.

E X A M P L E 2.5.5 Simplify the following expressions so that the answers contain only positive
exponents:

(a)
a3/8

a1/8
(b) (x1/2x3/2x−2/3)3/4 (c)

(
10p−1q2/3

80p2q−7/3

)−2/3

Solution:

(a)
a3/8

a1/8
= a3/8−1/8 = a2/8 = a1/4 = 4

√
a

(b) (x1/2x3/2x−2/3)3/4 = (x1/2+3/2−2/3)3/4 = (x4/3)3/4 = x

(c)
(

10p−1q2/3

80p2q−7/3

)−2/3

= (8−1p−1−2q2/3−(−7/3))−2/3 = 82/3p2q−2 = 4
p2

q2

If q is an odd number and p is an integer, then ap/q can be defined even when a is negative.
For example, to define (−8)1/3 we note that (−2)3 = −8 and so take (−8)1/3 = 3

√−8 =
−2. However, in defining ap/q when a is negative, the denominator q must be odd. Other-
wise, allowing q to be even could lead to logical contradictions such as “−2 = (−8)1/3 =
(−8)2/6 = 6

√
(−8)2 = 6

√
64 = 2”.

We already saw that when a is positive, it is often easier to compute an/m by finding m
√

a
first and then raising the result to the nth power. When a is negative and m is odd, the same
applies: for example, (−64)5/3 = ( 3

√−64)5 = (−4)5 = −1024.

E X A M P L E 2.5.6 Let p and q be natural numbers with q odd, and a any negative real number. Find the
sign of: (a) a1/q; (b) ap/q; (c) a−p/q.

Solution:

(a) Because (a1/q)q = a which is negative, it follows that a1/q is also negative.

(b) Note that ap/q = (a1/q)p = (−1)p(−a1/q)p. Because a1/q is negative and so (−a1/q)p

is positive, it follows that ap/q has the sign of (−1)p. This is positive iff p is even, and
negative iff p is odd.

(c) Because ap/q · a−p/q = 1, the sign of a−p/q must be the same as the sign of ap/q.

E X E R C I S E S F O R S E C T I O N 2 . 5

1. Compute the following numbers:

(a)
√

9 (b)
√

1600 (c) (100)1/2 (d)
√

9 + 16

(e) (36)−1/2 (f) (0.49)1/2 (g)
√

0.01 (h)
√

1/25



�

� �

�

S E C T I O N 2 . 5 / F R A C T I O N A L P O W E R S 47

2. Let a and b be positive numbers. Decide whether each “?” should be replaced by = or �=.
Justify your answer.

(a)
√

25 · 16 ?
√

25 · √
16 (b)

√
25 + 16 ?

√
25 + √

16

(c) (a + b)1/2 ? a1/2 + b1/2 (d) (a + b)−1/2 ? (
√

a + b )−1

3. Solve for x the following equalities:

(a)
√

x = 9 (b)
√

x · √
4 = 4 (c)

√
x + 2 = 25

(d)
√

3 · √
5 = √

x (e) 22−x = 8 (f) 2x − 2x−1 = 4

4. Rationalize the denominator and simplify the following expressions:

(a)
6√
7

(b)

√
32√
2

(c)

√
3

4
√

2

(d)

√
54 − √

24√
6

(e)
2√

3
√

8
(f)

4√
2y

(g)
x√
2x

(h)
x
(√

x + 1
)

√
x

5.SM Simplify the following expressions by making the denominators rational:

(a)
1√

7 + √
5

(b)

√
5 − √

3√
5 + √

3
(c)

x√
3 − 2

(d)
x
√

y − y
√

x

x
√

y + y
√

x
(e)

h√
x + h − √

x
(f)

1 − √
x + 1

1 + √
x + 1

6. Compute, without using a calculator, the following numbers:

(a) 3√125 (b) (243)1/5 (c) (−8)1/3

(d) 3√0.008 (e) 811/2 (f) 64−1/3

(g) 16−2.25 (h)
(

1
3−2

)−2

7. Using a calculator, find approximations to:

(a) 3√55 (b) (160)1/4 (c) (2.71828)1/5 (d) (1 + 0.0001)10 000

8. The population of a nation increased from 40 million to 60 million in 12 years. What is the
yearly percentage rate of growth p?

9. Simplify the following expressions:

(a)
(
27x3py6qz12r

)1/3
(b)

(x + 15)4/3

(x + 15)5/6
(c)

8 3
√

x2 4√y
√

1/z

−2 3√x
√

y5
√

z

10. Simplify the following expressions, so that each contains only a single exponent:

(a) {[(a1/2)2/3]3/4}4/5 (b) a1/2 · a2/3 · a3/4 · a4/5

(c) {[(3a)−1]−2(2a−2)−1}/a−3 (d)
3√a · a1/12 · 4√a3

a5/12 · √
a
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11. The formulas for the surface area S and the volume V of a ball with radius r are S = 4πr2 and
V = (4/3)πr3. Express S as a power function of V .

12.SM Which of the following equations are valid for all real x and y?

(a) (2x)2 = 2x2
(b) 3x−3y = 3x

33y

(c) 3−1/x = 1
31/x

, with x �= 0 (d) 51/x = 1
5x

, with x �= 0

(e) ax+y = ax + ay, with a positive (f) 2
√

x · 2
√

y = 2
√

xy with x and y positive

13. If a firm uses x units of input in process A, where x is nonnegative, then it produces 32x3/2

units of output. In the alternative process B, the same input quantity produces 4x3 units of
output. For what levels of input does process A produce more than process B?

2.6 Inequalities
The real numbers consist of the positive numbers, as well as 0 and the negative numbers. If
a is a positive number, we write a > 0 (or equivalently 0 < a), and we say that a is greater
than zero. If the number c is negative, we write c < 0 (or equivalently 0 > c).

A fundamental property of the positive numbers is that:

(a > 0 and b > 0) =⇒ (a + b > 0 and a · b > 0) (2.6.1)

In general, we say that the number a is greater than the number b, and we write a > b (or
say that b is smaller than a and write b < a), if a − b is positive. Thus, 4.11 > 3.12 because
4.11 − 3.12 = 0.99 > 0, and −3 > −5 because −3 − (−5) = 2 > 0. On the number line
shown in Fig. 2.1.1, the inequality a > b holds if and only if a lies to the right of b.

When a > b, we often say that a is strictly greater than b in order to emphasize that
a = b is ruled out. If a > b or a = b, then we write a ≥ b (or b ≤ a) and say that a is
greater than or equal to b, or sometimes that a is no less than b. Thus, a ≥ b means that
a − b ≥ 0. For example, 4 ≥ 4 and 4 ≥ 2.17

We call > and < strict inequalities, whereas ≥ and ≤ are weak inequalities. The differ-
ence between weak and strict inequalities is often very important in economic analysis.

One can prove a number of important properties of the inequalities > and ≥. For
example, for any real numbers a, b, and c, one has;

a > b ⇐⇒ a + c > b + c (2.6.2)

b 1 c b a 1 c a

Figure 2.6.1 a > b ⇒ a + c > b + c

The proof is simple: one has (a + c) − (b + c) = a + c − b − c = a − b for all numbers
a, b, and c. Hence a − b > 0 holds if and only if (a + c) − (b + c) > 0, so the conclusion

17 Note in particular that it is correct to write 4 ≥ 2, because 4 − 2 is positive or 0.



�

� �

�

S E C T I O N 2 . 6 / I N E Q U A L I T I E S 49

follows. On the number line shown in Fig. 2.6.1 this implication is self-evident (here c is
chosen to be negative).

Dealing with more complicated inequalities involves using the following properties:

P R O P E R T I E S O F I N E Q U A L I T I E S

Let a, b, c, and d all be real numbers. Then

(a > b and b > c) =⇒ a > c (2.6.3)

(a > b and c > 0) =⇒ ac > bc (2.6.4)

(a > b and c < 0) =⇒ ac < bc (2.6.5)

(a > b and c > d) =⇒ a + c > b + d (2.6.6)

All four properties remain valid when each > is replaced by ≥, as well as when
each < is replaced by ≤. The properties all follow easily from (2.6.1). For example,
property (2.6.5) can be proved as follows: Suppose a > b and c < 0. Then a − b > 0
and −c > 0, so, according to (2.6.1), (a − b)(−c) > 0. Hence −ac + bc > 0, implying
that ac < bc.

According to (2.6.4) and (2.6.5), if the two sides of an inequality are multiplied:

(a) by a positive number, the direction of the inequality is preserved.

(b) by a negative number, the direction of the inequality is reversed.

It is important that you understand these rules, and realize that they correspond to everyday
experience. For instance, (2.6.4) can be interpreted this way: given two rectangles with the
same base, the one with the larger height has the larger area.

E X A M P L E 2.6.1 Find what values of x satisfy 3x − 5 > x − 3.

Solution: Because of (2.6.2), we can add 5 to both sides of the inequality. This yields
3x − 5 + 5 > x − 3 + 5, or 3x > x + 2. Using (2.6.2) again to add (−x) to both sides yields
3x − x > x − x + 2, which reduces to 2x > 2. Finally, (2.6.4) allow us to multiply both
sides by the positive number 1

2 , so we get x > 1. The argument can obviously be reversed,
so the solution is x > 1.

Double Inequalities
Two inequalities that are valid simultaneously are often written as a double inequality. For
example, if a ≤ z and moreover z < b, it is natural to write a ≤ z < b.18

18 On the other hand, if a ≤ z and z > b, but we do not know which is the larger of a and b, then we
cannot write a ≤ b < z or b ≤ a ≤ z. Moreover, we try to avoid writing a ≤ z > b.
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E X A M P L E 2.6.2 One day, the lowest temperature in Buenos Aires was 50◦F, and the highest was
77◦F. What is the corresponding temperature variation in degrees Celsius?19

Solution: The temperature C in degrees Celsius must satisfy

50 ≤ 9
5

C + 32 ≤ 77

Now (2.6.1) allows us to subtract 32 from each of the three terms. The result is

50 − 32 ≤ 9
5

C ≤ 77 − 32, which reduces to 18 ≤ 9
5

C ≤ 45

Finally, (2.6.4) tells us that multiplying all three terms by the positive number 5/9 preserves
both inequalities. Hence 10 ≤ C ≤ 25. So the variation is between 10◦C and 25◦C.

The following example demonstrates an important property of power functions. This is
that, given any real number x > 0, as the natural number n increases, so xn: (i) increases if
and only if x > 1; (ii) decreases if and only if 0 < x < 1.

E X A M P L E 2.6.3 Prove by induction on n that, for every natural number n:

(a) if x > 1, then xn+1 > xn > 1;

(b) if 0 < x < 1, then 0 < xn+1 < xn < 1.

Solution: (a) In case x > 1, applying rule (2.6.4) for inequalities gives x · x > x · 1 and so
x2 > x1 > 1. For the induction step, suppose that xk+1 > xk > 1 for some k ≥ 1. Applying
rule (2.6.4) once again gives x · xk+1 > x · xk and so xk+2 > xk+1 > 1, which completes the
induction step.

(b) In case 1 > x > 0, applying rule (2.6.4) for inequalities again gives x · 1 > x · x and
so 1 > x > x2. For the induction step, suppose that 1 > xk > xk+1 for some k ≥ 1. Applying
rule (2.6.4) once again gives x · xk > x · xk+1 and so 1 > xk+1 > xk+2, which completes the
induction step.

Our last example concerns solutions of the equation xn = a, where a > 0 is a real number
and n is a natural number. In Section 2.5 we claimed that this equation would have a unique
positive solution, which we used to define the fractional power or nth root a1/n = n

√
a. The

following example offers a proof that any positive solution to xn = a is unique. Later in
Example 2.10.3 we shall offer a constructive proof that a positive solution exists.

E X A M P L E 2.6.4 Given any natural number n, show that:

(a) if 0 < y < x, then yn < xn; (b) the equation xn = a has a unique positive solution.

19 Recall that if F denotes a temperature in degrees Fahrenheit and C denotes the same temperature
in degrees Celsius, then F = 9

5 C + 32.
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Solution: (a) This is obviously true if n = 1. If n > 1, then

xn − yn = (x − y)(xn−1 + xn−2y + · · · + xyn−2 + yn−1) (∗)

The easiest way to verify this is simply to multiply out the product on the right. Most of
the terms will cancel each other pairwise and we are left with xn − yn. Now the expression
in parentheses in (∗) is a sum of n terms of the form xn−kyk−1 (k = 1, . . . , n). Each term
is a product of positive numbers, so positive by Exercise 7, which also implies that the
sum of the n positive terms is positive. Then, because x − y is positive, the product on the
right-hand side of (∗) is positive, so xn − yn > 0.
(b) By part (a), if xn = yn = a for any positive x and y, then x = y.

E X E R C I S E S F O R S E C T I O N 2 . 6

1. Decide which of the following inequalities are true:

(a) −6.15 > −7.16 (b) 6 ≥ 6 (c) (−5)2 ≤ 0 (d) − 1
2 π < − 1

3 π

(e) 4
5 > 6

7 (f) 23 < 32 (g) 2−3 < 3−2 (h) 1
2 − 2

3 < 1
4 − 1

3

2. Find what values of x satisfy the following inequalities:

(a) −x − 3 ≤ 5 (b) 3x + 5 < x − 13 (c) 3x − (x − 1) ≥ x − (1 − x)

(d)
2x − 4

3
≤ 7 (e)

1
3
(1 − x) ≥ 2(x − 3) (f)

x
24

− (x + 1) + 3x
8

<
5
12

(x + 1)

3. Solve the following inequalities:

(a) 1 ≤ 1
3
(2x − 1) + 8

3
(1 − x) < 16 (b) −5 <

1
x

< 0

4.SM Fill in each blank with “⇒”, “⇐”, or “⇔” in order to complete a true statement:

(a) x(x + 3) < 0 x > −3 (b) x2 < 9 x < 3

(c) x2 > 0 x > 0 (d) x > y2 x > 0

5. Decide whether the following inequalities are valid for all x and y:

(a) x + 1 > x (b) x2 > x (c) x + x > x (d) x2 + y2 ≥ 2xy

6. Recall from Example 2.6.2 the formula F = 9
5 C + 32 for converting degrees Celsius (C) to

degrees Fahrenheit (F).

(a) The temperature for storing potatoes should be between 4◦C and 6◦C. What are the corre-
sponding temperatures in degrees Fahrenheit?

(b) The freshness of a bottle of milk is guaranteed for seven days if it is kept at a temperature
between 36◦F and 40◦F. Find the corresponding temperature variation in degrees Celsius.

7. Suppose that the n numbers a1, a2, . . . , an are all positive. Use (2.6.1) to prove by induction that
both the sum a1 + a2 + · · · + an and the product a1 · a2 · . . . · an of all n numbers are positive.
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8.SM If a and b are two positive numbers, define their arithmetic, geometric, and harmonic means,
respectively, by mA = 1

2 (a + b), mG = √
ab and

mH = 2
(

1
a

+ 1
b

)−1

Prove that mA ≥ mG ≥ mH , with strict inequalities unless a = b.20

2.7 Intervals and Absolute Values
Let a and b be any two numbers on the real line. Then we call the set of all numbers that
lie between a and b an interval. In many situations, it is important to distinguish between
the intervals that include their end points and the intervals that do not. When a < b, there
are four different intervals that all have a and b as end points, as shown in Table 2.7.1.

Table 2.7.1 Intervals on the real line

Notation Name Consists of all x satisfying:

(a, b) The open interval from a to b a < x < b

[a, b] The closed interval from a to b a ≤ x ≤ b

(a, b] A half-open interval from a to b a < x ≤ b

[a, b) A half-open interval from a to b a ≤ x < b

Note that an open interval includes neither of its end points, but a closed interval includes
both of its end points. There are two half-open intervals in Table 2.7.1: each contains one of
its end points, but not both. All four intervals in Table 2.7.1, however, have the same length,
b − a.

We usually illustrate intervals on the number line as in Fig. 2.7.1, with included end
points represented by solid dots, and excluded end points at the tips of arrows.

22232425 21 0 1 2 3 4 5 6 7

A B C

Figure 2.7.1 A = [−4, −2], B = [0, 1), and C = (2, 5)

The intervals mentioned so far are all bounded. We also use the word “interval” to signify
certain unbounded sets of numbers. For example, using set notation, the interval [a, ∞) =
{x : x ≥ a} consists of all numbers x ≥ a; and the interval (−∞, b) = {x : x < b} contains
all numbers with x < b.

Here, “∞” is the common symbol for infinity. This symbol is not a number at all, and
therefore the usual rules of arithmetic do not apply to it. In the notation [a, ∞), the symbol

20 You should first test these inequalities by choosing some specific numbers, using a calculator if
you wish. To show that mA ≥ mG, start with the obvious inequality (

√
a − √

b)2 ≥ 0, and then
expand. To show that mG ≥ mH , start by applying the inequality mA ≥ mG to the pair x, y to show
that

√
xy ≤ 1

2 (x + y). Then let x = 1/a, y = 1/b.
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∞ is only intended to indicate that we are considering the collection of all numbers larger
than or equal to a, without any upper bound on the size of the number. Similarly, (−∞, b)

has no lower bound.
From the preceding, it should be apparent what we mean by (a, ∞) and (−∞, b ].

According to the convention we are using, the collection of all real numbers is an open
interval that can be denoted by the symbol (−∞, ∞).

The Interior of an Interval
From time to time we shall need to speak of the interior points of an interval I, which are the
points in I that are not end points. Then the collection of all interior points of I constitutes
the interior of I.

These definitions imply that, when a < b, the four different intervals [a, b], [a, b), (a, b],
and (a, b) all have the same interior, which is the open interval (a, b). Moreover, the interiors
of (−∞, b] and of (−∞, b) are both equal to the same interval (−∞, b), and similarly for
[a, ∞) and (a, ∞). Finally, the entire real line (−∞, ∞) is its own interior.

The important thing about an interior point c of an interval I is that offers a little “wiggle
room” allowing us to shift point c a little way either to the left or to the right without forcing
it outside the interval. In other words, all points that are sufficiently close to c also belong
to I. Just draw a picture and you will see what this means.

Absolute Value
Let a be a real number and imagine its position on the real line. The distance between a
and 0 is called the absolute value of a. If a is positive or 0, then the absolute value is the
number a itself; if a is negative, then because distance must be positive, the absolute value
is equal to the positive number −a. That is:

A B S O L U T E V A L U E

The absolute value of the number a is the number |a| defined by

|a| =
{

a if a ≥ 0

−a if a < 0
(2.7.1)

For example, |13| = 13, |−5| = −(−5) = 5, |−1/2| = 1/2, and |0| = 0. Note in par-
ticular that |−a| = |a|.21

21 It is a common fallacy to assume that a must denote a positive number, even if this is not explicitly
stated. Similarly, on seeing −a, many students are led to believe that this expression is always
negative. Observe, however, that the number −a is positive when a itself is negative. For example,
if a = −5, then −a = −(−5) = 5. Nevertheless, it is often a useful convention in economics to
define variables so that, as far as possible, their values are positive rather than negative.
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E X A M P L E 2.7.1 Compute |x − 2| for x = −3, x = 0, and x = 4. Then use the definition of absolute
value to rewrite |x − 2| as an expression like (2.7.1).

Solution: Using definition (2.7.1) for x = −3 gives |x − 2| = |−3 − 2| = |−5| = 5,
For x = 0, it gives |x − 2| = |0 − 2| = |−2| = 2. Similarly, for x = 4 one has |x − 2| =
|4 − 2| = |2| = 2.

Replacing a by x − 2 in (2.7.1) gives |x − 2| = x − 2 if x − 2 > 0, that is, if x ≥ 2.
However, suppose x − 2 < 0, that is, x < 2. In this case |x − 2| = −(x − 2) = 2 − x. Sum-
marizing,

|x − 2| =
{

x − 2, if x ≥ 2
2 − x, if x < 2

An alternative definition of absolute value would be |a| = √
a2. This works because of

the following more general result, which follows from the discussion in Section 2.5.

E X A M P L E 2.7.2 For any natural number n and any real x �= 0, prove that

n
√

xn =
{

x if n is odd;
|x| if n is even.

Solution: If n is odd, then regardless of the sign of x, which equals the sign of xn, the real
number y = n

√
xn is the unique solution of yn = xn. This implies that y = x.

But if n is even and x �= 0, then xn is positive regardless of the sign of x. Now the real
number y = n

√
xn is the unique positive solution of yn = xn. This implies that y = x if x is

positive, but y = −x if x is negative. That is, y = |x|.

Let x1 and x2 be two arbitrary numbers. The distance between x1 and x2 on the number
line is x1 − x2 if x1 ≥ x2, and −(x1 − x2) if x1 < x2. Therefore, we have:

D I S T A N C E B E T W E E N N U M B E R S

The distance between x1 and x2 on the number line is

|x1 − x2| = |x2 − x1| (2.7.2)

In Fig. 2.7.2 we have used long double-headed arrows to indicate geometrically that the
distance between 7 and 2 is 5, whereas that between −3 and −5 is equal to 2. The latter is
correct because |−3 − (−5)| = |−3 + 5| = |2| = 2.

27 26 25 24 23 22 21 0 1 2 3 4 5 6 7

|23 2 (25)| 5 2 |7 2 2| 5 5

Figure 2.7.2 The distances between 7 and 2 and between −3 and −5.
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Suppose |x| = 5. What values can x have? There are only two possibilities: either x = 5
or x = −5, because no other numbers have absolute value equal to 5. Generally, if a is
greater than or equal to 0, then |x| = a implies that x = a or x = −a. Because definition
(2.7.1) implies that |x| ≥ 0 for all x, the equation |x| = a has no solution when a < 0.

If a is a positive number and |x| < a, then the distance from x to 0 is less than a. Fur-
thermore, when a is nonnegative, and |x| ≤ a, the distance from x to 0 is less than or equal
to a. In symbols:

|x| < a ⇐⇒ −a < x < a (2.7.3)

|x| ≤ a ⇐⇒ −a ≤ x ≤ a (2.7.4)

E X A M P L E 2.7.3 Check first to see if the inequality |3x − 2| ≤ 5 holds for x = −3, x = 0, x = 7/3,
and x = 10. Then find all the x such that the inequality holds.

Solution: For x = −3 one has |3x − 2| = |−9 − 2| = 11; for x = 0 one has |3x − 2| =
|−2| = 2; for x = 7/3 one has |3x − 2| = |7 − 2| = 5; and for x = 10 one has |3x − 2| =
|30 − 2| = 28. Hence, the given inequality is satisfied for x = 0 and x = 7/3, but not for
x = −3 or x = 10.

For general x, it follows from (2.7.4) that the inequality |3x − 2| ≤ 5 holds if and only
if −5 ≤ 3x − 2 ≤ 5. Adding 2 to all three expressions gives

−5 + 2 ≤ 3x − 2 + 2 ≤ 5 + 2

This simplifies to −3 ≤ 3x ≤ 7. Dividing throughout by 3 gives −1 ≤ x ≤ 7/3.

E X E R C I S E S F O R S E C T I O N 2 . 7

1. (a) Calculate |2x − 3| for x = 0, 1/2, and 7/2.

(b) Solve the equation |2x − 3| = 0.

(c) Rewrite |2x − 3| by using the definition of absolute value.

2. (a) Calculate |5 − 3x| for x = −1, x = 2, and x = 4.

(b) Solve the equation |5 − 3x| = 5.

(c) Rewrite |5 − 3x| by using the definition of absolute value.

3. Determine x such that the following expressions hold true:

(a) |3 − 2x| = 5 (b) |x| ≤ 2 (c) |x − 2| ≤ 1

(d) |3 − 8x| ≤ 5 (e) |x| >
√

2 (f) |x2 − 2| ≤ 1

4. A customer orders an iron bar whose advertised length is 5 metres, but with a tolerance of 1 mm.
That is, the bar’s length may not deviate by more than 1 mm from what is stipulated. Write a
specification for the bar’s acceptable length x in metres: (a) by using a double inequality; (b) with
the aid of an absolute-value sign.
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2.8 Sign Diagrams
Sign diagrams can be a useful tool for solving an inequality, in the sense of finding the
intervals on which the inequality is valid. We begin with a simple example that illustrates
their construction and use.

E X A M P L E 2.8.1 Check whether the inequality (x − 1)(3 − x) > 0 is satisfied for x = −3, x = 2, and
x = 5. Then find the solution set of all values of x that satisfy the same inequality.

Solution: For x = −3, we have (x − 1)(3 − x) = (−4) · 6 = −24 < 0. Next, for x = 2,
we have (x − 1)(3 − x) = 1 · 1 = 1 > 0. Finally, for x = 5, we have (x − 1)(3 − x) = 4 ·
(−2) = −8 < 0. Hence, the inequality is satisfied for x = 2, but not for x = −3 or x = 5.

To find the entire solution set, we use a sign diagram. First, we determine the sign vari-
ation for each factor in the product. For example, the factor x − 1 is negative when x < 1;
it is 0 when x = 1; and it is positive when x > 1.

21 10 2 3 4

x 2 1

3 2 x

(x 2 1)(3 2 x)

Figure 2.8.1 Sign diagram for (x − 1)(3 − x)

The sign variation of the two factors, as well as of their product, is represented in
Fig. 2.8.1. In this diagram, consider first the horizontal line labelled x − 1. The dashed part
of this line to the left of the vertical line x = 1 indicates that x − 1 < 0 if x < 1; the small
circle indicates that x − 1 = 0 when x = 1; and the solid line to the right of x = 1 indicates
that x − 1 > 0 if x > 1. In a similar way, the horizontal line labelled 3 − x represents the
sign variation for 3 − x.

The sign variation of the product (x − 1)(3 − x) is obtained as follows. If x < 1, then
x − 1 is negative and 3 − x is positive, so the product is negative. If 1 < x < 3, then both
factors are positive, so the product is positive. If x > 3, then x − 1 is positive and 3 − x is
negative, so the product is negative.

To conclude: the solution set consists of those x that are greater than 1, but less than 3.
That is (x − 1)(3 − x) > 0 ⇔ 1 < x < 3.

E X A M P L E 2.8.2 Find all values of p that satisfy the inequality:

2p − 3
p − 1

> 3 − p

Solution: It is tempting to begin by multiplying each side of the inequality by p − 1. Then,
however, Eq. (2.6.5) implies that we must reverse the inequality sign in case p − 1 < 0. So
we would have to distinguish between the two cases p − 1 > 0 and p − 1 < 0.
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Fortunately there is an alternative method that avoids the need to distinguish between
two different cases. We begin by adding p − 3 to both sides. This yields

2p − 3
p − 1

+ p − 3 > 0

Making p − 1 the common denominator gives

2p − 3 + (p − 3)(p − 1)

p − 1
> 0

Note that the numerator of this fraction simplifies to

2p − 3 + (p − 3)(p − 1) = 2p − 3 + p2 − 4p + 3 = p2 − 2p = p(p − 2)

This allows the inequality to be reduced to

p(p − 2)

p − 1
> 0

21 0 1 2 3

p

p 2 2

p 2 1

p(p 2 2)

p 2 1

Figure 2.8.2 Sign diagram for
p(p − 2)

p − 1

To find the solution set, we use the sign diagram shown in Fig. 2.8.2 in order to determine
the sign variation of p(p − 2)/(p − 1) based on that of p, p − 2, and p − 1. For example,
in case 0 < p < 1, then p is positive and (p − 2) is negative, so p(p − 2) is negative. But
p − 1 is also negative on this interval, so p(p − 2)/(p − 1) is positive. Arguing in this way
for all four relevant intervals leads to the sign diagram shown.22 So the original inequality
is satisfied if and only if 0 < p < 1 or p > 2.

Two notes of warning are in order. First, note the most common error committed in solv-
ing inequalities, which is precisely that indicated in Example 2.8.2: if we multiply by p − 1,
the inequality is preserved only if p − 1 is positive—that is, if p > 1. Second, it is vital that
you really understand the method of sign diagrams. Another common error is illustrated by
the following example.

22 The original inequality has no meaning when p = 1. This is indicated by a small ∗ where p = 1
on the lowest horizontal line of the diagram.
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E X A M P L E 2.8.3 Find all values of x that satisfy the inequality:

(x − 2) + 3(x + 1)

x + 3
≤ 0

“Solution”: Suppose we construct the inappropriate sign diagram shown in Fig. 2.8.3.

23 22 21 0 1 2

x 2 2

3(x 1 1)

x 1 3

(x 2 2) 1 3(x 1 1)

x 1 3

Wrong!

Figure 2.8.3 Wrong sign diagram for
(x − 2) + 3(x + 1)

x + 3

According to the sign diagram in Fig. 2.8.3, the inequality should be satisfied for x < −3
and for −1 ≤ x ≤ 2. However, for x = −4 (which is < −3), the fraction reduces to 15,
which is positive. What went wrong? Suppose x < −3. Then x − 2 < 0 and 3(x + 1) < 0,
so the numerator (x − 2) + 3(x + 1) is negative. Because the denominator x + 3 is also
negative for x < −3, the fraction is positive. The sign variation indicated in Fig. 2.8.3 for the
fraction is, therefore, completely wrong. The product of two negative numbers is positive,
but their sum is negative, and not positive as the wrong sign diagram suggests.

To obtain a correct solution to the problem, first collect all the terms in the numerator so
that the inequality becomes (4x + 1)/(x + 3) ≤ 0. Now construct your own sign diagram
for this inequality in order to reveal the correct answer, which is −3 < x ≤ −1/4.

E X E R C I S E S F O R S E C T I O N 2 . 8

1.SM Solve the following inequalities:

(a) 2 <
3x + 1
2x + 4

(b)
120
n

+ 1.1 ≤ 1.85 (c) g2 − 2g ≤ 0

(d)
1

p − 2
+ 3

p2 − 4p + 4
≥ 0 (e)

−n − 2
n + 4

> 2 (f) x4 < x2

2. Solve the following inequalities:

(a)
x + 2
x − 1

< 0 (b)
2x + 1
x − 3

> 1 (c) 5a2 ≤ 125

(d) (x − 1)(x + 4) > 0 (e) (x − 1)2(x + 4) > 0 (f) (x − 1)3(x − 2) ≤ 0

(g) (5x − 1)10(x − 1) < 0 (h) (5x − 1)11(x − 1) < 0 (i)
3x − 1

x
> x + 3

(j)
x − 3
x + 3

< 2x − 1 (k) x2 − 4x + 4 > 0 (l) x3 + 2x2 + x ≤ 0

3. Solve the inequality
(

1
x

− 1
)

÷
(

1
x

+ 1
)

≥ 1.
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2.9 Summation Notation
Economists often make use of census data. Suppose, for instance, that a country is divided
into six regions. Let Ni denote the population in region i. Then the total population is
given by

N1 + N2 + N3 + N4 + N5 + N6

It is convenient to have an abbreviated notation for such lengthy expressions. The capital
Greek letter sigma, written as �, is conventionally used as a summation symbol. Its use
allows the sum to be written more concisely as

6∑
i=1

Ni

This should be read as “the sum, from i = 1 to i = 6, of Ni”.
With n rather than six regions, one expression denoting total population is

N1 + N2 + · · · + Nn (∗)

Here the dots · · · between the last two plus signs indicate that the obvious previous pattern
continues, but ends with the last term Nn. In summation notation, we write

n∑
i=1

Ni

This summation notation tells us to form the sum of all the terms that result when we
substitute successive integers for i, starting with its lower limit i = 1 and ending with the
upper limit i = n. The symbol i is called the index of summation. It is a “dummy variable”
that can be replaced by any other letter (which has not already been used for something
else). Thus, both

∑n
j=1 Nj and

∑n
k=1 Nk represent the same sum as (∗).

As well as the upper limit of summation, the lower limit can also vary. Consider, for
example, the sum

35∑
i=30

Ni = N30 + N31 + N32 + N33 + N34 + N35

This is the total population in the six regions numbered from 30 to 35.
More generally, suppose the lower and upper limits are the integers p and q with q ≥ p.

Then the sum of the numbers ai as the integer i varies over successive integers in the range
from i = p to i = q can be written as

q∑
i=p

ai = ap + ap+1 + · · · + aq

If the upper and lower limits of summation are equal, then the “sum” collapses to the one
term ap = aq. But if the upper limit is less than the lower limit, then there are no terms at
all. In this case the usual convention is that the “sum” of the zero terms reduces to zero.
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E X A M P L E 2.9.1 Compute the following sums:

(a)
∑5

i=1 i2 (b)
∑6

k=3(5k − 3) (c)
∑2

j=0
(−1)j

(j + 1)(j + 3)

Solution:

(a)
∑5

i=1 i2 = 12 + 22 + 32 + 42 + 52 = 1 + 4 + 9 + 16 + 25 = 55

(b)
∑6

k=3(5k − 3) = (5 · 3 − 3) + (5 · 4 − 3) + (5 · 5 − 3) + (5 · 6 − 3) = 78

(c)
2∑

j=0

(−1)j

(j + 1)(j + 3)
= 1

1 · 3
+ −1

2 · 4
+ 1

3 · 5
= 40 − 15 + 8

120
= 33

120
= 11

40

Economists often use summation notation, so it is important to know how to interpret it.
Often, as well as the summation index, there can be several other variables or parameters.

E X A M P L E 2.9.2 Expand the following expressions:23

(a)
∑n

i=1 p(i)
t q(i) (b)

∑1
j=−3 x5−jyj (c)

∑N
i=1(xij − --xj)

2

Solution:

(a)
∑n

i=1 p(i)
t q(i) = p(1)

t q(1) + p(2)
t q(2) + · · · + p(n)

t q(n)

(b)
∑1

j=−3 x5−jyj = x8y−3 + x7y−2 + x6y−1 + x5 + x4y

(c)
∑N

i=1(xij − --xj)
2 = (x1j − --xj)

2 + (x2j − --xj)
2 + · · · + (xNj − --xj)

2

E X A M P L E 2.9.3 Write the following sums using summation notation:

(a) 1 + 3 + 32 + 33 + · · · + 381

(b) a6
i + a5

i bj + a4
i b2

j + a3
i b3

j + a2
i b4

j + aib
5
j + b6

j

Solution:

(a) This is easy if we note that 1 = 30 and 3 = 31, so that the sum can be written as 30 +
31 + 32 + 33 + · · · + 381. The general term is 3i, and we have

1 + 3 + 32 + 33 + · · · + 381 =
81∑

i=0

3i

(b) This is more difficult. Note, however, that the indices i and j never change. Also, the
exponent for ai decreases step by step from 6 to 0, whereas that for bj increases from 0
to 6. The general term has the form a6−k

i bk
j , where k varies from 0 to 6. Thus,

a6
i + a5

i bj + a4
i b2

j + a3
i b3

j + a2
i b4

j + aib
5
j + b6

j =
6∑

k=0

a6−k
i bk

j

23 Note that t is not an index of summation in (a), and that j is not one in (c).
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E X A M P L E 2.9.4 (Price indices). Suppose there are changes to the prices of several different goods
within a country. In order to summarize the overall effect of price changes, a number of
alternative price indices have been suggested. Consider a “basket” of n commodities which
consists, for each i = 1, . . . , n, of qi units of good i. Let pi

0 denote the price per unit of good
i in year 0; let pi

t denote the price per unit of good i in year t. Then the total cost of the
basket in year 0 is

n∑
i=1

pi
0qi = p1

0q1 + p2
0q2 + · · · + pn

0qn

whereas the total cost of the basket in year t is

n∑
i=1

pi
tq

i = p1
t q1 + p2

t q2 + · · · + pn
t qn

Using year 0 as the base year in which, by definition, the price index is 100, we can calculate
a price index for year t as 100 times the ratio of the costs of the fixed basket in years 0 and t
respectively. That is, the index in year t is( ∑n

i=1 pi
tq

i∑n
i=1 pi

0qi

)
· 100 (price index)

For example, if the cost of the basket is 1032 in year 0 and the cost of the same basket in
year t is 1548, then the price index is (1548/1032) · 100 = 150.

In the case where the quantities qi are levels of consumption in the base year 0, this is
called the Laspeyres price index. But if the quantities qi are levels of consumption in the
year t, this is called the Paasche price index.

E X E R C I S E S F O R S E C T I O N 2 . 9

1. Evaluate the following sums:

(a)
∑10

i=1 i (b)
∑6

k=2(5 · 3k−2 − k) (c)
∑5

m=0(2m + 1)

(d)
∑2

l=0 22l
(e)

∑10
i=1 2 (f)

∑4
j=1

j+1
j

2. Expand the following sums:

(a)
∑2

k=−2 2
√

k + 2 (b)
∑3

i=0(x + 2i)2 (c)
∑n

k=1 akib
k+1 (d)

∑m
j=0 f (xj)�xj

3.SM Express the following sums in summation notation:

(a) 4 + 8 + 12 + 16 + · · · + 4n (b) 13 + 23 + 33 + 43 + · · · + n3

(c) 1 − 1
3 + 1

5 − 1
7 + · · · + (−1)n 1

2n+1 (d) ai1b1j + ai2b2j + · · · + ainbnj

(e) 3x + 9x2 + 27x3 + 81x4 + 243x5 (f) a3
i bi+3 + a4

i bi+4 + · · · + ap
i bi+p

(g) a3
i bi+3 + a4

i+1bi+4 + · · · + ap+3
i+p bi+p+3 (h) 81 297 + 81 495 + 81 693 + 81 891

4. Compute the price index in Example 2.9.4, for n = 3,when:

p1
0 = 1, p2

0 = 2, p3
0 = 3, p1

t = 2, p1
t = 3, p3

t = 4, q1 = 3, q2 = 5, and q3 = 7
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5. Insert the appropriate limits of summation in the right-hand side of the following sums:

(a)
∑10

k=1(k − 2)tk = ∑
m= mtm+2 (b)

∑N
n=0 2n+5 = ∑

j= 32 · 2j−1

6. Since early 2020, the European Economic Area consists of 30 nations, who have agreed in princi-
ple to the free mobility of persons throughout the area. For the year 2025, let cij denote an estimate
of the number of persons who will move from nation i to nation j, for each i �= j. If, say, i = 25
and j = 10, then we write c25,10 for cij. Explain the meaning of the two sums: (a)

∑30
j=1 cij, and (b)∑30

i=1 cij.

7.SM Decide which of the following equalities are generally valid.

(a)
∑n

k=1 ck2 = c
∑n

k=1 k2 (b)
(∑n

i=1 ai

)2 = ∑n
i=1 a2

i

(c)
∑n

j=1 bj + ∑N
j=n+1 bj = ∑N

j=1 bj (d)
∑7

k=3 5k−2 = ∑4
k=0 5k+1

(e)
∑n−1

i=0 a2
i,j = ∑n

k=1 a2
k−1,j (f)

∑n
k=1 ak/k = 1

k

∑n
k=1 ak

2.10 Rules for Sums
The following properties are helpful when manipulating sums:

n∑
i=1

(
ai + bi

) =
n∑

i=1

ai +
n∑

i=1

bi (2.10.1)

and
n∑

i=1

cai = c
n∑

i=1

ai (2.10.2)

These properties are known, respectively, as additivity and homogeneity. Their proofs are
straightforward. For example, (2.10.2) is proved by noting that

n∑
i=1

cai = ca1 + ca2 + · · · + can = c(a1 + a2 + · · · + an) = c
n∑

i=1

ai

The homogeneity property states that a constant factor can be moved outside the summation
sign. In particular, if ai = 1 for all i, then

n∑
i=1

c = nc (2.10.3)

This just states that a constant c summed n times is equal to n times c.
The summation rules can be applied in combination to give formulas like

n∑
i=1

(ai + bi − ci + d) =
n∑

i=1

ai +
n∑

i=1

bi −
n∑

i=1

ci + nd
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E X A M P L E 2.10.1 Evaluate the sum

n∑
m=2

1
(m − 1)m

= 1
1 · 2

+ 1
2 · 3

+ · · · + 1
(n − 1)n

by using the equality
1

(m − 1)m
= 1

m − 1
− 1

m

Solution:
n∑

m=2

1
m(m − 1)

=
n∑

m=2

(
1

m − 1
− 1

m

)

=
n∑

m=2

1
m − 1

−
n∑

m=2

1
m

=
(

1
1

+ 1
2

+ 1
3

+ · · · + 1
n − 1

)
−

(
1
2

+ 1
3

+ · · · + 1
n − 1

+ 1
n

)

= 1 − 1
n

To derive the last equality, note that the terms 1
2 , 1

3 , . . . , 1
n−1 all cancel pairwise. The only

terms left after this cancellation are the first term within the first parentheses, which is 1,
and the last term within the last parentheses, which is − 1

n .
This powerful cancellation trick is commonly used to calculate some special sums of

this kind. See Exercise 4 below for some other examples.

E X A M P L E 2.10.2 The arithmetic mean or mean, μx, of T numbers x1, x2, . . . , xT is defined as the
sum of all the numbers divided by the number of terms, T . That is,

μx = 1
T

T∑
t=1

xt

Prove that
∑T

t=1(xt − μx) = 0 and
∑T

t=1(xt − μx)
2 = ∑T

t=1 x2
t − Tμ2

x .

Solution: The difference xt − μx between xt and the mean is called the deviation. We first
use the above definition of μx to prove that the sum of these deviations is 0:

T∑
t=1

(xt − μx) =
T∑

t=1

xt −
T∑

t=1

μx =
T∑

t=1

xt − Tμx = Tμx − Tμx = 0

Furthermore, the sum of the squares of the deviations is

T∑
t=1

(xt − μx)
2 =

T∑
t=1

(x2
t − 2μxxt + μ2

x) =
T∑

t=1

x2
t − 2μx

T∑
t=1

xt +
T∑

t=1

μ2
x

=
T∑

t=1

x2
t − 2μxTμx + Tμ2

x =
T∑

t=1

x2
t − Tμ2

x
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Dividing by T , the mean square deviation 1
T

∑T
t=1(xt − μx)

2 is therefore equal to the mean
square 1

T

∑T
t=1 x2

t minus the square μ2
x of the mean.

Useful Formulas
A (very) demanding teacher once asked his students to calculate the sum24

81 297 + 81 495 + 81 693 + · · · + 100 899

It turns out that there are one hundred terms and that the difference between any two suc-
cessive terms is a constant equal to 198. Carl Gauss (1777–1855), later one of the world’s
leading mathematicians, was in the class, and (at age nine!) is reputed to have given the
right answer in only a few minutes. You already took a key step toward finding the solu-
tion to this question in Exercise 1.4.1, using mathematical induction. Applied to that easier
problem of finding the sum x = 1 + 2 + · · · + n, Gauss’s argument was probably different,
as follows: First, write the sum x in two ways

x = 1 + 2 + · · · + (n − 1) + n

x = n + (n − 1) + · · · + 2 + 1

Summing these two equations term by term while grouping terms vertically gives

2x = (1 + n) + [2 + (n − 1)] + · · · + [(n − 1) + 2] + (n + 1)

= (1 + n) + (1 + n) + · · · + (1 + n) + (1 + n)

= n(1 + n)

Thus, solving for x gives the result:

n∑
i=1

i = 1 + 2 + · · · + n = 1
2

n(n + 1) (2.10.4)

The following two summation formulas are occasionally useful in economics.25

Exercise 1 below asks you to provide their proofs.

n∑
i=1

i2 = 12 + 22 + 32 + · · · + n2 = 1
6

n(n + 1)(2n + 1) (2.10.5)

n∑
i=1

i3 = 13 + 23 + 33 + · · · + n3 =
(

1
2

n(n + 1)

)2

=
(

n∑
i=1

i

)2

(2.10.6)

24 This version of the story seems to have originated in Eric Temple Bell’s book Men of Mathematics,
first published in 1937.

25 Check to see if they are true for n = 1, 2, 3.
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Decimal Notation
The discussion in Section 2.1 showed how decimal notation could represent any positive
real number as x = m.α1α2α3 . . . . Here m is a nonnegative integer. Then, after the decimal
point, for each natural number n the symbol αn indicates the nth decimal digit that belongs
to the set {0, 1, 2, . . . , 9}. In case the decimal terminates after p decimal places, it is x =
m.α1α2α3 . . . αp, which corresponds uniquely to the finite sum x = m + ∑p

k=1 αk · 10−k of
increasing negative powers of 10.

In case the decimal never terminates, however, it takes the form x = m.α1α2 . . . αk . . . .
This corresponds uniquely to the sum of infinitely many terms, which we write as the infi-
nite sum x = m + ∑∞

k=1 αk · 10−k. Note that m is the largest nonnegative integer such that
m ≤ x. Next, the nonnegative integer 10[m + α1 · 10−1] = 10m + α1 is the largest which
is no greater than x · 10, and so on. Indeed, for each natural number p, the sum to p decimal
places, which we denote by Sp, is defined by Sp = m + ∑p

k=1 αk · 10−k. It has the property
that Sp · 10p is the largest integer which does not exceed x · 10p.

In Example 2.6.4 we demonstrated that any positive solution to the equation xn = a must
be unique. Now we outline a method for constructing the solution.

E X A M P L E 2.10.3 Describe how to construct the decimal number x = m + ∑p
k=1 αk · 10−k which is

the unique positive solution to the equation xn = a, where a is positive.

Solution: First, choose m as the largest nonnegative integer such that mn ≤ a.
Second, given m constructed at the first stage, choose α1 as the largest nonnegative

integer such that
(
m + α1 · 10−1

)n ≤ a. By definition of m, one has (m + 1)n > a ≥ mn,
implying that 0 ≤ α1 ≤ 9.

In general, for p = 1, 2, . . ., let Sp−1 denote the expansion m + ∑p−1
k=1 αk · 10−k to p − 1

decimal places that was constructed at the pth stage. As the induction hypothesis, suppose
that (Sp−1)

n ≤ a < (Sp−1 + 102−p)n, as is true when p = 1 or 2.
Next, let us construct αp in the pth decimal place as the largest nonnegative integer such

that the expansion Sp−1 + αp · 10−p to p decimal places, which we denote by Sp, satisfies
(Sp)

n ≤ a. The induction hypothesis implies that 0 ≤ αp ≤ 9. In particular, one has (Sp)
n ≤

a < (Sp + 101−p)n, which proves the induction step. So there exists an infinite sequence Sp

(p = 1, 2, . . . ,) of decimal expansions with this property.
If you were able to repeat this construction indefinitely, the result would be a unique dec-

imal number x = m + ∑∞
k=1 αk · 10−k. By construction, this is the largest possible decimal

number satisfying xn ≤ a. Intuitively, it must therefore satisfy xn = a.

E X E R C I S E S F O R S E C T I O N 2 . 1 0

1. Prove formulas (2.10.5) and (2.10.6), using the principle of mathematical induction seen in
Section 1.4.

2. Use results (2.10.1) to (2.10.5) to find
∑n

k=1(k
2 + 3k + 2).
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3. Use results (2.10.1) to (2.10.4) to prove the summation formula for an arithmetic series:

n−1∑
i=0

(a + d · i) = na + n(n − 1)d
2

Apply the formula to find the sum Gauss is supposed to have calculated at age 9.

4. (a) Prove that
∑n

k=1(ak+1 − ak) = an+1 − a1 by using the cancellation trick set out in the solution
to Example 2.10.1.

(b) Use the result in (a) to compute the following:

(i)
50∑

k=1

(
1
k

− 1
k + 1

)
(ii)

12∑
k=1

(
3k+1 − 3k) (iii)

n∑
k=1

(
ark+1 − ark)

2.11 Newton’s Binomial Formula
It is obvious that (a + b)1 = a + b. By now you should know that (a + b)2 = a2

+ 2ab + b2. After all, it is the first of the three quadratic identities that you were
asked to memorize in Section 2.3. To get the next two powers we recognize that
(a + b)3 = (a + b)(a + b)2 and (a + b)4 = (a + b)(a + b)3. So first we multiply each
side of (a + b)2 = a2 + 2ab + b2 by a + b, then do the same again to the resulting
expression for (a + b)3. Here are the results:

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(2.11.1)

Here is the corresponding formula for (a + b)m, where m is any natural number:

N E W T O N ’ S B I N O M I A L F O R M U L A

(a + b)m = am +
(

m
1

)
am−1b + · · · +

(
m

m − 1

)
abm−1 +

(
m
m

)
bm (2.11.2)

Formula (2.11.2) involves, for k = 1, 2, . . . , m, the m binomial coefficients
(m

k

)
. For m =

0, 1, 2, . . . , 9, these coefficients are all shown in Table 2.11.1.26 They form the correspond-
ing ten rows (numbered from 0) of the triangular pattern. For instance, the numbers in row
6 are

26 Though the triangle is named after the French mathematician Blaise Pascal (1623–1662), it was
actually known centuries earlier in several different parts of the world, including India and China.
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(
6
0

)
,

(
6
1

)
,

(
6
2

)
,

(
6
3

)
,

(
6
4

)
,

(
6
5

)
,

(
6
6

)

Table 2.11.1 Pascal’s triangle
1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

In principle, Table 2.11.1 can be continued indefinitely in order to include arbitrarily
large values of the exponent m.

Each binomial coefficient
(m

k

)
can be read as “m choose k”. To help explain this, consider

the case when m = 3. Then for Eqs (2.11.1) and (2.11.2) to be consistent, we require that(3
1

) = (3
2

) = 3. Now consider the following expansion of (a + b)3 in 23 = 8 terms:

(a + b)3 = aaa + aab + aba + abb + baa + bab + bba + bbb

In Eq. (2.11.1) the coefficients of a2b and ab2 are both 3 because there are
(3

1

) = 3 ways
of choosing one factor b to accompany two factors a, and

(3
2

) = 3 ways of choosing two
factors b to accompany one factor a. For general m and k ≤ m, the number

(m
k

)
will count

how many ways there are of choosing k factors b to accompany m − k factors a in forming
the coefficient of the term am−kbk.

Before trying to define the binomial coefficients
(m

k

)
, it is convenient first to introduce

the standard notation k!, read as “k factorial”, for the product 1 · 2 · 3 · · · (k − 1) · k of the
first k natural numbers. That is

k! = 1 · 2 · 3 · · · (k − 1) · k (2.11.3)

We also introduce the convention that 0! = 1 since, like the zeroth power x0 = 1 of any real
number x, the factorial 0! should be the product of zero numbers. Evidently, the definition
(2.11.3) implies that

k! = k · [1 · 2 · 3 · · · (k − 1)] = k(k − 1)! for k = 1, 2, . . .

Applying this formula repeatedly to find the first five factorials gives

0! = 1, 1! = 1 · 0! = 1, 2! = 2 · 1! = 2, 3! = 3 · 2! = 6, 4! = 4 · 3! = 24
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Following this pattern, the next four are 5! = 120, 6! = 720, 7! = 5040, 8! = 10 320.
Factorial numbers grow remarkably quickly! Since we shall use it very shortly, we also note
how definition (2.11.3) implies that, whenever k and m are natural numbers with k ≤ m, one
must have

m! = [m(m − 1) · · · (m − k + 1)] (m − k)! (2.11.4)

Now that we have explained factorial notation, we can move on to define, for each m =
1, 2, . . . and then for each k = 0, 1, 2, . . . , m, the binomial coefficient as(

m
k

)
= m!

k!(m − k)!
(2.11.5)

This formula implies in particular that(
m
0

)
= m!

0!m!
= 1,

(
m
1

)
= m!

1!(m − 1)!
= m, and

(
m
m

)
= m!

m!0!
= 1

Because of Eq. (2.11.4), definition (2.11.5) is equivalent to(
m
k

)
= m(m − 1) · · · (m − k + 1)

k!

Then when m = 5, for example, we have(
5
2

)
= 5 · 4

1 · 2
= 10,

(
5
3

)
= 5 · 4 · 3

1 · 2 · 3
= 10,

(
5
4

)
= 5 · 4 · 3 · 2

1 · 2 · 3 · 4
= 5

So (2.11.2) implies that (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.

Next we note two general properties of the numbers in Table 2.11.1. Of these, the first
is that the numbers are obviously symmetric about a vertical line drawn down the middle.
This symmetry can be expressed as (

m
k

)
=

(
m

m − k

)
(2.11.6)

For example,
(6

2

) = 15 = (6
4

)
. Generally, this symmetry is an obvious implication

of the fact that interchanging k and m − k makes no difference to the definition in
Eq. (2.11.5).

The second property is more subtle. Apart from the 1 at both ends of each row, each
number in Table 2.11.1 happens to equal the sum of the two adjacent numbers in the row
above. For instance, the element 56 in row 8 is equal to the sum of the two adjacent elements
21 and 35 just above it in row 7. In symbols,(

m + 1
k

)
=

(
m

k − 1

)
+

(
m
k

)
(2.11.7)

In Exercise 2 you are asked to prove the two properties in Eqs (2.11.6) and
(2.11.7).
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Finally, we offer a proof of Newton’s binomial formula. Before doing so, we use sum-
mation notation to express it as

(a + b)m = am +
m−1∑
k=1

(
m
k

)
am−kbk + bm (2.11.8)

E X A M P L E 2.11.1 Use induction on m to prove Eq. (2.11.8) for m = 1, 2, . . ..

Solution: When m = 1, the summation part of the right-hand side of (2.11.8) disappears
completely, and the equation is trivially true.

For the induction step, suppose that (2.11.8) holds for any particular natural number m.
Multiplying each side of (2.11.8) by a + b gives

(a + b)m+1 = am+1 + amb +
m−1∑
k=1

(
m
k

)
(am−k+1bk + am−kbk+1) + abm + bm+1 (∗)

In this expression, the coefficient of amb is 1 + (m
1

) = (m
0

) + (m
1

)
, where the second term

comes from the first part of the sum in (∗) when k = 1. On the other hand, the coefficient
of abm is

( m
m−1

) + 1 = ( m
m−1

) + (m
m

)
, where the first term comes from the second part of the

sum in (∗) when k = m − 1. Then, for each k = 2, 3, . . . , m − 1, the coefficient of am+1−kbk

is
( m

k−1

) + (m
k

)
, where the first term comes from the second part of the sum in (∗) with k

reduced by 1, whereas the second term comes directly from the first part of the sum in (∗).
It follows that for each k = 1, 2, 3, . . . , m − 1, m, the coefficient of am+1−kbk is the sum( m

k−1

) + (m
k

)
. But applying Eq. (2.11.7) reduces this to

(m+1
k

)
. So we have proved that

(a + b)m+1 = am+1 +
m∑

k=1

(
m + 1

k

)
am−k+1bk + bm+1

But this is precisely Eq. (2.11.8) with m replaced by m + 1. This completes the proof of the
induction step, and so the proof by induction on m.

E X E R C I S E S F O R S E C T I O N 2 . 1 1

1. Use Newton’s binomial formula to find (a + b)6.

2. (a) Verify by direct computation that(
8
3

)
=

(
8

8 − 3

)
and

(
8 + 1

4

)
=

(
8
4

)
+

(
8

4 − 1

)
(b) Use definition (2.11.5) to verify (2.11.6) and (2.11.7).

3. Use the binomial formula with a = b = 1 to evaluate the sum
m∑

k=0

(
m
k

)
.
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2.12 Double Sums
Often one has to combine two or even more summation signs. Consider, for instance, the
following rectangular array of numbers:

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 . . . amn

(2.12.1)

The array can be regarded as a spreadsheet, as it would be in an economic example
where each aij indicates the total revenue of a firm from its sales in region i in
month j.

A typical entry in the array takes the form aij, where i indicates the row, and j the column,
with 1 ≤ i ≤ m and 1 ≤ j ≤ n. So there are n · m numbers in all. Suppose we are asked to
find the sum of all the n · m numbers in the array.

One way to do this would be to find first the sum of the n numbers in each of
the m rows, followed by adding all these row sums. The m different row sums can
be written in the form

∑n
j=1 a1j,

∑n
j=1 a2j, . . . ,

∑n
j=1 amj. The sum of these m row

sums is equal to
∑n

j=1 a1j + ∑n
j=1 a2j + · · · + ∑n

j=1 amj. A key idea is to realize that
using summation notation twice allows this expression to be written as the double sum∑m

i=1

(∑n
j=1 aij

)
.

Alternatively we can first add the numbers in each of the n columns, and then add these
column sums. This gives

m∑
i=1

ai1 +
m∑

i=1

ai2 + · · · +
m∑

i=1

ain =
n∑

j=1

(
m∑

i=1

aij

)

Either way, we have calculated the sum of all the numbers in the array. For this reason, we
must have

m∑
i=1

n∑
j=1

aij =
n∑

j=1

m∑
i=1

aij

where, according to usual practice, we have deleted the parentheses. This formula says that
in a (finite) double sum, the order of summation is immaterial. It is important to note that,
for this to hold, the summation limits for i and j must be independent of each other.27 In
our economic example, both these double sums equal the total revenues over all m regions
summed over all the n months.

27 Otherwise, changing the order in a double sum like
∑n

j=1

∑j
i=1 aij to obtain

∑j
i=1

∑n
j=1 aij results

in an expression that makes little sense.
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E X A M P L E 2.12.1 Compute
∑3

i=1

∑4
j=1(i + 2j).

Solution:

3∑
i=1

4∑
j=1

(i + 2j) =
3∑

i=1

[(i + 2) + (i + 4) + (i + 6) + (i + 8)]

=
3∑

i=1

(4i + 20) = 24 + 28 + 32 = 84

You should check that the result is the same if one sums over i first instead.

E X E R C I S E S F O R S E C T I O N 2 . 1 2

1.SM Expand and compute the following double sums:

(a)
3∑

i=1

4∑
j=1

i · 3j (b)
2∑

s=0

4∑
r=2

(
rs

r + s

)2

(c)
m∑

i=1

n∑
j=1

(i + j2) (d)
m∑

i=1

2∑
j=1

ij

2. Consider a group of individuals each having a certain number of units of m different goods. Let
aij denote the number of units of good i owned by person j, for i = 1, . . . , m and for j = 1, . . . , n.
Explain in words the meaning of the following sums:

(a)
∑n

j=1 aij (b)
∑m

i=1 aij (c)
∑n

j=1

∑m
i=1 aij

3. Prove that the sum of all the numbers in the triangular array

a11
a21 a22
a31 a32 a33
...

...
...

. . .

am1 am2 am3 · · · amm

can be written as
∑m

i=1

(∑i
j=1 aij

)
and also as

∑m
j=1

(∑m
i=j aij

)
.

4.SM [HARDER] Consider the m · n numbers aij in the rectangular array (2.12.1). Denote the arithmetic
mean of them all by --a, and the mean of the numbers in the jth column by --aj, so

--a = 1
mn

m∑
r=1

n∑
s=1

ars and --aj = 1
m

m∑
r=1

arj.

Prove that --a is the mean of the column means --aj (j = 1, . . . , n) and that

m∑
r=1

m∑
s=1

(arj − --a)(asj − --a) = m2(--aj − --a)2 (∗)
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1. (a) Suppose that the price of a phone, denoted by a, includes VAT (value added tax) at the rate
20%. What is its price before VAT is included?

(b) A person buys x1, x2, and x3 units of three goods whose prices per unit are respectively
p1, p2, and p3. What is the total expenditure?

(c) A rental car costs F dollars per day in fixed charges, plus b dollars per kilometre. What
does the rental car company charge for driving the car x kilometres in one day?

(d) A company has fixed costs of F dollars per year and variable costs of c dollars per unit
produced. Find an expression for the total cost per unit (total average cost) incurred by the
company if it produces x units in one year.

(e) An employee starts with an annual salary of $L, subsequently raised by p%, followed by
a second increase of q%. What is the employee’s salary after these two raises?

2. Express as single real numbers, in decimal notation:

(a) 53 (b) 10−3 (c)
1

3−3
(d)

−1
10−3

(e) 3−233 (f) (3−2)−3 (g) −
(

5
3

)0

(h)
(

−1
2

)−3

3. Which of the following expressions are defined, and what are their values if they are?

(a) (0 + 2)0 (b) 0−2 (c)
(10)0

(0 + 1)0
(d)

(0 + 1)0

(0 + 2)0

4. Simplify the following expressions:

(a) (232−5)3 (b)
(

2
3

)−1

−
(

4
3

)−1

(c) (3−2 − 5−1)−1 (d) (1.12)−3(1.12)3

5.SM Simplify the following expressions:

(a) (2x)4 (b) (2−1 − 4−1)−1 (c)
24x3y2z3

4x2yz2

(d)
[−(−ab3)−3(a6b6)2

]3
(e)

a5 · a3 · a−2

a−3 · a6
(f)

[( x
2

)3 · 8
x−2

]−3

6. Complete the following statements:

(a) x−1y−1 = 3 =⇒ x3y3 = · · · (b) x7 = 2 =⇒ (x−3)6(x2)2 = · · ·
(c)

(
xy
z

)−2

= 3 =⇒
(

z
xy

)6

= · · · (d) a−1b−1c−1 = 1
4 =⇒ (abc)4 = · · ·

7. Give economic interpretations to each of the following expressions and then find their approx-
imate values:

(a) €100 · (1.01)8 (b) £50 000 · (1.15)10 (c) $6 000 · (1.03)−8

8. (a) $100 000 is deposited into an account earning 8% interest per year. If there are no subse-
quent deposits or withdrawals, how much is in the account ten years later?

(b) If the interest rate is 8% each year, how much money should you have deposited in a bank
six years ago to have $25 000 today?
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9.SM Expand and simplify the following expressions:

(a) a(a − 1) (b) (x − 3)(x + 7) (c) −√
3

(√
3 − √

6
)

(d)
(

1 − √
2
)2

(e) (x − 1)3 (f) (1 − b2)(1 + b2)

(g) (1 + x + x2 + x3)(1 − x) (h) (1 + x)4

10. Factor the following expressions:

(a) 25x − 5 (b) 3x2 − x3y (c) 50 − x2 (d) a3 − 4a2b + 4ab2

11.SM Factor the following expressions:

(a) 5(x + 2y) + a(x + 2y) (b) (a + b)c − d(a + b) (c) ax + ay + 2x + 2y

(d) 2x2 − 5yz + 10xz − xy (e) p2 − q2 + p − q (f) u3 + v3 − u2v − v2u

12. Compute the following numbers, without using a calculator:

(a) 161/4 (b) 243−1/5 (c) 51/7 · 56/7 (d) (48)−3/16

(e) 641/3 + 3√125 (f) (−8/27)2/3 (g) (−1/8)−2/3 + (1/27)−2/3 (h)
1000−2/3

3√5−3

13. Solve the following equations for x:

(a) 22x = 8 (b) 33x+1 = 1/81 (c) 10x2−2x+2 = 100

14. Find the unknown x in each of the following equations:

(a) 255 · 25x = 253 (b) 3x − 3x−2 = 24 (c) 3x · 3x−1 = 81

(d) 35 + 35 + 35 = 3x (e) 4−6 + 4−6 + 4−6 + 4−6 = 4x (f)
226 − 223

226 + 223
= x

9

15.SM Simplify the following expressions:

(a)
s

2s − 1
− s

2s + 1
(b)

x
3 − x

− 1 − x
x + 3

− 24
x2 − 9

(c)
(

1
x2y

− 1
xy2

)
÷

(
1
x2

− 1
y2

)

16.SM Reduce the following fractions:

(a)
25a3b2

125ab
(b)

x2 − y2

x + y
(c)

4a2 − 12ab + 9b2

4a2 − 9b2
(d)

4x − x3

4 − 4x + x2

17. Solve the following inequalities:

(a) 2(x − 4) < 5 (b) 1
3 (y − 3) + 4 ≥ 2 (c) 8 − 0.2x ≤ 4 − 0.1x

0.5
(d)

x − 1
−3

>
−3x + 8

−5
(e) |5 − 3x| ≤ 8 (f) |x2 − 4| ≤ 2

18. Using a mobile phone costs $30 per month, and an additional $0.16 per minute of use.

(a) What is the cost for one month if the phone is used for a total of x minutes?

(b) What are the smallest and largest numbers of hours you can use the phone in a month if
the monthly telephone bill is to be between $102 and $126?
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19. If a rope could be wrapped around the Earth’s surface at the equator, it would be approximately
circular and about 40 million metres long. Suppose we wanted to extend the rope to make it
1 metre above the equator at every point. How many more metres of rope would be needed?
(Recall that the circumference of a circle with radius r is 2πr.)

20. (a) Prove that a + a · p
100

−
(
a + a·p

100

) · p

100
= a

[
1 −

( p
100

)2
]

.

(b) An item initially costs $2 000 and then its price is increased by 5%. Afterwards the price
is lowered by 5%. What is the final price?

(c) An item initially costs a dollars and then its price is increased by p%. Afterwards the (new)
price is lowered by p%. What is the final price of the item? (After considering this exercise,
look at the expression in part (a).)

(d) What is the result if one first lowers a price by p% and then increases it by p%?

21. (a) If a > b, is it necessarily true that a2 > b2 ?

(b) Show that if a + b > 0, then a > b implies a2 > b2.

22. (a) If a > b, use numerical examples to check whether 1/a > 1/b, or 1/a < 1/b.

(b) Prove that if a > b and ab > 0, then 1/b > 1/a.

23. Prove that, for all real numbers a and b, one has:

(a) |ab| = |a| · |b| (b) |a + b| ≤ |a| + |b|
The inequality in (b) is called the triangle inequality.

24.SM Consider a fixed equilateral triangle, and let P be an arbitrary point within the triangle. Let
h1, h2, and h3 be the shortest distances from P to each of the three sides. Show that the sum
h1 + h2 + h3 is independent of where point P is placed in the triangle. (Hint: Compute the area
of the triangle as the sum of three triangles.)

25. Evaluate the following sums:

(a)
4∑

i=1

1
i(i + 2)

(b)
9∑

j=5

(2j − 8)2 (c)
5∑

k=1

(
k − 1
k + 1

)

(d)
5∑

n=2

(n − 1)2(n + 2) (e)
5∑

k=1

(
1
k

− 1
k + 1

)
(f)

3∑
i=−2

(i + 3)i

26. Express the following sums in summation notation:

(a) 3 + 5 + 7 + · · · + 199 + 201 (b)
2
1

+ 3
2

+ 4
3

+ · · · + 97
96

(c) 4 · 6 + 5 · 7 + 6 · 8 + · · · + 38 · 40 (d)
1
x

+ 1
x2

+ · · · + 1
xn

(e) 1 + x2

3
+ x4

5
+ x6

7
+ · · · + x32

33
(f) 1 − 1

2
+ 1

3
− 1

4
+ · · · − 1

80
+ 1

81
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27. Which of these equalities are always right and which of them are sometimes wrong?

(a)
n∑

i=1

ai =
n+2∑
j=3

aj−2 (b)
n∑

i=1

(ai + bi)
2 =

n∑
i=1

a2
i +

n∑
i=1

b2
i

(c)
n∑

k=0

5ak+1,j = 5
n+1∑
k=1

ak,j (d)
3∑

i=1

ai

bi
=

∑3
i=1 ai∑3
i=1 bi

28.SM Find the following two sums:

(a) 3 + 5 + 7 + · · · + 197 + 199 + 201

(b) 1001 + 2002 + 3003 + · · · + 8008 + 9009 + 10 010
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3
S O L V I N G E Q U A T I O N S

The true mathematician is not a juggler of numbers, but of concepts.
—From Ian Stewart Concepts of Modern Mathematics (1975)

Virtually all applications of mathematics involve equations that have to be solved. Economics
is no exception, so this chapter considers some types of equation that appear frequently

in economic models.
Many students are used to dealing with algebraic expressions and equations involving only

one variable, usually denoted by x. Often they have difficulties, at first, in dealing with expres-
sions involving several variables with a wide variety of names, and denoted by different letters.
For economists, however, it is very important to be able to handle with ease such algebraic
expressions and equations.

3.1 Solving Equations
To solve an equation means to find all values of the variables for which the equation is
satisfied. Consider the following simple example

3x + 10 = x + 4

which contains the variable x. In order to isolate x on one side of the equation, we add −x
to both sides. This gives 2x + 10 = 4. Adding −10 to both sides of this equation yields
2x = 4 − 10 = −6. Dividing by 2 we get the solution x = −3.

This procedure was probably already familiar to you. The method is summed
up next, noting that two equations that have exactly the same solutions are called
equivalent.
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To get an equivalent equation, do either of the following on both sides of the
equality sign:

(i) add (or subtract) the same number;

(ii) multiply (or divide) by the same number different from 0.

It is important to note that not only is division by 0 excluded; so is multiplication by 0.
For example, if one multiplies each side of the equation x = 1 by 0, the result is the trivial
equation 0 = 0. Now, it is not very interesting but harmless to assert that x = 1 ⇒ 0 = 0.
But 0 = 0 definitely does not imply that x = 1, so the two equations are definitely not
equivalent.

When faced with more complicated equations involving parentheses and fractions, we
usually begin by multiplying out the parentheses, and then we multiply both sides of the
equation by the lowest common denominator for all the fractions.

E X A M P L E 3.1.1 Solve the equation

6p − 1
2
(2p − 3) = 3(1 − p) − 7

6
(p + 2)

Solution: First multiply out the parentheses: 6p − p + 3
2 = 3 − 3p − 7

6 p − 7
3 . Sec-

ond, multiply both sides by the lowest common denominator: 36p − 6p + 9 =
18 − 18p − 7p − 14. Third, gather terms: 55p = −5. Thus p = −5/55 = −1/11.

If a value of a variable makes an expression in an equation undefined, that value is not
allowed. For instance, the variable z is not allowed to have the value 5 in any equation that
involves the expression

z
z − 5

because 5/0 is undefined. As the next example shows, a restriction such as z �= 5 can imply
that a particular equation has no solutions at all.

E X A M P L E 3.1.2 Find what values of z solve the equation

z
z − 5

+ 1
3

= −5
5 − z

Solution: We now know that z cannot be 5. Remembering this restriction, we clear fractions
by multiplying both sides by 3(z − 5), which is their lowest common denominator. The
result is 3z + z − 5 = 15, which has the unique solution z = 5. Because we had to assume
z �= 5, we must conclude that the original equation has no solution.
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The next example shows, again, that sometimes a surprising degree of care is needed to
find the right solutions.

E X A M P L E 3.1.3 Solve the equation
x + 2
x − 2

− 8
x2 − 2x

= 2
x

Solution: Since x2 − 2x = x(x − 2), the lowest common denominator is x(x − 2). We
see that x = 2 and x = 0 both make the equation absurd, because then at least one of the
denominators becomes 0. Provided that x �= 0 and x �= 2, we can multiply both sides of
the equation by the common denominator x(x − 2) to obtain

x + 2
x − 2

· x(x − 2) − 8
x(x − 2)

· x(x − 2) = 2
x

· x(x − 2)

Cancelling common factors, this reduces to (x + 2)x − 8 = 2(x − 2) or x2 + 2x − 8 =
2x − 4, and so x2 = 4. Equations of the form x2 = a, where a > 0, have two solutions
x = √

a and x = −√
a. In our case, x2 = 4 has solutions x = 2 and x = −2. But x = 2

makes the original equation absurd, so only x = −2 is a solution.

Often, solving a problem in economic analysis requires formulating an appropriate alge-
braic equation.

E X A M P L E 3.1.4 A firm manufactures a commodity that costs $20 per unit to produce. In addition, the
firm has fixed costs of $2 000. Each unit sells for $75. How many units must the firm sell if
it is to meet a profit target of $14 500?

Solution: Let Q denote the number of units produced and sold. Then the revenue of the
firm is 75Q and the total cost of production is 20Q + 2000. Because profit is the difference
between total revenue and total cost, it can be written as 75Q − (20Q + 2000). To meet the
profit target of $14 500, therefore, requires satisfying the equation

75Q − (20Q + 2000) = 14 500

It is now easy to find the solution: Q = 16 500/55 = 300 units.

E X E R C I S E S F O R S E C T I O N 3 . 1

1. Solve each of the following equations:

(a) 2x − (5 + x) = 16 − (3x + 9) (b) −5(3x − 2) = 16(1 − x)

(c) 4x + 2(x − 4) − 3 = 2(3x − 5)−1 (d) (8x − 7)5 − 3(6x − 4) + 5x2 = x(5x − 1)

(e) x2 + 10x + 25 = 0 (f) (3x − 1)2 + (4x + 1)2 = (5x − 1)(5x + 1) + 1

2. Solve each of the following equations:

(a) 3x = 1
4 x − 7 (b)

x − 3
4

+ 2 = 3x

(c)
1

2x + 1
= 1

x + 2
(d)

√
2x + 14 = 16
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3.SM Solve each of the following equations:

(a)
x − 3
x + 3

= x − 4
x + 4

(b)
3

x − 3
− 2

x + 3
= 9

x2 − 9
(c)

6x
5

− 5
x

= 2x − 3
3

+ 8x
15

4. Solve the following problems, by first formulating an equation in each case:

(a) The sum of three successive natural numbers is 10 more than twice the smallest of them. Find
the numbers.

(b) Jane receives double pay for every hour she works over and above 38 hours per week. Last
week, she worked 48 hours and earned a total of $812. What is Jane’s regular hourly wage?

(c) James has invested £15 000 at an annual interest rate of 10%. How much additional money
should he invest at the interest rate of 12%, if he wants the total interest earned by the end of
the year to equal £2 100?

(d) When Mr Barnes passed away, 2/3 of his estate was left to his wife, 1/4 was shared by his
children, and the remainder, $100 000, was donated to a charity. How big was Mr Barnes’s
estate?

5.SM Solve the following equations:

(a)
3y − 1

4
− 1 − y

3
+ 2 = 3y (b)

4
x

+ 3
x + 2

= 2x + 2
x2 + 2x

+ 7
2x + 4

(c)
2 − z/(1 − z)

1 + z
= 6

2z + 1
(d)

1
2

(
p
2

− 3
4

)
− 1

4

(
1 − p

3

)
− 1

3
(1 − p) = −1

3

6. Ms Preston has y euros to spend on apples, bananas, and cherries. She decides to spend the same
amount of money on each kind of fruit. The prices per kilo are 3 for apples, 2 for bananas, and
6 for cherries. What is the total weight of fruit she buys, and how much does she pay per kilo of
fruit?1

3.2 Equations and Their Parameters
Economists use mathematical models to describe how different economic variables affect
each other, or what we call their “interdependence”. Macroeconomic models, for instance,
are designed to explain the broad outlines of a country’s economy; in these models, the
variables that economists use most often include the total output of the economy (or its
gross domestic product), as well as its total consumption and its total investment.

The simplest kind of relationship between two variables occurs when the response of
one variable to a change of one unit in the other one is always the same. In this case, the
relationship can be described by a linear equation, such as

y = 10x, or y = 3x + 4, or y = −8
3

x − 7
2

(3.2.1)

In these three cases, the response of variable y to an increase of one unit in variable x is,
respectively, 10, 3, and − 8

3 .

1 This is an example of “dollar cost” averaging, which we will encounter again in Exercise 14.5.4
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The three equations (3.2.1) share a common structure. This makes it possible to write
down a general linear equation covering all the special cases where x and y are the only two
variables:

y = ax + b (3.2.2)

Here a and b are real numbers. For example, letting a = 3 and b = 4 yields the particular
case where y = 3x + 4. Note that when a = 0, the value of y is constant and the graph of the
equation is a horizontal straight line. Graphs which are vertical straight lines are also pos-
sible. They occur when x is a constant, denoted by c, but y varies. In order to accommodate
this case, we interchange the values of x and y, and write x = c.

The numbers a and b are called parameters, as they take on different, but “fixed” values.2

In economics, parameters often have interesting interpretations.

E X A M P L E 3.2.1 Consider the basic macroeconomic model

Y = C + --
I (3.2.3)

and
C = a + bY (3.2.4)

where Y is the gross domestic product (GDP), C is consumption, and
--
I is total investment,

which is treated as fixed. Equation (3.2.3) says that GDP is, by definition, the sum of con-
sumption and total investment. Equation (3.2.4) says that consumption is a linear function
of GDP. Here, a and b are positive parameters of the model, with b < 1.3 Solve the model
for Y in terms of

--
I and the parameters.

Solution: Substituting (3.2.4) into (3.2.3) gives

Y = a + bY + --
I

Now, we rearrange this equation so that all the terms containing Y are on the left-hand side.
This can be done by adding −bY to both sides, thus cancelling the bY term on the right-hand
side. The result is

Y − bY = a + --
I

Notice that the left-hand side is equal to (1 − b)Y , so (1 − b)Y = a + --
I. Next, divide both

sides by 1 − b, to make the coefficient of Y equal to 1. This gives the answer:

Y = a
1 − b

+ 1
1 − b

--
I (3.2.5)

2 Linear equations are studied in more detail in Section 4.4.
3 Parameter a is often referred to as autonomous consumption, as it represents the part of con-

sumption that is not proportional to the economy’s income. The increase of consumption caused
by an increase of one unit in income is measured by b; accordingly, this parameter is generally
known as marginal propensity to consume. Special cases of the model are obtained by choosing
particular numerical values for the parameters, such as --I = 100, a = 500, b = 0.8, or --I = 150,
a = 600, b = 0.9. Inserting these particular parameter values gives, respectively, Y = C + 100 and
C = 500 + 0.8Y; or Y = C + 150 and C = 600 + 0.9Y .
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This solution is a linear equation expressing Y in terms of
--
I and the parameters a

and b.

Note the power of the approach used here: the model is solved only once, and then
numerical answers are found simply by substituting appropriate numerical values for the
parameters of the model. For instance, if

--
I = 100, a = 500, b = 0.8, then Y = 3000.

Economists usually call Eqs (3.2.3) and (3.2.4) the structural form of the model,
whereas Eq. (3.2.5) is called its reduced form. In the reduced form, the number 1/(1 − b)

is itself a parameter. This is known as the investment multiplier, because it measures the
response in income to an “exogenous” increase in investment.

Of course, we often need to solve more complicated nonlinear equations. These often
involve “strange” letters denoting their parameters and variables.

E X A M P L E 3.2.2 Suppose that the total demand for money in an economy is given by

M = αY + β(r − γ )−δ (∗)

Here M is the quantity of money in circulation, Y is national income and r is the interest
rate. Also α, β, γ , and δ are all positive parameters, with δ a rational number.

(a) Solve the model for r in terms of the other variables.

(b) For the USA during the period 1929–1952, the four parameters have been estimated as
α = 0.14, β = 76.03, γ = 2, and δ = 0.84. Show that r is then given by

r = 2 +
(

76.03
M − 0.14Y

)25/21

Solution:

(a) It follows easily from the equation (∗) that (r − γ )−δ = (M − αY)/β. Now, raise each
side to the power −1/δ (which is also rational) to obtain

r − γ = [(M − αY)/β]−1/δ

Next, add γ to both sides and use the equality (a/b)−p = (b/a)p. This yields the solu-
tion

r = γ +
(

β

M − αY

)1/δ

(∗∗)

(b) The specified values of the four parameters imply that 1/δ = 1/0.84 = 100/84 =
25/21. The required formula then follows immediately from Eq. (∗∗).

E X E R C I S E S F O R S E C T I O N 3 . 2

1. Find the value of Y for the case when Y = C + 150 and C = 600 + 0.9Y in the model of
Example 3.2.1. Verify that Eq. (3.2.5) gives the same result.
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2.SM Solve the following equations for x:

(a)
1
ax

+ 1
bx

= 2 (b)
ax + b
cx + d

= A (c) 1
2 px−1/2 − w = 0

(d)
√

1 + x + ax√
1 + x

= 0 (e) a2x2 − b2 = 0 (f) (3 + a2)x = 1

3. Solve the following equations for the indicated variables:

(a) The demand function, q = 0.15p + 0.14, for the price p;

(b) The supply function, S = α + βP, for the price P;

(c) The area of a triangle, A = 1
2 bh, for its base b;

(d) The volume of a ball, V = 4
3 πr3, for its radius r;

(e) The production function AKαLβ = Y0, for its labour input L.

4.SM Solve the following equations for the indicated variables:

(a) αx − a = βx − b for x (b)
√

pq − 3q = 5 for p

(c) Y = 94 + 0.2(Y − (20 + 0.5Y)) for Y (d) K1/2
( 1

2
r
w

K
)1/4 = Q for K

(e)
1
2 K−1/2L1/4

1
4 L−3/4K1/2

= r
w

for L (f) 1
2 pK−1/4

( 1
2

r
w

)1/4 = r for K

5. Solve the following equations for the indicated variables:

(a) 1/s + 1/T = 1/t for s (b)
√

KLM − αL = B for M

(c)
x − 2y + xz

x − z
= 4y for z (d) V = C

(
1 − T

N

)
for T

3.3 Quadratic Equations
The general quadratic equation in the unknown variable x has the form

ax2 + bx + c = 0 (3.3.1)

where the constants a, b, and c are given real numbers. Note that if a = 0 the equation
reduces to bx + c = 0, which is linear rather than quadratic. So we assume that a �= 0. This
allows us to divide each term by a to get the equivalent equation x2 + (b/a)x + c/a = 0.
Now define p = b/a and q = c/a, so the equation reduces to

x2 + px + q = 0 (3.3.2)

Two special cases are easy to handle. If q = 0, so that there is no “constant term”, the
equation reduces to x2 + px = 0. This is equivalent to x(x + p) = 0. Then, since the product
of two numbers can be 0 only if at least one of them is 0, we conclude that x = 0 or x = −p.
In short,

x2 + px = 0 ⇐⇒ x = 0 or x = −p
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Now, if p �= 0, then the equation x2 + px = 0 has the two solutions x = 0 and x = −p, but
no others. Alternatively, if p = 0 we have the trivial equation x2 = 0, whose only solution
is x = 0.

The second special case is when q �= 0 but p = 0, so that there is no term involving x.
Here Eq. (3.3.2) reduces to x2 + q = 0. Then x2 = −q, and there are two cases to consider.
If q > 0, the equation has no solution because squaring any number never gives a neg-
ative result. In the alternative case when q ≤ 0, both x = √−q and x = −√−q solve the
equation. As discussed in Section 2.5, let us use the notation x = ±√−q to indicate the two
values

√−q and −√−q which solve x2 + q = 0. So, assuming that q ≤ 0, we can write in
short

x2 + q = 0 ⇐⇒ x = ±√−q

These results can be applied to solve any instance of the two simple cases.

E X A M P L E 3.3.1 Solve the following equations:

(a) 5x2 − 8x = 0 (b) x2 − 4 = 0 (c) x2 + 3 = 0

Solution:

(a) Dividing each term by 5 yields x2 − (8/5)x = x(x − 8/5) = 0, so x = 0 or x = 8/5.

(b) The equation yields x2 = 4, so x = ±√
4 = ±2. Alternatively, one has x2 − 4 =

(x + 2)(x − 2) so the equation is equivalent to (x + 2)(x − 2) = 0. Either way, one
concludes that x is either 2 or −2.

(c) Because x2 is never less than 0, the left-hand side of the equation x2 + 3 = 0 is always
strictly positive. Hence, the equation has no solution.

More Difficult Cases
If both coefficients p and q in Eq. (3.3.2) differ from 0, solving it becomes harder. Consider,
for example, the equation

x2 − (4/3)x − 1/4 = 0

We could, of course, try to find the values of x that satisfy the equation by trial and error.
However, it is not easy that way to find the only two solutions, which are x = 3/2 and
x = −1/6. Here are two attempts to solve the equation that fail:

(a) A first attempt rearranges x2 − (4/3)x − 1/4 = 0 to give x2 − (4/3)x = 1/4, and
so x(x − 4/3) = 1/4. Thus, the product of x and x − 4/3 must be 1/4. But there are
infinitely many pairs of numbers whose product is 1/4, so this is of very little help in
finding x.

(b) A second attempt is to divide each term by x to get x − 4/3 = 1/4x. Because the
equation involves terms in both x and 1/x, as well as a constant term, we have made no
progress whatsoever.

Evidently, we need a completely new idea in order to find the solution of (3.3.2). The
following example illustrates a general method enabling us to solve this harder equation.
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E X A M P L E 3.3.2 Solve the equation x2 + 8x − 9 = 0.

Solution: It is natural to begin by moving 9 to the right-hand side:

x2 + 8x = 9 (∗)

Because x occurs in two terms, however, it is not obvious how to proceed. A method called
completing the square, one of the oldest tricks in mathematics, turns out to work.

Let us begin by recalling the quadratic identities in Section 2.3, of which the first implies
that (x + b)2 = x2 + 2bx + b2. Putting b = 4 in this identity gives (x + 4)2 = x2 + 8x +
16, of which the first two terms match the left-hand side of (∗). To get the third term 16 as
well, we add 16 to each side of the equation (∗), which yields

x2 + 8x + 16 = 9 + 16 (∗∗)

whose left-hand side is the complete square x2 + 8x + 16 = (x + 4)2. Thus, Eq. (∗∗) is
equivalent to

(x + 4)2 = 25 (∗∗∗)

Now, the equation z2 = 25 has two solutions, which are z = ±√
25 = ±5. Thus, (∗∗∗)

implies that either x + 4 = 5 or x + 4 = −5. The required solutions are, therefore, x = 1
and x = −9.

Alternatively, Eq. (∗∗∗) can be written as (x + 4)2 − 52= 0. Using the difference-of-
squares formula set out in Section 2.3, we can write this as (x + 4 − 5)(x + 4 + 5)= 0. This
reduces to (x − 1)(x + 9) = 0. So we have the following factorization

x2 + 8x − 9 = (x − 1)(x + 9)

Note that (x − 1)(x + 9) is 0 precisely when x = 1 or x = −9.

The General Case
We now apply the method of completing the squares to the quadratic equation (3.3.2). This
equation obviously has the same solutions as x2 + px = −q. One half of the coefficient of
x is p/2. Adding the square of this number to each side of the equation yields

x2 + px +
(p

2

)2 =
(p

2

)2 − q

The left-hand side is now a complete square, so(
x + p

2

)2 = p2

4
− q (3.3.3)

Note that if p2/4 − q < 0, then the right-hand side is negative. Because (x + p/2)2 is non-
negative for all choices of x, we conclude that Eq. (3.3.3) has no solution in this case. On
the other hand, if p2/4 − q > 0, Eq. (3.3.3) yields two possibilities:

x + p/2 =
√

p2/4 − q and x + p/2 = −
√

p2/4 − q

The values of x are then easily found. These formulas are correct even if p2/4 − q = 0,
though then they give just the one solution x = −p/2. In conclusion:
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S I M P L E Q U A D R A T I C F O R M U L A

Provided that 1
4 p2 ≥ q one has

x2 + px + q = 0 if and only if x = −1
2

p ±
√

1
4

p2 − q (3.3.4)

Faced with an equation of the type (3.3.1) where a �= 0, we can always find its solutions
by first dividing the equation by a and then using (3.3.4). Sometimes, however, it is con-
venient to have the formula for the solution expressed in terms of the original coefficients
a, b, and c of (3.3.1). Recall that dividing Eq. (3.3.1) by a yields the equivalent equation
Eq. (3.3.2), with p = b/a and q = c/a. Substituting these particular values in (3.3.4) gives
the solutions x = −b/2a ± √

b2/4a2 − c/a. Because
√

b2/4a2 − c/a = √
b2 − 4ac/2a,

this implies:

G E N E R A L Q U A D R A T I C F O R M U L A

Provided that b2 − 4ac ≥ 0 and a �= 0, one has

ax2 + bx + c = 0 if and only if x = −b ± √
b2 − 4ac

2a
(3.3.5)

It is probably a good idea to spend a few minutes of your life thoroughly memorizing
this formula, or the equivalent (3.3.4). Once you have done so, you can immediately write
down the solutions of any quadratic equation. Only if b2 − 4ac ≥ 0 are the solutions real
numbers. If we use the formula when b2 − 4ac < 0, the square root of a negative number
appears and no real solution exists. The solutions are often called the roots of the equation.4

E X A M P L E 3.3.3 Use the quadratic formula to find the solutions of the equation

2x2 − 2x − 40 = 0

Solution: Write the equation as 2x2 + (−2)x + (−40) = 0. This equation matches the pat-
tern ax2 + bx + c = 0 just in case a = 2, b = −2, and c = −40. So applying the quadratic
formula (3.3.5) yields

x = −(−2) ± √
(−2)2 − 4 · 2 · (−40)

2 · 2
= 2 ± √

4 + 320
4

= 2 ± 18
4

= 1
2

± 9
2

The solutions are, therefore, x = 1/2 + 9/2 = 5 and x = 1/2 − 9/2 = −4.

4 The quadratic formula is very useful, but you should not become an unthinking “quadratic formula
fanatic” who uses it always. For example, when b = 0 or c = 0, we explained at the beginning of
this section how to solve the equation very easily. As another example, while answering an exam
question that required the equation (x − 4)2 = 0 to be solved, one candidate displayed extreme
fanaticism by expanding the parentheses to obtain x2 − 8x + 16 = 0, then eventually using the
quadratic formula to get the (correct) answer, x = 4. What would you have done?
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To use formula (3.3.4) instead, divide each term by 2 to get x2 − x − 20 = 0. Then the
solutions are

x = 1/2 ± √
1/4 + 20 = 1/2 ± √

81/4 = 1/2 ± 9/2

which are exactly the same as before.

Suppose p2/4 − q ≥ 0 and let x1 and x2 be the solutions of Eq. (3.3.2). By using the
difference-of-squares formula as we did to obtain the factorization in Example 3.3.2, we
see that Eq. (3.3.3) is equivalent to (x − x1)(x − x2) = 0. It follows also that:

Q U A D R A T I C F A C T O R I Z A T I O N

If x1 and x2 are the solutions of ax2 + bx + c = 0, then

ax2 + bx + c = a(x − x1)(x − x2) (3.3.6)

This is a very important result, because it shows how to factor a general quadratic
function. If b2 − 4ac < 0, there is no factorization of ax2 + bx + c. If b2 − 4ac = 0, then
x1 = x2 = −b/2a and ax2 + bx + c = a(x − x1)

2 = a(x − x2)
2.

E X A M P L E 3.3.4 Factor, if possible, the following quadratic polynomials:

(a) 1
3 x2 + 2

3 x − 14
3 (b) −2x2 + 40x − 600

Solution:

(a) 1
3 x2 + 2

3 x − 14
3 = 0 has the same solutions as x2 + 2x − 14 = 0. By formula (3.3.2), its

solutions are x = −1 ± √
1 + 14 = −1 ± √

15, which also solve the given equation.
Then applying Eq. (3.3.6) with a = 1

3 , x1 = −1 + √
15 and x2 = −1 − √

15 gives the
factorization:

1
3

x2 + 2
3

x − 14
3

= 1
3

[
x −

(
−1 + √

15
)] [

x −
(
−1 − √

15
)]

= 1
3

(
x + 1 − √

15
) (

x + 1 + √
15

)
(b) We apply (3.3.5) with a = −2, b = 40, and c = −600, and get b2 − 4ac = 1600 −

4800 = −3200 < 0. Therefore, no factoring exists in this case.

Expanding the right-hand side of the identity x2 + px + q = (x − x1)(x − x2) yields
x2 + px + q = x2 − (x1 + x2)x + x1x2. Equating like powers of x gives x1 + x2 = −p and
x1x2 = q. Thus:
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If x1 and x2 are the roots of x2 + px + q = 0, then

x1 + x2 = −p and x1x2 = q (3.3.7)

In words, the sum of the two roots is minus the coefficient of the first-order term, whereas
the product of the roots is the constant term. The formulas (3.3.7) can also obtained by
adding and multiplying the two solutions found in (3.3.4).

E X E R C I S E S F O R S E C T I O N 3 . 3

1. Solve the following quadratic equations, if they have solutions:

(a) 15x − x2 = 0 (b) p2 − 16 = 0 (c) (q − 3)(q + 4) = 0

(d) 2x2 + 9 = 0 (e) x(x + 1) = 2x(x − 1) (f) x2 − 4x + 4 = 0

2. Solve the following quadratic equations by using the method of completing the square, and factor,
if possible, the left-hand side:

(a) x2 − 5x + 6 = 0 (b) y2 − y − 12 = 0 (c) 2x2 + 60x + 800 = 0

(d) − 1
4 x2 + 1

2 x + 1
2 = 0 (e) m(m − 5) − 3 = 0 (f) 0.1p2 + p − 2.4 = 0

3.SM Use the quadratic formula to solve the following equations:

(a) r2 + 11r − 26 = 0 (b) 3p2 + 45p = 48 (c) 20 000 = 300K − K2

(d) r2 + (
√

3 − √
2)r = √

6 (e) 0.3x2 − 0.09x = 0.12 (f) 1
24 = p2 − 1

12 p

4. Solve the following equations, by using the quadratic formula:

(a) x2 − 3x + 2 = 0 (b) 5t2 − t = 3 (c) 6x = 4x2 − 1

(d) 9x2 + 42x + 44 = 0 (e) 30 000 = x(x + 200) (f) 3x2 = 5x − 1

5.SM Solve the following problems:

(a) Find the lengths of the sides of a rectangle whose perimeter is 40 cm and whose area is 75 cm2.

(b) Find two successive natural numbers whose sum of squares is 13.

(c) In a right-angled triangle, the hypotenuse is 34 cm. One of the short sides is 14 cm longer than
the other. Find the lengths of the two short sides.

(d) A motorist drove 80 km. In order to save 16 minutes, he had to drive 10 km/h faster than usual.
What was his usual driving speed?

6. [HARDER] Solve the following equations:

(a) x3 − 4x = 0 (b) x4 − 5x2 + 4 = 0 (c) z−2 − 2z−1 − 15 = 0
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3.4 Some Nonlinear Equations
We now study a more general form of equation, in which the product of several factors must
be zero. The form encompasses linear equations, as well as quadratic equations when they
have a solution. Such equations are ubiquitous in economics, so we must be able to handle
them in order to obtain as much information about their solution as possible.

E X A M P L E 3.4.1 Solve each of the following three separate equations:

(a) x3
√

x + 2 = 0 (b) x(y + 3)(z2 + 1)
√

w − 3 = 0 (c) x2 − 3x3 = 0

Solution:

(a) If x3
√

x + 2 = 0, then either x3 = 0 or
√

x + 2 = 0. The equation x3 = 0 has only the
solution x = 0, while

√
x + 2 = 0 gives x = −2. The solutions of the equation are

therefore x = 0 and x = −2.

(b) There are four factors in the product on the left-hand side. The factor z2 + 1 is never 0.
Hence, the solutions are: x = 0 or y = −3 or w = 3.

(c) First factor x2 − 3x3 to obtain the equation x2(1 − 3x) = 0. The product x2(1 − 3x) is
0 if and only if x2 = 0 or 1 − 3x = 0. Hence, the solutions are x = 0 and x = 1/3.5

In solving these equations, we have repeatedly used the fact that a product of two or
more factors is 0 if and only if at least one of the factors is 0. In particular,

ab = ac is equivalent to a = 0 or b = c (3.4.1)

This is because the equation ab = ac is equivalent to ab − ac = 0, or a(b − c) = 0. Of
course, if ab = ac and a �= 0, we conclude from Eq. (3.4.1) that b = c.

E X A M P L E 3.4.2 What conclusions about the variables can we draw if

(a) x(x + a) = x(2x + b) (b) λy = λz2 (c) xy2(1 − y) − 2λ(y − 1) = 0

Solution:

(a) The equation can be expressed as x(x + a − 2x − b) = 0, which simplifies to x(−x +
a − b) = 0. Its solutions are therefore x = 0 and x = a − b.

(b) Here one has λ(y − z2) = 0, so λ = 0 or y = z2. It is easy to forget the first possibility.

(c) The equation is equivalent to

xy2(1 − y) + 2λ(1 − y) = 0

5 When trying to solve an equation, an easy way to make a serious mistake is to cancel a factor
which might be zero. For instance, suppose one cancels the common factor x2 in the equation
x2 − 3x3 = 0. The result is 1 − 3x = 0, implying that x = 1/3. Yet one part of the solution is x = 0,
which has been lost. Thus, it is important always to check that the factor being cancelled really is
not zero.
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which can be written as
(1 − y)(xy2 + 2λ) = 0

We conclude from the last equation that 1 − y = 0 or xy2 + 2λ = 0, that is y = 1 or
λ = − 1

2 xy2.

Finally, we consider some equations involving fractions. Recall that the fraction a/b is
not defined if b = 0. If b �= 0, then a/b = 0 is equivalent to a = 0.

E X A M P L E 3.4.3 Solve the following equations:

(a)
1 − K2

√
1 + K2

= 0 (b)
45 + 6r − 3r2

(r4 + 2)3/2
= 0 (c)

x2 − 5x√
x2 − 25

= 0

Solution:

(a) The denominator is never 0, so the fraction is 0 when 1 − K2 = 0, that is when
K = ±1.

(b) Again the denominator is never 0. The fraction is 0 when 45 + 6r − 3r2 = 0, that
is 3r2 − 6r − 45 = 0. Solving this quadratic equation, we find that r = −3 or
r = 5.

(c) The numerator is equal to x(x − 5), which is 0 if x = 0 or x = 5. At x = 0 the
denominator is

√−25, which is not defined, and at x = 5 the denominator is 0. We
conclude that the equation has no solutions.

E X E R C I S E S F O R S E C T I O N 3 . 4

1. Solve the following equations:

(a) x(x + 3) = 0 (b) x3(1 + x2)(1 − 2x) = 0 (c) x(x − 3) = x − 3

(d)
√

2x + 5 = 0 (e)
x2 + 1

x(x + 1)
= 0 (f)

x(x + 1)

x2 + 1
= 0

2.SM Solve the following equations:

(a)
5 + x2

(x − 1)(x + 2)
= 0 (b) 1 + 2x

x2 + 1
= 0

(c)
(x + 1)1/3 − 1

3 x(x + 1)−2/3

(x + 1)2/3
= 0 (d)

x
x − 1

+ 2x = 0

3.SM Examine what conclusions can be drawn about the variables if:

(a) z2(z − a) = z3(a + b), a �= 0 (b) (1 + λ)μx = (1 + λ)yμ

(c)
λ

1 + μ
= −λ

1 − μ2
(d) ab − 2b − λb(2 − a) = 0
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3.5 Using Implication Arrows
Implication and equivalence arrows are very useful in helping to avoid mistakes when solv-
ing equations. Consider first the following example.

E X A M P L E 3.5.1 Solve the equation (2x − 1)2 − 3x2 = 2
( 1

2 − 4x
)
.

Solution: By expanding (2x − 1)2 and also multiplying out the right-hand side, we obtain
a new equation that obviously has the same solutions as the original one:

(2x − 1)2 − 3x2 = 2( 1
2 − 4x) ⇐⇒ 4x2 − 4x + 1 − 3x2 = 1 − 8x

Adding 8x − 1 to each side of the second equation and then gathering terms gives another
equivalent equation:

4x2 − 4x + 1 − 3x2 = 1 − 8x ⇐⇒ x2 + 4x = 0

Now x2 + 4x = x(x + 4), and the latter product is 0 if and only if x = 0 or x = −4. That is,

x2 + 4x = 0 ⇐⇒ x(x + 4) = 0 ⇐⇒ [x = 0 or x = −4]

where we have used brackets, for the sake of clarity, in the last expression. Putting
everything together, we have derived a chain of equivalence arrows showing that the
given equation is satisfied for the two values x = 0 and x = −4, and for no other values
of x.

E X A M P L E 3.5.2 Solve the equation x + 2 = √
4 − x for x.6

Solution: Squaring both sides of the given equation yields

(x + 2)2 =
(√

4 − x
)2

Consequently x2 + 4x + 4 = 4 − x that is, x2 + 5x = 0. From the latter equation, it
follows that x(x + 5) = 0 which yields x = 0 or x = −5. Thus, a necessary condition
for x to solve x + 2 = √

4 − x is that x = 0 or x = −5. Yet when x = −5, the left-hand
side of the original equation is negative, whereas the right-hand side is a square root,
which we have defined to be nonnegative. This leaves x = 0 as unique solution to the
equation.

The method used in solving Example 3.5.2 is the most common. It involves setting up a
chain of implications that starts from the given equation and ends with the set of all possible
solutions. By testing each of these trial solutions in turn, we find which of them really do
satisfy the equation. Even if the chain of implications is also a chain of equivalences, such
a test is always a useful check of both logic and calculations.

6 Recall Example 1.2.1.
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E X E R C I S E S F O R S E C T I O N 3 . 5

1. Using implication arrows, solve the equation

(x + 1)2

x(x − 1)
+ (x − 1)2

x(x + 1)
− 2

3x + 1
x2 − 1

= 0

2. Using implication arrows, solve the following equations:

(a) x + 2 = √
4x + 13 (b) |x + 2| = √

4 − x (c) x2 − 2|x| − 3 = 0

3.SM Using implication arrows, solve the following equations:

(a)
√

x − 4 = √
x + 5 − 9 (b)

√
x − 4 = 9 − √

x + 5

4. Consider the following attempt to solve the equation x + √
x + 4 = 2:

“From the given equation, it follows that
√

x + 4 = 2 − x. Squaring both sides gives x + 4 =
4 − 4x + x2. Rearranging terms shows that this equation implies x2 − 5x = 0. Cancelling x, we
obtain x − 5 = 0, which is satisfied when x = 5.”

(a) Mark with arrows the implications or equivalences expressed in the text. Which ones are
correct?

(b) Solve the equation correctly.

3.6 Two Linear Equations in Two
Unknowns
Example 3.2.1 features a macroeconomic model that involves two equations. There we
focused on the solution for the value of GDP, but economists are often interested in the solu-
tion for all the endogenous variables in their models. In that example, total consumption
should also be included in the solution.

For the case of two variables that are related through two linear equations, a general
method is easy to develop. The following example allows us to develop the main ideas
before we address the general case.

E X A M P L E 3.6.1 Find the values of x and y that satisfy both of the equations

2x + 3y = 18

3x − 4y = −7

Solution: There are two general ways of solving a system like this.

Method 1: A first possibility is to deal with one of the variables first, as we did in
Section 3.2, and then use that variable’s solution to solve for the other. That is,
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follow a two-step procedure: (i) solve one of the equations for one of the variables
in terms of the other; (ii) substitute the result into the other equation. This leaves
only one equation in one unknown, which is easily solved.7

To apply this method to our system, we first solve the first equation for y in terms of
x. Indeed the first equation 2x + 3y = 18 implies that 3y = 18 − 2x and so

y = 6 − (2/3)x (∗)

Substituting this expression for y into the second equation gives

3x − 4
(

6 − 2
3

x
)

= −7, which reduces to 3x − 24 + 8
3

x = −7

Multiplying each side of this equation by 3 gives 9x − 72 + 8x = −21, or 17x = 51.
Hence x = 3. To find y we use (∗) once again with x = 3 to obtain y = 6 − (2/3) ·
3 = 4. The solution of the system is, therefore, x = 3 and y = 4.8

Method 2: This method is based on eliminating one of the variables by adding or sub-
tracting a multiple of one equation from the other. Suppose we want to eliminate
y. To do this, we can multiply the first equation in the system by 4 and the second
by 3. The resulting coefficients of y in both equations will be the same except for
the sign. If we then add the transformed equations, the term in y disappears and we
obtain

8x + 12y = 72

9x − 12y = −21

17x = 51

Hence, x = 3. To find the value for y, substitute 3 for x in either of the original
equations and solve for y. This gives y = 4, which agrees with the earlier result.

Analysis of 2 × 2 Linear Systems
Systems of two equations in two unknowns are usually known as 2 × 2 systems. The general
2 × 2 linear system is

ax + by = c (3.6.1)

dx + ey = f (3.6.2)

7 The solution to Example 3.2.1 we gave went through the first of these two steps. The second step
would be to substitute (3.2.5) into (3.2.4), to find the solution for C, which is

C = a + b--I
1 − b

In combination with Eq. (3.2.5) for Y , this equation completes the reduced form of the model.
8 A useful check is to verify such a solution by direct substitution. Indeed, substituting x = 3 and

y = 4 in the original system of two equations gives 2 · 3 + 3 · 4 = 18 and 3 · 3 − 4 · 4 = −7.
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Here a, b, c, d, e, and f are arbitrary given numbers, whereas x and y are the variables,
or “unknowns”. Note that when a = 2, b = 3, c = 18, d = 3, e = −4, and f = −7, this
system reduces to the one in Example 3.6.1.

Before plunging recklessly into an algebraic analysis of what solutions there
may be, we do two things first: (i) eliminate a trivial case; (ii) analyse the equations
geometrically.

The trivial case occurs when at least one of the four coefficients a, b, d, and e is zero.
Suppose for example that e = 0. Then (3.6.2) reduces to the simple equation dx = f . This
has a solution x = f /d in case d �= 0, no solution at all if d = 0 and f �= 0, and leaves x
arbitrary in case d = f = 0. When x does solve dx = f , the solution to the two equations
together is the pair (x, y) where y can be determined from the equation by = c − ax provided
that either b �= 0 or b = 0 and ax = c.

In case e �= 0 but at least one of a, b, and d is zero, at least one of the two equations
reduces to a single equation in one unknown, which can be solved immediately. Then, just
as in the case when e = 0, the other unknown can be find by using simple substitution to
leave just one equation in a single unknown.

Now for the geometric analysis. Having excluded the trivial case, none of the four
coefficients a, b, d, and e is zero. So we can divide (3.6.1) by b and (3.6.2) by d, then
rearrange, to get the equivalent pair of equations

y = (c − ax)/b and y = (f − dx)/e (3.6.3)

As discussed subsequently in Section 4.4, these are the equations of two straight lines in the
(x, y)-plane, whose respective slopes are the coefficients −a/b and −d/e of x. Now there
are three different cases we need to consider.

1. First we have the intersecting case when the slopes of the two lines differ. That is, one
has −a/b �= −d/e. Multiplying each side of this inequality by the nonzero number −be
gives the equivalent inequality ae �= bd or ae − bd �= 0. In this case the two lines do
intersect, and the point of intersection is the unique solution. This point could be found
using either Method 1 or Method 2 for solving Example 3.6.1.
Alternatively, note that the two equations (3.6.3) have a solution (x, y) iff their
right-hand sides are equal. That is, one must have (c − ax)/b = (f − dx)/e. Mul-
tiplying each side by be gives e(c − ax) = b(f − dx), which can be reduced to
ce − bf = (ae − bd)x. Because ae − bd �= 0 in this intersecting case, the last equation
implies that x = (ce − bf )/(ae − bd). To find y, we can substitute this value of x back
in either equation of (3.6.3).
Either way finds the same unique solution for both x and y, which is

x = ce − bf
ae − bd

and y = af − cd
ae − bd

(3.6.4)

2. In the second parallel case, equations (3.6.1) and (3.6.2) have no solution because the
two lines (3.6.3) are parallel and distinct. Obviously these two lines are parallel iff their
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Table 3.6.1 2 × 2 linear equation systems

Consider the 2 × 2 system of linear equations in (x, y):

ax + by = c and dx + ey = f

1. In the intersecting case when ae �= bd, there is a unique solution given by

x = ce − bf
ae − bd

and y = af − cd
ae − bd

2. In the parallel case when ae = bd and bf �= ce, the system has no solution.

3. In the coincident case when ae = bd and bf = ce, there are infinitely
many solutions along each of the two coincident lines ax + by = c and
dx + ey = f .

slopes are equal, which occurs iff −a/b = −d/e. Multiplying each side of this equality
by the nonzero number −be gives the equivalent equality ae − bd = 0. This equality
holds, of course, iff (3.6.4) fails to define a solution. Finally, in this case the two parallel
lines given by (3.6.3) are distinct iff they cross the vertical axis x = 0 at different points,
which is true iff c/b �= f /e or bf �= ce.

3. In the third coincident case, the two lines (3.6.3) are not only parallel, but coincide.
This happens iff the two equations (3.6.1) and (3.6.2) define one and the same straight
line. This is the case when ae − bd = bf − ce = 0. Then the two equations have
infinitely many solutions which lie along either of these two coincident straight
lines.

Table 3.6.1 specifies for the three different cases the set of possible solutions to the 2 × 2
linear equation system given by (3.6.1) and (3.6.2). Though we started with the assumption
that all the coefficients a, b, d, and e are nonzero, the results of Table 3.6.1 remain valid
even if one or more of them are zero.

In Section 12.2 we will study possible solutions for this kind of linear system, but with
arbitrarily many equations and unknowns.

E X E R C I S E S F O R S E C T I O N 3 . 6

1. Solve the following systems of equations:

(a) x − y = 5 and x + y = 11 (b) 4x − 3y = 1 and 2x + 9y = 4

(c) 3x + 4y = 2.1 and 5x − 6y = 7.3

2. Solve the following systems of equations:

(a) 5x + 2y = 3 and 2x + 3y = −1 (b) x − 3y = −25 and 4x + 5y = 19

(c) 2x + 3y = 3 and 6x + 6y = −1
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3. Solve the following systems of equations:

(a) 23p + 45q = 181 and 10p + 15q = 65

(b) 0.01r + 0.21s = 0.042 and −0.25r + 0.55s = −0.47

4. (a) Find two numbers whose sum is 52 and whose difference is 26.

(b) Five tables and 20 chairs cost $1 800, whereas two tables and three chairs cost $420. What is
the price of each table and each chair?

(c) A firm produces headphones in two qualities, Basic (B) and Premium (P). For the coming
year, the estimated output of B is 50% higher than that of P. The profit per unit sold is $300
for P and $200 for B. If the profit target is $180 000 over the next year, how much of each of
the two qualities must be produced?

(d) At the beginning of the year a person had a total of $10 000 in two accounts. The interest
rates were 5% and 7.2% per year, respectively. If the person has made no transfers during the
year, and has earned a total of $676 interest, what was the initial balance in each of the two
accounts?

R E V I E W E X E R C I S E S

1. Solve each of the following equations:

(a) 3x − 20 = 16 (b) −5x + 8 + 2x = −(4−x) (c) −6(x − 5) = 6(2 − 3x)

(d)
4 − 2x

3
= −5−x (e)

5
2x − 1

= 1
2 − x

(f)
√

x − 3 = 6

2.SM Solve each of the following equations:

(a)
x − 3
x − 4

= x + 3
x + 4

(b)
3(x + 3)

x − 3
− 2 = 9

x
x2 − 9

+ 27
(x + 3)(x − 3)

(c)
2x
3

= 2x − 3
3

+ 5
x

(d)
x − 5
x + 5

− 1 = 1
x

− 11x + 20
x2 − 5x

3. Solve the following equations for the variables specified:

(a) x = 2
3 (y − 3) + y, for y (b) ax − b = cx + d, for x

(c) AK
√

L = Y0, for L (d) px + qy = m, for y

(e)
1/(1 + r) − a
1/(1 + r) + b

= c, for r (f) Px(Px + Q)−1/3 + (Px + Q)2/3 = 0, for x

4.SM Solve the following equations for the variables indicated:

(a) 3K−1/2L1/3 = 1
5 , for K (b) (1 + r/100)t = 2, for r

(c) p − abxb−1
0 = 0, for x0 (d)

[
(1 − λ)a−ρ + λb−ρ

]−1/ρ = c, for b

5. Solve the following quadratic equations:

(a) z2 = 8z (b) x2 + 2x − 35 = 0 (c) p2 + 5p − 14 = 0

(d) 12p2 − 7p + 1 = 0 (e) y2 − 15 = 8y (f) 42 = x2 + x
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6. Solve the following equations:

(a) (x2 − 4)
√

5 − x = 0 (b) (x4 + 1)(4 + x) = 0 (c) (1 − λ)x = (1 − λ)y

7. Johnson invested $1 500, part of it at 15% interest and the remainder at 20%. His total yearly
income from the two investments was $275. How much did he invest at each rate?

8. Consider the macroeconomic model described by the three equations

Y = C + --I + G, C = b(Y − T), T = tY

Here b denotes the marginal propensity to consume, and t the tax rate. Both these parameters are
positive and less than 1. The variable Y denotes the gross domestic product (GDP), whereas C is
consumption expenditure, --I is total investment, T denotes tax revenue, and G is government
expenditure.

(a) Express Y and C in terms of --I, G, and the parameters.

(b) What happens to Y and C as t increases?

9. If 53x = 25y+2 and x − 2y = 8, what is x − y?

10. [HARDER] Solve the following systems of equations:

(a)
2
x

+ 3
y

= 4 and
3
x

− 2
y

= 19 (b) 3
√

x + 2
√

y = 2 and 2
√

x − 3
√

y = 1
4

(c) x2 + y2 = 13 and 4x2 − 3y2 = 24
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4
F U N C T I O N S O F O N E
V A R I A B L E

. . .—mathematics is not so much a subject as a way of studying any subject, not so much a science as
a way of life.
—George F.J. Temple (1981)

Functions are important in practically every area of pure and applied mathematics, including
mathematics applied to economics. The language of economic analysis is full of terms like

demand and supply functions, cost functions, production functions, consumption functions,
etc. Though teachers of elementary economics may prefer terms like demand and supply curves,
these are merely graphical representations of underlying functions. In this chapter we present
a discussion of functions of one real variable, illustrated by some very important economic
examples.

4.1 Introduction
One variable is a function of another if the first variable depends upon the second. For
instance, the area of a circle is a function of its radius. If the radius r is given, then the area
A is determined: A = πr2, where π is the numerical constant 3.14159 . . . .

One does not need a mathematical formula to convey the idea that one variable is a func-
tion of another. A table can also show the relationship. For instance, Table 4.1.1 shows the
growth of total final consumption expenditure, measured in current euros, without allowing
for inflation, in the European Union.1 The table runs from the first quarter of 2013, which we
write as 13Q1, to the last quarter of 2014, which we write as 14Q4. It defines consumption
expenditure, denoted by C, as a function of the calendar quarter, denoted by Q.

Table 4.1.1 Final consumption expenditure in the EU, 2013Q1–2014Q4 (billions
of euros)

Q 13Q1 13Q2 13Q3 13Q4 14Q1 14Q2 14Q3 14Q4

C 1 917.5 1 924.9 1 934.3 1 946.0 1 958.6 1 973.4 1 995.1 2 008.2

1 The EU expanded from 27 to 28 member states when Croatia joined on 1st July 2013.
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In ordinary conversation we sometimes use the word “function” in a similar way. For
example, we might say that the infant mortality rate of a country is a function of the qual-
ity of its health care, or that a country’s national product is a function of the level of
investment.

The dependence between two real variables can also be illustrated by means of a graph.
In Fig. 4.1.1 we have drawn a curve that allegedly played an important role some years ago
in the discussion of “supply side economics”. It shows the presumed relationship between
a country’s income tax rate and its total income tax revenue. Obviously, if the tax rate is
0%, then tax revenue is 0. However, if the tax rate is 100%, then tax revenue will also be
(about) 0, since nobody is willing to work if their entire income is going to be confiscated.
This curve, which has generated considerable controversy, is supposed to have been drawn
in 1974 on the back of a restaurant napkin by an American economist, Arthur Laffer, who
later popularized its message with the public.2

a 100

tax revenue

tax rate

Figure 4.1.1 The “Laffer curve”, which relates tax revenue to tax rates

In some instances a graph is preferable to a formula. A case in point is an electrocardio-
gram (ECG) showing the heartbeat pattern of a patient. Here the doctor studies the pattern of
repetitions directly from the graphs; the patient might die before the doctor could understand
a formula approximating the ECG picture.

All of the relationships discussed above have one characteristic in common: a
definite rule relates each value of one variable to a definite value of another variable.
In the ECG example the function is the rule showing electrical activity as a function of
time.

In all of our examples it is implicitly assumed that the variables are subject to certain
constraints. For instance, in Table 4.1.1 only the eight quarters in the two years of 2013 and
2014 are treated as relevant.

4.2 Definitions
The examples in the preceding section lead to the following general definition, with D a set
of real numbers:

2 Actually, many economists previously had essentially the same idea. See, for instance, part (b) in
Example 7.2.2.
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F U N C T I O N

A (real-valued) function of a real variable x with domain D is a rule x �→ f (x)
that assigns a unique real number f (x) to each real number x in D. As x varies
over the whole domain, the set of all possible resulting values f (x) is called the
range of f .

The word “rule” is used in a very broad sense. Every rule with the properties described
can be called a function, whether that rule is given by a formula, described in words, spec-
ified by a table, illustrated by a curve, or expressed by any other means.

Many functions are given letter names, such as f , g, F, or ϕ. If f is a function and x is
a number in its domain D, then f (x) denotes the number that the function f assigns to x.
The symbol f (x) is pronounced “f of x”. It is important to note the difference between f ,
which is a symbol for the function (the rule), and f (x), which denotes the value of f at the
particular point x of the domain.

If f is a function, we sometimes let y denote the value of f at x, so y = f (x). Then, we
call x the independent variable, or the argument of f , whereas y is called the dependent
variable, because the value y (in general) depends on the value of x. The domain of the
function f is then the set of all possible values of the independent variable, whereas the
range is the set of corresponding values of the dependent variable. In economics, x is often
called the exogenous variable, which is supposed to be fixed outside the economic model,
whereas for each given x the equation y = f (x) serves to determine the endogenous variable
y inside the economic model.

A function is often defined by a formula, such as y = 8x2 + 3x + 2. The function is then
the rule x �→ 8x2 + 3x + 2 that assigns the number 8x2 + 3x + 2 to each value of x.

Functional Notation
To become familiar with the relevant notation, it helps to look at some examples of functions
that are defined by formulas.

E X A M P L E 4.2.1 Suppose that a function is defined for all real numbers by the following rule:

Assign to any number its third power.

This function will assign 03 = 0 to 0, 33 = 27 to 3, (−2)3 = (−2)(−2)(−2) = −8 to −2,
and (1/4)3 = 1/64 to 1/4. In general, it assigns the number x3 to the number x. If we denote
this third power function by f , then f (x) = x3. So we have f (0) = 03 = 0, f (3) = 33 = 27,
f (−2) = (−2)3 = −8, and f (1/4) = (1/4)3 = 1/64. In general, substituting a for x in the
formula for f gives f (a) = a3, whereas

f (a + 1) = (a + 1)3 = (a + 1)(a + 1)(a + 1) = a3 + 3a2 + 3a + 1
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A common error is to presume that f (a) = a3 implies f (a + 1) = a3 + 1. The error
can be illustrated by considering a simple interpretation of f . If a is the edge of a cube
measured in metres, then f (a) = a3 is the volume of the cube measured in cubic metres,
or m3. Suppose that each edge of the cube expands by 1 m. Then the volume of the new cube
is f (a + 1) = (a + 1)3 m3, as shown in Fig. 4.2.1. On the other hand, the number a3 + 1
can be interpreted as the total volume obtained when a cube with edge a has a cube with
edge 1 added to it, as shown in Fig. 4.2.2. The two figures make it clear that the first volume
(a + 1)3 is quite a bit more than the second volume a3 + 1. Indeed, we can use the binomial
formula (2.11.2) to calculate the precise difference, which is

(a + 1)3 − (a3 + 1) = 3a2 + 3a = 3a(a + 1)

1

1
1

a

a

a

Figure 4.2.1 Volume f (a + 1) = (a + 1)3

a

a

a

1

1

1

Figure 4.2.2 Volume a3 + 1

E X A M P L E 4.2.2 Suppose that, for each nonnegative integer x, the total dollar cost of producing x
units of a product is given by

C(x) = 100x
√

x + 500

(a) Find the cost of producing 16 units.

(b) Assuming that the firm is already producing a units, find the increase in the cost due to
producing one additional unit.

Solution:

(a) The cost of producing 16 units is found by substituting 16 for x in the formula for C(x):

C(16) = 100 · 16
√

16 + 500 = 100 · 16 · 4 + 500 = 6900

(b) The cost of producing a units is C(a) = 100a
√

a + 500, and the cost of producing a + 1
units is C(a + 1). Thus the increase in cost is

C(a + 1) − C(a) = 100(a + 1)
√

a + 1 + 500 − 100a
√

a − 500

= 100
[
(a + 1)

√
a + 1 − a

√
a

]

In economic theory, we often study functions that depend on a number of parameters,
as well as the independent variable. An obvious generalization of Example 4.2.2 follows.
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E X A M P L E 4.2.3 Suppose that the cost of producing x units of a commodity is

C(x) = Ax
√

x + B

where A and B are constants. Find the cost of producing 0, 10, and x + h units.

Solution: The cost of producing 0 units is C(0) = A · 0 · √
0 + B = 0 + B = B.3 Similarly,

C(10) = A10
√

10 + B. Finally,

C(x + h) = A(x + h)
√

x + h + B

which comes from substituting x + h for x in the given formula.

So far we have used x to denote the independent variable, but we could just as well have
used almost any other symbol. For example, the following formulas define exactly the same
function (and hence we can say f = g = ϕ):

f (x) = x4, g(t) = t4, ϕ(ξ) = ξ 4

For that matter, we could also express this function as x �→ x4, or alternatively as f (·) = (·)4.
Here it is understood that the dot between the parentheses can be replaced by an arbitrary
number, or an arbitrary letter, or even another function (like 1/y). Thus,

1 �→ 14 = 1, k �→ k4, and 1/y �→ (1/y)4

or alternatively

f (1) = 14 = 1, f (k) = k4, and f (1/y) = (1/y)4

Specifying the Domain and the Range
Unless the domain of a function is already obvious, its definition remains incomplete until
its domain has been specified explicitly. The natural domain of the function f defined by
f (x) = x3 is the set of all real numbers. In Example 4.2.2, where C(x) = 100x

√
x + 500

denotes the cost of producing x units of a product, the domain was specified as the set of
nonnegative integers. Actually, a more natural domain is the set of numbers 0, 1, 2, . . . , x0,
where x0 is the maximum number of items the firm can produce. For a producer like an iron
mine, however, where output x can be regarded as a continuous variable such as tonnes of
iron ore, the natural domain is the closed interval [0, x0].

We shall adopt the convention that if a function is defined using an algebraic formula,
the domain consists of all values of the independent variable for which the formula gives a
unique value, unless another domain is explicitly mentioned.

E X A M P L E 4.2.4 Find the domains of

(a) f (x) = 1
x + 3

(b) g(x) = √
2x + 4 (c) h(x) = 3√

x + 1 − 3

3 Parameter B simply represents fixed costs. These are the costs that must be paid whether or not
anything is actually produced, such as a taxi driver’s annual licence fee.
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Solution:

(a) For x = −3, the formula reduces to the meaningless expression “1/0”. For all other
values of x, the formula makes f (x) a well-defined number. Thus, the domain consists
of all numbers x �= −3.

(b) The expression
√

2x + 4 is uniquely defined for all x such that 2x + 4 is nonnegative.
Solving the inequality 2x + 4 ≥ 0 for x gives x ≥ −2. The domain of g is therefore the
interval [−2, ∞).

(c) As in (a), we need to avoid the expression “1/0”. This requires that
√

x + 1 − 3 �= 0,
which means that we cannot allow x = 8. As in (b), on the other hand, the expression√

x + 1 requires that x + 1 ≥ 0, which in turn requires that x ≥ −1. The domain of h is
the set of all x that satisfy both of these conditions, namely the union of the two intervals
[−1, 8) and (8, ∞).

Let f be a function with domain D. The set of all values f (x) that the function assumes
is called the range of f . Often, we denote the domain of f by Df , and its range by Rf . These
concepts are illustrated in Fig. 4.2.3, using the idea of the graph of a function which we
formally discuss in Section 4.3.

y

x

f

Df

Rf

Figure 4.2.3 The domain Df and range Rf of f

Alternatively, we can think of any function f as an engine x �→ f (x) operating so that
if x in the domain is an input, the output is f (x). The range of f is then the set of all the
numbers we get as output using all numbers in the domain as input. If we try to use as an
input a number not in the domain, the engine does not work, so there is no output.

E X A M P L E 4.2.5 Consider the function g(x) = √
2x + 4.

(a) Show that the number 4 belongs to its range.

(b) Find the entire range of g.

Solution:

(a) To show that 4 is in the range of g, we must find a number x such that g(x) = 4. That is,
we must solve the equation

√
2x + 4 = 4 for x. By squaring both sides of the equation,

we get 2x + 4 = 42 = 16, that is, x = 6. Because g(6) = 4, the number 4 does belong
to the range Rg.
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(b) In order to determine the whole range of g, we must answer the question: As x runs
through the whole of the interval [−2, ∞), what are all the possible values of

√
2x + 4 ?

For x = −2, one has
√

2x + 4 = 0, and
√

2x + 4 can never be negative. We claim that
whatever number y0 ≥ 0 is chosen, there exists a number x0 such that

√
2x0 + 4 =

y0. Indeed, squaring each side of this last equation gives 2x0 + 4 = y2
0. Hence, 2x0 =

y2
0 − 4, which implies that x0 = 1

2 (y2
0 − 4). Because y2

0 ≥ 0, we have x0 = 1
2

(
y2

0 − 4
) ≥

1
2 (−4) = −2. Hence, for every number y0 ≥ 0, we have found a number x0 ≥ −2 such
that g(x0) = y0. The range of g is, therefore, [0, ∞).

Even if a function is completely specified by a formula, including a specific domain, it is
not always easy to find the range of the function. For example, without using the methods of
differential calculus that we have yet to introduce, it is hard to find Rf exactly for a function
such as f (x) = 3x3 − 2x2 − 12x − 3 defined on the domain Df = [−2, 3].

A function f is called (weakly) increasing or nondecreasing if x1 < x2 implies
f (x1) ≤ f (x2), and strictly increasing if x1 < x2 implies f (x1) < f (x2). Decreasing and
strictly decreasing functions are defined in the obvious way. (See Section 6.3.) The
function g in Example 4.2.5 is strictly increasing on its domain [−2, ∞).

E X E R C I S E S F O R S E C T I O N 4 . 2

1.SM Let f (x) = x2 + 1.

(a) Compute f (0), f (−1), f (1/2), and f (
√

2).

(b) For what values of x is it true that:

(i) f (x) = f (−x)? (ii) f (x + 1) = f (x) + f (1)? (iii) f (2x) = 2f (x)?

2. Suppose F(x) = 10, for all x. Find F(0), F(−3), and F(a + h) − F(a).

3. Let f (t) = a2 − (t − a)2, where a is a constant.

(a) Compute f (0), f (a), f (−a), and f (2a). (b) Compute 3f (a) + f (−2a).

4. Let f (x) = x/(1 + x2).

(a) Compute f (−1/10), f (0), f (1/
√

2), f (
√

π), and f (2).

(b) Show that f (−x) = −f (x) for all x, and that f (1/x) = f (x) for x �= 0.

5. Let F(t) = √
t2 − 2t + 4. Compute F(0), F(−3), and F(t + 1).

6. The cost of producing x units of a commodity is given by C(x) = 1000 + 300x + x2.

(a) Compute C(0), C(100), and C(101) − C(100).

(b) Compute C(x + 1) − C(x), and explain in words the meaning of this difference.

7. As a function of its price P, the demand for cotton in the US during the period 1915–1919
has been estimated as Q = D(P) = 6.4 − 0.3P, with appropriate units for the price P and the
quantity Q.
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(a) Find the demand quantity in each case if the price is 8, 10, and 10.22.

(b) If the demand quantity is 3.13, what is the price?

8. (a) If f (x) = 100x2, show that f (tx) = t2f (x) for all t.

(b) If P(x) = x1/2, show that P(tx) = t1/2P(x) for all t ≥ 0.

9. The cost of removing p% of the impurities in a lake is given by b(p) = 10p/(105 − p).

(a) Find b(0), b(50), and b(100).

(b) What does b(50 + h) − b(50) mean (where h ≥ 0)?

10. Only for very special “additive” functions is it true that f (a + b) = f (a) + f (b) for all a and b.
Determine whether f (2 + 1) = f (2) + f (1) for each of the following functions:

(a) f (x) = 2x2 (b) f (x) = −3x (c) f (x) = √
x

11. (a) If f (x) = Ax, show that f (a + b) = f (a) + f (b) for all numbers a and b.

(b) If f (x) = 10x, show that f (a + b) = f (a) · f (b) for all natural numbers a and b.

12. A friend of yours claims that (x + 1)2 = x2 + 1. Can you use a geometric argument to show that
this is wrong?

13.SM Find the domains of the functions defined by the following formulas:

(a) y = √
5 − x (b) y = 2x − 1

x2 − x
(c) y =

√
x − 1

(x − 2)(x + 3)

14. Let f (x) = (3x + 6)/(x − 2).

(a) Find the domain of the function.

(b) Show that 5 is in the range of f , by finding an x such that (3x + 6)/(x − 2) = 5.

(c) Show that 3 is not in the range of f .

15. Find the domain and the range of g(x) = 1 − √
x + 2.

4.3 Graphs of Functions
You may recall from an elementary mathematics course that a Cartesian (or rectangular)
coordinate system is obtained by first drawing two perpendicular lines, called coordinate
axes. The two axes are respectively the x-axis (or horizontal axis) and the y-axis (or vertical
axis). The point O where the two axes intersect is called the origin. We measure the real
numbers along each of these lines, as shown in Fig. 4.3.1. The unit distance on the x-axis
is not necessarily the same as on the y-axis, although it is in Fig. 4.3.1.

The Cartesian coordinate system in Fig. 4.3.1 is also called the xy-plane. The coordi-
nate axes separate the plane into four quadrants, which traditionally are numbered as in
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y

x1

1

Quadrant 1Quadrant 2

Quadrant 4Quadrant 3

Figure 4.3.1 A coordinate system

P 5 (3,4)

Q 5 (25,22)

y

x1

1

Figure 4.3.2 Points (3, 4) and (−5, −2)

Fig. 4.3.1. Any point P in the plane can be represented by a unique pair (x, y) of real num-
bers. These numbers can be found by drawing two dashed lines, like those in Fig. 4.3.2,
that are perpendicular to the two axes. The particular point represented by the ordered pair
(a, b) occurs where x = a and y = b; it lies where the vertical straight line x = a intersects
the horizontal straight line y = b.

Conversely, any pair of real numbers represents a unique point in the plane. For
example, in Fig. 4.3.2, if the ordered pair (3, 4) is given, the corresponding point P lies at
the intersection of x = 3 with y = 4. Thus, point P lies 3 units to the right of the y-axis
and 4 units above the x-axis. We call (3, 4) the coordinates of P. Similarly, point Q lies
5 units to the left of the y-axis and 2 units below the x-axis, so the coordinates of Q are
(−5, −2).

Note that we call (a, b) an ordered pair. This is because the order of the two numbers in
the pair is important. For instance, (3, 4) and (4, 3) represent two different points. Indeed,
the two points (a, b) and (b, a) coincide iff a = b.

As you will surely recall, each function of one variable can be represented by a graph in
such a rectangular coordinate system. Because the shape of the graph reflects the properties
of the function, this helps us visualize it.

G R A P H

The graph of a function f is the set of all ordered pairs (x, f (x)), where x belongs
to the domain of f .

E X A M P L E 4.3.1 Consider the function f (x) = x2 − 4x + 3. The values of f (x) for some special
choices of x are given in Table 4.3.1. Suppose we plot in an xy-plane the five points
(0, 3), (1, 0), (2, −1), (3, 0), and (4, 3) obtained from this table, and then draw a
smooth curve through these points. The result is the graph of the function, as shown in
Fig. 4.3.3.4

4 This graph is called a parabola, as you will see in Section 4.6.
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Table 4.3.1 Values of f (x) = x2 − 4x + 3

x 0 1 2 3 4

f (x) = x2 − 4x + 3 3 0 −1 0 3

4

3

2

1

21

22

23

2223 21 1 2 3 4

y

x

Figure 4.3.3 Graph of f (x) = x2 − 4x + 3

4

3

2

1

21

22

23

2223 21 1 2 3 4

y

x

Figure 4.3.4 Graph of g(x) = 2x − 1

E X A M P L E 4.3.2 Find some of the points on the graph of g(x) = 2x − 1, and sketch it.

Solution: Here g(−1) = 2 · (−1) − 1 = −3, g(0) = 2 · 0 − 1 = −1, and g(1) = 2 · 1 −
1 = 1. Moreover, g(2) = 3. There are infinitely many points on the graph, so we cannot
write them all down. In Fig. 4.3.4 the four points (−1, −3), (0, −1), (1, 1), and (2, 3) are
marked with dots, which all lie on one straight line. That line is the graph.

Some Important Graphs
Figures 4.3.5–4.3.10 show graphs of six special functions. These occur so often that you
should learn to recognize them. For each function you should confirm the shape of the
corresponding graph by making a table of function values like Table 4.3.1.

y 5 x

3

2

1

21

22

23

2223 21 1 2 3

y

x

Figure 4.3.5 y = x

3

2

1

21

22

23

2223 21 1 2 3

y

x

y 5 x2

Figure 4.3.6 y = x2

3

2

1

21

22

23

2223 21 1 2 3

y � x3

y

x

Figure 4.3.7 y = x3

Note that when plotting the graph of a function, we must try to include enough points.
Otherwise we might omit some important features of the graph. Actually, by merely plot-
ting a finite set of points, we can never be entirely sure that no wiggles or bumps have been
missed. For more complicated functions we have to use techniques of differential calcu-
lus that we introduce later in order to decide how many bumps and wiggles there really
are.
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3

2

1

21

22

23

2223 21 1 2 3

y 5 Ïx

y

x

Figure 4.3.8 y = √
x

3

2

1

21

22

23

2223 21 1 2 3

y 5 1�x

y

x

Figure 4.3.9 y = 1/x

3

2

1

21

22

23

2223 21 1 2 3

y 5 |x|
y

x

Figure 4.3.10 y = |x|

E X E R C I S E S F O R S E C T I O N 4 . 3

1. Plot all the five points (2, 3), (−3, 2), (−3/2, −2), (4, 0), and (0, 4) in one coordinate system.

2. The graph of function f is given in Fig. 4.3.11.

4

2

22
2224 2 4

y

x

Figure 4.3.11 Exercise 2

(a) Find f (−5), f (−3), f (−2), f (0), f (3), and f (4) by examining the graph.

(b) Determine the domain and the range of f .

3. Fill in the tables and draw the graphs of the following functions:

(a) x 0 1 2 3 4

g(x) = −2x + 5

(b) x −2 −1 0 1 2 3 4

h(x) = x2 − 2x − 3

(c)
x −2 −1 0 1 2

F(x) = 3x

(d) x −2 −1 0 1 2 3

G(x) = 1 − 2−x
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4.4 Linear Functions
Linear equations occur very often in economics. Recall from Eq. (3.2.2) that the typical
linear equation is

y = ax + b

where a and b are constants. As we saw in Example 4.3.2, the graph of this equation is a
straight line. If we let f denote the function that assigns y to x, then f (x) = ax + b. In this
case f is called a linear function.

Take an arbitrary value of x. Then

f (x + 1) − f (x) = a(x + 1) + b − ax − b = a

This shows that a measures the change in the value of the function when x increases by 1
unit. For this reason, the number a is called the slope of the line (or function). If the slope a
is positive, then the line slants upward to the right. Furthermore, the larger is the value of
a, the steeper is the line. On the other hand, if a is negative, then the line slants downward
to the right. Then the absolute value of a measures the steepness of the line. For example,
when a = −3, the steepness is 3. In the special case when a = 0, the steepness is zero,
because the line is horizontal: the line y = ax + b becomes y = b for all x.

The three different cases are illustrated in Figs 4.4.1 to 4.4.3. When x = 0 the function
value is y = ax + b = b. This number b is called the y-intercept, or often just the intercept.

y 5 ax 1 b    (a . 0)

b

y

x

Figure 4.4.1 Increasing

y 5 ax 1 b    (a , 0)

b

y

x2b
a

Figure 4.4.2 Decreasing

y 5 b    (a 5 0)

b

y

x

Figure 4.4.3 Constant

E X A M P L E 4.4.1 Find and interpret the slopes of the following straight lines.

(a) The cost function for the US Steel Corp. during the period 1917–1938 was estimated
to be C = 55.73x + 182 100 000, where C is the total cost in dollars per year, and x is
the production of steel in tons per year.

(b) The demand function for monthly ride-sharing trips in some large city is estimated to
be approximately q = −4.5p + 150, where 10 ≤ p ≤ 20 is price per mile (in units of
some currency), and q is millions of trips.

Solution:

(a) The slope is 55.73, which means that if production increases by one ton, then the cost
increases by $55.73.
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(b) The slope is −4.5, which tells us that if the price increases by one unit, then the number
of ride-sharing trips decreases by 4.5 million.

Computing the slope of a straight line in the plane is easy. Pick two different points on
the line P = (x1, y1) and Q = (x2, y2), as shown in Fig. 4.4.4. The slope of the line is the
ratio (y2 − y1)/(x2 − x1).

a
1 R9

Q9
P9

P 5 (x1, y1)

Q 5 (x2, y2)

x2 2 x1

y2 2 y1

R 5 (x2, y1)

y

x

Figure 4.4.4 Slope a = (y2 − y1)/(x2 − x1).

If we denote the slope by a, then:

S L O P E O F A S T R A I G H T L I N E

The slope of the straight, non-vertical line � is

a = y2 − y1

x2 − x1
(4.4.1)

where (x1, y1) and (x2, y2) are any two distinct points on �. (If � contains two
distinct points (x1, y1) and (x2, y2) with x1 = x2, then it is vertical.)

Multiplying both the numerator and the denominator of (y2 − y1)/(x2 − x1) by −1 gives
(y1 − y2)/(x1 − x2), which does not change the ratio. This shows that it does not make any
difference which point is P and which is Q. Moreover, suppose that instead of P and Q,
we used the points P′ and Q′ in Fig. 4.4.4 to measure the slope. Then we would get the
same answer because the properties of similar triangles imply that the ratios Q′R′/P′R′ and
QR/PR in the small and large triangles of Fig. 4.4.4 must be equal. For this reason, the
number a = (y2 − y1)/(x2 − x1) is always equal to the change in the value of y when x
increases by 1 unit; this change is constant and equat to the slope of the straight line.

E X A M P L E 4.4.2 Determine the slopes of the three straight lines �, m, and n whose graphs are shown
in Figs 4.4.5 to 4.4.7 respectively.

Solution: The lines �, m, and n all pass through the common point P = (2, 2). In Fig. 4.4.5,
the point Q is (4, 3), whereas in Fig. 4.4.6 it is (1, −2), and in Fig. 4.4.7 it is (5, −1). By
Eq. (4.4.1), therefore, the respective slopes of the three straight lines � , m, and n are

al = 3 − 2
4 − 2

= 1
2

, am = −2 − 2
1 − 2

= 4, an = −1 − 2
5 − 2

= −1
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x

y

1 2 3 4 5 6

−2

−1

1

2

3

4
�

Q

P

Figure 4.4.5 Line �

x

y

1 2 3 4 5 6

−2

−1

1

2

3

4
m

Q

P

Figure 4.4.6 Line m

x

y

1 2 3 4 5 6

−2

−1

1

2

3

4 n

Q

P

Figure 4.4.7 Line n

The Point–Slope and Point–Point Formulas
Let us find the equation of a straight line � passing through the point P = (x1, y1) whose
slope is a. If (x, y) is any other point on the line, applying Eq. (4.4.1) with x and y replacing
x2 and y2 respectively implies that the slope a must satisfy the formula:

y − y1

x − x1
= a

When the slope a is given, multiplying each side by x − x1 gives y − y1 = a(x − x1). Hence,

P O I N T – S L O P E F O R M U L A O F A S T R A I G H T L I N E

The equation of the straight line passing through (x1, y1) with slope a is

y − y1 = a(x − x1)

Note that when using this formula, x1 and y1 are fixed numbers giving the coordinates
of the given point P. On the other hand, x and y are variables denoting the coordinates of
an arbitrary point on the line.

E X A M P L E 4.4.3 Find the equation of the line through the point (−2, 3) with slope −4. Then find the
y-intercept as well as the point where this line intersects the x-axis.

Solution: Applying the point–slope formula with (x1, y1) = (−2, 3) and a = −4 gives the
equation y − 3 = (−4)[x − (−2)], or y − 3 = −4(x + 2). This implies that 4x + y = −5.
The y-intercept has x = 0, so y = −5. The line intersects the x-axis at a point where y = 0,
and so where 4x = −5 or x = −5/4. The point of intersection with the x-axis is therefore
(−5/4, 0).5

Often we need to find the equation of the straight line that passes through two given
distinct points. To do so we can combine the slope formula with the point–slope formula.

5 It is a good exercise for you to draw a graph and verify this solution.
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P O I N T – P O I N T F O R M U L A O F A S T R A I G H T L I N E

The equation of the straight line passing through (x1, y1) and (x2, y2), where
x1 �= x2, is obtained as follows:

1. Compute the slope of the line, which is

a = y2 − y1

x2 − x1

2. Substitute the expression for a into the point–slope formula. The result is

y − y1 = y2 − y1

x2 − x1
(x − x1) (4.4.2)

E X A M P L E 4.4.4 Find the equation of the line passing through (−1, 3) and (5, −2).

Solution: Let (x1, y1) = (−1, 3) and (x2, y2) = (5, −2). Then the point–point formula
(4.4.2) gives

y − 3 = −2 − 3
5 − (−1)

[x − (−1)] = −5
6
(x + 1), which simplifies to 5x + 6y = 13.

Graphical Solutions of Linear Equations
Section 3.6 dealt with algebraic methods for solving a system of two linear equations in
two unknowns. Each equation is linear, so its graph is a straight line. The coordinates of
any point on a line satisfy the equation of that line. Thus, the two lines intersect at a point
in the plane if and only if its coordinates satisfy both equations.

E X A M P L E 4.4.5 Solve each of the following three pairs of equations graphically:

(a) x + y = 5 and x − y = −1; (b) 3x + y = −7 and x − 4y = 2;

(c) 3x + 4y = 2 and 6x + 8y = 24.

Solution:

(a) Figure 4.4.8 shows the graphs of the straight lines x + y = 5 and x − y = −1. There is
only one point of intersection, which is (2, 3). The solution of the system is, therefore,
x = 2, y = 3.

(b) Figure 4.4.9 shows the graphs of the straight lines 3x + y = −7 and x − 4y = 2. There
is only one point of intersection, which is (−2, −1). The solution of the system is,
therefore, x = −2, y = −1.

(c) Figure 4.4.10 shows the graphs of the straight lines 3x + 4y = 2 and 6x + 8y = 24.
These lines are parallel and so have no point of intersection. The system has
no solution.
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(2, 3)

1

1

y

x

x 2 y 5 21

x 1 y 5 5

Figure 4.4.8 x + y = 5 and x − y = −1

1

1

y

x

(22,21)

3x 1 y 5 27

x 2 4y 5 2

Figure 4.4.9 3x + y = −7 and x − 4y = 2

1

1

y

x

6x 1 8y 5 24

3x 1 4y 5 2

Figure 4.4.10 3x + 4y = 2 and 6x + 8y = 24

Linear Inequalities
This section concludes by discussing how to represent linear inequalities geometrically. We
present two examples.

E X A M P L E 4.4.6 Sketch in the xy-plane the set {(x, y) : 2x + y ≤ 4} of all ordered pairs (x, y) that
satisfy the inequality 2x + y ≤ 4.

Solution: The inequality can be written as y ≤ −2x + 4. The set of points (x, y) that satisfy
the equation y = −2x + 4 is a straight line. Therefore, the set of points (x, y) that satisfy the
inequality y ≤ −2x + 4 must have y-values below those of points on the line y = −2x + 4.
So it must consist of all points that lie on or below this line. See Fig. 4.4.11.

3

4

5

2

1

21
21 1 2 3 4

y

x

2x 1 y 5 4

Figure 4.4.11 {(x, y) : 2x + y ≤ 4}

(0, myq)

(myp, 0)

y

x

B

px 1 qy 5 m

Figure 4.4.12 Budget set: px + qy ≤ m,
x ≥ 0, and y ≥ 0

E X A M P L E 4.4.7 A person has a budget of $m to spend on purchasing two commodities. The prices of
the two commodities are $p and $q per unit, both positive. Suppose the person buys x units
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of the first commodity and y units of the second commodity. Assuming that negative pur-
chases of either commodity are impossible, one must have both x ≥ 0 and y ≥ 0. Assuming
too that not all the budget need be spent, it follows that the person is restricted to the budget
set given by

B = {(x, y) : px + qy ≤ m, x ≥ 0, y ≥ 0}
as in Eq. (1.1.1). Sketch the budget set B in the xy-plane. Find the slope of the budget line
px + qy = m, as well as its x- and y-intercepts.

Solution: The set of points (x, y) that satisfy x ≥ 0 and y ≥ 0 is the first (nonnegative) quad-
rant. If we impose the additional requirement that px + qy ≤ m, we obtain the triangular
domain B shown in Fig. 4.4.12.

If px + qy = m, then qy = −px + m and so y = (−p/q)x + m/q. This shows that the
slope is −p/q. The budget line intersects the x-axis when y = 0. Then px = m, so x = m/p.
The budget line intersects the y-axis when x = 0. Then qy = m, so y = m/q. So the two
points of intersection are (m/p, 0) and (0, m/q), as shown in Fig. 4.4.12.

A budget line like the one in Example 4.4.7 features so often in economics courses that
all the details of Fig. 4.4.12 are well worth committing to memory.

E X E R C I S E S F O R S E C T I O N 4 . 4

1. Find the slopes of the lines passing through the following pairs of points:

(a) (2, 3) and (5, 8) (b) (−1, −3) and (2, −5) (c)
( 1

2 , 3
2

)
and

( 1
3 , − 1

5

)
2. Draw graphs for the following straight lines:

(a) 3x + 4y = 12 (b)
x

10
− y

5
= 1 (c) x = 3

3. Suppose demand D for a good is a linear function of its price per unit, P. When price is $10,
demand is 200 units, and when price is $15, demand is 150 units. Find the demand function.

4. Decide which of the following relationships between two variables are linear:

(a) 5y + 2x = 2 (b) P = 10(1 − 0.3t)

(c) C = (0.5x + 2)(x − 3) (d) p1x1 + p2x2 = R, where p1, p2, and R are constants.

5. A printing company quotes the price of $1 400 for producing 100 copies of a report, and $3 000
for 500 copies. Assuming a linear relation, what would be the price of printing 300 copies?

6. Find the slopes of the five lines �1 to �5 shown in Fig. 4.4.13, and for each, give an equation that
it represents graphically.

7. Determine the equations for the following straight lines:

(a) �1 passes through (1, 3) and has a slope of 2.

(b) �2 passes through (−2, 2) and (3, 3).
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x

y

−1 1 2 3 4 5 6 7 8 9

−2

−1

1

2

3

4

5

6

7 �1

�2

�3

�4

�5

Figure 4.4.13 Lines �1 to �5

(c) �3 passes through the origin and has a slope of −1/2.

(d) �4 passes through (a, 0) and (0, b), with a �= 0.

8. Solve each of the following systems of equations graphically, where possible:

(a) x − y = 5 and x + y = 1 (b) x + y = 2, x − 2y = 2, and x − y = 2

(c) 3x + 4y = 1 and 6x + 8y = 6

9. Sketch in the xy-plane the set of all pairs of numbers (x, y) that satisfy the following inequalities:

(a) 2x + 4y ≥ 5 (b) x − 3y + 2 ≤ 0 (c) 100x + 200y ≤ 300

10.SM Sketch in the xy-plane the set of all pairs of numbers (x, y) that satisfy all the following three
inequalities: 3x + 4y ≤ 12, x − y ≤ 1, and 3x + y ≥ 3.

4.5 Linear Models
Linear relations occur frequently in mathematical models. One illustration is
Example 2.6.2, where we used the linear equation F = 9

5 C + 32 to convert a tem-
perature measured in degrees Celsius to the same temperature measured in degrees
Fahrenheit. Most of the linear models in economics are approximations to more compli-
cated models. Two illustrations are those shown in Example 4.4.1. Statistical methods
have been devised to construct linear relations that approximate the actual data as closely
as possible. Let us consider one very naı̈ve attempt to construct a linear model based on
some population data.

E X A M P L E 4.5.1 A United Nations report estimated that the European population was 606 million
in 1960, and would become 657 million in 1970. Use these estimates to construct a linear
function of time t that approximates the population in Europe. Then use the function to
estimate the population in 1930, 2000, and 2015.
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Solution: Let t denote the number of years from 1960, so that t = 0 is 1960, t = 1 is
1961, and so on. Let P denote the European population in millions. We represent its growth
using a linear equation of the form P = at + b. The data tell us that the graph of this func-
tion must be the straight line that passes through the two points (t1, P1) = (0, 606) and
(t2, P2) = (10, 657). So we use the point–point formula (4.4.2), replacing x and y with t
and P, respectively. This gives

P − 606 = 657 − 606
10 − 0

(t − 0) = 51
10

t

or
P = 5.1t + 606 (∗)

In Table 4.5.1, we have compared our estimates with those of the UN. Note that because
t = 0 corresponds to 1960, t = −30 will correspond to 1930.

Table 4.5.1 Population estimates for Europe (in
millions)

Year 1930 2000 2015

t −30 40 55

UN estimates 549 726 738

Formula (∗) gives 555 810 887

Note that the slope of line (∗) is 5.1. This means that if the European population had
developed according to equation (∗), then the annual increase in the population would have
been constant and equal to 5.1 million.6

E X A M P L E 4.5.2 (The Consumption Function). “Keynesian macroeconomic theory” is the term
used by most economists to describe a collection of models named after the influential
British economist John Maynard Keynes (1883–1946). A key feature of these models is
the claim that, at least in the short run, the level of economic activity, as measured by
the national income Y , is determined by the aggregate demand of the economy. More-
over, the total consumption expenditure on goods and services, denoted by C, is assumed
to be a function of national income Y , with C = f (Y), where f (Y) is the consumption
function. Following the work of Keynes’s associate Richard F. Kahn (1905–1989) in Cam-
bridge, in many models the consumption function is assumed to be linear, so that C =
a + bY . The slope b of this line is called the marginal propensity to consume. For example,
if C and Y are measured in billions of dollars, the number b tells us by how many bil-
lions of dollars consumption would increase if national income were to increase by 1 bil-
lion dollars. Following Kahn’s insight, the number b is usually thought to lie between 0
and 1.

6 Actually, Europe’s population grew unusually fast during the 1960s. Of course, it grew unusually
slowly when millions died during the war years 1939–1945. We see that formula (∗) does not give
very good results compared to the UN estimates. For a better way to model population growth see
Example 4.9.1.
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In a study of the US economy for the period 1929–1941, Norwegian economist
Trygve Haavelmo7 estimated the consumption function as C = 95.05 + 0.712 Y . Here,
the marginal propensity to consume is equal to 0.712.

E X A M P L E 4.5.3 (Supply and Demand). Over a fixed period of time such as a week, the quantity of
a specific good that consumers demand (that is, are willing to buy) will depend on the price
of that good. Usually, as the price increases the demand will decrease.8 Also, the number of
units that the producers are willing to supply to the market during a certain period depends
on the price they are able to obtain. Usually, the supply will increase as the price increases.
So typical demand and supply curves are as indicated in Fig. 4.5.1.

In Fig. 4.5.1 the point E at which the demand and supply curves cross represents an
equilibrium. The price Pe at which this occurs is the equilibrium price; the corresponding
quantity Qe is the equilibrium quantity. Thus, the equilibrium price Pe is defined so that
consumers desire to buy the same amount of the good at price Pe as producers wish to sell.

P

Q

Pe
E

Qe

Supply curve

Demand curve

Figure 4.5.1 Demand and supply curves

30

70

P

Q

P 5 100 2 D

P 5 12 S 2 5

Figure 4.5.2 D = 100 − P and S = 10 + 2P

As a very simple example, consider the linear demand function D = 100 − P and sup-
ply function S = 10 + 2P. The inverse functions are P = 100 − D and P = 1

2 S − 5, whose
graphs are shown in Fig. 4.5.2.9 The quantity demanded D equals the quantity supplied S
provided 100 − P = 10 + 2P, implying that 3P = 90. So the equilibrium price is Pe = 30,
with equilibrium quantity Qe = 70.

7 1911–1999. He was awarded the Nobel prize in 1989.
8 For certain luxury goods like perfume, which are often given as presents, demand might increase

as the price increases. For absolutely essential goods, like insulin for diabetics, demand might be
almost independent of the price. Occasionally dietary staples could also be “Giffen goods” for
which demand rises as price rises. The explanation offered is that these foodstuffs are so essential
to a very poor household’s survival that a rise in price lowers real income substantially, and so
makes alternative sources of nourishment even less affordable.

9 When specifying a linear supply function, the sign of the constant term can be problematic. In the
case we just introduced, a negative constant has the unintuitive implication that supply is positive
even when the price is zero – in our case, it is 10 units. One possibility for something like this
to occur would be when the producer owns a stock of the product and this is highly perishable.
But having the supply be positive and increasing at very low prices can be inconsistent with the
producer’s behaviour. The difficulty is that a positive constant brings about a problem too: that at
some low prices, the producer’s supply is negative. We will overlook these issues here, but they
serve as a warning that overly simplified models can sometimes display undesirable features.
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A peculiarity of Figs 4.5.1 and 4.5.2 is that, although the quantities demanded and sup-
plied are usually regarded as functions of price, economists usually measure price on the
vertical axis and quantity on the horizontal axis. This has been standard practice in elemen-
tary price theory since the fundamental ideas of the French mathematician and economist
Antoine-Augustin Cournot (1801–1877) and several other European contemporaries. The
English economist Alfred Marshall (1842–1924) did much to popularize the practice late
in the late 19th century.

E X A M P L E 4.5.4 (Linear Supply and Demand Functions). Consider the following general linear
demand and supply schedules: D = a − bP and S = α + βP, where a and b are positive
parameters of the demand function D, while α and β are positive parameters of the supply
function.10

The equilibrium price Pe occurs where demand equals supply. But D = S at P = Pe,
implying that a − bPe = α + βPe, or a − α = (β + b)Pe. The corresponding equilibrium
quantity is Qe = a − bPe. So equilibrium occurs at

Pe = a − α

β + b
and Qe = a − b

a − α

β + b
= aβ + αb

β + b

E X E R C I S E S F O R S E C T I O N 4 . 5

1. The consumption function C = 4141 + 0.78Y was estimated for the UK during the period
1949–1975. What is the marginal propensity to consume?

2. Find the equilibrium price for each of the following linear models of supply and demand:

(a) D = 75 − 3P and S = 2P (b) D = 100 − 0.5P and S = −20 + 0.5P

3. The total cost C of producing x units of some commodity is a linear function of x. Records show
that on one occasion, 100 units were made at a total cost of $200, and on another occasion, 150
units were made at a total cost of $275. Express the linear equation for total cost C in terms of the
number of units x produced.

4. The expenditure of a household on consumer goods, C, is related to the household’s income, y, in
the following way: When the household’s income is $1 000, the expenditure on consumer goods
is $900, and whenever income increases by $100, the expenditure on consumer goods increases
by $80. Express the expenditure on consumer goods as a function of income, assuming a linear
relationship.

5. For most assets such as cars, electronic equipment, and furniture, the value decreases, or depreci-
ates, each year. If the value of an asset is assumed to decrease by a fixed percentage of the original
value each year, it is referred to as straight line depreciation.

(a) Suppose the value of a car which initially costs $20 000 depreciates by 10% of its original
value each year. Find a formula for its value P(t) after t years.

10 Such linear supply and demand functions play an important role in economics. It is often the case
that the market for a particular commodity, such as copper, can be represented approximately by
suitably estimated linear demand and supply functions.
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(b) If a $500 washing machine is completely depreciated after ten years (straight line deprecia-
tion), find a formula for its value W(t) after t years.

4.6 Quadratic Functions
Economists often find that linear functions are too simple for modelling economic phenom-
ena with acceptable accuracy. Indeed, many economic models involve functions that either
decrease down to some minimum value and then increase, or else increase up to some max-
imum value and then decrease. Some simple functions with this property are the quadratic
functions that we first saw in Section 3.3. Their general form is

f (x) = ax2 + bx + c (4.6.1)

where a, b, and c are constants with a �= 0 (otherwise the function would be linear).
In general, the graph of f (x) = ax2 + bx + c is called a parabola. The shape of this

parabola roughly resembles ∩ when a < 0 and ∪ when a > 0. Three typical cases are illus-
trated in Figs 4.6.1 to 4.6.3.

y

x

P

x2x1

Figure 4.6.1 a < 0, b2 > 4ac

y

x

P

Figure 4.6.2 a > 0, b2 < 4ac

y

x
P

Figure 4.6.3 a > 0, b2 = 4ac

To learn more about the function f (x) = ax2 + bx + c, we address these two questions:

(a) For which values of x (if any) is ax2 + bx + c = 0?

(b) What are the coordinates of the extremum (maximum or minimum) point P, also called
the vertex of the parabola?

The answer to question (a) was given by the quadratic formula (3.3.5) and the subsequent
discussion of that formula.

The easiest way to handle question (b) is to use derivatives, which is the topic of
Chapter 6, especially Exercise 6.2.7. However, let us briefly consider how the “method of
completing the squares” from Section 3.3 can answer question (b). In fact, this method
yields

f (x) = ax2 + bx + c = a
(

x + b
2a

)2

− b2 − 4ac
4a

(4.6.2)
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as is easily verified by expanding the right-hand side and gathering terms. Now, when x
varies, only the value of a(x + b/2a)2 changes. This squared term equals 0 only when
x = −b/2a. Provided a > 0, it is never less than 0. So when a > 0, the function f (x) attains
its minimum when x = −b/2a, and the minimum value is given by

f (−b/2a) = −(b2 − 4ac)/4a = c − b2/4a

On the other hand, if a < 0 then a(x + b/2a)2 ≤ 0 for all x, and the squared term equals 0
only when x = −b/2a. Hence, f (x) attains its maximum when x = −b/2a in this case.

To summarize, we have shown the following:

E X T R E M A O F Q U A D R A T I C F U N C T I O N S

If a < 0, then f (x) = ax2 + bx + c has its maximum at x = −b/2a (4.6.3)

If a > 0, then f (x) = ax2 + bx + c has its minimum at x = −b/2a (4.6.4)

The axis of symmetry for a parabola is the vertical line about which its graph is sym-
metric. In Figs 4.6.1–4.6.3 this axis is shown as a dashed line that passes through the vertex
of the parabola, which is marked as the point P in each case. To justify this, in Section 5.2
a general function f will be defined as symmetric about x = x0 just in case f (x0 + t) =
f (x0 − t) for all t. Now, for any number t, putting x = − b

2a ± t in formula (4.6.2) implies
that

f
(

− b
2a

+ t
)

= at2 − b2 − 4ac
4a

= f
(

− b
2a

− t
)

This confirms that the quadratic function f (x) = ax2 + bx + c is indeed symmetric about
the vertical line x = −b/2a which passes through the extremum P.

Quadratic Optimization Problems in Economics
Much of economic analysis is concerned with optimization problems. Economics, after
all, is the science of choice, and optimization problems are the form in which economists
usually model choice mathematically. A general discussion of such problems must be post-
poned until we have developed the necessary tools from calculus. Here we show how the
simple results from this section on maximizing quadratic functions can be used to illustrate
some basic economic ideas.

E X A M P L E 4.6.1 (Expectation). Suppose that there is an urn containing T balls, each of them with a
number written on it. One of the balls will be drawn at random, and you are asked to guess
what number will come out on that ball. Let us denote by yt the number written on ball t,
for t = 1, 2, . . . , T . Your job is to give a guess, say ŷ, which is close to yt.

Obviously, the mistake in your guess ŷ if ball t is drawn is |yt − ŷ|. Here, we use the
absolute value of the difference between the guess and the actual number, because underes-
timating the truth seems just as bad as overestimating it by the same amount. An alternative
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way to obtain such a symmetric measure of the error is to use the square of the difference,
(yt − ŷ)2. For reasons that will become clear later, this so-called squared error is widely
used in statistics. Indeed, statisticians commonly assume that a person’s guess in this situ-
ation should minimize the (arithmetic) mean squared error, as defined in Example 2.10.2.
That is, a person’s guess should be chosen so as to minimize the loss function

L(ŷ) = 1
T

T∑
t=1

(yt − ŷ)2

Using the rules (2.10.1) to (2.10.3) for summation, we get

L(ŷ) = 1
T

T∑
t=1

y2
t − 1

T

T∑
t=1

2ytŷ + 1
T

T∑
t=1

ŷ2 = 1
T

T∑
t=1

y2
t −

(
2
T

T∑
t=1

yt

)
ŷ + ŷ2

Using μy to denote the mean of the numbers y1, y2, . . . , yT allows us to rewrite this as

L(ŷ) = 1
T

T∑
t=1

y2
t − 2μyŷ + ŷ2 (∗)

This is a quadratic function in ŷ, like Eq. (4.6.1), with a = 1 and b = −2μy. It follows from
Eq. (4.6.3) that the guess that minimizes the loss function is

ŷ = − b
2a

= −2μy

2
= μy

That is, the guess that minimizes the mean squared error is precisely the mean of the random
variable y. This is why the mean of y is often referred to as its expectation or expected
value.

E X A M P L E 4.6.2 Suppose that when a firm produces and sells Q units of output, it receives a price P
per unit given by P = 102 − 2Q. Suppose too that the firm’s cost of producing and selling
Q units is C = 2Q + 1

2 Q2. Then the firm’s profit is11

π(Q) = PQ − C = (102 − 2Q)Q −
(

2Q + 1
2

Q2
)

= 100Q − 5
2

Q2

Find the value of Q which maximizes profits, and the corresponding maximal profit.

Solution: Using formula (4.6.4), we find that profit is maximized at

Q = Q∗ = − 100
2 · (−5/2)

= 20

The resulting profit is

π∗ = π(Q∗) = 100 · 20 − 5
2

· 400 = 1000

This example is a special case of the monopoly problem studied in the next example.

11 In mathematics the Greek letter π is used to denote the constant ratio 3.1415 . . . between the
circumference of a circle and its diameter. In economics, this constant is not used very often.
Also, p and P usually denote a price, so π has come to denote profit.
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E X A M P L E 4.6.3 (A monopoly problem). Consider a firm that is the only seller of the commodity
it produces, possibly a patented medicine, so it enjoys a monopoly. The monopolist’s total
costs are assumed to be given by the quadratic function

C = αQ + βQ2

of its output level Q ≥ 0, where α and β are positive constants. For each Q, assume that
the price P per unit at which it sells its output is determined by the linear “inverse” demand
function

P = a − bQ

where a and b are constants with a > 0 and b ≥ 0. So for any nonnegative Q, the monopo-
list’s total revenue R is given by the quadratic function R = PQ = (a − bQ)Q, and its profit
by the quadratic function

π(Q) = R − C = (a − bQ)Q − αQ − βQ2 = (a − α)Q − (b + β)Q2

Assuming that the monopolist’s objective is to maximize the profit function π = π(Q), find
its optimal output level QM and corresponding optimal profit πM .

Solution: By using (4.6.4), we see that π reaches its maximum when

QM = a − α

2(b + β)
(4.6.5)

with

πM = (a − α)2

2(b + β)
− (b + β)

(a − α)2

4(b + β)2
= (a − α)2

4(b + β)

This result is valid if a > α; if a ≤ α, the firm will not produce anything, but will have
QM = 0 and πM = 0. The two cases are illustrated in Figs 4.6.4 and 4.6.5. In each figure
the part of the parabola to the left of Q = 0 is dashed, because it is not really relevant given
the natural requirement that Q ≥ 0. The price and cost associated with QM in (4.6.5) can
be found by routine algebra.

If we put b = 0 in the price function P = a − bQ, then P = a for all Q. In this case,
the firm’s choice of quantity does not influence the price at all and so the firm is said to be

π

QQ M 2Q M

Figure 4.6.4 The profit function, a > α

π

Q

Q M

Figure 4.6.5 The profit function, a ≤ α
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perfectly competitive. In this case, by replacing a by P in our previous expressions, we see
that profit is maximized at the output level

Q∗ = P − α

2β
(4.6.6)

The resulting maximum profit is

π∗ = (P − α)2

4β

provided that P > α. If P ≤ α, then Q∗ = 0 and π∗ = 0.
Solving (4.6.6) for P yields P = α + 2βQ∗. Thus, the equation

P = α + 2βQ (4.6.7)

represents the supply curve of this perfectly competitive firm for P > α. For P ≤ α, the
profit-maximizing output Q∗ is 0. The supply curve relating the price on the market to the
firm’s choice of output quantity is shown in Fig. 4.6.6; it includes all the points of the line
segment between the origin and (0, α), where the price is too low for the firm to earn any
profit by producing a positive output.

P

Q

α

P 5 α 1 2 βQ

Figure 4.6.6 The supply curve of a perfectly competitive firm

Let us return to the monopoly firm (which has no supply curve). If it could somehow be
made to act like a competitive firm, taking price as given, it would be on the supply curve
(4.6.7). Given the demand curve P = a − bQ, equilibrium between supply and demand
occurs when (4.6.7) is also satisfied, and so P = a − bQ = α + 2βQ. Solving the second
equation for Q, and then substituting for P and π in turn, we see that the respective equi-
librium levels of output, price, and profit would be

Qe = a − α

b + 2β
, Pe = 2aβ + αb

b + 2β
, π e = β(a − α)2

(b + 2β)2

In order to have the monopolist mimic a competitive firm by choosing to be at (Qe, Pe),
it may be necessary to tax (or subsidize) the output of the monopolist. Suppose that the
monopolist is required to pay a specific tax of τ per unit of output. Because the tax payment,
τ · Q, is added to the firm’s costs, the new total cost function is

C = αQ + βQ2 + τQ = (α + τ)Q + βQ2
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Carrying out the same calculations as before, but with α replaced by α + τ , gives the
monopolist’s choice of output as

QM
τ =

⎧⎨
⎩

a − α − τ

2 (b + β)
, if a ≥ α + τ ;

0, otherwise

So QM
τ = Qe when

a − α − τ

2(b + β)
= a − α

b + 2β

Solving this equation for τ yields

τ = − (a − α)b
b + 2β

Note that τ is actually negative, indicating the desirability of subsidizing the output of the
monopolist in order to encourage additional production.12

E X E R C I S E S F O R S E C T I O N 4 . 6

1. Let f (x) = x2 − 4x.

(a) Complete the following table and use it to sketch the graph of f :

x −1 0 1 2 3 4 5

f (x)

(b) Use Eq. (4.6.3) to determine the minimum point of f .

(c) Solve the equation f (x) = 0.

2. Let f (x) = − 1
2 x2 − x + 3

2 .

(a) Complete the following table and sketch the graph of f

x −4 −3 −2 −1 0 1 2

f (x)

(b) Use Eq. (4.6.4) to determine the maximum point of f .

(c) Solve the equation f (x) = 0.

(d) Show that f (x) = − 1
2 (x − 1)(x + 3), and use this to study how the sign of f (x) varies with x.

Compare the result with your graph.

12 Of course, subsidizing monopolists is usually felt to be unjust, and many additional complications
need to be considered carefully before formulating an appropriate policy for regulating a monop-
olist. Still the previous analysis suggests that if it is thought to be ethically desirable to lower a
monopolist’s price or its profit, it might be much better to do this directly rather than by taxing its
output.
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3. Determine the maximum/minimum points of the following functions, by using Eq. (4.6.3)
or (4.6.4), as appropriate:

(a) x2 + 4x (b) x2 + 6x + 18 (c) −3x2 + 30x − 30

(d) 9x2 − 6x − 44 (e) −x2 − 200x + 30 000 (f) x2 + 100x − 20 000

4. Find all the zeros of each quadratic function in Exercise 3, and where possible write each function
in the form a(x − x1)(x − x2).

5. Find solutions to the following equations, where a and b are parameters.

(a) x2 − 3ax + 2a2 = 0 (b) x2 − (a + b)x + ab = 0 (c) 2x2 + (4b − a)x = 2ab

6. A model in the theory of efficient loan markets involves the function

U(x) = 72 − (4 + x)2 − (4 − rx)2

where r is a constant. Find the value of x for which U(x) attains its largest value.

250 2 x 250 2 x

250 1 x

250 1 x

Figure 4.6.7 A plot of land

7. A farmer has one thousand metres of fence wire with which to make a rectangular enclosure,
as illustrated in Fig. 4.6.7. Let the base have length 250 + x. Then the height is 250 − x, as in
Fig. 4.6.7.

(a) Find the values of x and the areas for the three rectangles whose bases are 100, 250, and 350
metres.

(b) What choice of x gives the maximum area?13

8.SM If a cocoa shipping firm sells Q tons of cocoa in the UK, the price it receives is given by
PU = α1 − 1

3 Q. On the other hand, if it buys Q tons of cocoa from its only source in Ghana, the
price it has to pay is given by PG = α2 + 1

6 Q. In addition, it costs γ per ton to ship cocoa from
its supplier in Ghana to its customers in the UK (its only market). The numbers α1, α2, and γ are
all positive.

(a) Express the cocoa shipper’s profit as a function of Q, the number of tons shipped.

(b) Assuming that α1 − α2 − γ > 0, find the profit-maximizing shipment of cocoa. What hap-
pens if α1 − α2 − γ ≤ 0?

(c) Suppose the government of Ghana imposes an export tax on cocoa of τ per ton. Find the new
expression for the shipper’s profits and the new profit-maximizing quantity shipped.

(d) Calculate the Ghanaian government’s export tax revenue as a function of τ , and compare the
graph of this function with the Laffer curve presented in Fig. 4.1.1.

13 In antiquity, when selling rectangular pieces of land to farmers, certain surveyors would write
contracts in which only the perimeter was specified. As a result, the lots they sold were long
narrow rectangles.
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(e) Advise the Ghanaian government on how to obtain as much tax revenue as
possible.

9.SM [HARDER] Let a1, a2, . . . , an and b1, b2, . . . , bn be arbitrary real numbers. The inequality(
a1b1 + a2b2 + · · · + anbn

)2 ≤ (
a2

1 + a2
2 + · · · + a2

n

) (
b2

1 + b2
2 + · · · + b2

n

)
(4.6.8)

is called the Cauchy–Schwarz inequality.

(a) Check the inequality for n = 2, when a1 = −3, a2 = 2, b1 = 5, and b2 = −2.

(b) Prove (4.6.8) by means of the following trick: first, define f for all x by

f (x) = (a1x + b1)
2 + · · · + (anx + bn)

2

It should be obvious that f (x) ≥ 0 for all x. Write f (x) as Ax2 + Bx + C, where the expressions
for the coefficients A, B, and C are related to the terms in (4.6.8). Because Ax2 + Bx + C ≥ 0
for all x, we must have B2 − 4AC ≤ 0. Why?

(c) Show that (4.6.8) then follows.

4.7 Polynomials
Cubic Functions
After considering linear and quadratic functions, the logical next step is to examine cubic
functions of the form

f (x) = ax3 + bx2 + cx + d (4.7.1)

where a, b, c, and d are constants and a �= 0. It is relatively easy to examine the behaviour of
linear and quadratic functions. Cubic functions are considerably more complicated, because
the shape of their graphs changes drastically as the coefficients a, b, c, and d vary. Two
examples are given in Figs 4.7.1 and 4.7.2. Cubic functions do occasionally appear in eco-
nomic models.

5

10
f (x) 5 2x3 1 4x2 2 x 2 6

15

21 1 2 3 422

y

x

Figure 4.7.1 A cubic function

y

Q

y 5 C(Q)

Figure 4.7.2 A cubic cost function

E X A M P L E 4.7.1 Consider a firm producing a single commodity. The total cost of producing Q units
of the commodity is C(Q). Cost functions often have the following properties: First, C(0) is
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positive, because an initial fixed expenditure is involved. When production increases, costs
also increase. In the beginning, costs increase rapidly, but the rate of increase slows down
as production equipment is used for a higher proportion of each working week. However, at
high levels of production, costs again increase at a fast rate, because of technical bottlenecks
and overtime payments to workers, for example. The cubic cost function C(Q) = aQ3 +
bQ2 + cQ + d exhibits this type of behaviour provided that a > 0, b < 0, c > 0, d > 0, and
3ac > b2. Such a function is sketched in Fig. 4.7.2.

Cubic cost functions whose coefficients have a different sign pattern have also been
studied. For instance, a study of a particular electric power generating plant revealed that
over a certain period, the cost of fuel as a function of output Q was given by

C(Q) = −Q3 + 214.2Q2 − 7900Q + 320 700

Note, however, that this cost function cannot be valid for all Q, because it suggests that fuel
costs would be negative for large enough Q.

Studying cubic functions in detail is made easier by using differential calculus, as will
be seen later.

General Polynomials
Linear, quadratic, and cubic functions are all examples of polynomials.

G E N E R A L P O L Y N O M I A L

Consider the function P, defined for all x, by

P(x) = anxn + an−1xn−1 + · · · + a1x + a0 (4.7.2)

where a0, a1, . . . , an are constants. In case an �= 0, this is called the general
polynomial of degree n, with coefficients an, an−1, . . . , a0.

For instance, when n = 4, we obtain P(x) = a4x4 + a3x3 + a2x2 + a1x + a0, which is
the general quartic function, or polynomial of degree 4. Of course, there are many functions
like 5 + x−2 or 1/(x3 − x + 2) that are not polynomials.

Definition (4.7.2) writes the polynomial as the sum of decreasing powers of x. When
|x| > 1 so that |x|n increases with n, this puts the most significant terms first. But especially
when |x| < 1, there are advantages to using the reverse order, in which one can also use
summation notation to write P(x) = ∑n

k=0 akxk.

Factoring Polynomials
Like all algebraic expressions, polynomials can be added, subtracted and multiplied. One
polynomial can also be divided by another to yield a function that is defined at all points
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where the denominator is nonzero. Sometimes the result of this division will be a new
polynomial. But sometimes, as when one divides one integer by another, there will be a
remainder. Here is a useful result:

R E M A I N D E R T H E O R E M

Let P(x) be a polynomial of degree m, and Q(x) a polynomial of degree n,
where m > n. Then there exists a unique pair of polynomials q(x) of degree
m − n and r(x) of degree less than n such that

P(x) = q(x)Q(x) + r(x) (4.7.3)

Evidently Eq. (4.7.3) can be written in the form

P(x)
Q(x)

= q(x) + r(x)
Q(x)

for all x such that Q(x) �= 0

In this sense, the polynomial r(x) is what gets left over after trying to divide P(x) by Q(x),
which is why we call it the remainder.

If (4.7.3) holds with r(x) = 0 for all x, then we say that Q(x) is a factor of P(x), and that
P(x) is divisible by Q(x). Then P(x) = q(x)Q(x) or P(x)/Q(x) = q(x).

An important special case is when Q(x) = x − a. Then Q(x) is of degree 1, so the
remainder r(x) must have degree 0, and is therefore a constant. In this special case

P(x) = q(x)(x − a) + r for all x

For x = a in particular, we get P(a) = r. It follows that x − a divides P(x) if and only if
P(a) = 0. This important observation can be formulated as follows:

P O L Y N O M I A L F A C T O R I N G

The polynomial P(x) has the factor x − a if and only if P(a) = 0 (4.7.4)

E X A M P L E 4.7.2 Prove that x − 5 is a factor of the polynomial P(x) = x3 − 3x2 − 50.

Solution: P(5) = 125 − 75 − 50 = 0, so according to (4.7.4), x − 5 divides P(x). In fact,
note that P(x) = (x − 5)(x2 + 2x + 10).

Numerous problems in mathematics and its applications involve polynomials. Often, one
is particularly interested in finding the number and location of the zeros of P(x), defined as
the values of x such that P(x) = 0.

The general equation of degree n takes the form

anxn + an−1xn−1 + · · · + a1x + a0 = 0 (4.7.5)
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It will soon be shown that this equation has at most n (real) solutions, also called roots,
but it need not have any. The corresponding nth-degree polynomial has a graph with at
most n − 1 turning points at which the function switches from being strictly increasing to
strictly decreasing, or vice versa. But there may be fewer turning points. For example, the
100th-degree equation x100 + 1 = 0 has no solutions because x100 + 1 is always greater
than or equal to 1, and its graph has only one turning point at x = 0.

According to the fundamental theorem of algebra, every polynomial of the form (4.7.2)
can be written as a product of polynomials of degree 1 or 2. It follows from (4.7.4) that
each zero x = a of a polynomial P(x) gives rise to a different factor of the form x − a. So
if P(x) is of degree n, it can have at most n different zeros.

Integer Roots
Note that each integer m that satisfies the cubic equation

−x3 + 4x2 − x − 6 = 0 (∗)

must satisfy the equation m(−m2 + 4m − 1) = 6. Evidently −m2 + 4m − 1 is also an inte-
ger, so m must be a factor of the constant term 6. Since ±1, ±2, ±3, and ±6 are the factors
of 6, they are the only possible integer solutions. Direct substitution into the left-hand side
of equation (∗) reveals that of these eight possibilities, the roots of the equation are −1, 2,
and 3. A third-degree equation has at most three roots, so we have found them all. In fact,

−x3 + 4x2 − x − 6 = −(x + 1)(x − 2)(x − 3)

In general, Eq. (4.7.5) can be rewritten as

x(anxn−1 + an−1xn−2 + · · · + a1) = −a0 (4.7.6)

So if the coefficients an, an−1, . . . , a1, a0 are all integers, and if x is an integer root of (4.7.5),
then the expression in parentheses on the left-hand side of (4.7.6) is also an integer, implying
that x must be a factor of a0. To summarize:

I N T E G E R R O O T S

Consider the equation

anxn + an−1xn−1 + · · · + a1x + a0 = 0 (4.7.7)

where the coefficients an, an−1, . . . , a1, a0 are all integers. Then all possible
integer roots must be factors of the constant term a0.

E X A M P L E 4.7.3 Find all possible integer roots of the equation

1
2 x3 − x2 + 1

2 x − 1 = 0
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Solution: We multiply both sides of the equation by 2 to obtain the equivalent equation
x3 − 2x2 + x − 2 = 0 whose coefficients are all integers. Now, all integer roots must be
factors of 2, so the only possibilities are ±1 and ±2. Checking these four shows only x = 2
is a root. In fact, because x3 − 2x2 + x − 2 = (x − 2)(x2 + 1), this is the only real root.

E X A M P L E 4.7.4 Find possible quadratic and cubic functions which have the graphs in Figs 4.7.3
and 4.7.4, respectively.

22

2

21

1

y

x21 1 222

f (x) 5 ?

Figure 4.7.3 A quadratic function

2

1

y

x

f (x) 5 ?

22

23

24

21
21 1 22223

Figure 4.7.4 A cubic function

Solution: For Fig 4.7.3, since the graph intersects the x-axis at the two points x = −2 and
x = 2, we try the quadratic function f (x) = a(x − 2)(x + 2). Then f (0) = −4a. According
to the graph, f (0) = −2, so a = 1/2, and hence

f (x) = 1
2
(x − 2)(x + 2) = 1

2
x2 − 2

For Fig. 4.7.4, because the equation f (x) = 0 has roots x = −3, −1, 2, we try the cubic
function f (x) = b(x + 3)(x + 1)(x − 2). Then f (0) = −6b. According to the graph, f (0) =
−3. So b = 1/2, and hence

f (x) = 1
2
(x + 3)(x + 1)(x − 2)

Polynomial Division
One can divide polynomials in much the same way as one uses long division to divide num-
bers. To remind ourselves how long division works, consider a simple numerical example:

2735 ÷ 5 = 500 + 40 + 7
2500 ← 500 × 5
235
200 ← 40 × 5
35
35 ← 7 × 5

0 ← the remainder

Note that each arrow indicates that the product on its right, which is formed from
multiplying a decimal digit of the answer by the quotient, should be included on the left.
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Thereupon, each horizontal line instructs you to subtract the number immediately above
the line from the number above that.14 In the end, we find the answer 2735 ÷ 5 = 547.

Next we show how to apply a similar method to this example

(−x3 + 4x2 − x − 6) ÷ (x − 2)

of polynomial division. Here are the steps:

−x3 + 4x2 − x − 6 ÷ x − 2 = −x2 + 2x + 3
−x3 + 2x2 ← −x2(x − 2)

+ 2x2 − x − 6
+ 2x2 − 4x ← 2x(x − 2)

+ 3x − 6
+ 3x − 6 ← 3(x − 2)

0 ← the remainder

We conclude that (−x3 + 4x2 − x − 6) ÷ (x − 2) = −x2 + 2x + 3. However, it is easy to
check that −x2 + 2x + 3 = −(x + 1)(x − 3). So

−x3 + 4x2 − x − 6 = −(x + 1)(x − 3)(x − 2)

E X A M P L E 4.7.5 Prove that the polynomial P(x) = −2x3 + 2x2 + 10x + 6 has a zero at x = 3, then
factor the polynomial.

Solution: Inserting x = 3 yields P(3) = 0, so this is a zero. By (4.7.4), the polynomial P(x)
has x − 3 as a factor. Performing the division (−2x3 + 2x2 + 10x + 6) ÷ (x − 3) yields the
quotient −2x2 − 4x − 2 = −2(x + 1)2. Hence P(x) = −2(x − 3)(x + 1)2.

Polynomial Division with a Remainder
The division 2734 ÷ 5 gives 546 and leaves the remainder 4. So 2734/5 = 546 + 4/5. We
consider a similar form of division for polynomials.

E X A M P L E 4.7.6 Perform the division: (x4 + 3x2 − 4) ÷ (x2 + 2x).

Solution: Proceeding as before,15

x4 + 3x2 − 4 ÷ x2 + 2x = x2 − 2x + 7
x4 + 2x3 ← x2(x2 + 2x)

− 2x3 + 3x2 − 4
− 2x3 − 4x2 ← −2x(x2 + 2x)

7x2 − 4
7x2 + 14x ← 7(x2 + 2x)

− 14x − 4 ← the remainder

14 You may be more accustomed to a different way of arranging the numbers, but the idea is always
the same.

15 The polynomial x4 + 3x2 − 4 has no terms in x3 and x, so we inserted some extra space between
the powers of x to make room for the terms in x3 and x that arise in the course of the calculations.
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It follows that x4 + 3x2 − 4 = (x2 − 2x + 7)(x2 + 2x) + (−14x − 4) and so

x4 + 3x2 − 4
x2 + 2x

= x2 − 2x + 7 − 14x + 4
x2 + 2x

The remainder theorem results from the claim that when dividing any polynomial P(x)
by another polynomial Q(x) of lower degree, this division procedure always works and
produces a unique result satisfying (4.7.3).

Rational Functions
A rational function is any function R(x) = P(x)/Q(x) that can be expressed as the ratio of
two polynomials P(x) and Q(x). This function is defined for all x where Q(x) �= 0.

The rational function R(x) is called proper if the degree of P(x) is less than the degree
of Q(x). When the degree of P(x) is no less than that of Q(x), the function R(x) is called an
improper rational function. By using polynomial division as in Example 4.7.6, any improper
rational function can be expressed as a polynomial plus a proper rational function.

E X A M P L E 4.7.7 One of the simplest types of rational function is

R(x) = ax + b
cx + d

We assume that c �= 0. Otherwise, if c = 0, then R(x) is either a linear function in case
d �= 0, or else is undefined if d = 0 as well.

The graph of R is a hyperbola. See Fig. 5.1.7 for a typical example where R(x) = (3x −
5)/(x − 2).16 A very simple case is R(x) = a/x, where a > 0. Figure 4.7.5 shows the graph
of this function in the first quadrant. Note that the shaded area A = x0(a/x0) is always equal
to a, independent of which point P we choose on the curve.

a
y 5 a x

x0

x0

P

y

x

A

Figure 4.7.5 The area A is independent of P

Studying the behaviour of more complicated rational functions becomes easier once we
have developed the proper tools from calculus.17

16 See also the end of Section 5.5.
17 See, for instance, Exercise 7.9.9.



�

� �

�

134 C H A P T E R 4 / F U N C T I O N S O F O N E V A R I A B L E

E X E R C I S E S F O R S E C T I O N 4 . 7

1. Find all integer roots of the following equations:

(a) x4 − x3 − 7x2 + x + 6 = 0 (b) 2x3 + 11x2 − 7x − 6 = 0

(c) x4 + x3 + 2x2 + x + 1 = 0 (d) 1
4 x3 − 1

4 x2 − x + 1 = 0

2. Find all integer roots of the following equations:

(a) x2 + x − 2 = 0 (b) x3 − x2 − 25x + 25 = 0 (c) x5 − 4x3 − 3 = 0

3.SM Perform the following divisions:

(a) (2x3 + 2x − 1) ÷ (x − 1) (b) (x4 + x3 + x2 + x) ÷ (x2 + x)

(c) (x5 − 3x4 + 1) ÷ (x2 + x + 1) (d) (3x8 + x2 + 1) ÷ (x3 − 2x + 1)

4.SM Find a possible formula for each of the three polynomials with graphs shown in Figs 4.7.6
to 4.7.8.

3

y

x

(1, 22)

21

Figure 4.7.6 Exercise 4(a)

23

212

21

y

x

Figure 4.7.7 Exercise 4(b)

2

y

x

6

23

Figure 4.7.8 Exercise 4(c)

5. Perform the following divisions:

(a) (x2 − x − 20) ÷ (x − 5) (b) (x3 − 1) ÷ (x − 1) (c) (−3x3 + 48x) ÷ (x − 4)

6. Show that the division (x4 + 3x2 + 5) ÷ (x − c) leaves a remainder for all values of c.

7. Prove that, provided both c �= 0 and cx + d �= 0, one has

ax + b
cx + d

= a
c

+ bc − ad
c(cx + d)

8.SM A function which has been used in demand theory is

E = α
x2 − γ x
x + β

with α, β, and γ being constants. Perform the division (x2 − γ x) ÷ (x + β), and use the result to
express E as a sum of a linear function and a proper fraction.
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4.8 Power Functions
We saw in Section 2.5 how the number xr can be defined for all positive real numbers x
and for all rational numbers r. In order for xr to be defined for all real numbers r, we also
need to consider xr when r is irrational. How do we define an expression like 5 raised to the
irrational power π? Because π is close to 3.1, we should expect that 5π is approximately

53.1 = 531/10 = 10√
531

which is defined. An even better approximation is

5π ≈ 53.14 = 5314/100 = 5157/50 = 50
√

5157

We can continue adding ever more decimal places to the approximation π =
3.141 592 653 5 . . . . The result will get closer to 5π with every additional decimal
digit. Then the meaning of 5π should be reasonably clear. For the moment, how-
ever, let us be content with just using a calculator to find that 5π ≈ 156.993. Later,
Section 7.11 provides a more complete discussion of how to define xr as a limit when r is
irrational.

P O W E R F U N C T I O N

The general power function is defined for x > 0 by the formula

f (x) = Axr (4.8.1)

where r and A are constants.

When we consider the power function, we always assume that x > 0. This is because
for many values of r such as r = 1/2, the symbol xr is not defined for negative values of x.
And we exclude x = 0 because 0r is undefined if r ≤ 0.

Graphs of Power Functions
Consider the power function f (x) = xr on the domain of x > 0. It is defined for all real
numbers r. For every real r we always have f (1) = 1r = 1, so the graph of the function
passes through the point (1, 1) in the xy-plane. The shape of the graph depends crucially on
the value of r, as Figs 4.8.1 to 4.8.3 indicate.

If 0 < r < 1, the graph is like that in Fig. 4.8.1, which resembles the graph of f (x) = x0.5

shown in Fig. 4.3.8. For r > 1 the graph is like that shown in Fig. 4.8.2; for instance, if r = 2
the graph is the right-hand half of the parabola y = x2 shown in Fig. 4.3.6. Finally, for r < 0,
the graph is shown in Fig. 4.8.3, which, if r = −1, is half of the hyperbola y = 1/x shown
in Fig. 4.3.9. Figure 4.8.4 further illustrates how the graph of y = xr changes with changing
positive values of the exponent r.
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1

2

3

1 2 3

y 5 xr (0 , r , 1)

y

x

Figure 4.8.1 0 < r < 1

1

2

3

1 2 3

y

x

y 5 xr (r . 1)

Figure 4.8.2 r > 1

1

2

3

1 2 3

y

x

y 5 xr (r , 0)

Figure 4.8.3 r < 0

1

2

1 2

y

x

y 5 x1/3

y 5 x1/2

y 5 x2

y 5 x3

y 5 x

Figure 4.8.4 y = xr

E X E R C I S E S F O R S E C T I O N 4 . 8

1. Sketch the graphs of y = x−3, y = x−1, y = x−1/2, and y = x−1/3, defined for x > 0.

2. Use a calculator to find approximate values for
√

2
√

2
and ππ .

3. Solve the following equations for x:

(a) 22x = 8 (b) 33x+1 = 1/81 (c) 10x2−2x+2 = 100

4. Find t when: (a) 35t9t = 27; and (b) 9t = (27)1/5/3.

4.9 Exponential Functions
A quantity that increases (or decreases) by a fixed factor per unit of time is said to increase
(or decrease) exponentially. If the fixed factor is a, this leads to the exponential function:

f (t) = Aat (4.9.1)
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where a > 0 and A are constants. In what follows, we shall consider the case where A
is positive. But if A is negative, we can consider −f (t) = (−A)at instead, then change
sign.

Note that if f (t) = Aat, then f (t + 1) = Aat+1 = Aat · a1 = af (t), so the value of f at
time t + 1 is a times the value of f at time t. If a > 1, then f is increasing; if 0 < a < 1,
then f is decreasing—see Figs 4.9.1 and 4.9.2. Because f (0) = Aa0 = A, we can always
write f (t) = f (0)at.

A

f (t) 5 Aat

(a . 1)

y

t

Figure 4.9.1 f (t) = Aat, a > 1

y

t

A

f (t) 5 Aat

(0 , a , 1)

Figure 4.9.2 f (t) = Aat, 0 < a < 1

It is important to recognize the fundamental difference between the exponential func-
tion f (x) = ax and the typical power function g(x) = xa that was discussed in Section 4.8.
Indeed, for the exponential function ax, it is the exponent x that varies, while the base a is
constant; for the power function xa, on the other hand, the exponent a is constant, while the
base x varies.

Exponential functions appear in many important economic, social, and physical mod-
els. For instance, economic growth, population growth, continuously accumulated interest,
radioactive decay, and decreasing illiteracy have all been described by exponential func-
tions. In addition, the exponential function is one of the most important functions in statis-
tics. Here is one application:

E X A M P L E 4.9.1 (Population growth). Consider a growing population like that of Europe during the
20th century. In Example 4.5.1, we constructed a linear function P = 5.1t + 606, where P
denotes the population in millions, t = 0 corresponds to the year 1960 when the population
was 606 million, and t = 10 corresponds to the year 1970 when the population estimate
was 657 million. This linear formula says that there was a constant increase 5.1 million in
population each year, which is very unreasonable. After all, it implies that for years before
1841, when t ≤ −119, the population of Europe was negative!

In fact, according to UN estimates, the European population grew at a proportional rate
of about 0.45% per year during the period 1960 to 2000. If the growth rate had been
constant then, starting from a population of 606 million in 1960, in 1961 the population
would have been 606 · 1.0045 (see Section 2.2), or about 609 million. Next year, in 1962,
it would have grown to 606 · 1.00452, or about 611 million. In fact, the population would
have grown by the factor 1.0045 each year. The population t years after 1960 would have
been
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P(t) = 606 · 1.0045t

This makes P(t) an exponential function of the form (4.9.1). For the year 2015, correspond-
ing to t = 55, the formula yields the estimate P(55) ≈ 776 million.18

Many countries, particularly in Africa, have recently had far faster population growth
than Europe. For instance, during the 1970s and 1980s, the annual growth rate of Zim-
babwe’s population was close to 3.5%. Let t = 0 correspond to the census year 1969 when
the population was 5.1 million. At this growth rate, the population t years after 1969 is
P(t) = 5.1 · 1.035t. If we calculate P(20), P(40), and P(60) using this formula, we get
roughly 10, 20, and 40. Thus, the population of Zimbabwe roughly doubles after 20 years;
during the next 20 years, it doubles again, and so on. Of course, this kind of extrapolation is
quite dubious, because exponential population growth cannot go on forever: if population
were to continue growing at 3.5% annually with no emigration, then Exercise 4.10.10 asks
you to show that by the year 2296 the average Zimbabwean would have only one square
metre of land to live on.

E X A M P L E 4.9.2 (Compound interest). As seen in Section 2.2, a savings account of K that increases
by p% interest each year will have grown after t years to K(1 + p/100)t. According to this
formula with K = 1, a deposit of $1 earning interest at 8% per year (so p = 8) will have
increased after t years to (1 + 8/100)t = 1.08t dollars.

Table 4.9.1 shows how fast the savings account grows. After 30 years, $1 of savings will
have increased to more than $10, and after 200 years, to more than $4.8 million!

Table 4.9.1 How $1 of savings increases with time at 8% annual interest

t 1 2 5 10 20 30 50 100 200

(1.08)t 1.08 1.17 1.47 2.16 4.66 10.06 46.9 2199.8 4 838 949.6

Observe that the expression 1.08t defines an exponential function of the type (4.9.1),
with a = 1.08. Even if a is only slightly larger than 1, eventually the power at will increase
very quickly as t becomes large.

E X A M P L E 4.9.3 (Continuous depreciation). Each year the value of most assets such as cars, elec-
tronic equipment, or furniture decreases, or depreciates. If the value of an asset is assumed
to decrease by a fixed percentage each year, then the depreciation is called continuous.19

Suppose that a car whose value at time t = 0 was P0 subsequently depreciates at the rate
of 20% each year over a five-year period. What is its value A(t) at time t, for t = 1, 2, 3, 4, 5?

Solution: After one year, its value is P0 − (20P0/100) = P0(1 − 20/100) = P0(0.8)1.
Thereafter, it depreciates each subsequent year by the factor 0.8. Thus, after t years, its
value is A(t) = P0(0.8)t. In particular, A(5) = P0(0.8)5 ≈ 0.32P0, so after five years its
value has decreased to about 32% of its original value.

18 The actual figure was about 738 million, which shows the limitations of such naı̈ve projections.
19 Recall the case of linear depreciation discussed in Exercise 4.5.5.
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Here are the definition and a key property of the exponential function:

E X P O N E N T I A L F U N C T I O N

The general exponential function with base a > 0 is

f (x) = Aax

where a is the factor by which f (x) changes when x increases by 1.
For each unit increase in x:

1. if a = 1 + p/100 where p > 0, then f (x) will increase by p%;

2. if a = 1 − p/100 where 0 < p < 100, then f (x) will decrease by p%.

The Natural Exponential Function
Each base a of f (x) = Aax gives a different exponential function. In mathematics, one par-
ticular value of a gives an exponential function that is far more important than all others.
One might guess that a = 2 or a = 10 would be this special base. Certainly, powers to the
base of 2 are important in computing, and powers to the base 10 occur in our usual dec-
imal number system. Nevertheless, once we have studied some calculus, it will turn out
that the most important base for an exponential function is an irrational number a little
larger than 2.7. In fact, it is so distinguished that it is denoted by the single letter e, possibly
because it is the first letter of the word “exponential”.20 Its value to 15 decimal places is

e = 2.718 281 828 459 045 . . . (4.9.2)

Many formulas in calculus become much simpler when e is used as the base for exponential
functions. Given this base e, the corresponding exponential function

f (x) = ex (4.9.3)

is called the natural exponential function. In Examples 7.5.4 and 7.6.2 we shall give an
explicit way of approximating ex to an arbitrary degree of accuracy. The graphs of f (x) = ex

and f (x) = e−x are given in Fig. 4.9.3. Of course, all the usual rules for powers apply also
to the natural exponential function. In particular,

(a) eset = es+t (b) es/et = es−t (c) (es)t = est

Powers with e as their base, even e1, are difficult to compute by hand. A calculator
with an ex function key can do this immediately, however. For instance, one finds that
e1.0 ≈ 2.7183, e0.5 ≈ 1.6487, and e−π ≈ 0.0432.

20 Though this number had been defined implicitly over 100 years earlier, the Swiss scientist and
mathematician Leonhard Euler (1707–1783) was the first to denote it by the letter e. He subse-
quently proved that it was irrational and calculated an approximation that is accurate to 23 decimal
places.
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1

2

3

4

2122 1 2

y

x

y 5 exy 5 e2x

Figure 4.9.3 The graphs of y = ex and y = e−x

Sometimes the notation exp(u), or even exp u, is used in place of eu. If u is a complicated
expression like x3 + x

√
x − 1/x + 5, it is certainly much easier to read and write exp(x3 +

x
√

x − 1/x + 5) instead of ex3+x
√

x−1/x+5.

E X E R C I S E S F O R S E C T I O N 4 . 9

1. A savings account with an initial deposit of $100 earns 12% interest per year. What is the amount
of savings after t years? Make a table similar to Table 4.9.1, stopping at 50 years.

2. Fill in the following table and sketch the graphs of y = 2x and y = 2−x.

x −3 −2 −1 0 1 2 3

2x

2−x

3. The normal density function

ϕ(x) = 1√
2π

e− 1
2 x2

is one of the most important functions in statistics. Its graph is often called the “bell curve” because
of its shape. Use your calculator to fill in the following table:

x −2 −1 0 1 2

y = ϕ(x)

4. Which of the following equations do not define exponential functions of x?

(a) y = 3x (b) y = x
√

2 (c) y = (
√

2)x

(d) y = xx (e) y = (2.7)x (f) y = 1/2x

5. Suppose that all prices rise at the same proportional (inflation) rate of 19% per year. For an item
that currently costs P0, use the implied formula for the price after t years in order to predict the
prices of:
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(a) A 20 kg bag of corn, presently costing $16, after five years.

(b) A $4.40 can of coffee after ten years.

(c) A $250 000 house after four years.

6. Find possible exponential functions whose graphs are A to C as shown in Figs 4.9.4 to 4.9.6.

2

y

x

(2, 8)

Figure 4.9.4 Graph A

2
3

y

x

(1, 6)

21 ,

Figure 4.9.5 Graph B

y

x

1
44 ,

4

Figure 4.9.6 Graph C

4.10 Logarithmic Functions
Economists are often concerned with questions like these:

(a) At the present rate of inflation, how long will it take the price level to triple?

(b) If the world’s population grows at 2% per year, how long does it take to double its size?

(c) If $1000 is invested in a savings account bearing interest at the annual rate of 8%, how
long does it take for the account to reach $10 000?

All these questions involve solving equations of the form ax = b for x. For instance,
problem (c) reduces to the finding which x solves the equation 1000(1.08)x = 10 000.

We begin with equations in which the base of the exponential is e, which was, as you
recall, the irrational number 2.718 . . . . Here are three examples: ex = 4; 5e−3x = 16; and
Aαe−αx = k. In all these equations, the unknown x occurs as an exponent. We therefore
introduce the following useful definition. If eu = a, we call u the natural logarithm of a,
and we write u = ln a. Hence, we have the following definition of the symbol ln a:

N A T U R A L L O G A R I T H M

For any positive number a, its natural logarithm ln a is the unique solution of
the equation

eln a = a (4.10.1)

Thus, ln a is the power of e you need to get a.

Because eu is a strictly increasing function of u, it follows that ln a is uniquely deter-
mined by the definition (4.10.1). You should memorize this definition. It is the foundation
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for everything in this section, and for a good part of what comes later. The following
example illustrates how to use this definition.

E X A M P L E 4.10.1 Find the following numbers:

(a) ln 1 (b) ln e (c) ln(1/e) (d) ln 4 (e) ln(−6)

Solution:

(a) ln 1 = 0, because e0 = 1 and so 0 is the power of e that you need to get 1.

(b) ln e = 1, because e1 = e and so 1 is the power of e that you need to get e.

(c) ln(1/e) = ln e−1 = −1, because −1 is the power of e that you need to get 1/e.

(d) ln 4 is the power of e you need to get 4. Because e1 ≈ 2.7 and e2 = e1 · e1 ≈ 7.3, the
number ln 4 must lie between 1 and 2. By using a calculator, you should be able to find
a good approximation to ln 4 by trial and error. Of course, it is easier to press 4 and then
the ln x key, when you find at once that ln 4 ≈ 1.386. Thus, e1.386 ≈ 4.

(e) ln(−6) would be the power of e you need to get −6. Because ex is positive for all x,
obviously ln(−6) must be undefined. (The same is true for ln x whenever x ≤ 0.)

The box below displays some basic properties for convenient reference.

B A S I C P R O P E R T I E S O F N A T U R A L L O G A R I T H M S

ln 1 = 0, ln e = 1, and generally

ln ex = x for all real x; x = eln x for all real x > 0 (4.10.2)

Of course, the first two equalities were proved in parts (a) and (b) of Example 4.10.1. To
prove (4.10.2), note first that x = eln x is just definition (4.10.1) with a replaced by x. But
then, if x = ln y, it follows that y = ex and so ln ex = ln y = x.

The following box collects some other important rules for natural logarithms.

R U L E S F O R T H E N A T U R A L L O G A R I T H M F U N C T I O N ln x

Let x and y denote any positive real numbers.

(a) The logarithm of the product xy is the sum of the logarithms of x and y:
that is, ln(xy) = ln x + ln y.

(b) The logarithm of the quotient x/y is the difference between the logarithms
of its numerator and denominator: that is, ln

x
y

= ln x − ln y.

(c) The logarithm of the power xp is the exponent p multiplied by the logarithm
of the base x: that is, ln xp = p ln x.
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First, to prove rule (a), start by observing that the definition of natural logarithm implies
that eln x = x, eln y = y, and eln(xy) = xy. It follows that

eln(xy) = xy = eln xeln y = eln x+ln y (∗)

where the last step uses the rule eset = es+t. In general, eu = ev implies u = v, so we con-
clude from (∗) that ln(xy) = ln x + ln y.

The proofs of rules (b) and (c) are based on the rules es/et = es−t and (es)t = est, respec-
tively, and are left to the reader.

It is tempting to replace ln(x + y) by ln x + ln y, but this is entirely wrong. In fact ln x +
ln y is equal to ln(xy), not to ln(x + y).

L O G O F A S U M

There are no simple formulas for ln(x + y) and ln(x − y).

Here are some examples that apply the previous rules.

E X A M P L E 4.10.2 Express the following as multiples of ln 2:

(a) ln 4 (b) ln
3√

25 (c) ln(1/16).

Solution:

(a) ln 4 = ln(2 · 2) = ln 2 + ln 2 = 2 ln 2, or, alternatively ln 4 = ln 22 = 2 ln 2.

(b) We have
3√

25 = 25/3. Therefore, ln
3√

25 = ln 25/3 = (5/3) ln 2.

(c) ln(1/16) = ln 1 − ln 16 = 0 − ln 24 = −4 ln 2. Or, ln(1/16) = ln 2−4 = −4 ln 2.

E X A M P L E 4.10.3 Solve the following equations for x:

(a) 5e−3x = 16 (b) Aαe−αx = k (c) (1.08)x = 10 (d) ex + 4e−x = 4

Solution:

(a) Take ln of each side of the equation to obtain ln(5e−3x) = ln 16. The product rule
gives ln(5e−3x) = ln 5 + ln e−3x. By rule (d) ln e−3x = −3x. The equation becomes
ln 5 − 3x = ln 16, whose only solution is

x = 1
3
(ln 5 − ln 16) = 1

3
ln

5
16

(b) We argue as in (a) to obtain ln(Aαe−αx) = ln k, or ln(Aα) + ln e−αx = ln k It follows
that ln(Aα) − αx = ln k. Finally, therefore,

x = 1
α

[ln(Aα) − ln k] = 1
α

ln
Aα

k
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(c) Again we take the ln of each side of the equation and obtain x ln 1.08 = ln 10. So the
solution is x = ln 10/ ln 1.08, which is ≈ 29.9. Thus, it takes just short of 30 years for
$1 to increase to $10 when the interest rate is 8%. (See Table 4.9.1, in Example 4.9.2.)

(d) It is very tempting to begin with ln(ex + 4e−x) = ln 4, but this leads nowhere, because
ln(ex + 4e−x) cannot be further evaluated. Instead, we put u = ex in the equation.
Because then e−x = 1/ex = 1/u, the equation becomes u + 4/u = 4. But u �= 0, so
we can multiply each side by u to obtain the quadratic equation u2 + 4 = 4u, which
reduces to (u − 2)2 = 0. So u = 2 is the only solution. Because u = ex = 2, one
has x = ln 2.

The Function g(x) = ln x
For each positive number x, the number ln x is defined by eln x = x. In other words, u = ln x
is the solution of the equation eu = x. This definition is illustrated in Fig. 4.10.1. The natural
logarithm of x, defined for all x > 0, is then the function g defined by

g(x) = ln x (4.10.3)

Think of x as a point moving upwards on the vertical axis from the origin. As x increases
from values less than 1 to values greater than 1, so g(x) increases from negative to positive
values. Because eu tends to 0 as u becomes large and negative, so g(x) becomes large and
negative as x tends to 0. Repeating the definition of ln x, then inserting y = ln x and taking
the ln of each side, one obtains Eq. (4.10.2): that is eln x = x for all x > 0; and ln ey = y for
all y.

1

f (u) 5 eu

g(x)

y

u

x

Figure 4.10.1 Construction of g(x) = ln x

21

1

2

1 2 3 4

y

x

g (x) 5 ln x

Figure 4.10.2 g(x) = ln x

Figure 4.10.2 shows the graph of g(x) = ln x, whose shape ought to be remembered.
It can be obtained by reflecting the graph of Fig. 4.10.1 about the 45◦ line, so that the
u- and v-axes are interchanged and become respectively the y- and x-axes of Fig. 4.10.2.
According to Example 4.10.1, we have g(1/e) = −1, g(1) = 0, and g(e) = 1. Observe that
these values correspond well with the graph.

Logarithms with Bases other than e
Recall that we defined ln x as the exponent to which we must raise the base e in order
to obtain x. From time to time, it is useful to have logarithms whose base is a number
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other than e. For many years, until the use of mechanical and then electronic calculators
became widespread, tables of logarithms to the base 10 were frequently used to simplify
complicated calculations involving multiplication, division, square roots, and so on.21

Suppose that a is a fixed positive number (usually chosen larger than 1). If au = x, then
we call u the logarithm of x to base a and write u = loga x. The symbol loga x is then defined
for every positive number x by the following:

L O G A R I T H M O F x T O B A S E a

aloga x = x (4.10.4)

For instance, log2 32 = 5 because 25 = 32, whereas log10(1/100) = −2 because
10−2 = 1/100. Note that ln x is loge x.

By taking the ln on each side of (4.10.4) and then applying rule (c) for ln, we obtain
loga x · ln a = ln x. Provided that a > 1 and so ln a �= 0, it follows that

loga x = 1
ln a

ln x (4.10.5)

This reveals that the logarithm of x in the system with base a is proportional to ln x, with
a proportionality factor 1/ ln a. It follows immediately that loga 1 = 0 and loga a = 1, as
well as that loga obeys the same rules (a)–(c) as ln, namely:

(a) loga(xy) = loga x + loga y; (b) loga(x/y) = loga x − loga y; (c) loga xp = p loga x.

Rule (a), for example, follows directly from the corresponding rule for ln, because

loga(xy) = 1
ln a

ln(xy) = 1
ln a

(ln x + ln y) = 1
ln a

ln x + 1
ln a

ln y = loga x + loga y

Doubling Times
Provided that a > 1 and A > 0, the exponential function f (t) = Aat is an increasing func-
tion of time t. Its doubling time is defined as the time it takes for f (t) to become twice as
large. That is, starting from f (0) = A at time t = 0, the doubling time t∗ is given by the
equation f (t∗) = Aat∗ = 2A, or after cancelling A, by

at∗ = 2 (4.10.6)

So the doubling time of the exponential function f (t) = Aat is the power to which a must be
raised in order to get 2. Exercise 11 asks you to show that the doubling time is independent
of which year you take as the base.

Taking the natural logarithm of each side of (4.10.6) implies that ln(at∗) = t∗ ln a =
ln 2, and so t∗ = ln 2/ ln a. Then Eq. (4.10.5) implies that t∗ = 1/ log2 a. Finally, taking the

21 One of the authors remembers being the proud owner of a book with some 200 pages devoted to
a very long table of logarithms to base 10, all to 7 decimal places.
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logarithm to base a of each side of (4.10.6) implies that loga(a
t∗) = t∗ loga a = t∗ = loga 2.

To summarize:

D O U B L I N G T I M E

Given a > 1 and A > 0, the exponential function f (t) = Aat has a unique dou-
bling time t∗ which solves at∗ = 2. It satisfies

t∗ = ln 2
ln a

= loga 2 = 1
log2 a

(4.10.7)

E X A M P L E 4.10.4 Use your calculator to find the doubling time of:

(a) a population, like that of Zimbabwe, increasing at 3.5% annually (thus confirming the
earlier calculations).

(b) the population of Kenya in the 1980s, whose annual growth rate of population in that
decade was 4.2%, the highest of any country in the world.

Solution:

(a) The doubling time t∗ is given by the equation 1.035t∗ = 2. Using a calculator shows
that 1.03515 ≈ 1.68, whereas 1.03525 ≈ 2.36. Thus, t∗ must lie between 15 and 25.
Because 1.03520 ≈ 1.99, t∗ is close to 20. In fact, t∗ = ln 2/ ln 1.035 ≈ 20.15.

(b) The doubling time t∗ is given by the equation 1.042t∗ = 2, whose unique solution is
t∗ = ln 2/ ln 1.042. Using a calculator, we find that t∗ ≈ 16.85. Thus, if the growth rate
of 4.2% were sustained, Kenya’s population would double in less than 17 years.

E X E R C I S E S F O R S E C T I O N 4 . 1 0

1. Express the following as multiples of ln 3:

(a) ln 9 (b) ln
√

3 (c) ln 5√32 (d) ln(1/81)

2. Solve the following equations for x:

(a) 3x = 8 (b) ln x = 3 (c) ln(x2 − 4x + 5) = 0

(d) ln[x(x − 2)] = 0 (e)
x ln(x + 3)

x2 + 1
= 0 (f) ln(

√
x − 5) = 0

3.SM Solve the following equations for x:

(a) 3x4x+2 = 8 (b) 3 ln x + 2 ln x2 = 6 (c) 4x − 4x−1 = 3x+1 − 3x

(d) log2 x = 2 (e) logx e2 = 2 (f) log3 x = −3

4.SM Suppose that f (t) = Aert and g(t) = Best, where A > 0, B > 0, and r �= s. Solve the equation
f (t) = g(t) for t.
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5.SM For 1990 an estimate of the GDP of China was 1.2 · 1012 US dollars, whereas for the USA in the
same year it was 5.6 · 1012 US dollars. The two countries’ annual rates of growth were estimated
to be 9% and 2% respectively, implying that t years after 1990, their GDP should be Aert and Best

respectively, where r = 0.09, s = 0.02, and A, B are suitable constants. Assuming that these
rates of growth were maintained, use the answer to Exercise 4 to determine the date when the
two nations’ GDP would have become the same.

6. Assume that all the variables in the formulas below are positive. Which of these formulas are
always true, and which are sometimes false?

(a) (ln A)4 = 4 ln A (b) ln B = 2 ln
√

B

(c) ln A10 − ln A4 = 3 ln A2 (d) ln
A + B

C
= ln A + ln B − ln C

(e) ln
A + B

C
= ln(A + B) − ln C (f) ln

A
B

+ ln
B
A

= 0

(g) p ln(ln A) = ln(ln Ap) (h) p ln(ln A) = ln(ln A)p

(i)
ln A

ln B + ln C
= ln A(BC)−1

7. Simplify the following expressions:

(a) exp [ln(x)] − ln
[
exp(x)

]
(b) ln

[
x4 exp(−x)

]
(c) exp

[
ln(x2) − 2 ln y

]
8. If the population of Europe were to grow at the constant proportional rate of 0.72% annually,

what would be its doubling time?

9. The population of Botswana was estimated to be 1.22 million in 1989, and to be growing at the
rate of 3.4% annually. If t = 0 denotes 1989, find a formula for the population P(t) at date t.
What is the doubling time?

10. The area of Zimbabwe is approximately 3.91 · 1011 m2. Referring to Example 4.9.1 and using a
calculator, solve the equation 5.1 · 106 · 1.035t = 3.91 · 1011 for t, and interpret the solution.

11. With f (t) = Aat, if f (t + t∗) = 2f (t), prove that at∗ = 2. This shows that the doubling time t∗ of
the general exponential function is independent of the initial time t.

R E V I E W E X E R C I S E S

1. Let f (x) = 3 − 27x3.

(a) Compute f (0), f (−1), f (1/3), and f ( 3√2). (b) Show that f (x) + f (−x) = 6 for all x.

2. Let F(x) = 1 + 4x
x2 + 4

.

(a) Compute F(0), F(−2), F(2), and F(3).

(b) What happens to F(x) when x becomes large and positive, or large and negative?

(c) Give a rough sketch of the graph of F.
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y

24
23
22
21

1
2
3
4
5
6

x23 22 21 1 2 3 4

y

x

y 5 g(x)

y 5 f (x)

Figure 4.R.1 Two functions

3. Consider Fig 4.R.1, which combines the graphs of a quadratic function f and a linear function g.
Use the two graphs to find those x where: (a) f (x) ≤ g(x); (b) f (x) ≤ 0; and (c) g(x) ≥ 0.

4. Find the domains of the following functions:

(a) f (x) = √
x2 − 1 (b) g(x) = 1√

x − 4
(c) h(x) = √

(x − 3)(5 − x)

5. The cost of producing x units of a commodity is given by C(x) = 100 + 40x + 2x2.

(a) Find C(0), C(100), and C(101) − C(100).

(b) Find C(x + 1) − C(x), and explain in words the meaning of the difference.

6. Find the slopes of the following straight lines:

(a) y = −4x + 8; (b) 3x + 4y = 12; (c)
x
a

+ y
b

= 1.

7. Find equations for the following straight lines:

(a) �1 passes through (−2, 3) and has a slope of −3.

(b) �2 passes through (−3, 5) and (2, 7).

(c) �3 passes through (a, b) and (2a, 3b), where a �= 0.

8. If f (x) = ax + b, f (2) = 3, and f (−1) = −3, then f (−3) = ?

9. Fill in the following table, then make a rough sketch of the graph of y = x2ex.

x −5 −4 −3 −2 −1 0 1

y = x2ex

10. Find the equation for the parabola y = ax2 + bx + c that passes through the three points (1, −3),
(0, −6), and (3, 15)—that is, determine a, b, and c.

11. If a firm sells Q tons of a product, the price P received per ton is P = 1000 − 1
3 Q. The price it

has to pay per ton is P = 800 + 1
5 Q. In addition, it has transportation costs of 100 per ton.
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(a) Express the firm’s profit π as a function of Q, the number of tons sold, and find the
profit-maximizing quantity.

(b) Suppose the government imposes a tax on the firm’s product of 10 per ton. Find the new
expression for the firm’s profits π̂ and the new profit-maximizing quantity shipped.

12. In Example 4.6.2, suppose a tax of τ per unit produced is imposed. If τ < 100, what production
level now maximizes profits?

13. A firm produces a commodity and receives $100 for each unit sold. The cost of producing and
selling x units is 20x + 0.25x2 dollars.

(a) Find the production level that maximizes profits.

(b) If a tax of $10 per unit is imposed, what is the new optimal production level?

(c) Answer the question in (b) if the sales price per unit is p, the total cost of producing and
selling x units is αx + βx2, and the tax per unit is τ where τ ≤ p − α.

14.SM Write the following polynomials as products of linear factors:

(a) p(x) = x3 + x2 − 12x (b) q(x) = 2x3 + 3x2 − 18x + 8

15. Which of the following divisions leave no remainder?

(a)
x3 − x − 1

x − 1
(b)

2x3 − x − 1
x − 1

(c)
x3 − ax2 + bx − ab

x − a
(a and b are constants) (d)

x2n − 1
x + 1

(n is a natural number)

16. Find the values of k that make the polynomial q(x) divide the polynomial p(x) when:

(a) p(x) = x2 − kx + 4, q(x) = x − 2 (b) p(x) = k2x2 − kx − 6, q(x) = x + 2

(c) p(x) = x3 − 4x2 + x + k, q(x) = x + 2 (d) p(x) = k2x4 − 3kx2 − 4, q(x) = x − 1

17.SM The cubic function p(x) = 1
4 x3 − x2 − 11

4 x + 15
2 has three real zeros. Verify that x = 2 is one of

them, and find the other two.

18. In 1964 a five-year plan was introduced in Tanzania. One objective was to double the real income
per capita over the next 15 years. What is the average annual rate of growth of real income per
capita required to achieve this objective?

19. Recall that: (i) the relationship between the Celsius (C) and Fahrenheit (F) temperature scales is
linear; (ii) water freezes at 0◦C and 32◦F; and (iii) water boils at 100◦C and 212◦F.

(a) Determine the equation that converts C to F;

(b) Which temperature is represented by the same number in both scales?

20. Solve the following equations for t:

(a) x = eat+b (b) e−at = 1
2 (c) 1√

2π
e− 1

2 t2 = 1
8

21.SM Figure 4.R.2 shows the graph of the function y = f (x) = (ax + b)/(x + c). Check which of the
constants a, b, and c are positive, zero, or negative.
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y

x

Figure 4.R.2 Graph of y = ax + b
x + c

y

x

Figure 4.R.3 Graph of y = px2 + qx + r

22. Figure 4.R.3 shows the graph of the function y = g(x) = px2 + qx + r: Check which of the con-
stants p, q, and r are positive, zero, or negative.

23. For each of the functions (a)–(e) in the following table, find one of six graphs A–F in Figs 4.R.4
to 4.R.9 that matches it. Then specify a suitable function in (f) that matches the sixth graph.

y

x

Figure 4.R.4 Graph A

y

x

Figure 4.R.5 Graph B

y

x

Figure 4.R.6 Graph C

y

x

Figure 4.R.7 Graph D

y

x

Figure 4.R.8 Graph E

y

x

Figure 4.R.9 Graph F

(a) y = 1
2 x2 − x − 3

2 has graph (b) y = 2
√

2 − x has graph

(c) y = − 1
2 x2 + x + 3

2 has graph (d) y = ( 1
2

)x − 2 has graph

(e) y = 2
√

x − 2 has graph (f) y = has graph

24.SM Prove the following equalities, with appropriate restrictions on the variables:

(a) ln x − 2 = ln
x
e2

(b) ln x − ln y + ln z = ln
xz
y

(c) 3 + 2 ln x = ln(e3x2) (d)
1
2

ln x − 3
2

ln
1
x

− ln(x + 1) = ln
x2

x + 1
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F U N C T I O N S

The paradox is now fully established that the utmost abstractions are the true weapons with which to
control our thought of concrete facts.
—Alfred North Whitehead (1925)

This chapter begins by examining more closely functions of one variable and their graphs. In
particular, we shall consider how changes in a function relate to shifts in its graph, and how

to construct new functions from old ones. Next we discuss when a function has an inverse, and
explain how an inverse function reverses the effect of the original function.

Any equation in two variables can be represented by a curve (or a set of points) in the
xy-plane. Some examples illustrate this. The chapter ends with a discussion of the general con-
cept of a function, which is one of the most fundamental in mathematics, of great importance
also in economics.

5.1 Shifting Graphs
Bringing a significant new oil field into production will affect the supply curve for oil, with
consequences for its equilibrium price. Adopting an improved technology in the production
of a commodity will imply an upward shift in its production function, and a downward shift
in its cost function.

This section studies in general how the graph of a function f (x) relates to the graphs of
the associated functions f (x) + c, f (x + c), cf (x), and f (−x), where c is a constant. Before
formulating any general rules, consider the following example.

E X A M P L E 5.1.1 The graph of y = √
x is drawn in Fig. 4.3.8. Sketch the graphs of y = f (x) for the

eight functions
√

x + 2,
√

x − 2,
√

x + 2,
√

x − 2, 2
√

x,
√

x/2, −√
x, and

√−x.

Solution: All the Figs 5.1.1–5.1.5 show the graph of y = √
x as the same dashed curve.

The graphs of y = √
x + 2 and y = √

x − 2, shown as solid curves in Fig. 5.1.1, are
obviously obtained by moving the graph of y = √

x up and then down by two units.
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The function y = √
x + 2 is defined for x + 2 ≥ 0, that is, for x ≥ −2. Its graph, which

is shown in Fig. 5.1.2, is obtained by moving the graph of y = √
x two units to the left. In

the same way the graph of y = √
x − 2 is obtained by moving the graph of y = √

x two
units to the right, as shown in Fig. 5.1.2.

The graph of y = 2
√

x is obtained by stretching the graph of f vertically upwards by a
factor of two, as shown in Fig. 5.1.3. That same figure shows how the graph y = √

x/2 is
obtained by shrinking that of f vertically downwards by a factor of

√
1/2 = 1

2

√
2.

x

y

1

y = x

y = x+ 2

y = x−2

√

√

√

Figure 5.1.1 y = √
x ± 2

x

y

1

y = x

y = x+ 2

y = x−2
√

√

√

Figure 5.1.2 y = √
x ± 2

x

y

1

y =
√

x

y = 2
√

x

y = x/2

Figure 5.1.3
y = 2

√
x and y = √

x/2

The graph of y = −√
x is obtained by reflecting the graph of y = √

x about the x-axis,
as shown in Fig. 5.1.4.

Finally, consider the function y = √−x. It is defined for −x ≥ 0, that is, for x ≤ 0. Its
graph in Fig. 5.1.5 is obtained by reflecting that of y = √

x about the y-axis.

x

y

1

y = x

y = − x

√

√

Figure 5.1.4 y = −√
x

x

y

1

y =
√

xy =
√
−x

Figure 5.1.5 y = √−x

Table 5.1.1 provides some general rules for shifting the graph of a function.
In case the independent variable is y and x = g(y), then in the first two rules you should

interchange the words “upwards” with “to the right”, and “downwards” with “to the left”.
In the third rule, the word “vertically” would become “horizontally”, and in this and the
last rule the term “y-axis” would become “x-axis”.
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Table 5.1.1 General rules for shifting the graph of y = f (x)

If y = f (x) is replaced by:
(i) y = f (x) + c, the graph is moved upwards by c units if c > 0; it is moved

downwards if c < 0.
(ii) y = f (x + c), the graph is moved c units to the left if c > 0; it is moved to

the right if c < 0.

(iii) y = cf (x), the graph is stretched vertically if c > 1 or shrunk vertically if
0 < c < 1; it is stretched or shrunk vertically and then reflected about the
x-axis if c < 0.

(iv) y = f (−x), the graph is reflected about the y-axis.

Applying these rules to the graphs shown in Figs 4.3.5–4.3.10 allows many useful new
graphs to be sketched with ease, as the following example illustrates.

E X A M P L E 5.1.2 Sketch the graphs of

(a) y = 2 − (x + 2)2 (b) y = 1
x − 2

+ 3

Solution:

(a) First, reflect the graph of y = x2 about the x-axis to obtain that of y = −x2. Then move
this new graph 2 units to the left, resulting in the graph of y = −(x + 2)2. Finally, raise
this new graph by 2 units, resulting in the graph shown in Fig. 5.1.6.

(b) Start with the graph of y = 1/x in Fig. 4.3.9. Moving this graph 2 units to the right
results in the graph of y = 1/(x − 2) (not shown). Finally, moving this 3 units up results
in the graph of y = 1/(x − 2) + 3 shown in Fig. 5.1.7.

y 5 2 2 (x 1 2)2

y 5 2(x 1 2)2

y 5 x2

y 5 2x2

2224 2

2

1

21

22

y

x

Figure 5.1.6 y = 2 − (x + 2)2

y 5            1 3
1

x 2 2

2 4 6

2

6

4

y

x

Figure 5.1.7 y = 1/(x − 2) + 3
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E X A M P L E 5.1.3 In Example 4.5.3 we studied the simple demand and supply functions D = 100 − P
and S = 10 + 2P, which gave the equilibrium price Pe = 30 with corresponding quantity
Qe = 70. Suppose that there is a shift to the right in the supply curve, so that the new
supply at price P is S̃ = 16 + 2P. Then the new equilibrium price P̃e is determined by
the equation 100 − P̃e = 16 + 2P̃e. As shown in Fig. 5.1.8, this gives P̃e = 28, with cor-
responding quantity Q̃e = 100 − 28 = 72. Hence the new equilibrium price is lower than
the old one, while the quantity is higher. The outward shift in the supply curve from S to
S̃ implies that the equilibrium point moves down to the right along the unchanged demand
curve.

30
28

70 72

P

Q, D, S

D 5 100 2 P

S 5 10 1 2P

S̃ 5 16 1 2P

Figure 5.1.8 A shift in supply

Pe

Qe

P̃e

Q̃ e

S 5 α 1 βP

P

Q, D, S

D 5 a 2 bP

S 5 α 1 βP˜˜

Figure 5.1.9 A shift in supply

In Example 4.5.4 we studied the general linear demand and supply functions D = a −
bP, and S = α + βP, where a, b, α, and β are all positive parameters. The equilibrium price
Pe and corresponding equilibrium quantity Qe were determined to be

Pe = a − α

β + b
and Qe = aβ + αb

β + b

Suppose that there is a shift in the supply curve, as shown in Fig. 5.1.9, so that the new
supply at each price P is S̃ = α̃ + βP, where α̃ > α. Then the new equilibrium price P̃e is
determined by the equation a − bP̃e = α̃ + βP̃e, implying that

P̃e = a − α̃

β + b
, with Q̃e = a − bP̃e = aβ + α̃b

β + b

The differences between the new and the old equilibrium prices and quantities are

P̃e − Pe = α − α̃

β + b
and Q̃e − Qe = (α̃ − α)b

β + b
= −b(P̃e − Pe)

From Fig. 5.1.9 we see that P̃e is less than Pe (because α̃ > α), while Q̃e is larger than Qe.
The rightward shift in the supply curve from S to S̃ implies that the equilibrium point moves
down and to the right along the unchanged demand curve. Upward shifts in the supply curve
resulting from, for example, taxation or increased cost, can be analysed in the same way,
as can shifts in the demand curve.
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E X A M P L E 5.1.4 Suppose a person earning y dollars in a given year pays f (y) dollars that year in
income tax. The government decides to reduce income tax.

One proposal is to allow every individual to deduct d dollars from their taxable income
before the tax is calculated.

An alternative proposal is to calculate each person’s income tax on the full amount of
their taxable income, then allow a “tax credit” that deducts c dollars from the total tax due.

Illustrate graphically the two proposals for a “normal” tax function f . Then mark off the
income y∗ where the two proposals yield the same tax revenue.

y*

c

dTax (T )

Income (y)

T 5 f (y) T2 5 f (y) 2 c

T1 5 f (y 2 d )

Figure 5.1.10 The graphs of T1 = f (y − d) and T2 = f (y) − c

Solution: The function T = f (y) whose graph is shown in Figure 5.1.10 is a so-called
“progressive” tax schedule in which, by definition, the average tax rate T/y = f (y)/y is an
increasing function of y.1 If taxable income is y and the deduction is d, then y − d is the
reduced taxable income, and so the tax liability is f (y − d). To obtain the graph of T1 =
f (y − d), shift the graph of T = f (y) by d units to the right.

The graph of T2 = f (y) − c is obtained by lowering the graph of T = f (y) by c units.
The income y∗ which gives the same tax under the two different schemes is given by
the equation

f (y∗ − d) = f (y∗) − c

Note that T1 > T2 when y < y∗, but that T1 < T2 when y > y∗. Thus, the tax credit is
worth more to those with low incomes, whereas the deduction is worth more to those with
high incomes (as one might expect).

E X E R C I S E S F O R S E C T I O N 5 . 1

1. Use the graph of y = x2 in Fig. 4.3.6 and the rules for shifting graphs in order to sketch the graphs
of the following functions:

(a) y = x2 + 1 (b) y = (x + 3)2 (c) y = 3 − (x + 1)2

2. Suppose that y = f (x) has the graph drawn in Fig. 5.1.11. Sketch the graphs of:

(a) y = f (x − 2) (b) y = f (x) − 2 (c) y = f (−x)

3. Suppose that in the first model of Example 5.1.3 there is a positive shift in demand, so that the
new demand at price P is D̃ = 106 − P. Find the new equilibrium point and illustrate it in a graph.

1 Example 5.4.4 considers the US Federal Income Tax, which has this property.
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y 5 f (x)

y

x

(0, 2)

(22, 0)

(1, 0)

Figure 5.1.11 The function f for Exercise 2

4. Use Fig. 4.3.10 and the rules for shifting graphs to sketch the graph of y = 2 − |x + 2|.

5. Starting with the graph of f (x) = 1/x2, sketch the graph of g(x) = 2 − (x + 2)−2.

6. Suppose in Example 5.1.4 that f (y) = Ay + By2 where A and B are positive parameters. Find y∗
in this case.

5.2 New Functions from Old

f (t)

m (t)

86 97

86 97 t

t

Figure 5.2.1 Male and female students

m (t) 1 f (t)

m (t)

86 91 97

60

100

20

Number in thousands

Male

Female

Year

Figure 5.2.2 Total students

Figure 5.2.1 gives graphs of the number of male and female students who were registered
at a certain university during the years 1986–1997. Let f (t) and m(t) denote the number of
female and male students in year t, and let n(t) denote the total number of students. Of
course, n(t) = f (t) + m(t). The graph of the total number of students n(t) is obtained by
piling the graph of f (t) on top of the graph of m(t), as shown in Fig. 5.2.2.

Suppose in general that f and g are two functions that are both defined on a set A of
real numbers. The function h defined by the formula h(x) = f (x) + g(x) is called the sum
of f and g, and we write h = f + g. The function � defined by �(x) = f (x) − g(x) is called
the difference between f and g, and we write � = f − g. For the example in the previous
paragraph, the difference between the numbers of female and male students in year t is
f (t) − m(t). The graph of this function can be obtained by piling the graph of f (t) on top of
the graph of −m(t).
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Sums and differences of functions are often seen in economic models. Consider the
following typical examples.

E X A M P L E 5.2.1 The cost of producing Q > 0 units of a commodity is C(Q). The cost per unit of out-
put, A(Q) = C(Q)/Q, is called the average cost. Suppose in particular that the cost function
given by

C(Q) = aQ3 + bQ2 + cQ + d

is of the type whose graph is shown in Fig. 4.7.2. Then the average cost is

A(Q) = aQ2 + bQ + c + d
Q

Thus A(Q) is a sum of a quadratic function y = aQ2 + bQ + c and the hyperbola y = d/Q.
To obtain the graph of the average cost function A(Q), one must pile the hyperbola y = d/Q
shown in Fig. 5.2.4 on top of the parabola y = aQ2 + bQ + c shown in Fig. 5.2.3. Figure
5.2.5 shows the result.

aQ2 1 bQ 1 c

y

Q

Figure 5.2.3 Graph of
aQ2 + bQ + c

d  Q

y

Q

Figure 5.2.4 Graph of d/Q

d  Q

aQ2 1 bQ 1 c

A(Q)
y

Q

Figure 5.2.5 Graph of A(Q)

Note that for small values of Q the graph of A(Q) is close to the graph of y = d/Q, since
d/Q is large when Q is small. For large values of Q, on the other hand, the graph is close
to the parabola, since d/Q is small when Q is large.

Q*

C (Q)
R (Q)

π (Q)

y

Q

Figure 5.2.6 π(Q) = R(Q) − C(Q)
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Next, let R(Q) denote the revenue obtained by selling Q units. Then, the profit π(Q) is
given by π(Q) = R(Q) − C(Q). Figure 5.2.6 illustrates how to construct the graph of the
profit function π(Q). In this case the firm gets a fixed price p per unit, so that the graph
of R(Q) is a straight line of slope p through the origin. Then the graph of −C(Q) must be
added to that of R(Q).

Finally, the production level that maximizes profit is Q∗, where the height of the line
y = R(Q) = pQ is as far as possible above the curve y = R(Q) = pQ.

Products and Quotients
Suppose that the two functions f and g are defined on the same domain A. Then the function
h defined on A by h(x) = f (x) · g(x) is called the product of f and g, and we write h = f · g
(or simply fg). The function � defined at points of A where g(x) �= 0 by �(x) = f (x)/g(x)
is called the quotient of f and g, and we write � = f /g. We have already seen examples of
these operations. Unlike f + g and f − g, it is difficult to infer useful rules about the graphs
of fg and f /g based on the graphs of f and g.

Composite Functions
Suppose the demand for a commodity is a function of its price. Suppose that price is not
constant, but depends on time. Then it is natural to regard the demand of the commodity as
a function of time. In general, if y is a function of x, and z is a function of y, then z can be
regarded as a function of x. We call z a composite function of x. Suppse we denote the two
functions involved by f and g, with y = f (x) and z = g(y). Then we can replace y by f (x)
in the latter equation, and so write z in the form z = g(f (x)).

Note that when computing z, we first apply f to x to obtain y = f (x), and then we apply
g to y. Here f (x) is called the interior function, while g is called the exterior function. The
function that maps x to z = g(f (x)) is called the composition of g with f . This is often
denoted by g ◦ f and is read as “g of f ”. Formally,

C O M P O S I T I O N O F g W I T H f

Let f and g be functions whose domains are Df and Dg, and whose ranges Rf

and Rg respectively. Provided that Rf ⊆ Dg, the composition of g with f is the
function h = g ◦ f , with domain Dh = Df and range Rh ⊆ Rg, which is defined
by

h(x) = g(f (x)) (5.2.1)

If the assumption that Rf ⊆ Dg is violated, there are values of x for which f (x)
is defined but h(x) is not. In general, there may be values of z in the range Rg

of g which are not in the range Rh of h.
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It is easy to confuse g ◦ f with g · f typographically. But these two functions are defined
in entirely different ways. When we evaluate g ◦ f at x, we first compute f (x) and then
evaluate g at f (x). On the other hand, the product g · f of g and f is the function whose
value at a particular number x is simply the product of g(x) and f (x), so (g · f )(x) = g(x) ·
f (x).

Whereas g ◦ f denotes the function that maps x to g(f (x)), the reversed notation f ◦ g
denotes the function that maps x to f (g(x)). Thus, we have

(f ◦ g)(x) = f (g(x)) and (g ◦ f )(x) = g (f (x))

Usually, f ◦ g and g ◦ f are quite different functions. For instance, if g(v) = 2 − v2 and
f (u) = u3, then (f ◦ g)(x) = (2 − x2)3, whereas (g ◦ f )(x) = 2 − (x3)2 = 2 − x6; the two
resulting polynomials are not the same.

E X A M P L E 5.2.2 Write the following as composite functions:

(a) z = (x3 + x2)50 (b) z = e−(x−μ)2
, where μ is a constant.

Solution:

(a) Given a value of x, you first compute x3 + x2, which gives the interior function, f (x) =
x3 + x2. Then take the 50th power of the result, so the exterior function is g(y) = y50.
Hence, g(f (x)) = g(x3 + x2) = (x3 + x2)50.

(b) We can choose the interior function as f (x) = −(x − μ)2 and the exterior function as
g(y) = ey. Then g(f (x)) = g(−(x − μ)2) = e−(x−μ)2

. Alternatively, we could choose
f (x) = (x − μ)2 and g(y) = e−y.

Symmetry
The function f (x) = x2 satisfies f (−x) = f (x), as indeed does any even power x2n, where
n is any integer, positive or negative. Inspired by this example, if the function f satisfies
f (−x) = f (x) for all x in its domain, then f is called an even function. This condition implies
that the graph of f is symmetric about the y-axis, as shown in Fig. 5.2.7.

y

x

f

x2x

Figure 5.2.7 Even function

y

x

f

x
2x

Figure 5.2.8 Odd function

y

x

f

a a1xa2x

Figure 5.2.9 Symmetry about
x = a

On the other hand, any odd power x2n+1 such as f (x) = x3 satisfies f (−x) = −f (x).
So if f (−x) = −f (x) for all x in the domain of f , then f is called an odd function. In
this case, as shown in Fig. 5.2.8, the graph of f has the “odd” (!) symmetry property of
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being unchanged if it is rotated through 180◦ about the origin either clockwise or anti-
clockwise.

Finally, the function f is symmetric about a if f (a + x) = f (a − x) for all x. Then the
graph of f is symmetric about the line x = a, as shown in Fig. 5.2.9. One example arose in
Section 4.6, where we showed that the quadratic function f (x) = ax2 + bx + c with a �= 0
is symmetric about x = −b/2a. A second example is the composite function z = e−(x−μ)2

in part (b) of Example 5.2.2, which is symmetric about x = μ.

E X E R C I S E S F O R S E C T I O N 5 . 2

1. Assuming x > 0, draw three graphs like those in Figs 5.2.1 and 5.2.2 which show how the graph
of y = 1

4 x2 + 1/x results from adding the graph of 1/x on top of the graph of y = 1
4 x2.

2. Sketch the graphs of the following functions:

(a) y = √
x − x (b) y = ex + e−x (c) y = e−x2 + x

3. If f (x) = 3x − x3 and g(x) = x3, compute the six expressions (f + g)(x), (f − g)(x), (fg)(x),
(f /g)(x), f (g(1)), and g(f (1)).

4. Let f (x) = 3x + 7. Compute f (f (x)), and find the value x∗ at which f (f (x∗)) = 100.

5. Compute ln(ln e) and (ln e)2. What do you notice?2

5.3 Inverse Functions
Suppose that the demand quantity D for a commodity depends on the price per unit P
according to D = 30/P1/3. This formula tells us the demand D corresponding to a given
price P. If, for example, P = 27, then D = 30/271/3 = 10. So D is a function of P. That is,
D = f (P) with f (P) = 30/P1/3. Note that demand decreases as the price increases.

From a producer’s point of view, however, it may be more natural to treat output as
something it can choose, and then consider the resulting price. Thus, the producer wants
to know the inverse demand function, in which price depends on the quantity sold instead
of the other way round. In our example this functional relationship is obtained by solv-
ing D = 30/P1/3 for P. First we obtain P1/3 = 30/D and then (P1/3)3 = (30/D)3, so that
P = 27 000/D3. This equation gives us the price P corresponding to a given output D. For
example, if D = 10, then P = 27 000/103 = 27. In this case, P is a function g(D) of D,
with g(D) = 27 000/D3.

The two variables D and P in this example are related in a way that allows each to be
regarded as a function of the other. In fact, the two functions

f (P) = 30p−1/3 and g(D) = 27 000D−3 (5.3.1)

2 This illustrates how, if we define the function f 2 by f 2(x) = (f (x))2, then, in general, f 2(x) �=
f (f (x)).
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are inverses of each other. We say that f is the inverse of g, and that g is the inverse
of f .

Note that the two functions f and g convey exactly the same information. For example,
the fact that demand is 10 at price 27 can be expressed using either f or g: the two statements
f (27) = 10 and g(10) = 27 are entirely equivalent. In Example 4.5.3 we considered an
even simpler demand function D = 100 − P. Solving for P we get P = 100 − D, which
was referred to as the inverse demand function.

Suppose in general that f is a function with domain Df = A. This means that to each x
in A there corresponds a unique number f (x). Recall that if f has domain A, then the range
of f is the set B = Rf = {f (x) : x ∈ A}, which is also denoted by f (A). That is, the range B
consists of all numbers f (x) obtained by letting x vary in A. Now, the function f is said to
be one-to-one in A if f never has the same value at any two different points in A. In other
words, for each one y in B, there is exactly one x in A such that y = f (x). Equivalently,
f is one-to-one in A provided that, whenever x1 and x2 both lie in A with x1 �= x2, then
f (x1) �= f (x2).

It is evident that if a function is either strictly increasing in all of A, or strictly
decreasing in all of A, then it is one-to-one. A particular one-to-one function f
is illustrated in Fig. 5.3.1. The function g shown in Fig. 5.3.2 is not one-to-one
because, for example, the two x-values x1 and x2 are both associated with the same
y-value y1.

f

f (A) 5 B

A

y

x

Figure 5.3.1 f is one-to-one with
domain A and range B. f has an inverse

g

x1

y1

x2A

y

x

Figure 5.3.2 g is not one-to-one
and hence has no inverse over A.

I N V E R S E F U N C T I O N

Let f be a function with domain A and range B. If and only if f is one-to-one, it
has an inverse function g with domain B and range A. The function g is given
by the following rule: For each y in B, the value g(y) is the unique number x
in A such that f (x) = y. Then

g(y) = x ⇐⇒ y = f (x) (for all x ∈ A and y ∈ B) (5.3.2)
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A direct implication of (5.3.2) is that

g(f (x)) = x for all x in A and f (g(y)) = y for all y in B (5.3.3)

The equation g(f (x)) = x shows what happens if we first apply f to x and then apply g to
f (x): we get x back because g undoes what f did to x. Note that if g is the inverse of a
function f , then f is also the inverse of g. If g is the inverse of f , it is standard to use the
notation f −1 for g.3

In the introductory example, in order to derive the functions f and g that appear in
Eq. (5.3.1), we solved the equation D = 30/P1/3 to express P in terms of D. In simple
cases we can often use the same method to find the inverse of a given function (and hence
automatically verify that the inverse exists). Here are some more examples.

E X A M P L E 5.3.1 Solve the following equations for x and find the corresponding inverse functions:

(a) y = 4x − 3 (b) y = 5
√

x + 1 (c) y = 3x − 1
x + 4

Solution:

(a) Solving the equation for x yields, for all x and y, the following equivalences:

y = 4x − 3 ⇔ 4x = y + 3 ⇔ x = 1
4

y + 3
4

We conclude that f (x) = 4x − 3 and g(y) = 1
4 y + 3

4 are inverses of each other.

(b) Raising each side to the fifth power yields the equivalences

y = 5
√

x + 1 ⇔ y5 = x + 1 ⇔ x = y5 − 1

These are valid for all x and all y. Hence, we have shown that f (x) = 5
√

x + 1 and g(y) =
y5 − 1 are inverses of each other.

(c) Multiplying both sides of the equation by x + 4 implies y(x + 4) = 3x − 1. This
equation yields yx + 4y = 3x − 1 or x(3 − y) = 4y + 1. Solving for x in terms of y
gives

x = 4y + 1
3 − y

We conclude that f (x) = (3x − 1)/(x + 4) and g(y) = (4y + 1)/(3 − y) are inverses of
each other. Observe that f is only defined for x �= −4, and g is only defined for y �= 3.
So the equivalence in (5.3.2) is valid only with these restrictions.

A Geometric Characterization of Inverse Functions
In our introductory example, Eq. (5.3.1) states that f (P) = 30p−1/3 and g(D) = 27 000 D−3

are inverse functions. The specific interpretation of the symbols P and D made it natural to

3 This sometimes leads to confusion. If a is a number such that a �= 0, then a−1 means 1/a. But
f −1(x) does not mean 1/f (x), which equals f (x)−1 instead. For example, the two functions defined
by y = 1/(x2 + 2x + 3) and y = x2 + 2x + 3 are not inverses of each other, but reciprocals.
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describe these functions as we did. In other circumstances, it may be convenient to use the
same variable as argument in both f and g. In Example 5.3.1(a), we saw that f (x) = 4x − 3
and g(y) = 1

4 y + 3
4 were inverses of each other. If also we use x instead of y as the variable

of the function g, we find that

f (x) = 4x − 3 and g(x) = 1
4 x + 3

4 are inverses of each other (∗)

In the same way, on the basis of part (b) of the same example, we can say that

f (x) = (x + 1)1/5 and g(x) = x5 − 1 are inverses of each other (∗∗)

The two graphs of any pair of inverse functions f and g like those in (∗) and (∗∗) have
an interesting geometric property. In fact they must be mirror images of each other when
reflected in the line y = x, as shown in Figs 5.3.3 and 5.3.4.

g (x) 5 14 x 1 34

f (x) 5 4x 2 3 y 5 x
y

x222 4 6 8

2

22

4

6

Figure 5.3.3 f and g are inverses

g (x) 5 x5 2 1

f (x) 5 (x 1 1)

y 5 x

3122

22

1

y

x

1
5

3

Figure 5.3.4 f and g are inverses

Suppose in general that f and g are inverses of each other. The fact that (a, b) lies on
the graph f means that b = f (a). According to (5.3.2), this implies that g(b) = a, so that
(b, a) lies on the graph of g. Now, Exercise 8 asks you to show that (a, b) and (b, a) lie
symmetrically about the line y = x. This leads to the following conclusion:

S Y M M E T R Y O F I N V E R S E F U N C T I O N S

Suppose the two functions f and g are inverses of each other. Provided that the
scales of the coordinate axes are the same, the graphs of y = f (x) and y = g(x)
are symmetric about the line y = x.

When the functions f and g are inverses of each other, then by definition (5.3.2), the
equations y = f (x) and x = g(y) are equivalent. The two functions actually have exactly
the same graph, though in the second case we should think of x depending on y, instead of
the other way around. On the other hand, the graphs of y = f (x) and y = g(x) are symmetric
about the line y = x.
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For instance, Examples 4.5.3 and 5.1.3 discuss demand and supply curves. These can be
thought of as the graphs of a function where quantity Q depends on price P, or equivalently
as the graphs of the inverse function where price P depends on quantity Q.

In all the examples examined so far, the inverse could be expressed in terms of known
formulas. It turns out that even if a function has an inverse, it may be impossible to express
it in terms of a function we know. Inverse functions are actually an important source
of new functions. A typical case is based on the exponential function. In Section 4.9 we
showed that y = ex is strictly increasing, as well as that it tends to 0 as x tends to −∞,
and to ∞ as x tends to ∞. Hence, for each positive y there exists a uniquely determined
x such that ex = y. In Section 4.10 we called the new function the natural logarithm
function, denoted by ln. By definition, we have the equivalence y = ex ⇔ x = ln y.
This equivalence demonstrates that the functions f (x) = ex and g(y) = ln y are inverses
of each other. Because the ln function appears in so many connections, it has been
extensively tabulated. Moreover, on many calculators it is represented by its own special
key.4

If f and g are inverses of each other, the domain of f is equal to the range of g, and vice
versa. Consider the following examples.

E X A M P L E 5.3.2 The function f (x) = √
3x + 9, defined on the interval [−3, ∞), is strictly increasing

and hence has an inverse. Find a formula for the inverse. Use x as the free variable for both
functions.

Solution: As x increases from −3 to ∞, the function value f (x) increases from 0 to ∞,
so the range of f is [0, ∞). Hence f has an inverse g defined on [0, ∞). To find a formula
for the inverse, we solve the equation y = √

3x + 9 for x. Squaring gives y2 = 3x + 9, with
solution x = 1

3 y2 − 3. Interchanging x and y in this expression to make x the free vari-
able gives the inverse function of f , which is y = g(x) = 1

3 x2 − 3, defined on [0, ∞). See
Fig. 5.3.5.

E X A M P L E 5.3.3 Consider the function f defined by the formula f (x) = 4 ln(
√

x + 4 − 2).

(a) For which values of x is f (x) defined? Determine the range of f .

(b) Find a formula for its inverse. Use x as the free variable.

4 If a calculator has a certain function f represented by one key, then it will usually have another
which represents the inverse function f −1. For example, if it has an ex -key, it will also have an

ln x -key. Now the definition of inverse implies that f −1(f (x)) = x. So if we enter any number x,

then press the f -key followed by the f −1 -key, then we should get x back again. If you have

access to the right sort of calculator, you can experiment by entering 5, then using the ex -key

followed by the ln x -key. This should take you back close to 5; rounding errors may prevent
you getting back to 5 exactly.
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23 3

3

23

f (x) 5 Ï3x 1 9

g (x) 5 13 x2 2 3

y 5 x

y

x

Figure 5.3.5 f (x) = √
3x + 9 and g(x) = 1

3 x2 − 3

Solution:

(a) For
√

x + 4 to be defined, we must have x ≥ −4. But for ln(
√

x + 4 − 2) to be defined,
we must also ensure that

√
x + 4 − 2 > 0. But

√
x + 4 − 2 > 0 implies that

√
x + 4 >

2, or x + 4 > 4, and so x > 0. The domain of f is therefore (0, ∞). As x varies from
near 0 to ∞, so f (x) increases from −∞ to ∞. The range of f is therefore (−∞, ∞).

(b) If y = 4 ln(
√

x + 4 − 2), then ln(
√

x + 4 − 2) = y/4, implying that
√

x + 4 − 2 = ey/4

and so
√

x + 4 = 2 + ey/4. Squaring each side gives x + 4 = (2 + ey/4)2 =
4 + 4ey/4 + ey/2, so x = 4ey/4 + ey/2. The inverse function, with x replacing y as the
free variable, is therefore y = ex/2 + 4ex/4. This is defined on (−∞, ∞), with range
(0, ∞).

E X E R C I S E S F O R S E C T I O N 5 . 3

1. Demand D as a function of price P is given by D = 32
5 − 3

10 P. Solve the equation for P and find
the inverse function.

2. The demand D for sugar in the US in the period 1915–1929, as a function of the price P, was
estimated to be D = f (P) = 157.8/P0.3. Solve the equation for P and so find the inverse of f .

3. Find the domains, ranges, and inverses of the functions given by the following formulas:

(a) y = −3x (b) y = 1/x (c) y = x3 (d) y = √√
x − 2

4.SM The function f is defined by the following table:

x −4 −3 −2 −1 0 1 2
f (x) −4 −2 0 2 4 6 8

(a) Denote the inverse of f by f −1. What is its domain? What is the value of f −1(2)?

(b) Find a formula for a function f (x), defined for all real x, which agrees with this table. What
is the formula for its inverse?

5. Why does f (x) = x2, for x in (−∞, ∞), have no inverse function? Show that f restricted to
[0, ∞) has an inverse, and find that inverse.
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6. Formalize the following statements:

(a) Halving and doubling are inverse operations.

(b) The operation of multiplying a number by 3 and then subtracting 2 is the inverse of the
operation of adding 2 to the number and then dividing by 3.

(c) The operation of subtracting 32 from a number and then multiplying the result by 5/9 is the
inverse of the operation of multiplying a number by 9/5 and then adding 32. “Fahrenheit to
Celsius, and Celsius to Fahrenheit”.5

7. Suppose that Q = f (C) is the function that tells you how many kilograms of carrots Q you can
buy for a specified amount of money C. What does the inverse function f −1 tell you?

8. On a coordinate system in the plane:

(a) Show that points (3, 1) and (1, 3) are symmetric about the line y = x, and the same for (5, 3)

and (3, 5).

(b) Use properties of congruent triangles to prove that points (a, b) and (b, a) in the plane are
symmetric about the line y = x. What is the point half-way between them?

9.SM Find inverses of the following functions, with x as the independent variable:

(a) f (x) = (x3 − 1)1/3 (b) f (x) = x + 1
x − 2

(c) f (x) = (1 − x3)1/5 + 2

10.SM The functions defined by the following formulas are strictly increasing in their domains. Find
the domain of each inverse function, and a formula for the corresponding inverse.

(a) y = ex+4 (b) y = ln x − 4, x > 0 (c) y = ln
(
2 + ex−3

)
11. [HARDER] Find the inverse of f (x) = 1

2 (ex − e−x). (Hint: Solve a quadratic equation in z = ex.)

5.4 Graphs of Equations
The three equations x

√
y = 2, x2 + y2 = 16, and y3 + 3x2y = 13 are each an example of

one equation in two variables x and y. A solution of such an equation is an ordered pair
(a, b) such that the equation is satisfied when we replace x by a and y by b. The solution set
of the equation is the set of all such solutions. Representing all pairs in the solution set in a
Cartesian coordinate system gives a set called the graph of the equation.

E X A M P L E 5.4.1 Find some solutions of each of the equations x
√

y = 2 and x2 + y2 = 16, and try to
sketch their graphs.

Solution: From x
√

y = 2 we obtain y = 4/x2. Hence it is easy to find corresponding values
for x and y as given in Table 5.4.1. The graph is drawn in Fig. 5.4.1, along with the four
points in the table.

5 Recall Example 2.6.2 and Review Exercise 4.19.
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Table 5.4.1 Solutions of x
√

y = 2

x 1 2 4 6

y 4 1 1/4 1/9

Table 5.4.2 Solutions of x2 + y2 = 16

x −4 −3 −1 0 1 3 4

y 0 ±√
7 ±√

15 ±4 ±√
15 ±√

7 0

For x2 + y2 = 16, if y = 0, then x2 = 16, so x = ±4. Two solutions are (4, 0) and
(−4, 0). Table 5.4.2 adds some other solutions. In Fig. 5.4.2 the 12 points specified in
the table are plotted. The graph in Fig. 5.4.2 seems to be a circle, as we will confirm in
Section 5.5.

2 4 6

2

4

6
x Ïy 5 2

y

x

Figure 5.4.1
Graph of x

√
y = 2

22 2

2

22

x2 1 y2 5 16
y

x

Figure 5.4.2
Graph of x2 + y2 = 16

22 2124 23 1 2 3 4

2

3

1

y

x

Figure 5.4.3
Graph of y3 + 3x2y = 13

E X A M P L E 5.4.2 What can you say about the graph of the equation y3 + 3x2y = 13?

Solution: If x = 0, then y3 = 13, so that y = 3
√

13 ≈ 2.35. Hence (0, 3
√

13) lies on the
graph. Because x is squared, note that if (x0, y0) lies on the graph, then so does (−x0, y0).
So the graph is symmetric about the y-axis. Note that (2, 1), and hence (−2, 1), are both
solutions.

Suppose we write the equation in the form

y = 13
y2 + 3x2

(5.4.1)

Then we see that no point (x, y) on the graph can have y ≤ 0, so all the graph lies above the
x-axis. From (5.4.1) it also follows that if |x| is large, then y must be small.

Figure 5.4.3 displays the graph, which accords with these findings. Solving Eq. (5.4.1)
for x shows that it consists of all points (x, y) satisfying x = ±√

(13 − y3)/3y.

Vertical-Line Test
Graphs of different functions can have innumerable different shapes. However, not all curves
in the plane are graphs of functions. By definition, a function assigns to each point x in the
domain only one y-value. The graph of a function therefore has the property that a vertical
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line through any point on the x-axis has at most one point of intersection with the graph.
This simple vertical-line test is illustrated in Figs 5.4.4 and 5.4.5.

y

x

Figure 5.4.4 A function

y

x

Figure 5.4.5 Not a function

The graph of the circle x2 + y2 = 16, shown in Fig. 5.4.2, is a typical example of a graph
that does not represent a function, since it does not pass the vertical-line test. A vertical line
x = a for any a with −4 < a < 4 intersects the circle at two points. Solving the equation
x2 + y2 = 16 for y, we obtain y = ±√

16 − x2. Note that the upper semicircle alone is the
graph of the function y = √

16 − x2, and the lower semicircle is the graph of the function
y = −√

16 − x2. Both these functions are defined on the interval [−4, 4].

Choosing Units
A function of one variable is a rule assigning numbers in its range to numbers in its domain.
When we describe an empirical relationship by means of a function, we must first choose
the units of measurement. For instance we might measure time in years, days, or weeks.
We might measure money in dollars, yen, or euros. The choice we make will influence the
visual impression conveyed by the graph of the function.

2009 2012 2015 2018

e7 000

e7 500

e8 000

e8 500

e9 000

Figure 5.4.6 An optimistic view

2009 2012 2015 2018

e0

e2 500

e5 000

e7 500

e10 000

Figure 5.4.7 A pessimistic view

Figures 5.4.6 and 5.4.7 both display the time series of total consumption expenditure
during the period 2009–2018 for the 28 countries that belonged to EU in 2018. The data
are in current euros, meaning that there has been no correction to allow for the effect of
inflation. These graphs illustrate a standard trick which is often used to influence people’s
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impressions of empirical relationships. In both diagrams time is measured in years and
consumption in billions of euros. They both graph the same function. But if you were trying
to impress an audience with the performance of the European economy, which one would
you choose?

Piecewise Functions
Sometimes a function is defined in several pieces, by giving a separate formula for each
of a number of disjoint parts of the domain. One example that should already be familiar
is the absolute value function y = |x| defined by Eq. (2.7.1).6 Two more examples of such
piecewise functions are presented next.

E X A M P L E 5.4.3 Draw the graph of the function f defined by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

−x for x ≤ 0

x2 for 0 < x ≤ 1

1.5 for x > 1

Solution: The graph is drawn in Fig. 5.4.8. The arrow at (1, 1.5) indicates that this point is
not part of the graph of the function. As we shall explain in Section 7.8, the function has a
discontinuity at x = 1.

1

2

21 1

y

x

Figure 5.4.8 The function in Example 3

$0 $62 500 $125 000 $187 500 $250 000

$0

$12 500

$25 000

$37 500

$50 000

Figure 5.4.9
US Federal Income Tax in 2018

E X A M P L E 5.4.4 (US Federal Income Tax, 2018). Figure 5.4.9 has part of the graph of the function
showing how much income tax a head of household had to pay, as a function of net income.7

6 As pointed out in Example 2.7.2, the alternative definition y = √
x2 of the absolute value would

avoid having a separate formula for different parts of the real line. Still, the usual definition of
y = |x| does distinguish between the cases when x > 0 and x < 0.

7 Of course, Fig. 5.4.9 is an idealization. The true income tax function is defined only for an integer
number of dollars. More precisely, its graph is that of a discontinuous “step function” which jumps
up slightly whenever income rises by one dollar. We also note that taxable net income excludes any
personal allowance, any allowance for children or other dependants, as well as various “itemized
deductions” for approved expenses such as mortgage interest for an owner-occupied house.



�

� �

�

170 C H A P T E R 5 / P R O P E R T I E S O F F U N C T I O N S

For net income below $13 600, the tax rate was 10%, so a person with income x paid y =
0.1x in taxes. For incomes in the bracket between $13 601 and $51 800, the tax was $1 360
plus 12% of the income above $13 600: a person with income x in this bracket paid y =
1360 + 0.12(x − 13 600) in taxes. The coefficient of 0.12 = 12% is known as marginal rate
for incomes in this bracket. The marginal tax rates for higher income brackets are higher,
which explains why the graph becomes steeper as we move to the right. For instance, for
incomes between $82 501 and $157 500, the marginal rate was 24%; it reaches 37% for
incomes above $500 001. In public finance, tax functions whose marginal rate increases
with the taxpayer’s income are often known as progressive.

E X E R C I S E S F O R S E C T I O N 5 . 4

1.SM Find some particular solutions of the following two equations, then sketch their graphs:

(a) x2 + 2y2 = 6 (b) y2 − x2 = 1

2. Try to sketch the graph of
√

x + √
y = 5 by finding some particular solutions.

3. The function F is defined for all r ≥ 0 by the following formula:

F(r) =
{

0 for r ≤ 7500

0.044(r − 7500) for r > 7500

Compute F(100 000), and sketch the graph of F.

5.5 Distance in the Plane
Let P1 = (x1, y1) and P2 = (x2, y2) be two points in the xy-plane, as shown in Fig. 5.5.1.
By Pythagoras’s theorem, stated in the appendix, the distance d between P1 and P2

satisfies the equation d2 = (x2 − x1)
2 + (y2 − y1)

2. This gives the following important
formula:

D I S T A N C E F O R M U L A

The distance between the two points (x1, y1) and (x2, y2) is

d =
√

(x2 − x1)
2 + (y2 − y1)

2 (5.5.1)

We considered two points in the first quadrant to prove the distance formula. It turns out
that the same formula is valid wherever the two points P1 and P2 may lie. Note also that
since (x1 − x2)

2 = (x2 − x1)
2 and (y1 − y2)

2 = (y2 − y1)
2, it makes no difference which

point is P1 and which is P2.
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d

P1 5 (x1, y1)

P2 5 (x2, y2)

x2 2 x1

y2 2 y1

y

x

Figure 5.5.1 Distance between two general
points P1 and P2

3

2

1

22

21
212224 23 1 2 3 4 5 6

P1 5 (24, 3)

P2 5 (5,21)

y

x

Figure 5.5.2 Distance between the two points
(−4, 3) and (5, −1)

Some find formula (5.5.1) hard to grasp. It may help to express it entirely in words. It
tells us that we can find the distance between two points in the plane as follows: First, take
the difference between the two x-coordinates and square what you get. Second, do the same
with the y-coordinates. Then add the two results. Finally, take the square root.

E X A M P L E 5.5.1 Find the distance d between P1 = (−4, 3) and P2 = (5, −1).

Solution: See Fig. 5.5.2 for an illustration. Using (5.5.1) with x1 = −4, y1 = 3 and x2 = 5,
y2 = −1, we have

d =
√

(5 − (−4))2 + (−1 − 3)2 =
√

92 + (−4)2 = √
81 + 16 = √

97 ≈ 9.85

Circles
Let (a, b) be a point in the plane. The circle with radius r and centre at (a, b) is the set of
all points (x, y) whose distance from (a, b) is equal to r. Applying the distance formula to
the typical point (x, y) on the circle shown in Fig. 5.5.3 gives the equation√

(x − a)2 + (y − b)2 = r

Squaring each side yields:

E Q U A T I O N O F A C I R C L E

The equation of a circle with centre at (a, b) and radius r is

(x − a)2 + (y − b)2 = r2 (5.5.2)

A graph of Eq. (5.5.2) is shown in Fig. 5.5.3. Note that if we let a = b = 0 and r = 4,
then (5.5.2) reduces to x2 + y2 = 16. This is the equation of a circle with centre at (0, 0)

and radius 4, as shown in Fig. 5.4.2.
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r

(x, y)

(a, b)

y

x

Figure 5.5.3 Circle with centre at (a, b)

and radius r

3

3

4

2

1

21

22

2223242526 21 1

y

x

Figure 5.5.4 Circle with centre at
(−4, 1) and radius 3

E X A M P L E 5.5.2 Find the equation of the circle with centre at (−4, 1) and radius 3.

Solution: See Fig. 5.5.4. Here a = −4, b = 1, and r = 3. So according to (5.5.2), the
equation for the circle is

(x + 4)2 + (y − 1)2 = 9 (∗)

Expanding the squares gives x2 + 8x + 16 + y2 − 2y + 1 = 9. Collecting terms then gives

x2 + y2 + 8x − 2y + 8 = 0 (∗∗)

Equation (∗∗) has the disadvantage that we cannot immediately read off the centre and
radius of the circle. If we do start with equation (∗∗), however, the method of “completing
the squares” allows us to deduce (∗), as shown in Exercise 5.

Ellipses and Hyperbolas
All the planets, including the Earth, move around the Sun in orbits that are approximately
elliptical. This makes ellipses a very important type of curve in physics and astronomy.
Occasionally, ellipses also appear in economics and statistics.

The simplest type of ellipse has the equation

(x − x0)
2

a2
+ (y − y0)

2

b2
= 1 (5.5.3)

This ellipse has centre at (x0, y0). Its graph is shown in Fig. 5.5.5. Note that when a = b,
the ellipse degenerates into a circle whose radius is r = a = b.

Changing the plus sign in Eq. (5.5.3) to a minus gives a different kind of curve, called a
hyperbola. Figures 5.5.6 and 5.5.7 show the respective graphs of the two hyperbolas

(x − x0)
2

a2
− (y − y0)

2

b2
= +1 and

(x − x0)
2

a2
− (y − y0)

2

b2
= −1 (5.5.4)

Each of these two figures also contains two dashed lines through the centre (a, b). These
lines are the asymptotes which, by definition, result from rotating them about the centre until
they get as close as possible to the hyperbola without ever quite meeting it. These asymp-
totes are the same pair of lines in each figure. Their equations are y − y0 = ±(b/a)(x − x0).
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b

a

(x, y)

y0

x0

y

x

Figure 5.5.5 Ellipse

b
ay0

x0

y

x

Figure 5.5.6 Hyperbola

b
ay0

x0

y

x

Figure 5.5.7 Hyperbola

We end this section by considering the general quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (5.5.5)

where A, B, and C are not all 0. We note that its graph has one of the following three shapes:

(i) If 4AC > B2, either an ellipse (possibly a circle), or a single point, or empty.

(ii) If 4AC = B2, either a parabola, or one line or two parallel lines, or empty.

(iii) If 4AC < B2, either a hyperbola, or two intersecting lines.

E X E R C I S E S F O R S E C T I O N 5 . 5

1. Determine the distances between the following pairs of points:

(a) (1, 3) and (2, 4) (b) (−1, 2) and (−3, 3) (c) (3/2, −2) and (−5, 1)

(d) (x, y) and (2x, y + 3) (e) (a, b) and (−a, b) (f) (a, 3) and (2 + a, 5)

2. The distance between (2, 4) and (5, y) is
√

13. Find y, and explain geometrically why there must
be two values of y.

3. Find the distances between each pair of points:

(a) (3.998, 2.114) and (1.130, −2.416); (b) (π , 2π) and (−π , 1).

4. Find the equations of: (a) The circle with centre at (2, 3) and radius 4. (b) The circle with centre
at (2, 5) and one point at (−1, 3).

5. To show that the graph of x2 + y2 − 10x + 14y + 58 = 0 is a circle, we can argue like this: First
rearrange the equation to read (x2 − 10x) + (y2 + 14y) = −58. Completing the two squares gives:
(x2 − 10x + 52) + (y2 + 14y + 72) = −58 + 52 + 72 = 16. Thus the equation becomes

(x − 5)2 + (y + 7)2 = 16

whose graph is a circle with centre (5, −7) and radius
√

16 = 4. Use this method to find the centre
and the radius of the two circles with equations:

(a) x2 + y2 + 10x − 6y + 30 = 0 (b) 3x2 + 3y2 + 18x − 24y = −39
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6. Prove that if the distance from a point (x, y) to the point (−2, 0) is twice the distance from (x, y)
to (4, 0), then (x, y) must lie on the circle with centre (6, 0) and radius 4.

7. In Example 4.7.7 we considered the function y = (ax + b)/(cx + d), and we claimed that for
c �= 0 the graph was a hyperbola. See how this accords with the classification (i) to (iii) given
after Eq. (5.5.5).

8.SM [HARDER] Consider the equation x2 + y2 + Ax + By + C = 0, where A, B, and C are constants.
Show that its graph is a circle if A2 + B2 > 4C. Use the method of Exercise 5 to find its centre
and radius. What happens if A2 + B2 ≤ 4C?

9.SM [HARDER] Consider Eq. (5.5.5) in the case when A > 0 and D = E = 0. Use the method of com-
pleting the square in order to investigate the possible shapes of its graph.

5.6 General Functions
So far we have studied functions of one variable. These are functions whose domain is a set
of real numbers, and whose range is also a set of real numbers. Yet a realistic description
of many economic phenomena requires considering a large number of variables simultane-
ously. For example, the demand for a good like butter is a function of several variables such
as the price of the good, and the prices of complements like bread, as well as substitutes
like olive oil or margarine. It can also depend on consumers’ incomes, their doctors’ advice,
how many are vegan, and so on.

Actually, you have probably already seen many special functions of several variables.
Consider, for instance, the formula V = πr2h for the volume V of a circular cylinder with
base radius r and height h.8 This formula defines a function of two variables. We can change
either one of these two variables without affecting the value of the other. Indeed, for each
pair of positive numbers (r, h), there is a definite value for the volume V . To emphasize that
V depends on the values of both r and h, we write

V(r, h) = πr2h

For r = 2 and h = 3, we obtain V(2, 3) = 12π , whereas r = 3 and h = 2 give
V(3, 2) = 18π . Also, r = 1 and h = 1/π give V(1, 1/π) = 1. Note in particular that
V(2, 3) �= V(3, 2).

In some abstract economic models, it may be enough to know that there is some func-
tional relationship between variables, without specifying the dependence more closely. For
instance, suppose a market sells three commodities whose prices per unit are respectively
p, q, and r. Then economists generally assume that the demand for one of the commodities
by an individual with income m is given by a function f (p, q, r, m) of four variables, without
necessarily specifying the precise form of that function.

8 Of course, in this case π denotes the mathematical constant π ≈ 3.14159.
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An extensive discussion of functions of several variables begins in Chapter 14. This
section introduces an even more general type of function. This concept of function is fun-
damentally important in practically every area of pure and applied mathematics, including
mathematics applied to economics. Here is the general definition:

F U N C T I O N

A function from A to B is a rule which specifies, for each element in the set A,
one and only one element in the set B.

The following example illustrates how very wide this concept of a function can be.

E X A M P L E 5.6.1

(a) The function that specifies the area of each triangle in a plane.

(b) The function that determines the social security number, or other identification number,
of each taxpayer.

(c) The function that for each point P in a horizontal plane determines the point lying
3 units above P.

(d) Let A be the set of possible actions that a person can choose in a certain situation.
Suppose that every action a in A produces a certain result (such as profit) ϕ(a). In this
way, we have defined a function ϕ with domain A.

If we denote the function by f , the set A on which it is defined is called its domain.
The other set B that contains the function value is called its target set or its codomain.
This generalizes the definitions given in Section 4.2: the two sets A and B need not consist
of numbers, but can be sets of arbitrary elements. In the end, the definition of a function
requires three objects to be specified: (i) a domain, A; (ii) a target set, B; and (iii) a rule that
assigns a unique element in B to each element in A.9

An important requirement in the definition of a function is that to each element in the
domain A, there corresponds a unique element in the target B. For example, it is meaningful
to talk about the function that, for each child, assigns the mother who gave birth to that child.
On the other hand, the rule that assigns the aunt to each child does not, in general, define a
function, because many children have more than one aunt.

To test your understanding of these ideas, explain why the following rule, as opposed to
the one in Example 5.6.1(c), does not define a function: “to any point P in the plane, assign
a point that lies 3 units away from P”.

If f is a function with domain A and target B, we often say that f is a function from A
to B, and write f : A → B. The functional relationship is often represented as in Fig. 5.6.1.

9 Nevertheless, in many cases, we refrain from specifying the sets A and/or B explicitly when the
context makes it obvious what these two sets are.
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f (x)x

A B

f

Figure 5.6.1 A function from A to B

Other words that are sometimes used instead of “function” include transformation and map
or mapping. Sometimes the notation x �→ f (x) is used to indicate a function that maps each
point x of the domain A to a unique point f (x) of the target B.10

The particular value f (x) is often called the image of the element x by the function f .
The set of all elements in B that are the image of at least one element in A is called the
range of the function. Thus, the range is a subset of the target. If we denote the range of f
by Rf , then Rf = {f (x) : x ∈ A}. This is also written as f (A). The range of the function in
Example 5.6.1(a) is the set of all positive numbers. In Example 5.6.1 (c), the range is the
(whole) horizontal plane that results from shifting up the original plane by 3 units.

The definition of a function requires that only one element in B be assigned to each
element in A. However, different elements in A might be mapped to the same element in
B. In Example 5.6.1(a), for instance, many different triangles have the same area. If each
element of B is the image of at most one element in A, the function f is called one-to-one.
Otherwise, if one or more elements of B are the images of more than one element in A, the
function f is many-to-one.11

The social security function in Example 5.6.1(b) is one-to-one, because two different
taxpayers should always have different social security numbers. Can you explain why the
function defined in Example 5.6.1(c) is also one-to-one, whereas the function that assigns
to each child his or her mother is not?

Inverse Functions
The definition of inverse function in Section 5.3 can easily be extended to general functions.
Suppose f is a one-to-one function from a set A to a set B, and assume that the range of f is
all of B. We can then define a function g from B to A by the following obvious rule: Assign
to each element v of B the one and only element u = g(v) of A that f maps to v—that is,
the u satisfying v = f (u). Because f is one-to-one, there can be only one u in A such that
v = f (u). So g is a function whose domain is B, whereas its target and range are both equal
to A. The function g is called the inverse function of f . For instance, the inverse of the social
security function mentioned in Example 5.6.1(b) is the function that, to each social security
number in its range, assigns the unique person who carries that number.

10 The even fuller notation A � x �→ f (x) ∈ B also makes explicit both the domain and codomain
of f .

11 If a relation is one-to-many, it is not even a function.
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E X E R C I S E S F O R S E C T I O N 5 . 6

1.SM Which of the following rules define functions?

(a) The rule that assigns to each person in a classroom his or her height.

(b) The rule that assigns to each mother her youngest surviving child.

(c) The rule that assigns the perimeter of a rectangle to its area.

(d) The rule that assigns the surface area of a spherical ball to its volume.

(e) The rule that assigns the pair of numbers (x + 3, y) to the pair of numbers (x, y).

2. Determine which of the functions defined in Exercise 1 are one-to-one, and which then have an
inverse. Determine each inverse when it exists.

R E V I E W E X E R C I S E S

1. Use Figs 4.3.5 to 4.3.10 and the rules for shifting graphs to sketch a graph for each of the fol-
lowing functions:

(a) y = |x| + 1 (b) y = |x + 3| (c) y = 3 − |x + 1|

2. If f (x) = x3 − 2 and g(x) = (1 − x)x2, evaluate the following expressions:

(a) (f + g)(x) (b) (f − g)(x) (c) (fg)(x)

(d) (f /g)(x) (e) f (g(1)) (f) g(f (1))

3. Consider the demand and supply curves D = 150 − 1
2 P and S = 20 + 2P, where the price P is

measured in dollars.

(a) Find the equilibrium price P∗ and the corresponding equilibrium quantity Q∗.

(b) Suppose a tax of $2 per unit is imposed on the producer’s output. How will this influence
the equilibrium price?

(c) Compute the total revenue obtained by the producer before the tax is imposed (R∗) and after
(̂R).

4. Demand D as a function of price P is given by D = 32
5 − 3

10 P. Solve the equation for P and find
the inverse demand function.12

5. The demand D for a product as a function of the price P is given by D = 120 − 5P. Solve the
equation for P and so find the inverse demand function.

6. Find the inverses of the functions given by the formulas:

(a) y = 100 − 2x (b) y = 2x5 (c) y = 5e3x−2

12 See Exercise 4.2.7 for an economic interpretation.
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7.SM The following two functions are both strictly increasing in their domains. Find for each the
domain of its inverse, as well as a formula for its inverse that uses x as the free variable.

(a) f (x) = 3 + ln(ex − 2), defined on the domain x ∈ (ln 2, ∞);

(b) f (x) = a
e−λx + a

, where a and λ are positive, defined on the domain x ∈ (−∞, ∞).

8. Determine the distances between the following pairs of points:

(a) (2, 3) and (5, 5); (b) (−4, 4) and (−3, 8); (c) (2a, 3b) and (2 − a, 3b).

9. Find the equations of the circles with:

(a) centre at (2, −3) and radius 5; (b) centre at (−2, 2) and passing through (−10, 1).

10. A point P moves in the plane so that it is always equidistant between the two points A = (3, 2)

and B = (5, −4). Find a simple equation that the coordinates (x, y) of P must satisfy. (Hint:
Compute the square of the distance from P to the points A and B, respectively.)

11. Each person in a team is known to have red blood cells that belong to one and only one of four
blood groups denoted A, B, AB, and O. Consider the function that assigns each person in the team
to his or her blood group. Can this function be one-to-one if the team consists of five people?
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D I F F E R E N T I A T I O N

To think of [differential calculus] merely as a more advanced technique is to miss its real content. In it,
mathematics becomes a dynamic mode of thought, and that is a major mental step in the ascent of man.
—Jacob Bronowski (1973)

An important topic in many scientific disciplines, including economics, is the study of how
quickly quantities change over time. In order to compute the future position of a planet,

or predict the population growth of a biological species, or estimate the future demand for a
commodity, scientists need information about rates of change.

The fundamental and central concept that mathematicians use to describe the rate of
change of a function is the derivative. This chapter defines the derivative of a function and
presents some of the important rules for calculating it.

Isaac Newton (England, 1642–1727) and Gottfried Wilhelm Leibniz (Germany, 1646–1716)
discovered most of these general rules independently of each other. Their discoveries initiated
differential calculus, which has been an essential foundation for modern science. Differential
calculus has also been vitally important in developing much of modern economic science.

6.1 Slopes of Curves
When studying the graph of a function, we would like to have a precise measure of its
steepness at any of its points. We know that for the function y = px + q, its graph is a
straight line with constant slope p. If p is large and positive, then the line rises steeply from
left to right; if p is large and negative,1 the line falls steeply. But when the graph of an
arbitrary function f is not linear, how steep is it?

Given any point P on the graph of a function, or on any other curve in the xy-plane, a
tangent to the curve at P is a straight line which just touches the curve at P. So a natural
answer is to define the steepness or slope of a curve at a point P as the slope of its tangent
at P.

1 Note: By a large negative number, we mean a negative number whose absolute value is large. That
is the number is somehow “close” to −∞.
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Consider the curve labelled y = f (x) in Fig. 6.1.1, and the point P with coordinates
(a, f (a)). The straight line labelled L is the tangent at P. Because this line has slope 1

2 ,
the steepness of the curve at point P is seen to be 1

2 .
The slope of the tangent to the graph at P is called the derivative of f (x) at x = a. The

usual notation for this number is f ′(a), pronounced as “f prime a”. In Fig. 6.1.1, we have
f ′(a) = 1

2 . To summarize:

D E R I V A T I V E

f ′(a) is the slope of the tangent to the curve y = f (x) at the point (a, f (a)).

L

P

a

y

x

f (a)
y f (x)

Figure 6.1.1 f ′(a) = 1
2

P

Q
R

y

x

y f (x)

1 2 3 4 5 6 7 8

4

3

2

1

Figure 6.1.2 Example 6.1.1

An important note of caution is that when defining the derivative of a function at a
particular point, we refer to the tangent line. Implicitly, we are assuming that there is only
one tangent to the curve at that point. If the curve has a “kink” at point (a, f (a)), there are
multiple lines that touch the curve only at that point and can thus serve as alternative tangent
lines. When this happens, we do not define the derivative of the function at x = a; instead
we say that f ′(a) does not exist.

E X A M P L E 6.1.1 Find f ′(1), f ′(4), and f ′(7) for the function whose graph is shown in Fig. 6.1.2.

Solution: At the point P = (1, 2), the tangent goes through the point (0, 1), so it has slope 1.
At the point Q = (4, 2 1

2 ) the tangent is horizontal, and so has slope 0. At the point R =
(7, 3 1

2 ), the tangent goes through (8, 3), and so has slope −1/2. It follows that f ′(1) = 1,
f ′(4) = 0, and f ′(7) = −1/2.

E X E R C I S E S F O R S E C T I O N 6 . 1

1. Figure 6.1.3 shows the graph of a function f . Find the values of f (3) and f ′(3).

2. Figure 6.1.4 shows the graph of a function g. Find the values of g(5) and g′(5).
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y

x

y f (x)

1 2 3 4 5 6 7 8

4

3

2

1

Figure 6.1.3 Exercise 1

y

x

y g(x)

1 2 3 4 5 6 7 8

4

3

2

1

Figure 6.1.4 Exercise 2

6.2 Tangents and Derivatives
The previous section gave a rather vague geometric definition of the tangent to a curve at
a point. All we said is that it is a straight line which just touches the curve at that point. In
future we will need a more precise and formal definition of the same concept, which we
now provide.

The idea behind the geometric definition is easy to understand. Consider Fig. 6.2.1, in
which P is a point on a curve in the xy-plane. Furthermore PT indicates the straight line that
forms the tangent to the curve at P. In case the curve is the graph of a function, in order to
determine the derivative at P, we need to find the slope of the tangent PT .

To find this slope, start by taking any other point Q on the curve. The entire straight line
through P and Q is called a secant because it intersects the curve in at least two points, so
the line can be used to cut off all the curve that does not lie between those two points. Now
suppose we keep P fixed, but let the other point Q move along the curve toward P. Then
the secant line PQ will rotate around P, as indicated in Fig. 6.2.2. As the line rotates, the
difference between the slopes of the two lines PQ and PT in the figure shrinks steadily to
zero. When the difference in slopes does reach zero, the secant line PQ will have reached
the tangent line PT. The slope of this tangent line must therefore be the limiting value of
the slope of PQ.

y

x

P

T

Q

Figure 6.2.1 A secant

y

x

P

T

Q

Figure 6.2.2 Secants and the tangent

Now suppose that the curve in Fig. 6.2.1 is the graph of a function f . Figure 6.2.3 starts
by reproducing the curve, the points P and Q, and the tangent PT in Fig. 6.2.1. Point P
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y

x

T

Q  (a h, f (a h))

P  (a, f (a))

f (a h) f (a)

h

f

Figure 6.2.3 Newton quotient

in Fig. 6.2.3 has coordinates (a, f (a)). Point Q is also on the graph of f . Suppose that the
x-coordinate of Q is a + h, where h �= 0. Because Q lies on the graph of f , its y-coordinate is
f (a + h). Hence, the point Q has coordinates (a + h, f (a + h)). Using Eq. (4.4.1), the slope
of the secant PQ is, therefore,

f (a + h) − f (a)

h
(6.2.1)

The fraction (6.2.1) is called the Newton quotient of f (at a).
We are interested in what happens to this Newton quotient as h gets close to 0, and

so as Q moves close to P. Note that we cannot simply put h = 0 in formula (6.2.1),
because h is the denominator of the quotient, which is therefore undefined. In fact both
numerator and denominator are 0, so the quotient is “ 0/0 ” , which is not any real
number.

After this false start, we focus instead on the fact that the Newton quotient is the
slope of the secant line PQ. Moreover, this slope approaches that of the tangent PT as Q
approaches P, which happens as h approaches 0. Expressed in mathematical language,
we consider the limit of (6.2.1) as h tends to 0, and so as Q tends to P. In fact, we define
the slope of the tangent at P as the limit of the slope of the secant PQ as h tends to 0.
Now, mathematicians use the abbreviated notation limh→0 to indicate “the limit as h
tends to zero” of any following expression involving h. This leads us to the following
definition:

D E F I N I T I O N O F D E R I V A T I V E

The derivative of function f at point a, denoted by f ′(a), is

f ′(a) = lim
h→0

f (a + h) − f (a)

h
(6.2.2)

The number f ′(a) gives the slope of the tangent to the curve y = f (x) at the point
(a, f (a)). By the point–slope formula, the equation for a straight line passing through
(x1, y1) and having slope b is given by y = y1 + b(x − x1). So we obtain:
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T A N G E N T

Provided that the derivative f ′(a) given by (6.2.2) exists, there is a unique tan-
gent to the graph of y = f (x) at the point (a, f (a)) whose equation is

y = f (a) + f ′(a)(x − a) (6.2.3)

So far the concept of a limit in the definition of f ′(a) is somewhat imprecise. Section 6.5
will discuss this concept in more detail. Because it is relatively complicated, we rely on
intuition for the time being. Consider the following simple example.

E X A M P L E 6.2.1 Let f (x) = x2.

(a) Use (6.2.2) to compute f ′(a) .

(b) Find in particular f ′(1/2) and f ′(−1).

(c) Give graphical illustrations, and find the equation for the tangent at each of the two
points (1/2, 1/4) and (−1, 1).

Solution:

(a) For f (x) = x2, we have f (a + h) = (a + h)2 = a2 + 2ah + h2, and so

f (a + h) − f (a) = (a2 + 2ah + h2) − a2 = 2ah + h2

Hence, for all h �= 0, we obtain

f (a + h) − f (a)

h
= 2ah + h2

h
= h(2a + h)

h
= 2a + h (∗)

where the last equality holds because we can cancel h whenever h �= 0. But as h tends
to 0, so 2a + h obviously tends to 2a. Thus, we can write

f ′(a) = lim
h→0

f (a + h) − f (a)

h
= lim

h→0
(2a + h) = 2a

This shows that for the function f (x) = x2, one has f ′(a) = 2a.

(b) For a = 1/2, we obtain f ′(1/2) = 2 · 1/2 = 1. Similarly, f ′(−1) = 2 · (−1) = −2.

(c) Figure 6.2.4 provides a graphical illustration of (∗). In Fig. 6.2.5, we have drawn the
tangents to the curve y = x2 corresponding to a = 1/2 and a = −1. At a = 1/2, we
have f (a) = (1/2)2 = 1/4 and f ′(1/2) = 1. According to (2), the equation of the
tangent is y − 1/4 = 1 · (x − 1/2) or y = x − 1/4.2 Note that the formula f ′(a) = 2a
shows that f ′(a) < 0 when a < 0, and f ′(a) > 0 when a > 0. Does this agree with the
graph?

If f is a relatively simple function, we can find f ′(a) by using the recipe set out
below.

2 Can you show that the other tangent drawn in Fig. 6.2.5 has the equation y = −2x − 1?
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a

h

(a h)2 a2  2ah h2

a h

P

Q

y

x

f (x) x2

Figure 6.2.4 A secant of f (x) = x2

4

3

2

1

1

2 1 1 2

f (x) x2

y

x

Figure 6.2.5 Tangents of f (x) = x2

C O M P U T I N G T H E D E R I V A T I V E

In order to compute the derivative f ′(a) of f at a:

(i) Add h to a and compute f (a + h).

(ii) Compute the corresponding change in the function value:
f (a + h) − f (a).

(iii) For h �= 0, form the Newton quotient (6.2.1).

(iv) Simplify the fraction in step (iii) as much as possible; then, wherever
possible, cancel h from both numerator and denominator to simplify the
Newton quotient.

(v) Then f ′(a) is the limit, as h tends to 0, of the simplified Newton quotient.

Let us apply this recipe to another example.

E X A M P L E 6.2.2 Compute f ′(a) when f (x) = x3.

Solution: We follow the recipe step by step:

(i) f (a + h) = (a + h)3 = a3 + 3a2h + 3ah2 + h3

(ii) f (a + h) − f (a) = (a3 + 3a2h + 3ah2 + h3) − a3 = 3a2h + 3ah2 + h3

(iii)–(iv)
f (a + h) − f (a)

h
= 3a2h + 3ah2 + h3

h
= 3a2 + 3ah + h2

(v) As h tends to 0, so 3ah + h2 also tends to 0; hence, the entire expression 3a2 + 3ah + h2

tends to 3a2. Therefore, f ′(a) = 3a2.

We have thus shown that the graph of the function f (x) = x3 at the point x = a has a
tangent with slope 3a2. Note that f ′(a) = 3a2 > 0 when a �= 0, and f ′(0) = 0. The tangent
points upwards to the right for all a �= 0, and is horizontal at the origin. You should look at
the graph of f (x) = x3 in Fig. 4.3.7 to confirm this behaviour.
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The recipe works well for simple functions like those in Examples 6.2.1 and 6.2.2. But
for more complicated functions such as f (x) = √

3x2 + x + 1 it is unnecessarily cumber-
some. The powerful rules we will explain in Section 6.6 allow the derivatives of even quite
complicated functions to be found quite easily. Understanding these rules, however, relies
on the more precise concept of limit that we will provide in Section 6.5.

On Notation
We showed in Example 6.2.1 that if f (x) = x2, then for every a we have f ′(a) = 2a. We
frequently use x as the symbol for a quantity that can take any value, so we write f ′(x) = 2x.
Using this notation, our results from Examples 6.2.1 and 6.2.2 can be expressed as follows:

f (x) = x2 ⇒ f ′(x) = 2x (6.2.4)

f (x) = x3 ⇒ f ′(x) = 3x2 (6.2.5)

The result in (6.2.4) is a special case of the following rule, which you are asked to show in
Exercise 7: given constants a, b, and c,

f (x) = ax2 + bx + c ⇒ f ′(x) = 2ax + b (6.2.6)

Here are some applications of (6.2.6):

f (x) = 3x2 + 2x + 5 ⇒ f ′(x) = 2 · 3x + 2 = 6x + 2

f (x) = −16 + 1
2 x − 1

16 x2 ⇒ f ′(x) = 1
2 − 1

8 x

f (x) = (x − p)2 = x2 − 2px + p2 ⇒ f ′(x) = 2x − 2p

where p is any constant. If we use y to denote the typical value of the function y = f (x), we
often denote the derivative simply by y′. We can then write

y = x3 ⇒ y′ = 3x2

Several other forms of notation for the derivative are often used in mathematics and its
applications. One of them, originally due to Leibniz, is called the differential notation. If
y = f (x), then in place of f ′(x), we write

dy
dx

,
df (x)

dx
, or

d
dx

f (x)

For instance, if y = x2, then

dy
dx

= 2x or
d
dx

(x2) = 2x

We can think of the symbol “d/dx” as an instruction to differentiate the expression that
follows, taken as a function of x.3 In mathematical jargon, the instruction “d/dx” indicates

3 At this point, we will only think of the symbol “dy/dx” as meaning f ′(x). We will not consider how
it might relate to the quotient dy ÷ dx. Section 7.4 will introduce the concept of differential of a
function, which will further clarify the notation.
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“differentiate with respect to x”. It occurs so often in mathematics that it has become stan-
dard to use w.r.t. as an abbreviation for with respect to.

When we use letters other than f , x, and y, the notation for the derivative changes accord-
ingly. For example:

P(t) = t2 ⇒ P′(t) = 2t, Y = K3 ⇒ Y ′ = 3K2, and A = πr2 ⇒ dA
dr

= 2πr

E X E R C I S E S F O R S E C T I O N 6 . 2

1. Let f (x) = 4x2. Show that
f (5 + h) − f (5)

h
= 40 + 4h for h �= 0. Use this result to find f ′(5).

Compare the answer with Eq. (6.2.6).

2. Let f (x) = 3x2 + 2x − 1.

(a) Show that
f (x + h) − f (x)

h
= 6x + 2 + 3h for h �= 0, and use this result to find f ′(x).

(b) Find in particular f ′(0), f ′(−2), and f ′(3). Find also the equation of the tangent to the graph
at the point (0, −1).

3. The demand function for a commodity with price P is given by the formula D(P) = a − bP. Use
rule (6.2.6) to find dD(P)/dP.

4. The cost of producing x units of a commodity is given by the formula C(x) = p + qx2. Use rule
(6.2.6) to find C′(x).4

5. For f (x) = 1/x, show that
f (x + h) − f (x)

h
= − 1

x(x + h)

and use this to show that f (x) = x−1 ⇒ f ′(x) = −x−2

6.SM In each case below, find the slope of the tangent to the graph of f at the specified point:

(a) f (x) = 3x + 2, at (0, 2) (b) f (x) = x2 − 1, at (1, 0) (c) f (x) = 2 + 3
x

, at (3, 3)

(d) f (x) = x3 − 2x, at (0, 0) (e) f (x) = x + 1
x

, at (−1, −2) (f) f (x) = x4, at (1, 1)

7. Let f (x) = ax2 + bx + c.

(a) Show that [f (x + h) − f (x)]/h = 2ax + b + ah. Use this to show that f ′(x) = 2ax + b.

(b) For what value of x is f ′(x) = 0? Explain this result in the light of (4.6.3) and (4.6.4).

8. Figure 6.2.6 shows the graph of a function f . Determine the sign of the derivative f ′(x) for each
of the four values a, b, c, and d of x.

4 In Section 6.4, this derivative is interpreted as the marginal cost.
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y f (x) 

y

x
a b

c d

Figure 6.2.6 Exercise 8

9.SM Let f (x) = √
x = x1/2.

(a) Show that (
√

x + h − √
x)(

√
x + h + √

x) = h.

(b) Use the result in part (a) to show that the Newton quotient of f (x) is 1/(
√

x + h + √
x).

(c) Use the result in part (b) to show that for x > 0 one has f ′(x) = 1

2
√

x
= 1

2
x−1/2.

10. Let f (x) = ax3 + bx2 + cx + d.

(a) Show that the Newton quotient is 3ax2 + 2bx + c + 3axh + ah2 + bh for h �= 0, and find
f ′(x).

(b) Show that the result in part (a) generalizes Example 6.2.2 and Exercise 7.

11. [HARDER] Apply the results of Exercise 2.3.8 to prove first that[
(x + h)1/3 − x1/3] [

(x + h)2/3 + (x + h)1/3x1/3 + x2/3] = h

Then follow the argument used to solve Exercise 9 to show that f (x) = x1/3 ⇒ f ′(x) = 1
3 x−2/3.

6.3 Increasing and Decreasing Functions
The terms increasing and decreasing have been used previously to describe the behaviour
of a function as we travel from left to right along its graph. In order to establish a defi-
nite terminology, we introduce the following definitions. We assume in every case that f is
defined in an interval I and that x1 and x2 are numbers from that interval.

I N C R E A S I N G A N D D E C R E A S I N G F U N C T I O N S

(i) If f (x2) ≥ f (x1) whenever x2 > x1, then f is increasing in I.

(ii) If f (x2) > f (x1) whenever x2 > x1, then f is strictly increasing in I.

(iii) If f (x2) ≤ f (x1) whenever x2 > x1, then f is decreasing in I.

(iv) If f (x2) < f (x1) whenever x2 > x1, then f is strictly decreasing in I
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y

x

Figure 6.3.1 Increasing

y

x

Figure 6.3.2 Strictly
increasing

y

x

Figure 6.3.3 Decreasing

y

x

Figure 6.3.4 Strictly
decreasing

Figures 6.3.1–6.3.4 respectively illustrate these definitions. Note that we allow an
increasing, or decreasing, function to have sections where the graph is horizontal. This
does not quite agree with common language: few people would say that their salary
increases when it stays constant! For this reason, sometimes an increasing function is
called nondecreasing, and a decreasing function is called nonincreasing.

To find out where a function is (strictly) increasing or (strictly) decreasing using these
definitions, we need to consider the sign of f (x2) − f (x1) whenever x2 > x1. This is usually
quite difficult to do directly by checking the values of f (x) at different points x. Fortunately
the sign of the derivative of a function provides a good test of whether it is increasing or
decreasing:

f ′(x) ≥ 0 for all x in the interval I ⇐⇒ f is increasing in I (6.3.1)

f ′(x) ≤ 0 for all x in the interval I ⇐⇒ f is decreasing in I (6.3.2)

The fact that the derivative of a function equals the slope of the tangent to its graph
makes the equivalences in (6.3.1) and (6.3.2) almost obvious. Here is another equally cor-
rect observation:

f ′(x) = 0 for all x in the interval I ⇐⇒ f is constant in I (6.3.3)

Precise proofs of (6.3.1)–(6.3.3) rely on the mean value theorem, the subject of Section 9.4.

E X A M P L E 6.3.1 Use the result of Eq. (6.2.6) to find the derivative of f (x) = 1
2 x2 − 2. Then examine

where f is increasing/decreasing.

Solution: We find that f ′(x) = x, which is nonnegative for x ≥ 0, and nonpositive if x ≤ 0.
We conclude that f is increasing in [0, ∞) and decreasing in (−∞, 0]. See Fig. 6.3.5 to
confirm this.

E X A M P L E 6.3.2 Examine where f (x) = − 1
3 x3 + 2x2 − 3x + 1 is increasing/decreasing. Use the

result in Exercise 6.2.10 to find its derivative.

Solution: The formula in the exercise can be used with a = −1/3, b = 2, c = −3, and
d = 1. Thus f ′(x) = −x2 + 4x − 3. Solving the equation f ′(x) = −x2 + 4x − 3 = 0 yields
x = 1 and x = 3, and thus f ′(x) = −(x − 1)(x − 3) = (x − 1)(3 − x). A sign diagram for
(x − 1)(3 − x) reveals that f ′(x) = (x − 1)(3 − x) is nonnegative in the interval [1, 3], but
nonpositive in both (−∞, 1] and [3, ∞).5 We conclude that f (x) is increasing in [1, 3], but
decreasing in both (−∞, 1] and [3, ∞). See Fig. 6.3.6.

5 See Example 2.8.1.
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f (x) = 1
2x2 −2

−3 −2 −1 1 2 3

−2

−1

1

2

3

x

y

Figure 6.3.5 f (x) = 1
2 x2 − 2

1 2 3 4

3

2

1
f (x) 1

3 x3  2x2  3x  1

y

x

Figure 6.3.6 f (x) = − 1
3 x3 + 2x2 − 3x + 1

If f ′(x) is strictly positive in an interval, we would expect the function to be strictly
increasing. Indeed,

f ′(x) > 0 for all x in the interval I =⇒ f is strictly increasing in I (6.3.4)

f ′(x) < 0 for all x in the interval I =⇒ f is strictly decreasing in I (6.3.5)

The implications in (6.3.4) and (6.3.5) only give sufficient conditions for f to be strictly
increasing or decreasing. They cannot be reversed to give necessary conditions, yet the
following statement is often seen: “Suppose that f is strictly increasing—that is, f ′(x) > 0.”
The example f (x) = x3 shows that the statement is wrong, since f ′(0) = 0 although f is
strictly increasing – see Exercise 3. A function, then, can be strictly increasing even though
the derivative is 0 at certain points.6

E X E R C I S E S F O R S E C T I O N 6 . 3

1. Use Eqs (6.2.6), (6.3.1), and (6.3.2) to find the values of x at which f (x) = x2 − 4x + 3 is increas-
ing/decreasing. Compare with Fig. 4.3.3.

2. Use the result in Exercise 6.2.10 to examine where f (x) = −x3 + 4x2 − x − 6 is increas-
ing/decreasing. Compare with Fig. 4.7.1

3. Show algebraically that f (x) = x3 is strictly increasing by studying the sign of

x3
2 − x3

1 = (x2 − x1)(x
2
1 + x1x2 + x2

2) = (x2 − x1)
[(

x1 + 1
2 x2

)2 + 3
4 x2

2

]

6 On the other hand, suppose that f ′(x) ≥ 0 for all x in I and f ′(x) = 0 at only a finite number of
points in I. Then f ′(x) > 0 in each subinterval between any two adjacent zeros of f ′(x), and so f
is strictly increasing on each such subinterval. It follows that f is strictly increasing on the whole
interval.
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6.4 Economic Applications
The derivative of a function at a particular point was defined as the slope of the tangent to
its graph at that point. Economists interpret the derivative in many important ways, starting
with the rate of change of an economic variable.

Suppose that a quantity y is related to a quantity x by y = f (x). If x has the value a, then
the value of the function is f (a). Suppose that a is changed to a + h. The new value of y is
f (a + h), and the change in the value of the function when x is changed from a to a + h is
f (a + h) − f (a). The change in y per unit change in x has a particular name; it is called the
average rate of change of f over the interval from a to a + h. It is equal to

f (a + h) − f (a)

h

Note that this fraction is precisely the Newton quotient of f at a. Taking the limit as h tends
to 0 gives the derivative of f at a, which we interpret as follows:

R A T E O F C H A N G E

The rate of change of f at a is f ′(a).

This very important concept appears whenever we study quantities that change. When
time t is the independent variable, we often use the “dot notation” ẋ to indicate the time
derivative dx/dt of x w.r.t. t. For example, if x(t) = t2, then ẋ(t) = 2t. We often refer to a
time derivative like this as the instantaneous rate of change.

E X A M P L E 6.4.1 Let N(t) be the number of individuals in the population of a species of animal at
time t. If t increases to t + s, then the change in population is equal to N(t + s) − N(t)
individuals. Hence,

N(t + s) − N(t)
s

is the average rate of change. Taking the limit as s tends to 0 gives Ṅ(t) = dN/dt for the
instantaneous rate of change of population at time t.

In Example 4.5.1, the formula P = 5.1t + 606 was used as an (inaccurate) estimate of
Europe’s population, in millions, at a date which comes t years after 1960. In this case, the
rate of change is dP/dt = 5.1 million per year, the same for all t.

E X A M P L E 6.4.2 Let K(t) be the capital stock in an economy at time t. The rate of change K̇(t) of K(t)
is called the net rate of investment at time t,7 and is usually denoted by I(t):

K̇(t) = I(t) (6.4.1)

7 This differs from gross investment because some investment is needed to replace depreciated
capital.
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Sometimes we are interested in studying the proportion f ′(a)/f (a). This proportion can
be interpreted as follows:

R E L A T I V E R A T E O F C H A N G E

The relative rate of change of f at a is
f ′(a)

f (a)
.

E X A M P L E 6.4.3 As in Example 6.4.1, let N(t) be the number of animals at time t. If t increases to
t + s, then the average relative rate of change in this number equals

1
N(t)

N(t + s) − N(t)
s

Taking the limit as s → 0 gives
1
N

Ṅ(t) = 1
N

dN
dt

for the instantaneous relative rate of

change of the animal population at time t.

In economics, such relative rates of change are often seen. Sometimes they are
called proportional rates of change. They are usually quoted in percentages per unit
of time — for example, percentages per year.8 Often we will describe a variable as
increasing at, say, 3% a year if there is a relative rate of change of 3/100 = 0.03 each
year.

For the next example, note that it is common to denote a (small) change in a variable x,
say, by �x, where � is the upper-case Greek letter delta. Here �x should be regarded as
one symbol, not as the product of � and x.

E X A M P L E 6.4.4 Consider a firm producing some commodity in a given period, and let C(x) denote
its cost of producing x units. The derivative C′(x) at x is called the marginal cost at x.
According to the definition, it is equal to

C′(x) = lim
�x→0

C(x + �x) − C(x)
�x

(6.4.2)

When �x is small in absolute value, we obtain the approximation

C′(x) ≈ C(x + �x) − C(x)
�x

(6.4.3)

The difference �C(x) = C(x + �x) − C(x) is called the incremental cost of producing
�x units of extra output. For �x small, a linear approximation to this incremental cost
is C′(x)�x, the product of the marginal cost and the change in output. This is true even
when �x < 0, signifying a decrease in output and, provided that C′(x) > 0, a lower cost.

Note that putting �x = 1 in (6.4.3) makes marginal cost approximately equal to

C′(x) ≈ C(x + 1) − C(x) (6.4.4)

8 Or per annum, for those who think Latin is still a useful language.
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Marginal cost is then approximately equal to the incremental cost C(x + 1) − C(x), that
is, the additional cost of producing one more unit than x. In elementary economics books
marginal cost is often defined as the difference C(x + 1) − C(x) because more appropriate
concepts from differential calculus are not available.

In this book, we will sometimes offer comparable economic interpretations that consider
the change in a function when a variable x is increased by one unit; it would be more accurate
to consider the change in the function per unit increase, for small increases. Here is an
example.

E X A M P L E 6.4.5 Let C(x) denote the cost in millions of dollars for removing x% of the pollution in a
lake. Give an economic interpretation of the equality C′(50) = 3.

Solution: Because of the linear approximation C(50 + �x) − C(50) ≈ C′(50)�x, the pre-
cise interpretation of C′(50) = 3 is that, for small changes in pollution that start at 50%, for
each extra 1% of pollution that is removed, the extra cost is about 3 million dollars. Much
less precisely, C′(50) = 3 means that it costs about 3 million dollars extra to remove 51%
instead of 50% of the pollution.

Following these examples, economists often use the word “marginal” to indicate
a derivative. To mention just two of many examples we shall encounter, the marginal
propensity to consume is the derivative of the consumption function with respect to
income; similarly, the marginal product, or productivity, of labour is the derivative of the
production function with respect to labour input.

The concept is so important that it underlies most of our understanding of economics. For
example, Adam Smith, seen by many as the founder of the science, struggled to understand
why a non-essential commodity such as a diamond could be worth so much more than
an essential one, such as water. Using marginal analysis, Carl Menger (1840–1921), Léon
Walras (1834–1910), and Stanley Jevons (1835–1882) explained this seeming paradox: if
offered a choice between only water or only diamonds, people would surely choose water,
as it is essential; but, given the water and the diamonds a person already owns, they may
value one extra glass of water very much less than one extra diamond. This fundamental
understanding of optimal decisions led to the three economists to be considered founders
of the “Marginalist” school of economic thought.

E X E R C I S E S F O R S E C T I O N 6 . 4

1. Let C(x) = x2 + 3x + 100 be the cost function of a firm. Show that when x is changed from 100
to 100 + �x, where �x �= 0, the average rate of change per unit of output is

C(100 + �x) − C(100)

�x
= 203 + �x

What is the marginal cost C′(100)? Then use (6.2.6) to find C′(x) and, in particular, C′(100).
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2. If the cost function of a firm is C(x) = --C + cx, give economic interpretations of the parameters c
and --C.

3. If the total saving of a country is a function S(Y) of the national product Y , then S′(Y) is called
the marginal propensity to save, or MPS. Find the MPS for the following functions:

(a) S(Y) = --S + sY (b) S(Y) = 100 + 0.1Y + 0.0002Y2

4. Let T(y) denote the income tax a person is liable to pay, as a function of personal income y. Then
T ′(y) is called the marginal tax rate. Consider the case when T(y) = t(y − a) − b, where t is a
constant number in the interval (0, 1), while a and b are nonnegative constants. Characterize this
tax function by determining its marginal rate.

5. Let x(t) denote the number of barrels of oil left in a well at time t, where time is measured in
minutes. What is the interpretation of the equation x′(0) = −3?

6. The total cost of producing x ≥ 0 units of a commodity is C(x) = x3 − 90x2 + 7500x.

(a) Use the result in Exercise 6.2.10, to compute the marginal cost function C′(x).

(b) For what value of x is the marginal cost the least?

7. (a) A firm’s profit function is π(Q) = 24Q − Q2 − 5. Find the marginal profit, and the value Q∗
of Q which maximizes profits.

(b) A firm’s revenue function is R(Q) = 500Q − 1
3 Q3. Find the marginal revenue.

(c) For the particular cost function C(Q) = −Q3 + 214.2Q2 − 7900Q + 320 700 which was con-
sidered in Example 4.7.1, find the marginal cost.

8. Referring to the definitions given in Example 6.4.4, compute the marginal cost in the following
cases:

(a) C(x) = a1x2 + b1x + c1 (b) C(x) = a1x3 + b1

6.5 A Brief Introduction to Limits
In Section 6.2, we defined the derivative of a function based on the concept of a limit. The
same concept has many other uses in mathematics, as well as in economic analysis, so now
we should take a closer look. Here we give a preliminary definition and formulate some
important rules for limits. In Section 7.9, we will discuss the limit concept more closely.

E X A M P L E 6.5.1 Consider the function F defined by the formula

F(x) = ex − 1
x

where the number e ≈ 2.718 is the base for the natural exponential function that was intro-
duced in Section 4.9. Note that if x = 0, then e0 = 1, and the fraction collapses to the absurd
expression “ 0/0 ” . Thus, the function F is not defined for x = 0. Yet one can still ask what
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happens to F(x) when x is close to 0. Using a calculator, we find the values shown in Table
6.5.1, as well as “ 0/0 ” at h = 0 where F(0) is undefined.

Table 6.5.1 Values of F(x) = (ex − 1)/x when x is close to 0

x −0.1 −0.001 −0.0001 0 0.0001 0.001 0.1

F(x) 0.9516 0.9995 1.0000 “ 0/0 ” 1.0001 1.0005 1.0517

From the table, it appears that as x gets closer and closer to 0, so the fraction F(x)
gets closer and closer to 1. It therefore seems reasonable to assume that F(x) tends to 1 in
the limit as x tends to 0. Indeed, as we argue later, our definition of e is motivated by the
requirement that this limit equal 1. So we write:

lim
x→0

ex − 1
x

= 1 or
ex − 1

x
→ 1 as x → 0

2 1 1 2

3

2

1

y

x

ex  1
x

F (x) 

Figure 6.5.1 y = ex − 1
x

Figure 6.5.1 shows a portion of the graph of F. The function F is defined for all x, except
at x = 0, and limx→0 F(x) = 1. A small circle is used to indicate that the corresponding
point (0, 1) is not in the graph of F.

Suppose, in general, that a function f is defined for all x near a, but not necessarily at
x = a. Then we say that the number A is the limit of f (x) as x tends to a if f (x) tends to A
as x tends to (but is not equal to) a. We write:

lim
x→a

f (x) = A, or f (x) → A as x → a

It is possible, however, that the value of f (x) does not tend to any fixed number as x tends to
a. Then we say that limx→a f (x) does not exist, or that f (x) does not have a limit as x tends
to a.

E X A M P L E 6.5.2 Using a calculator, examine the limit limh→0

√
h + 1 − 1

h
.

Solution: By choosing numbers h close to 0, we find the values in Table 6.5.2.
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Table 6.5.2 Values of F(h) = (
√

h + 1 − 1)/h when h is close to 0

h −0.5 −0.2 −0.1 −0.01 0 0.01 0.1 0.2 0.5

F(h) 0.586 0.528 0.513 0.501 “ 0/0 ” 0.499 0.488 0.477 0.449

These numbers suggest that the desired limit is 0.5.

The limits that we claimed to have found in Examples 6.5.1 and 6.5.2 are both based on
a rather shaky numerical procedure. For instance, in Example 6.5.2, how can we be certain
that our guess is correct? If we chose h values even closer to 0, could the fraction tend to
a limit other than 0.5? Could it even have no limit at all? Further numerical computations
will support our belief that the initial guess is correct, but we can never make a table that
has all the values of h close to 0. Thus, no matter how many numerical computations we
make, on their own they can never establish with certainty what the true limit is.

This illustrates the need to have a rigorous procedure for finding limits, based on a pre-
cise mathematical definition of limit. This precise definition is given in Section 7.9; here
we merely give a preliminary definition which will convey the right idea.

L I M I T

The expression
lim
x→a

f (x) = A (6.5.1)

means that we can make f (x) as close to A as we want by making sure that x is
sufficiently close to, but not equal to, a.

We emphasize:

(a) The number limx→a f (x) depends on how f (x) behaves for values of x close to a, but
not on what happens to f at the precise value x = a. Indeed, when finding limx→a f (x),
we are simply not interested in the value f (a), or even in whether f is defined at a.

(b) When computing limx→a f (x), we must consider values of x on both sides of a.

Rules for Limits
Since limits cannot really be determined merely by numerical computations, we use simple
rules instead. Their validity can be shown later once we have a precise definition of limit as
a mathematical concept. These rules are very straightforward; we have even used a few of
them already in the previous section.

Suppose that f and g are defined as functions of x in a neighbourhood of a (even if not
necessarily at a). Then we have the following rules, written down in a way that makes them
easy to refer to later:9

9 Because of the identities f (x) − g(x) = f (x) + (−1)g(x), and f (x)/g(x) = f (x)(g(x))−1, it is clear
that some of these rules follow from others.
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R U L E S F O R L I M I T S

If lim
x→a

f (x) = A and lim
x→a

g(x) = B, then

lim
x→a

[f (x) ± g(x)] = A ± B (6.5.2)

lim
x→a

[f (x) · g(x)] = A · B (6.5.3)

lim
x→a

f (x)
g(x)

= A
B

, if B �= 0 (6.5.4)

lim
x→a

[f (x)]r = Ar, if Ar is defined and r is a real number (6.5.5)

It is easy to give intuitive explanations for these rules. Suppose that limx→a f (x) = A and
that limx→a g(x) = B. These equations imply that, when x is close to a, then f (x) is close to
A and g(x) is close to B. So intuitively the sum f (x) + g(x) is close to A + B, the difference
f (x) − g(x) is close to A − B, the product f (x)g(x) is close to A · B, and so on.

Rules (6.5.2) and (6.5.3) can be used repeatedly to obtain the new extended rules

lim
x→a

[
f1(x) + f2(x) + · · · + fn(x)

] = lim
x→a

f1(x) + lim
x→a

f2(x) + · · · + lim
x→a

fn(x)

lim
x→a

[
f1(x) · f2(x) · . . . · fn(x)

] = lim
x→a

f1(x) · lim
x→a

f2(x) · . . . · lim
x→a

fn(x)

In words: the limit of a sum is the sum of the limits, and the limit of a product is equal to
the product of the limits.

There are two special cases when the limit is obvious. First, suppose the function f (x) is
equal to the same constant value c for every x. Then, at every point a, one has limx→a c = c.
Second, it is also evident that if f (x) = x, then, again at every point a, one has limx→a f (x) =
limx→a x = a. Combining these two simple limits with the general rules allows easy com-
putation of the limits for certain combinations of functions.

E X A M P L E 6.5.3 Use the rules labelled (6.5.2) to (6.5.5) to compute the following limits:

(a) lim
x→−2

(x2 + 5x) (b) lim
x→4

2x3/2 − √
x

x2 − 15
(c) lim

x→a
Axn

Solution:

(a) By rule (6.5.2), limx→−2(x
2 + 5x) equals limx→−2(x · x) + limx→−2(5 · x). Using

rule (6.5.3) twice, the latter can be computed as

lim
x→−2

x · lim
x→−2

x + lim
x→−2

5 · lim
x→−2

x

It follows that
lim

x→−2
(x2 + 5x) = (−2)(−2) + 5 · (−2) = −6
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(b) lim
x→4

2x3/2 − √
x

x2 − 15
= 2 limx→4 x3/2 − limx→4

√
x

limx→4 x2 − 15
= 2 · 43/2 − √

4
42 − 15

= 2 · 8 − 2
16 − 15

= 14

(c) lim
x→a

Axn = lim
x→a

A · lim
x→a

xn = A ·
(

lim
x→a

x
)n = Aan

This last example was straightforward. Examples 6.5.1 and 6.5.2 were more difficult,
as they involved a fraction whose numerator and denominator both tended to 0. A sim-
ple observation can sometimes help us find such limits, provided that they exist. Because
limx→a f (x) can only depend on the values of f when x is close to, but not equal to a, we
have the following:

E Q U A L I T Y O F L I M I T S

If the functions f and g are equal for all x close to a, but not necessarily at
x = a, then

lim
x→a

f (x) = lim
x→a

g(x) (6.5.6)

whenever either limit exists.

Here are some examples of how this rule works.

E X A M P L E 6.5.4 Compute the limit

lim
x→2

3x2 + 3x − 18
x − 2

Solution: We see that both numerator and denominator tend to 0 as x tends to 2. Because
the numerator 3x2 + 3x − 18 is equal to 0 for x = 2, it has x − 2 as a factor. In fact, 3x2 +
3x − 18 = 3(x − 2)(x + 3). Hence,

f (x) = 3x2 + 3x − 18
x − 2

= 3(x − 2)(x + 3)

x − 2
For x �= 2, we can cancel x − 2 from both numerator and denominator to obtain 3(x + 3).
So the functions f (x) and g(x) = 3(x + 3) are equal for all x �= 2. By (6.5.6), it follows
that

lim
x→2

3x2 + 3x − 18
x − 2

= lim
x→2

3(x + 3) = 3(2 + 3) = 15

E X A M P L E 6.5.5 Compute the limits:

(a) lim
h→0

√
h + 1 − 1

h
(b) lim

x→4

x2 − 16

4
√

x − 8
Solution:

(a) The numerator and the denominator both tend to 0 as h tends to 0, so rule (6.5.4) cannot
be applied. But a little trick saves the day. This trick is to multiply both numerator and
denominator by

√
h + 1 + 1 to get

√
h + 1 − 1

h
=

(√
h + 1 − 1

) (√
h + 1 + 1

)
h

(√
h + 1 + 1

) = h + 1 − 1

h
(√

h + 1 + 1
) = 1√

h + 1 + 1
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where at the last step the common factor h has been cancelled. For all h �= 0 (and h ≥
−1), the given function is equal to 1/(

√
h + 1 + 1), which tends to 1/2 as h → 0. We

conclude that the limit equals 1/2, which confirms the result in Example 6.5.2.

(b) Because x = 4 gives “ 0/0 ” , again we use a trick to factorize the fraction as follows:

x2 − 16

4
√

x − 8
= (x + 4)(x − 4)

4
(√

x − 2
) = (x + 4)

(√
x + 2

) (√
x − 2

)
4

(√
x − 2

) (∗)

The last step uses the factorization x − 4 = (√
x + 2

) (√
x − 2

)
, which is correct for all

x ≥ 0. In the last fraction of (∗), we can cancel
√

x − 2 whenever
√

x − 2 �= 0—that
is, whenever x �= 4. Using (6.5.6) again allows us to take limits of each side of (∗),
so

lim
x→4

x2 − 16

4
√

x − 8
= lim

x→4

1
4
(x + 4)(

√
x + 2) = 1

4
(4 + 4)(

√
4 + 2) = 8

E X E R C I S E S F O R S E C T I O N 6 . 5

1. Determine the following by using the rules for limits:

(a) lim
x→0

(3 + 2x2) (b) lim
x→−1

3 + 2x
x − 1

(c) lim
x→2

(2x2 + 5)3

(d) lim
t→8

(
5t + t2 − 1

8 t3
)

(e) lim
y→0

(y + 1)5 − y5

y + 1
(f) lim

z→−2

1/z + 2
z

2. Examine the following limits numerically by using a calculator:

(a) lim
h→0

1
h
(2h − 1) (b) lim

h→0

1
h
(3h − 1) (c) lim

λ→0

1
λ

(3λ − 2λ)

3. Consider the limit lim
x→1

x2 + 7x − 8
x − 1

.

(a) Examine the limit numerically by making a table of values of the fraction when x is close to 1.

(b) Find the limit precisely by using the method in Example 6.5.4.

4. Compute the following limits, where h �= 0 in (f):

(a) lim
x→2

(x2 + 3x − 5) (b) lim
y→−3

1
y + 8

(c) lim
x→0

x3 − 2x − 1
x5 − x2 − 1

(d) lim
x→0

x3 + 3x2 − 2x
x

(e) lim
h→0

(x + h)3 − x3

h
(f) lim

x→0

(x + h)3 − x3

h

5.SM Compute the following limits:

(a) lim
h→2

1
3

− 2
3h

h − 2
(b) lim

x→0

x2 − 1
x2

(c) lim
t→3

3√32t − 96
t2 − 2t − 3

(d) lim
h→0

√
h + 3 − √

3
h

(e) lim
t→−2

t2 − 4
t2 + 10t + 16

(f) lim
x→4

2 − √
x

4 − x
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6.SM If f (x) = x2 + 2x, compute the following limits:

(a) lim
x→1

f (x) − f (1)

x − 1
(b) lim

x→2

f (x) − f (1)

x − 1
(c) lim

h→0

f (2 + h) − f (2)

h

(d) lim
x→a

f (x) − f (a)

x − a
(e) lim

h→0

f (a + h) − f (a)

h
(f) lim

h→0

f (a + h) − f (a − h)

h

7. [HARDER] Compute the following limits, where in part (c) n denotes any natural number:

(a) lim
x→2

x2 − 2x
x3 − 8

(b) lim
h→0

3√27 + h − 3
h

(Hint: Put u = 3√27 + h.) (c) lim
x→1

xn − 1
x − 1

6.6 Simple Rules for Differentiation
Recall that Eq. (6.2.2) defined the derivative of a function f by the formula

f ′(x) = lim
h→0

f (x + h) − f (x)
h

(∗)

If this limit exists, we say that f is differentiable at x. The process of finding the deriva-
tive of a function is called differentiation. It is useful to think of this as an operation that
transforms one function f into a new function f ′, which is defined for the values of x where
the limit in (∗) exists. If y = f (x), we can use the symbols y′ and dy/dx as alternatives
to f ′(x).

In Section 6.2 we used formula (∗) to differentiate some simple functions. However,
it is difficult and time consuming to apply formula (∗) directly in each separate case.
We now embark on a systematic programme to find general rules which ultimately will
give mechanical and efficient procedures for differentiating very many differentiable
functions specified by a formula, even one that is complicated. We start with some simple
rules.

D E R I V A T I V E O F A C O N S T A N T

If f is a constant function, then its derivative is 0:

f (x) = A =⇒ f ′(x) = 0 (6.6.1)

The result is easy to see geometrically. The graph of f (x) = A is a straight line par-
allel to the x-axis. The tangent to the graph is the line itself, which has slope 0 at each
point, as shown in Fig. 6.6.1. You should now use the definition of f ′(x) to get the same
answer.

The next two rules are also very useful.



�

� �

�

202 C H A P T E R 6 / D I F F E R E N T I A T I O N

S I M P L E R U L E S

When taking derivatives, additive constants disappear while multiplicative con-
stants are preserved. In symbols:

y = A + f (x) =⇒ y′ = f ′(x) (6.6.2)

y = Af (x) =⇒ y′ = Af ′(x) (6.6.3)

f (x) A

y

x

Figure 6.6.1 f (x) = A

y  A  f (x) 

y  f (x) 

y

xx

A

Figure 6.6.2 f (x) and A + f (x)

Rule (6.6.2) is illustrated in Fig. 6.6.2, in the case when A is positive. Recall from
Section 5.1 that the graph of A + f (x) is that of f (x) shifted upwards by A units in the
direction of the y-axis. So the tangents to the two curves y = f (x) and y = f (x) + A at the
same value of x must be parallel. In particular, they must have the same slope. Again you
should try to use the definition of f ′(x) to give a formal proof of this assertion.

Let us prove rule (6.6.3) by using the definition of a derivative. If g(x) = Af (x), then

g(x + h) − g(x) = Af (x + h) − Af (x) = A [f (x + h) − f (x)]

and so
g′(x) = lim

h→0

g(x + h) − g(x)
h

= A lim
h→0

f (x + h) − f (x)
h

= Af ′(x)

For an economic illustration of rule (6.6.3), suppose that R(t) denotes firm A’s sales
revenue at time t. Suppose too that firm B’s revenue S(t) at each time is three times as
large as A’s. Then the absolute growth rate of B’s revenue is three times as large as A’s.
In mathematical notation: S(t) = 3R(t) ⇒ S′(t) = 3R′(t). Nevertheless, the firms’ relative
growth rates R′(t)/R(t) and S′(t)/S(t) are equal.

Using Leibniz’s notation, the three results (6.6.1)–(6.6.3) can be written as follows:

d
dx

A = 0,
d
dx

[A + f (x)] = d
dx

f (x),
d
dx

[Af (x)] = A
d
dx

f (x)
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E X A M P L E 6.6.1 Suppose we know f ′(x). Find the derivatives of:

(a) 5 + f (x) (b) f (x) − 1
2 (c) 4f (x)

(d) − f (x)
5

(e)
Af (x) + B

C
, where C �= 0

Solution: Applying rules (6.6.2) and (6.6.3), we obtain:

(a)
d
dx

[5 + f (x)] = f ′(x)

(b)
d
dx

[
f (x) − 1

2

]
= d

dx

[
−1

2
+ f (x)

]
= f ′(x)

(c)
d
dx

[4f (x)] = 4f ′(x)

(d)
d
dx

[
− f (x)

5

]
= d

dx

[
−1

5
f (x)

]
= −1

5
f ′(x)

(e)
d
dx

[
Af (x) + B

C

]
= d

dx

[
A
C

f (x) + B
C

]
= A

C
f ′(x)

The Power Rule
Few rules of differentiation are more useful than the following:

T H E P O W E R R U L E

Given any constant a, suppose that: either (i) a is a natural number; or else (ii)
x > 0. Then one has

f (x) = xa =⇒ f ′(x) = axa−1 (6.6.4)

For a = 2 and a = 3 rule (6.6.4) was confirmed in Eqs (6.2.4) and (6.2.5). When a
is a natural number n > 3, the rule is most easily confirmed by using rule (6.7.3) for
differentiating products, as shown in Example 6.7.5. When a is a negative integer −n, we
apply to 1/xn the rule for differentiating quotients, as shown in Example 6.7.8. Ultimately,
provided that x > 0, in Section 6.11 we will use the equalities ln(xa) = a ln x and so
xa = exp(a ln x) in order to derive (6.11.7), which states that rule (6.6.4) is valid for all
real powers a.

E X A M P L E 6.6.2 Use rule (6.6.4) to compute the derivatives of:

(a) y = x5 (b) y = 3x8 (c) y = x100

100
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Solution:

(a) y = x5 ⇒ y′ = 5x5−1 = 5x4

(b) y = 3x8 ⇒ y′ = 3 · 8x8−1 = 24x7

(c) y = x100

100
= 1

100
x100 ⇒ y′ = 1

100
· 100x100−1 = x99

E X A M P L E 6.6.3 Assuming each relevant variable is positive, use rule (6.6.4) to compute:

(a)
d
dx

(
x−0.33) (b)

d
dr

(−5r−3) (c)
d

dp
(Apα + B) (d)

d
dx

(
A√

x

)
Solution:

(a)
d
dx

(
x−0.33) = −0.33x−0.33−1 = −0.33x−1.33

(b)
d
dr

(−5r−3) = (−5)(−3)r−3−1 = 15r−4

(c)
d

dp
(Apα + B) = Aαpα−1

(d)
d
dx

(
A√

x

)
= d

dx
(Ax−1/2) = A

(
−1

2

)
x−1/2−1 = −1

2
Ax−3/2 = −A

2x
√

x

E X A M P L E 6.6.4 Let r > 0 denote a household’s income measured in, say, dollars per year. The Pareto
income distribution is described by the formula

f (r) = B
rβ

= Br−β (6.6.5)

where B and β are positive constants. As explained more fully in Section 10.4, f (r)�r is
approximately the proportion of the population whose income is between r and r + �r.
The distribution function (6.6.5) gives a good approximation for incomes above a certain
threshold. For these, empirical estimates of β have usually been in the range 2.4 < β < 2.6.

Using (6.6.4), we find that f ′(r) = −βBr−β−1 = −βB/rβ+1. It follows that f ′(r) < 0,
so f (r) is strictly decreasing.

E X E R C I S E S F O R S E C T I O N 6 . 6

1. Compute the derivatives of the following functions:

(a) y = 5 (b) y = x4 (c) y = 9x10 (d) y = π7

2. Suppose we know g′(x). Find expressions for the derivatives of the following:

(a) 2g(x) + 3 (b) − 1
6 g(x) + 8 (c)

g(x) − 5
3

3. Find the derivatives of the following:

(a) x6 (b) 3x11 (c) x50 (d) −4x−7

(e)
x12

12
(f)

−2
x2

(g)
3
3√x

(h)
−2

x
√

x
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4. Compute the following:

(a)
d
dr

(4πr2) (b)
d
dy

(
Ayb+1) (c)

d
dA

(
1

A2
√

A

)

5. Explain why f ′(a) = lim
x→a

f (x) − f (a)

x − a
. Then use this formula to find f ′(a) when f (x) = x2.

6. For each of the following functions, find a function F(x) having f (x) as its derivative—that is, find
a function that satisfies F′(x) = f (x).10

(a) f (x) = x2 (b) f (x) = 2x + 3 (c) f (x) = xa, for a �= −1

7. [HARDER] The following limits all take the form limh→0[f (a + h) − f (a)]/h. Use your knowledge
of derivatives to find the limits.

(a) lim
h→0

(5 + h)2 − 52

h
(b) lim

s→0

(s + 1)5 − 1
s

(c) lim
h→0

5(x + h)2+10−5x2−10
h

6.7 Sums, Products, and Quotients
If we know f ′(x) and g′(x), then what are the derivatives of f (x) + g(x), f (x) − g(x), f (x) ·
g(x), and f (x)/g(x)? You will probably guess the first two correctly, but are less likely to
be right about the last two, unless you have already learned the answers.

Sums and Differences
Suppose f and g are both defined on a set A of real numbers.

D E R I V A T I V E S O F S U M S A N D D I F F E R E N C E S

If both f and g are differentiable at x, then the sum f + g and the difference
f − g are both differentiable at x, with

F(x) = f (x) ± g(x) =⇒ F′(x) = f ′(x) ± g′(x) (6.7.1)

In Leibniz’s notation:

d
dx

(f (x) ± g(x)) = d
dx

f (x) ± d
dx

g(x)

We can give a formal proof of (6.7.1).

10 Note that you are not asked to find f ′(x).
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Proof: Consider the case when F(x) = f (x) + g(x), The Newton quotient of F is

F(x + h) − F(x)
h

= (f (x + h) + g(x + h)) − (f (x) + g(x))
h

= f (x + h) − f (x)
h

+ g(x + h) − g(x)
h

When h → 0, the last two fractions tend to f ′(x) and g′(x), respectively, and thus the sum
of the fractions tends to f ′(x) + g′(x). Hence,

F′(x) = lim
h→0

F(x + h) − F(x)
h

= f ′(x) + g′(x)

This proves (6.7.1) for the sum. The proof of the result for the difference is similar—only
some of the signs change in an obvious way.

E X A M P L E 6.7.1 Compute
d
dx

(
3x8 + x100

100

)
.

Solution: Using (6.7.1) and the results from Example 6.6.2 gives

d
dx

(
3x8 + x100

100

)
= d

dx
(3x8) + d

dx

(
x100

100

)
= 24x7 + x99

E X A M P L E 6.7.2 Example 6.4.4 used C(x) to denote the cost of producing x units of some commodity
in a given period. If R(x) is the revenue from selling those x units, then the profit function
π(x) = R(x) − C(x) is the difference between the revenue and cost. According to (6.7.1),
π ′(x) = R′(x) − C′(x). In particular, π ′(x) = 0 when R′(x) = C′(x). In words: Marginal
profit is 0 when marginal revenue is equal to marginal cost.

Rule (6.7.1) can be extended to sums of an arbitrary number of terms. For example,

d
dx

[f (x) − g(x) + h(x)] = f ′(x) − g′(x) + h′(x) (6.7.2)

This we can see by writing f (x) − g(x) + h(x) as [f (x) − g(x)] + h(x), then using (6.7.1)
twice. Repeatedly using the rules above, including the power rule (6.6.4), makes it routine
to differentiate any polynomial.

Products
Suppose f (x) = x and g(x) = x2, then (f · g)(x) = x3. Here f ′(x) = 1, g′(x) = 2x, and (f ·
g)′(x) = 3x2. Hence, the derivative of (f · g)(x) is not equal to f ′(x) · g′(x) = 2x. The correct
rule for differentiating a product is a little more complicated.

D E R I V A T I V E O F A P R O D U C T

If the two functions f and g are both differentiable at the point x, then so is the
product F = f · g, and

F(x) = f (x) · g(x) =⇒ F′(x) = f ′(x) · g(x) + f (x) · g′(x) (6.7.3)
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Formulated in words: The derivative of the product of two functions is equal to the
derivative of the first times the second, plus the first times the derivative of the second.
The formula, however, is much easier to digest than these words.

In Leibniz’s notation, the product rule is expressed as:

d
dx

[f (x) · g(x)] =
[

d
dx

f (x)
]

· g(x) + f (x) ·
[

d
dx

g(x)
]

Before demonstrating why (6.7.3) is valid, here are two examples.

E X A M P L E 6.7.3 Find h′(x) when h(x) = (x3 − x) · (5x4 + x2). Confirm the answer by expanding h(x)
as a single polynomial, then differentiating the result.

Solution: We see that h(x) = f (x) · g(x) with f (x) = x3 − x and g(x) = 5x4 + x2. Here
f ′(x) = 3x2 − 1 and g′(x) = 20x3 + 2x. Thus, from (6.7.3),

h′(x) = f ′(x) · g(x) + f (x) · g′(x) = (3x2 − 1) · (5x4 + x2) + (x3 − x) · (20x3 + 2x)

Usually we simplify the answer by expanding to obtain just one polynomial. Routine com-
putations give h′(x) = 35x6 − 20x4 − 3x2.

Alternatively, expanding h(x) as a single polynomial gives h(x) = 5x7 − 4x5 − x3. From
rules (6.6.4) and (6.7.1), its derivative is h′(x) = 35x6 − 20x4 − 3x2.

E X A M P L E 6.7.4 Let D(P) denote the demand function for a product. By selling D(P) units at price P
per unit, the producer earns revenue R(P) given by R(P) = PD(P). Usually D′(P) is neg-
ative because demand goes down when the price increases. According to the product rule
for differentiation,

R′(P) = D(P) + PD′(P) (∗)

For an economic interpretation, suppose P increases by one dollar. The revenue R(P)

changes for two reasons. First, R(P) increases by 1 · D(P), because each of the D(P) units
brings in one dollar more. But a one dollar increase in the price per unit causes demand to
change by D(P + 1) − D(P) units, which is approximately D′(P). The (positive) loss due
to a one dollar increase in the price per unit is then −PD′(P), which must be subtracted
from D(P) to obtain R′(P), as in equation (∗). The resulting expression merely expresses
the simple fact that R′(P), the total rate of change of R(P), is what you gain minus what
you lose.

Now we offer a proof of the rule for differentiating a product:

Proof of (6.7.3): Suppose both f and g are differentiable at x. Then as h tends to 0 the two
Newton quotients

f (x + h) − f (x)
h

and
g(x + h) − g(x)

h

tend to the limits f ′(x) and g′(x), respectively. We must show that the Newton quotient of F
also tends to a limit, which is precisely f ′(x)g(x) + f (x)g′(x). The Newton quotient of F is

F(x + h) − F(x)
h

= f (x + h)g(x + h) − f (x)g(x)
h

(∗∗)
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To proceed further we must somehow transform the right-hand side (RHS) to involve the
Newton quotients of f and g. We use a trick: The numerator of the RHS is unchanged if we
both subtract and add the number f (x)g(x + h). Hence, with a suitable regrouping of terms,
we have

F(x + h) − F(x)
h

= f (x + h)g(x + h) − f (x)g(x + h) + f (x)g(x + h) − f (x)g(x)
h

= f (x + h) − f (x)
h

g(x + h) + f (x)
g(x + h) − g(x)

h

Now, as h tends to 0, the two Newton quotients tend to f ′(x) and g′(x), respectively. More-
over, we can write g(x + h) for h �= 0 as

g(x + h) =
[

g(x + h) − g(x)
h

]
h + g(x)

The product rule for limits and the definition of g′(x) together imply that g(x + h) tends to
g′(x) · 0 + g(x) = g(x) as h tends to 0. It follows that the Newton quotient of F, which is
given by (∗∗), indeed tends to f ′(x)g(x) + f (x)g′(x) as h tends to 0.

To conclude, now that we have seen how to differentiate products of two functions, let us
consider products of more than two functions. For example, suppose that y = f (x)g(x)h(x).
What is y′? We adapt the technique used to show (6.7.2) and put y = [f (x)g(x)]h(x). A
double application of rule (6.7.3) for differentiating the product gives

y′ = [f (x)g(x)]′ h(x) + [f (x)g(x)] h′(x)

= [
f ′(x)g(x) + f (x)g′(x)

]
h(x) + f (x)g(x)h′(x)

= f ′(x)g(x)h(x) + f (x)g′(x)h(x) + f (x)g(x)h′(x)

If none of the three functions is equal to 0, we can write the result as follows:11

(fgh)′

fgh
= f ′

f
+ g′

g
+ h′

h

By analogy, it is easy to write down the corresponding result for a product of n functions.
In words, the relative rate of growth of an n-fold product is the sum of the n relative rates
at which each factor is changing.

The next example uses the rule for differentiating products in order to confirm the power
rule for the case when the power is any natural number.

E X A M P L E 6.7.5 (Power rule for xn). Use mathematical induction to confirm that, for all real x, the
power rule

f (x) = xn =⇒ f ′(x) = nxn−1 (6.7.4)

holds in the case when n is any natural number.

11 If all the functions are positive, this result is easier to show using logarithmic differentiation. See
Section 6.11.
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Solution: As discussed in connection with (6.6.4), the result (6.7.4) holds for n = 1, 2, 3.
Suppose it holds when n = m, for any natural number m. Then the rule for differentiating
the product xm+1 = x · xm implies that

d
dx

xm+1 =
(

d
dx

x
)

xm + x
(

d
dx

xm
)

= 1 · xm + x · mxm−1 = (m + 1)xm

This confirms (6.7.4) for n = m + 1, which is the induction step. The proof is complete.

Quotients
Bearing in mind the complications in the formula (6.7.3) for differentiating a product, one
might be somewhat reluctant to try guessing quickly the corresponding formula for differ-
entiating a quotient.

Suppose that F(x) = f (x)/g(x), where f and g are differentiable in x with g(x) �= 0. In
fact, it is quite easy to find the formula for F′(x) provided we assume that F(x) is differen-
tiable. Indeed F(x) = f (x)/g(x) implies that f (x) = F(x)g(x). Then the product rule gives
f ′(x) = F′(x) · g(x) + F(x) · g′(x). Because we assumed that g(x) �= 0, we can solve this
last equation for F′(x) to obtain

F′(x) = f ′(x) − F(x)g′(x)
g(x)

= f ′(x) − [f (x)/g(x)] g′(x)
g(x)

Multiplying both numerator and denominator of the last fraction by g(x) gives the following
important formula.

D E R I V A T I V E O F A Q U O T I E N T

If f and g are differentiable at x and g(x) �= 0, then F = f /g is differentiable at
x, and

F(x) = f (x)
g(x)

=⇒ F′(x) = f ′(x) · g(x) − f (x) · g′(x)
[g(x)]2

(6.7.5)

In words: The derivative of a quotient is equal to the derivative of the numerator times the
denominator minus the numerator times the derivative of the denominator, this difference
then being divided by the square of the denominator. In simpler notation, we have (f /g)′ =
(f ′g − fg′)/g2.

Note that in the product rule formula, the two functions appear symmetrically, so that
it is easy to remember. In the formula for the derivative of a quotient, the two expressions
in the numerator must be in the right order. Here is one way to check that you have the
order right. Write down the formula you believe is correct. Put g ≡ 1. Then g′ ≡ 0, and
your formula ought to reduce to f ′. If you get −f ′, then your signs are wrong.
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Formula (6.7.5) was derived under the assumption that f /g is differentiable. In Exercise
6.8.13 you are asked to prove that this quotient really is differentiable.

E X A M P L E 6.7.6 Compute F′(x) and F′(4) when

F(x) = 3x − 5
x − 2

Solution: We apply formula (6.7.5) with f (x) = 3x − 5 and g(x) = x − 2. Then f ′(x) = 3
and g′(x) = 1. For x �= 2, we obtain:

F′(x) = 3 · (x − 2) − (3x − 5) · 1
(x − 2)2

= 3x − 6 − 3x + 5
(x − 2)2

= −1
(x − 2)2

To find F′(4), we put x = 4 in the formula for F′(x) to get F′(4) = −1/(4 − 2)2 = −1/4.
Note that F′(x) < 0 for all x �= 2. Hence F is strictly decreasing both for x < 2 and for
x > 2. Note also that F(x) = 3 + 1/(x − 2). Its graph is shown in Fig. 5.1.7.

E X A M P L E 6.7.7 Let C(x) be the total cost of producing x units of a commodity. Then C(x)/x is the

average cost of producing x units. Find an expression for
d
dx

[
C(x)

x

]
.

Solution:
d
dx

[
C(x)

x

]
= C′(x)x − C(x)

x2
= 1

x

[
C′(x) − C(x)

x

]
(6.7.6)

This shows that average cost increases as output increases if and only if the marginal cost
C′(x) exceeds the average cost C(x)/x.12

The formula for the derivative of a quotient becomes more symmetric if we consider
relative rates of change. By using (6.7.5), simple computation shows that

F(x) = f (x)
g(x)

=⇒ F′(x)
F(x)

= f ′(x)
f (x)

− g′(x)
g(x)

(6.7.7)

That is, the relative rate of change of a quotient is equal to the relative rate of change of
the numerator minus the relative rate of change of the denominator.

Compare (6.7.7) with the formula

[f (x)g(x)]′

f (x)g(x)
= f ′(x)

f (x)
+ g′(x)

g(x)

for the relative rate of change of a product.
Let W(t) be the nominal wage rate and P(t) the price index at time t. Then w(t) =

W(t)/P(t) is called the real wage rate. According to (6.7.7),

ẇ(t)
w(t)

= Ẇ(t)
W(t)

− Ṗ(t)
P(t)

12 Similarly, if a basketball team recruits a new player, then the team’s average height increases if
and only if the new player’s height exceeds the team’s old average height.
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That is, the relative rate of change of the real wage rate is equal to the difference between
the relative rates of change of the nominal wage rate and the price index. Thus, if nominal
wages increase at the rate of 5% per year but prices rise by 6% per year, then real wages
fall by 1%. Also, if inflation leads to wages and prices increasing at the same relative rate,
then the real wage rate is constant.

Finally, here is one more version of the power rule (6.6.4):

E X A M P L E 6.7.8 [Power rule for x−n] Suppose that n is any natural number. Prove that the function
f (x) = x−n is differentiable for all x �= 0, with f ′(x) = −nx−n−1.

Solution: We apply the quotient rule to 1/xn. It implies that x−n is differentiable for all
x �= 0, with derivative

d
dx

x−n = d
dx

(
1
xn

)
= 0 · xn − 1 · nxn−1

(xn)2
= −nx−n−1

E X E R C I S E S F O R S E C T I O N 6 . 7

1. Differentiate the following functions w.r.t. x:

(a) x + 1 (b) x + x2 (c) 3x5 + 2x4 + 5

(d) 8x4 + 2
√

x (e) 1
2 x − 3

2 x2 + 5x3 (f) 1 − 3x7

2. Differentiate the following functions w.r.t. x:

(a) 3
5 x2 − 2x7 + 1

8 − √
x (b) (2x2 − 1)(x4 − 1) (c)

(
x5 + 1

x

)
(x5 + 1)

3.SM Differentiate the following functions w.r.t. x:

(a)
1
x6

(b) x−1(x2 + 1)
√

x (c)
1√
x3

(d)
x + 1
x − 1

(e)
x + 1

x5
(f)

3x − 5
2x + 8

(g) 3x−11 (h)
3x − 1

x2 + x + 1

4. Differentiate the following functions w.r.t. x:

(a)

√
x − 2√
x + 1

(b)
x2 − 1
x2 + 1

(c)
x2 + x + 1
x2 − x + 1

5. Let x = f (L) be the output when L units of labour are used as input. Assume that f (0) = 0 and
that f ′(L) > 0, f ′′(L) < 0 for all L > 0. Average productivity is defined by the formula g(L) =
f (L)/L.

(a) Let L∗ > 0. Indicate on a figure the values of f ′(L∗) and g(L∗). Which is larger?

(b) How does the average productivity change when labour input increases?

6.SM For each of the following functions, determine the intervals where it is increasing.

(a) y = 3x2 − 12x + 13 (b) y = 1
4 (x4 − 6x2) (c) y = 2x

x2 + 2
(d) y = x2 − x3

2(x + 1)
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7.SM Find the equations for the tangents to the graphs of the following functions at the specified points:

(a) y = 3 − x − x2 at x = 1 (b) y = x2 − 1
x2 + 1

at x = 1

(c) y =
(

1
x2

+ 1
)

(x2 − 1) at x = 2 (d) y = x4 + 1
(x2 + 1)(x + 3)

at x = 0

8. Consider an oil well where x(t) denotes the rate of extraction in barrels per day and p(t) denotes
the price in dollars per barrel, both at time t. Then R(t) = p(t)x(t) is the revenue in dollars per
day. Find an expression for Ṙ(t), and give it an economic interpretation in the case when p(t)
and x(t) are both increasing. (Hint: R(t) increases for two reasons.)

9.SM Differentiate the following functions w.r.t. t:

(a)
at + b
ct + d

(b) tn
(
a
√

t + b
)

(c)
1

at2 + bt + c

10. If f (x) = √
x, then f (x) · f (x) = x. Differentiate this equation using the product rule in order to

find a formula for f ′(x). Compare this with the result in Exercise 6.2.9.

11. Suppose that a = −n where n is any natural number. By using the relation x−n = 1/xn and the
quotient rule (6.7.5) when x �= 0, prove the power rule stating that y = xa ⇒ y′ = axa−1.

6.8 The Chain Rule
Suppose that y is a function of x, and that z is a function of y. Recall from Section 5.2 that
in this case z is a composite function of x. Now suppose that x changes. This gives rise to a
two-stage “chain reaction”: first, y reacts directly to the change in x; second, z reacts to this
induced change in y. Suppose too that we know the rates of change dy/dx and dz/dy. Then
what is the rate of change dz/dx? It turns out that we can use a very simple rule.

T H E C H A I N R U L E

If z is a differentiable function of y, and y is a differentiable function of x, then
z is a differentiable function of x, and

dz
dx

= dz
dy

· dy
dx

(6.8.1)

The use of Leibniz’s notation in (6.8.1) should make it easier to remember the chain
rule. The reason is that the left-hand side of 6.8.1 is exactly what results if we “cancel” the
two symbols dy on the right-hand side. Of course this is just a mnemonic because dz/dy
and dy/dx are not fractions, but merely symbols for two different derivatives. Also, because
dy is not a number, cancelling it is not defined!13 So in our subsequent discussion we must
be more careful.

13 It has been suggested that “proving” (6.8.1) by cancelling dy is not much better than “proving”
that 64/16 = 4 by cancelling the two sixes: 6\4/16\ = 4.
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An important special case is when z is a power function.

T H E G E N E R A L I Z E D P O W E R R U L E

If z = ya and y is a differentiable function of x, then

z′ = aya−1y′ (6.8.2)

The chain rule is very powerful. Facility in applying it comes from a lot of practice.

E X A M P L E 6.8.1 Find dz/dx when:

(a) z = y5 and y = 1 − x3 (b) z = 10
(x2 + 4x + 5)7

Solution:

(a) Here we can use (6.8.1) directly. Since dz/dy = 5y4 and dy/dx = −3x2, we have

dz
dx

= dz
dy

· dy
dx

= 5y4(−3x2) = −15x2y4 = −15x2(1 − x3)4

Note the last step, where we have used the definition of y to reduce the answer to a
function of x.

(b) Here we write y = x2 + 4x + 5, implying that z is the power function 10y−7. Applying
the generalized power rule (6.8.2) gives

dz
dx

= 10(−7)y−8y′ = −70y−8(2x + 4) = −140(x + 2)

(x2 + 4x + 5)8

After a little training, the intermediate steps become unnecessary. For example, to dif-
ferentiate the composite function

z = ( 1 − x3︸ ︷︷ ︸
y

)5

suggested by part (a) of Example 6.8.1, we can think of z as z = y5, where y = 1 − x3.
We can then differentiate both y5 and 1 − x3 in our heads, and write down z′ =
5(1 − x3)4(−3x2) immediately.

Note that if you differentiate y = x5/5 using the quotient rule, you obtain the right
answer, but commit a small “mathematical crime”. This is because it is much easier to
write y as y = (1/5)x5 to get y′ = (1/5)5x4 = x4. In the same way, it is unnecessarily cum-
bersome to apply the quotient rule to the function given in part (b) of Example 6.8.1. The
generalized power rule is much more effective.
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E X A M P L E 6.8.2 Differentiate the functions:

(a) z = (x3 + x2)50 (b) z =
(

x − 1
x + 3

)1/3

(c) z = √
x2 + 1

Solution:

(a) Introduce the variable y = x3 + x2 so that z = (x3 + x2)50 = y50. Then y′ = 3x2 + 2x
so (6.8.2) gives

z′ = 50y50−1 · y′ = 50(x3 + x2)49(3x2 + 2x)

(b) Again, we use (6.8.2), this time with y = (x − 1)/(x + 3), which implies that

z =
(

x − 1
x + 3

)1/3

= y1/3

First, using the quotient rule gives

y′ = 1 · (x + 3) − (x − 1) · 1
(x + 3)2

= 4
(x + 3)2

So finally

z′ = 1
3

y(1/3)−1 · y′ = 1
3

(
x − 1
x + 3

)−2/3

· 4
(x + 3)2

= 4
3
(x − 1)−2/3(x + 3)−4/3

(c) Note first that z = √
x2 + 1 = (x2 + 1)1/2, so z = y1/2 where y = x2 + 1. Hence,

z′ = 1
2

y(1/2)−1 · y′ = 1
2
(x2 + 1)−1/2 · 2x = x√

x2 + 1

The formulation of the chain rule may appear abstract and difficult. However, when we
interpret the derivatives involved in (6.8.1) as rates of change, the chain rule becomes rather
intuitive, as the next example from economics will indicate.

E X A M P L E 6.8.3 The demand x for a commodity depends on price p, which we suppose depends on
time t. Then x is a composite function of t. Applying the chain rule yields

dx
dt

= dx
dp

· dp
dt

Suppose, for instance, that the demand for butter decreases by 5 000 pounds if the price
goes up by one dollar per pound. So dx/dp ≈ −5 000. Suppose further that the price per
pound increases by five cents per month, so dp/dt ≈ 0.05. What is the decrease in demand
in pounds per month?

Solution: Because the price per pound increases by $0.05 per month, and the demand
decreases by 5000 pounds for every dollar increase in the price, the demand decreases
by approximately 5000 · 0.05 = 250 pounds per month. This means that dx/dt ≈ −250,
measured in pounds per month.
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The next example uses the chain rule several times.

E X A M P L E 6.8.4 Find x′(t) when x(t) = 5(1 + √
t3 + 1 )

25
.

Solution: The initial step is to let x(t) = 5u25, where u = 1 + √
t3 + 1. Then

x′(t) = 5 · 25u24 du
dt

= 125u24 du
dt

(∗)

The new feature in this example is that we cannot write down du/dt at once: we must use
the chain rule a second time. Let u = 1 + √

v = 1 + v1/2, where v = t3 + 1. Then

du
dt

= 1
2v(1/2)−1 · dv

dt
= 1

2v−1/2 · 3t2 = 1
2 (t3 + 1)−1/2 · 3t2 (∗∗)

Finally, substituting (∗∗) in (∗) gives

x′(t) = 125
(

1 +
√

t3 + 1
)24 · 1

2 (t3 + 1)−1/2 · 3t2

Suppose, as in the last example, that x is a function of u, u is a function of v, and v is
in turn a function of t. Then x is a composite function of t, and the chain rule can be used
twice to obtain

dx
dt

= dx
du

· du
dv

· dv

dt

This is precisely the formula used in the Example 6.8.4. Again the notation is suggestive
because the it is exactly what results if we “cancel” both du and dv on the right-hand side.

An Alternative Formulation of the Chain Rule
Although Leibniz’s notation makes it very easy to remember the chain rule, it suffers from
the defect of not specifying where each derivative is evaluated. We remedy this by introduc-
ing names for the functions involved. So let y = f (x) and z = g(y). Then z can be written
as

z = (g ◦ f )(x) = g(f (x))

Here z is a composite function of x, as considered in Section 5.2, with g as the exterior
function and f as the inner function.

T H E C H A I N R U L E

Suppose that f is differentiable at x0, and g is differentiable at y0 = f (x0). Then
the composite function F = g ◦ f is differentiable at x0, and

F′(x0) = g′(y0)f
′(x0) = g′(f (x0))f

′(x0) (6.8.3)

In words: to differentiate a composite function, first differentiate the exterior function
w.r.t. the inner function, and then multiply by the derivative of the inner function.
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E X A M P L E 6.8.5 Find the derivative of the compound function F(x) = g(f (x)) at x0 = −3 in case
g(y) = y3 and f (x) = 2 − x2.

Solution: In this case one has g′(y) = 3y2 and f ′(x) = −2x. So according to (6.8.3), one
has F′(−3) = g′(f (−3)) f ′(−3). Now f (−3) = 2 − (−3)2 = 2 − 9 = −7; f ′(−3) = 6;
and g′(f (−3)) = g′(−7) = 3(−7)2 = 3 · 49 = 147. So F′(−3) = g′(f (−3)) f ′(−3) =
147 · 6 = 882.

Finally, we prove that the Chain Rule is correct. Using this alternative formulation, it is
tempting to argue as follows:

Faulty “proof” of (6.8.3): We use simplified notation as above, with z = F(x) = g(y)
and y = f (x). Now define �z = F(x) − F(x0), as well as �y = y − y0 = f (x) − f (x0), and
�x = x − x0. Since the function f is continuous, one has �y → 0 as x → x0, and so

F′(x0) = lim
x→x0

F(x) − f (x0)

x − x0
= lim

�x→0

�z
�x

= lim
�x→0

(
�z
�y

· �y
�x

)

= lim
�y→0

�z
�y

· lim
�x→0

�y
�x

= dz
dy

· dy
dx

= g′(y0)f
′(x0)

There is a catch, however, because �y may be equal to 0 for values of x arbitrarily close
to x0, and then �z/�y will be undefined. A correct argument goes as follows:

Correct proof of (6.8.3): Define auxiliary functions ϕ and γ as:

ϕ(x) =
⎧⎨
⎩

f (x) − f (x0)

x − x0
if x �= x0

f ′(x0) if x = x0

and γ (y) =
⎧⎨
⎩

g(y) − g(y0)

y − y0
if y �= y0

g′(y0) if y = y0

Then the hypotheses used in (6.8.3) imply that limx→x0
ϕ(x) = ϕ(x0) and limy→y0

γ (y) =
γ (y0). Moreover, for all x in an interval around x0 and all y in an interval around y0, one has

f (x) − f (x0) = ϕ(x)(x − x0) and g(y) − g(y0) = γ (y)(y − y0)

For all h close to 0, therefore, one has

F(x0 + h) − F(x0) = g(f (x0 + h)) − g(f (x0))

= γ (f (x0 + h)) · [f (x0 + h) − f (x0)]

= γ (f (x0 + h)) · ϕ(x0 + h) · h

It follows that

F′(x0) = lim
h→0

F(x0 + h) − F(x0)

h
= γ (f (x0)) · ϕ(x0) = g′(f (x0))f

′(x0)
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E X E R C I S E S F O R S E C T I O N 6 . 8

1. Use the chain rule (6.8.1) to find dz/dx for the following:

(a) z = 5y4, where y = 1 + x2 (b) z = y − y6, where y = 1 + 1
x

x

2. Compute the following:

(a) dY/dt when Y = −3(V + 1)5 and V = 1
3 t3.

(b) dK/dt when K = ALa and L = bt + c, where A, a, b, and c are positive constants.

3.SM Find the derivatives of the following functions, where a, p, q, and b are constants:

(a) y = 1
(x2 + x + 1)5

(b) y =
√

x + √
x + √

x (c) y = xa(px + q)b

4. If Y is a function of K, and K is a function of t, find the formula for the derivative of Y with
respect to t at t = t0.

5. If Y = F(K) and K = h(t), find the formula for dY/dt.

6. Consider the demand function x = b − √
ap − c , where a, b, and c are positive constants, x is

the quantity demanded, and the price p satisfies p > c/a. Compute dx/dp.

7. Find a formula for h′(x) when:

(a) h(x) = f (x2) (b) h(x) = g(xnf (x))

8. Let s(t) be the distance in kilometres a car goes in t hours. Let B(s) be the number of litres of
fuel the car uses to go s kilometres. Provide an interpretation of the function b(t) = B (s(t)), and
find a formula for b′(t).

9. Suppose that C = 20q − 4q
(
25 − 1

2 x
)1/2

, where q is a constant and x < 50. Find dC/dx.

10. Differentiate each of the following in two different ways:

(a) y = (x4)5 = x20 (b) y = (1 − x)3 = 1 − 3x + 3x2 − x3

11. Suppose you invest €1 000 at p% interest per year. Let g(p) denote how many euros you will
have after 10 years.

(a) Give economic interpretations of g(5) ≈ 1629 and g′(5) ≈ 155.

(b) To check the numbers in (a), find a formula for g(p), then compute g(5) and g′(5).

12. If f is differentiable at x, find expressions for the derivatives of the following functions:

(a) x + f (x) (b) [f (x)]2 − x (c) [f (x)]4 (d) x2f (x) + [f (x)]3

(e) xf (x) (f)
√

f (x) (g)
x2

f (x)
(h)

[f (x)]2

x3
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13.SM (a) Use a direct argument to show that the function ϕ(x) = 1/x is differentiable for all x �= 0.

(b) Assuming that the functions f and g are both differentiable at x with g(x) �= 0, use (a) to
prove that the functions 1/g(x) and f (x)/g(x) are both differentiable at x.

6.9 Higher-Order Derivatives
Let f (x) be a differentiable function of x. The derivative f ′(x) is again a function of x, called
the first derivative of f . If f ′(x) is also differentiable with respect to x, then we can differ-
entiate f ′ in turn. The result (f ′)′ is called the second derivative, written more concisely as
f ′′. We use f ′′(x) to denote the second derivative of f evaluated at the particular point x.

E X A M P L E 6.9.1 Find f ′(x) and f ′′(x) when f (x) = 2x5 − 3x3 + 2x.

Solution: The rules for differentiating polynomials imply that f ′(x) = 10x4 − 9x2 + 2.
Then we differentiate each side of this equality to get f ′′(x) = 40x3 − 18x.

The different forms of notation for the second derivative are analogous to those for the
first derivative. For example, we write y′′ = f ′′(x) in order to denote the second derivative of
y = f (x). The Leibniz notation for the second derivative is also used. In the notation dy/dx
or df (x)/dx for the first derivative, we interpreted the symbol d/dx as an operator indicating
that what follows is to be differentiated with respect to x. The second derivative is obtained
by using the operator d/dx twice: f ′′(x) = (d/dx)(d/dx)f (x). We usually think of this as
f ′′(x) = (d/dx)2f (x), and so write

f ′′(x) = d2f (x)
dx2

or y′′ = d2y
dx2

Pay special attention to where the superscripts are placed! Of course, the notation y′′ for the
second derivative must change if the variable involved has a name other than y.

E X A M P L E 6.9.2 Find:

(a) Y ′′ when Y = AKa is a function of K > 0, with A and a as constants.

(b) d2L/dt2 when L = t
t+1 , and t ≥ 0.

Solution:

(a) Differentiating Y = AKa once with respect to K gives Y ′ = AaKa−1. Differentiating a
second time with respect to K yields Y ′′ = Aa(a − 1)Ka−2.

(b) First, use the quotient rule to find that

dL
dt

= d
dt

(
t

t + 1

)
= 1 · (t + 1) − t · 1

(t + 1)2
= (t + 1)−2

Then,
d2L
dt2

= d
dt

(t + 1)−2 = −2(t + 1)−3 = −2
(t + 1)3



�

� �

�

S E C T I O N 6 . 9 / H I G H E R - O R D E R D E R I V A T I V E S 219

Third and Higher Derivatives
If y = f (x), the derivative of y′′ = f ′′(x) w.r.t x is called the third derivative, customarily
denoted by y′′′ = f ′′′(x). It is notationally cumbersome to continue using more and more
primes to indicate repeated differentiation, so the fourth derivative is usually denoted by
y(4) = f (4)(x).14 The same derivative can be expressed as d4y/dx4. In general, let

y(n) = f (n)(x) or
dny
dxn

denote the nth derivative of f at x. The natural number n is called the order of the derivative.
For example, f (6)(x0) denotes the sixth derivative of f calculated at x0, found by differenti-
ating six times.

E X A M P L E 6.9.3 Compute all the derivatives up to and including order 4 of

f (x) = 3x−1 + 6x3 − x2

where x �= 0.

Solution: Repeated differentiation gives

f ′(x) = −3x−2 + 18x2 − 2x,

f ′′′(x) = −18x−4 + 36,

f ′′(x) = 6x−3 + 36x − 2

f (4)(x) = 72x−5

E X E R C I S E S F O R S E C T I O N 6 . 9

1. Compute the second derivatives of:

(a) y = x5 − 3x4 + 2 (b) y = √
x (c) y = (1 + x2)10

2. Find d2y/dx2 when y = √
1 + x2 = (

1 + x2
)1/2

.

3. Compute:

(a) y′′ for y = 3x3 + 2x − 1 (b) Y ′′′ for Y = 1 − 2x2 + 6x3

(c) d3z/dt3 for z = 120t − (1/3)t3 (d) f (4)(1) for f (z) = 100z−4

4. Find g′′(2) when g(t) = t2

t − 1
.

5. Find formulas for y′′ and y′′′ when y = f (x)g(x).

6. Find d2L/dt2 when L = 1/
√

2t − 1.

14 We put the number 4 in parentheses in order to avoid confusion with y4, the fourth power of y.
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7. If u(y) denotes an individual’s utility of having income y, then R = −yu′′(y)/u′(y) is the coefficient
of relative risk aversion.15 Compute R for the following utility functions, where A1, A2, and ρ are
positive constants with ρ �= 1, and we assume that y > 0:

(a) u(y) = A1y (b) u(y) = √
y (c) u(y) = A1 − A2y−2 (d) u(y) = A1 + A2

y1−ρ

1 − ρ

8. The US Secretary of Defense claimed in 1985 that Congress had reduced the defence budget.
Representative Gray pointed out that the budget had not been reduced: instead, Congress had
only reduced the rate of increase. If P denotes the size of the defence budget, translate these two
statements into equivalent statements about the signs of P′ and P′′.

9. Sentence in a newspaper: “The rate of increase of bank loans is increasing at an increasing rate.” If
L(t) denotes total bank loans at time t, represent the sentence by a mathematical statement about
the sign of an appropriate derivative of L.

6.10 Exponential Functions
Exponential functions were introduced in Section 4.9. They were shown to be well suited
to describing certain economic phenomena such as growth and compound interest. In par-
ticular we introduced the natural exponential function f (x) = ex, where e ≈ 2.71828, as
well as the alternative notation exp x.

Now we explain why this particular exponential function deserves to be called “natural”.
Consider the Newton quotient of f (x) = ex, which is

f (x + h) − f (x)
h

= ex+h − ex

h
(∗)

Now, if we can establish that this Newton quotient tends to a limit as h tends to 0, it will
follow that f (x) = ex is differentiable and that f ′(x) is precisely equal to this limit.

To simplify the right-hand side of (∗), we make use of the rule ex+h = ex · eh to write
ex+h − ex as ex(eh − 1). So (∗) can be rewritten as

f (x + h) − f (x)
h

= ex · eh − 1
h

(∗∗)

We now evaluate the limit of the right-hand side as h → 0. Note that ex is a constant when
we vary only h. As for (eh − 1)/h, in Example 6.5.1 we saw that this fraction seems to tend
to 1 as h tends to 0, although in that example the variable was x and not h. For now, let us
simply accept that limh→0

1
h (eh − 1) = 1. Then taking the limit of (∗∗) as h → 0 gives:

D E R I V A T I V E O F T H E N A T U R A L E X P O N E N T I A L F U N C T I O N

f (x) = ex =⇒ f ′(x) = ex (6.10.1)

15 By contrast, RA = −u′′(y)/u′(y) is the degree of absolute risk aversion.
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Thus the natural exponential function f (x) = ex has the remarkable property that its
derivative is equal to the function itself. This is the main reason why this function appears so
often in mathematics and its applications. An implication of (6.10.1) is that differentiating
its right-hand side again repeatedly yields f ′′(x) = ex first, and then f (n)(x) = ex for all
natural numbers n.

Because ex > 0 for all x, both f ′(x) and f ′′(x) are positive. Hence, both f and f ′ are strictly
increasing. This confirms the convex shape indicated in Fig. 4.9.3, where the graph curves
with its hollow side upwards. (See Chapter 8 for more about convex functions.)

Combining (6.10.1) with the other rules of differentiation, we can differentiate many
expressions involving the exponential function ex.

E X A M P L E 6.10.1 Find the first and second derivatives of:

(a) y = x3 + ex (b) y = x5ex (c) y = ex/x

Solution:

(a) We find that y′ = 3x2 + ex and y′′ = 6x + ex.

(b) First, using the product rule gives y′ = 5x4ex + x5ex = x4ex(5 + x). To find y′′, we dif-
ferentiate y′ = 5x4ex + x5ex once more to obtain

y′′ = 20x3ex + 5x4ex + 5x4ex + x5ex = x3ex(x2 + 10x + 20)

(c) Applying the quotient rule to y = ex

x
yields y′ = exx − ex · 1

x2
= ex(x − 1)

x2
. Differenti-

ating y′ = exx − ex

x2
once more w.r.t. x gives

y′′ = (exx + ex − ex)x2 − (exx − ex)2x
(x2)2

= ex(x2 − 2x + 2)

x3

Next we explore some of the rather complicated possibilities that emerge when (6.10.1)
is used in combination with the chain rule (6.8.1). First, note that y = eg(x) can be re-written
as y = eu, where u = g(x). Then y′ = eu · u′ and u′ = g′(x), so that:

y = eg(x) =⇒ y′ = eg(x)g′(x) (6.10.2)

E X A M P L E 6.10.2 Differentiate the functions:

(a) y = e−x (b) y = xpeax, where p and a are constants (c) y = √
e2x + x

Solution:

(a) Direct use of rule (6.10.2) gives y = e−x ⇒ y′ = e−x · (−1) = −e−x. This derivative
is always negative, so the function is strictly decreasing. Furthermore, one has y′′ =
e−x > 0, so the negative slope increases toward 0. This agrees with the graph shown in
Fig. 4.9.3.
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(b) The derivative of eax is aeax. Hence, using the product rule gives:

y′ = pxp−1eax + xpaeax = xp−1eax(p + ax)

(c) Let y = √
e2x + x = √

u, with u = e2x + x. Then u′ = 2e2x + 1, where we used the
chain rule. Using the chain rule again, we obtain

y =
√

e2x + x = √
u =⇒ y′ = 1

2
√

u
· u′ = 2e2x + 1

2
√

e2x + x

E X A M P L E 6.10.3 For each of the following functions, find the intervals where they are increasing:

(a) y = ex/x (b) y = x4e−2x (c) y = xe−√
x

Solution:

(a) According to Example 6.10.1(c), y′ = ex(x − 1)/x2, so y′ ≥ 0 when x ≥ 1. Thus y is
increasing in [1, ∞).

(b) From Example 6.10.2(b), with p = 4 and a = −2, we have y′ = x3e−2x(4 − 2x). A sign
diagram reveals that y is increasing in [0, 2].

(c) The function is only defined for x ≥ 0. Using the chain rule, for x > 0 the derivative of
e−√

x is −e−√
x/2

√
x, so by the product rule, the derivative of y = xe−√

x is

y′ = 1 · e−√
x − xe−√

x

2
√

x
= e−√

x
(

1 − 1
2

√
x
)

where the second equality results from the fact that x/
√

x = √
x. It follows that y is

increasing when x > 0 and 1 − 1
2

√
x ≥ 0. Because y = 0 when x = 0 and y > 0 when

x > 0, it follows that y is increasing in [0, 4].

A common error when differentiating exponential functions is to believe that the deriva-
tive of ex w.r.t. x is “xex−1”. Actually, this is the derivative of ex w.r.t. e. The exponential
function ex of x has been confused with the power function ex of e!

P R O P E R T I E S O F T H E N A T U R A L E X P O N E N T I A L F U N C T I O N

The natural exponential function

f (x) = exp(x) = ex

is differentiable and strictly increasing. In fact, f ′(x) = f (x) = ex. The follow-
ing properties hold for all exponents s and t:

eset = es+t, es/et = es−t, and (es)t = est

Moreover,
lim

x→−∞ ex = 0 and lim
x→∞ ex = ∞ (6.10.3)
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To justify the statements in (6.10.3), we extend the concept of limit introduced in Section
6.5 to allow limits as x → ±∞, and so as |x| becomes indefinitely large. The first claim in
(6.10.3) holds because if 0 < h < 1, then no matter how small h may be, one will have
0 < ex < h for all x < ln h < 0. Similarly, the second claim in (6.10.3) holds because no
matter how large y may be, one will have ex > y for all x > ln y.

Differentiating other Exponential Functions
So far we have considered only the derivative of ex, where e = 2.71828 . . . . How can we dif-
ferentiate y = ax, where a is any other positive constant? According to definition (4.10.1),
we have a = eln a. So, using the general property (er)s = ers, we have the formula

ax = (
eln a)x = e(ln a)x

This shows that in functions involving the expression ax, we can just as easily work with
the special exponential function ebx, where b is a constant equal to ln a. In particular, we
can differentiate ax by differentiating ex ln a. According to (6.10.2), with g(x) = (ln a)x, we
have

y = ax =⇒ y′ = ax ln a (6.10.4)

E X A M P L E 6.10.4 Find the derivatives of: (a) f (x) = 10−x; and (b) g(x) = x23x

Solution:

(a) Rewrite f (x) = 10−x = 10u, where u = −x. Using (6.10.4) and the chain rule gives
f ′(x) = −10−x ln 10.

(b) Rewrite y = 23x = 2u, where u = 3x. By the chain rule,

y′ = (2u ln 2)u′ = (23x ln 2) · 3 = 3 · 23x ln 2

Applying the product rule to g(x) = x23x = xy, we obtain

g′(x) = 1 · 23x + x · 3 · 23x ln 2 = 23x(1 + 3x ln 2)

E X E R C I S E S F O R S E C T I O N 6 . 1 0

1. Find the first-order derivatives w.r.t. x of:

(a) y = ex + x2 (b) y = 5ex − 3x3 + 8 (c) y = x
ex

(d) y = x + x2

ex + 1
(e) y = −x−5−ex (f) y = x3ex (g) y = exx−2 (h) y = (x + ex)2

2. Find the first derivatives w.r.t. t of the following functions, where a, b, c, p, and q are constants:

(a) x = (a + bt + ct2)et (b) x = p + qt3

tet
(c) x = (at + bt2)2

et

3. Find the first and second derivatives of:

(a) y = e−3x (b) y = 2ex3
(c) y = e1/x (d) y = 5e2x2−3x+1
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4.SM Find the intervals where the following functions are increasing:

(a) y = x3 + e2x (b) y = 5x2e−4x (c) y = x2e−x2

5. Find the intervals where the following functions are increasing:

(a) y = x2/e2x (b) y = ex − e3x (c) y = e2x

x + 2

6. Find:

(a)
d
dx

(
e(ex)

)
(b)

d
dt

(
et/2 + e−t/2) (c)

d
dt

(
1

et + e−t

)
(d)

d
dz

(
ez3 − 1

)1/3

7. Differentiate:

(a) y = 5x (b) y = x2x (c) y = x22x2
(d) y = ex10x.

6.11 Logarithmic Functions
In Section 4.10 we introduced the natural logarithmic function, g(x) = ln x. It is defined for
all x > 0 and has the graph shown in Fig. 4.10.2.

According to Section 5.3, this function has f (x) = ex as its inverse. If we assume that
g(x) = ln x has a derivative for all x > 0, we can easily find that derivative. To do so, con-
sider the equation defining g(x) = ln x, which is

eg(x) = x (∗)

Using (6.10.2), we differentiate each side of (∗) w.r.t. x, which gives eg(x)g′(x) = 1. Since
eg(x) = x, this implies that xg′(x) = 1, and so g′(x) = 1/x. This gives us:

D E R I V A T I V E O F T H E N A T U R A L L O G A R I T H M I C F U N C T I O N

g(x) = ln x =⇒ g′(x) = 1
x

(6.11.1)

For all x > 0, this gives g′(x) > 0, implying that g(x) is strictly increasing. Note more-
over that g′′(x) = −1/x2, which is less than 0 for all x > 0, so that g(x) is concave—that is,
it curves with its hollow side downwards. (See Chapter 8 for more about concave functions.)
This confirms the shape of the graph in Fig. 4.10.2. In fact, the function ln x grows quite
slowly: for example, ln x does not pass the value 10 until x > 22026, because ln x = 10
gives x = e10 ≈ 22026.5.

E X A M P L E 6.11.1 Compute y′ and y′′ when:

(a) y = x3 + ln x (b) y = x2 ln x (c) y = ln x
x
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Solution:

(a) We find easily that y′ = 3x2 + 1/x. Furthermore, y′′ = 6x − 1/x2.

(b) The product rule gives y′ = 2x ln x + x2(1/x) = 2x ln x + x. Differentiating the last
expression w.r.t. x gives y′′ = 2 ln x + 2x(1/x) + 1 = 2 ln x + 3.

(c) Here we use the quotient rule:

y′ = (1/x)x − (ln x) · 1
x2

= 1 − ln x
x2

Differentiating again yields

y′′ = −(1/x)x2 − (1 − ln x)2x
(x2)2

= 2 ln x − 3
x3

We often need to consider composite functions involving natural logarithms. Because
ln u is defined only when u > 0, a composite function of the form y = ln h(x) will only be
defined for values of x satisfying h(x) > 0.

Combining the rule for differentiating ln x with the chain rule allows us to differenti-
ate many different types of function. Suppose, for instance, that y = ln h(x), where h(x)
is differentiable and positive. By the chain rule, y = ln u with u = h(x) implies that y′ =
(1/u)u′ = (1/h(x)) h′(x), so:

D E R I V A T I V E O F T H E N A T U R A L L O G A R I T H M O F A F U N C T I O N

If h(x) > 0 for all x, then

y = ln h(x) =⇒ y′ = h′(x)
h(x)

(6.11.2)

Note that if N(t) is a function of t satisfying N(t) > 0 for all t, then the derivative of its
natural logarithm is

d
dt

ln N(t) = 1
N(t)

dN(t)
dt

= Ṅ(t)
N(t)

This is the relative rate of growth of N(t).

E X A M P L E 6.11.2 Find the domains of the following functions and then compute their derivatives:

(a) y = ln(1 − x) (b) y = ln(4 − x2) (c) y = ln
(

x − 1
x + 1

)
− x

4

Solution:

(a) ln(1 − x) is defined if 1 − x > 0, that is if x < 1. To find its derivative, we use (6.11.2),
with h(x) = 1 − x. Then h′(x) = −1, and

y′ = −1
1 − x

= 1
x − 1
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(b) ln(4 − x2) is defined if 4 − x2 > 0, which is satisfied if and only if −2 < x < 2. On the
interval (−2, 2), formula (6.11.2) gives

y′ = −2x
4 − x2

= 2x
x2 − 4

(c) We can write y = ln u − 1
4 x, where u = (x − 1)/(x + 1). For the function to be defined,

we require that u > 0. A sign diagram shows that this is satisfied if x < −1 or x > 1,
or iff |x| > 1. Using (6.11.2), we obtain

y′ = u′

u
− 1

4

where
u′ = 1 · (x + 1) − 1 · (x − 1)

(x + 1)2
= 2

(x + 1)2

We conclude that

y′ = 2(x + 1)

(x + 1)2(x − 1)
− 1

4
= 9 − x2

4(x2 − 1)
= (3 − x)(3 + x)

4(x − 1)(x + 1)

E X A M P L E 6.11.3 Find the intervals where the following functions are increasing:

(a) y = x2 ln x (b) y = 4x − 5 ln(x2 + 1) (c) y = 3 ln(1 + x) + x − 1
2 x2

Solution:

(a) The function is defined for x > 0, and

y′ = 2x ln x + x2(1/x) = x(2 ln x + 1)

Hence, y′ ≥ 0 when ln x ≥ −1/2, that is, when x ≥ e−1/2. That is, y is increasing in the
interval [e−1/2, ∞).

(b) We find that

y′ = 4 − 10x
x2 + 1

= 4(x − 2)
(
x − 1

2

)
x2 + 1

A sign diagram reveals that y is increasing in each of the intervals (−∞, 1
2 ] and [2, ∞).

(c) The function is defined for x > −1, and

y′ = 3
1 + x

+ 1 − x = (2 − x)(2 + x)
x + 1

A sign diagram reveals that y is increasing in (−1, 2].

P R O P E R T I E S O F T H E N A T U R A L L O G A R I T H M I C F U N C T I O N

The natural logarithmic function

g(x) = ln x
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is differentiable and strictly increasing in (0, ∞). In fact,

g′(x) = 1/x, g′′(x) = −1/x2

By definition, eln x = x for all x > 0, and ln ex = x for all x. The following
properties hold for all x > 0 and all y > 0:

ln(xy) = ln x + ln y, ln(x/y) = ln x − ln y, and ln xp = p ln x

Moreover,
ln x → −∞ as x → 0 from the right (6.11.3)

and
lim

x→∞ ln x = ∞ (6.11.4)

The limits in (6.11.3) and (6.11.4) can be established by adapting the arguments we used
to justify (6.10.3). Indeed, given any y < 0, no matter how large |y| may be, one has ln x < y
whenever 0 < x < ey. This justifies (6.11.3). Also, given any z > 0, no matter how large,
one has ln x > z for all x > ez, which justifies (6.11.4).

Logarithmic Differentiation
When differentiating an expression containing products, quotients, roots, powers, and com-
binations of these, it is often an advantage to use logarithmic differentiation. The method
is illustrated by two examples:

E X A M P L E 6.11.4 Find the derivative of y = xx defined for all x > 0.

Solution: Recall that the power rule of differentiation, which is y = xa ⇒ y′ = axa−1,
requires the exponent a to be a constant. On the other hand the rule y = ax ⇒ y′ = ax ln a
requires that the base a is constant. In the expression xx both the exponent and the base vary
with x, so neither of these two rules can be used.

Instead we begin by taking the natural logarithm of each side, which gives ln y = x ln x.
Differentiating each side w.r.t. x gives y′/y = 1 · ln x + x(1/x) = ln x + 1. Multiplying by
y = xx gives us the final result:

y = xx =⇒ y′ = xx(ln x + 1)

E X A M P L E 6.11.5 Find the derivative of y = [A(x)]α[B(x)]β [C(x)]γ , where α, β, and γ are constants,
whereas A, B, and C are functions with positive values for all x > 0.

Solution: First, take the natural logarithm of each side to obtain

ln y = α ln(A(x)) + β ln(B(x)) + γ ln(C(x))
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Next, differentiate w.r.t. x to obtain

y′

y
= α

A′(x)
A(x)

+ β
B′(x)
B(x)

+ γ
C′(x)
C(x)

Multiplying by y, we have

y′ =
[
α

A′(x)
A(x)

+ β
B′(x)
B(x)

+ γ
C′(x)
C(x)

]
[A(x)]α[B(x)]β [C(x)]γ

In Eq. (4.10.5), we showed that the logarithm of x in the system with base a, denoted
by loga x, satisfies loga x = (1/ ln a) ln x. Differentiating each side of this equality w.r.t. x,
it follows immediately that:

y = loga x ⇒ y′ = 1
ln a

1
x

(6.11.5)

Approximating the Number e
If g(x) = ln x, then g′(x) = 1/x, and in particular g′(1) = 1. To derive the next equality, we
use in turn: (i) the definition of g′(1); (ii) the fact that ln 1 = 0; (iii) the rule ln xp = p ln x.
The result is

1 = g′(1) = lim
h→0

ln(1 + h) − ln 1
h

= lim
h→0

1
h

ln(1 + h) = lim
h→0

ln(1 + h)1/h

Because ln(1 + h)1/h tends to 1 as h tends to 0 and the exponential mapping is continuous,
it follows that (1 + h)1/h = exp

[
ln(1 + h)1/h

]
itself must tend to exp 1 = e. That is,

E U L E R ’ S N U M B E R e

e = lim
h→0

(1 + h)1/h (6.11.6)

To illustrate this limit, Table 6.11.1 gives some function values that were computed using
a calculator. These numbers seem to confirm that the decimal expansion 2.718281828 . . .

that Eq. (4.9.2) gave for e starts out correctly. Of course, this by no means proves that the
limit exists. But it does suggest that closer and closer approximations to e can be obtained
by choosing h smaller and smaller.16

Table 6.11.1 Values of (1 + h)1/h as h > 0 gets smaller and smaller

h 1 1/2 1/10 1/1000 10−6 10−10

(1 + h)1/h 2 2.25 2.5937 . . . 2.7169 . . . 2.7182805 . . . 2.7182818283 . . .

16 Example 7.5.4 provides a much better way to approximate ex, for general real x.
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Power Functions
In Section 6.6 we claimed that, for all real numbers a and all x > 0 one has

f (x) = xa =⇒ f ′(x) = axa−1 (6.11.7)

So far this important rule, stated earlier as (6.6.4), has only been properly established when
the power a is an integer, in which case it holds for all real x when a > 0, and for all x �= 0
when a ≤ 0.

More generally, suppose that x and a are both real numbers, with x > 0. Then, because
x = exp(ln x), we have xa = [exp(ln x)]a = exp(a ln x). Using the chain rule with y = a ln x
to differentiate, we get

d
dx

(xa) = d
dx

exp(a ln x) = d(exp(y))
dy

· dy
dx

= exp(y) · a
x

= xa a
x

= axa−1

So, even when the a is not an integer but x > 0, this justifies using the power rule to differ-
entiate xa w.r.t. x.

E X E R C I S E S F O R S E C T I O N 6 . 1 1

1. Compute the first and second derivatives of:

(a) y = ln x + 3x − 2 (b) y = x2 − 2 ln x (c) y = x3 ln x (d) y = ln x
x

2. Find the derivatives of:

(a) y = x3(ln x)2 (b) y = x2

ln x
(c) y = (ln x)10 (d) y = (ln x + 3x)2

3.SM Find the derivatives of:

(a) ln(ln x) (b) ln
√

1 − x2 (c) ex ln x (d) ex3
ln x2

(e) ln(ex + 1) (f) ln(x2 + 3x − 1) (g) 2(ex − 1)−1 (h) e2x2−x

4. Determine the domains of the functions defined by:

(a) y = ln(x + 1) (b) y = ln
(

3x − 1
1 − x

)
(c) y = ln |x|

5.SM Determine the domains of the functions defined by:

(a) y = ln(x2 − 1) (b) y = ln(ln x) (c) y = 1
ln(ln x) − 1

6.SM Find the intervals where the following functions are increasing:

(a) y = ln(4 − x2) (b) y = x3 ln x (c) y = (1 − ln x)2

2x

7. Find the equations for the tangents to the graph of

(a) y = ln x at the three points with x-coordinates: 1, 1
2 , and e

(b) y = xex at the three points with x-coordinates: 0, 1, and −2.
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8. Use logarithmic differentiation to find f ′(x)/f (x) when:

(a) f (x) = x2x (b) f (x) = √
x − 2 (x2 + 1)(x4 + 6) (c) f (x) =

(
x + 1
x − 1

)1/3

9.SM Differentiate the following functions using logarithmic differentiation:

(a) y = (2x)x (b) y = x
√

x (c) y = (√
x
)x

10. Prove that if u and v are differentiable functions of x, and u > 0, then

y = uv ⇒ y′ = uv

(
v′ ln u + vu′

u

)

11.SM [HARDER] If f (x) = ex − 1 − x, then f ′(x) = ex − 1 > 0 for all x > 0. The function f (x) is there-
fore strictly increasing in the interval [0, ∞). Since f (0) = 0, it follows that f (x) > 0 for all
x > 0, and so ex > 1 + x for all x > 0. Use the same method to prove the following inequalities:

(a) ex > 1 + x + x2/2 for x > 0 (b) 1
2 x < ln(1 + x) < x for 0 < x < 1

(c) ln x < 2(
√

x − 1) for x > 1

R E V I E W E X E R C I S E S

1. Let f (x) = x2 − x + 2. Show that the Newton quotient is 2x − 1 + h and use this to find f ′(x).

2. Let f (x) = −2x3 + x2. Compute the Newton quotient and find f ′(x).

3. Compute the first- and second-order derivatives of the following functions:

(a) y = 2x − 5 (b) y = 1
3 x9 (c) y = 1 − 1

10 x10 (d) y = 3x7 + 8

(e) y = 1
10 (x − 5) (f) y = x5 − x−5 (g) y = 1

4 x4 + 1
3 x3 + 1

2 52 (h) y = x−1 + x−2

4. Let C(Q) denote the cost of producing Q units per month of a commodity. What is the interpre-
tation of C′(1000) = 25? Suppose the price obtained per unit is fixed at 30 and that the current
output per month is 1000. Is it profitable to increase production?

5. For each of the following functions, find the equation for the tangent to the graph at the specified
point:

(a) y = −3x2 at x = 1 (b) y = √
x − x2 at x = 4 (c) y = x2 − x3

x + 3
at x = 1

6. Let A(x) denote the dollar cost of building a house with a floor area of x square metres. What is
the interpretation of A′(100) = 250?

7. Differentiate the following functions:

(a) f (x) = x(x2 + 1) (b) g(w) = w−5 (c) h(y) = y(y − 1)(y + 1)

(d) G(t) = 2t + 1
t2 + 3

(e) ϕ(ξ) = 2ξ

ξ 2 + 2
(f) F(s) = s

s2 + s − 2
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8. Find the derivatives:

(a)
d

da
(a2t − t2) (b)

d
dt

(a2t − t2) (c)
d

dϕ

(
xϕ2 − √

ϕ
)

9. Use the chain rule to find dy/dx for the following:

(a) y = 10u2, where u = 5 − x2 (b) y = √
u, where u = 1

x
− 1

10. Compute the following:

(a) dZ/dt when Z = (u2 − 1)3 and u = t3. (b) dK/dt when K = √
L and L = 1 + 1/t.

11. If a(t) and b(t) are positive valued differentiable functions of t, and if A, α, and β are constants,
find expressions for ẋ/x where:

(a) x = a(t)2 · b(t) (b) x = A · a(t)α · b(t)β (c) x = A · [a(t)α + b(t)β ]α+β

12. If R = Sα , S = 1 + βKγ , and K = Atp + B, find an expression for dR/dt.

13. Find the derivatives of the following functions, where a, b, p, and q are constants:

(a) h(L) = (La + b)p (b) C(Q) = aQ + bQ2 (c) P(x) = (
ax1/q + b

)q

14. Find the first derivatives of:

(a) y = −7ex (b) y = e−3x2
(c) y = x2

ex
(d) y = ex ln(x2 + 2)

(e) y = e5x3
(f) y = 2 − x4e−x (g) y = (ex + x2)10 (h) y = ln (

√
x + 1)

15.SM Find the intervals where the following functions are increasing:

(a) y = (ln x)2 − 4 (b) y = ln(ex + e−x) (c) y = x − 3
2 ln(x2 + 2)

16. (a) Suppose π(Q) = QP(Q) − c Q, where P is a differentiable function and c is a constant. Find
an expression for dπ/dQ.

(b) Suppose π(L) = PF(L) − wL, where F is a differentiable function and P and w are con-
stants. Find an expression for dπ/dL.
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Although this may seem a paradox, all science is dominated by the idea of approximation.
—Bertrand Russell

Many economic models involve functions that are defined implicitly by one or more
equations. We begin this chapter by showing how to compute derivatives of such

functions, including how to differentiate the inverse. It is very important for economists to
master the technique of implicit differentiation.

Next we consider linear approximations and differentials, followed by a discussion of
quadratic and higher-order polynomial approximations. Section 7.6 studies Taylor’s formula,
which makes it possible to analyse the resulting error when a function is approximated by a
polynomial. A discussion of the important economic concept of elasticity follows in Section 7.7.

The word continuous is common even in everyday language. We use it, in particular, to
characterize changes that are gradual rather than sudden. This usage is closely related to the
idea of a continuous function. In Section 7.8 we discuss this concept and explain its close rela-
tionship with the concept of limit. Limits and continuity are key ideas in mathematics, and also
very important in the application of mathematics to economics. The practical example based
on property taxes that we present toward the end of Section 7.8 helps make this point.

Our next topic is limits, for which the preliminary discussion in Section 6.5 was necessarily
very sketchy. In Section 7.9 we take a closer look at this concept and extend it in several direc-
tions. Next we present the intermediate value theorem, which makes precise the idea that a con-
tinuous function has a “connected” graph. This makes it possible to prove that certain equations
have solutions. A brief discussion of Newton’s method for finding approximate solutions to
equations is given. A short section on infinite sequences follows. Finally, Section 7.12 presents
l’Hôpital’s rule for indeterminate forms, which is sometimes a useful tool for evaluating limits.

7.1 Implicit Differentiation
The previous chapter was devoted to exploring ways in which one can differentiate a func-
tion given by an explicit formula of the form y = f (x). Now we consider how to differentiate
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functions defined implicitly by an equation such as g(x, y) = c, where c is a constant. We
begin with a very simple example.

E X A M P L E 7.1.1 Consider the following equation involving the two real variables x and y:

xy = 5 (7.1.1)

If x = 1, then y = 5. Also, x = 3 gives y = 5/3. And x = 5 gives y = 1. In general, for
each number x �= 0, there is a unique number y such that the pair (x, y) satisfies Eq. (7.1.1).
We say that equation (∗) defines y implicitly as a function of x. The graph of Eq. (7.1.1) for
x > 0 is shown in Fig. 7.1.1.

1 2 3 4 5

3

4

5

2

1

x y  5

y

x

Figure 7.1.1 xy = 5, with x > 0

Economists often need to know the slope of the tangent at an arbitrary point on such
a graph. That is, they need to know the derivative of y as a function of x. The answer can
be found by implicit differentiation of Eq. (7.1.1), which defines y as a function of x. If we
denote this function by f , then replace y by f (x) in Eq. (7.1.1), the new equation is

xf (x) = 5 for all x > 0 (7.1.2)

Equation (7.1.2) involves only the single variable x. Because its left- and right-hand sides
are equal for all x > 0, the derivatives of its left- and right-hand sides w.r.t. x must be equal.
But the derivative of the constant 5 is 0. To differentiate xf (x), we must use the product rule.
So equating the derivatives of the two sides of Eq. (7.1.2) w.r.t. x yields

1 · f (x) + xf ′(x) = 0

It follows that for all x > 0 one has

f ′(x) = − f (x)
x

If x = 3, then f (3) = 5/3, and so f ′(3) = −(5/3)/3 = −5/9. These numerical values evi-
dently agree with Fig. 7.1.1.

Usually, we do not introduce an explicit name like f for y as a function of x. Instead, we
simply differentiate each side of Eq. (7.1.1) w.r.t. x, while recalling that y is a differentiable
function of x. Using the product rule again, this leads to y + xy′ = 0. Solving for y′ gives

y′ = −y
x

(7.1.3)
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For this particular example, there is another way to find the answer. Solving Eq. (7.1.2)
for y gives y = 5/x = 5x−1. Differentiating each side of this equation directly gives y′ =
5(−1)x−2 = −5/x2 . Note that substituting 5/x for y in (7.1.3) yields y′ = −5/x2 once
again.

E X A M P L E 7.1.2 In Example 5.4.2, we studied the graph shown in Fig. 7.1.2 of the equation

y3 + 3x2y = 13 (∗)

It passes through the point (2, 1). Find the slope of the graph at that point.

2

1

234 1 1 2 3 4

y

x

Figure 7.1.2 Graph of y3 + 3x2y = 13

Solution: In this case expressing y as an explicit function of x would involve solving a
cubic equation. So we use implicit differentiation instead. Wherever y occurs, we think of it
as an unspecified differentiable function of x. In this way the expression y3 + 3x2y becomes
a differentiable function of x, and equation (∗) requires it to equal the constant 13 for all
x. Differentiating each side of (∗), we see that it requires that the derivative of y3 + 3x2y
w.r.t. x to equal zero for all x.

According to the chain rule, the derivative of y3 w.r.t. x is equal to 3y2y′. Using the
product rule, the derivative of 3x2y is equal to 6xy + 3x2y′. Hence, differentiating (∗) gives

3y2y′ + 6xy + 3x2y′ = 0 (7.1.4)

Finally, solving this equation for y′ yields

y′ = −6xy
3x2 + 3y2

= −2xy
x2 + y2

(7.1.5)

For x = 2, y = 1 we find y′ = −4/5, which agrees with Fig. 7.1.2.1

Examples 7.1.1 and 7.1.2 illustrate the following general method.

I M P L I C I T D I F F E R E N T I A T I O N

To find y′ when an equation relates two variables x and y:

1 Recall Fig. 5.4.3.
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(i) Differentiate each side of the equation w.r.t. x, considering y as a function
of x.

(ii) Solve the resulting equation for y′.

We note that step (i) will usually require the chain rule.
Section 7.2 offers several economic examples of this procedure. A particularly impor-

tant application of this method occurs in Chapter 9, where we consider, for optimization
problems whose parameters change, how these changes affect the solution.

E X A M P L E 7.1.3 The equation x2y3 + (y + 1)e−x = x + 2 defines y as a differentiable function of x in
a neighbourhood of (x, y) = (0, 1). Compute y′ at this point.

Solution: Implicit differentiation w.r.t. x gives

2xy3 + x23y2y′ + y′e−x + (y + 1)(−e−x) = 1

Inserting x = 0 and y = 1 yields y′ + 2(−1) = 1, implying that y′ = 3.

E X A M P L E 7.1.4 Suppose y is defined implicitly as a function of x by the equation

g(xy2) = xy + 1 (∗)

where g is a given differentiable function of one variable. Find an expression for y′.

Solution: We differentiate each side of the equation w.r.t. x, considering y as a function
of x. The derivative of g(xy2) w.r.t. x is g′(xy2)(y2 + x2yy′). So differentiating (∗) yields
g′(xy2)(y2 + x2yy′) = y + xy′. Solving for y′ gives us

y′ = y
[
yg′(xy2) − 1

]
x
[
1 − 2yg′(xy2)

]
E X A M P L E 7.1.5 Suppose that a person has to decide how much of her current income she will save

for future consumption.2 In economics it is common to assume that a function u(c), defined
over the positive real numbers, measures the value to the consumer of consuming c in a
given period. If she consumes ct in year t, her “instantaneous utility” is u(ct). Economists
typically assume that the individual is impatient, in the sense that she values present con-
sumption more than future consumption. We assume for simplicity that the individual lives
for only two periods, which we call “present” and “future”. Then we model her “intertem-
poral utility” as

u(c1) + βu(c2) (7.1.6)

Here β is a constant parameter satisfying 0 ≤ β ≤ 1. Its difference from 1 measures the
individual’s impatience. Economists call the number β the individual’s “discount factor”.

2 Example 9.5.4 will study this problem further.
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Obviously saving more will reduce present consumption, denoted by c1. By how much
will the individual’s future consumption c2 have to change, if her intertemporal utility given
by (7.1.6) is to remain constant? Suppose that without any change in saving, her intertem-
poral utility level would be

--
U. In order to keep our previous notation, let us put x = c1 and

y = c2. It follows that y is implicitly defined as a function of x by

u(x) + βu(y) = --
U (7.1.7)

The question we have asked is by how much must y change when x changes. Assuming
the change �x in x is small, the approximate change in y is given by y′ · �x. To find y′, we
differentiate each side of (7.1.7) implicitly w.r.t. x, which gives

u′(x) + βu′(y)y′ = 0

This implies that

y′ = − u′(x)
βu′(y)

(7.1.8)

It is normal to assume that u′(c) > 0 for all c, so that the individual prefers to consume
more. Under that assumption, y′ < 0, which is as it should be: if the individual’s present
consumption decreases, her future consumption must increase if she is to remain indiffer-
ent. The ratio u′(x)/βu′(y) is an example of what economists call the “marginal rate of
substitution” between, in this example, present and future consumption. In case x = y or
c1 = c2, this marginal rate of substitution is 1/β. So in case 0 < β < 1 and so 1/β > 1, this
marginal rate of substitution measures how much more value at the margin is attached to
present consumption over future consumption at any point where consumption is the same
in both time periods. The concept is explored further in Section 15.3.

The Second Derivative of Functions Defined Implicitly
The following examples suggest how to compute the second derivative of a function that is
defined implicitly by an equation like (7.1.1).

E X A M P L E 7.1.6 Compute y′′ when y is given implicitly as a function of x by xy = 5.

Solution: In Example 7.1.1 we used implicit differentiation to find that y + xy′ = 0, and so
y′ = −y/x for all x �= 0. Differentiating the equation y + xy′ = 0 implicitly w.r.t. x, while
recognizing that both y and y′ depend on x, gives us y′ + y′ + xy′′ = 0 and so y′′ = −2y′/x.
Substituting y′ = −y/x gives y′′ = 2y/x2.

We see that if y > 0, then y′′ > 0, which accords with Fig. 7.1.1 since the graph bends
upwards. Because y = 5/x, we also get y′′ = 10/x3.

In order to find y′′ we can also start with the formula y′ = −y/x that appeared as (7.1.3)
in Example 7.1.1. Using the quotient rule to differentiate this fraction w.r.t. x, again taking
into account that y depends on x, we obtain3

y′′ = d
dx

(−y
x

)
= −y′x − y

x2
= − (−y/x)x − y

x2
= 2y

x2

3 In this simple case we can check the answer directly. Since y = 5x−1 and y′ = −5x−2, we have
y′′ = 10x−3.
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E X A M P L E 7.1.7 For the function in Example 7.1.2 that was implicitly defined by the equation y3 +
3x2y = 13, find y′′ at the point (x, y) = (2, 1).

Solution: The easiest approach is to differentiate each side of (7.1.4) w.r.t. x. The derivative
of 3y2y′ w.r.t. x is (6yy′)y′ + 3y2y′′ = 6y(y′)2 + 3y2y′′. The two other terms are differenti-
ated in a similar way. Ultimately we obtain

6y(y′)2 + 3y2y′′ + 6y + 6xy′ + 6xy′ + 3x2y′′ = 0

Now insert x = 2, y = 1, and the value y′ = −4/5 found in Example 7.1.2. Solving the
resulting equation gives y′′ = 78/125.

An obvious alternative approach is to differentiate w.r.t. x the fraction on the right-hand
side of (7.1.5).

E X A M P L E 7.1.8 Recall the intertemporal utility problem studied in Example 7.1.5. The pairs (x, y)
that satisfy Eq. (7.1.7) are the combinations of present and future consumption that leave
the individual’s intertemporal utility constant. The graph of all such pairs is known as the
consumer’s indifference curve, which is shown in Fig. 7.1.3.

x

y

a

b

u(x)+βu(y) = Ū

Figure 7.1.3 An indifference curve

Repeating Eq. (7.1.8), one has y′ = −u′(x)/u′(y), so y′ < 0. This tells us that the indif-
ference curve is downward sloping. Moreover, as discussed in Example 7.1.5, the absolute
value of its slope at any point (a, b), given by |y′| = u′(a)/βu′(b), is the marginal rate of
substitution at that point.

We can now determine the sign of y′′, which tells us more about the shape of the indif-
ference curve. Indeed, differentiating the equation y′ = −u′(x)/u′(y) w.r.t. x gives

y′′ = −u′(y)u′′(x) − u′(x)u′′(y)y′

β[u′(y)]2
= − 1

β[u′(y)]2

[
u′(y)u′′(x) + [u′(x)]2

βu′(y)
u′′(y)

]
(∗)

where we have used y′ = −u′(x)/u′(y) a second time in order to substitute for y′.



�

� �

�

S E C T I O N 7 . 1 / I M P L I C I T D I F F E R E N T I A T I O N 239

Economists normally assume that the first derivative of u, while positive, is decreasing.
The idea is that each additional unit of consumption gives the individual a smaller increase
in utility than the previous one. The assumption can be stated as u′′(c) < 0 for all c > 0.
This implies that in (∗) one has both u′′(x) < 0 and u′′(y) < 0, so y′′ > 0.

Figure 7.1.3 includes a typical indifference curve, as well as the tangent to that curve
at the point (a, b). The slope of the tangent is y′, given by Eq. (7.1.8). The absolute
value of that slope is the marginal rate of substitution. In the context of the example,
it is called the “intertemporal” marginal rate of substitution between present and future
consumption.

Equation (∗) tells us that y′′ > 0, so y′ increases with x. Because y′ < 0, it follows that
the absolute value of y′ decreases as x increases. This corresponds to the fact that the
indifference curve becomes flatter as one moves down and to the right. The economic inter-
pretation is that the increase in future consumption required to compensate any fixed sacri-
fice of present consumption becomes lower as the person’s present consumption becomes
higher.

E X E R C I S E S F O R S E C T I O N 7 . 1

1. For the equation 3x2 + 2y = 5, find y′ by implicit differentiation. Check by solving the equation
for y and then differentiating.

2. For the equation x2y = 1, find dy/dx and d2y/dx2 by implicit differentiation. Check by solving
the equation for y and then differentiating.

3.SM Find dy/dx and d2y/dx2 by implicit differentiation when: (a) x − y + 3xy = 2; and (b) y5 = x6.

4. A curve in the uv-plane is given by u2 + uv − v3 = 0. Compute dv/du by implicit differentia-
tion. Find the point (u, v) on the curve where dv/du = 0 and u �= 0.

5. Suppose that y is a differentiable function of x that satisfies the equation 2x2 + 6xy + y2 = 18.
Find y′ and y′′ at the point (x, y) = (1, 2).

6. For each of the following equations, answer the question: If y = f (x) is a differentiable function
that satisfies the equation, what is y′? Here, a is a positive constant.

(a) x2 + y2 = a2 (b)
√

x + √
y = √

a (c) x4 − y4 = x2y3 (d) exy − x2y = 1

7. Consider the curve 2xy − 3y2 = 9.

(a) Find the slope of the tangent line to the curve at (x, y) = (6, 1).

(b) Compute also the second derivative at the point.

8.SM In each of the following equations, suppose g is a given differentiable function of one variable.
Suppose the equation defines y implicitly as a function of x. Find an expression for y′ in each
case.

(a) xy = g(x) + y3 (b) g(x + y) = x2 + y2 (c) (xy + 1)2 = g(x2y)
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9. Suppose F is a differentiable function of one variable, with F(0) = 0 and F′(0) �= −1. Suppose
too that y is defined implicitly as a differentiable function of x by the equation

x3F(xy) + exy = x

Find an expression for y′ at the point (x, y) = (1, 0).

10.SM The elegant curve shown in Fig. 7.1.4 is known as a lemniscate. In the late 1600s, the
Swiss mathematician Johann Bernoulli (1667–1748) discovered that it is the graph of the
equation

(x2 + y2)2 = a2(x2 − y2)

where a is a positive constant.

(a) Find the slope of the tangent to this curve at any point (x, y) where y �= 0.

(b) Determine those points on the curve where the tangent is parallel to the x-axis.

aa

y

x

Figure 7.1.4 A lemniscate

7.2 Economic Examples
Few mathematical techniques are more important in economics than implicit differen-
tiation. This is because so many functions in economic models are defined implicitly
by an equation or by a system of equations. Often the variables have names other than
x and y, so one needs to practise differentiating equations with other names for the
variables.

E X A M P L E 7.2.1 Example 3.2.1 presented a standard macroeconomic model for determining
national income. The somewhat generalized version set out in Example 4.5.2 involves the
two equations: (i) Y = C + --

I; and (ii) C = f (Y). Here, Eq. (i) states that GDP, denoted by
Y , is divided up between consumption C and investment

--
I. The latter is assumed to be an

exogenous constant. On the other hand, Eq. (ii) is the generalized consumption function
presented in Example 4.5.2. We assume that f ′(Y), the marginal propensity to consume,
lies between 0 and 1.
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(a) Consider first the special case when C = f (Y) = 95.05 + 0.712Y , as in Haavelmo’s
estimate of the consumption function discussed in Example 4.5.2. Use equations (i)
and (ii) to find Y in terms of

--
I in this case.

(b) Reverting to the case of a general function f (Y), inserting the expression for C from (ii)
into (i) gives Y = f (Y) + --

I. Suppose that this equation defines Y as a differentiable
function of

--
I. Find an expression for dY/d

--
I.

(c) Assuming that f ′′(Y) exists, find Y ′′ = d2Y/d
--
I2.

Solution:

(a) In this special case, one has Y = 95.05 + 0.712Y + --
I. Solving for Y yields

Y = (95.05 + --
I)/(1 − 0.712) ≈ 3.47

--
I + 330.03

In particular, dY/d
--
I ≈ 3.47. This indicates that an increase of

--
I by $1 billion leads to

an increase in GDP of approximately $3.47 billion.

(b) Differentiating Y = f (Y) + --
I w.r.t.

--
I, then using the chain rule, we have

dY

d
--
I

= f ′(Y)
dY

d
--
I

+ 1 or, equivalently,
dY

d
--
I

[1 − f ′(Y)] = 1 (7.2.1)

Solving for dy/d
--
I yields

dY

d
--
I

= 1
1 − f ′(Y)

(7.2.2)

For example, if f ′(Y) = 1/2, then dY/d
--
I = 2. If f ′(Y) = 0.712 as in part (a), then

dY/d
--
I ≈ 3.47. In general, the assumption that f ′(Y) lies between 0 and 1 implies that

1 − f ′(Y) also lies between 0 and 1. Hence 1/[1 − f ′(Y)] is always greater than 1. In
this model, therefore, a $1 billion increase in investment will always lead to a more
than $1 billion increase in GDP. Also, the greater is f ′(Y), the marginal propensity to
consume, the smaller is 1 − f ′(Y), and so the greater is dY/d

--
I.

(c) To find Y ′′ we differentiate the first equation in (7.2.1) implicitly w.r.t.
--
I. The derivative

of f ′(Y) w.r.t.
--
I is f ′′(Y)(dY/d

--
I). Now, differentiating the product f ′(Y)(dY/d

--
I) w.r.t.

--
I

gives
d

d
--
I

[
f ′(Y)

dY

d
--
I

]
= f ′′(Y)

dY

d
--
I

dY

d
--
I

+ f ′(Y)
d2Y

d
--
I2

Hence, the derivative we want satisfies

d2Y

d
--
I2

= f ′′(Y)

(
dY

d
--
I

)2

+ f ′(Y)
d2Y

d
--
I2

(7.2.3)

It follows from (7.2.3) and then (7.2.2) that

d2Y

d
--
I2

= f ′′(Y)

[1 − f ′(Y)]

(
dY

d
--
I

)2

= f ′′(Y)

[1 − f ′(Y)]3
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E X A M P L E 7.2.2 In the linear supply and demand model of Example 4.5.4, suppose that consumers
are required to pay a tax of τ per unit, thus raising the price per unit that they face from P
to P + τ . Then

D = a − b(P + τ), S = α + βP (7.2.4)

Here a, b, α, and β are positive constants. The equilibrium price is determined by equating
supply and demand, so that

a − b(P + τ) = α + βP (7.2.5)

(a) Equation (7.2.5) implicitly defines the price P as a function of the unit tax τ . Compute
dP/dτ by implicit differentiation. What is its sign? What is the sign of (d/dτ)(P + τ)?
Check the result by first solving Eq. (7.2.5) for P and then finding dP/dτ explicitly.

(b) Compute tax revenue T as a function of τ . For what value of τ does the quadratic
function T reach its maximum?

(c) Generalize the model by assuming that D = f (P + τ) and S = g(P), where f and g are
differentiable functions with f ′ < 0 and g′ > 0. The equilibrium condition f (P + τ) =
g(P) defines P implicitly as a differentiable function of τ . Find an expression for dP/dτ

by implicit differentiation. Illustrate geometrically.

Solution:

(a) Differentiating (7.2.5) w.r.t. τ yields

−b
(

dP
dτ

+ 1
)

= β
dP
dτ

Solving this equality gives
dP
dτ

= −b
b + β

We see that dP/dτ is negative. Because P is the price received by the producer, this price
will go down if the tax rate τ increases. But P + τ is the price paid by the consumer.
Also

d
dτ

(P + τ) = dP
dτ

+ 1 = −b
b + β

+ 1 = −b + b + β

b + β
= β

b + β

It follows that 0 < d(P + t)/dτ < 1. Thus, the consumer price P + τ increases, but by
less than the increase in the tax.
If we solve (7.2.5) for P, we obtain

P = a − α − bτ

b + β
= a − α

b + β
− b

b + β
τ

This equation shows that the equilibrium producer price P is a linear function of τ , the
tax per unit, with slope −b/(b + β).

(b) The total tax revenue is T = Sτ = (α + βP)τ , where P is the equilibrium price. Thus,

T =
[
α + β

(
a − α

b + β
− b

b + β
τ

)]
τ = −bβ

b + β
τ 2 + αb + βa

b + β
τ
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Following the analysis in Section 4.6, this quadratic function has its maximum at τ =
(αb + βa)/2bβ.

(c) Differentiating the equation f (P + τ) = g(P) w.r.t. τ yields

f ′(P + τ)

(
dP
dτ

+ 1
)

= g′(P)
dP
dτ

(7.2.6)

Solving for dP/dτ gives
dP
dτ

= f ′(P + τ)

g′(P) − f ′(P + τ)

Again, because f ′ < 0 and g′ > 0, we see that dP/dτ is negative in this case as well.
Moreover,

d
dτ

(P + τ) = dP
dτ

+ 1 = f ′(P + τ)

g′(P) − f ′(P + τ)
+ 1 = g′(P)

g′(P) − f ′(P + τ)

which implies that 0 < d(P + τ)/dτ < 1.

Figure 7.2.1 has a graph which illustrates this answer. As usual in economics, we mea-
sure quantity on the horizontal axis, and price on the vertical axis. The demand curve with
the tax included in the price is represented by the curve Q = f (P + τ). Its graph is obtained
by shifting down by τ units the graph of Q = f (P), which is also the graph of the inverse
demand curve P = f −1(Q). The shifted graph is that of P = f −1(Q) − τ , which is also the
graph of Q = f (P + τ).

The figure confirms that, when the tax τ increases, the new equilibrium is at E′, where the
new quantity is lower than at E, and so is the price received by the suppliers. Nevertheless,
the price P + τ paid by buyers increases because the decrease in P is smaller than the
increase in τ .

E

E

Q 5 g(P)
P

Q

Q 5 f (P)

Q 5 f (P 1 τ)

τ

τ

Figure 7.2.1 Shift in the demand curve

E X E R C I S E S F O R S E C T I O N 7 . 2

1. According to a study, the demand Q for butter in Stockholm during the period 1925–1937 was
related to the price P by the equation Q · P1/2 = 38. Find dQ/dP by implicit differentiation. Check
the answer by using a different method to compute the derivative.
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2. Consider a profit-maximizing firm producing a single commodity. If the firm gets a fixed price
P per unit sold, its profit from selling Q units is π(Q) = PQ − C(Q), where C(Q) is the cost
function. Assume that C′(Q) > 0 and C′′(Q) > 0. In Example 8.5.1, it will be shown that Q =
Q∗ > 0 maximizes profits w.r.t. Q provided that

P = C′(Q∗) (∗)

Thus, at the optimum, marginal cost must equal the price per unit.

(a) By implicitly differentiating (∗) w.r.t. P, find an expression for dQ∗/dP.

(b) Comment on the sign of dQ∗/dP.

3. Consider the equation AP−αr−β = S where A, α, β, and S are positive constants. The left-hand
side of the equation expresses the demand for a commodity as a decreasing function of both its
price P and the interest rate r. In equilibrium, this demand must equal a fixed supply quantity S.

(a) Take natural logarithms of both sides and find dP/dr by implicit differentiation.

(b) How does the equilibrium price react to an increase in the interest rate?

4.SM Extending the standard macroeconomic model of Example 7.2.1 for an economy open to inter-
national trade gives: (i) Y = C + --I + --X − M; (ii) C = f (Y); and (iii) M = g(Y). Here --X is an
exogenous constant that denotes exports, whereas M denotes the volume of imports. The con-
sumption function f in (ii) satisfies that 0 < f ′(Y) < 1. The function g in (iii) is called an import
function and is assumed to satisfy 0 < g′(Y) < f ′(Y).

(a) By inserting (ii) and (iii) into (i), obtain an equation that defines Y as a function of exogenous
investment --I.

(b) Find an expression for dY/d--I by implicit differentiation. Discuss the sign of dY/d--I.

(c) Find an expression for d2Y/d--I2.

5. In part (c) of Example 7.2.2, find an expression for d2P/dτ 2 by differentiating (7.2.6) w.r.t. τ .

6. In Example 7.2.2 we studied a model of supply and demand where a tax is imposed on the con-
sumers. Instead, suppose that the producers have to pay a tax per unit sold that is equal to a fraction
τ of the sales price P they receive, where 0 < τ < 1. This implies that the equilibrium condition
with the tax is

f (P) = g(P − τP) (∗)

We assume that f ′ < 0 and g′ > 0.

(a) Differentiate (∗) w.r.t. τ and find an expression for dP/dτ .

(b) Find the sign of dP/dτ and give an economic interpretation.

7.3 The Inverse Function Theorem
Section 5.3 offered an introduction to inverse functions. As explained there, if f is a
one-to-one function defined on an interval I, it has an inverse function g defined on the
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range f (I) of f . What is the relationship between the derivatives of f and g? Here is a
simple example.

E X A M P L E 7.3.1 Provided that a �= 0, the two linear functions f (x) = ax + b and g(x) = (x − b)/a are
inverses of each other, as you can verify. The graphs are straight lines which are symmetric
about the line y = x. The slopes are respectively a and 1/a. Look back at Fig. 5.3.3, and
notice that this result is confirmed, since the slope of f is 4 and the slope of g is 1/4.

More generally, recall that if f and g are inverses of each other, then by definition for all
x in I one has

g(f (x)) = x (7.3.1)

By implicit differentiation, provided that both f and g are differentiable, it is easy to find the
relationship between the derivatives of f and g. Indeed, differentiating (7.3.1) w.r.t. x gives
g′ (f (x)) f ′(x) = 1. Hence, at any x where f ′(x) �= 0, one has g′ (f (x)) = 1/f ′(x).

The most important facts about inverse functions are summed up in the following
theorem. Recall that a point of an interval is said to be interior if and only if it is not one
of the interval’s end points.

T H E O R E M 7 . 3 . 1 ( I N V E R S E F U N C T I O N T H E O R E M )

If f is differentiable and strictly increasing (strictly decreasing) in an inter-
val I, then it has an inverse function g, which is strictly increasing (strictly
decreasing) in the interval f (I).

If, in addition, a is an interior point of I, and f ′(a) �= 0, then g is differen-
tiable at b = f (a), and

g′(b) = 1
f ′(a)

(7.3.2)

Formula (7.3.2) is used as follows to find the derivative of g at a point b. First find, if
possible, the point a in I at which f (a) = b. Thereafter, compute f ′(x), and then find f ′(a).
If f ′(a) �= 0, then g has a derivative at b given by g′(b) = 1/f ′(a). An implication of (7.3.2)
is that f ′ and g′ must have the same sign. So if f is strictly increasing (decreasing), then g
is strictly increasing (decreasing), and vice versa.

The geometric interpretation of formula (7.3.2) is shown in Fig. 7.3.1, where f and g
are inverses of each other. The coordinates of P are (a, b), while Q is the point (b, a). Let
y′ = f ′(a) be the slope of the tangent at P. Then the slope of the tangent at Q is g′(b) =
1/y′.

E X A M P L E 7.3.2 Suppose that the function f is defined for all real x by the formula f (x) = x5 + 3x3 +
6x − 3. Show that f has an inverse function g. Then, given that f (1) = 7, use Eq. (7.3.2) to
find g′(7).
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x

y

f

P

a

b = f (a)

g = f−1

Qa = f−1(b)

b

Figure 7.3.1 The slope at P is y′, and the slope at Q is 1/y′.

Solution: Differentiating f (x) yields f ′(x) = 5x4 + 9x2 + 6. Clearly, f ′(x) > 0 for all x, so f
is strictly increasing and consequently it is one-to-one. It therefore has an inverse function g.
To find g′(7), we use formula (7.3.2) with a = 1 and b = 7. Since f ′(1) = 20, we obtain
g′(7) = 1/f ′(1) = 1/20. Note that we have found g′(7) exactly even though it is impossible
to find any algebraic formula for the inverse function g.

E X A M P L E 7.3.3 Suppose that f and g are both twice differentiable functions which are inverses
of each other. By differentiating g′ (f (x)) = 1/f ′(x) w.r.t. x at any point where
f ′(x) �= 0, find an expression for g′′ (f (x)). Do f ′′ and g′′ have the same, or opposite
signs?

Solution: Differentiating each side of the equation g′ (f (x)) = 1/f ′(x) w.r.t. x yields

g′′ (f (x)) f ′(x) = (−1)
(
f ′(x)

)−2
f ′′(x)

It follows that if f ′(x) �= 0, then

g′′ (f (x)) = − f ′′(x)
(f ′(x))3 (7.3.3)

So if f ′ > 0, then f ′′(x) and g′′ (f (x)) have opposite signs, but they have the same sign if
f ′ < 0. In particular, if f is strictly increasing and f ′′(x) < 0 for all x, then the inverse g is
strictly increasing and g′′(x) > 0 for all x, as shown in Fig. 7.3.1.

It is common to present the formula in (7.3.2) in the deceptively simple way:

dx
dy

= 1
dy/dx

(7.3.4)

as if dx and dy could be manipulated like ordinary numbers. Formula (7.3.3) shows that
similar use of the differential notation for second derivatives fails drastically. The formula
“d2x/dy2 = 1/(dy2/d2x)”, for instance, makes no sense at all.
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E X A M P L E 7.3.4 Suppose that, instead of the linear demand function of Example 4.5.4, one has the
function ln Q = a − b ln P. This function is linear in the logarithms of the price and the
quantity, so is known as log-linear.4

(a) Express Q as a function of P, and show that dQ/dP = −bQ/P.

(b) Express P as a function of Q, and find dP/dQ.

(c) Check that your answer satisfies that dP/dQ = 1/(dQ/dP), as implied by Eq. (7.3.4).

Solution:

(a) Taking exponentials gives

Q = ea−b ln P = ea(eln P)−b = eaP−b

from which it follows that dQ/dP = −beaP−b−1 = −bQ/P.

(b) Solving Q = eaP−b for P gives P = ea/bQ−1/b, so dP/dQ = (−1/b)ea/bQ−1−1/b.

(c) Using part (b) and then part (a), one has dP/dQ = (−1/b)P/Q = 1/(dQ/dP).

E X E R C I S E S F O R S E C T I O N 7 . 3

1. The function defined for all x by f (x) = e2x−2 has an inverse g. Find x such that f (x) = 1. Then,
use (7.3.2) to find g′(1). Check your result by finding a formula for g.

2. The function f is defined, for −2 ≤ x ≤ 2, by the formula f (x) = 1
3 x3

√
4 − x2.

(a) Find the intervals where f increases, and the intervals where f decreases, then sketch its graph.

(b) Explain why f has an inverse g on [0,
√

3], and find g′( 1
3

√
3). (Hint: f (1) = 1

3

√
3.)

3. Let f be defined by f (x) = ln(2 + ex−3), for all x.

(a) Show that f is strictly increasing and find the range of f .

(b) Find an expression for the inverse function, g, of f . Where is g defined?

(c) Verify that f ′(3) = 1/g′(f (3)).

4. According to Exercise 5.3.2, during the period 1915–1929 the demand for sugar in the USA, as a
function of the price P, was given by D = 157.8/P0.3. Use (7.3.4) to find dP/dD.

5.SM Use (7.3.4) to find dx/dy when:

(a) y = e−x−5 (b) y = ln(e−x + 3) (c) xy3 − x3y = 2x

4 Note that the inverse demand function can be expressed as ln P = 1
b (a − ln Q), which is also

log-linear.
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7.4 Linear Approximations
Much of modern economic analysis relies on numerical calculations, nearly always only
approximate. Often, therefore, rather than work with a complicated function, we approxi-
mate it by one that is simpler. Since linear functions are especially simple, it seems natural
to try using a “linear approximation” first.

Consider a function f (x) that is differentiable at x = a. Suppose we approximate the
graph of f by its tangent line at the particular point (a, f (a)), as shown in Fig. 7.4.1. By
formula (6.2.3), this line is the graph of the function y = p(x) = f (a) + f ′(a)(x − a).

y 5 f (x) 

y

xa

Figure 7.4.1 Approximation to a function by its tangent

L I N E A R A P P R O X I M A T I O N T O A D I F F E R E N T I A B L E f A B O U T x = a

For x close to a,
f (x) ≈ f (a) + f ′(a)(x − a) (7.4.1)

Note that both f (x) and its linear approximation p(x) = f (a) + f ′(a)(x − a) have the
same value and the same derivative at x = a.5

E X A M P L E 7.4.1 Find the linear approximation to f (x) = 3
√

x about x = 1.

Solution: We have f (x) = 3
√

x = x1/3, so f (1) = 1, and f ′(x) = 1
3 x−2/3, implying that

f ′(1) = 1
3 . Inserting these values into (7.4.1), when a = 1, yields

3
√

x ≈ f (1) + f ′(1)(x − 1) = 1 + 1
3 (x − 1) (for all x close to 1)

For example, 3
√

1.03 ≈ 1 + 1
3 (1.03 − 1) = 1.01. The correct value to 4 decimal places is

1.0099.

E X A M P L E 7.4.2 Use (7.4.1) to show that ln(1 + x) ≈ x for x close to 0.

Solution: With f (x) = ln(1 + x), we get f (0) = 0 and f ′(x) = 1/(1 + x), implying that
f ′(0) = 1. Then (7.4.1) yields ln(1 + x) ≈ x.

5 One can prove that if f is differentiable, then f (x) − f (a) = f ′(a)(x − a) + ε · (x − a) where ε → 0
as x → a. So if x − a is very small, then ε is very small, and ε · (x − a) is “very very small”.
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E X A M P L E 7.4.3 (Rule of 70). Suppose that an amount K accrues interest at the rate of p% a year.
Then the doubling time of the amount in the account, using formula (4.10.7) in Section 4.10,
is t∗ = ln 2/ ln(1 + p/100). Combining the approximation ln(1 + x) ≈ x from Example
7.4.2 with ln 2 ≈ 0.7, we have

t∗ = ln 2
ln(1 + p/100)

≈ 0.7
p/100

= 70
p

This yields the “rule of 70” according to which, if the interest rate is p% per year, then
the doubling time is approximately 70 divided by p. For instance, if p = 3.5, then t∗ is 20,
which is close to the exact value t∗ = ln 2/ ln 1.035 ≈ 20.1.6

E X A M P L E 7.4.4 Use (7.4.1) to find an approximate value for (1.001)50.

Solution: We put f (x) = x50. Then f (1) = 1 and f ′(x) = 50x49, implying that f ′(1) = 50 ·
149 = 50. Applying formula (7.4.1) with x = 1.001 and a = 1 gives

(1.001)50 ≈ 1 + 50 · 0.001 = 1.05

(Using a calculator gives us the closer approximation (1.001)50 ≈ 1.0512.)

The Differential of a Function
Consider a differentiable function f (x), and let dx denote an arbitrary small change in the
variable x. In this notation, “dx” is not a product of d (or d) and x. Rather, the one symbol dx
represents a small change in the value of x. The expression f ′(x) dx is called the differential
of y = f (x). This differential is denoted by dy (or df (x)), so that

dy = df (x) = f ′(x) dx (7.4.2)

Note that dy is proportional to dx, with the derivative f ′(x) as the factor of proportionality.
Now, if x changes by dx, then the corresponding change in y = f (x) is

�y = f (x + dx) − f (x) (7.4.3)

In the linear approximation (7.4.1), suppose we replace x by x + dx and a by x. The result
is f (x + dx) ≈ f (x) + f ′(x) dx. Using the definitions of dy and �y in (7.4.2) and (7.4.3)
respectively, we get the approximation �y ≈ dy.

The differential dy is not the actual increment in y as x is changed to x + dx. Rather it is
the change in y that would occur if y were to continue changing at the fixed rate f ′(x) as x
changes to x + dx. In Fig. 7.4.2 the error resulting from using the approximation dy rather
than the exact change �y is represented graphically as the distance |�y − dy| between the
two points R and Q.

6 Luca Pacioli, considered by many as the father of modern accounting, proposed in Venice in 1494
an equivalent “rule of 72” whereby t∗ = 72/p. This is more convenient because 72 is divisible by
more integers than 70. A more accurate approximation is the “rule of 69.3”, because ln 2 ≈ 0.693
to three decimal places.
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y 5 f (x)

x 1 dx 

dx

dy

Dy

x

y

x

P

Q

R

Figure 7.4.2 The differential dy and �y = f (x + dx) − f (x)

To explore this error further, consider first the movement from P to Q along the graph:
as x moves to x + dx and so changes by dx, the actual change in the vertical height of the
point is f (x + dx) − f (x) = �y. Suppose instead that we can only move along the tangent
to the graph at P. Going from P to R along the tangent, which changes x by the amount dx,
induces a corresponding change in height of dy. As Fig. 7.4.2 suggests, the approximation
�y ≈ dy is usually closer if dx is smaller in absolute value. This is because the length
|RQ| = |�y − dy| of the line segment RQ tends to 0 as dx tends to 0. In fact, this length
|RQ| becomes small so fast that the ratio |RQ|/dx tends to 0 as dx → 0. See Exercise 12.

Rules for Differentials
The notation (d/dx)(·) calls for the expression represented by the · inside the parentheses
to be differentiated with respect to x. For example, (d/dx)(x3) = 3x2. Similarly, we let d(·)
denote the differential of whatever is inside the parentheses. For example, d(x3) = 3x2dx.

E X A M P L E 7.4.5 Compute the following differentials:

(a) d (Axa + B), where A, B, and a are constants.

(b) d (f (K)), where f is a differentiable function of K.

Solution:

(a) Putting f (x) = Axa + B, we get f ′(x) = Aaxa−1, so d (Axa + B) = Aaxa−1dx.

(b) d (f (K)) = f ′(K)dK.

R U L E S F O R D I F F E R E N T I A L S

Let f and g be differentiable functions of x, and let a and b be constants. Then
the following rules hold:

d(af + bg) = a df + b dg (7.4.4)
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d(fg) = g df + f dg (7.4.5)

and, provided that g �= 0,

d
(

f
g

)
= g df − f dg

g2
(7.4.6)

Here is a proof of rule (7.4.5):

d(fg) = (fg)′ dx = (f ′g + fg′) dx = gf ′ dx + fg′ dx = g df + f dg

The two other rules can be proved in a similar way.
Suppose that y = f (x) and that x = g(t) is a function of t. Then y = h(t) = f (g(t)) is a

function of t. The differential of y = h(t) is dy = h′(t) dt. According to the chain rule, one
has h′(t) = f ′(g(t))g′(t), implying that dy = f ′(g(t))g′(t) dt. Because x = g(t), however, the
differential of x is equal to dx = g′(t) dt. It follows that dy = f ′(x) dx. This shows that if
y = f (x), then the differential of y is equal to dy = f ′(x) dx, whether x depends on another
variable or not.

Economists often use differentials in their models. A typical example follows.

E X A M P L E 7.4.6 Consider again the macroeconomic model presented in Example 7.2.1. Find the dif-
ferential dY , expressed in terms of d

--
I. If employment N is also a function g(Y) of national

income, find the differential dN expressed in terms of d
--
I.

Solution: Taking the differential of equation (i) in Example 7.2.1 yields dY = dC + d
--
I.

Doing the same for equation (ii) gives dC = f ′(Y) dY . Substituting dC from the latter into
the former, then solving for dY, we obtain

dY = 1
1 − f ′(Y)

d
--
I

This accords with formula (7.2.2). Also N = g(Y) implies that dN = g′(Y)dY , so

dN = g′(Y)

1 − f ′(Y)
d
--
I

Economists usually claim that employment increases as GDP increases (so g′(Y) > 0), and
that f ′(Y), the marginal propensity to consume, is between 0 and 1. Our formula for dN
shows that these claims imply that if investment

--
I increases, then so does employment.

E X E R C I S E S F O R S E C T I O N 7 . 4

1. Prove that
√

1 + x ≈ 1 + 1
2 x for x close to 0, and illustrate this approximation by drawing the

two graphs of y = 1 + 1
2 x and y = √

1 + x in the same coordinate system.

2. Use (7.4.1) to find the linear approximation to f (x) = (5x + 3)−2 about x = 0.
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3.SM Find the linear approximations to the following functions about x = 0:

(a) f (x) = (1 + x)−1 (b) f (x) = (1 + x)5 (c) f (x) = (1 − x)1/4

4. Find the linear approximation to F(K) = AKα about K = 1.

5. Let p, q, and r be constants. Find the following differentials:

(a) d(10x3) (b) d(5x3 − 5x2 + 5x + 5) (c) d(1/x3) (d) d(ln x)

(e) d(xp + xq) (f) d(xpxq) (g) d(px + q)r (h) d(epx + eqx)

6. (a) Prove that (1 + x)m ≈ 1 + mx for x close to 0.

(b) Use this to find approximations to the following numbers:

(i) 3√1.1 = (
1 + 1

10

)1/3
(ii) 5√33 = 2

(
1 + 1

32

)1/5
(iii) 3√9 = 3√8 + 1 (iv) (0.98)25

7. Compute �y = f (x + dx) − f (x) and the differential dy = f ′(x) dx for the following cases:

(a) f (x) = x2 + 2x − 3 when x = 2 and: (i) dx = 1/10; or (ii) dx = 1/100;

(b) f (x) = 1/x when x = 3 and: (i) dx = −1/10; or (ii) dx = −1/100;

(c) f (x) = √
x when x = 4 and: (i) dx = 1/20; or (ii) dx = 1/100.

8.SM The equation 3xexy2 − 2y = 3x2 + y2 defines y as a differentiable function of x about the point
(x, y) = (1, 0).

(a) Find the slope of the graph at this point by implicit differentiation.

(b) What is the linear approximation to y about x = 1?

9. A circle with radius r has area A(r) = πr2. Then A′(r) = 2πr, the circumference of the circle.

(a) Explain geometrically the approximation A(r + dr) − A(r) ≈ 2πr dr.

(b) Explain geometrically the approximation V(r + dr) − V(r) ≈ 4πr2 dr, where V(r) = 4
3 πr3

is the volume of a ball with radius r, and V ′(r) = 4πr2 is the surface area of a sphere with
radius r.

10. Suppose an amount K is charged to a credit card on which the interest rate is p% per year. Then
unless some payments are made beforehand, after t years the outstanding balance will have
grown to Kt = K(1 + p/100)t (even without any penalty charges for failing to make minimum
payments). Using the approximation ln(1 + p/100) ≈ p/100 derived in Example 7.4.2, prove
that ln Kt ≈ ln K + pt/100. Find the corresponding approximate percentage interest rate p, as
well as the exact interest rate p∗, at which the balance doubles after t∗ years.

11. Consider the function g(μ) = A(1 + μ)a/(1+b) − 1 where A, a, and b are positive constants. Find
the linear approximation to the function about the point μ = 0.

12. Suppose the function f is differentiable at a. Show that as h → 0, the error in the linear approx-
imation f (a + h) ≈ f (a) + f ′(a)h tends to 0 faster than h does. In other words,

lim
h→0

f (a + h) − (f (a) + f ′(a)h)

h
= 0
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7.5 Polynomial Approximations
The previous section discussed approximations of functions of one variable by linear func-
tions. In particular, Example 7.4.1 established the approximation

3
√

x ≈ 1 + 1
3 (x − 1)

for x close to 1. In this case, at x = 1, the two functions y = 3
√

x and y = 1 + 1
3 (x − 1) both

have the same value 1, and the same derivative 1/3. Approximation by linear functions,
however, may well be insufficiently accurate. So it is natural to try quadratic approxima-
tions, or approximations by polynomials of a higher order.

Quadratic Approximations
We begin by showing how a twice differentiable function y = f (x) can be approximated
near x = a by a quadratic polynomial

p(x) = A + B(x − a) + C(x − a)2 (7.5.1)

With a fixed, there are three coefficients A, B, and C to determine. We use three conditions
to do so. Specifically, at x = a, we arrange that f (x) and p(x) given by (7.5.1) should have:
(i) the same value; (ii) the same derivative; and (iii) the same second derivative. In symbols,
we require f (a) = p(a), f ′(a) = p′(a), and f ′′(a) = p′′(a). Now p′(x) = B + 2C(x − a) and
p′′(x) = 2C. So, after inserting x = a into these expressions, we need to have

A = p(a) = f (a), B = p′(a) = f ′(a), and C = 1
2 p′′(a) = 1

2 f ′′(a)

This justifies the following:

Q U A D R A T I C A P P R O X I M A T I O N T O f (x) A B O U T x = a

For x close to a,

f (x) ≈ f (a) + f ′(a)(x − a) + 1
2 f ′′(a)(x − a)2 (7.5.2)

Note that, compared with (7.4.1), we have simply added the extra term in (x − a)2. For
a = 0 in particular, we obtain the following approximation for x close to 0:

f (x) ≈ f (0) + f ′(0)x + 1
2 f ′′(0)x2 (7.5.3)

E X A M P L E 7.5.1 Find the quadratic approximation to f (x) = 3
√

x about x = 1.

Solution: Here f ′(x) = 1
3 x−2/3 and f ′′(x) = 1

3

(− 2
3

)
x−5/3. It follows that f ′(1) = 1/3 and

f ′′(1) = −2/9. Because f (1) = 1, using (7.5.2) yields

3
√

x ≈ 1 + 1
3 (x − 1) − 1

9 (x − 1)2 (for all x close to 1)
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For example, 3
√

1.03 ≈ 1 + 1
3 · 0.03 − 1

9 (0.03)2 = 1 + 0.01 − 0.0001 = 1.0099. This is
correct to four decimal places, which is better than the linear approximation derived in
Example 7.4.1.

E X A M P L E 7.5.2 Find the quadratic approximation to y = y(x) about x = 0 when y is defined implic-
itly as a function of x near (x, y) = (0, 1) by xy3 + 1 = y.

Solution: Implicit differentiation w.r.t. x yields

y3 + 3xy2y′ = y′ (∗)

Substituting x = 0 and y = 1 into (∗) gives y′ = 1. Differentiating (∗) w.r.t. x now yields

3y2y′ + (3y2 + 6xyy′)y′ + 3xy2y′′ = y′′

Substituting x = 0, y = 1, and y′ = 1, we obtain y′′ = 6. Hence, according to (7.5.3),

y(x) ≈ y(0) + y′(0)x + 1
2 y′′(0)x2 = 1 + x + 3x2

Higher-Order Approximations
So far, we have considered linear and quadratic approximations. For functions with third-
and higher-order derivatives, we can find even better approximations near one point by
using polynomials of a higher degree. Suppose we want to approximate a function f (x)
over an interval that contains x = a with an nth-degree polynomial of the form

p(x) = A0 + A1(x − a) + A2(x − a)2 + A3(x − a)3 + · · · + An(x − a)n (7.5.4)

Because p(x) has n + 1 coefficients, we can impose the following n + 1 conditions on this
polynomial:

f (a) = p(a), f ′(a) = p′(a), . . . , f (n)(a) = p(n)(a)

These conditions require that p(x) and its first n derivatives agree with the value of f (x) and
its first n derivatives at x = a.

Let us see what these conditions become when n = 3. In this case,

p(x) = A0 + A1(x − a) + A2(x − a)2 + A3(x − a)3

Repeated differentiation gives the three equalities

p′(x) = A1 + 2A2(x − a) + 3A3(x − a)2, p′′(x) = 2A2 + 2 · 3A3(x − a), p′′′(x) = 2 · 3A3.

Putting x = a gives p(a) = A0, p′(a) = 1!A1, p′′(a) = 2!A2, and p′′′(a) = 3!A3. This sug-
gests that we should use the approximation:

f (x) ≈ f (a) + 1
1!

f ′(a)(x − a) + 1
2!

f ′′(a)(x − a)2 + 1
3!

f ′′′(a)(x − a)3

Thus, we have added an extra term to the quadratic approximation (7.5.2).
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The general case when n > 3 follows the same pattern. We obtain the following approx-
imation to f (x) by an nth-degree polynomial:

T A Y L O R A P P R O X I M A T I O N T O f (x) A B O U T x = a

For x close to a,

f (x) ≈ f (a) + f ′(a)

1!
(x − a) + f ′′(a)

2!
(x − a)2 + · · · + f (n)(a)

n!
(x − a)n (7.5.5)

The right-hand side of (7.5.5) is called the nth-order Taylor polynomial, or Taylor
approximation for f about x = a. The function f and its nth-order Taylor polynomial have
such a high degree of contact at x = a that it is reasonable to expect the approximation
in (7.5.5) to be good over some (possibly small) interval centred about x = a.

The next section analyses the error that results from using such polynomial approxima-
tions. In the case when f is itself a polynomial whose degree does not exceed n, the formula
becomes exact, without any approximation error at any point.

E X A M P L E 7.5.3 Find the third-order Taylor approximation to f (x) = √
1 + x about x = 0.

Solution: We write f (x) = √
1 + x = (1 + x)1/2. Its first three derivatives are

f ′(x) = 1
2 (1 + x)−1/2, f ′′(x) = 1

2

(− 1
2

)
(1 + x)−3/2, and f ′′′(x) = 1

2

(− 1
2

) (− 3
2

)
(1 + x)−5/2

Putting x = 0 gives f (0) = 1, f ′(0) = 1/2, f ′′(0) = (1/2)(−1/2) = −1/4, and finally
f ′′′(0) = (1/2)(−1/2)(−3/2) = 3/8. Applying (7.5.5) for the case n = 3 gives

f (x) ≈ 1 + 1
1!

1
2

x + 1
2!

(
−1

4

)
x2 + 1

3!
3
8

x3 = 1 + 1
2

x − 1
8

x2 + 1
16

x3

E X A M P L E 7.5.4 For any natural number n, write down the nth-order Taylor approximation to f (x) =
ex about x = 0.

Solution: This case is particularly simple, because all the derivatives of f are equal to ex.
So f (k)(0) = 1 for all k = 1, 2, . . . , n. Hence, formula (7.5.5) yields

ex ≈ 1 + x
1!

+ x2

2!
+ · · · + xn

n!
(7.5.6)

This is an important result that deserves to be remembered.

E X E R C I S E S F O R S E C T I O N 7 . 5

1. Find quadratic approximations to the following functions about the specified points:

(a) f (x) = (1 + x)5 about x = 0 (b) F(K) = AKα about K = 1

(c) f (ε) = (
1 + 3

2 ε + 1
2 ε2

)1/2
about ε = 0 (d) H(x) = (1 − x)−1 about x = 0
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2.SM Find the fifth-order Taylor approximation to f (x) = ln(1 + x) about x = 0.

3.SM Find the second-order Taylor approximation to f (x) = 5
(
ln(1 + x) − √

1 + x
)

about x = 0.

4. A study of attitudes to risk is based on the following approximation

U(y + m) ≈ U(y) + U′(y) m + 1
2 U′′(y) m2

to a consumer’s utility function, where y represents the consumer’s initial income, and m is a
random prize she may receive. Explain how to derive this approximation.

5. Suppose that y is defined implicitly, as a function of x, by the equation 1 + x3y + x = y1/2. Find
the quadratic approximation for y about (x, y) = (0, 1).

6. Let the function x(t) be given by the conditions x(0) = 1 and ẋ(t) = tx(t) + 2[x(t)]2. Determine
the second-order Taylor polynomial for x(t) about t = 0.

7. Establish the approximation eσ
√

t/n ≈ 1 + σ
√

t/n + σ 2t/2n.

8. Establish the approximation(
1 + p

100

)n ≈ 1 + n
p

100
+ n(n − 1)

2

( p
100

)2

9. Suppose that the function h is defined, for all x > 0, by h(x) = (xp − xq)/(xp + xq), where p >

q > 0. Find its first-order Taylor approximation about x = 1.

7.6 Taylor’s Formula
Any approximation like (7.5.5) is of limited use unless something is known about the
error it implies. Taylor’s formula remedies this deficiency. This formula is often used by
economists, and is regarded as one of the main results in mathematical analysis. Consider
the following nth order Taylor approximation about x = 0, found by putting a = 0 in
(7.5.5):

f (x) ≈ f (0) + 1
1!

f ′(0)x + 1
2!

f ′′(0)x2 + · · · + 1
n!

f (n)(0)xn (∗)

Except at x = 0, function f (x) and the Taylor polynomial on the right-hand side of (∗) are
usually different. The difference between the two will depend on x as well as on n. It is
called the remainder after n terms, which we denote by Rn+1(x). Hence,

f (x) = f (0) + 1
1!

f ′(0)x + · · · + 1
n!

f (n)(0)xn + Rn+1(x) (7.6.1)

The following theorem gives an important explicit formula for the remainder.7 Its proof is
deferred to Section 9.4.

7 English mathematician Brook Taylor (1685–1731) had already found polynomial approximations
of the general form (∗) in 1715. Italian–French mathematician Joseph-Louis Lagrange (1736–1813)
(born Giuseppe Luigi Lagrangia) proved (7.6.2) approximately 50 years later.
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L A G R A N G E ’ S F O R M O F T H E R E M A I N D E R

Suppose f is differentiable n + 1 times throughout an interval that includes 0
and x �= 0. Then the remainder Rn+1(x) given in (7.6.1) can be written as

Rn+1(x) = 1
(n + 1)!

f (n+1)(z)xn+1 (7.6.2)

for some number z strictly between 0 and x.

Using this formula for Rn+1(x) in (7.6.1), we obtain

T A Y L O R ’ S F O R M U L A

Suppose f is differentiable n + 1 times throughout an interval that includes 0
and x �= 0. Then

f (x) = f (0) + 1
1!

f ′(0)x + · · · + 1
n!

f (n)(0)xn + 1
(n + 1)!

f (n+1)(z)xn+1 (7.6.3)

for some number z strictly between 0 and x.

Note that the remainder resembles the preceding terms in the sum. The only difference
is that in the formula for the remainder, the (n + 1)th derivative f (n+1) is evaluated at a point
z, where z is some unspecified number between 0 and x. This is in contrast to all the other
terms, where the derivative is evaluated at 0. The number z is not fixed because it depends,
in general, on x as well as on n.

If we put n = 1 in formula (7.6.3), we obtain that, for some z strictly between 0 and x,

f (x) = f (0) + f ′(0)x + 1
2 f ′′(z)x2 (7.6.4)

This formula tells us that 1
2 f ′′(z)x2 is the error that results if we replace f (x) by its linear

approximation about x = 0.
How do we use the remainder formula? It suggests an upper limit for the error that results

if we replace f with its nth-order Taylor polynomial approximation. Suppose, for instance,
that for all x in an interval I, the absolute value of f (n+1)(x) is at most M. Then formula
(7.6.3) tells us that in this interval∣∣Rn+1(x)

∣∣ ≤ M
(n + 1)!

|x|n+1 (7.6.5)

Note that if n is a large number and if x is close to 0, then |Rn+1(x)| is small for two reasons:
first, if n is large, the number (n + 1)! in the denominator in (7.6.5) is large; second, if |x|
is less than 1, then |x|n+1 is also small when n is large.

E X A M P L E 7.6.1 Use formula (7.6.4) to approximate the function

f (x) = √
25 + x = (25 + x)1/2

Use the result to estimate
√

25.01, with a bound on the absolute value of the remainder.
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Solution: To apply (7.6.4), we differentiate to obtain

f ′(x) = 1
2 (25 + x)−1/2, and f ′′(x) = 1

2

(− 1
2

)
(25 + x)−3/2

Then f (0) = 5, whereas f ′(0) = 1/2 · 1/5 = 1/10 and f ′′(z) = −(1/4)(25 + z)−3/2. So
by (7.6.4), for all x �= 0 there exists z strictly between 0 and x such that

√
25 + x = 5 + 1

10 x + 1
2

(− 1
4

)
(25 + z)−3/2x2 = 5 + 1

10 x − 1
8 (25 + z)−3/2x2 (∗)

In order to estimate
√

25.01, we write 25.01 = 25 + 0.01 and use (∗). If x = 0.01, then z
lies between 0 and 0.01, so 25 + z > 25. Then (25 + z)−3/2 < (25)−3/2 = 1/125. So the
absolute value of the remainder term in (∗) satisfies

|R2(0.01)| =
∣∣∣− 1

8 (25 + z)−3/2
( 1

100

)2
∣∣∣ <

1
80 000

· 1
125

= 10−7

We conclude that
√

25.01 ≈ 5 + 1/10 · 1/100 = 5.001, with an error less than 10−7.

E X A M P L E 7.6.2 Find Taylor’s formula for f (x) = ex, and estimate the error for n = 3 and x = 0.1.

Solution: From Example 7.5.4, it follows that there exists a number z between 0 and x such
that

ex = 1 + x
1!

+ x2

2!
+ · · · + xn

n!
+ xn+1

(n + 1)!
ez (7.6.6)

Because z lies strictly between 0 and x, it follows that |z| < |x| and so for each fixed x �= 0,

the remainder term Rn+1(x) = xn+1

(n + 1)!
ez in (7.6.6) satisfies |Rn+1(x)| <

|x|n+1e|x|

(n + 1)!
. Now

choose m so that m ≥ 2|x| and so |x|/m ≤ 1
2 . Then, for any n > m, this choice of m ensures

that |x|/k < 1
2 for k = m + 2, m + 3, . . . , n + 1, and so

|Rn+1(x)| <
|x|n+1e|x|

(n + 1)!
= |x|m+1e|x|

(m + 1)!
|x|n−m (m + 1)!

(n + 1)!
<

|x|m+1e|x|

(m + 1)!
2−(n−m)

Now, as n → ∞ one has 2−(n−m) → 0 and so evidently |Rn+1(x)| → 0 as well. For any x
one could therefore use (7.6.6) to find the value of ex to an arbitrary degree of accuracy. Nev-
ertheless, the absolute value of the ratio of any two successive terms before the remainder in
(7.6.6) is (|xn|/n!) ÷ (|xn−1|/(n − 1)!) = |x|/n. Thus, in case |x| > 1, at least |x| terms are
needed before successive terms stop increasing, and this ratio falls below 1, which allows
terms to start approaching 0. So if |x| is large, a large number of terms are needed for an
accurate approximation.

For n = 3 and x = 0.1, Eq. (7.6.6) implies that, for some z in the interval (0, 0.1), one
has

e0.1 = 1 + 1
10

+ 1
200

+ 1
6000

+ (0.1)4

24
ez (∗)

For z < 0.1 we have ez < e0.1. We claim that e0.1 < 1.2. To prove this note that (1.2)10 ≈
6.2 > e, so e < (1.2)10. It follows that ez < e0.1 < [(1.2)10]0.1 = 1.2, implying that

∣∣R4

( 1
10

)∣∣ = (0.1)4

24
ez <

1
240 000

1.2 = 0.000 005 = 5 · 10−6
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So the error that results from dropping the remainder in (∗) is less than 5 · 10−6.

Suppose we consider the Taylor formula on an interval about x = a instead of x = 0.
The first n + 1 terms on the right-hand side of Eq. (7.6.3) become replaced by those of
Eq. (7.5.5), and for all x �= a the new remainder is

Rn+1(x) = 1
(n + 1)!

f (n+1)(z)(x − a)n+1 (7.6.7)

for some z strictly between x and a. One easily shows that (7.6.7) follows from Eqs (7.6.2)
and (7.6.3) by considering the function g defined by g(t) = f (a + t) when t is close to 0.

E X E R C I S E S F O R S E C T I O N 7 . 6

1. Write Taylor’s formula (7.6.3) with n = 2 for f (x) = ln(1 + x).

2. (a) Use the approximation
(1 + x)m ≈ 1 + mx + 1

2 m(m − 1)x2

and the fact that 3√25 = 3(1 − 2/27)1/3 in order to find an approximate value of 3√25.

(b) Use a similar starting point to find an approximation to 5√33.
Then check these approximations by using a calculator.

3. Show that 3√9 = 2 (1 + 1/8)1/3. Use formula (7.6.3), with n = 2, to compute 3√9 to three decimal
places.

4.SM Let g(x) = 3√1 + x.

(a) Find the Taylor polynomial of g(x) of order 2 about the origin.

(b) For x ≥ 0 show that |R3(x)| ≤ 5x3/81.

(c) Find 3√1003 to 7 decimal places.

7.7 Elasticities
Economists often study how the demand for a commodity such as coffee reacts to a change
in its price. We can ask by how much the quantity demanded, measured in units such as
kilograms, will change per unit increase in price, measured in units such as euros. The
answer is a concrete number. But this is rather unsatisfactory because the number depends
crucially on those units: is it measured in kilos per euro, or in pounds per dollar? For
example, in order to know whether coffee demand is more sensitive to price changes in
the Eurozone or in the USA, we need to adjust for the different units of both quantity and
price. Another problem arises because a $1 increase in the price of a pound of coffee may
be considerable, whereas a $1 increase in the price of a car is insignificant.
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Such difficulties are largely eliminated if we consider relative price and quantity
changes instead. Specifically, we can ask by what percentage the quantity of coffee
demanded changes when its price increases by 1%. The resulting number does not depend
at all on the units in which both quantities and prices are measured. This numerical ratio is
called the price elasticity of the demand. Like the derivative of a function, this elasticity
depends on the price at which it is measured.

Suppose we read that, in 1960, the price elasticity of butter in a certain country was esti-
mated to be −1. This means that, if all other factors that influence demand remain constant,
an increase of 1% in the price would lead to a decrease of 1% in the demand. Suppose we
also read that the price elasticity for potatoes was estimated to be −0.2. How should this
number be interpreted? Why do you think the absolute value of this elasticity is so much
less than that for butter?

Assume that the demand for a commodity can be described by the function x = D(p) of
the price p. When the price changes from p to p + �p, the quantity demanded, denoted by x,
also changes. The absolute change in x is �x = D(p + �p) − D(p), whereas the relative,
or proportional, change is

�x
x

= D(p + �p) − D(p)

D(p)

The ratio between the relative changes in the quantity demanded and in the price is therefore

�x
x

÷ �p
p

= p
x

�x
�p

= p
D(p)

D(p + �p) − D(p)

�p
(7.7.1)

When �p = p/100 so that p increases by 1%, then (7.7.1) becomes (�x/x) · 100, which
is the percentage change in the quantity demanded. We call the proportion in (7.7.1) the
average elasticity of x in the interval [p, p + �p]. Observe that the number defined in (7.7.1)
depends on both the price change �p and on the price p. But it is unit free in the sense that it
makes no difference whether the quantity change is measured in tons, kilograms, or pounds,
or whether the price change is measured in dollars, pounds, or euros.

We would like to define the elasticity of D at p so that it also does not depend on the
size of the increase in p. We can do this if D is a differentiable function of p. For then it is
natural to define the elasticity of D w.r.t. p as the limit of the ratio in (7.7.1) as �p tends
to 0. But differentiability implies that the Newton quotient [D(p + �p) − D(p)]/�p tends
to the derivative D′(p) as �p tends to 0. So we obtain:

P R I C E E L A S T I C I T Y O F D E M A N D

The elasticity of the demand function D(p) with respect to the price p is

p
D(p)

dD(p)

dp
(7.7.2)

Often we can get a good approximation to the elasticity by letting �p/p = 1/100 = 1%
and computing p�x/(x�p).
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The General Definition of Elasticity
The above definition of elasticity concerned a function determining quantity demanded
as a function of price. Economists, however, also consider income elasticities of demand,
when demand is regarded as a function of income. They also consider elasticities of supply,
elasticities of substitution, and several other kinds of elasticity. It is therefore helpful to see
how elasticity can be defined for a general differentiable function. At the same time, we
also introduce the notation Elx f (x) for the elasticity of the function f (x) w.r.t. x.

E L A S T I C I T Y

If f is differentiable at x and f (x) �= 0, the elasticity of f w.r.t. x is

Elx f (x) = x
f (x)

f ′(x) (7.7.3)

E X A M P L E 7.7.1 Find the elasticity of f (x) = Axb, where A and b are constants, with A �= 0.

Solution: In this case, one has f ′(x) = Abxb−1. Hence, Elx(Axb) = (x/Axb)Abxb−1 = b, so

f (x) = Axb ⇒ Elx f (x) = b (7.7.4)

The elasticity of the power function Axb w.r.t. x is simply the exponent b. So this function
has constant elasticity. In fact, it is the only type of function which has constant elasticity,
as Exercise 11.10.6 asks you to show.

E X A M P L E 7.7.2 Assume that the quantity demanded of a commodity, as a function of its price p, is
given by D(p) = 8000p−1.5. Compute the elasticity of D(p). Also, find the exact percentage
change in quantity demanded when the price increases by 1% from p = 4.

Solution: Using (7.7.4), we find that Elp D(p) = −1.5. That is, an increase in the price of
1% causes the quantity demanded to decrease by about 1.5%.

In this case, we can also compute the decrease in demand exactly. When the price is 4,
the quantity demanded is D(4) = 8000 · 4−1.5 = 1000. If the price p = 4 increases by 1%,
then the new price will be 4 · 1.01 = 4.04. So the change in demand is

�D = D(4.04) − D(4) = 8000 · 4.04−1.5 − 1000 = −14.81

Then the percentage change in demand from D(4) is −(14.81/1000) · 100 = −1.481%.

E X A M P L E 7.7.3 Let D(P) denote the demand function for a product. By selling D(P) units at price P,
the producer earns revenue R(P) = P · D(P). The elasticity of R(P) w.r.t. P is

ElP R(P) = P
R(P)

d
dP

[P · D(P)] = 1
D(P)

[D(P) + P · D′(P)] = 1 + ElP D(P)
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Observe that if ElP D(P) = −1, then ElP R(P) = 0. Thus, when the price elasticity of
the demand at a point is equal to −1, a small price change will have (almost) no influence
on the revenue. More generally, the marginal revenue dR/dP generated by a price change
is positive if the price elasticity of demand is greater than −1, and negative if the elasticity
is less than −1.

Economists sometimes use the following terminology:

1. If
∣∣Elx f (x)

∣∣ > 1, then f is elastic at x.

2. If
∣∣Elx f (x)

∣∣ = 1, then f is unit elastic at x.

3. If
∣∣Elx f (x)

∣∣ < 1, then f is inelastic at x.

4. If
∣∣Elx f (x)

∣∣ = 0, then f is perfectly inelastic at x.

5. If
∣∣Elx f (x)

∣∣ = ∞, then f is perfectly elastic at x.

Suppose the function y = f (x) has an inverse x = g(y). Then Theorem 7.3.1 implies that

Ely(g(y)) = y
g(y)

g′(y) = f (x)
x

1
f ′(x)

= 1
Elx f (x)

(7.7.5)

A formulation that corresponds nicely to (7.3.2) follows:

Ely x = 1
Elx y

(7.7.6)

There are rules for elasticities of sums, products, quotients, and composite functions that
are occasionally useful. You might like to derive these rules by solving Exercise 9.

Elasticities as Logarithmic Derivatives
Suppose that, as in Example 7.7.1, the two variables x and y are related by the equation
y = Axb, where x, y, and the parameter A are all positive. Taking the natural logarithm of
each side of the equation, then applying the rules for logarithms set out in Section 4.10, we
have

ln y = ln A + b ln x (7.7.7)

So ln y is a linear function of ln x. This leads us to say that (7.7.7) is a log-linear relation
between x and y.

For the function y = Axb, we know from Example 7.7.1 that Elx y = b. So from (7.7.7)
we see that Elx y is equal to the (double) logarithmic derivative d(ln y)/d(ln x), which is
the constant slope of this log-linear relationship. This example illustrates the general rule
that elasticities are equal to such logarithmic derivatives. In fact, whenever x and y are both
positive variables, with y a differentiable function of x, a proof based on repeatedly applying
the chain rule shows that

Elx y = x
y

dy
dx

= d(ln y)
d(ln x)

(7.7.8)

The transformation from the original equation y = Axb to Eq. (7.7.7) is often seen in
economic models, sometimes using logarithms to a base other than e.
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E X E R C I S E S F O R S E C T I O N 7 . 7

1. Find the elasticities of the functions given by the following formulas:

(a) 3x−3 (b) −100x100 (c)
√

x (d) A/x
√

x, where A is a constant

2. A study of transport economics uses the relation T = 0.4K1.06, where K is expenditure on road
construction, and T is a measure of traffic volume. Find the elasticity of T w.r.t. K. In this
model, if expenditure increases by 1%, by what percentage (approximately) does traffic volume
increase?

3. A study of Norway’s State Railways revealed that, for rides up to 60 km, the price elasticity of
the volume of traffic was approximately −0.4.

(a) According to this study, what is the consequence of a 10% increase in fares?

(b) The corresponding elasticity for journeys over 300 km was calculated to be approximately
−0.9. Can you think of a reason why this elasticity is larger in absolute value than the pre-
vious one?

4. Use definition (7.7.3) to find Elx y for the following functions, where a and p are constants:

(a) y = eax (b) y = ln x (c) y = xpeax (d) y = xp ln x

5. Prove that Elx(f (x)
p) = p Elx f (x), where p is a constant.

6. The demand D for apples in the US during the period 1927 to 1941, as a function of income r,
was estimated as D = Ar1.23, where A is a constant. Find and interpret the income elasticity of
demand, or Engel elasticity, defined as the elasticity of D w.r.t. r.

7. A study of the transit systems in 37 American cities estimated for each city the average travel
time to work, m (in minutes), as a function of population, N. They found that m = e−0.02N0.19.
Write the relation in log-linear form. What is the value of m when N = 480 000?

8. Show that, when finding elasticities:

(a) Multiplicative constants disappear: Elx (Af (x)) = Elx f (x).

(b) Additive constants do not disappear:

Elx (A + f (x)) = f (x) Elx f (x)
A + f (x)

9.SM [HARDER] Prove that if f and g are positive-valued differentiable functions of x and A is a constant,
then the following rules hold. Here we write, for instance, Elx f instead of Elx f (x).

(a) Elx A = 0 (b) Elx(fg) = Elx f + Elx g

(c) Elx(f /g) = Elx f − Elx g (d) Elx(f + g) = f Elx f + g Elx g
f + g

(e) Elx(f − g) = f Elx f − g Elx g
f − g

(f) Elx f (g(x)) = Elu f (u) Elx g (u = g(x))
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10. [HARDER] Use the rules of Exercise 9 to evaluate the following:

(a) Elx(−10x−5) (b) Elx(x + x2) (c) Elx(x
3 + 1)10

(d) Elx(Elx 5x2) (e) Elx(1 + x2) (f) Elx

(
x − 1
x5 + 1

)

7.8 Continuity
Roughly speaking, a function y = f (x) is continuous if small changes in the independent
variable x lead to small changes in the function value y. Geometrically, a function is contin-
uous on an interval if its graph is connected, in the sense that it has no breaks. An example
is presented in Fig. 7.8.1.

a

y 5 f(x)
P

y

x

Figure 7.8.1 A continuous function

a

y 5 f (x) y

x

Figure 7.8.2 A discontinuous function

It is often said that a function is continuous if its graph can be drawn without lifting one’s
pencil off the paper. On the other hand, if the graph includes one or more jumps, we say that
f is discontinuous. Thus, the function whose graph is shown in Fig. 7.8.2 is discontinuous
at x = a, but continuous at all other points of its domain. The graph indicates that f (x) < 0
for all x < a, but f (x) > 0 for all x ≥ a, so there is a jump at x = a.

Why are we interested in distinguishing between continuous and discontinuous func-
tions? One important reason is that we must usually work with numerical approximations.
For instance, if a function f is given by some formula and we wish to compute f (

√
2), we

usually take it for granted that we can compute f (1.4142) and obtain a good approximation
to f (

√
2). In fact, this implicitly assumes that f is continuous. If it is, then because 1.4142

is close to
√

2, the function value f (1.4142) must be close to f (
√

2).
In applications of mathematics to natural sciences and economics, a function will often

represent how some phenomenon changes over time. Continuity of the function will then
reflect continuity of the phenomenon, in the sense of gradual rather than sudden changes.
For example, a person’s body temperature is a function of time which changes from one
value to another only after passing through all the intermediate values.

On the other hand, the market price of Brent crude oil, when examined closely enough,
is actually a discontinuous function of time. One reason is that the price, generally quoted
in dollars per barrel, must always have a rather small number of decimal places. A second,
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more interesting, reason for occasional large jumps in the price is the sudden arrival of news
or a rumour that significantly affects either the demand or supply. One example might be
a sudden unpredicted change in the government of a major oil-exporting country. Another
example would be if several oil exporting countries with government controlled operations
agree to limit their supply.

Economic analysis needs a definition of continuity that is not based solely on geometric
intuition. Providing a more precise definition based on limits is our next topic.

Continuity in Terms of Limits
As discussed above, a function y = f (x) is continuous at x = a if small changes in x lead to
small changes in f (x). Stated differently, if x is close to a, then f (x) must be close to f (a).
This motivates the following definition:

C O N T I N U I T Y

The function f is continuous at x = a if lim
x→a

f (x) = f (a) (7.8.1)

This definition implies that, in order for f to be continuous at x = a, the following three
conditions must all be fulfilled: (i) the function f must be defined at x = a; (ii) the limit of
f (x) as x tends to a must exist; and (iii) this limit must be equal to f (a). Unless all three of
these conditions are satisfied, we say that f is discontinuous at a.

a b

y 5 f (x)f (a)

f (b)

A

y

x

Figure 7.8.3 A discontinuous function

Figure 7.8.3 distinguishes between two important different types of discontinuity that
can occur. At x = a, the function is discontinuous because f (x) clearly has no limit as x tends
to a. Hence, condition (ii) is not satisfied. This kind of discontinuity is called “irremovable”
because it cannot be removed by appropriately redefining f at x = a.

On the other hand, the limit of f (x) as x tends to b exists and is equal to A. Because A �=
f (b), however, condition (iii) is not satisfied, so f is discontinuous at b. This is a “removable”
discontinuity that would disappear if the function were redefined at x = b to make f (b) equal
to A.
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Properties of Continuous Functions
Mathematicians have discovered many important results that hold only for continuous func-
tions. This makes it important to know how to determine whether or not a given function
is continuous. In fact, for many types of function, the rules for limits set out in Section 6.5
make it easy to establish their continuity.

First, note that because limx→a c = c and limx→a x = a at each point a,

the two functions f (x) = c and f (x) = x are continuous everywhere (7.8.2)

This is as it should be, because the graphs of these functions are straight lines.
Next, definition (7.8.1) and the limit rules (6.5.2)–(6.5.5) evidently imply the

following:

P R O P E R T I E S O F C O N T I N U O U S F U N C T I O N S

If f and g are continuous at a, then:

(a) the sum f + g and difference f − g are continuous at a;

(b) the product fg and, in case g(a) �= 0, the quotient f /g are continuous at a;

(c) given any real number r, the power [f (x)]r is continuous at any point a
where [f (a)]r is defined;

(d) if f has an inverse on the interval I, then its inverse f −1 is continuous on
f (I).

For instance, to prove the first statement in (b), suppose that both f and g are con-
tinuous at a. Then f (x) → f (a) and g(x) → g(a) as x → a. Now, according to the rules
for limits, f (x)g(x) → f (a)g(a) as x → a, which means precisely that fg is continuous at
x = a. The result in (d) is a little trickier to prove, but it is easy to believe once one realizes
that the graphs of f and its inverse f −1 are symmetric about the line y = x, as we saw in
Section 5.3.

By combining these properties and (7.8.2), it follows that functions like h(x) = x + 8
and k(x) = 3x3 + x + 8 are continuous. In general, because a polynomial is a sum of
continuous functions, it is continuous everywhere. Moreover, consider any rational
function

R(x) = P(x)
Q(x)

, where P(x) and Q(x) are polynomials

Then property (b) implies that R(x) is continuous at all x where Q(x) �= 0.
Next, consider any composite function g(f (x)) where f and g are both continuous. If x is

close to a, then continuity of f at a implies that f (x) is close to f (a). In turn g(f (x)) is close
to g(f (a)) because g is continuous at f (a), so g ◦ f is continuous at a. In short, composites
of continuous functions are continuous.
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To summarize, we have the following powerful general result:

P R E S E R V A T I O N O F C O N T I N U I T Y

A function is continuous at all points where it is defined provided that it can
be constructed from other continuous functions by combining one or more
operations of addition, subtraction, multiplication, division (except by zero),
and composition.

By using the results just discussed, a mere glance at the formula defining a function will
often suffice to determine the points at which it is continuous.

E X A M P L E 7.8.1 Determine for which values of x the functions f and g are continuous:

(a) f (x) = x4 + 3x2 − 1
(x − 1)(x + 2)

(b) g(x) = (x2 + 2)

(
x3 + 1

x

)4

+ 1√
x + 1

Solution:

(a) This is a rational function that is continuous for all x where the denominator (x − 1)

(x + 2) �= 0. So f is continuous for all x other than 1 and −2.

(b) This function is defined when x �= 0 and x + 1 > 0. By properties (a), (b), and (c), it
follows that g is continuous in the domain (−1, 0) ∪ (0, ∞).

Knowing where a function is continuous simplifies the computation of many limits. If
the function f is continuous at x = a, then the limit of f (x) as x tends to a is found simply by
evaluating f (a). For instance, since the function f (x) = x2 + 5x studied in Example 6.5.3
is a continuous function of x, one has

lim
x→−2

(
x2 + 5x

) = f (−2) = (−2)2 + 5(−2) = 4 − 10 = −6

Of course, simply evaluating f (−2) like this is much easier than using the rules for limits.
Functions such as those in Examples 5.4.3 and 5.4.4 are defined “piecewise” by dif-

ferent formulas which apply to disjoint intervals. Such piecewise functions are frequently
discontinuous at the junction points. As another example, the amount of postage you pay
for a letter is a discontinuous function of its weight. (As long as we use preprinted postage
stamps, it would be extremely inconvenient to have the “postage function” be even approx-
imately continuous.) On the other hand, given any tax schedule that looks like the one in
Example 5.4.4, the tax you pay is (essentially) a continuous function of your net income.

E X A M P L E 7.8.2 An economically significant example of a discontinuous function emerges from the
system for taxing house purchases in the UK that existed prior to the reform of 3 December
2014. Any house buyer had to pay a tax that was called “stamp duty”, known officially
as the “Stamp Duty Land Tax”, usually abbreviated to SDLT. Prior to 3 December 2014,
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SDLT was levied at increasing average rates under a “slab system”. From 24 March 2012 to
3 December 2014, these rates were as shown in Table 7.8.1.8

Table 7.8.1 Rates of stamp duty on English
house purchases, prior to 3 December 2014

Purchase price of property Rate of SDLT

Up to $125 000 Zero
$125 000 to $250 000 2%
$250 000 to $925 000 5%

$925 000 to $1.5 million 10%
Over $1.5 million 12%

An important implication of this slab system was that the amount of tax to be paid
underwent a discontinuous jump whenever the rate increased. Specifically, the tax on a
house bought for $125 000 was zero. But if the house were bought for $125 001 instead,
the tax payable would rise to 2% of the purchase price, which is $2 500.02. Similarly, the
tax on a house bought for $250 000 was 2% of the purchase price, which is $5 000. But if the
house were bought for $250 001 instead, the tax payable would rise to 5% of the purchase
price, which is $12 500.05.

£0
£0

£60,000

£120,000

£180,000

£240,000

£500,000 £1,000,000 £1,500,000 £2,000,000

Figure 7.8.4 SDLT revenue function
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Figure 7.8.5 Frequency distribution of
house purchases

Figure 7.8.4 has a graph of this old SDLT revenue function, with discontinuous jumps at
each of the four prices where there is an increase in the rate. Figure 7.8.5 is a bar chart
showing the frequency distribution of house purchases at different prices for the year
2006.9 Not surprisingly, there are huge troughs in the distribution at a price just above one
where the rate increases. In particular, notice the huge increase in frequency in the bar
just to the left of $250 000, and the huge drop almost to zero in the bar just to the right of
$250 000.

8 The official source is http://www.hmrc.gov.uk/sdlt/rates-tables.htm#3
9 This bar chart is adapted, with the authors’ kind permission, from the paper by Teemu Lyytikäinen

and Christian Hilber entitled “Housing transfer taxes and household mobility: Distortion on
the housing or labour market?” available at https://econpapers.repec.org/paper/
ferwpaper/47.htm

http://www.hmrc.gov.uk/sdlt/rates-tables.htm#3
https://econpapers.repec.org/paper/ferwpaper/47.htm
https://econpapers.repec.org/paper/ferwpaper/47.htm
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An economist finds this easy to explain. After all, if both buyer and seller agree that a
house is really worth $251 000, on which the tax payable is $12 550, they could instead
agree to record the purchase price at $249 000, on which the tax payable is only $4 950.
This saves the purchaser $7 600 in tax, some of which could be used to pay the seller at
least $2 000 extra for “fixtures and fittings” like carpets and curtains which, in the UK, are
often not included in the price of the house itself.10

Eventually, the UK Treasury recognized that this was a serious defect in the tax sys-
tem.11 So on 3 December 2014, it was announced that the SDLT tax schedule would be
reformed immediately. It became more like the US Federal income tax system described in
Example 5.4.4, with several bands. Between these bands, the marginal rate would increase,
but the average tax rate and total tax payable are both continuous functions of the price.
It remains to be seen whether this move to continuity leads to a more regular frequency
distribution of prices paid for English houses, and for the land on which they are built.12

By the way, The Economist, in its discussion of this tax reform in the issue dated
6 December 2014, described the new revenue function as “less kinky”. This is mathematical
nonsense. Kinks are corners where the slope of the tangent to the graph changes discon-
tinuously.13 So kinks are different from jumps. The old schedule had jumps but otherwise
no kinks. The new schedule has kinks but, because it is continuous, it has no jumps.

E X E R C I S E S F O R S E C T I O N 7 . 8

1. Which of the following functions are likely to be continuous functions of time?

(a) The price of an ounce of gold in the Zurich gold market.

(b) The height of a growing child.

(c) The height of an aeroplane above sea level.

(d) The distance travelled by a car.

2. Let f and g be defined for all x by

f (x) =
{

x2 − 1, for x ≤ 0

−x2, for x > 0
and g(x) =

{
3x − 2, for x ≤ 2

−x + 6, for x > 2

Draw a graph of each function. Is f continuous at x = 0? Is g continuous at x = 2?

10 Lyytikäinen and Hilber point out that when SDLT replaced an older system in 2003, it “was designed
to crack down on tax evasion. In the old system it was possible to evade taxes by selling ‘fixtures
and fittings’ separately at excessive prices. In the current system [in 2006], the sale of fixtures and
fittings is declared together with the property and the Land Registry compares purchase prices
with typical prices paid in the area to detect evasion.” The anomalies in the frequency distribution
of house prices suggest that such evasion was imperfectly deterred, to say the least.

11 Actually, these taxes applied only in England and Wales, not in Scotland and Northern Ireland.
12 A subsequent reform dated 22 November 2017 actually reintroduced the discontinuous slab

system, but only for first-time buyers of residential property intended as a main residence that is
valued between $300 000 and $500 000. See https://assets.publishing.service.
gov.uk/government/uploads/system/uploads/attachment−data/file/
759714/Stamp−Duty−Land−Tax−relief−for−first−time−buyers−-−
guidance−note.pdf

13 As discussed in (7.9.4) below.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment%E2%88%92data/file/759714/Stamp%E2%88%92Duty%E2%88%92Land%E2%88%92Tax%E2%88%92relief%E2%88%92for%E2%88%92first%E2%88%92time%E2%88%92buyers%E2%88%92-%E2%88%92guidance%E2%88%92note.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment%E2%88%92data/file/759714/Stamp%E2%88%92Duty%E2%88%92Land%E2%88%92Tax%E2%88%92relief%E2%88%92for%E2%88%92first%E2%88%92time%E2%88%92buyers%E2%88%92-%E2%88%92guidance%E2%88%92note.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment%E2%88%92data/file/759714/Stamp%E2%88%92Duty%E2%88%92Land%E2%88%92Tax%E2%88%92relief%E2%88%92for%E2%88%92first%E2%88%92time%E2%88%92buyers%E2%88%92-%E2%88%92guidance%E2%88%92note.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment%E2%88%92data/file/759714/Stamp%E2%88%92Duty%E2%88%92Land%E2%88%92Tax%E2%88%92relief%E2%88%92for%E2%88%92first%E2%88%92time%E2%88%92buyers%E2%88%92-%E2%88%92guidance%E2%88%92note.pdf
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3.SM For what values of x is each function defined by the following formulas continuous?

(a) x5 + 4x (b)
x

1 − x
(c)

1√
2 − x

(d)
x

x2 + 1
(e)

x8 − 3x2 + 1
x2 + 2x − 2

(f)
1√
x

+ x7

(x + 2)3/2

4. Figure 7.8.6 indicates for each x the height y of an aeroplane above the point on the ground verti-
cally below. Draw the graph of y as a function of x. Is y a continuous function of x?

Figure 7.8.6 Exercise 4

5. For what value of a is the following function continuous for all x?

f (x) =
{

ax − 1 for x ≤ 1

3x2 + 1 for x > 1

6. Sketch the graph of a function f that is one-to-one on an interval, but is neither strictly increasing
nor strictly decreasing. (Hint: f cannot be continuous.)

7.9 More on Limits
Section 6.5 gave a preliminary discussion of limits. We now supplement this with some
additional concepts and results, still keeping the discussion at an intuitive level. The rea-
son for this gradual approach is that it is important and quite easy to acquire a working
knowledge of limits. Experience suggests, however, that the kind of precise definition we
are leading up to presents more of a challenge, as do proofs based on such a definition.

Suppose f is defined for all x close to a, but not necessarily at a. According to
Definition (6.5.1), as x tends to a, the function f (x) has A as its limit provided that the
number f (x) can be made as close to A as one pleases by making x sufficiently close, but
not equal, to a. Then we say that the limit exists. Now consider a case in which the limit
does not exist.

E X A M P L E 7.9.1 Try to determine lim
x→−2

1
(x + 2)2

by using a calculator.

Solution: Choosing x-values that approach −2 yields the function values in Table 7.9.1.
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Table 7.9.1 Values of 1/(x + 2)2 when x is close to −2

x −1.8 −1.9 −1.99 −1.999 −2.0 −2.001 −2.01 −2.1 −2.2

1/ (x + 2)2 25 100 10 000 1 000 000 “ 0/0 ” 1 000 000 10 000 100 25

As x gets closer and closer to −2, we see that the value of the fraction becomes larger
and larger. By extending the values in the table, we see, for example, that for x = −2.0001
and x = −1.9999, the value of the fraction is 100 million. Figure 7.9.1 shows the graph of
f (x) = 1/(x + 2)2. The line x = −2 is called a vertical asymptote for the graph of f .

2345 1 1

3

4

5

2

1

y

x

f (x) 
1

(x 1 2)25

Figure 7.9.1 f (x) → ∞ as x → −2

a

y 5 f (x)

y

x

B

A

Figure 7.9.2 lim
x→a

f (x) does not exist

In fact we can obviously make the fraction 1/(x + 2)2 as large as we like by choosing
x sufficiently close to −2, so it does not tend to any limit as x tends to −2. Instead, we say
that it “tends to infinity”, and even write

1
(x + 2)2

→ ∞ as x → −2

Note that ∞ is not a number, so ∞ is not a limit.

One-Sided Limits
The function whose graph is shown in Fig. 7.9.2 evidently fails to have a limit as x tends to
a. However, the figure does indicate that if x tends to a through values less than a, then f (x)
tends to the number B. We say, therefore, that the limit of f (x) as x tends to a from below is
B, and write

lim
x→a− f (x) = B or f (x) → B as x → a−

Analogously, Fig. 7.9.2 also indicates that if x tends to a through values greater than a, then
f (x) tends to the number A. Accordingly, we say that the limit of f (x) as x tends to a from
above is A, and write

lim
x→a+ f (x) = A or f (x) → A as x → a+

We call these one-sided limits, the first from below and the second from above. They can
also be called the left limit and right limit, respectively.
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A necessary and sufficient condition for the (ordinary) limit to exist is that the two
one-sided limits of f at a exist and are equal:

lim
x→a

f (x) = A ⇐⇒
[

lim
x→a− f (x) = A and lim

x→a+ f (x) = A
]

(7.9.1)

It should now also be clear what is meant by

f (x) → ±∞ as x → a− and f (x) → ±∞ as x → a+

The example limx→0+ ln x = −∞ has already been explained while justifying Eq. (6.11.3).

E X A M P L E 7.9.2 Figure 7.9.3 shows the graph of a function f defined on the interval [0, 9]. Use the
figure to check that the following limiting statements seem correct:

lim
x→2

f (x) = 3, lim
x→4− f (x) = 1/2, lim

x→4+ f (x) = 3, and lim
x→6− f (x) = lim

x→6+ f (x) = −∞

1 2 3 4 5 6 7 8 9

3

4

5

2

1

y 5 f (x)

y

x

Figure 7.9.3 A function defined on [0, 9]

Following Eq. (7.9.1), here we allow ourselves to write simply limx→6 f (x) = −∞ even
though neither the lower nor the upper limit really exists.

E X A M P L E 7.9.3 Explain the following limits:

1√
2 − x

→ ∞ as x → 2− and
−1√
x − 2

→ −∞ as x → 2+

Solution: If x is slightly smaller than 2, then 2 − x is small and positive. Hence,
√

2 − x
is close to 0, and 1/

√
2 − x is a large positive number. For example, 1/

√
2 − 1.9999 =

1/
√

0.0001 = 100. As x tends to 2−, so 1/
√

2 − x tends to ∞.
The other limit is similar, because if x is slightly larger than 2, then

√
x − 2 is positive

and close to 0, and −1/
√

x − 2 is a large negative number.

One-Sided Continuity
The introduction of one-sided limits allows us to define one-sided continuity. Suppose f is
defined on the half-open interval (c, a]. If f (x) tends to f (a) as x tends to a−, we say that f
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is left continuous at a. Similarly, if f is defined on [a, d), we say that f is right continuous
at a if f (x) tends to f (a) as x tends to a+. Because of (7.9.1), we see that a function f is
continuous at a if and only if f is both left and right continuous at a.

E X A M P L E 7.9.4 Consider again the function f whose graph is shown in Fig. 7.9.3. Because
limx→4+ f (x) exists and is equal to f (4) = 3, it follows that f is right continuous at x = 4.
But at x = 2 one has limx→2− f (x) = limx→2+ f (x) = 3, yet a dot in the graph indicates
that f (2) = 2. It follows that f is neither right nor left continuous at x = 2.

Consider a function f which is defined on a closed bounded interval [a, b]. We usually
say that f is continuous in [a, b] if it is not only continuous at each point of the open interval
(a, b), but also both right continuous at a and left continuous at b. It should be obvious how
to define continuity on half-open intervals. The continuity of a function at all points of an
interval (including one-sided continuity at the end points) is often a minimum requirement
we impose when speaking about “well-behaved” functions.

Limits at Infinity
We can also use the language of limits to describe the behaviour of a function as its argument
becomes infinitely large through positive or negative values. Let f be defined for arbitrarily
large positive numbers x. We say that f (x) has the limit A as x tends to infinity if f (x) can
be made arbitrarily close to A by making x sufficiently large. We write

lim
x→∞ f (x) = A or f (x) → A as x → ∞

In the same way,

lim
x→−∞ f (x) = B or f (x) → B as x → −∞

indicates that f (x) can be made arbitrarily close to B by making x a sufficiently large negative
number. The two limits are illustrated in Fig. 7.9.4. The horizontal line y = A is a horizontal
asymptote for the graph of f as x tends to ∞, whereas y = B is a horizontal asymptote for
the graph as x tends to −∞.

y

x

A

B

Figure 7.9.4 y = A and y = B are horizontal asymptotes

We remark that the limit limx→−∞ ex = 0 has already been discussed when justifying
one of the two limits appearing in Eq. (6.10.3). We also note that limx→+∞ ex = +∞ is
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an infinite limit that appeared in Eq. (6.10.3), whereas limx→+∞ ln x = +∞ appeared in
Eq. (6.11.4).

E X A M P L E 7.9.5 Examine the following functions as x → ∞ and as x → −∞:

(a) f (x) = 3x2 + x − 1
x2 + 1

(b) g(x) = 1 − x5

x4 + x + 1
Solution:

(a) Away from x = 0 we can divide each term in the numerator and the denominator by
the highest power of x, which is x2, to obtain

f (x) = 3x2 + x − 1
x2 + 1

= 3 + (1/x) − (1/x2)

1 + (1/x2)

If x is large in absolute value, then both 1/x and 1/x2 are close to 0. So f (x) is arbitrarily
close to 3 if |x| is sufficiently large. It follows that f (x) → 3 both as x → −∞ and
x → ∞.

(b) Note that

g(x) = 1 − x5

x4 + x + 1
= (1/x4) − x

1 + (1/x3) + (1/x4)

Now you should be able to finish the argument yourself, along the lines given in part
(a). One has g(x) → +∞ as x → −∞, but g(x) → −∞ as x → +∞.

Warnings
We have extended the original definition of a limit in several different directions. For these
extended limit concepts, the previous limit rules set out in Section 6.5 still apply. For
example, all the usual limit rules are valid if we consider left-hand limits or right-hand
limits. Also, if we replace x → a by x → ∞ or x → −∞, then again the corresponding
limit properties hold. Provided at least one of the two limits A and B is nonzero, the four
rules in (6.5.2)–(6.5.5) remain valid if at most one of A and B is infinite.

When f (x) and g(x) both tend to ∞ as x tends to a, however, much more care is needed.
Because f (x) and g(x) can each be made arbitrarily large if x is sufficiently close to a,
both f (x) + g(x) and f (x)g(x) can also be made arbitrarily large. But, in general, we can-
not say what are the limits of f (x) − g(x) and f (x)/g(x). The limits of these expressions
will depend on how “fast” f (x) and g(x), respectively, tend to ∞ as x tends to a. Briefly
formulated:

P R O P E R T I E S O F I N F I N I T E L I M I T S

If f (x) → ∞ and g(x) → ∞ as x → a, then

f (x) + g(x) → ∞ and f (x)g(x) → ∞ as x → a (7.9.2)

However, there is no rule for the limits of f (x) − g(x) and f (x)/g(x) as x → a.
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Thus, it is important to note that the limits of f (x) − g(x) and f (x)/g(x) cannot be deter-
mined without more information about f and g. We do not even know whether or not either
of these limits exists. The following example illustrates some of the possibilities.

E X A M P L E 7.9.6 Let f (x) = 1/x2 and g(x) = 1/x4. As x → 0, so f (x) → ∞ and g(x) → ∞. Examine
the limit as x → 0 for each of the following four expressions:

f (x) − g(x), g(x) − f (x),
f (x)
g(x)

, and
g(x)
f (x)

Solution: f (x) − g(x) = (x2 − 1)/x4. As x → 0, the numerator tends to −1 and the denom-
inator is positive and tends to 0, so the fraction tends to −∞. For the other three limits as
x → 0, we have:

g(x) − f (x) = 1 − x2

x4
→ ∞,

f (x)
g(x)

= x2 → 0, and
g(x)
f (x)

= 1
x2

→ ∞
The above four examples serve to illustrate that infinite limits require extreme care.

Other tricky examples involve the product f (x)g(x) of two functions, where g(x) tends to 0
as x tends to a. Will the product f (x)g(x) also tend to 0? Not necessarily. If f (x) tends to a
finite limit A, then we know that f (x)g(x) tends to A · 0 = 0. But if f (x) tends to ±∞, then
it is easy to construct examples in which the product f (x)g(x) does not tend to 0 at all. You
should try to construct some examples of your own before turning to Exercise 4.

Continuity and Differentiability
Consider the function f whose graph appears in Fig. 7.9.5. At the point (a, f (a)) the graph
does not have a unique tangent. Thus f has no derivative at x = a, even though f is con-
tinuous at x = a. So a function can be continuous at a point without being differentiable
at that point. A standard example is the absolute value function whose graph is shown in
Fig. 4.3.10: that function is continuous everywhere, but not differentiable at the origin.

a

f

y

x

Figure 7.9.5 f is continuous, but not differentiable at x = a

On the other hand, differentiability implies continuity:

C O N T I N U I T Y A N D D I F F E R E N T I A B I L I T Y

If a function f is differentiable at x = a, then it is continuous at x = a. (7.9.3)
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The proof of this result is, in fact, not difficult:

Proof: The function f is continuous at x = a provided f (a + h) − f (a) tends to 0 as h → 0.
Now, for all h �= 0, it is trivial that

f (a + h) − f (a) = f (a + h) − f (a)

h
· h (∗)

If f is differentiable at x = a, then by definition the Newton quotient [f (a + h) − f (a)]/h
tends to the number f ′(a) as h → 0. So the right-hand side of (∗) tends to f ′(a) · 0 = 0 as
h → 0. This proves that f is continuous at x = a.

Suppose that f is some function whose Newton quotient tends to a limit as h tends to 0
through positive values. Then the limit is called the right derivative of f at a. The left deriva-
tive of f at a is defined similarly. So when the relevant one-sided limits of the Newton
quotient exist, we denote them by

f ′(a+) = lim
h→0+

f (a + h) − f (a)

h
and f ′(a−) = lim

h→0−
f (a + h) − f (a)

h
(7.9.4)

Suppose that the function f is continuous at a and has left and right derivatives that satisfy
f ′(a+) �= f ′(a−). In this case when the two derivatives differ, the graph of f is said to have
a kink at (a, f (a)).

E X A M P L E 7.9.7 (US Federal Income Tax, 2018). Let τ(x) denotes the tax liability of somebody
whose income during 2018 was x, both amounts measured in US dollars. This income tax
function τ was discussed in Example 5.4.4, and its graph illustrated in Fig. 5.4.9. This graph
has kinks at, for instance, both x = 13 600 and x = 51 800. Indeed, the tax rate on incomes
below $13 600 was 10%, whereas a taxpayer with an income between $13 600 and $51 800
paid 10% of the “first” $13 600 plus 12% of any income above $13 600. Thus, there is a
kink at $13 600 with τ ′(13 600−) = 0.1 and τ ′(13 600+) = 0.12. Similarly, another kink
occurs at $51 800 where τ ′(51 800−) = 0.12 and τ ′(51 800+) = 0.22. The highest kink
was at $500 000 where the highest marginal rate of tax kicks in. Because this is 37%, one
has τ ′(500 000+) = 0.37.

A Rigorous Definition of Limits
In our preliminary definition (6.5.1) of the limit concept, we interpreted limx→a f (x) = A to
mean that we can make f (x) as close to A as we want by choosing x sufficiently close (but
not equal) to a. Now we make the notion of closeness more precise, following Eq. (2.7.2):
two numbers y and z are close if the distance |y − z| between them is small. This allows our
preliminary definition to be reformulated as follows:

L I M I T

limx→a f (x) = A means that we can make |f (x) − A| as small as we want for
all x �= a with |x − a| sufficiently small.
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Towards the end of the 19th century some of the world’s best mathematicians gradually
realized that this definition can be made precise in the following way:14

T H E ε − δ D E F I N I T I O N O F L I M I T

We say that f (x) has limit A as x tends to a if, for each number ε > 0, there
exists an associated number δ > 0 such that |f (x) − A| < ε for every x with
0 < |x − a| < δ. When this holds, we say that f (x) tends to A as x tends to a,
and write

lim
x→a

f (x) = A

A � ε

A � ε

a � δ a � δ

a

A

y � f (x)

y

x

S R

P Q

Figure 7.9.6 Definition of limit

x

y

1 2 3 4 5

A

B

Figure 7.9.7 Exercise 1

This definition forms the basis of all mathematically rigorous work on limits.
Figure 7.9.6 illustrates the definition. In the figure it implies that, for every ε > 0 and
every associated δ, the graph of f must remain within the rectangular box PQRS, for all
x �= a in (a − δ, a + δ). In particular, the graph cannot pass from the interior of the box to
its exterior by crossing either of the horizontal line segments PQ and SR; instead, it must
cross the vertical line segments PS and QR.

Seeing this formal ε–δ definition of a limit should be regarded as a part of anybody’s
general mathematical education. In this book, however, we rely only on an intuitive under-
standing of limits.

E X E R C I S E S F O R S E C T I O N 7 . 9

1. Function f , defined for 0 < x < 5, has the graph that appears in Fig. 7.9.7. Determine the follow-
ing limits:

(a) lim
x→1− f (x) (b) lim

x→1+ f (x) (c) lim
x→2− f (x) (d) lim

x→2+ f (x)

14 This specific idea is often attributed to the two German mathematicians Eduard Heine (1821–1881)
and Karl Weierstrass (1815–1897), although really there is no consensus about this.
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2.SM Evaluate the following limits:

(a) lim
x→0+(x2 + 3x − 4) (b) lim

x→0−
x + |x|

x
(c) lim

x→0+
x + |x|

x

(d) lim
x→0+

−1√
x

(e) lim
x→3+

x
x − 3

(f) lim
x→3−

x
x − 3

3. Evaluate

(a) lim
x→∞

x − 3
x2 + 1

(b) lim
x→−∞

√
2 + 3x
x − 1

(c) lim
x→∞

(ax − b)2

(a − x)(b − x)

4. Let f1(x) = x, f2(x) = x, f3(x) = x2, and f4(x) = 1/x. Determine limx→∞ fi(x) for i = 1, 2, 3, 4.
Then examine whether the rules for limits in Section 6.5 apply to the following limits as x → ∞.

(a) f1(x) + f2(x) (b) f1(x) − f2(x) (c) f1(x) − f3(x) (d) f1(x)/f2(x)

(e) f1(x)/f3(x) (f) f1(x)f2(x) (g) f1(x)f4(x) (h) f3(x)f4(x)

5.SM The line y = ax + b is said to be an asymptote as x → ∞ (or x → −∞) to the curve y = f (x) if

f (x) − (ax + b) → 0 as x → ∞ (or x → −∞)

This condition means that the vertical distance between any point (x, f (x)) on the curve and the
corresponding point (x, ax + b) on the line tends to 0 as x → ±∞, as shown in Fig. 7.9.8.

Suppose that f (x) = P(x)/Q(x) is a rational function where the degree of the polynomial P(x)
is exactly one greater than that of the polynomial Q(x). In this case f (x) will have an asymptote.
Indeed, to find this one begins by performing the polynomial division P(x) ÷ Q(x) with remainder
that was explained in Section 4.7. The result will be a polynomial of degree 1, plus a remainder
term that tends to 0 as x → ±∞. Use this method to find asymptotes for the graph of each of the
following functions of x:

(a)
x2

x + 1
(b)

2x3 − 3x2 + 3x − 6
x2 + 1

(c)
3x2 + 2x

x − 1
(d)

5x4 − 3x2 + 1
x3 − 1

x

y

x

y 5 f (x)
y 5 ax 1 b

f (x) 2 (ax 1 b)

Figure 7.9.8 Exercise 5

1 2 3 4 5

A
B

C

x

y

Figure 7.9.9 Exercise 7

6. Consider the cost function defined for all x ≥ 0 by

C(x) = A
x(x + b)

x + c
+ d

where A, b, c, and d are positive constants. Find its asymptotes.
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7. Let f be the function which is defined for all x satisfying 0 < x < 5, and whose graph appears
in Fig. 7.9.9. Study the continuity and differentiability of the function at each of the points: (a)
x = 1; (b) x = 2; (c) x = 3; and (d) x = 4.

8. Graph the function f defined by f (x) = 0 for x ≤ 0, and f (x) = x for x > 0. Compute f ′(0+) and
f ′(0−).

9.SM Consider the function f defined by the formula

f (x) = 3x
−x2 + 4x − 1

Compute f ′(x) and then use a sign diagram to determine where the function increases. (The func-
tion is not defined when −x2 + 4x − 1 = 0, which occurs for x = 2 ± √

3.)

7.10 The Intermediate Value Theorem
An important reason for introducing the concept of a continuous function was to make
precise the idea of a function whose graph is connected, in the sense of lacking any breaks.
The following result, which can be proved by using the ε-δ definition of limit, expresses
this property in mathematical language.

T H E O R E M 7 . 1 0 . 1 ( T H E I N T E R M E D I A T E V A L U E T H E O R E M )

Let f be a function which is continuous in the interval [a, b].

(i) If f (a) and f (b) have different signs, then there is at least one c in (a, b)

such that f (c) = 0.

(ii) If f (a) �= f (b), then for every intermediate value y in the open interval
between f (a) and f (b), there is at least one c in (a, b) such that f (c) = y.

The conclusion in part (ii) follows from applying part (i) to the function g(x) = f (x) − y.
You should draw a figure to help convince yourself that a function for which there is no
such c must have at least one discontinuity.

Given an equation that cannot be solved explicitly, Theorem 7.10.1 is important in ensur-
ing that a solution exists. We defer its proof until Section 7.11.

E X A M P L E 7.10.1 Prove that the equation x6 + 3x2 − 2x − 1 = 0 has at least one solution c between
0 and 1.

Solution: The polynomial f (x) = x6 + 3x2 − 2x − 1 is continuous for all x and, in partic-
ular, for all x in [0, 1]. Moreover, f (0) = −1 and f (1) = 1. So Theorem 7.10.1 implies that
there exists at least one number c in (0, 1) such that f (c) = 0.
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Sometimes it is important to prove that a particular equation has a unique solution. Con-
sider the following example.

E X A M P L E 7.10.2 Prove that the equation 2x − 5e−x(1 + x2) = 0 has a unique solution, and that it lies
in the interval (0, 2).

Solution: Define g(x) = 2x − 5e−x(1 + x2). Then g(0) = −5 and g(2) = 4 − 25/e2. In
fact g(2) > 0 because e > 5/2. According to the intermediate value theorem, therefore, the
continuous function g must have at least one zero in (0, 2). Moreover, note that

g′(x) = 2 + 5e−x(1 + x2) − 10xe−x = 2 + 5e−x(1 − 2x + x2) = 2 + 5e−x(x − 1)2

Now g′(x) > 0 for all x, so g is strictly increasing. Hence g can have only one zero.

The following example confirms the assertion in Section 2.5 that, for any a > 0, the nth
root n

√
a is well defined as the unique solution of xn = a.

E X A M P L E 7.10.3 Suppose n is any natural number with n ≥ 2, whereas a is any positive real number.
Show that the equation xn = a has a unique solution x∗ between 1 and a.

Solution: First, note that the function f (x) = xn, as the n-fold product of the function
g(x) = x, is continuous for all x. Now we consider two cases:

1. 0 < a < 1: Here Example 2.6.3 implies that an < a, so f (a) < a < f (1).

2. a > 1: Here Example 2.6.3 implies that an > a, so f (a) > a > f (1).

In both cases, therefore, the intermediate value theorem implies that there exists x∗
between 1 and a such that f (x∗) = a. Moreover, the function f is differentiable for all
x > 0 with f ′(x) = nxn−1 > 0 for all x. This ensures that the solution x∗ to f (x) = a is
unique.

Newton’s Method
The intermediate value theorem can often be used to show that an equation f (x) = 0 has a
solution in a given interval. But it says nothing more about where to find this zero. This sub-
section presents an effective method for finding a good approximate solution. The method
was first suggested by Isaac Newton. It has an easy geometric explanation.

x0 x1

a

y

x

y 5 f (x)

Figure 7.10.1 Newton’s method
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Consider the graph of the function y = f (x) shown in Fig. 7.10.1. It has a zero at x = a,
but this zero is not known. In order to look for it, start with x0 as an initial estimate of a. It
is usually better to start with x0 not too far from a, if possible.

In order to improve the estimate x0, first we construct the tangent line to the graph at the
point (x0, f (x0)). The next approximation is the point x1 at which the tangent crosses the
x-axis, as shown in Fig. 7.10.1.

Often x1 is a significantly better estimate of a than x0 was. Indeed, if f happens to be
linear, then the constructed tangent line will be the graph of the function, implying that
f (x1) = 0 and so x1 = a. Actually, this might happen by very lucky coincidence even if f
is not linear.

Otherwise, if the estimate x1 satisfies f (x1) �= 0, we repeat the procedure by constructing
the tangent line to the curve at the point (x1, f (x1)). Let x2 denote the point where this new
tangent line crosses the x-axis. Repeating this procedure, we obtain a sequence x1, x2, . . .
of points which may well converge very quickly to a.

It is easy to find formulas for x1, x2, . . . . The slope of the tangent at x0 is f ′(x0). According
to the point–slope formula, the equation for the tangent line through the point (x0, f (x0))

with slope f ′(x0) is given by

y − f (x0) = f ′(x0)(x − x0)

At the point where this tangent line crosses the x-axis, we have y = 0 and x = x1. Hence
−f (x0) = f ′(x0)(x1 − x0). Solving this equation for x1 gives the first new approximation

x1 = x0 − f (x0)

f ′(x0)
(∗)

The next step starts at the x1 we have just found, and uses the same procedure to find the
second new approximation x2. To derive the relevant formula, on the left-hand side of (∗)
we must replace the end point x1 by x2, and then on the right-hand side we must replace the
starting point x0 by x1. The result is

x2 = x1 − f (x1)

f ′(x1)
.

In general, we derive the nth approximation xn by following the same procedure n times.
The nth step starts at xn−1 and moves to xn. So to modify (∗) suitably we must replace x1

by xn and x0 by xn−1. This gives the following formula:

N E W T O N ’ S M E T H O D

As long as f ′(xn−1) �= 0, Newton’s method generates the sequence of points
given by the formula

xn = xn−1 − f (xn−1)

f ′(xn−1)
, n = 1, 2, . . . (7.10.1)

Often, the infinite sequence x1, x2, . . . converges quickly to a zero of f .
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E X A M P L E 7.10.4 In Example 7.10.1, we considered the function

f (x) = x6 + 3x2 − 2x − 1

Use Newton’s method once to find an approximate value for the zero of f in the interval
[0, 1].

Solution: Choose x0 = 1. Then f (x0) = f (1) = 1. Because f ′(x) = 6x5 + 6x − 2, we have
f ′(1) = 10. Hence, equation (1) for n = 0 yields

x1 = 1 − f (1)

f ′(1)
= 1 − 1

10
= 9

10
= 0.9

E X A M P L E 7.10.5 Use Newton’s method twice to find an approximate value for 15
√

2.

Solution: We need an equation of the form f (x) = 0 which has x = 15
√

2 = 21/15 as a root.
The equation x15 = 2 has this root, so we let f (x) = x15 − 2. Choose x0 = 1. Then f (x0) =
f (1) = −1, and because f ′(x) = 15x14, we have f ′(1) = 15. Thus, for n = 0, (1) gives

x1 = 1 − f (1)

f ′(1)
= 1 − −1

15
= 16

15
≈ 1.0667

Moreover,

x2 = x1 − f (x1)

f ′(x1)
= 16

15
− f (16/15)

f ′(16/15)
= 16

15
− (16/15)15 − 2

15(16/15)14
≈ 1.047 294 12

Using a suitable calculator shows that this is actually correct to 8 decimal places.

How Fast Does Newton’s Method Converge?
A frequently used rule of thumb says that, to obtain an approximation that is correct to k
decimal places, repeat Newton’s method for just enough steps to ensure that the first k
decimal places of the approximation xn are the same as those of xn−1. This, however, may
be more steps than necessary, because of the following result.

T H E O R E M 7 . 1 0 . 2 ( C O N V E R G E N C E O F N E W T O N ’ S M E T H O D )

Suppose that:

1. the function f is twice differentiable, with f (x∗) = 0 and f ′(x∗) �= 0;

2. there exist numbers K > 0 and δ > 0, with Kδ < 1, such that for all x in

the open interval I = (x∗ − δ, x∗ + δ) one has
|f (x)f ′′(x)|

f ′(x)2
≤ K|x − x∗|.

Then, provided that the infinite sequence x1, x2, . . . in Eq. (7.10.1) starts at an
x0 in I, it will converge to x∗, with an error |xn − x∗| that, for all n, satisfies∣∣xn − x∗∣∣ ≤ (δK)2n

K
.
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In most cases Newton’s method is very efficient. Nevertheless, it can happen sometimes
that the infinite sequence x1, x2, . . . defined by (7.10.1) fails to converge. Figure 7.10.2
shows an example where x1 is a much worse approximation to a than x0 was. Usually,
Newton’s method fails only if the absolute value of f ′(xn) becomes too small, for some n.
Of course, formula (7.10.1) breaks down entirely if f ′(xn) = 0.

x0x1 a

y

x

f

Figure 7.10.2 Newton’s method

E X E R C I S E S F O R S E C T I O N 7 . 1 0

1. Show that each of the following equations has at least one root in the given interval.

(a) x7 − 5x5 + x3 − 1 = 0, in (−1, 1) (b) x3 + 3x − 8 = 0, in (1, 3)

(c)
√

x2 + 1 = 3x, in (0, 1) (d) ex−1 = 2x, in (0, 1)

2. Explain why anybody who is taller than 1 metre today was once exactly 1 metre tall.

3. Find a better approximation to 3√17 ≈ 2.5 by using Newton’s method once.

4.SM The equation x4 + 3x3 − 3x2 − 8x + 3 = 0 has an integer root. Find it. The three additional roots
are close to −1.9, 0.4, and 1.5. Find better approximations by using Newton’s method once for
each root that is not an integer.

5. The equation (2x)x = 15 has a solution which is approximately an integer. Find a better approxi-
mation by using Newton’s method once.

6. In Fig. 7.10.1, f (x0) > 0 and f ′(x0) < 0. Moreover, x1 is to the right of x0. Verify that this agrees
with the formula (7.10.1) for n = 0. Check the other combinations of signs for f (x0) and f ′(x0) to
see both geometrically and analytically on which side of x0 the point x1 lies.

7.11 Infinite Sequences
We often encounter functions like those in Newton’s method which associate a number s(n)

to each natural number n. Such a function is called an infinite sequence, or just a sequence.
Its terms s(1), s(2), s(3), . . . , s(n), . . . are usually denoted by using subscripts: thus, they
become s1, s2, s3, . . . , sn, . . . . We often use the more concise notation (sn)

∞
n=1, or simply
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(sn), for an arbitrary infinite sequence.15 For example, if sn = 1/n for n = 1, 2, 3, . . . , then
the terms of the sequence are

1,
1
2

,
1
3

,
1
4

, . . . ,
1
n

, . . .

If we choose n large enough, the terms of this sequence can be made as small as we like.
We say that the sequence converges to 0. In general, we introduce the following definition:
A sequence (sn) is said to converge to a number s if sn can be made arbitrarily close to s
by choosing n sufficiently large. When this happens, we write

lim
n→∞ sn = s or sn → s as n → ∞

This definition is just an adaptation of the previous definition that f (x) → A as x → ∞. All
the ordinary limit rules in Section 6.5 apply to limits of sequences.

A sequence that does not converge to any real number is said to diverge. Consider the
following two sequences (

2n)∞
n=0 and

(
(−1)n)∞

n=1

Explain why they both diverge.16

E X A M P L E 7.11.1 For n ≥ 3, let An be the area of a regular polygon with n equal sides and n equal
angles, sometimes called an n-gon, which is inscribed in a circle with radius 1. For n = 1
or n = 2, the polygon collapses to a single point or a line interval, respectively, Both have
zero area, so we take A1 = A2 = 0.

A3 A4 A5

Figure 7.11.1 Three n-gons

Thereafter, for n = 3, the area A3 is that of a triangle; for n = 4, the area A4 is that of a
square; for n = 5, the area A5 is that of a pentagon; and so on. See Fig. 7.11.1.

The area An evidently increases with n. But it is always less than the number π , which can
be defined as the area of a circle of radius 1. It seems intuitively obvious that we can make
the difference between the areas An and π as small as we wish by choosing n sufficiently
large, This justifies the claim that An → π as n → ∞.

15 The alternative notation {sn}∞n=1, or simply {sn}, is sometimes used. A reason to avoid it is that it
suggests an unordered set, whereas a sequence is an ordered set.

16 Occasionally, as in the first of these sequences, the starting index is not 1, but another integer,
which is 0 in this case.
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E X A M P L E 7.11.2 Equation (6.11.6) states that limh→0(1 + h)1/h is e = 2.718 . . . . If we put h = 1/n,
then h → 0 as the natural number n → ∞. This yields the following important limit:

e = lim
n→∞ (1 + 1/n)n (7.11.1)

Proof of The Intermediate Value Theorem
Suppose that the two sequences (an)

∞
n=1 and (bn)

∞
n=1 together satisfy the condition:

an ≤ an+1 ≤ bn+1 ≤ bn for all n = 1, 2, . . . (7.11.2)

Suppose too that
lim

n→∞ |bn − an| = 0 (7.11.3)

Then a fundamental property of the real line states that the two sequences have a common
limit c∗ such that limn→∞ an = limn→∞ bn = c∗.

This property allows us to prove the intermediate value theorem as follows:

Proof of Theorem 7.10.1 Consider the following construction of a shrinking sequence of
intervals [an, bn]. Start with a0 = a and b0 = b. Then f (a0) and f (b0) have opposite signs,
by hypothesis. Let c0 be the mid-point 1

2 (a0 + b0) of the interval [a0, b0]. If it happens that
f (c0) = 0, then we can take c = c0, and the construction is complete.

Otherwise, if f (c0) �= 0, then either f (c0) and f (a0) have opposite signs, or else f (c0) and
f (b0) have opposite signs. In the first case, choose a1 = a0 and b1 = c0; in the second case,
choose a1 = c0 and b1 = b0. In this way we have constructed a new interval [a1, b1] such
that f (a1) and f (b1) have opposite signs. Moreover, our construction implies that either
|b1 − a1| = |c0 − a0| = 1

2 |b0 − a0| or |b1 − a1| = |b0 − c0| = 1
2 |b0 − a0|. In either case,

the new interval is half as long as the old. Finally, note that a0 ≤ a1 ≤ b1 ≤ b0.
This construction can be repeated as often as necessary to yield a sequence of intervals

[an, bn] with |bn+1 − an+1| = 1
2 |bn − an| such that the function values f (an) and f (bn) have

opposite signs at these end points. The construction will stop after n steps if we ever happen
to reach a point cn at which f (cn) = 0. Otherwise, we get an infinite sequence of intervals
[an, bn] whose lengths satisfy |bn − an| = 2−n|b0 − a0|, and so converge to zero. Also, the
sequence an of lower bounds is nondecreasing, whereas the sequence bn of upper bounds
is nonincreasing.

By construction, the two sequences (an)
∞
n=1 and (bn)

∞
n=1 satisfy (7.11.2) and (7.11.3). So

there exists a real number c∗ which is a common limit for which an converges to c∗ from
below, whereas bn converges to c∗ from above. But we have assumed that the function f is
continuous on the interval [a, b]. So definition (7.8.1) implies that both f (an) → f (c∗) and
f (bn) → f (c∗) as n → ∞.

Now, note that because f (an) and f (bn) always have opposite signs, we have
f (an) f (bn) ≤ 0 for all n = 0, 1, 2, . . . . So the above limit properties imply that

[f (c∗)]2 = lim
n→∞ f (an) f (bn) ≤ 0

But this is only possible if f (c∗) = 0, so we can take c = c∗.
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We note that the fundamental properties (7.11.2) and (7.11.3) of the real line used
in this proof do not hold if we restrict ourselves to the set of rational numbers. Indeed,
consider the function f (x) = x2 − 2 on the interval [1, 2]. All the other conditions of the
intermediate value theorem hold. One can even construct an infinite sequence of intervals
[an, bn] with all the above properties, except that there is no limit point among the rational
numbers. Indeed, there is no rational number such that f (x) = 0 because

√
2 is irrational.

Irrational Numbers as Limits of Sequences
In Example 7.11.1, we considered the sequence (An) of areas of regular n-gons, and
claimed that this sequence converges to the irrational number π = 3.14159265 . . . . But
at the end of Section 2.10 we considered successive decimal expansions. In the case of
π , these expansions generate the sequence s1 = 3.1, s2 = 3.14, s3 = 3.141, s4 = 3.1415,
etc. Here each sn is the expansion of π to n decimal places. By construction one has
sn ≤ π ≤ sn + 10−n because sn must be the largest fraction to n decimal places that does
not exceed π . In fact the pair of sequences {sn} and {sn + 10−n} satisfy (7.11.2) and
(7.11.3), implying that they have a common limit as n → ∞ which must be π .

Let a be any fixed positive real number. Section 2.5 defined the power ax when x is
rational. Subsequently, by considering the special case of 5π , Section 4.8 suggested how
to define ax when x is irrational. Now, let r be an arbitrary irrational number. Then, just as
for π , there exists a sequence (rn) of rational numbers such that rn → r as n → ∞. The
power arn is well defined for all n. Since rn converges to r, it is reasonable to define ar as
the limit of arn as n approaches infinity:

ar = lim
n→∞arn (∗)

Actually, there are infinitely many sequences (rn) of rational numbers that converge to any
given irrational number r. Nevertheless, one can show that the limit in (∗) exists and is
independent of which sequence we choose.

E X E R C I S E S F O R S E C T I O N 7 . 1 1

1. Let αn = 3 − n
2n − 1

and βn = n2 + 2n − 1
3n2 − 2

, for n = 1, 2, . . . . Find the following limits:

(a) lim
n→∞ αn (b) lim

n→∞ βn (c) lim
n→∞(3αn + 4βn)

(d) lim
n→∞ αnβn (e) lim

n→∞
αn

βn
(f) lim

n→∞
√

βn − αn

2. Examine the convergence of the sequences whose general terms are as follows:

(a) sn = 5 − 2
n

(b) sn = n2 − 1
n

(c) sn = 3n√
2n2 − 1

3. Prove that ex = lim
n→∞

(
1 + x

n

)n
for x > 0.17

17 The same limit is valid also for x < 0.
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7.12 L’Hôpital’s Rule
We often need to consider the limit as x tends to a of a quotient in which both numerator
and denominator tend to 0. Then we write

lim
x→a

f (x)
g(x)

= “0/0”

We call such a limit an indeterminate form of type 0/0. Here a may be replaced by a+,
a−, ∞, or −∞. The words “indeterminate form” indicate that the limit—or one-sided
limit—cannot be found without further examination.

We start with the simple case where f and g are differentiable at x = a, with f (a) =
g(a) = 0. When x �= a and g(x) �= g(a), then some routine algebra allows us to write

f (x)
g(x)

= [f (x) − f (a)] /(x − a)

[g(x) − g(a)] /(x − a)

The right-hand side is the ratio of two Newton quotients. Taking the limit as x → a, we see
that provided g′(a) �= 0, this ratio tends to f ′(a)/g′(a). This gives the following result:

L ’ H Ô P I T A L ’ S R U L E

Suppose that the functions f and g are both differentiable at x = a, with f (a) =
g(a) = 0 and g′(a) �= 0. Then

lim
x→a

f (x)
g(x)

= f ′(a)

g′(a)
(7.12.1)

According to (7.12.1), provided that g′(a) �= 0, we can find the limit of an indeterminate
form of type “0/0” by differentiating both numerator and denominator separately.

E X A M P L E 7.12.1 Use L’Hôpital’s rule to confirm the result in Example 6.5.1—namely,

lim
x→0

ex − 1
x

= 1

Solution: Put f (x) = ex − 1 and g(x) = x in Eq. (7.12.1). Note that f (0) = e0 − 1 = 0 and
g(0) = 0. Also, f ′(x) = ex and g′(x) = 1, so f ′(0) = g′(0) = 1. Thus (7.12.1) implies that

lim
x→0

ex − 1
x

= f ′(0)

g′(0)
= 1

1
= 1

E X A M P L E 7.12.2 Assuming that x > 0 and y > 0, compute

lim
λ→0

xλ − yλ

λ
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Solution: In this limit x and y are kept fixed. Define f (λ) = xλ − yλ and g(λ) = λ. Then
f (0) = g(0) = 0. Using the rule (d/dx)ax = ax ln a, we obtain f ′(λ) = xλ ln x − yλ ln y, so
that f ′(0) = ln x − ln y. Moreover, g′(λ) = 1, so g′(0) = 1. Using l’Hôpital’s rule gives

lim
λ→0

xλ − yλ

λ
= ln x − ln y

1
= ln

x
y

In particular, if y = 1, then

lim
λ→0

xλ − 1
λ

= ln x (7.12.2)

which is a useful result.

Suppose we have a “0/0” form as in (7.12.1), but that f ′(a)/g′(a) is also of the type
“0/0”. Because g′(a) = 0, the argument for (7.12.1) breaks down. What to do then? Well,
we differentiate both numerator and denominator separately once again. If we still get
“0/0”, we go on differentiating numerator and denominator repeatedly until the limit is
determined, if possible. Here is an example from statistics.

E X A M P L E 7.12.3 Find

lim
x→0

ext − 1 − xt
x2

Solution: The numerator and denominator are both 0 at x = 0. Applying l’Hôpital’s rule
twice, we have

lim
x→0

ext − 1 − xt
x2

= “0/0” = lim
x→0

text − t
2x

= “0/0” = lim
x→0

t2ext

2
= 1

2
t2

Here are two important warnings concerning the most common errors in attempting to
apply l’Hôpital’s rule:

1. Check that you really do have an indeterminate form; otherwise, as Exercise 5 shows,
the method usually gives an erroneous result.

2. Compute the limit as x → a of the ratio f ′/g′; do not differentiate f /g as a fraction.

The method explained here and used to solve Example 7.12.3 is built on Theorem 7.12.1
below. Note that the requirements on f and g are weaker than one in the examples presented
so far. For instance, f and g need not even be differentiable at x = a. Thus the theorem
actually gives a more general version of l’Hôpital’s rule.

T H E O R E M 7 . 1 2 . 1 ( L ’ H Ô P I T A L ’ S R U L E F O R ‘ ‘ 0 / 0 ’ ’ F O R M S )

Suppose that:

(i) The functions f and g are differentiable in an interval (α, β) that contains
a, except possibly at a;

(ii) f (x) and g(x) both tend to 0 as x tends to a;
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(iii) g′(x) �= 0 for all x �= a in (α, β);

(iv) f ′(x)/g′(x) → L as x → a, where L can be finite, ∞, or −∞.

Then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

= L

Extensions of L’Hôpital’s Rule
L’Hôpital’s rule can be extended to some other cases. For instance, a can be an end point
of the interval (α, β). Thus, x → a can be replaced by x → a+ or x → a−. Also it is easy
to see that a may be replaced by ∞ or −∞, as Exercises 4 and 8 show.

The rule also applies to other indeterminate forms such as “±∞/ ± ∞”. Exercise 9
suggests one way to provide a proof, while leaving the reader to complete the details. Here
is an example of how the rule can be applied:

lim
x→∞

ln x
x

= “∞/∞” = lim
x→∞

1/x
1

= 0 (7.12.3)

Indeed, there are various other indeterminate forms which algebraic manipulations or sub-
stitutions may be able to transform into expressions like those already mentioned.

E X A M P L E 7.12.4 Find L = limx→∞
(

5
√

x5 − x4 − x
)

.

Solution: First note that this is an “∞ − ∞” case. We use some algebraic manipulation to
reduce it to a “0/0” case. Indeed, for x �= 0, one has

5
√

x5 − x4 − x =
[

x5
(

1 − 1
x

)]1/5

− x = x
(

1 − 1
x

)1/5

− x

Rewriting the RHS leads to

lim
x→∞

(
5
√

x5 − x4 − x
)

= lim
x→∞

(1 − 1/x)1/5 − 1
1/x

= “0/0”

Using l’Hôpital’s rule, we have

L = lim
x→∞

(1/5) (1 − 1/x)−4/5 (
1/x2

)
−1/x2

= lim
x→∞

[
−1

5

(
1 − 1

x

)−4/5
]

= −1
5

E X A M P L E 7.12.5 Suppose that if a firm uses as inputs K > 0 units of capital and L > 0 units of
labour, the amount Y of output it obtains is given by

Y = A
[
aK−ρ + (1 − a)L−ρ

]−1/ρ
(∗)
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where A > 0, a ∈ (0, 1), and ρ �= 0 are constants. Keeping A, K, L, and a fixed, apply
l’Hôpital’s rule to z = ln[Y/A] as ρ → 0 in order to show that18

lim
ρ→0

{
A

[
aK−ρ + (1 − a)L−ρ

]−1/ρ
}

= AKaL1−a (∗∗)

Solution: We get

ln
(
aK−ρ + (1 − a)L−ρ

)−1/ρ = − ln
(
aK−ρ + (1 − a)L−ρ

) /
ρ → “0/0” as ρ → 0

Because (d/dρ)K−ρ = −K−ρ ln K and (d/dρ)L−ρ = −L−ρ ln L, applying l’Hôpital’s rule
gives

lim
ρ→0

z = lim
ρ→0

[
aK−ρ ln K + (1 − a)L−ρ ln L

aK−ρ + (1 − a)L−ρ

]
÷ 1

= a ln K + (1 − a) ln L

= ln KaL1−a

Hence ez → KaL1−a. By definition of z, it follows that F(K, L) → AKaL1−a as ρ → 0.

An Important Limit
If a is an arbitrary number greater than 1, then one has ax → ∞ as x → ∞. For example,
(1.0001)x → ∞ as x → ∞. Furthermore, if p is an arbitrary positive number, then xp → ∞
as x → ∞. If we compare (1.0001)x and x1000, it is clear that the former increases quite
slowly at first, whereas the latter increases very quickly. Nevertheless, (1.0001)x eventually
“overwhelms” x1000. In general, given a > 1, for any fixed positive number p, one has

lim
x→∞

xp

ax
= 0 (7.12.4)

For example, both x2/ex and x10/(1.1)x tend to 0 as x tends to ∞. This result is actually
quite remarkable. It can be expressed briefly by saying that, for an arbitrary base a > 1, the
exponential function ax increases faster than any power xp of x. Even more succinctly, one
may say that “Exponentials overwhelm powers”. (If p ≤ 0, the limit is obviously 0.)

To prove (7.12.4), take the logarithm of the function on the left-hand side, which is

ln
xp

ax
= p ln x − x ln a = x

(
p

ln x
x

− ln a
)

(∗)

Now, as x → ∞, we have ln x/x → 0 because of (7.12.3). So the term in parentheses in (∗)
converges to − ln a, which is negative because a > 1. It follows from (∗) that ln(xp/ax) →
−∞, and so xp/ax = exp[ln(xp/ax)] → 0 because ez → 0 as z → −∞.

18 The expression on the RHS of Eq. (∗) is known in economics as the “constant elasticity of substitu-
tion”, or CES, function. The one on the RHS of Eq. (∗∗) is the Cobb–Douglas production function.
Functions of two variables, like these, are not studied systematically until Chapter 14. Neverthe-
less, this example shows how applying l’Hôpital’s rule to a function of two variables yields an
economically significant result.
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E X E R C I S E S F O R S E C T I O N 7 . 1 2

1. Use l’Hôpital’s rule to find:

(a) lim
x→3

3x2 − 27
x − 3

(b) lim
x→0

ex − 1 − x − 1
2 x2

3x3
(c) lim

x→0

e−3x − e−2x + x
x2

2. Find the limits:

(a) lim
x→a

x2 − a2

x − a
(b) lim

x→0

2
√

1 + x − 2 − x

2
√

1 + x + x2 − 2 − x

3.SM Use l’Hôpital’s rule to find the following limits:

(a) lim
x→1

x − 1
x2 − 1

(b) lim
x→−2

x3 + 3x2 − 4
x3 + 5x2 + 8x + 4

(c) lim
x→2

x4 − 4x3 + 6x2 − 8x + 8
x3 − 3x2 + 4

(d) lim
x→1

ln x − x + 1
(x − 1)2

(e) lim
x→1

1
x − 1

ln
(

7x + 1
4x + 4

)
(f) lim

x→1

xx − x
1 − x + ln x

4. Find the following limits:

(a) lim
x→∞

ln x√
x

(b) lim
x→0+ x ln x (c) lim

x→0+(xe1/x − x)

5. Find the error in the following line of reasoning:

lim
x→1

x2 + 3x − 4
2x2 − 2x

= lim
x→1

2x + 3
4x − 2

= lim
x→1

2
4

= 1
2

What is the correct value of the first limit?

6. With β > 0 and γ > 0, find lim
v→0+

1 − (1 + vβ)−γ

v
. (Hint: Consider first the case β = 1.)

7. In the context of Examples 7.1.5 and 7.1.8, the family of CES utility functions is given by

u(c) =
⎧⎨
⎩

c1−ρ − 1
1 − ρ

, if ρ �= 1,

ln c, if ρ = 1.

for all c > 0.19 Use l’Hôpital’s rule to show that lim
ρ→1

c1−ρ − 1
1 − ρ

= ln c. In this sense, the family is

“continuous in ρ”.

8. [HARDER] Suppose that f and g are both differentiable for all large x and that f (x) and g(x) both
tend to 0 as x → ∞. If in addition limx→∞ g′(x) �= 0, show that

lim
x→∞

f (x)
g(x)

= “0/0” = lim
x→∞

f ′(x)
g′(x)

by introducing x = 1/t in the first fraction and then using l’Hôpital’s rule as t → 0+.

19 See Example 7.12.5. These are also known as constant relative risk aversion, or CRRA, utility func-
tions.
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9.SM [HARDER] Suppose that limx→a f (x)/g(x) = ±“∞/∞” = L �= 0 where f and g are differentiable
functions whose derivatives f ′(x) and g′(x) converge to nonzero limits as x tends to a. By applying
l’Hôpital’s rule to the equivalent limit limx→a [1/g(x)] / [1/f (x)] = “0/0”, show that one has L =
limx→a[f ′(x)/g′(x)] provided this limit exists.

R E V I E W E X E R C I S E S

1. Use implicit differentiation to find dy/dx and d2y/dx2 for each of the following equations:

(a) 5x + y = 10 (b) xy3 = 125 (c) e2y = x3

Check by solving each equation for y as a function of x, then differentiating.

2. Compute y′ when y is defined implicitly by the equation y5 − xy2 = 24. Is y′ ever 0?

3. The graph of the equation x3 + y3 = 3xy passes through the point (3/2, 3/2). Find the slope of
the tangent line to the curve at this point. This equation has a nice graph, called Descartes’s
folium, which appears in Fig. 7.R.1.

y

22

21

1

2

x
22 21 1 2

(3 / 2, 3 / 2)

x 1 y 1 1 5 0

Figure 7.R.1 Descartes’s folium

4. (a) Find the slope of the tangent to the curve x2y + 3y3 = 7 at (x, y) = (2, 1).

(b) Prove that y′′ = −210/133 at (2, 1).

5. If K1/3L1/3 = 24, compute dL/dK by implicit differentiation.

6. The equation
ln y + y = 1 − 2 ln x − 0.2(ln x)2

defines y as a function of x for x > 0, y > 0. Compute y′ and show that y′ = 0 for x = e−5.

7. Consider the following macroeconomic model

(i) Y = C + I (ii) C = f (Y − T) (iii) T = α + βY

where Y is GDP, C is consumption, T denotes taxes, and the parameters α and β are constant.
Assume that f ′ ∈ (0, 1) and β ∈ (0, 1).

(a) From equations (i)–(iii) derive the equation Y = f ((1 − β)Y − α) + I.
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(b) Differentiate the equation in (a) implicitly w.r.t. I and find an expression for dy/dI.

(c) Examine the sign of dy/dI.

8. (a) Find y′ when y is given implicitly by the equation x2 − xy + 2y2 = 7.

(b) Find the points on the graph of the equation at which the tangent is horizontal, and those at
which the tangent is vertical. Do your results accord with the graph shown in Fig. 7.R.2?

y

23

22

21

1

2

3

x
25 24 23 22 21 1 2 3 4

Figure 7.R.2 Exercise 8

y

x

y

23

22

21

1

2

3

x
25 24 23 22 21 1 2 3 4

x 2y 2 3y 3 5 2x

Figure 7.R.3 Exercise 9

9. The graph of the equation x2y − 3y3 = 2x passes through the point (x, y) = (−1, 1).

(a) Find the slope of the graph at this point.

(b) Find the points at which the graph has a vertical tangent. Show that no point on the graph
has a horizontal tangent. Do your results accord with the graph shown in Fig. 7.R.3?

10.SM Let function f be defined by the formula f (x) = 1
2

ln
1 + x
1 − x

.

(a) Determine the domain and range of f .

(b) Prove that f has an inverse g, and find a formula for the inverse. Note that f
( 1

2

) = 1
2 ln 3.

Find g′ ( 1
2 ln 3

)
in two different ways.

11. Let f (x) be defined for all x > 0 by f (x) = (ln x)3 − 2(ln x)2 + ln x.

(a) Compute f (e2) and find the zeros of f (x).

(b) Prove that f (x) defined on [e, ∞) has an inverse function h, then determine h′(2).

12.SM Find the quadratic approximations about x = 0 to the following functions:

(a) f (x) = ln(2x + 4) (b) g(x) = (1 + x)−1/2 (c) h(x) = xe2x

13. Find the differentials:

(a) d(
√

1 + x2) (b) d(4πr2) (c) d(100K4 + 200) (d) d[ln(1 − x3)]

14. Compute the differential of f (x) = √
1 + x3. What is the approximate change in f (x) when x

changes from x = 2 to x = 2 + dx, where dx = 0.2?
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15.SM Use formula (7.6.6) with n = 5 to find an approximate value of
√

e. Show that the answer is
correct to three decimal places. (Hint: For 0 < z < 1/2, note that ez < e1/2 < 2.)

16. Find the quadratic approximation to y = y(x) about (x, y) = (0, 1) when y is defined implicitly
as a function of x by the equation y + ln y = 1 + x.

17. Determine the values of x at which each of the functions defined by the following formulas is
continuous:

(a) ex + e1/x (b)

√
x + 1/x

x2 + 2x + 2
(c)

1√
x + 2

+ 1√
2 − x

18. Let f be a given differentiable function of one variable. Suppose that each of the following
equations defines y implicitly as a function of x. Find an expression for y′ in each case.

(a) x = f (y2) (b) xy2 = f (x) − y3 (c) f (2x + y) = x + y2

19. The demands for margarine (marg) and for meals away from home (mah) in the UK during the
period 1920–1937, as functions of personal income r, were estimated to be Dmarg = Ar−0.165

and Dmah = Br2.39, respectively, for suitable constants A and B. Find and interpret the (Engel)
elasticities of Dmarg and Dmah w.r.t. r.

20. Find the elasticities of the functions given by the following formulas:

(a) 50x5 (b) 3√x (c) x3 + x5 (d)
x − 1
x + 1

21. The equation x3 − x − 5 = 0 has a root close to 2. Find an approximation to this root by using
Newton’s method once, with x0 = 2.

22. Prove that f (x) = e
√

x − 3 has a unique zero in the interval (1, 4). Find an approximate value for
this zero by using Newton’s method once, with x0 = 1.

23.SM Evaluate the limits:

(a) lim
x→3−(x2 − 3x + 2) (b) lim

x→−2+
x2 − 3x + 14

x + 2
(c) lim

x→−1

3 − √
x + 17

x + 1

(d) lim
x→0

(2 − x)ex − x − 2
x3

(e) lim
x→3

(
1

x − 3
− 5

x2 − x − 6

)
(f) lim

x→4

x − 4
2x2 − 32

(g) lim
x→2

x2 − 3x + 2
x − 2

(h) lim
x→−1

4 − √
x + 17

2x + 2
(i) lim

x→∞
(ln x)2

3x2

24.SM Examine the following limit for different values of the constants a, b, c, and d, assuming that b
and d are positive:

lim
x→0

√
ax + b − √

cx + d
x

25. Evaluate limx→0
ax − bx

eax − ebx
, where a �= b, with a and b both positive.

26. The equation x21 − 11x + 10 = 0 has a root at x = 1, and another root in the interval (0, 1).
Starting from x0 = 0.9, use Newton’s method as many times as necessary to find the latter root
to 3 decimal places.
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C O N C A V E A N D C O N V E X
F U N C T I O N S

We can only see a short distance ahead, but we can see plenty there that needs to be done.
—Alan Turing (1950)

Whether a function is concave or convex is crucial to many results in economic analysis,
especially the multitude that involve maximization or minimization. According to the

general definitions that we introduce, a function can be concave or convex whether or not it is
differentiable.

We start in Section 8.1 by introducing some geometric intuition before turning to the key
definitions in Section 8.2. While the definitions themselves are easy to understand, it can be
unnecessarily difficult to determine whether a specified function satisfies them. So we fol-
low them in Section 8.3 by considering the properties of sums, compositions, and inverses
of concave functions. Next, Section 8.4 introduces the notions of supergradients and subgradi-
ents, and explores their links to functions that are respectively concave and convex. Thereafter
Section 8.5 considers the characterizations based on the second derivative that economists use
most often to determine whether a function is concave or convex. The final Section 8.6 con-
siders briefly inflection points, which occur on the boundary between one interval on which a
function is concave and an adjacent interval on which a function is convex.

8.1 Intuition
Imagine a person living in a cave who needs to hang a clothesline from its roof, which
is shaped like the curve shown in Fig. 8.1.1. That shape makes it possible: if supports are
put up in the roof at points A and B, a clothesline hanging between the two serves the
purpose.

Now suppose that one of the same person’s most frequented routes in and out of the
cave goes across a significant ditch. Rather than scrambling down to the bottom of the ditch
each time and then clambering back up out on the other side, the person would like to use
a tightrope to cross it. Provided that the ditch is shaped like the graph in Fig. 8.1.2, this is
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also possible. One can fix supports at points C and D, and hang a tightrope between the
two.1

x

y

A
B

�

Figure 8.1.1 Clothesline hanging from
a cave roof

x

y

C D
�

Figure 8.1.2 Tightrope over a ditch

In both cases, the way the graph curves is critical. In Fig. 8.1.1, the straight line segment
connecting points A and B is completely below the cave roof. In Fig. 8.1.2, the segment
between C and D is completely above the ditch.

These two properties are so important that mathematicians have given them special
names. The first one is called concavity, deriving from the Latin root cav, which means
“hollow”. The name of the second property, convexity, is less mnemonic. It comes from the
Latin vexus, which means “bulk”.2

Of course, there are graphs in which neither a clothesline below it nor a tightrope above it
are possible. One such occurs in the graph of Fig. 8.1.3. Consider any straight line segment
between points E and F that is supported at each end. The segment cannot be a clothesline
that hangs free of a cave roof, nor can it be a tightrope that hangs entirely off the ground.
So this graph violates both the concavity and convexity properties.

x

y

E
F

Figure 8.1.3 Neither a cave nor a ditch

1 Figures 8.1.1 and 8.1.2 display the clothesline and tightrope as hanging in a completely straight
line between the two supports at either end. This is an idealization because in trying to make the
line or rope perfectly straight, then unless it is weightless, one must apply more and more tension
until eventually either a support fails or the rope itself snaps.

2 A person under the graph of Fig. 8.1.2 could explain that it was impossible for a straight clothesline
to hang below the roof from nails at C and D because, unlike a more typical cave roof, this one has
a bulky obstacle.
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8.2 Definitions
Let I be an interval on the real line.

C O N C A V E F U N C T I O N

A function f defined on I is said to be concave over I if

f (λa + (1 − λ)b) ≥ λf (a) + (1 − λ)f (b). (8.2.1)

for all a and b in I and all numbers λ in [0, 1].

This property captures the intuition of trying to hang a clothesline between the two
points A = (a, f (a)) and B = (b, f (b)) shown in Fig. 8.2.1. To show this, consider first the
value λa + (1 − λ)b of x that occurs on the left-hand side of the inequality (8.2.1). One has
x = b when λ = 0, and x = a when λ = 1. As λ ranges from 0 to 1, we obtain every value
x = λa + (1 − λ)b between a and b.

Next, recall the point–point formula from Section 4.4. It tells us that the straight line
through A = (a, f (a)) and B = (b, f (b)) has the equation

y − f (a) = f (b) − f (a)

b − a
(x − a)

When x = λa + (1 − λ)b, one has x − a = (1 − λ)(b − a) and so (x − a)/(b − a) =
1 − λ. But then the corresponding y-value on the straight line through points A and B
satisfies y − f (a) = (1 − λ)[f (b) − f (a)], or y = λf (a) + (1 − λ)f (b). This shows that the
line segment joining A to B consists of the set of points

{(λa + (1 − λ)b, λf (a) + (1 − λ)f (b)) : 0 ≤ λ ≤ 1}
On the other hand, the part of the graph of y = f (x) that extends from A to B consists of the
set of points

{(λa + (1 − λ)b, f (λa + (1 − λ)b) : 0 ≤ λ ≤ 1}
So the inequality (8.2.1) says each point on this part of the graph of f is no lower than
the corresponding point of the line segment from A to B. In other words, the function f is
concave if and only if the graph of f never descends below the line segment connecting any
two points on the graph.

Now, a concave function is one whose graph has its hollow side underneath. If the graph
has its hollow side up above, the function is called convex.

C O N V E X F U N C T I O N

A function f defined on I is said to be convex over I if

f (λc + (1 − λ)d) ≤ λf (c) + (1 − λ)f (d). (8.2.2)

for all c and d in I and all numbers λ in [0, 1].
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x

y

A

B

(x̄, f (x̄))

a

f (a)

b

f (b)

x̄

f (x̄)

λ f (a)+(1−λ) f (b)

Figure 8.2.1 A concave function

x

y

D

C

c

f (d)

d

f (c)

x̄

f (x̄)
λ f (c)+(1−λ) f (d)

Figure 8.2.2 A convex function

This property is represented in Fig. 8.2.2. Again, any x between c and d can be written
as x = λc + (1 − λ)d for some 0 ≤ λ ≤ 1. Thus, the inequality (8.2.2) states that the graph
of f never ascends above the line segment connecting C and D.

It is important to understand that whether a function is concave or convex is independent
of whether it is increasing or decreasing. Four possibilities are shown in Figs 8.2.3–8.2.6,
which should be studied carefully. We also note that often I is the whole real line, in which
case the interval is not mentioned explicitly.

y

x

Figure 8.2.3
Increasing concave

y

x

Figure 8.2.4
Decreasing concave

y

x

Figure 8.2.5
Increasing convex

y

x

Figure 8.2.6
Decreasing convex

E X A M P L E 8.2.1

(a) The graph in Fig. 8.2.7 shows the crop of wheat Y(N) when N pounds of fertilizer per
acre are used. The curve is based on fertilizer experiments in Iowa during 1952. The
function is concave: if we compute the weighted average of the output produced with
50 and with 250 pounds of fertilizer per acre, the result will be lower than if we first take
a weighted average of 50 and 250 pounds, using the same weights, and then compute
the output from using that amount of fertilizer per acre.

(b) Figure 8.2.8 shows a rough graph of the function P(t) that measures the world popula-
tion (in billions) for each year t between the dates 1500 and 2000. The figure suggests
that P(t) is not only increasing but also convex: for example, a simple average of
the population in 1600 and the population in 2000 clearly exceeds the population in
1800.
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Figure 8.2.7 Wheat production

1600 1700 1800 20001900
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World pop. (billions)

year

Figure 8.2.8 World population

E X A M P L E 8.2.2 Consider again the intertemporal decision problem of Example 7.1.5. For simplic-
ity, assume that the discount factor β equals 1. Suppose too that the instantaneous utility
function u(c) is concave.

Now imagine that the agent is offered the choice between three alternative consumption
plans. The first is (C, c) where C ≥ c, meaning that she consumes no less in the first period
than in the second. The second plan gives her (c, C), so that consumption is no lower in the
second period. The third alternative allows her to consume in each period the same average
amount

--c = 1
2 (C + c)

Even without knowing the exact function u, the assumption that it is concave allows
economists to conclude that for this individual the third alternative with equal consumption
in both periods is at least as good as either of the first two. Indeed we can apply (8.2.1)
with λ = 1

2 to show that concavity implies

u(--c) + u(--c) = 2u
( 1

2 (C + c)
) ≥ 2

[ 1
2 u(C) + 1

2 u(c)
] = u(C) + u(c) (8.2.3)

E X A M P L E 8.2.3 Using a result from Exercise 2.6.8, show that: (i) the function f (x) = √
x is concave

over the interval [0, ∞); (ii) the function g(x) = x2 is convex over the real line (−∞, ∞);
(iii) the linear function h(x) = ax + b is both concave and convex over (−∞, ∞).

Solution: (i) Exercise 2.6.8 tells us that, for any pair of positive numbers a and b, one has
√

ab ≤ 1
2 (a + b) (∗)

Obviously, this inequality also holds if one or both a and b equals 0. For any λ in [0, 1] we
have λ(1 − λ) ≥ 0. So (∗) implies that, for all nonnegative numbers a and b, one has

2λ(1 − λ)
√

ab ≤ λ(1 − λ)(a + b)

= λ(1 − λ)a + λ(1 − λ)b

= λ(1 − λ)a + [1 − (1 − λ)](1 − λ)b

= λa − λ2a + (1 − λ)b − (1 − λ)2b
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Rearranging terms, this is equivalent to

λ2a + 2λ(1 − λ)
√

ab + (1 − λ)2b ≤ λa + (1 − λ)b

This can be rewritten as

(λ
√

a + (1 − λ)
√

b )2 ≤ λa + (1 − λ)b

As the square root function f (x) = √
x is increasing in x, we get

λ
√

a + (1 − λ)
√

b ≤ √
λa + (1 − λ)b

For arbitrary a, b, and λ, this reduces to the inequality (8.2.1) which determines that the
function f (x) = √

x is concave.
(ii) To show that g is convex, given any a, b, and λ in [0, 1], consider the difference

between the two sides of inequality (8.2.2). For the function g(x) = x2, this is

g(λa + (1 − λ)b) − (λg(a) + (1 − λ)g(b))

= (λa + (1 − λ)b)2 − λa2 − (1 − λ)b2

= λ2a2 + 2λ(1 − λ)ab + (1 − λ)2b2 − λa2 − (1 − λ)b2

= λ(λ − 1)a2 + 2λ(1 − λ)ab + (1 − λ)(1 − λ − 1)b2

= λ(λ − 1)(a2 − 2ab + b2) = λ(λ − 1)(a − b)2 (∗∗)

For all λ in [0, 1] we have λ(λ − 1) ≤ 0, so the final expression in (∗∗) is ≤ 0. By (8.2.2),
this proves that g is convex.

(iii) To see that h is both concave and convex, simply notice that

λh(x) + (1 − λ)h(y) = λ(ax + b) + (1 − λ)(ay + b) = h(λx + (1 − λ)y)

This equality implies that h(x) satisfies both the inequality (8.2.1), as required by the
definition of concavity, and the inequality (8.2.2), as required by the definition of
convexity.

This example required quite a lot of work to verify the concavity or convexity of the first
two relatively simple functions. Indeed, a quick glance at their graphs, which appeared in
Figs 4.3.6 and 4.3.8, makes the result rather obvious. Fortunately, we shall see below that,
rather than using the direct definitions (8.2.1) and (8.2.2), there are simpler ways based
on derivatives to determine the concavity and/or convexity of a function. There is also the
method shown in Example 8.2.5.

For the moment, it is important to note that the only functions that are both
concave and convex are the linear functions introduced in Section 4.4. Now we
introduce stronger versions of concavity and convexity, which no function can satisfy
simultaneously.

In inequalities (8.2.1) and (8.2.2), suppose we restrict attention to the non-trivial case
when a �= b and 0 < λ < 1, which holds if and only if λa + (1 − λ)b �∈ {a, b}. Then a func-
tion f is:
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1. strictly concave if Eq. (8.2.1) is always satisfied with strict inequality;

2. strictly convex if Eq. (8.2.2) is always satisfied with strict inequality.

E X A M P L E 8.2.4 In the case of Example 8.2.2, assume that C > c and that the function u is strictly
concave. Then, we can strengthen our conclusion and say that the individual strictly prefers
the consumption plan (--c, --c) that gives her the same consumption in the present as in the
future. This is because the weak inequality (8.2.3) becomes the strict inequality

u(--c) + u(--c) = 2u
( 1

2 (C + c)
)

> 2
[ 1

2 u(C) + 1
2 u(c)

] = u(C) + u(c) (8.2.4)

This result is important in macroeconomics, where it is known as consumption smooth-
ing. It is a fundamental implication of the strict concavity of the instantaneous utility func-
tion. It is important to note that it does not require our simplifying assumption that β = 1.
Indeed, given any consumption plan (c1, c2) with c1 �= c2, suppose we define the particular
weighted average

--c = 1
1 + β

c1 + β

1 + β
c2

Then strict concavity of u implies that

u(--c) + βu(--c) = (1 + β)u(--c) > (1 + β)

[
1

1 + β
u(c1) + β

1 + β
u(c2)

]
= u(c1) + βu(c2)

Characterization by slopes
Let us recapitulate:

C O N C A V E A N D C O N V E X F U N C T I O N S

A function f defined on an interval I is:

(i) concave if for all a and b in I, and for all λ in [0, 1], one has

f (λa + (1 − λ)b) ≥ λf (a) + (1 − λ)f (b) (8.2.1)

If the inequality is strict whenever a �= b and 0 < λ < 1, then f is strictly
concave.

(ii) convex if for all a and b in I, and for all λ in [0, 1], one has

f (λa + (1 − λ)b) ≤ λf (a) + (1 − λ)f (b)) (8.2.2)

If the inequality is strict whenever a �= b and 0 < λ < 1, then f is strictly
convex.

In Section 6.2, especially Figs 6.2.1 and 6.2.2, we introduced the notion of the secant as
a straight line that passes through two distinct points on the graph of a function. In (6.2.1)
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we defined the Newton quotient as the slope of such a secant. Such slopes can be used to
provide an alternative characterization of concave and convex functions. Given a function
f defined on an interval I, as well as any two distinct points (a, f (a)) and (b, f (b)) on its
graph with a �= b, let s(a, b) denote the slope of the secant joining those two points, defined
by

s(a, b) = f (a) − f (b)

a − b
(8.2.5)

Note that this definition evidently implies that s(a, b) = s(b, a), so it does not matter which
point of the pair {a, b} is less than the other.

Now consider the concave function whose graph, as shown in Fig. 8.2.1, curves down-
wards as one moves to the right. Evidently, there is a secant joining each distinct pair of
points in the set {(a, f (a)), (--x, f (--x)), (b, f (b))}. Because the graph curves down, the three
slopes (positive or negative) evidently satisfy

s(a, --x) > s(a, b) > s(--x, b) (8.2.6)

On the other hand, for the convex function whose graph is shown in Fig. 8.2.2, which curves
upwards as one moves to the right, the corresponding three slopes satisfy

s(c, --x) < s(c, d) < s(--x, d) (8.2.7)

Inequalities like these provide a characterization of concave or convex functions.

T H E O R E M 8 . 2 . 1 ( S L O P E C H A R A C T E R I Z A T I O N )

A function f (x) defined on an interval I is:

(i) concave if and only if, for every fixed a in I, the slope s(a, x) is decreasing
in x;

(ii) strictly concave if and only if, for every fixed a in I, the slope s(a, x) is
strictly decreasing in x;

(iii) convex if and only if, for every fixed a in I, the slope s(a, x) is increasing
in x;

(iv) strictly convex if and only if, for every fixed a in I, the slope s(a, x) is
strictly increasing in x.

Proof: Consider any three points a, x, y of the interval I that satisfy either a < y < x or
a > y > x. Now define λ = (y − a)/(x − a). Then λ ∈ (0, 1) and y = λx + (1 − λ)a. By
definition of s, one has

s(a, y) − s(a, x) = f (y) − f (a)

y − a
− f (x) − f (a)

x − a
= f (y) − f (a)

λ(x − a)
− λ[f (x) − f (a)]

λ(x − a)
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and so

s(a, y) − s(a, x) = f (y) − [λf (x) + (1 − λ)f (a)]
λ(x − a)

(∗)

In case x > a, because λ > 0, Eq. (∗) implies that the expression f (y) − [λf (x) + (1 −
λ)f (a)] has the same sign as s(a, y) − s(a, x), whereas in case x < a, it has the opposite
sign.

To prove (i), consider any triple a, x, y of points with a < y < x and y = λx + (1 − λ)a
where λ ∈ (0, 1). Then, if s(a, x) is decreasing in x, one has s(a, y) − s(a, x) ≥ 0, so by (∗)
it follows that f (y) − [λf (x) + (1 − λ)] f (a) ≥ 0, implying that f is concave.

Conversely, if f is concave, one has f (y) − [λf (x) + (1 − λ)] f (a) ≥ 0 and so by (∗), in
case a < y < x one has s(a, y) − s(a, x) ≥ 0. Alternatively, in case a > y > x, the same
argument shows that s(a, y) − s(a, x) ≤ 0. Either way, the slope s(a, x) is decreasing
in x.

To prove (ii), just replace each weak inequality ≥ 0 or ≤ 0 in the proof of (i) just above
with the corresponding strict inequality.

To prove (iii) and (iv), just replace f by −f and use part (i) or (ii), as appropriate.

Theorem 8.2.1 allows the results in Example 8.2.3 to be derived much more
simply.

E X A M P L E 8.2.5 Using Theorem 8.2.1, show that: (i) the function f (x) = √
x is strictly concave

over the interval [0, ∞); (ii) the function g(x) = x2 is strictly convex over the real
line (−∞, ∞); (iii) the linear function h(x) = ax + b is both concave and convex
over (−∞, ∞).

Solution: (i) For every fixed a ≥ 0 and every x �= a with x ≥ 0, the slope satisfies

s(a, x) =
√

x − √
a

x − a
= 1√

x + √
a

This is evidently strictly decreasing in x, so f is strictly concave.

(ii) Here, for every fixed a and every x �= a, the slope satisfies

s(a, x) = x2 − a2

x − a
= x + a

This is evidently strictly increasing in x, so g is strictly convex.

(iii) In this case, for every fixed y and every x �= y, the slope satisfies

s(y, x) = (ax + b) − (ay + b)

x − y
= a

Because the slope is constant, it is both increasing and decreasing in x, so h is both concave
and convex.
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E X E R C I S E S F O R S E C T I O N 8 . 2

1. Consider the function whose graph appears in Fig. 8.2.9. Is the function concave, strictly concave,
convex, or strictly convex?

f

y

x

Figure 8.2.9 Exercise 1

2. Show that:

(a) A strictly concave function is concave.

(b) A function can be both concave and convex.

(c) A function can be concave and not strictly concave.

(d) A strictly concave function cannot be convex.

3. Determine whether each of the two functions whose graphs are shown in Figs 8.2.7 and 8.2.8 is
concave, strictly concave, convex, or strictly convex.

4. Suppose that a firm like that in Example 5.2.1 faces a cost of producing Q ≥ 0 units of its product
given by the strictly convex function c(Q), where c(0) = 0. Suppose also that the firm is given the
possibility of opening a second plant with the same cost function, and then reallocating some of
its production to that plant. Should it do so?

5. Use Theorem 8.2.1 to show that the US Federal Income Tax function introduced in Example 5.4.4
is convex but not strictly convex.

6. [HARDER] Prove that if the function f is increasing and strictly concave on the interval I, then it
must be strictly increasing on I. (Hint: If f is increasing but not strictly increasing, then there must
be an interval on which it is constant.)

7. [HARDER] For each n = 2, 3, . . ., consider the power function which is defined for all real x by
f (x) = xn. Use Theorem 8.2.1 to prove that:

(a) when n = 2, the function x2 is strictly convex over (−∞, ∞);

(b) for each n = 2, 3, . . ., the function xn is strictly convex over [0, ∞);

(c) when n is even, the function xn is strictly convex over (−∞, 0];3

(d) when n is odd, the function xn is strictly concave over (−∞, 0].

(Hint: For parts (c) and (d), consider the relation between the slopes s(−a, −x) and s(a, x).)

3 Exercise 8.3.6 asks you to show that is strictly convex over the whole real line.
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8. [HARDER] Let f be a function defined on an interval I which meets the definition of continuity set
out in Section 7.8. Then a sufficient condition for f to be concave is that it is midpoint concave,4

which requires that for all points a and b of I, one has

f
( 1

2 a + 1
2 b

) ≥ 1
2 f (a) + 1

2 f (b)

Similarly, f is midpoint convex if the reverse inequality holds. Use the rules of the exponential
and logarithmic functions to show that f (x) = ln x is midpoint concave and g(x) = ex is midpoint
convex, which implies that ln x is concave whereas ex is convex.

9. [HARDER] Let f be a concave function on an interval I. Show that for every natural number n, all
collections x1, x2, . . . , xn of n points in I, and all collections λ1, λ2, . . . , λn of n positive numbers
whose sum satisfies

∑n
i=1 λi = 1, it is true that

f

(
n∑

i=1

λixi

)
≥

n∑
i=1

λif (xi)

(Hint: Remember the principle of mathematical induction.)

8.3 General Properties
This section presents some interesting properties of concave and convex functions. Our first
result on multiples of concave and convex functions is almost immediate.

Note: If f is (strictly) concave and a is a constant, then af is (strictly) concave if a > 0,
and (strictly) convex if a < 0. Similarly, for a (strictly) convex function g, the function ag
is (strictly) convex if a > 0, and (strictly) concave if a < 0.

Sums of concave functions
Suppose that f and g are concave functions over an interval I, and that h(x) = f (x) + g(x).
Then for any pair of points a and b in I, and any number λ in [0, 1], one has

h(λa + (1 − λ)b) = f (λa + (1 − λ)b) + g(λa + (1 − λ)b)

Since both f and g are concave, it follows that

f (λa + (1 − λ)b) ≥ λf (a) + (1 − λ)f (b) and g(λa + (1 − λ)b) ≥ λg(a) + (1 − λ)g(b)

This implies that

h(λa + (1 − λ)b) ≥ λf (a) + (1 − λ)f (b) + λg(a) + (1 − λ)g(b)

= λ[f (a) + g(a)] + (1 − λ)[f (b) + g(b)]

= λh(a) + (1 − λ)h(b)

4 The condition owes its name to the fact that 1
2 a + 1

2 b is the midpoint of the line interval whose end
points are a and b, and ( 1

2 a + 1
2 b, 1

2 f (a) + 1
2 f (b)) is the midpoint of the line segment joining the

two points (a, f (a)) and (b, f (b)) on the graph of the function f .
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showing that h is concave too. Note immediately that if, in addition, at least one of f and
g is strictly concave, then so is h. An analogous argument shows that the sum of two con-
vex functions is always convex, and strictly convex if at least one of the two is strictly
convex.

E X A M P L E 8.3.1 Check the convexity/concavity of the function f (x) = x2 − 2x + 2

Proof: In Example 8.2.3 we established that x2 and −2x + 2 are both convex functions. As
the sum of two convex functions, f is convex.

Minima of concave functions
Suppose once again that f and g are concave functions over an interval I. Consider the
function h defined on I by h(x) = min{f (x), g(x)}. That is, for any x in I, the value h(x) is
the smaller or minimum of the two numbers f (x) and g(x). Now, given any pair of points a
and b in I and any number λ in [0, 1], the definition of h and the concavity of f and g together
imply that

f (λa + (1 − λ)b) ≥ λf (a) + (1 − λ)f (b) ≥ λh(a) + (1 − λ)h(b) (∗)

and g(λa + (1 − λ)b) ≥ λg(a) + (1 − λ)g(b) ≥ λh(a) + (1 − λ)h(b) (∗∗)

Evidently, if any three numbers u, v, w satisfy both u ≥ w and v ≥ w, then their minimum
satisfies min{u, v} ≥ w. So the two inequalities (∗) and (∗∗) together imply that

h(λa + (1 − λ)b) = min{f (λa + (1 − λ)b), g(λa + (1 − λ)b)} ≥ λh(a) + (1 − λ)h(b)

This proves that h is concave on the interval I.
On the other hand, if h(x) = max{f (x), g(x)} where f and g are convex functions, then

−h(x) = min{−f (x), −g(x)} is the minimum of two concave functions, so concave. It fol-
lows that h, which is the maximum of two convex functions, is convex.

Exercise 4 asks you to extend these results to show that the minimum of any finite col-
lection of concave functions is concave. It follows, of course, that the maximum of any
finite collection of convex functions is convex.

E X A M P L E 8.3.2 Show that the absolute value function f (x) = |x| is convex.

Proof: Note that |x| = max{x, −x}. This is convex, as the maximum of the two convex
functions x and −x.

Compositions of concave functions
We continue to assume that the function f is concave over an interval I. Let g be an increas-
ing and concave function defined over the range of f . As in Section 6.8, define the composite
function h(x) = g(f (x)). To see whether h is concave, fix any two distinct points a and b in
the interval I, as well as any number λ satisfying 0 < λ < 1. Now:
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1. Because f is concave, one has f (λa + (1 − λ)b) ≥ λf (a) + (1 − λ)f (b).

2. Because g is increasing, one has g(f (λa + (1 − λ)b)) ≥ g(λf (a) + (1 − λ)f (b)).

3. Because g is concave, one has g(λf (a) + (1 − λ)f (b)) ≥ λg(f (a)) + (1 − λ)g(f (b)).

4. By definition of h, one has h(λa + (1 − λ)b) = g(f (λa + (1 − λ)b)), as well as both
g(f (a)) = h(a) and g(f (b)) = h(b). Finally, therefore, the function h is also concave
because the inequalities in steps 2 and 3 above jointly imply that

h(λa + (1 − λ)b) ≥ λh(a) + (1 − λ)h(b)

Note that the argument requires the external function g to be not only concave, but also
increasing. In case f is strictly concave and g is both strictly increasing and concave, one
can replace the two weak inequalities in steps 1 and 2 of the above argument by strict
inequalities. Then, even though the inequality in step 3 may be weak, one still has a strict
inequality in the final step 4. This modified argument proves that the composite function h
is also strictly concave.

The analogous result holds for convex functions: if f is (strictly) convex and g is (strictly)
increasing and convex, then h is (strictly) convex.

E X A M P L E 8.3.3 Check the convexity/concavity of the function f (x) = ax2 + bx + c.

Solution: Whether this function is concave or convex depends on the sign of the number a.
If a = 0, we know from Example 8.2.3 that f is both concave and convex.

Consider next the case when a > 0. By Example 8.2.3, we know that x2 is convex, and
so it follows from the Note at the beginning of Section 8.3 that ax2 is convex. Since bx + c
is convex too, it follows that f (x) = g(x2) + bx + c is convex.

Finally, suppose that a < 0. Then ax2 is concave, and since bx + c is concave too, it
follows that so is f (x).

Inverses of concave functions
For the final general property of concave or convex functions, we consider the inverse g =
f −1 of a function f that is increasing and concave. Because f is concave and g = f −1, for
any points a and b and any number λ in [0, 1], one has

f (λg(a) + (1 − λ)g(b)) ≥ λf (g(a)) + (1 − λ)f (g(b)) = λa + (1 − λ)b (∗)

Since f is increasing, so is g, as in Section 7.3. Hence

g(f (λg(a) + (1 − λ)g(b))) ≥ g(λa + (1 − λ)b) (∗∗)

Because g = f −1, it follows that

λg(a) + (1 − λ)g(b) ≥ g(λa + (1 − λ)b)

So g is convex. This is illustrated in Fig. 7.3.1. At the risk of being repetitive: the inverse of
an increasing and concave function is increasing but convex.
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E X A M P L E 8.3.4 In Exercise 8.2.8 you were asked to show that the logarithmic function ln x is concave
and the exponential function ex is convex. Note that only one of the two arguments was
really necessary: since they are inverses of each other and both are increasing, concavity of
ln x implies convexity of ex, and vice versa.

Suppose, on the other hand, that f is decreasing and concave, with inverse g = f −1.
Again concavity of f implies (∗). Because f is decreasing, so is g, which reverses the
inequality in (∗∗). Hence

g(f (λg(a) + (1 − λ)g(b))) ≤ g(λa + (1 − λ)b)

Because g = f −1, it follows that

λg(a) + (1 − λ)g(b) ≤ g(λa + (1 − λ)b)

Hence, g is concave too. That is: the inverse of a decreasing and concave function is
decreasing and concave as well.

For convex functions, as before, similar results hold. If the function is increasing and
convex, its inverse is also increasing but concave; if it is decreasing and convex, however,
the inverse is both decreasing and convex.

E X E R C I S E S F O R S E C T I O N 8 . 3

1. Show that if f is strictly concave and g is concave, then f + g is strictly concave.

2. Using the fact that
√

x is concave, prove that for x ≥ 0 and a ≥ 0, the function f (x) = ax2 + b is
convex.

3. In Section 8.3 we argued that the composite function g ◦ f is concave provided that f and g are
both concave, with g increasing. We also argued that g ◦ f would be strictly concave provided
that f is strictly concave and g is strictly increasing. Show that both these properties must hold
strictly: specifically, give two examples where each holds only weakly and yet, although the other
property holds strictly, the composite function g ◦ f is only (weakly) concave.

4. Let I be any interval of the real line. For each i = 1, 2, . . . , n, suppose that the function fi(x)
defined on I is concave. Prove by induction on n that the function f ∗(x) defined on I by f ∗(x) =
min{fi(x) : 1, 2, . . . , n} is concave.

5. Consider the two functions f (x) = −|x − 1| and g(x) = |x + 1|, both defined on (−∞, ∞).

(a) Show that f is concave and that g is convex on (−∞, ∞).

(b) For what values of a and b is the function f + g defined on the interval (a, b): (i) concave; (ii)
convex; (iii) both concave and convex; (iv) neither concave nor convex? (Case (iv) shows that
when f is concave and g is convex, the function f + g need be neither concave nor convex.)

6. Once again, consider for each n = 2, 3, . . . the power function defined for all x by f (x) = xn. Use
the results of Exercise 8.2.7 and those for the composition of convex functions to prove that if n
is even with n = 2m ≥ 4, then xn = (x2)m is strictly convex over the whole of (−∞, ∞).
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8.4 First-Derivative Tests
Figure 8.4.1 reproduces Fig. 7.4.1, which illustrates the graph of the linear approximation
y = f (a) + f ′(a)(x − a) to the differentiable function f about the point a. This graph, of
course, is the tangent line at a to the graph of the function f . Because the function f happens
to be concave, this tangent lies completely on top of the graph of the function. For this
reason, its slope, which equals the gradient f ′(a) at a, is known as a supergradient.

If a function is convex rather than concave, the tangent at any point will lie completely
below the graph. In this case, the gradient f ′(a) at a is known as a subgradient.

y 5 f (x) 

y

xa

Figure 8.4.1 Supergradient of a concave function

This motivates the following definitions:

S U P E R G R A D I E N T S A N D S U B G R A D I E N T S

Let f (x) be any function defined on an interval I, and a any point of I. The real
number p is:

(i) a supergradient of f at x = a if f (x) ≤ f (a) + p(x − a) for all x in I (8.4.1)

(ii) a subgradient of f at x = a if f (x) ≥ f (a) + p(x − a) for all x in I (8.4.2)

T H E O R E M 8 . 4 . 1 ( N E C E S S A R Y C O N D I T I O N S F O R C O N C A V I T Y
A N D C O N V E X I T Y )

Suppose the function f is defined on an interval I, and is differentiable at an
interior point a of I. Now:

(i) if f is concave, then f ′(a) is a supergradient at a;

(ii) if f is convex, then f ′(a) is a subgradient at a.
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Proof: In case x > a, consider any h > 0 such that a + h < x. By Theorem 8.2.1, because
f is concave, the slope s(a, x) = [f (x) − f (a)]/(x − a) is decreasing in x. It follows that
s(a, a + h) ≥ s(a, x), and so

f (a + h) − f (a)

h
≥ f (x) − f (a)

x − a

Taking limits as h → 0+, the definition of derivative implies that

f ′(a) = lim
h→0+

f (a + h) − f (a)

h
≥ f (x) − f (a)

x − a

Because x − a > 0, it follows that f (x) − f (a) ≤ f ′(a)(x − a).
In case x < a, consider any h < 0 such that a + h > x. By a similar argument to the case

when x > a, one has s(a, a + h) ≤ s(a, x), and so

f ′(a) = lim
h→0−

f (a + h) − f (a)

h
≤ f (x) − f (a)

x − a

Because x − a < 0, it follows that f (x) − f (a) ≤ f ′(a)(x − a) in this case also.
This completes the proof for the concave case. The convex case can be proved in the

same way. But it is much simpler and faster to see that the subgradient property for the
function f is equivalent to the supergradient property (8.4.3) for the function −f .

Recall the definitions of left and right derivatives in Eq. (7.9.4). One can extend the
above proof to show that if f is a concave function defined on the interval I, and if a is an
interior point of I, then:

1. both the left derivative f ′(a−) and the right derivative f ′(a+) exist, even if f ′(a) does not;

2. one has f ′(a−) ≥ f ′(a+), and any p in the interval [f ′(a+), f ′(a−)] is a supergradient.

As a corollary, note that a concave function defined on an interval has at least one super-
gradient at every interior point of that interval.

As ever, given these results if f is concave, there are obvious corresponding results if f
is convex.

Supergradients and subgradients also provide important sufficient conditions for a func-
tion to be concave or convex.

T H E O R E M 8 . 4 . 2 ( S U F F I C I E N T C O N D I T I O N S F O R C O N C A V I T Y
A N D C O N V E X I T Y )

Suppose that the function f is defined on an interval I. Then f will be:

(i) concave if it is has a supergradient at every point of I;

(ii) convex if it is has a subgradient at every point of I.
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Here is a straightforward proof of case (i); the proof of case (ii) is similar.

Proof: Fix a and b in I and λ in [0, 1], then let c = λa + (1 − λ)b. Suppose f has a super-
gradient at c, which we denote by p. Now (8.4.1) implies that both

f (a) ≤ f (c) + p(a − c) (∗)

f (b) ≤ f (c) + p(b − c) (∗∗)

Next, multiply both sides of (∗) by λ and then both sides of (∗∗) by 1 − λ. Both inequalities
are preserved because both multipliers are nonnegative. Adding the resulting two inequali-
ties, then rearranging, we obtain

λf (a) + (1 − λ)f (b) ≤ [λ + (1 − λ)]f (c) + p[λ(a − c) + (1 − λ)(b − c)] = f (c)

The last equality holds because the two coefficients in square brackets evidently reduce to 1
and 0 respectively. This holds for all a, b, c with c = λa + (1 − λ)b, so f is concave.

Combining the results of Theorems 8.4.1 and 8.4.2 gives us the following:

C H A R A C T E R I Z A T I O N O F C O N C A V E A N D C O N V E X F U N C T I O N S

Suppose that the function f is differentiable over an open interval I. Then,

(i) f is concave if and only if, for all a and x in I, one has

f (x) ≤ f (a) + f ′(a)(x − a) (8.4.3)

(ii) f is convex if and only if, for all a and x in I, one has

f (x) ≥ f (a) + f ′(a)(x − a) (8.4.4)

Notice that we have referred to the supergradient and subgradient inequalities (8.4.3)
and (8.4.4) as characterizations. This is a way to emphasize that, for a differentiable func-
tion, the properties are logically equivalent to concavity or convexity: that is, they are both
necessary and sufficient. The following examples show how this characterization by super-
gradients or subgradients can be used to test directly for concavity or convexity.

E X A M P L E 8.4.1 In Example 8.2.3 we concluded that f (x) = √
x is concave, that g(x) = x2 is convex,

and that h(x) = ax + b is both concave and convex. Based on the fact that these functions
are differentiable (except f when x ≤ 0), use appropriate supergradient or subgradient prop-
erties to confirm these conclusions.

Solution: First, for x > 0 and a > 0, the linear approximation to f (x) about x = a is

f (a) + f ′(a)(x − a) = √
a + 1

2
√

a
(x − a) = 1

2

(√
a + √

x2/a
)

(∗)
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Using the inequality mA ≥ mG of Exercise 2.6.8 for the numbers
√

a and
√

x2/a, we obtain

1
2

(√
a + √

x2/a
)

≥
√√

a · √
x2/a = √

x = f (x) (∗∗)

Together (∗) and (∗∗) confirm (8.4.3), which is the inequality for f ′(a) to be a supergradient
of f at a. Since this holds for all a > 0, it follows that f is concave.

For the function g, note that the linear approximation about x = a is

g(a) + g′(a)(x − a) = a2 + 2a(x − a) = 2ax − a2

The inequality (a − x)2 ≥ 0 tells us that a2 + x2 ≥ 2ax, so

g(x) = x2 ≥ 2ax − a2 = g(a) + g′(a)(x − a)

This confirms the subgradient inequality in (8.4.4), which implies that g is convex.
Finally, the function h is identical to its linear approximation about any point. So both

weak inequalities (8.4.3) and (8.4.4) are immediately satisfied with equality.

E X A M P L E 8.4.2 Use the subgradient inequality in (8.4.4) to verify that the function f (x) = x2 −
2x + 2 is convex.

Solution: The linear approximation about a is

f (a) + f ′(a)(x − a) = a2 − 2a + 2 + (2a − 2)(x − a) = −a2 + 2ax − 2x + 2

after some manipulation. Once again a2 + x2 ≥ 2ax, so we have the subgradient inequality

f (a) + f ′(a)(x − a) ≤ x2 − 2x + 2 = f (x)

8.5 Second-Derivative Tests
Recall from Section 6.3 how the sign of the first derivative determines whether a function
is increasing or decreasing on an interval I. Indeed, if f ′(x) ≥ 0 (or f ′(x) ≤ 0) on I, then f is
increasing (or decreasing) on I, and conversely. The second derivative f ′′(x) is the derivative
of f ′(x). Hence:

f ′′(x) ≥ 0 on I ⇐⇒ f ′ is increasing on I (8.5.1)

f ′′(x) ≤ 0 on I ⇐⇒ f ′ is decreasing on I (8.5.2)

The equivalence in (8.5.1) is illustrated in Fig. 8.5.1. The slope f ′(x) of the tangent at x
is increasing as x increases. On the other hand, the slope of the tangent to the graph in
Fig. 8.5.2 is decreasing as x increases.

To help visualize this, imagine sliding a ruler along the curve and keeping it aligned with
the tangent to the curve at each point. As the ruler moves along the curve from left to right,
the tangent rotates anticlockwise in Fig. 8.5.1, but clockwise in Fig. 8.5.2. This gives us the
following characterization. It involves the interior of an interval which, you should recall,
is the open interval with the same end points.
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y f (x)

y

x

Figure 8.5.1 The slope of the tangent
line increases as x increases.

y g(x)

y

x

Figure 8.5.2 The slope of the tangent
line decreases as x increases.

C O N C A V E A N D C O N V E X F U N C T I O N S

Suppose that f is continuous in the interval I and twice differentiable in the
interior of I. Then,

f is concave on I ⇐⇒ f ′′(x) ≤ 0 for all x in the interior of I (8.5.3)

f is convex on I ⇐⇒ f ′′(x) ≥ 0 for all x in the interior of I (8.5.4)

E X A M P L E 8.5.1 Verify the convexity/concavity of the following functions:

(a) f (x) = x2 − 2x + 2 (b) f (x) = ax2 + bx + c

Solution:

(a) Here f ′(x) = 2x − 2, so f ′′(x) = 2. Because f ′′(x) > 0 for all x, the function f is convex,
which confirms what we showed in Example 8.4.2.

(b) Here f ′(x) = 2ax + b, so f ′′(x) = 2a. If a = 0, then f is linear. In this case, the function
f satisfies both Eq. (8.5.3) and (8.5.4), so it is both concave and convex. If a > 0, then
f ′′(x) > 0, so f is convex. If a < 0, then f ′′(x) < 0, so f is concave. These conclusions
are the same as those we obtained in Example 8.3.3.

E X A M P L E 8.5.2 Examine the concavity/convexity of the production function Y = AKa, defined for
all K ≥ 0, where A > 0 and a > 0.

Solution: From Example 6.9.2, one has Y ′′ = Aa(a − 1)Ka−2. Now there are three cases:

(i) If a ∈ (0, 1), then the coefficient Aa(a − 1) < 0, so that Y ′′ < 0 for all K > 0. Hence,
the function is concave. The graph of Y = AKa for 0 < a < 1, is shown in Fig. 8.5.3.

(ii) On the other hand, if a > 1, then Y ′′ > 0 and Y is a convex function of K, as shown in
Fig. 8.5.4.

(iii) Finally, if a = 1, then Y is linear, so it is both concave and convex.
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Y AK a

(0 a  1)

Y

K

Figure 8.5.3 Concave production
function

Y AK a

(a  1)

Y

K

Figure 8.5.4 Convex production
function

E X A M P L E 8.5.3 Suppose that the two functions f and g are both twice differentiable. Use the
second-derivative test (8.5.3) to show that if both are concave, then so is their sum.

Solution: Let h(x) = f (x) + g(x). Using Eq. (6.7.1) twice gives h′′(x) = f ′′(x) + g′′(x).
Since both f and g are concave, we have f ′′(x) ≤ 0 and g′(x) ≤ 0 at all x. This implies
that h′′(x) ≤ 0, so h is concave as well.

E X A M P L E 8.5.4 Suppose that the functions U and g are both increasing and concave, with U′ ≥
0, U′′ ≤ 0, g′ ≥ 0, and g′′ ≤ 0. Use Eqs (6.3.1) and (8.5.3) to confirm that the composite
function f (x) = g(U(x)) is also increasing and concave.

Solution: Using the chain rule yields

f ′(x) = g′(U(x)) · U′(x) (∗)

Because g′ and U′ are both ≥ 0, so f ′(x) ≥ 0. Hence, the function f is increasing. In words:
an increasing transformation of an increasing function is increasing.

To find f ′′(x), we must differentiate w.r.t. x the product on the RHS of (∗). According to
the chain rule, the derivative of g′(U(x)) is equal to g′′(U(x)) · U′(x). Hence,

f ′′(x) = g′′(U(x)) · [U′(x)]2 + g′(U(x)) · U′′(x) (∗∗)

Because g′′ ≤ 0, g′ ≥ 0, and U′′ ≤ 0, it follows that f ′′(x) ≤ 0. Again, in words: an increas-
ing concave transformation of a concave function is concave.

The second-derivative tests in (8.5.3) and (8.5.4) are particularly handy. For the concave
case, we now prove (8.5.3). For the convex case (8.5.4), consider the concave function −f .

Proof of (8.5.3): First we prove that the hypothesis that f ′′(x) ≤ 0 for all x in the interior
of the interval I is sufficient for f to be concave. Indeed, fix any point a in I and note that,
as shown in Section 7.6, Taylor’s formula with remainder in the case n = 1 implies that for
every x in I one can find a point z in the interior of I such that

f (x) = f (a) + f ′(a)(x − a) + 1
2 f ′′(z)(x − a)2
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So the hypothesis that f ′′(z) ≤ 0 for all z in the interior of I implies the supergradient prop-
erty f (x) ≤ f (a) + f ′(a)(x − a) for all x in I. By (8.4.3), this is sufficient for f to be concave.

Conversely, fix any point a in the domain I, as well as any number h �= 0. If f is concave,
then the supergradient property in Eq. (8.4.3) implies that

f (a + h) ≤ f (a) + f ′(a)h and f (a) ≤ f (a + h) + f ′(a + h)(−h)

Adding these two inequalities, then cancelling the common terms f (a + h) + f (a), we
obtain

0 ≤ f ′(a)h + f ′(a + h)(−h)

Dividing this inequality by the negative number −h2 yields

f ′(a + h) − f ′(a)

h
≤ 0

But the expression on the LHS is the Newton quotient of the function f ′ at a. Letting h → 0
preserves the weak inequality. Because f is twice differentiable at a, it yields f ′′(a) ≤ 0.
This completes the proof.

Finally, we state a corresponding second-derivative test for strict concavity or convexity.
It is important to note, however, that it is only partly valid. Specifically, the condition is
sufficient. But it is not necessary. Exercise 4 asks you to provide an example of this.

S T R I C T L Y C O N C A V E A N D C O N V E X F U N C T I O N S

Suppose that f is continuous in the interval I and twice differentiable in the
interior of I. Then,

f ′′(x) < 0 for all x in the interior of I =⇒ f is strictly concave on I (8.5.5)

f ′′(x) > 0 for all x in the interior of I =⇒ f is strictly concave on I (8.5.6)

E X E R C I S E S F O R S E C T I O N 8 . 5

1. Verify the results in Exercise 8.2.8 concerning the concavity/convexity of the two functions ln x
(defined for x > 0) and ex (defined for all real x).

2. Consider the sum of the two functions f (x) = −x2, which is strictly concave on [0, ∞), and g(x) =
x3, which is strictly convex on [0, ∞). For what intervals (a, b) with 0 ≤ a < b is it true that f + g
is: (a) concave; (b) convex; (c) neither concave nor convex? (This shows that the sum of a concave
and a convex function may be concave, convex, or neither.)

3. Suppose that the functions f (x) and g(x) are both twice differentiable and concave. Prove that if g
is increasing, then the composite function h(x) = g(f (x)) is also concave.

4. Give an example showing that f ′′(x) < 0 for all x in (a, b) is not a necessary condition for the
function f to be strictly concave on (a, b).
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5. Suppose that on the interval I the function f is twice differentiable and concave with f ′ �= 0.

(a) Use Theorem 7.3.1 to show that the inverse function g(y) = f −1(y) is well defined and twice
differentiable on the range f (I).

(b) Use Eq. (7.3.3) to show that, for any x in I, the signs of f ′′(x) and g′′(f (x)) are the same or
opposite according as f is decreasing is increasing.

(c) [HARDER] In case f ′′ �= 0 throughout I, discuss how the results for inverses in Section 8.3 can
be strengthened for functions that are strictly concave or strictly convex.

8.6 Inflection Points
Points at which a function changes from being convex to being concave, or vice versa, are
called inflection points. For twice differentiable functions, here is a definition:

I N F L E C T I O N P O I N T S

If the function f is twice differentiable, a point c is called an inflection point
for f if there exists an interval (a, b) about c such that:

(a) f ′′(x) ≥ 0 in (a, c) and f ′′(x) ≤ 0 in (c, b); or

(b) f ′′(x) ≤ 0 in (a, c) and f ′′(x) ≥ 0 in (c, b).

f (x)  0 f (x)  0

c

P

y

Figure 8.6.1 Point P is an inflection
point on the graph; x = c is an
inflection point for the function

P

Figure 8.6.2 The point P, where the
slope is steepest, is an inflection point

Briefly, x = c is an inflection point if f ′′(x) changes sign at x = c.5 We also refer to
the point (c, f (c)) as an inflection point on the graph. Figure 8.6.1 gives an example from
mathematics, while Fig. 8.6.2 gives one from winter sports: it shows a (not quite realistic)

5 We note that what a mathematician would call a turning point of a function f , which is a point at
which the sign of f ′(x) changes, is often called an inflection point in popular parlance. Perhaps it is
too much to expect popular parlance to take account of changes in the sign of the second derivative!
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sketch of the profile of a ski jump. The point P, where the slope is steepest, is an inflection
point.

When looking for possible inflection points of a function, we usually use part (ii) of the
following theorem:

T H E O R E M 8 . 6 . 1 ( T E S T F O R I N F L E C T I O N P O I N T S )

Let f be a function with a continuous second derivative in an interval I, and let
c be an interior point of I.

(i) If c is an inflection point for f , then f ′′(c) = 0.

(ii) If f ′′(c) = 0 and f ′′ changes sign at c, then c is an inflection point for f .

The proof of this theorem is rather simple:

Proof:

(i) Because f ′′(x) ≤ 0 on one side of c and f ′′(x) ≥ 0 on the other, and because f ′′ is
continuous, it must be true that f ′′(c) = 0.

(ii) If f ′′ changes sign at c, then c is an inflection point for f , by definition.

This theorem implies that f ′′(c) = 0 is a necessary condition for c to be an inflection
point. It is not a sufficient condition, however, because f ′′(c) = 0 does not imply that f ′′
changes sign at x = c. A typical case is given in the next example.

E X A M P L E 8.6.1 Show that f (x) = x4 does not have an inflection point at x = 0, even though
f ′′(0) = 0.

Solution: Here f ′(x) = 4x3 and f ′′(x) = 12x2, so that f ′′(0) = 0. But f ′′(x) > 0 for all
x �= 0, and so f ′′ does not change sign at x = 0. Hence, x = 0 is not an inflection point.
This is confirmed by the graph of f , which is shown in Fig. 8.6.3.

x

y

Figure 8.6.3 y = x4

x

y

1
2

Figure 8.6.4 y = 1
9 x3 − 1

6 x2 − 2
3 x + 1
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E X A M P L E 8.6.2 Find possible inflection points for f (x) = 1
9 x3 − 1

6 x2 − 2
3 x + 1.

Solution: We have f ′(x) = 1
3 (x + 1)(x − 2) and f ′′(x) = 2

3 x − 1
3 = 2

3

(
x − 1

2

)
. So f ′′(x)

≤ 0 for x ≤ 1/2, whereas f ′′(1/2) = 0 and f ′′(x) ≥ 0 for x > 1/2. According to
part (ii) in Theorem 8.6.1, x = 1/2 is an inflection point for f . This is confirmed by
Fig. 8.6.4.

E X A M P L E 8.6.3 Find possible inflection points for f (x) = x6 − 10x4.

Solution: In this case f ′(x) = 6x5 − 40x3 and

f ′′(x) = 30x4 − 120x2 = 30x2(x2 − 4) = 30x2(x − 2)(x + 2)

A sign diagram for f ′′ is as follows:

−2 −1 0 1 2

30x2 ◦

x − 2 ◦

x + 2 ◦

f ′′(x) ◦ ◦ ◦

f (x) � � � �

The sign diagram shows that f ′′ changes sign at x = −2 and x = 2, so these are inflection
points. Since f ′′ does not change sign at x = 0, it is not an inflection point, even though
f ′′(0) = 0.

Economic models often involve functions having inflection points. The cost function in
Fig. 4.7.2 is a typical example. Here is another.

E X A M P L E 8.6.4 A firm produces a commodity using only one input. For x ≥ 0, let y = f (x) be the out-
put obtained from x units of input. Then f is called a production function. Its first derivative
measures the increase in output per unit of extra input when the extra input is infinitesimal;
this derivative is called the firm’s marginal product. It is often assumed that the graph of a
production function is “S-shaped”. That is, the marginal product f ′(x) is increasing up to a
certain input level c, then decreasing. Figure 8.6.1 shows such a production function. If f is
twice differentiable, then f ′′(x) ≥ 0 in [0, c], but f ′′(x) ≤ 0 in [c, ∞). So f is first convex and
then concave, with c as an inflection point. Note that x = c is where the marginal product
achieves a maximum.
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E X E R C I S E S F O R S E C T I O N 8 . 6

1. Let f be defined for all x by f (x) = x3 + 3
2 x2 − 6x + 10.

(a) Find the points c where f ′(c) = 0 and determine the intervals where f increases.

(b) Find the inflection point for f .

2. Decide where the following functions are convex and determine possible inflection points:

(a) f (x) = x
1 + x2

(b) g(x) = 1 − x
1 + x

(c) h(x) = xex

3.SM For each of the six functions defined by the following formulas, find the inflection points and
determine the intervals where the functions are convex/concave.

(a) y = (x + 2)e−x (b) y = ln x + 1/x (c) y = x3e−x

(d) y = ln x
x2

(e) y = e2x − 2ex (f) y = (x2 + 2x)e−x

4. Find the inflection points of the function f whose graph is shown in Fig. 8.6.5

5. Find numbers a and b such that the graph of f (x) = ax3 + bx2 passes through (−1, 1) and has an
inflection point at x = 1/2.

y f (x)

23 0 21 1 3 4 5 6

4

2

1

y

x

Figure 8.6.5 Exercise 8.6.4

x

y

a b c

Figure 8.6.6 Review exercise 3

R E V I E W E X E R C I S E S

1. Let f (x) = √
x and g(y) = y3. Determine the concavity/convexity of the composite function

g(f (x)). Does this contradict any of the results for composite functions that were set out in
Section 8.3?

2. Let g(x) = 3x3 − 1
5 x5.

(a) Find g′(x) and g′′(x).

(b) Where is g increasing and where is it concave?

(c) Sketch the graph of g.

3. Suppose that f (x) is the twice differentiable function whose graph is depicted in Fig. 8.6.6. Which
of the following four combinations of four statements is correct?
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(a) f ′(a) = 0, f ′′(b) > 0, f ′(c) = 0, f ′′(c) > 0

(b) f ′(a) = 0, f ′(b) < 0, f ′′(b) = 0, f ′′(c) > 0

(c) f ′′(a) < 0, f ′′(b) = 0, f ′(c) = 0, f ′′(c) = 0

(d) f ′′(a) > 0, f ′′(b) = 0, f ′(c) = 0, f ′′(c) > 0

4. Find the intervals of concavity/convexity for each of the following functions:

(a) f (x) = 2x3 − 12x2 + 5 (b) f (x) = x + 4/x (c) f (x) = x
x2 + 16

5. For x �= 0, let f (x) = e1/x. Compute f ′(x) and f ′′(x), then examine where f is concave/convex.

6. Consider the cubic cost function that is defined for x ≥ 0 by C(x) = ax3 + bx2 + cx + d, where
the parameters are a > 0, b < 0, c > 0, and d > 0. Find the intervals where the function is convex
and where it is concave. Find also the unique inflection point.

7. Use a single coordinate system to draw the graphs of two concave functions f and g, both defined
for all x. Let the function h be defined by h(x) = min{f (x), g(x)}. That is, for each x, the number
h(x) is the smaller of f (x) and g(x). Draw the graph of h and explain why this function is also
concave.
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O P T I M I Z A T I O N

If you want literal realism, look at the world around you; if you want understanding, look at theories.
—Robert Dorfman (1964)

Finding the best way to do a specific task involves what is called an optimization problem.
Examples abound in almost all areas of human activity. A manager seeks those combinations

of inputs, such as capital and labour, that maximize profit or minimize cost. A farmer might want
to know what amount of fertilizer per hectare will maximize crop yield. An oil company may
wish to find the optimal rate of extraction from its wells.

In general, no mathematical methods are more important in economics than those designed
to solve optimization problems. Though in economics these problems usually involve several
variables, the examples of quadratic optimization in Section 4.6 indicate how useful economic
insights can be gained even from simple one-variable optimization.

9.1 Extreme Points
Those points in the domain of a function where it reaches its largest and smallest values are
usually referred to as maximum points and minimum points, respectively. Thus, we define:

M A X I M U M A N D M I N I M U M P O I N T S

If f (x) has domain D, then

(i) a ∈ D is a maximum point for f , and f (a) is the maximum value, if

f (x) ≤ f (a) for all x in D (9.1.1)

(ii) b ∈ D is a minimum point for f , and f (b) is the minimum value, if

f (x) ≥ f (b) for all x in D (9.1.2)
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If we do not need to distinguish between maxima and minima, we use the collective
names extreme points, or extrema, where the function reaches an extreme value. Other
authors might refer to them as optimal points, where the function reaches an optimal value.
Some authors prefer different terminology, referring to an extreme value as a maximum or
minimum, and to a point where this value is reached as a maximizer or minimizer.

If the value of f at the point c is strictly larger than at any other point in D, then c is
a strict maximum point. Similarly, d is a strict minimum point if f (x) > f (d) for all x ∈ D
with x �= d. Evidently a point x∗ is a strict maximum point of f in D if and only if x∗ is the
unique point in D that maximizes f , and similarly for minimum points.

If f is any function with domain D, then the function −f is defined for all x in D by
(−f )(x) = −f (x). Note that f (x) ≤ f (c) for all x in D if and only if −f (x) ≥ −f (c) for all
x in D. Thus, the point c maximizes f in D if and only if it minimizes −f in D. This simple
observation, which is illustrated in Fig. 9.1.1, can be used to convert any maximization
problem into a corresponding minimization problem, and vice versa.

f (x)

f (x)

y

xc

Figure 9.1.1 Point c is a maximum point for f (x), and a minimum point for −f (x)

Sometimes, as with the quadratic optimization problems in Section 4.6, we can find the
maximum and minimum points of a function simply by studying the formula that defines
it. Here are two further examples:

E X A M P L E 9.1.1 Find possible maximum and minimum points for:

(a) f (x) = 3 − (x − 2)2 (b) g(x) = √
x − 5 − 100, for x ≥ 5

Solution:

(a) Because (x − 2)2 ≥ 0 for all x, it follows that f (x) ≤ 3 for all x. But f (x) = 3 when
(x − 2)2 = 0, which occurs at x = 2. Therefore, x = 2 is a maximum point for f .
Because f (x) → −∞ as x → ∞, it follows that f has no minimum.

(b) Since
√

x − 5 ≥ 0 for all x ≥ 5, it follows that g(x) ≥ −100 for all x ≥ 5. Since g(5) =
−100, we conclude that x = 5 is a minimum point. Since g(x) → ∞ as x → ∞, it
follows that g has no maximum.

Rarely can we find extreme points as simply as in Example 9.1.1. For more typical prob-
lems, an essential observation arises when f is a differentiable function that has a maximum
or minimum at an interior point c of its domain. In this important case, the tangent line to
its graph must be horizontal (parallel to the x-axis) at that point. That is, one must have
f ′(c) = 0. A point c at which f is differentiable and f ′(c) = 0 is called a critical, or station-
ary, point for f . Here is a precisely formulated theorem:
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T H E O R E M 9 . 1 . 1 ( N E C E S S A R Y F I R S T - O R D E R C O N D I T I O N )

Suppose that the function f is differentiable in an interval I and that c is an
interior point of I. If c is a maximum or minimum point for f in I, then it must
be a critical point for f , that is,

f ′(c) = 0 (9.1.3)

Proof: Suppose that f has a maximum at c. If the absolute value of d is sufficiently small,
then c + d ∈ I because c is an interior point of I. Because c is a maximum point, f (c +
d) − f (c) ≤ 0. So if d is sufficiently small and positive, then the Newton quotient satisfies
[f (c + d) − f (c)]/d ≤ 0. The limit of this quotient as d → 0+ is therefore less than or equal
to 0 as well. But because f ′(c) exists, this limit is equal to f ′(c), so f ′(c) ≤ 0. For small
negative values of d, on the other hand, we get [f (c + d) − f (c)]/d ≥ 0. The limit of this
expression as d → 0− is therefore greater than or equal to 0. So f ′(c) ≥ 0. We have now
proved both that f ′(c) ≤ 0 and that f ′(c) ≥ 0, so f ′(c) = 0.

The proof in the case when c is a minimum point is similar.

y

xa d c b

Figure 9.1.2
Two critical points

y

xa d b

Figure 9.1.3
No critical points

x0 x1 x2

y

xa b

Figure 9.1.4
No interior extrema

Before starting to explore systematically other properties of maxima and minima, we
provide three geometric examples to illustrate the role that critical points play in the theory
of optimization. Figure 9.1.2 shows the graph of a function f defined on a closed interval
[a, b] and having two critical points, c and d. At c, there is a maximum; at d, there is a
minimum.

Figure 9.1.3 shows the graph of a function with no critical points. There is a maximum at
the end point b and a minimum at the interior point d. At d, the function is not differentiable,
so Theorem 9.1.1 does not apply. At b, the left-hand derivative is not 0.

Condition (9.1.3) is known as a first-order condition, or FOC, as it refers to the function’s
first derivative. Theorem 9.1.1 implies that (9.1.3) is a necessary condition for a differen-
tiable function to have a maximum or minimum at an interior point in its domain. The
condition is far from sufficient. This is illustrated in Fig. 9.1.4, where f has three critical
points x0, x1, and x2, but none is an extremum. Indeed, at the end point a there is a minimum,
whereas at end point b there is a maximum.1 At the critical point x0 the function f has a

1 Or, it could be that b is not in the domain of the function, and that f (x) tends ∞ as x tends to b.
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“local maximum”, in the sense that its value at that point is higher than at all neighbouring
points. Similarly, at x1 it has a local “minimum”, whereas x2 is a critical point that is neither
a local minimum nor a local maximum. In fact, it happens to be an inflection point of the
kind we studied in Section 8.6.

Figure 9.1.2 illustrates what happens in most economic applications, where maximum
and minimum points usually will usually occur at critical interior points. But Figs 9.1.3
and 9.1.4 illustrate situations that can occur, even in economic problems. Actually, the
three figures represent important different aspects of single variable optimization problems.
Because such problems are so important in economics, we must go beyond vague geo-
metric insights. Instead, we need a firmer analytical framework solidly based on precisely
formulated mathematical results.

E X E R C I S E S F O R S E C T I O N 9 . 1

1. Use arguments similar to those in Example 9.1.1 to find the maximum or minimum points for the
following functions:

(a) f (x) = 8
3x2 + 4

(b) g(x) = 5(x + 2)4 − 3 (c) h(x) = 1
1 + x4

for x ∈ [−1, 1]

(d) F(x) = −2
2 + x2

(e) G(x) = 2 − √
1 − x (f) H(x) = 100 − e−x2

9.2 Simple Tests for Extreme Points
In many cases we can find maximum or minimum values for a function just by studying
the sign of its first derivative. Suppose f (x) is differentiable in an interval I and that it has
only one critical point at x = c. Suppose further that f ′(x) ≥ 0 for all x in I such that x ≤ c,
whereas f ′(x) ≤ 0 for all x in I such that x ≥ c. Then f (x) is increasing to the left of c and
decreasing to the right of c. This shows that f (x) ≤ f (c) for all x ≤ c, and f (x) ≤ f (c) for
all x ≥ c. It follows that x = c is a maximum point for f in I, as illustrated in Fig. 9.2.1.

y f (x)

c

I

y

x

Figure 9.2.1 c is a maximum point

y f (x)

I

d

y

x

Figure 9.2.2 d is a minimum point

In case the inequalities are strict, there is a stronger result. Indeed, suppose f ′(x) > 0
for all x in I such that x < c, whereas f ′(x) < 0 for all x in I such that x > c. Then f (x) is
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strictly increasing to the left of c and strictly decreasing to the right of c. It follows that
x = c is a strict maximum point for f in I, as in Fig. 9.2.1. With obvious modifications, a
similar result holds for strict minimum points, as illustrated by point d in Fig. 9.2.2.

To summarize:2

T H E O R E M 9 . 2 . 1 ( F I R S T - D E R I V A T I V E T E S T F O R E X T R E M A )

Suppose the function f (x) is differentiable in an interval I around the critical
point c.

(i) If f ′(x) ≥ 0 for x < c and f ′(x) ≤ 0 for x > c, then c is a maximum point
for f over I. Moreover, if both weak inequalities are strict for all x �= c in
I, then c is a strict maximum point.

(ii) If f ′(x) ≤ 0 for x < c and f ′(x) ≥ 0 for x > c, then c is a minimum point
for f over I. Moreover, if both weak inequalities are strict for all x �= c in
I, then c is a strict minimum point.

E X A M P L E 9.2.1 Consider the function f , defined for all x by

f (x) = e2x − 5ex + 4 = (ex − 1)(ex − 4)

1. Find the zeros of f (x) and compute f ′(x).
2. Find the intervals where f increases and decreases, and determine its possible extreme

points and values.

3. Examine limx→−∞ f (x), and sketch the graph of f .

Solution:

(a) f (x) = (ex − 1)(ex − 4) = 0 when ex = 1 and when ex = 4. Hence f (x) = 0 for x = 0
and for x = ln 4. Differentiating f (x) yields f ′(x) = 2e2x − 5ex.

(b) f ′(x) = 2e2x − 5ex = ex(2ex − 5). Thus f ′(x) = 0 for ex = 5/2 = 2.5; that is,
x = ln 2.5. Furthermore, f ′(x) < 0 for x < ln 2.5, and f ′(x) > 0 for x > ln 2.5.
So f (x) is strictly decreasing in the interval (−∞, ln 2.5), and strictly increas-
ing in (ln 2.5, ∞). Hence f (x) has a strict minimum at x = ln 2.5, with
f (ln 2.5) = (2.5 − 1)(2.5 − 4) = −2.25. Since f (x) → ∞ as x → ∞, there is
no maximum.

(c) As x → −∞, so ex tends to 0, and f (x) tends to 4. The graph is drawn in Fig. 9.2.3.
Note that the dashed line y = 4 is a horizontal asymptote for the graph as x → −∞.

E X A M P L E 9.2.2 Measured in milligrams per litre, the concentration of a drug in the bloodstream, t
hours after injection, is given by the formula c(t) = t/(t2 + 4), for t ≥ 0. Find the time and
amount of maximum concentration.

2 Many books in mathematics for economists instruct students always to check second-order condi-
tions like those we present in Theorem 9.6.2, even when this first-derivative test is much easier to
use.
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234 1 1

3

4

2

1

1

2

y

x

Figure 9.2.3 f (x) = e2x − 5ex + 4

3

2

1

1 1 2

y

x

Figure 9.2.4 f (x) = ex−1 − x

Solution: Differentiating the formula with respect to t yields

c′(t) = 1 · (t2 + 4) − t · 2t
(t2 + 4)2

= 4 − t2

(t2 + 4)2
= (2 + t)(2 − t)

(t2 + 4)2

For t ≥ 0, because the other terms are positive, the term 2 − t alone determines the sign of
the fraction. Indeed, if t < 2, then c′(t) > 0; whereas if t > 2, then c′(t) < 0. We conclude
that t = 2 is a strict maximum point. Thus, the concentration of the drug is highest two hours
after injection. Because c(2) = 1/4, the (strict) maximum concentration is 0.25 milligrams
per litre.

Extreme Points for Concave and Convex Functions
Let f be a concave function defined on an interval I. Recall part (i) of Theorem 8.4.1,
stating that if f is differentiable at a point a in its domain, then its derivative f ′(a) at a
is a supergradient. So in case c is a critical point in the interior of I, the zero derivative
f ′(c) is a supergradient. Then the supergradient inequality implies that for all x in I one
has

f (x) − f (c) ≤ f ′(c)(x − c) = 0 · (x − c) = 0

It follows that c is a maximum point of f . Of course, part (ii) of Theorem 8.4.1 implies
a similar result for convex functions, showing that any interior critical point must be a
minimum point. To summarize:

T H E O R E M 9 . 2 . 2 ( E X T R E M A O F C O N C A V E A N D C O N V E X F U N C T I O N S )

Suppose that f is a function defined in an interval I and that c is a critical point
for f in the interior of I.

(i) If f is concave, then c is a maximum point for f in I.

(ii) If f is convex, then c is a minimum point for f in I.
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We emphasize that these results hold even when f is not differentiable at points of I other
than the critical point.

E X A M P L E 9.2.3 Consider the function f defined for all x by f (x) = ex−1 − x. Show that f is convex
and find its minimum point. Sketch the graph.

Solution: Here f ′(x) = ex−1 − 1 and f ′′(x) = ex−1 > 0, so f is convex. Looking for critical
points, note that f ′(x) = ex−1 − 1 = 0 if and only if x = 1. From Theorem 9.2.2, it follows
that x = 1 minimizes f . See Fig. 9.2.4 for the graph of f , which confirms the result.

The following uniqueness result is an important property of extreme points for a function
which is either strictly concave or strictly convex.

T H E O R E M 9 . 2 . 3 ( E X T R E M A O F S T R I C T L Y C O N C A V E A N D
S T R I C T L Y C O N V E X F U N C T I O N S )

Suppose that f is a function defined in an interval I.

(i) If f is strictly concave, then any maximum point for f in I is unique.

(ii) If f is strictly convex, then any minimum point for f in I is unique.

Proof: Let x∗ be any maximum point for f in I, and let x be any other point in I. If f is
strictly concave, then

f (x∗) ≥ f ( 1
2 x + 1

2 x∗) > 1
2 f (x) + 1

2 f (x∗)

It follows that f (x∗) > f (x), so x cannot be a maximum point. When f is strictly convex and
x∗ is a minimum point, simply reverse the inequalities.

E X E R C I S E S F O R S E C T I O N 9 . 2

1. Let y denote the weekly average quantity of pork produced in Chicago during 1948, in millions
of pounds, and let x be the total weekly work effort, in thousands of hours. A study estimated the
relation y = −2.05 + 1.06x − 0.04x2. Determine the value of x that maximizes y by studying
the sign variation of y′.

2.SM Find the derivative of the function h, defined for all x by the formula h(x) = 8x/(3x2 + 4). Note
that h(x) → 0 as x → ±∞. Use the sign variation of h′(x) to find the extreme points of h(x).

3. The height of a flowering plant after t months is given by h(t) = √
t − 1

2 t, for t in [0, 3]. At what
time is the plant at its tallest?

4. Show that

f (x) = 2x2

x4 + 1
⇒ f ′(x) = 4x(1 + x2)(1 + x)(1 − x)

(x4 + 1)2

and find the maximum value of f on [0, ∞).

5. Find possible extreme points for g(x) = x3 ln x, for x ∈ (0, ∞).
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6. Find possible extreme points for f (x) = e3x − 6ex, for x ∈ (−∞, ∞).

7. Find the maximum of y = x2e−x on [0, 4].

8.SM Use Theorem 9.2.2 to find the values of x that maximize/minimize the functions given by the
following formulas:

(a) y = ex + e−2x (b) y = 9 − (x − a)2 − 2(x − b)2 (c) y = ln x − 5x, for x > 0

9. Consider n numbers a1, a2, . . . , an. Find the number --x which gives the best approximation to
these numbers, in the sense of minimizing

d(x) = (
x − a1

)2 + (
x − a2

)2 + · · · + (
x − an

)2

10.SM [HARDER] After the North Sea flood catastrophe in 1953, the Dutch government initiated a project
to determine the optimal height of the dykes. One of the models involved finding the value of x
minimizing f (x) = I0 + kx + Ae−αx, for x ≥ 0. Here x denotes the extra height in metres by
which the dykes should be raised, whereas I0 + kx is the construction cost, and Ae−αx is an
estimate of the expected loss due to a potential flood. The parameters I0, k, A, and α are all
positive constants.

(a) Suppose that Aα > k and find x0 > 0 that minimizes f (x).

(b) The constant A is defined as A = p0V(1 + 100/δ), where p0 is the probability that the dykes
will be flooded if they are not rebuilt, V is an estimate of the cost of flood damage, and δ is
an interest rate. Show that

x0 = 1
α

ln
[

αp0V
k

(
1 + 100

δ

)]
Examine what happens to x0 when any one of the variables p0, V , δ, or k increases. Comment
on the reasonableness of the results.3

9.3 Economic Examples
This section presents some other interesting examples of economic optimization problems.

E X A M P L E 9.3.1 (Econometrics: Linear Regression I). Empirical economics is concerned with
analysing data in order to try to discern some pattern that helps in understanding the past,
and possibly in predicting the future. For example, price and quantity data for a particular
commodity such as natural gas may be used in order to try to estimate a demand function.
This might then be used to predict how demand will respond to future price changes. The
most commonly used technique for estimating such a function is linear regression.

Suppose it is thought that variable y depends upon variable x. Suppose that we have
observations (xt, yt) of both variables at times t = 1, 2, . . . , T . For the sake of simplicity,

3 This problem is discussed in D. van Dantzig, “Economic Decision Problems for Flood Prevention”.
Econometrica, 24 (1956): 276–287.
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assume that both variables have zero arithmetical mean.4 In symbols, this means
that

μx = 1
T

T∑
t=1

xt = 0 and μy = 1
T

T∑
t=1

yt = 0

x

y

y = βx
(xt ,yt )

(xt ,βxt )

et

Figure 9.3.1 Linear regression

Then the technique of linear regression seeks to fit a linear function y = βx to the data,
as indicated in Fig. 9.3.1. Of course, an exact fit is possible only if there exista a number β

for which yt = βxt for t = 1, 2, . . . , T . This is rarely the case. Generally, however β may
be chosen, one has instead

yt = βxt + et, t = 1, 2, . . . , T

where et is an error or disturbance term. Obviously, one hopes that the errors will be small,
on average. So the parameter β is chosen to make the errors as “small as possible”, some-
how. One idea would be to make the sum

∑T
t=1(yt − βxt) equal to zero. However, in this

case, large positive discrepancies would cancel large negative discrepancies. Indeed, the
sum of errors could be zero even though the line is very far from giving a good fit. We must
somehow prevent large positive errors from cancelling large negative errors. Usually, this
is done by minimizing the quadratic “loss” function

L(β) = 1
T

T∑
t=1

e2
t = 1

T

T∑
t=1

(
yt − βxt

)2
(∗)

which equals the mean (or average) square error. Expanding the square gives

L(β) = 1
T

T∑
t=1

(
y2

t − 2βxtyt + β2x2
t

)
(∗∗)

This is a quadratic function of β.

4 This assumption is restrictive if we think of x and y as primitive, raw data. On the other hand,
an analyst may think that deviations of, say, the interest rate from its historical average can cause
analogous deviations in the unemployment rate. In that case, the means of the raw data are sub-
tracted from each observation. Then it follows from Example 2.10.2 that the resulting demeaned
data satisfy the assumption.
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We shall show how to derive the ordinary least-squares estimates of β. To do so it helps
to introduce some standard notation. Write

σxx = 1
T

T∑
t=1

x2
t , σyy = 1

T

T∑
t=1

y2
t , and σxy = 1

T

T∑
t=1

xtyt

Then σxx and σyy denote the statistical variances of the corresponding two variables x and y,
whereas σxy denotes their covariance. In what follows, we shall assume that the xt are not
all equal, so that σxx > 0. Then expression (∗∗) for L(β) becomes

L(β) = β2σxx − 2βσxy + σyy

The first-order condition (9.1.3) for a minimum of L(β) takes the form

L′(β) = 2βσxx − 2σxy = 0

So the unique critical point of L(β) is β̂ = σxy/σxx. Furthermore, L′′(β) = 2σxx > 0, so
Eq. (8.5.4) tells us that L is convex. It follows from Theorem 9.2.2 that the critical point β̂

minimizes L(β). The problem is then solved: The straight line through the origin that best
fits the observations (x1, y1), (x2, y2), . . . , (xT , yT), in the sense of minimizing the mean
square error given by (∗), is y = β̂x where β̂ = σxy/σxx.

E X A M P L E 9.3.2 Suppose Y(N) bushels of wheat are harvested per acre of land when N pounds of
fertilizer per acre are used. If p is the dollar price per bushel of wheat and q is the dollar
price per pound of fertilizer, then for each N ≥ 0 profit in dollars per acre is

π(N) = pY(N) − qN

Suppose there exists N∗ such that π ′(N) ≥ 0 for N ≤ N∗, whereas π ′(N) ≤ 0 for N ≥ N∗.
Then N∗ maximizes profits, and π ′(N∗) = 0. That is, pY ′(N∗) − q = 0, so

pY ′(N∗) = q (∗)

Let us give an economic interpretation of this condition. Suppose N∗ units of fertilizer
are used and we contemplate increasing N∗ by one unit. What do we gain? If N∗ increases by
one unit, then Y(N∗ + 1) − Y(N∗) more bushels are produced. Now Y(N∗ + 1) − Y(N∗) ≈
Y ′(N∗). For each of these bushels, we get p dollars, so by increasing N∗ by one unit, we
gain approximately pY ′(N∗) dollars. On the other hand, by increasing N∗ by one unit, we
lose q dollars, because this is the cost of one unit of fertilizer. Hence, we can interpret (∗)

as follows: In order to maximize profits, you should increase the amount of fertilizer to the
level N∗ at which an additional pound of fertilizer equates the changes in your gains and
losses from the extra pound.

(a) In an (unrealistic) example, suppose that Y(N) = √
N, p = 10, and q = 0.5. Find the

amount of fertilizer which maximizes profits in this case.

(b) An agricultural study in Iowa estimated the yield function Y(N) for the year 1952 as

Y(N) = −13.62 + 0.984N − 0.05N1.5

Suppose that the price of wheat is $1.40 per bushel, and that the price of fertilizer is
$0.18 per pound. Find the amount of fertilizer that maximizes profits.
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Solution:

(a) The profit function is

π(N) = PY(N) − qN = 10N1/2 − 0.5N

for N ≥ 0. Then π ′(N) = 5N−1/2 − 0.5. We see that π ′(N∗) = 0 when (N∗)−1/2 = 0.1,
hence N∗ = 100. Moreover, it follows that π ′(N) ≥ 0 when N ≤ 100 and π ′(N) ≤ 0
when N ≥ 100. We conclude that N∗ = 100 maximizes profits. See Fig. 9.3.2.

(b) In this case, the profit function and its derivative are

π(N) = 1.4(−13.62 + 0.984N − 0.05N1.5) − 0.18N

= −19.068 + 1.1976N − 0.07N1.5

π ′(N) = 1.1976 − 0.07 · 1.5N0.5 = 1.1976 − 0.105
√

N

Hence π ′(N∗) = 0 when 0.105
√

N∗ = 1.1976. So
√

N∗ = 1.1976 ÷ 0.105 ≈ 11.4,
which implies that N∗ ≈ (11.4)2 ≈ 130. By studying the expression for π ′(N), we
see that π ′(N) is positive to the left of N∗ and negative to the right of N∗. Hence,
N∗ ≈ 130 maximizes profits. The graph of π(N) is shown in Fig. 9.3.3.

π (N)

60

40

20

N100 200 300 400

Figure 9.3.2 Example 9.3.2(a)

20

40

20

100 200

π (N)

NN*

Figure 9.3.3 Example 9.3.2(b)

E X A M P L E 9.3.3 Suppose that the total cost of producing Q > 0 units of a commodity is C(Q) =
aQ2 + bQ + c, where a, b, and c are positive constants.

(a) Find the value of Q that minimizes the average cost defined by A(Q) = C(Q)/Q in the
special case when C(Q) = 2Q2 + 10Q + 32.

(b) Show that in the general case, the average cost function has a minimum at Q∗ = √
c/a.

In the same coordinate system, draw the graphs of the average cost, the marginal cost,
and the straight line P = aQ + b.

Solution:

(a) Note that A′(Q) = 2 − 32/Q2 and A′′(Q) = 64/Q3. The only critical point where
A′(Q) = 0 occurs when Q = 4. Since A′′(Q) > 0 for all Q > 0, the function A(Q) is
convex. It follows that Q = 4 is a minimum point.
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(b) Here A′(Q) = a − c/Q2 and A′′(Q) = 2c/Q3. Since A′′(Q) > 0 for all Q > 0, the func-
tion A(Q) is convex. Because A′(Q) = 0 for Q∗ = √

c/a, this is a minimum point. The
three graphs are drawn in Fig. 9.3.4. Note that at the minimum point Q∗, marginal cost is
equal to average cost. This is no coincidence, because it is true in general that A′(Q) = 0
if and only if C′(Q) = A(Q).5

b

P aQ b
(asymptote)

C (Q)
Q

P

QQ* c a

2 ac b

C (Q)   2aQ b

Figure 9.3.4 Average cost function in Example 9.3.3

The following example is typical of how economists use implicit differentiation to show
how a change in a parameter affects the solution to an optimization problem.

E X A M P L E 9.3.4 A monopolist is faced with the inverse demand function P(Q) denoting the price per
unit that buyers pay when output is Q. The monopolist has a constant average cost k per
unit produced.

(a) Find the profit function π(Q). Then verify that the first-order condition for maximal
profit at Q = Q∗(k) > 0 is

P′(Q∗(k))Q∗(k) + P(Q∗(k)) = k (∗)

(b) By implicit differentiation of (∗), find a formula for the derivative of the monopolist’s
optimal output Q∗(k) w.r.t. k.

(c) Express the monopolist’s maximal profit as a function π∗(k) of k. How does the optimal
profit react to a change in k?

Solution:

(a) The profit function is π(Q) = P(Q)Q − kQ, so π ′(Q) = P′(Q)Q + P(Q) − k. In order
that Q = Q∗(k) > 0 should maximize π(Q), one must have the first-order condition
π ′(Q∗(k)) = 0. This is equivalent to (∗).

(b) Assuming that equation (∗) defines Q∗(k) as a differentiable function of k, and after
dropping the argument k from Q∗(k) wherever it is convenient, we obtain

5 See Example 6.7.7. The minimum average cost is A(Q∗) = a
√

c/a + b + c/
√

c/a = √
ac + b +√

ac = 2
√

ac + b.
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P′′(Q∗)
dQ∗

dk
Q∗ + P′(Q∗)

dQ∗

dk
+ P′(Q∗)

dQ∗

dk
= 1

Solving for dQ∗/dk gives

dQ∗

dk
= 1

P′′(Q∗)Q∗ + 2P′(Q∗)

(c) Optimal profit π∗(k) occurs where Q = Q∗(k), and so π∗(k) = P(Q∗(k))Q∗(k) −
kQ∗(k). Differentiating each side of this equation w.r.t. k gives

dπ∗

dk
= P′(Q∗)

dQ∗

dk
Q∗ + P(Q∗)

dQ∗

dk
− Q∗ − k

dQ∗

dk

Here the three terms containing dQ∗/dk all cancel because of the first-order condi-
tion (∗). So dπ∗/dk = −Q∗. Thus, if the cost increases by one unit, the optimal profit
will decrease by approximately Q∗, the optimal output level.

E X E R C I S E S F O R S E C T I O N 9 . 3

1. (a) A firm produces Q = 2
√

L units of a commodity when it employs L units of labour, its only
input. Suppose that the price obtained per unit of output is €160, and the price per unit of
labour is €40. What value of L maximizes its profit π(L)?

(b) A firm produces Q = f (L) units of a commodity when it employs L units of labour, its only
input. Assume that f ′(L) > 0 and f ′′(L) < 0. Suppose the price obtained per unit of output is
1 and the price per unit of labour is w. What is the first-order condition for maximizing profits
at L = L∗?

(c) By implicitly differentiating the first-order condition in (b) w.r.t. w, find how L∗ changes when
w changes.

2.SM In Example 9.3.4, suppose that P(Q) = a − Q, and assume that 0 < k < a.

(a) Find the profit maximizing output Q∗ and the associated monopoly profit π(Q∗).

(b) How does the monopoly profit react to changes in k? Find dπ(Q∗)/dk.

(c) The government argues that the monopoly produces too little. It wants to induce the monop-
olist to produce Q̂ = a − k units by granting a subsidy of s per unit of output. Calculate the
subsidy s required to reach the target.

3. A square tin plate whose edges are 18 cm long is to be made into an open square box x cm deep.
This is to be done by cutting out equally sized squares of width x in each corner, then folding over
the edges. Draw a figure, and show that the volume of the box, for x ∈ [0, 9], is:

V(x) = x(18 − 2x)2 = 4x3 − 72x2 + 324x

Also find the maximum point of V in [0, 9].

4. In one economic model the proportion of families whose income is no more than x, and who have
a home computer, is given by p(x) = a + k(1 − e−cx), where a, k, and c are positive constants.
Determine p′(x) and p′′(x). Does p(x) have a maximum? Sketch the graph of p.
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5. Suppose that the tax T a person pays on income w is given by T = a(bw + c)p + kw, where a, b,
c, and k are positive constants, and p > 1. Then the average tax rate is

--T(w) = T
w

= a
(bw + c)p

w
+ k

At what level of income does a taxpayer face the minimum average tax rate?

9.4 The Extreme and Mean Value
Theorems
The main result used so far in this chapter to locate extreme points is the first-order condi-
tion specified in Theorem 9.2.1. This requires the function to be steadily increasing on one
side of the extreme point and steadily decreasing on the other. Yet many functions whose
derivative violates these conditions may still have a maximum or minimum. This section
shows how to locate possible extreme points for an important class of such functions.

Example 9.2.3 shows that it is relatively easy to find functions that have no extreme
points. But an even simpler case is the function f (x) = x, defined over the whole real line.
The following theorem gives important sufficient conditions for extreme points to exist.

T H E O R E M 9 . 4 . 1 ( T H E E X T R E M E V A L U E T H E O R E M )

Suppose that f is a continuous function defined over a closed and bounded
interval [a, b]. Then there exists a point d in [a, b] where f has a minimum, and
a point c in [a, b] where it has a maximum—that is, where

f (d) ≤ f (x) ≤ f (c) for all x in [a, b]

One of the most common misunderstandings of the extreme value theorem is illustrated
by the following statement from a student’s exam paper: “The function is continuous, but
since it is not defined on a closed, bounded interval, the extreme value theorem shows
that there is no maximum.” The misunderstanding here is that, although the conditions of
the theorem are sufficient, they certainly are not necessary for the existence of an extreme
point. In Exercise 9, you will study a function defined in an interval that is neither closed
nor bounded, and moreover the function is not even continuous. Even so, it has both a
maximum and a minimum.

In general, however, existence of extreme points cannot be guaranteed unless the
assumptions of the theorem are satisfied. Indeed, Figures 9.4.1–9.4.3 display graphs
of three functions that satisfy two of the three assumptions of Theorem 9.4.1, but not
the third. In each case, the function has no maximum, even though it does have a
minimum.
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x

y

Figure 9.4.1
The domain is not closed

x

y

Figure 9.4.2
The domain is unbounded

x

y

Figure 9.4.3
A discontinuous function

The proof of the extreme value theorem is somewhat involved.6 Yet the result is not
hard to believe. Imagine, for example, a mountainous stage of a cycle race like the Tour
de France. Since roads avoid going over cliffs, the height of the road above sea level is a
continuous function of the distance travelled, as illustrated in Fig. 9.4.4. As the figure also
shows, the stage must take the cyclist over some highest point P, as well as through a lowest
point Q. Of course, these points could also be at the start or finish of the ride.

y
P

Q

Figure 9.4.4 Altitude as a function of distance

How to Search for Maxima and Minima
Suppose we know that a function f has a maximum and/or a minimum in some bounded
interval I. The optimum must occur either at an interior point of I, or else at an end point.
If it occurs at an interior point of I at which f is differentiable, then the derivative f ′ is zero
at that point. An additional possibility is that the optimum occurs at a point where f is not
differentiable. To summarize, every extreme point must belong to one of the following three
pairwise disjoint sets:

(a) interior points x in I where f ′(x) = 0;

(b) end points of I, if they belong to I;

(c) interior points x in I where f ′(x) does not exist.

Points satisfying any one of these three conditions will be called candidate extreme
points. Whether they are actual extreme points must be decided by carefully comparing

6 The original proof was given by German mathematician Karl Weierstrass (1815–1897). Essentially,
the argument is that if a continuous function is defined on a closed and bounded interval, its range
is also a closed and bounded interval. The end points of the range are precisely the extreme values
of the function.
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relevant function values, as explained below. A typical example showing that a minimum
can occur at a point of type (c) is shown in Fig. 9.1.3. However, most functions that
economists study are differentiable everywhere, so the following recipe covers most
problems of interest.

F I N D I N G T H E E X T R E M A O F F U N C T I O N S

Let f be a differentiable function defined on a closed, bounded interval [a, b].
In order to find its maximum and minimum values:

(i) Find all critical points of f in (a, b), which, by definition, are the points x
in (a, b) that satisfy the FOC f ′(x) = 0.

(ii) Evaluate f at the end points a and b of the interval, and also at all critical
points.

(iii) The largest function value found in (ii) is the maximum value, and the
smallest function value is the minimum value of f in [a, b].

A differentiable function is continuous, so the extreme value theorem assures us that
maximum and minimum points do exist, provided that its domain is closed and bounded.
Following the procedure just given, we can, in principle, find these extreme points.

E X A M P L E 9.4.1 Find the maximum and minimum values, for x in [0, 3], of

f (x) = 3x2 − 6x + 5

Solution: The function is differentiable everywhere, and f ′(x) = 6x − 6 = 6(x − 1). Hence
x = 1 is the only critical point. The candidate extreme points are x = 1 as well as the end
points 0 and 3. We calculate the value of f at these three points. The results are f (1) = 2,
f (0) = 5, and f (3) = 14. We conclude that the maximum value is 14, obtained at the end
point x = 3, and the minimum value is 2, obtained at the interior point x = 1.

E X A M P L E 9.4.2 Find the maximum and minimum values, for x in [−1, 3], of

f (x) = 1
4 x4 − 5

6 x3 + 1
2 x2 − 1

Solution: The function is differentiable everywhere, and

f ′(x) = x3 − 5
2 x2 + x = x

(
x2 − 5

2 x + 1
)

Solving the quadratic equation x2 − 5
2 x + 1 = 0 gives us the two roots x = 1

2 and x = 2.
Thus f ′(x) = 0 for x = 0, x = 1

2 , and x = 2. These three points, together with the ends of
the interval at x = −1 and x = 3, constitute the five candidate extreme points. We calculate

f (−1) = 7/12, f (0) = −1, f ( 1
2 ) = −185/192, f (2) = −5/3, and f (3) = 5/4

Thus, the maximum value of f is 5/4 at x = 3, and the minimum value is −5/3 at x = 2.
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Note that we found the maximum and minimum values without any need either to study
the sign variation of f ′(x), or use other tests such as second-order conditions.

In Examples 9.4.1 and 9.4.2 one could easily find all the solutions to the equation
f ′(x) = 0. In many case, however, finding all those solutions might constitute a problem
that is formidable, even insuperable. Consider, for instance, the function defined for all
x ∈ [−1, 5] by

f (x) = x26 − 32x23 − 11x5 − 2x3 − x + 28

As a polynomial, the function is continuous. So it does have a maximum and a minimum
in [−1, 5]. Yet it is impossible to find any exact solution to the equation f ′(x) = 0, which
involves a polynomial of degree 25.

Difficulties like this often arise in practical optimization problems. In fact, only in very
special cases can the equation f ′(x) = 0 be solved exactly. Fortunately, there are stan-
dard numerical computer algorithms that in most cases will find points arbitrarily close
to the actual solutions of such equations. Some are based on Newton’s method discussed
in Section 7.10. Even better, some algorithms are specifically designed to find the extreme
points of a function.

The Mean Value Theorem
This subsection deals with the mean value theorem, which is a principal tool that allows
results in calculus to be demonstrated precisely. The subsection is a bit more advanced than
the rest of the book, so may be considered optional.

y f (x)

b a

f (b) f (a)

y

xa

A

B

bx*

Figure 9.4.5 The mean value theorem

Consider a function f which is defined and continuous on a closed interval [a, b], as
well as differentiable in the open interval (a, b). As illustrated in Fig. 9.4.5, the graph of f
joins the end points A and B by a connected curve having a tangent at each point of (a, b).
It seems geometrically plausible that there is at least one value x∗ of x between a and b at
which the tangent to the graph should be parallel to the line AB, as shown in Fig. 9.4.5. The
line AB has slope [f (b) − f (a)]/(b − a). So the condition for the tangent line at (x∗, f (x∗))
to be parallel to the line AB is that f ′(x∗) = [f (b) − f (a)]/(b − a). In fact, x∗ can be chosen
so that the vertical distance between the graph of f and AB is as large as possible. The proof
that follows is based on this fact.
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T H E O R E M 9 . 4 . 2 ( T H E M E A N V A L U E T H E O R E M )

Suppose that f is continuous in the closed and bounded interval [a, b], as well
as differentiable in the open interval (a, b). Then there exists at least one point
x∗ in (a, b) such that

f ′(x∗) = f (b) − f (a)

b − a
(9.4.1)

Proof: The point–point formula for the straight line joining A to B in Fig. 9.4.5 has the
equation

y − f (a) = f (b) − f (a)

b − a
(x − a)

The vertical distance between the graph of f and the line AB is therefore given by the func-
tion

g(x) = f (x) − f (a) − f (b) − f (a)

b − a
(x − a)

Obviously, g(a) = g(b) = 0. Note that

g′(x) = f ′(x) − f (b) − f (a)

b − a
(∗)

The function g(x) obviously inherits from f the properties of being continuous in [a, b] and
differentiable in (a, b). By the extreme value theorem, g(x) has a maximum and a minimum
over [a, b]. Because g(a) = g(b), at least one of these extreme points x∗ must lie in (a, b). (If
g(x) ≡ 0 throughout [a, b], then all points in [a, b] are extreme points for g.) Theorem 9.1.1
tells us that g′(x∗) = 0, so the conclusion follows from (∗).

E X A M P L E 9.4.3 Test the mean value theorem on the function f (x) = x3 − x, defined over the interval
[0, 2].

Solution: We find that [f (2) − f (0)]/(2 − 0) = 3 and f ′(x) = 3x2 − 1. The equation
f ′(x) = 3 is equivalent to 3x2 = 4, which has the two solutions x = ±2

√
3/3. The positive

root x∗ = 2
√

3/3 belongs to (0, 2). At this x∗ one has

f ′(x∗) = f (2) − f (0)

2 − 0

This confirms the mean value theorem in this case.

Two Implications of the Mean Value Theorem
This subsection contains formal proofs, and can be regarded as optional.

The mean value theorem can be used to provide the promised proofs of Eqs (6.3.1),
(6.3.2), and (6.3.3). Indeed, recall from Section 6.3 that a function f is increasing in I if
f (x2) ≥ f (x1) whenever x2 > x1 with x1 and x2 in I.
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First, the definition of derivative makes it evident that if f (x) is increasing and differen-
tiable, then f ′(x) ≥ 0. To prove the converse, suppose that the function f is continuous in
the interval I and that, for all x in the interior of I, the derivative f ′(x) exists and satisfies
f ′(x) ≥ 0. Let x1 and x2 be two arbitrary numbers in I satisfying x2 > x1. According to the
mean value theorem, there exists a number x∗ in (x1, x2) such that

f (x2) − f (x1) = f ′(x∗)(x2 − x1) (9.4.2)

Because x2 > x1 and f ′(x∗) ≥ 0, it follows that f (x2) ≥ f (x1), so f (x) is increasing. This
proves statement (6.3.1). The equivalence in (6.3.2) can be proved by considering the con-
dition for −f to be increasing. Finally, (6.3.3) involves both f and −f being increasing.7

We can also use the mean value theorem to prove Lagrange’s remainder formula:

Proof of (7.6.2): We start by proving that the formula is correct for n = 1, in which case
it reduces to Eq. (7.6.4). For x �= 0, define the function S(x) implicitly by the equation

f (x) = f (0) + f ′(0)x + 1
2 S(x)x2 (∗)

To establish Eq. (7.6.4), we prove that there is a c strictly between 0 and x such that S(x) =
f ′′(c). Indeed, keep x fixed and define the function g, for all t between 0 and x, by

g(t) = f (x) − [f (t) + f ′(t)(x − t) + 1
2 S(x)(x − t)2] (∗∗)

Then definitions (∗) and (∗∗) imply that

g(0) = f (x) − [f (0) + f ′(0)x + 1
2 S(x)x2] = 0 and g(x) = 0

So, by the mean value theorem, there exists a number c strictly between 0 and x such that
g′(c) = 0. Differentiating (∗∗) with respect to t while keeping x fixed, we get

g′(t) = −f ′(t) + f ′(t) − f ′′(t)(x − t) + S(x)(x − t)

Putting t = c gives g′(c) = −f ′′(c)(x − c) + S(x)(x − c). Because g′(c) = 0 and c �= x, it
follows that S(x) = f ′′(c). Hence, we have proved (7.6.4).

The proof for n > 1 is based on the same idea, generalizing (∗) and (∗∗) in the obvious
way.

E X E R C I S E S F O R S E C T I O N 9 . 4

1. Given the function defined by f (x) = 4x2 − 40x + 80 for x ∈ [0, 8], find its maximum and mini-
mum points, and draw its graph.

2.SM Find the maximum and minimum points of each function over the indicated interval:

(a) f (x) = −2x − 1 over [0, 3] (b) f (x) = x3 − 3x + 8 over [−1, 2]

(c) f (x) = x2 + 1
x

over [ 1
2 , 2] (d) f (x) = x5 − 5x3 over [−1,

√
5 ]

(e) f (x) = x3 − 4500x2 + 6 · 106x over [0, 3000]

7 Alternatively it follows easily by using Eq. (9.4.2).
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3. Suppose the function g is defined for all x in [−1, 2] by g(x) = 1
5 (ex2 + e2−x2

). Calculate g′(x)
and find the extreme points of g.

4. A sports club plans to charter a plane, and to charge members who buy seats a commission of
10% of the price they pay. That price is arranged by the charter company. The standard fare for
each passenger is $800. For each additional person above 60, all travellers (including the first 60)
get a discount of $10. The plane can take at most 80 passengers.

(a) What commission does the club earn when there are 61, 70, 80, and 60 + x passengers?

(b) What number of passengers maximizes the sports club’s total commission for this trip?

5. Let the function f be defined for x in [1, e3] by f (x) = (ln x)3 − 2(ln x)2 + ln x.

(a) Compute f (e1/3), f (e2), and f (e3). Find the zeros of f (x).

(b) Find the extreme points of f .

(c) Show that f defined over [e, e3] has an inverse function g and determine g′(2).

6.SM [HARDER] For each of the following functions, if we denote the specified interval by [a, b], deter-
mine all numbers x∗ in [a, b] such that f ′(x∗) = [f (b) − f (a)]/(b − a):

(a) f (x) = x2, in [1, 2] (b) f (x) = √
1 − x2, in [0, 1]

(c) f (x) = 2/x, in [2, 6] (d) f (x) = √
9 + x2, in [0, 4]

7. [HARDER] You are supposed to sail from point A in a lake to point B. What does the mean value
theorem have to say about your trip?

8. [HARDER] Consider the function f defined for all x in [−1, 1] by

f (x) =
{

x, if x ∈ (−1, 1)

0, if x = −1 or x = 1

Is this function continuous? Does it attain a maximum or minimum?

9. [HARDER] Let f be defined for all x in (0, ∞) by

f (x) =
{

x + 1, if x ∈ (0, 1]

1, if x ∈ (1, ∞)

Prove that f attains maximum and minimum values. Verify that, nevertheless, none of the condi-
tions in the extreme value theorem is satisfied.

9.5 Further Economic Examples

E X A M P L E 9.5.1 A firm that produces a single commodity wants to maximize its profit. Let R(Q)

denote the total revenue generated in a certain period by producing and selling Q units. Let
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C(Q) denote the associated total dollar production cost. Then the profit obtained as a result
of producing and selling Q units is

π(Q) = R(Q) − C(Q)

Because of technical limitations, suppose there is a maximum quantity
--
Q that can be pro-

duced by the firm in a given period. Assume too that the functions R and C are continuous
in the interval [0,

--
Q], and differentiable in (0,

--
Q). Then the profit function π is also continu-

ous on [0,
--
Q], so does have a maximum value. In special cases, that maximum might occur

at Q = 0 or at Q = --
Q. If not, it has an “interior maximum” where the production level Q∗

satisfies π ′(Q∗) = 0, and so
R′(Q∗) = C′(Q∗) (9.5.1)

Hence, production should be adjusted to a point where the marginal revenue is equal to the
marginal cost.

Consider the “competitive” case when the market determines the firm’s price p per unit
sold, over which it has no control. Then R(Q) = pQ, and (9.5.1) takes the form

p = C′(Q∗) (9.5.2)

Thus, in this case, assuming an interior maximum, production should be adjusted to a level
at which the marginal cost is equal to the price per unit of the commodity.

It is quite possible that the firm has functions R(Q) and C(Q) for which Eq. (9.5.1) has
several solutions. If so, the maximum profit occurs at that point Q∗ among the solutions of
(9.5.1) which gives the highest value of π(Q∗).

Equation (9.5.1) has an economic interpretation rather like that for the corre-
sponding optimality condition in Example 9.3.2. Indeed, suppose we contemplate
increasing production from the level Q∗ by one unit. This would increase revenue
by the amount R(Q∗ + 1) − R(Q∗) ≈ R′(Q∗). It would increase cost by the amount
C(Q∗ + 1) − C(Q∗) ≈ C′(Q∗). Equation (9.5.1) equates R′(Q∗) and C′(Q∗), so that the
approximate extra revenue earned by selling one extra unit is offset by the approximate
extra cost of producing that unit.

E X A M P L E 9.5.2 Suppose that the firm in the preceding example obtains a fixed price p = 121 per unit,
and that the cost function is C(Q) = 0.02Q3 − 3Q2 + 175Q + 500. The firm can produce
at most

--
Q = 110 units.

(a) Make a table of the values of the three functions R(Q) = 121Q, C(Q), and π(Q) =
R(Q) − C(Q), as Q takes the values 0, 10, 30, 50, 70, 90, and 110. Draw the graphs of
R(Q) and C(Q) in the same coordinate system.

(b) Use the graphs in (a) to find approximate answer to the following questions:

(i) How many units must be produced in order for the firm to make a profit?

(ii) How many units must be produced for the profit to be $2 000?

(iii) Which production level maximizes profits?

(c) Compute an exact answer to question (iii) in part (b).

(d) Suppose the firm produces at its full capacity of 110 units. What is the smallest price
per unit the firm must charge in order not to lose money?
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Solution:

(a) We form the following table:

Q 0 10 30 50 70 90 110
R(Q) = 121Q 0 1 210 3 630 6 050 8 470 10 890 13 310

C(Q) 500 1 970 3 590 4 250 4 910 6 530 10 070
π(Q) = R(Q) − C(Q) −500 −760 40 1 800 3 560 4 360 3 240

The graphs of R(Q) and C(Q) are shown in Fig. 9.5.1.

6000

8000

10 000

12 000

4000

2000

10 50 100

Maximum profit

Profit $2000

R(Q),C (Q)

C (Q)

R(Q)

Q

Figure 9.5.1 Revenue, cost, and profit

(b) (i) The firm earns a profit if π(Q) > 0, that is when R(Q) > C(Q). The figure suggests
that R(Q) > C(Q) when Q is larger than about 30.

(ii) We must find where the “gap” between R(Q) and C(Q) is $2 000. This seems to
occur when Q ≈ 52.

(iii) The profit is largest when the gap between R(Q) and C(Q) is largest. This seems
to occur when Q ≈ 90.

(c) We insert the formula for C′(Q) into Eq. (9.5.2) with P = 121. The result is 121 =
0.06Q2 − 6Q + 175. Solving this quadratic equation yields Q = 10 and Q = 90. We
know that π(Q) must have a maximum point in [0, 110]. Including the two end points,
the four candidate maximum points are Q = 0, Q = 10, Q = 90, and Q = 110. Using
the table from part (a), we see that the associated profits from these quantities are:

π(0) = −500, π(10) = −760, π(90) = 4360, π(110) = 3240

The firm therefore attains maximum profit by producing 90 units.

(d) If the price per unit is p, the profit from producing 110 units is

π(110) = p · 110 − C(110) = 110p − 10 070



�

� �

�

S E C T I O N 9 . 5 / F U R T H E R E C O N O M I C E X A M P L E S 343

The smallest price p which ensures that, when producing 110 units, the firm does not
lose money must satisfy 110p − 10 070 = 0, with solution p ≈ 91.55. This price equals
the average cost of producing 110 units. The price must be at least 91.55 if revenue is
going to be enough to cover the cost of producing at full capacity.

E X A M P L E 9.5.3 In the model of the previous example, the firm took the price as given. Consider an
example at the other extreme, where the firm has a monopoly in the sale of the commodity.
Assume that the price P(Q) per unit varies with Q according to the formula P(Q) = 100 −
1
3 Q for Q ∈ [0, 300]. Suppose now the cost function is

C(Q) = 1
600

Q3 − 1
3

Q2 + 50Q + 1000
3

Then the profit is

π(Q) = QP(Q) − C(Q) = − 1
600

Q3 + 50Q − 1000
3

Find the production level that maximizes profit, and compute the maximum profit.

Solution: The derivative of π(Q) is π ′(Q) = −(Q2/200) + 50. Hence, π ′(Q) = 0 for Q2 =
10 000. Because Q < 0 is not permissible, the only critical point is at Q = 100.

The values of π(Q) at the two end points of [0, 300] are π(0) = −1000/3 and π(300) =
−91 000/3. Since π(100) = 3 000, we conclude that Q = 100 maximizes profit, and the
maximum profit is 3 000.

E X A M P L E 9.5.4 (Either a borrower or a lender be.)8 Recall Example 7.1.5, and suppose that a student
has current income y1 and expects future income y2. Let δ denote her discount rate.9 She
plans her current consumption c1 > 0 and future consumption c2 > 0 in order to maximize
the utility function

U = ln c1 + 1
1 + δ

ln c2 (∗)

In case she chooses c1 > y1, she needs to borrow the amount c1 − y1. Then her future con-
sumption, after repaying the loan with interest charged at rate r, will be

c2 = y2 − (1 + r)(c1 − y1)

Alternatively, in case she chooses c1 < y1, she saves the amount y1 − c1 now. Then her
future consumption, including the interest at rate r received on her saving, will be

c2 = y2 + (1 + r)(y1 − c1)

Find the optimal plan of borrowing or saving.

Solution: Whether she borrows or saves, in both cases her second period consumption is

c2 = y2 − (1 + r)(c1 − y1)

8 According to Shakespeare, Polonius’s advice to Hamlet was: “Neither a borrower nor a lender be”.
9 In the notation of Example 7.1.5, this implies that the discount factor β satisfies β = 1/(1 + δ).
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After substituting this value of c2 in (∗), we see that the student will want to choose c1 in
order to maximize

U = ln c1 + 1
1 + δ

ln[y2 − (1 + r)(c1 − y1)] (∗∗)

We can obviously restrict attention to the interval 0 < c1 < y1 + (1 + r)−1y2, where both
c1 and c2 are positive. Differentiating (∗∗) w.r.t. the choice variable c1 gives

dU
dc1

= 1
c1

− 1 + r
1 + δ

· 1
y2 − (1 + r)(c1 − y1)

Rewriting the fractions so that they have a common denominator yields

dU
dc1

= (1 + δ)[y2 − (1 + r)(c1 − y1)] − (1 + r)c1

c1(1 + δ)[y2 − (1 + r)(c1 − y1)]

Rearranging the numerator and equating the derivative to 0, we have

dU
dc1

= (1 + δ)[(1 + r)y1 + y2] − (2 + δ)(1 + r)c1

c1(1 + δ)[y2 − (1 + r)(c1 − y1)]
= 0 (∗∗∗)

Because we assume that y2 − (1 + r)(c1 − y1) > 0, the unique solution of this equation is

c∗
1 = (1 + δ)[(1 + r)y1 + y2]

(2 + δ)(1 + r)
= y1 + (1 + δ)y2 − (1 + r)y1

(2 + δ)(1 + r)

From (∗∗∗) it follows that for c1 < c∗
1 one has dU/dc1 > 0, whereas for c1 > c∗

1 one has
dU/dc1 < 0. We conclude from the first-derivative test in Theorem 9.2.1 that c∗

1 indeed
maximizes U. Moreover, the student lends if and only if (1 + δ)y2 < (1 + r)y1. In the more
likely case when (1 + δ)y2 > (1 + r)y1 because future income is considerably higher than
present income, she will borrow. Only if by some chance (1 + δ)y2 is exactly equal to
(1 + r)y1 will she “neither a borrower nor a lender be”.

This discussion, however, has neglected the difference between borrowing and lending
rates of interest that one always observes in reality (even in Shakespeare’s time).

E X E R C I S E S F O R S E C T I O N 9 . 5

1. With reference to Example 9.5.1, suppose that R(Q) = 10Q − Q2/1000 for all Q ∈ [0, 10 000],
and that C(Q) = 5000 + 2Q for all Q ≥ 0. Find the value of Q that maximizes profits.

2. With reference to Example 9.5.1, let R(Q) = 80Q and C(Q) = Q2 + 10Q + 900. The firm can
produce at most 50 units.

(a) Draw the graphs of R and C in the same coordinate system.

(b) Answer the following questions both graphically and by computation: (i) How many units
must be produced for the firm to make a profit? (ii) How many units must be produced for the
firm to maximize profits?

3. A pharmaceutical firm produces penicillin. The sales price per unit is 200, while the cost of pro-
ducing x units is given by C(x) = 500 000 + 80x + 0.003x2. The firm can produce at most 30 000
units. What value of x maximizes profits?
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4.SM Consider Example 9.5.1 and find the production level which maximizes profits when

(a) R(Q) = 1840Q and C(Q) = 2Q2 + 40Q + 5000

(b) R(Q) = 2240Q and C(Q) = 2Q2 + 40Q + 5000

(c) R(Q) = 1840Q and C(Q) = 2Q2 + 1940Q + 5000

5. The price a firm obtains for a commodity varies with demand Q according to the formula P(Q) =
18 − 0.006Q. Total cost is C(Q) = 0.004Q2 + 4Q + 4500.

(a) Find the firm’s profit π(Q) and the value of Q which maximizes profit.

(b) Find a formula for the elasticity of P(Q) w.r.t. Q, and find the particular value Q∗ of Q at
which the elasticity is equal to −1.

(c) Show that the marginal revenue is 0 at Q∗.

6. With reference to Example 9.5.1, let R(Q) = pQ and C(Q) = aQb + c, where p, a, b, and c are
positive constants, with b > 1. Find the value of Q which maximizes the profit π(Q), making use
of Theorem 9.2.2.

9.6 Local Extreme Points
So far this chapter has discussed what are often referred to as global optimization
problems. The reason for this terminology is that we have been seeking the largest or
smallest values of a function when we compare the function values at all points in the
domain, without exception. In applied optimization problems, especially those arising in
economics, it is usually these global extrema that are of interest. Sometimes, however,
one is interested in the local maxima and minima of a function. In this case, we compare
the function value at the point in question only with alternative function values at nearby
points.

c1 d1 c2 d2 ba

y

x

P1

P2

Q2

Q1

Figure 9.6.1 c1, c2, and b are local maximum points; a, d1, and d2 are local minimum points

Consider Fig. 9.6.1 and think of the graph as representing the profile of a land-
scape. Then the mountain tops P1 and P2 represent local maxima, whereas the valley
bottoms Q1 and Q2 represent local minima. The precise definitions we need are as
follows:
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L O C A L E X T R E M A

The function f has:

(i) a local maximum at c if there exists an interval (α, β) about c such that

f (x) ≤ f (c) for all x in (α, β) that belong to the domain of f (9.6.1)

(ii) a local minimum at c if there exists an interval (α, β) about c such that

f (x) ≥ f (c) for all x in (α, β) that belong to the domain of f (9.6.2)

A local extreme point is strict if f (x) �= f (c) for all x �= c in (α, β) that belong
to the domain of f .

In Fig. 9.6.1, note that definition (9.6.2) of a local minimum applies to the end point
a because, provided that α < a, only the half-open subinterval [a, β) of (α, β) can be in
the domain of f . Similarly, definition (9.6.1) applies to the other end point b because, pro-
vided that β > b, only the half-open subinterval (α, b) of (α, β) can be in the domain of
f .10 So definition (9.6.2) implies that points a, d1, and d2 in Fig. 9.6.1 are all strict local
minimum points, with d1 as a global minimum point. Similarly, definition (9.6.1) implies
that points b, c1, and c2 are strict local maximum points, with b as a global maximum
point.

Function values corresponding to local maximum (minimum) points are called local
maximum (minimum) values. As collective names we use the terms local extreme points
and local extreme values.

A local maximum point c is a strict local maximum if (9.6.1) is modified to become
f (x) < f (c) for all x in (α, β) with x �= c that belong to the domain of f . A similar modifi-
cation of (9.6.2) is used to define a strict local minimum.

In searching for (global) maximum and minimum points, Theorem 9.1.1 was very use-
ful. Actually, the same result is valid for local extreme points:

At a local extreme point in the interior of the domain of a differentiable function, the derivative must
be zero.

This is clear if we recall that when proving Theorem 9.1.1 we needed to consider the
behaviour of the function in only a small interval about the optimal point. Once again,
therefore, in order to find possible local maxima and minima of a function f defined in an
interval I, we need only search among the following types of point: (i) interior points x in

10 Some authors restrict the definition of local maximum/minimum points only to interior points of
the domain of the function. According to this definition, a global maximum point that is not an
interior point of the domain is not a local maximum point. To us it seems desirable that a global
maximum/minimum point should always be a local maximum/minimum point as well, so we shall
stick to definitions (9.6.1) and (9.6.2).
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I where f ′(x) = 0; (ii) end points of I, if included in I; and (iii) interior points x in I where
f ′(x) does not exist.

So we have established necessary conditions for a function f defined in an interval I
to have a local extreme point. But how do we decide whether a point satisfying the nec-
essary conditions is a local maximum, a local minimum, or neither? In contrast to global
extreme points, it does not help to calculate the function value at the different points satis-
fying these necessary conditions. To see why, consider again the function whose graph is
given in Fig. 9.6.1. Point P1 is a strict local maximum and Q2 is a strict local minimum, but
the function value at P1 is smaller than the function value at Q2.

The First-Derivative Test
There are two main ways of determining whether a given critical point is a local maximum,
a local minimum, or neither. One of them is based on studying the sign of the first derivative
about the critical point. It is an easy modification of Theorem 9.2.1.

T H E O R E M 9 . 6 . 1 ( F I R S T - D E R I V A T I V E T E S T F O R L O C A L E X T R E M A )

Consider the function y = f (x), and suppose that c is a critical point of f .

(i) If f ′(x) ≥ 0 throughout some interval (a, c) to the left of c and f ′(x)≤ 0
throughout some interval (c, b) to the right of c, then x = c is a local max-
imum point.

(ii) If f ′(x) ≤ 0 throughout some interval (a, c) to the left of c and f ′(x) ≥
0 throughout some interval (c, b) to the right of c, then x = c is a local
minimum point.

(iii) But if f ′(x) > 0 both throughout some interval (a, c) to the left of c and
throughout some interval (c, b) to the right of c, then x = c is not a local
extreme point for f . The same conclusion holds if f ′(x) < 0 on both sides
of c.

Only case (iii) is not already covered by Theorem 9.2.1. In fact, if f ′(x) > 0 in (a, c) and
also in (c, b), then f (x) is strictly increasing in (a, c] as well as in [c, b). So x = c cannot be
a local extreme point.

E X A M P L E 9.6.1 Classify the critical points of f (x) = 1
9 x3 − 1

6 x2 − 2
3 x + 1.

Solution: As in Example 8.6.2, we have f ′(x) = 1
3 x2 − 1

3 x − 2
3 = 1

3 (x + 1)(x − 2). Hence
x = −1 and x = 2 are the critical points. The sign diagram for f ′(x) is shown in Fig. 9.6.2.
It shows that x = −1 is a local maximum point whereas x = 2 is a local minimum point.
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22 21

f ʹ(x)

x 22

0 1 2 3

(x 11)1
3

f(x)

Figure 9.6.2 Sign diagram for f ′(x) in Example 9.6.1

E X A M P L E 9.6.2 Classify the critical points of f (x) = x2ex.

Solution: Differentiating, we get f ′(x) = 2xex + x2ex = xex(2 + x). Then f ′(x) = 0 for x =
0 and for x = −2. A sign diagram shows that f has a local maximum point at x = −2 and
a local, as well as global, minimum point at x = 0. The graph of f is given in Fig. 9.6.3.

y

1

2

3

x25 24 23 22 21 1 2

Figure 9.6.3 f (x) = x2ex

The Second-Derivative Test
Most practical problems in economics involve a function defined by an explicit formula.
Then the first-derivative test of Theorem 9.6.1 on its own will determine whether a critical
point is a local maximum, a local minimum, or neither. The test requires knowing the sign
of f ′(x) at points both to the left and to the right of the given critical point. The next test
requires knowing the first two derivatives of the function, but only at the critical point itself.

T H E O R E M 9 . 6 . 2 ( S E C O N D - D E R I V A T I V E T E S T F O R L O C A L E X T R E M A )

Let f be a twice differentiable function in an interval I, and let c be an interior
point of I.

(i) If f ′(c) = 0 and f ′′(c) < 0, then x = c is a strict local maximum point.

(ii) If f ′(c) = 0 and f ′′(c) > 0, then x = c is a strict local minimum point.

(iii) If f ′(c) = 0 and f ′′(c) = 0, then x could be a local maximum, a local min-
imum, or neither.

Proof of part (i): By definition of f ′′(c) as the derivative of f ′(x) at c, one has

f ′′(c) = lim
h→0

f ′(c + h) − f ′(c)
h

= lim
h→0

f ′(c + h)

h
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Because f ′′(c) < 0, it follows that f ′(c + h)/h < 0 if |h| is sufficiently small. In particular,
if h is a small positive number, then f ′(c + h) < 0, so f ′ is negative in an interval to the right
of c. In the same way, we see that f ′ is positive in some interval to the left of c. But then c
is a strict local maximum point for f .

Part (ii) can be proved in the same way.
In the inconclusive case (iii), where f ′(c) = f ′′(c) = 0, “anything” can happen. Con-

sider the three functions f (x) = x4, f (x) = −x4, and f (x) = x3, whose graphs are shown in
Figs 9.6.4 to 9.6.6. All satisfy f ′(0) = f ′′(0) = 0. At x = 0, they have, respectively, a strict
minimum, a strict maximum, and a point of inflection (recall Section 8.6). Usually, as with
these three functions, the first-derivative test can be used to classify critical points at which
f ′(c) = f ′′(c) = 0.

y x 4y

x

Figure 9.6.4 Strict minimum

y x 4

y

x

Figure 9.6.5 Strict maximum

y x 3y

x

Figure 9.6.6 Inflection point

E X A M P L E 9.6.3 Use the second-derivative test to classify the critical points of f (x) = 1
9 x3 − 1

6 x2 −
2
3 x + 1.

Solution: We saw in Example 9.6.1 that

f ′(x) = 1
3 x2 − 1

3 x − 2
3 = 1

3 (x + 1)(x − 2)

with two critical points x = −1 and x = 2. Furthermore, f ′′(x) = 2
3 x − 1

3 , so that f ′′(−1) =
−1 and f ′′(2) = 1. From Theorem 9.6.2 it follows that x = −1 is a local maximum point
and x = 2 is a local minimum point. This confirms the results in Example 9.6.1.

E X A M P L E 9.6.4 Classify the critical points of f (x) = x2ex, using the second-derivative test.

Solution: From Example 9.6.2, one has f ′(x) = 2xex + x2ex, with x = 0 and x = −2 as the
two critical points. The second derivative of f is

f ′′(x) = 2ex + 2xex + 2xex + x2ex = ex(2 + 4x + x2 )

At the two critical points we have f ′′(0) = 2 > 0 and f ′′(−2) = −2e−2 < 0. From
Theorem 9.6.2 it follows that x = 0 is a strict local minimum point and x = −2 is a strict
local maximum point. This confirms the results in Example 9.6.2.

Theorem 9.6.2 can be used to obtain a useful necessary condition for local extrema.
Suppose that f is twice differentiable in the interval I and that c is an interior point of I where
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there is a local maximum. Then f ′(c) = 0. Moreover, f ′′(c) > 0 is impossible, because by
part (ii) in Theorem 9.6.2, this inequality would imply that c is a strict local minimum.
Hence, f ′′(c) has to be ≤ 0. In the same way, we see that f ′′(c) ≥ 0 is a necessary condition
for local minimum. Briefly formulated, we obtain the following second-order conditions,
or SOC:

N E C E S S A R Y S E C O N D - O R D E R C O N D I T I O N S

If the function f is twice differentiable, then

point c is a local maximum point for f =⇒ f ′′(c) ≤ 0 (9.6.3)

point c is a local minimum point for f =⇒ f ′′(c) ≥ 0 (9.6.4)

Many results in economic analysis rely on postulating an appropriate sign for the second
derivative rather than suitable variations in the sign of the first derivative.

E X A M P L E 9.6.5 Suppose that the firm in Example 9.5.1 faces a sales tax of τ dollars per unit.
Then the firm’s profit from producing and selling Q units is given by π(Q) = R(Q) −
C(Q) − τQ. In order to maximize profits at some quantity Q∗ satisfying 0 < Q∗ <

--
Q, one

must have π ′(Q∗) = 0. Hence,

R′(Q∗) − C′(Q∗) − τ = 0 (∗)

Suppose R′′(Q∗) < 0 and C′′(Q∗) > 0. Equation (∗) implicitly defines Q∗ as a differen-
tiable function of τ . Find an expression for dQ∗/dτ and discuss its sign. Also compute
the derivative w.r.t. τ of the optimal value π(Q∗) of the profit function, and show that
dπ(Q∗)/dτ = −Q∗.

Solution: Differentiating (∗) with respect to τ yields

R′′(Q∗)
dQ∗

dτ
− C′′(Q∗)

dQ∗

dτ
− 1 = 0

Solving for dQ∗/dτ gives
dQ∗

dτ
= 1

R′′(Q∗) − C′′(Q∗)
(∗∗)

The sign assumptions on R′′ and C′′ imply that dQ∗/dτ < 0. Thus, the optimal number of
units produced will decline if the tax rate τ increases.

The optimal value of the profit function is π(Q∗) = R(Q∗) − C(Q∗) − τQ∗. Taking into
account the dependence of Q∗ on τ , we get

dπ(Q∗)
dτ

= R′(Q∗)
dQ∗

dτ
− C′(Q∗)

dQ∗

dτ
− Q∗ − τ

dQ∗

dτ

= [
R′(Q∗) − C′(Q∗) − τ

] dQ∗

dτ
− Q∗

= −Q∗ because of the FOC (∗)
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This is an instance of the “envelope theorem”, which will be discussed in Section 18.7. For
each 1¢ increase in the sales tax, profit decreases by approximately Q∗ cents, where Q∗ is
the number of units produced at the optimum.

E X E R C I S E S F O R S E C T I O N 9 . 6

1. Consider the function f defined for all x by f (x) = x3 − 12x. Find the critical points of f , and
classify them by using both the first- and second-derivative tests.

2.SM Determine possible local extreme points and values for the following functions:

(a) f (x) = −2x − 1 (b) f (x) = x3 − 3x + 8 (c) f (x) = x + 1
x

(d) f (x) = x5 − 5x3 (e) f (x) = 1
2 x2 − 3x + 5 (f) f (x) = x3 + 3x2 − 2

3.SM Let function f be given by the formula f (x) = (1 + 2/x)
√

x + 6.

(a) Find the domain of f and the intervals where f (x) is positive.

(b) Find possible local extreme points.

(c) Examine f (x) as x → 0−, x → 0+, and x → ∞. Also determine the limit of f ′(x) as x → ∞.
Does f have a maximum or a minimum in the domain?

f

a b dc e

y

x

Figure 9.6.7 Exercise 4

4. Figure 9.6.7 graphs the derivative y = f ′(x) of a function f . Which of the points a, b, c, d, and e
are: (i) strict local maximum points for f ; (ii) strict local minimum points for f ; (iii) neither?

5. Let f (x) = x3 + ax2 + bx + c. What requirements must be imposed on the constants a, b, and c
in order that f will have:

(a) a local minimum at x = 0? (b) critical points at x = 1 and x = 3?

6. Find the local extreme points of the functions:

(a) f (x) = x3ex (b) g(x) = x22x

7.SM [HARDER] Find the local extreme points of f (x) = x3 + ax + b. Use the answer to show that the
equation f (x) = 0 has three different real roots if and only if 4a3 + 27b2 < 0.
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R E V I E W E X E R C I S E S

1. Let f (x) = x2

x2 + 2
.

(a) Compute f ′(x) and determine where f (x) is increasing/decreasing.

(b) Find possible inflection points.

(c) Determine the limit of f (x) as x → ±∞, and sketch the graph of f (x).

2. A firm’s production function is Q(L) = 12L2 − 1
20 L3, where L denotes the number of workers,

with L ∈ [0, 200].

(a) What size of the work force maximizes output Q(L)?

(b) Let L∗ denote the size of the work force that maximizes output per worker, Q(L)/L. Find L∗
and note that Q′(L∗) = Q(L∗)/L∗. Is this a coincidence?

3. A farmer has one thousand metres of fence wire with which to make a rectangular enclosure,
as in Exercise 4.6.7. But one side of this farmer’s enclosure will border a straight canal bank,
where no fencing is needed. What dimensions maximize the area of this farmer’s enclosure?

4. By producing and selling Q units of some commodity, a firm earns a total revenue of R(Q) =
−0.0016Q2 + 44Q and incurs a cost of C(Q) = 0.0004Q2 + 8Q + 64 000.

(a) What production level maximizes profits?

(b) Show that ElQ C(Q) ≈ 0.12 for Q = 1000. Interpret this result.

5. The unit price P obtained by a firm in producing and selling Q ≥ 0 units is P(Q) = a − bQ2.
The cost of producing and selling Q units is C(Q) = α + βQ. The constants a, b, α, and β are
all positive. Find the level of production that maximizes profits.

6. A competitive firm receives a price p for each unit of its output, and pays a price w for each unit
of its only variable input. It also incurs set up costs of F. Its output from using x units of variable
input is f (x) = √

x.

(a) Determine the firm’s revenue, cost, and profit as functions of x.

(b) Write out the first-order condition for profit maximization, and give it an economic inter-
pretation. Check whether profit really is maximized at a point satisfying the first-order
condition.

7. Let g(x) = x − 2 ln(x + 1).

(a) Where is the function g defined?

(b) Find g′(x) and g′′(x).

(c) Find possible extreme points and inflection points of g, then sketch its graph.

8. Let f (x) = ln(x + 1) − x + 1
2 x2 − 1

6 x3.

(a) Find the domain of the function f and prove that f ′(x) = x2 − x3

2(x + 1)
for all x in the domain.

(b) Find possible extreme points and inflection points.

(c) Check that f (x) as x → (−1)+, then sketch the graph of f on the interval (−1, 2].
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9.SM Consider the function defined, for all x, by h(x) = ex/(2 + e2x).

(a) Where is h increasing/decreasing? Find possible maximum and minimum points for h.

(b) If one restricts the domain of h to (−∞, 0], it has an inverse. Why? Find an expression for
such inverse function.

10. Let f (x) = (e2x + 4e−x)2.

(a) Find f ′(x) and f ′′(x).

(b) Determine where f is increasing/decreasing, and show that f is convex.

(c) Find possible global extreme points for f .

11.SM [HARDER] Suppose that a > 0, and consider the function f (x) = x
3√x2 − a

.

(a) Find the domain Df of f and the intervals where f (x) is positive. Show that the graph of f is
symmetric about the origin.

(b) Where is f increasing and where is it decreasing? Find possible local extreme points.

(c) Find possible inflection points for f .

12.SM [HARDER] Classify the critical points of f (x) = 6x3

x4 + x2 + 2
by using the first-derivative test.

Sketch the graph of f .
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I N T E G R A T I O N

Is it right I ask; is it even prudence; to bore thyself and bore the students?
—Mephistopheles to Faust1

The main topic of Chapters 6 and 7 was differentiation, which can be directly applied to
many interesting economic problems. Economists, however, especially when doing statis-

tics, often face the mathematical problem of finding a function from information about its
derivative. Reconstructing a function from its derivative can be regarded as the “inverse” of
differentiation. Mathematicians call this process integration.

There are simple formulas that have been known since ancient times for calculating the
area of any triangle, and so of any polygon that, by definition, is entirely bounded by straight
lines and so can be split up into triangles that intersect only at their edges. Some 4000 years
ago, however, the Babylonians became concerned with accurately measuring the area of plane
surfaces, like circles, that are not bounded by straight lines. Finding this kind of area is intimately
related to calculating an integral.

Apart from providing an introduction to integration, this chapter will also discuss some
important applications of integrals that economists are expected to know. Their application to
differential equations is discussed in the latter part of the next chapter, which is devoted to
some simple dynamic models.

10.1 Indefinite Integrals
Suppose we do not know the function F, but we do know that its derivative is x2, so that
F′(x) = x2. What is F? Since the derivative of x3 is 3x2, we see that 1

3 x3 has x2 as its
derivative. But so does 1

3 x3 + C where C is an arbitrary constant, since additive constants
disappear with differentiation.

In fact, let G(x) denote an arbitrary function having x2 as its derivative. Then the deriva-
tive of G(x) − 1

3 x3 is equal to 0 for all x. By (6.3.3), however, a function that has derivative

1 In Johann Wolfgang von Goethe’s Faust.
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equal to 0 for all x must be constant. This shows that

F′(x) = x2 ⇔ F(x) = 1
3 x3 + C, where C is an arbitrary constant

E X A M P L E 10.1.1 Assume that the marginal cost function of a firm is C′(Q) = 2Q2 + 2Q + 5, and
that the fixed costs are 100. Find the cost function C(Q).

Solution: Consider separately each of the three terms in the expression for C′(Q). We
realize that the cost function must have the form C(Q) = 2

3 Q3 + Q2 + 5Q + c, because
differentiating this function gives us precisely 2Q2 + 2Q + 5. But the fixed costs are 100,
which means that C(0) = 100. Inserting Q = 0 into the proposed formula for C(Q) yields
c = 100. Hence, the required cost function must be C(Q) = 2

3 Q3 + Q2 + 5x + 100.

Suppose f (x) and F(x) are two functions of x having the property that f (x) = F′(x) for all
x in some interval I. We pass from F to f by taking the derivative, so the reverse process of
passing from f to F could appropriately be called taking the antiderivative. But following
usual mathematical practice, we call F an indefinite integral of f over the interval I, and
denote it by

∫
f (x) dx. If two functions have the same derivative throughout an interval, the

derivative of their difference is zero, so this difference must be a constant. Hence:

T H E I N D E F I N I T E I N T E G R A L

If F′(x) = f (x), then∫
f (x) dx = F(x) + C where C is an arbitrary constant (10.1.1)

For instance, the solution to Example 10.1.1 implies that∫
(2x2 + 2x + 5) dx = 2

3 x3 + x2 + 5x + C

The symbol
∫

is the integral sign, and the function f (x) appearing in (10.1.1) is the inte-
grand. We use the notation dx to indicate that x is the variable of integration. Finally, C is a
constant of integration. We read (10.1.1) this way: The indefinite integral of f (x) w.r.t. x is
F(x) plus a constant. We call it an indefinite integral because F(x) + C is not to be regarded
as one definite function, but as a whole class of functions, all having the same derivative f .

Differentiating each side of (10.1.1) shows directly that

d
dx

∫
f (x) dx = f (x) (10.1.2)

That is, the derivative of an indefinite integral equals the integrand. Also, (10.1.1) can obvi-
ously be rewritten as ∫

F′(x) dx = F(x) + C (10.1.3)

In this sense integration and differentiation cancel each other out.
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Some Important Integrals
There are some important integration formulas which follow immediately from the corre-
sponding rules for differentiation. Let a be a fixed number, different from −1. Because the
derivative of xa+1/(a + 1) is xa, one has

I N T E G R A L O F A P O W E R F U N C T I O N

If a �= −1, then ∫
xa dx = 1

a + 1
xa+1 + C (10.1.4)

This very important result states that the indefinite integral of any power of x,
except x−1, is obtained by increasing the exponent of x by 1, then dividing by the new
exponent, before finally adding a constant of integration. Here are three prominent
examples.

E X A M P L E 10.1.2 Applying Eq. (10.1.4) directly,

(a)
∫

x dx =
∫

x1 dx = 1
1 + 1

x1+1 + C = 1
2

x2 + C

(b)
∫

1
x3

dx =
∫

x−3 dx = 1
−3 + 1

x−3+1 + C = − 1
2x2

+ C

(c)
∫ √

x dx =
∫

x1/2 dx = 1
1
2 + 1

x
1
2 +1 + C = 2

3
x3/2 + C

In case a = −1 formula in (10.1.4) is not valid because its right-hand side involves
division by zero, which is meaningless. In this case the integrand is 1/x, so the prob-
lem is to find a function which has 1/x as its derivative. Now F(x) = ln x has this prop-
erty, but it is only defined for x > 0. Note, however, that ln(−x) is defined for x < 0.
Moreover, according to the chain rule, its derivative is [1/(−x)] (−1) = 1/x. Recall too
that |x| = x when x ≥ 0 and |x| = −x when x < 0. Thus, whether x > 0 or x < 0, we
have:

I N T E G R A L O F 1 /X

∫
1
x

dx = ln |x| + C (10.1.5)

Consider next the exponential function. The derivative of ex is ex. Thus
∫

ex dx = ex + C.
More generally, since the derivative of (1/a)eax is eax, we have:
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I N T E G R A L O F T H E E X P O N E N T I A L F U N C T I O N

If a �= 0, then ∫
eax dx = 1

a
eax + C (10.1.6)

For a > 0 we can write ax = e(ln a)x. So, provided that ln a �= 0 because a �= 1, we can
replace a in (10.1.6) by ln a to obtain:

I N T E G R A L O F A N A R B I T R A R Y E X P O N E N T I A L

When a > 0 and a �= 1, ∫
ax dx = 1

ln a
ax + C (10.1.7)

Formulas (10.1.4)–(10.1.7) are examples of how knowing the derivative of a function
given by a formula automatically gives us a corresponding indefinite integral. Indeed, sup-
pose it were possible to construct a complete table with every function that we knew how to
differentiate in the first column, and the corresponding derivative in the second column. For
example, next to the entry y = x2ex in the first column would be y′ = 2xex + x2ex in the sec-
ond column. Because integration is the reverse of differentiation, we infer the corresponding
integral

∫
(2xex + x2ex) dx = x2ex + C for a constant C.

Even after this superhuman effort, you would look in vain for e−x2
in the second col-

umn of this table. The reason is that there is no “elementary” function that has e−x2
as

its derivative. Indeed, the integral of e−x2
is used in the definition of a new very special

“error function” that plays a prominent role in statistics because of its relationship to the
“normal distribution” discussed in Exercises 4.9.3 and 10.7.12. There are innumerable such
“impossible integrals”. A list of only very few is given in (10.3.9).

Using the proper rules systematically allows us to differentiate very complicated func-
tions. On the other hand, finding the indefinite integral of even quite simple functions can
be very difficult, or even impossible. Where it is possible, mathematicians have developed a
number of integration methods to help in the task. Some of these methods will be explained
in the rest of this chapter.

It is usually quite easy, however, to check whether a proposed indefinite integral is cor-
rect. We simply differentiate it to see if its derivative really is equal to the integrand.

E X A M P L E 10.1.3 Verify that, for x > 0, one has
∫

ln x dx = x ln x − x + C.

Solution: We put F(x) = x ln x − x + C. Differentiating gives

F′(x) = 1 · ln x + x · 1
x

− 1 = ln x + 1 − 1 = ln x

This shows that the integral formula is correct.
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Some General Rules
The two differentiation rules (6.6.3) and (6.7.3) immediately imply that (aF(x))′ = aF′(x)
and that (F(x) + G(x))′ = F′(x) + G′(x). These equalities give us the following:

B A S I C I N T E G R A T I O N R U L E S

∫
af (x) dx = a

∫
f (x) dx whenever a is a constant (10.1.8)

∫
[f (x) + g(x)] dx =

∫
f (x) dx +

∫
g(x) dx (10.1.9)

Rule (10.1.8) says that a constant factor can be moved outside the integral, while rule
(10.1.9) shows that the integral of a sum is the sum of the integrals. Repeated use of these
two rules yields:∫ [

a1f1(x) + · · · + anfn(x)
]

dx = a1

∫
f1(x) dx + · · · + an

∫
fn(x) dx (10.1.10)

E X A M P L E 10.1.4 Use (10.1.10) to evaluate:

(a)
∫
(3x4 + 5x2 + 2) dx (b)

∫ (
3
x

− 8e−4x
)

dx

Solution:

(a) As well as (10.1.10), we invoke (10.1.4) to obtain∫
(3x4 + 5x2 + 2) dx = 3

∫
x4 dx + 5

∫
x2 dx + 2

∫
1 dx

= 3
(

1
5

x5 + C1

)
+ 5

(
1
3

x3 + C2

)
+ 2(x + C3)

= 3
5

x5 + 5
3

x3 + 2x + 3C1 + 5C2 + 2C3

= 3
5

x5 + 5
3

x3 + 2x + C

Because C1, C2, and C3 are arbitrary constants, 3C1 + 5C2 + 2C3 is also an
arbitrary constant. So in the last line we have replaced it by just one constant C.
In future examples of this kind, we will usually drop the middle two of the four
equalities.

(b)
∫ (

3/x − 8e−4x
)

dx = 3
∫
(1/x) dx + (−8)

∫
e−4x dx = 3 ln |x| + 2e−4x + C

So far, we have always used x as the variable of integration. In applications, the variables
often have other labels, but this makes no difference to the rules of integration.
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E X A M P L E 10.1.5 Evaluate (where in (d) n is any natural number):

(a)
∫
(B/r2.5) dr (b)

∫
(a + bs + cs2) ds (c)

∫
(1 + t)3 dt (d)

∫
(1 + t)n dt

Solution:

(a) Write B/r2.5 as Br−2.5. By formula (10.1.4) with n = −2.5 and r replacing x, one has∫
B

r2.5
dr = B

∫
r−2.5 dr = B

1
−2.5 + 1

r−2.5+1 + C = − B
1.5r1.5

+ C

(b)
∫
(a + bs + cs2) ds = as + 1

2 bs2 + 1
3 cs3 + C

(c)
∫
(1 + t)3 dt = ∫

(1 + 3t + 3t2 + t3) dt = t + 3
2 t2 + t3 + 1

4 t4 + C. Note here that,
because (1 + t)4 = 1 + 4t + 6t2 + 4t3 + t4, this answer can be written as
1
4 (1 + t)4 + C′ for a different constant C′.

(d) Inspired by the answer to (c), and the fact that
∫

yndy = yn+1/(n + 1) + C, one might
guess that

∫
(1 + t)n dt = (1 + t)n+1/(n + 1) + C. This is easily confirmed by direct

differentiation. Alternatively, integrate by substitution, as Section 10.6 explains.

E X E R C I S E S F O R S E C T I O N 1 0 . 1

1. Find the following integrals by using formula (10.1.4):

(a)
∫

x13 dx (b)
∫

x
√

x dx (c)
∫

1√
x

dx (d)
∫ √

x
√

x
√

x dx

(e)
∫

e−x dx (f)
∫

ex/4 dx (g)
∫

3e−2x dx (h)
∫

2x dx

2. In the manufacture of a product, the marginal cost of producing x units is C′(x) and fixed costs
are C(0). Find the total cost function C(x) when:

(a) C′(x) = 3x + 4 and C(0) = 40 (b) C′(x) = ax + b and C(0) = C0

3.SM Find the following integrals:

(a)
∫

(x3 + 2x − 3) dx (b)
∫

(x − 1)2 dx (c)
∫

(x − 1)(x + 2) dx

(d)
∫

(x + 2)3 dx (e)
∫ (

e3x − e2x + ex) dx (f)
∫

x3 − 3x + 4
x

dx

4.SM Find the following integrals:

(a)
∫

(y − 2)2

√
y

dy (b)
∫

x3

x + 1
dx (c)

∫
x(1 + x2)15 dx

(Hints: In part (a), first expand (y − 2)2, and then divide each term by
√

y. In part (b), use poly-
nomial division as in Section 4.7. In part (c), what is the derivative of (1 + x2)16?)

5. Show that

(a)
∫

x2 ln x dx = 1
3

x3 ln x − 1
9

x3 + C

(b)
∫ √

x2 + 1 dx = 1
2

x
√

x2 + 1 + 1
2

ln
(

x +
√

x2 + 1
)

+ C
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6. Suppose that the derivative f ′(x) of f has the graph given in Fig. 10.1.1.

(a) Suggest a quadratic formula for f ′(x).

(b) Find an explicit function f (x) satisfying f (0) = 2 which has this derivative.

(c) Sketch the graph of f (x).

f �(x)

2

3

1

�1

�2

�3

�2 �1 2 3 4

y

x

Figure 10.1.1 Exercise 6

f �(x)
2

1

�1

�2

�2�3�4 �1 1

y

x

Figure 10.1.2 Exercise 7

7. Suppose that f (0) = 0 and that the derivative f ′(x) of f has the graph shown in Fig. 10.1.2. Sketch
the graph of f (x) and find an explicit function f (x) which has this graph.

8. Prove that
∫

2x ln(x2 + a2) dx = (x2 + a2) ln(x2 + a2) − x2 + C.

9. Provided a �= 0 and p �= −1, show that
∫

(ax + b)p dx = 1
a(p + 1)

(ax + b)p+1 + C.

10. Use the answer to Exercise 9 to evaluate the following integrals:

(a)
∫

(2x + 1)4 dx (b)
∫ √

x + 2 dx (c)
∫

1√
4 − x

dx

11. Find F(x) if:

(a) F′(x) = 1
2 ex − 2x and F(0) = 1

2 (b) F′(x) = x(1 − x2) and F(1) = 5
12

12. Find the general form of a function f whose second derivative is x2. If we require in addition
that f (0) = 1 and f ′(0) = −1, what is f (x)?

13.SM Suppose that f ′′(x) = x−2 + x3 + 2 for x > 0, and f (1) = 0, f ′(1) = 1/4. Find f (x).

10.2 Area and Definite Integrals
This section will show how the concept of the integral can be used to calculate the area
of many plane regions. This problem has been important for over 4000 years. Like all
major rivers, the Tigris and Euphrates in ancient Mesopotamia and the Nile in Egypt would
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occasionally change course as a result of severe floods. Some farmers would gain new land
from the river, while others would lose land. Since taxes were often assessed on land area,
it became necessary to re-calculate the area of a parcel of land whose boundary might be
an irregularly shaped river bank.

Around the year 360 BCE, the Greek mathematician Eudoxos developed a general method
of exhaustion for determining the areas of irregularly shaped plane regions. The idea was to
exhaust the area by inscribing within it an expanding sequence of polygonal regions, each of
which has an area that can be calculated exactly by summing the areas of a finite collection
of triangles. Provided that in the limit this sequence does indeed “exhaust” the area by
including every point, we can define the area of the region as the limit of the increasing
sequence of areas of the inscribed polygons. Moreover, one can bound the error of any finite
approximation by circumscribing the region within a decreasing sequence of polygonal
regions, whose intersection is the region itself.

Eudoxos and Archimedes, amongst others, used the method of exhaustion in order to
determine quite accurate approximations to the areas of a number of specific plane regions,
especially for a circular disk, as considered in Example 7.11.1. The method was able to
provide exact answers, however, only for a limited number of special cases, largely because
of the algebraic problems encountered. Nearly 1900 years passed after Eudoxos before
an exact method could be devised, combining what we now call integration with the new
differential calculus due to Newton and Leibniz. Besides allowing areas to be measured with
complete accuracy, their ideas have many other applications. Demonstrating the precise
logical relationship between differentiation and integration is one of the main achievements
of mathematical analysis. It has even been argued that this discovery is the single most
important in all of science.

The problem to be considered and solved in this section is illustrated in Fig. 10.2.1: How
do we compute the area A under the graph of a continuous and nonnegative function f over
the interval [a, b]?

y � f (x)

A � ?

y

xa b

Figure 10.2.1 Area under the graph

y � f (x)

A(t)

y

xa bt

Figure 10.2.2 Area over [a, t]

Let t be an arbitrary point in [a, b], and let A(t) denote the area under the curve y = f (x)
over the interval [a, t], as shown in Fig. 10.2.2. Clearly A(a) = 0 because the area collapses
to zero when t = a. On the other hand, the area in Fig. 10.2.1 is A = A(b). It is obvious
from Fig. 10.2.2 that, because f is always positive, A(t) increases as t increases. Suppose
we increase t by a positive amount �t. Then A(t + �t) is the area under the curve y = f (x)
over the interval [a, t + �t]. Hence, the difference A(t + �t) − A(t) is the area �A under
the curve over the interval [t, t + �t], as shown in Fig. 10.2.3.
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y � f (x)
y

xa bt t � Δ t

Δ A

Figure 10.2.3 Change in area, �A

t t � Δ t

Δ Af (t)
f (t � Δ t)

Figure 10.2.4 Approximating �A

In Fig. 10.2.4, the area �A has been magnified. It cannot be larger than the area of the
rectangle with base �t and height f (t + �t), nor smaller than the area of the rectangle with
base �t and height f (t). Hence, for all �t > 0, one has

f (t)�t ≤ A(t + �t) − A(t) ≤ f (t + �t)�t (∗)

Because �t > 0, this implies that

f (t) ≤ A(t + �t) − A(t)
�t

≤ f (t + �t) (∗∗)

Let us consider what happens to (∗∗) as �t → 0. The interval [t, t + �t] shrinks to the
single point t. Because we are assuming that f is continuous, the function value f (t + �t)
approaches f (t). So the quotient [A(t + �t) − A(t)]/�t is squeezed between f (t) and a
quantity f (t + �t) that tends to f (t). This quotient must therefore tend to f (t) in the limit as
�t → 0.

Now notice that [A(t + �t) − A(t)]/�t is the Newton quotient of the function A(t),
which measures the area under the graph of f over the interval [a, t]. This leads us to the
remarkable conclusion that the function A(t) is differentiable, with derivative given by

A′(t) = f (t), for all t in (a, b) (∗∗∗)

This proves that:

The derivative of the area function A(t) is the curve’s “height function” f (t), so the area
function is one of the indefinite integrals of f (t).2

Let us now use x as the free variable, and suppose that F(x) is an arbitrary indefinite
integral of f (x). Then F′(x) = f (x), and so A′(x) − F′(x) = 0 for x in (a, b). The equivalence

2 The function f in Figs 10.2.3 and 10.2.4 happens to be increasing in the interval [t, t + �t]. It is
easy to see that the same conclusion is obtained whenever the function f is continuous on the closed
interval [t, t + �t]. On the left-hand side of (∗), just replace f (t) by f (c), where c is a minimum
point of the continuous function f in the interval; and on the right-hand side, replace f (t + �t) by
f (d), where d is a maximum point of f in [t, t + �t]. By continuity, both f (c) and f (d) must tend
to f (t) as �t → 0. So (∗∗∗) holds also for general continuous functions f .
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(6.3.3) in Chapter 6 then shows that A(x) = F(x) + C for some constant C. Recall that
A(a) = 0. Hence, 0 = A(a) = F(a) + C, so C = −F(a). Therefore,

A(x) = F(x) − F(a), where F(x) =
∫

f (x) dx (10.2.1)

Note that this argument works for any arbitrary indefinite integral F of f . So if we have any
other indefinite integral G of f , then A(x) also equals G(x) − G(a).

E X A M P L E 10.2.1 Calculate the area under the parabola f (x) = x2 over the interval [0, 1].

Solution: The area in question is the shaded region in Fig. 10.2.5. The area is equal to
A = F(1) − F(0) where F(x) is any indefinite integral of x2. But

∫
x2 dx = 1

3 x3 + C, so we
can choose F(x) = 1

3 x3. So the required area is

A = F(1) − F(0) = 1
3 · 13 − 1

3 · 03 = 1
3

Figure 10.2.5 suggests that this answer is reasonable, because the shaded region appears to
have roughly 1/3 the area of the indicated square, whose sides all have length 1.

1

1

y � x 2
y

x

Figure 10.2.5 y = x2

f (x) � px � q
pb � q

pa � q

a b

y

x

Figure 10.2.6 y = px + q

The argument leading to (10.2.1) is based on rather intuitive considerations. Formally,
mathematicians choose to define the area under the graph of a continuous and nonnega-
tive function f over the interval [a, b] as the number F(b) − F(a), where F′(x) = f (x). The
concept of area that emerges agrees with the usual concept for regions bounded by straight
lines. The next example verifies this in a special case.

E X A M P L E 10.2.2 Find the area A under the straight line f (x) = px + q over the interval [a, b], where
a, b, p, and q are all positive, with b > a.

Solution: The area is shown shaded in Fig. 10.2.6. It is equal to F(b) − F(a) where F(x) is
any indefinite integral of px + q. But

∫
(px + q) dx = 1

2 px2 + qx + C. The simplest choice
of indefinite integral is F(x) = 1

2 px2 + qx, which gives

A = F(b) − F(a) = ( 1
2 pb2 + qb

) − ( 1
2 pa2 + qa

) = 1
2 p(b2 − a2) + q(b − a) (∗)

As Fig. 10.2.6 suggests, the area A is the sum of two areas. The first is that of a rectangle
whose base is b − a and whose height is pa + q. The second is that of a triangle whose base
is b − a and whose height is p(b − a). The total area is (b − a)(pa + q) + 1

2 p(b − a)2. This
equals the answer in (∗), as you should check.
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The Definite Integral
Let f be a continuous function defined in the interval [a, b]. Suppose that the function F is
continuous in [a, b] and has a derivative with F′(x) = f (x) for every x in (a, b). Then the
difference F(b) − F(a) is called the definite integral of f over [a, b]. We observed above
that this difference does not depend on which of the indefinite integrals of f we choose
as F. The definite integral of f over [a, b] is therefore a number that depends only on the
function f and the numbers a and b. We denote this number by

∫ b

a
f (x) dx (10.2.2)

This notation makes explicit both the integrand f (x) (the function we integrate) and the
interval of integration [a, b]. The two end points a and b are called, respectively, the lower
limit and upper limit of integration.

The variable x in Eq. (10.2.2) is a dummy variable in the sense that it could be replaced
by any other variable that does not occur elsewhere in the expression. For instance,

∫ b

a
f (x) dx =

∫ b

a
f (y) dy =

∫ b

a
f (ξ) dξ

are all equal to F(b) − F(a). But you should never write anything like
∫ y

a f (y) dy, with the
same variable as both the upper limit and the dummy variable of integration. That would
make it impossible to interpret y, so it would be meaningless.

The difference F(b) − F(a) between the values of the indefinite integral F(x) at the
upper and lower limit of integration is denoted by b

a F(x), or alternatively by [F(x)]b
a. Thus:

T H E D E F I N I T E I N T E G R A L

∫ b

a
f (x) dx =

b

a
F(x) = F(b) − F(a) (10.2.3)

where F is any indefinite integral of f over an interval containing both a and b.

E X A M P L E 10.2.3 Evaluate the definite integrals:

(a)
∫ 5

2 e2x dx (b)
∫ 2
−2

(
x − x3 − x5

)
dx

Solution:

(a) Since
∫

e2x dx = 1
2 e2x + C,

∫ 5

2
e2x dx =

5

2

1
2 e2x = 1

2 e10 − 1
2 e4 = 1

2 e4(e6 − 1)
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(b) Here,∫ 2

−2
(x − x3 − x5) dx =

2

−2

( 1
2 x2 − 1

4 x4 − 1
6 x6

) = (
2 − 4 − 64

6

) − (
2 − 4 − 64

6

) = 0

In the next subsection we explain why f (x) = x − x3 − x5 has a graph that is symmetric
about the origin, and why the answer to part (b) must therefore be 0.

Definition (10.2.3) does not necessarily require a < b. However, if a > b and f (x)
is positive throughout the interval [b, a], then

∫ b
a f (x) dx is a negative number. Note also

that (10.2.3) makes sense without necessarily interpreting the definite integral geomet-
rically as the area under a curve. In fact, depending on the context, it can have different
interpretations. For instance, if f (r) is an income density function, as in Section 10.4
below, then

∫ b
a f (r) dr is the proportion of people with income between a and b.

Although the notation for definite and indefinite integrals is similar, the two integrals are
entirely different. In fact,

∫ b
a f (x) dx denotes a single number, whereas

∫
f (x) dx represents

any one of the infinite set of related functions that all have f (x) as their derivative.

y

f (a)

f (b)

y = f (x)

a b
x

A

Figure 10.2.7 f (x) ≤ 0

y

g(b)

g(a)

a b x

y = g(x)

A

Figure 10.2.8 g(x) = −f (x) ≥ 0

The Area when f(x) is Negative
If f is defined in [a, b] and f (x) ≥ 0 over [a, b], then

∫ b
a f (x) dx is the area below the graph of

f over [a, b]. But if f (x) ≤ 0 for all x in [a, b], then the graph of f , the x-axis, and the two lines
x = a and x = b still enclose an area somewhat like that marked as area A in Fig. 10.2.7.
Indeed, if we define g(x) = −f (x) in [a, b], then g(x) ≥ 0, implying that

∫ b
a g(x) dx mea-

sures the area below the graph of g over [a, b]. By construction, however, this area equals
the area A depicted in Fig. 10.2.8. It follows that the area over the graph of f and under
[a, b] is

∫ b
a (−f )(x) dx. We have put a minus sign before the integrand because the area of a

region must be nonnegative, whereas the definite integral of f is negative. Shortly, we will
see from rule (10.3.3) how it is equivalent to putting the minus sign in front of the integral.

E X A M P L E 10.2.4 Figure 10.2.9 shows the graph of f (x) = ex/3 − 3. Evaluate the shaded area A
between the x-axis and this graph over the interval [0, b], where b = 3 ln 3 is chosen to
satisfy f (b) = 0.
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1

�1

�2

1 2 3 4

f (x) � e x�3 � 3

y

x

Figure 10.2.9 ex/3 − 3

c1

a
bc2 c3

y � f (x)

y

x

Figure 10.2.10 A function that takes
positive and negative values

Solution: Because f (x) ≤ 0 in the interval [0, 3 ln 3], we obtain

A = −
∫ 3 ln 3

0

(
ex/3 − 3

)
dx = −

3 ln 3

0
(3ex/3 − 3x) = −(3eln 3 − 3 · 3 ln 3) + 3e0

= −9 + 9 ln 3 + 3 = 9 ln 3 − 6 ≈ 3.89

Is the answer reasonable? Yes, because the shaded set in Fig. 10.2.9 seems to have an area
a little less than that of the triangle enclosed by the points (0, 0), (0, −2), and (4, 0), whose
area is 4. Also, its area is somewhat more than that of the inscribed triangle with vertices
(0, 0), (0, −2), and (3 ln 3, 0), whose area is 3 ln 3 ≈ 3.30.

Suppose that the function f is defined and continuous in [a, b]. Suppose too that, as
shown in Fig. 10.2.10, it is positive in some subintervals, but negative in others because
its graph crosses the x-axis at the three points c1, c2 and c3. Then the definite integral∫ b

a f (x) dx is the sum of the two shaded areas above the x-axis, minus the sum of the
two shaded areas below the x-axis. On the other hand, consider the total area bounded
by the graph of f , the x-axis, and the lines x = a and x = b. To calculate this, first we
must follow the previous definitions to compute in turn the positive area in each subinterval
[a, c1], [c1, c2], [c2, c3], and [c3, b]. Finally, we must add these four areas to arrive at the
answer

−
∫ c1

a
f (x) dx +

∫ c2

c1

f (x) dx −
∫ c3

c2

f (x) dx +
∫ b

c3

f (x) dx

In fact, this illustrates a general result: the area between the graph of a function f and the
x-axis is given by the definite integral

∫ b
a |f (x)| dx of the absolute value of the integrand

f (x), which equals the area under the graph of the nonnegative-valued function |f (x)|.

E X E R C I S E S F O R S E C T I O N 1 0 . 2

1. Compute the areas under the graphs, over [0, 1], of:

(a) f (x) = x3; (b) f (x) = x10.
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2. Compute the area bounded by the graph of each of the following functions over the indicated
interval. In (c), sketch the graph and indicate by shading the area in question.

(a) f (x) = 3x2, in [0, 2] (b) f (x) = x6, in [0, 1]

(c) f (x) = ex, in [−1, 1] (d) f (x) = 1/x2, in [1, 10]

3. Compute the area bounded by the graph of f (x) = 1/x3, the x-axis, and the two lines x = −2
and x = −1. Make a drawing. (Hint: f (x) < 0 in [−2, −1].)

4. Compute the area bounded by the graph of f (x) = 1
2 (ex + e−x), the x-axis, and the lines x = −1

and x = 1.

5.SM Evaluate the following integrals:

(a)
∫ 1

0
x dx (b)

∫ 2

1
(2x + x2) dx (c)

∫ 3

−2

(
1
2

x2 − 1
3

x3
)

dx

(d)
∫ 2

0
(t3 − t4) dt (e)

∫ 2

1

(
2t5 − 1

t2

)
dt (f)

∫ 3

2

(
1

t − 1
+ t

)
dt

6.SM Let f (x) = x(x − 1)(x − 2).

(a) Calculate f ′(x). Where is f (x) increasing?

(b) Sketch the graph of f and calculate
∫ 1

0 f (x) dx.

7. The profit of a firm as a function of its output x > 0 is given by f (x) = 4000 − x − 3 000 000
x

.

(a) Find the level of output that maximizes profit. Sketch the graph of f .

(b) The actual output varies between 1 000 and 3 000 units. Compute the average profit

I = 1
2000

∫ 3000

1000
f (x) dx

8. Evaluate the integrals:

(a)
∫ 3

1

3x
10

dx (b)
∫ −1

−3
ξ 2 dξ (c)

∫ 1

0
αeβτ dτ , with β �= 0 (d)

∫ −1

−2

1
y

dy

10.3 Properties of Definite Integrals
The definition of the definite integral allows the following four properties to be
derived.
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If f is a continuous function in an interval that contains the points a, b, and c,
then: ∫ b

a
f (x) dx = −

∫ a

b
f (x) dx (10.3.1)

∫ a

a
f (x) dx = 0 (10.3.2)

∫ b

a
αf (x) dx = α

∫ b

a
f (x) dx, where α is an arbitrary number (10.3.3)

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx (10.3.4)

When the definite integral is interpreted as an area, (10.3.4) is the additivity prop-
erty of areas, as illustrated in Fig. 10.3.1. Of course, rule (10.3.4) easily generalizes
to the case when we partition the interval [a, b] into an arbitrary finite number of
subintervals.

y � f (x)

a bc

y

x

Figure 10.3.1
∫ b

a f (x) dx = ∫ c
a f (x) dx + ∫ b

c f (x) dx

Equations (10.3.3) and (10.3.4) are counterparts for definite integrals of, respectively,
the constant multiple property (10.1.8) and the summation property (10.1.9) for indefinite
integrals. In fact, if f and g are continuous in [a, b], and if α and β are real numbers, then it
is easy to prove that∫ b

a
[αf (x) + βg(x)] dx = α

∫ b

a
f (x) dx + β

∫ b

a
g(x) dx (10.3.5)

Again, this rule can obviously be extended to more than two functions.
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Differentiation with Respect to the Limits of Integration
Suppose that F′(x) = f (x) for all x in an open interval (a, b). Suppose too that a < t < b.
It follows that

∫ t
a f (x) dx = t

a F(x) = F(t) − F(a). So differentiating w.r.t. t gives

d
dt

∫ t

a
f (x) dx = F′(t) = f (t) (10.3.6)

In words: The derivative of the definite integral with respect to the upper limit of integration
is equal to the integrand evaluated at that limit.

Correspondingly,
∫ b

t f (x) dx = b
t F(x) = F(b) − F(t), so that

d
dt

∫ b

t
f (x) dx = −F′(t) = −f (t) (10.3.7)

In words: The derivative of the definite integral with respect to the lower limit of integration
is equal to minus the integrand evaluated at that limit.

These results are not surprising: Suppose that f (x) ≥ 0 and t < b. We can interpret∫ b
t f (x) dx as the area below the graph of f over the interval [t, b]. Then the interval shrinks

as t increases, and the area will decrease at a rate given by the value of the integrand at the
lower limit.

The results in (10.3.6) and (10.3.7) can be generalized. In fact, if a(t) and b(t) are
differentiable and f (x) is continuous, then

d
dt

∫ b(t)

a(t)
f (x) dx = f (b(t))b′(t) − f (a(t))a′(t) (10.3.8)

To prove this formula, suppose F is an indefinite integral of f , so that F′(x) = f (x). Then∫ v

u f (x) dx = F(v) − F(u), so in particular,

∫ b(t)

a(t)
f (x) dx = F(b(t)) − F(a(t))

Using the chain rule to differentiate the right-hand side of this equation w.r.t. t, we obtain
F′(b(t))b′(t) − F′(a(t))a′(t). But F′(b(t)) = f (b(t)) and F′(a(t)) = f (a(t)), so (10.3.8)
results.3

Continuous Functions are Integrable
Suppose f (x) is a continuous function in [a, b]. So far we have defined

∫ b
a f (x) dx as the

number F(b) − F(a), where F(x) is any antiderivative function whose derivative is f (x).
In some cases, we are able to find an explicit expression for F(x). But this is not always
the case. Consider, for example, the standard normal density function in statistics. It is the

3 Formula (10.3.8) is an important special case of Leibniz’s formula discussed in Section 4.2 of FMEA.
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positive valued function f (x) = (1/
√

2π)e−x2/2, whose graph is shown in the answer to
Exercise 4.9.3. It is impossible to find an explicit standard function of x whose derivative
is f (x). Yet f (x) is continuous on any interval [a, b] of the real line, so the area under the
graph of f over this interval definitely exists and is equal to

∫ b
a f (x) dx.

In fact, one can prove that any continuous function has an antiderivative. Here are
some integrals that really are impossible to “solve”, except by introducing special new
functions:∫

ex2
dx,

∫
e−x2

dx,
∫

ex

x
dx,

∫
1

ln x
dx, and

∫
1√

x4 + 1
dx (10.3.9)

The Riemann Integral
The kind of integral discussed so far, based on the antiderivative, is called the
Newton–Leibniz, or N–L, integral. It is just one among many kinds of integral math-
ematicians have considered. For continuous functions, all give the same result as the
N–L integral. We briefly describe the Riemann integral as one prominent example.4

Its definition is closely related to the method of exhaustion that was described in
Section 10.2.

Let f be a function which is defined and bounded in the interval [a, b]. For any fixed
natural number n, we subdivide [a, b] into n parts by choosing points a = x0 < x1 < x2 <

· · · < xn−1 < xn = b. We also choose an arbitrary number ξi in each interval [xi, xi+1]. Let
�xi denote xi+1 − xi, for i = 0, 1, . . . , n − 1. Then the sum

f (ξ0)�x0 + f (ξ1)�x1 + · · · + f (ξn−1)�xn−1 (10.3.10)

of n terms is called a Riemann sum associated with the function f . You should draw a figure
to help understand this construction.

The sum (10.3.10) obviously depends on f . But it also depends on the subdivision and
on the choice of the different points ξi. Suppose however that, as n approaches infinity
and simultaneously the largest of the numbers �x0, �x1, . . . , �xn−1 approaches 0, the limit
of the Riemann sum (10.3.10) always exists. Then f is called Riemann integrable (or R
integrable) in the interval [a, b]. Furthermore, we define the Riemann integral (or R integral)
of f over [a, b] as the limit of these Riemann sums. Thus

∫ b

a
f (x) dx = lim

n−1∑
i=0

f (ξi)�xi

Textbooks on mathematical analysis show that this limit is independent of how the ξi are
chosen, so the value of the R integral is well defined. They also show that every continuous
function is R integrable, and that its R integral satisfies (10.2.3). The N–L and R integrals
therefore coincide for continuous functions. But the R integral is defined for some (discon-
tinuous) functions whose N–L integral does not exist.

4 Introduced by German mathematician Bernhard Riemann (1826–1866).
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E X E R C I S E S F O R S E C T I O N 1 0 . 3

1. Evaluate the following integrals:

(a)
∫ 5

0
(x + x2) dx (b)

∫ 2

−2
(ex − e−x) dx (c)

∫ 10

2

1
x − 1

dx (d)
∫ 1

0
2xex2

dx

(e)
∫ 4

−4
(x − 1)3 dx (f)

∫ 2

1
(x5 + x−5) dx (g)

∫ 4

0

1
2

√
x dx (h)

∫ 2

1

1 + x3

x2
dx

2. If
∫ b

a f (x) dx = 8 and
∫ c

a f (x) dx = 4, what is
∫ b

c f (x) dx?

3. If
∫ 1

0 (f (x) − 2g(x)) dx = 6 and
∫ 1

0 (2f (x) + 2g(x)) dx = 9, find I = ∫ 1
0 (f (x) − g(x)) dx.

4.SM Let p, q, and r be positive constants. Evaluate the integral
∫ 1

0 xp(xq + xr) dx.

5.SM Find the function f (x) if f ′(x) = ax2 + bx, f ′(1) = 6, f ′′(1) = 18 and
∫ 2

0 f (x) dx = 18.

6.SM Evaluate the following integrals, assuming that all the constants in (d) are positive:

(a)
∫ 3

0

(1
3

e3x−2 + (x + 2)−1
)

dx (b)
∫ 1

0
(x2 + 2)2 dx

(c)
∫ 1

0

x2 + x + √
x + 1

x + 1
dx (d)

∫ b

1

(
A

x + b
x + c

+ d
x

)
dx

7. Let F(x) = ∫ x
0 (t2 + 2) dt and G(x) = ∫ x2

0 (t2 + 2) dt. Find F′(x) and G′(x).

8. Define H(t) = ∫ t2

0 K(τ )e−ρτ dτ , where K(τ ) is a given continuous function and ρ is a constant.
Find H′(t).

9. Find:

(a)
d
dt

∫ t

0
x2 dx (b)

d
dt

∫ 3

t
e−x2

dx (c)
d
dt

∫ t

−t

1√
x4 + 1

dx (d)
d

dλ

∫ 2

−λ

(f (t) − g(t)) dt

10. Find the area between the two parabolas defined by the equations y + 1 = (x − 1)2 and 3x = y2.
(Hint: The points of intersection have integer coordinates.)

11.SM [HARDER] A theory of investment has used a function W defined for all T > 0 by

W(T) = K
T

∫ T

0
e−ρt dt

where K and ρ are positive constants. Evaluate the integral, then prove that W(T)

takes values in the interval (0, K) and is strictly decreasing. (Hint: See Exercise
6.11.11.)
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12.SM [HARDER] Consider the function f defined, for all x > 0, by f (x) = 4 ln(
√

x + 4 − 2).

(a) Show that f has an inverse function g, and find a formula for g.

(b) Draw the graphs of f and g in the same coordinate system.

(c) Give a geometric interpretation of A = ∫ 10
5 4 ln(

√
x + 4 − 2) dx, and explain why

A = 10a −
∫ a

0
(ex/2 + 4ex/4) dx

where a = f (10). Use this equality to express A in terms of a.

10.4 Economic Applications
We motivated the definite integral as a way to find the area under a curve. Definite
integrals, however, arise in many other mathematical and economic contexts. In statistics
and econometrics, for example, many probability distributions such as the normal distri-
bution are defined as the integral of a particular continuous probability density function.
This section presents some other examples showing why integrals are important in
economics.

Extraction from an Oil Well
Assume that at time t = 0 an oil producer starts extracting oil from a well that contains K
barrels at that time. Let x(t) denote the remaining stock of oil in the well at time t, mea-
sured as a number of barrels. In particular, x(0) = K. Assuming it is impractical to put oil
back into the well, the function x(t) is decreasing in t. Consider any time interval [t, t + δ],
where δ > 0. The amount of oil that is extracted during this interval is x(t) − x(t + δ), the
reduction in the stock. The amount extracted per unit of time, therefore, is

x(t) − x(t + δ)

δ
= −x(t + δ) − x(t)

δ
(∗)

If we assume that x(t) is differentiable, then as δ → 0 the fraction (∗) tends to −ẋ(t). If we
let u(t) denote the rate of extraction at time t, we have ẋ(t) = −u(t), with x(0) = K. The
solution to this equation is

x(t) = K −
∫ t

0
u(s) ds (∗∗)

Indeed, we check (∗∗) as follows. First, setting t = 0 gives x(0) = K. Moreover, differen-
tiating (∗∗) w.r.t. t according to rule (10.3.6) yields ẋ(t) = −u(t).

The result (∗∗) may be interpreted as follows: The amount of oil left at time t is equal to
the initial amount K, minus the total amount that has been extracted during the time interval
[0, t], which is

∫ t
0 u(τ ) dτ .



�

� �

�

374 C H A P T E R 1 0 / I N T E G R A T I O N

If the rate of extraction is constant, with u(t) = --u, then (∗∗) yields

x(t) = K −
∫ t

0

--u ds = K −
t

0

--us = K − --ut

In particular, the well will be empty when x(t) = 0, or when K − --ut = 0, that is when
t = K/--u. (Of course, this particular answer could have been found more directly, without
recourse to integration.)

The example illustrates two concepts that it is important to distinguish in many economic
arguments. The quantity x(t) is a stock, measured in barrels. On the other hand, u(t) is a
flow, measured in barrels per unit of time.

Income Distribution
In many countries, data collected by income tax authorities can be used to reveal some
facts regarding the income distribution within a given year, as well as how the distribution
changes from year to year. Suppose we measure annual income in dollars. Let F(r) denote
the proportion of individuals that receive no more than r dollars in a particular year. Thus,
if there are n individuals in the population, nF(r) is the number of individuals with income
no greater than r. If r0 is the lowest and r1 is the highest (registered) income in the group,
we are interested in the function F defined on the interval [r0, r1]. Because r has to be a
multiple of $0.01 and F(r) has to be a multiple of 1/n, the definition of F makes it discon-
tinuous and so not differentiable in [r0, r1]. If the population consists of a large number of
individuals, however, then it is usually possible to find a “smooth” function that gives a good
approximation to the true income distribution. Assume, therefore, that F is a function with
a continuous derivative denoted by f , so that f (r) = F′(r) for all r in (r0, r1). According to
the definition of the derivative, for all small δ we have

f (r)δ ≈ F(r + δ) − F(r)

Thus, f (r)δ is approximately equal to the proportion of individuals who have incomes
between r and r + δ. The function f is called an income density function, and F is the
associated cumulative distribution function.5

Suppose that f is a continuous income distribution for a certain population with incomes
in the interval [r0, r1]. If r0 ≤ a ≤ b ≤ r1, then the previous discussion and the definition
of the definite integral imply that

∫ b
a f (r)dr is the proportion of individuals with incomes

in [a, b]. Thus, the number of individuals with incomes in [a, b] is

N = n
∫ b

a
f (r) dr (10.4.1)

We will now find an expression for the combined income of all those who earn between a
and b dollars. Let M(r) denote the total income of those who earn no more than r dollars

5 Readers who know some statistics may see the analogy with probability density functions and with
cumulative (probability) distribution functions.
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during the year, and consider the income interval [r, r + δ]. There are approximately nf (r)δ
individuals with incomes in this interval. Each of them has an income approximately equal
to r, so that the total income M(r + δ) − M(r) of these individuals is approximately equal
to nrf (r)δ. So we have

M(r + δ) − M(r)
δ

≈ nrf (r)

The approximation improves (in general) as δ decreases. By taking the limit as δ → 0,
we obtain M′(r) = nrf (r). Integrating over the interval from a to b gives M(b) − M(a) =
n

∫ b
a rf (r)dr. Hence, the total income of individuals with income in [a, b] is

M = n
∫ b

a
rf (r) dr (10.4.2)

The argument that leads to (10.4.2) can be made more exact: M(r + δ) − M(r) is the
total income of those who have income in the interval [r, r + δ], when δ > 0. In this income
interval, there are n[F(r + δ) − F(r)] individuals each of whom earns at least r and at most
r + δ. Thus,

nr [F(r + δ) − F(r)] ≤ M(r + δ) − M(r) ≤ n(r + δ) [F(r + δ) − F(r)] (∗)

If δ > 0, dividing by δ yields

nr
F(r + δ) − F(r)

δ
≤ M(r + δ) − M(r)

δ
≤ n(r + δ)

F(r + δ) − F(r)
δ

(∗∗)

On the other hand, if δ < 0, then the inequalities in (∗) are left unchanged, whereas those
in (∗∗) are reversed. Either way, letting δ → 0 gives nrF′(r) ≤ M′(r) ≤ nrF′(r), so that
M′(r) = nrF′(r) = nrf (r).

Consider the group of all individuals whose incomes belonging to a specific inter-
val [a, b]. The number of individuals N in this group is given by Eq. (10.4.1), and their
total income M is given by Eq. (10.4.2). The income per head of this group, otherwise
known as their “mean income”, is the ratio M/N. Formally, then, the mean income of
individuals with incomes in the interval [a, b] is:

m = M
N

= n
∫ b

a rf (r) dr

n
∫ b

a f (r) dr
=

∫ b
a rf (r) dr∫ b
a f (r) dr

(10.4.3)

A function that approximates actual income distributions quite well, particularly for
large incomes, is the Pareto distribution that was briefly discussed in Example 6.6.4, espe-
cially Eq. (6.6.5). For this distribution, the proportion of individuals who earn at most r
dollars is given by

f (r) = B
rβ

(10.4.4)

Here B and β are positive constants. Empirical estimates of β are usually in the range
2.4 < β < 2.6. For values of r close to 0, the formula is of no use. In fact, the integral∫ a

0 f (r) dr diverges to ∞, as will be seen using the arguments of Section 10.7.
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E X A M P L E 10.4.1 Consider a population of n individuals in which the income density function for
those with incomes between a and b is given by f (r) = B/r2.5. Here b > a > 0, and B is
positive. Determine the mean income of this group.

Solution: According to (10.4.1), the total number of individuals in this group is

N = n
∫ b

a
Br−2.5 dr = nB

b

a

(− 2
3 r−1.5

) = 2
3 nB

(
a−1.5 − b−1.5

)
According to (10.4.2), the total income of these individuals is

M = n
∫ b

a
rBr−2.5 dr = nB

∫ b

a
r−1.5 dr = −2nB

b

a
r−0.5 = 2nB

(
a−0.5 − b−0.5

)
So by (10.4.3), the mean income of the group is

m = M
N

= 2nB
(
a−0.5 − b−0.5

)
2
3 nB

(
a−1.5 − b−1.5

) = 3
a−0.5 − b−0.5

a−1.5 − b−1.5

Suppose that b is very large. Then b−0.5 and b−1.5 are both close to 0, so m ≈ 3a. The mean
income of those who earn at least a is therefore approximately 3a.

The Influence of Income Distribution on Demand
Obviously each consumer’s demand for a particular commodity depends on its price p.
In addition, economists soon learn that it depends on the consumer’s income r as well.
Here, we consider the total demand quantity for a group of consumers whose individual
demands are given by the same continuous function D(p, r) of the single price p, as well as
of individual income r whose distribution is given by a continuous density function f (r) on
the interval [a, b].

Given a particular price p, let T(r) denote the total demand for the commodity by all
individuals whose income does not exceed r. Consider the income interval [r, r + δ], where
δ > 0. There are approximately nf (r)δ individuals with incomes in this interval. Because
each of them demands approximately D(p, r) units of the commodity, the total demand of
all these individuals will be approximately nD(p, r)f (r)δ. However, the actual total demand
of individuals with incomes in the interval [r, r + δ] is T(r + δ) − T(r), by definition. So
we must have T(r + δ) − T(r) ≈ nD(p, r)f (r)δ, which implies that

T(r + δ) − T(r)
δ

≈ nD(p, r)f (r)

In general, this approximation improves as δ decreases. Taking the limit as δ → 0, we obtain
T ′(r) = nD(p, r)f (r). By definition of the definite integral, therefore, we must have

T(b) − T(a) = n
∫ b

a
D(p, r)f (r) dr
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But T(b) − T(a) is the total demand for the commodity by all the individuals with
incomes in the interval [a, b]. In fact, this total demand will depend on the price p.
So we denote it by x(p). This implies that, as a function of p, total demand of these
individuals is

x(p) =
∫ b

a
nD(p, r)f (r) dr (10.4.5)

E X A M P L E 10.4.2 Suppose that the income distribution function for all individuals with incomes
between a and b is as specified in Example 10.4.1. Suppose that the demand function
of an individual with income r is D(p, r) = Ap−1.5r2.08. Compute the total demand
function.

Solution: Using (10.4.5) gives

x(p) =
∫ b

a
nAp−1.5r2.08Br−2.5 dr = nABp−1.5

∫ b

a
r−0.42 dr

Hence,

x(p) = nABp−1.5 ×
b

a

1
0.58

r0.58 = nAB
0.58

p−1.5(b0.58 − a0.58)

Consumer and Producer Surplus
Economists are interested in studying how much consumers and producers as a whole
benefit (or lose) when market conditions change. A common (but conceptually question-
able) measure of these benefits used by many applied economists is the total amount of
consumer and producer surplus, which we are about to define.6 The equilibrium point E
in Fig. 10.4.1 occurs where the demand and supply curves cross, so demand is equal to
supply. The corresponding equilibrium price P∗ is the one which induces consumers to
purchase (demand) precisely the same aggregate amount that producers are willing to offer
(supply) at that price, as in Example 4.5.3. According to the demand curve in Fig. 10.4.1,
there are consumers who are willing to pay more than P∗ per unit. In fact, even if the
price is almost as high as P1, some consumers still wish to buy some units at that price.
The total amount “saved” by all such consumers is called the consumer surplus, denoted
by CS.

Consider the thin rectangle indicated in Fig. 10.4.2 whose left edge lies along the vertical
line through the point labelled Q, with coordinates (Q, 0). It has base �Q and height f (Q), so
its area is f (Q) · �Q. This area approximately represents the maximum additional amount
that consumers as a whole are willing to pay for an extra �Q units, after they have already
bought Q units at price f (Q). For all those consumers who are willing to buy the commodity
at price P∗ or higher, the total amount they are willing to pay is the total area below the
inverse demand curve P = f (Q) over the interval [0, Q∗], which is

∫ Q∗
0 f (Q) dQ. This area

6 See, for example, H. Varian: Intermediate Microeconomics: A Modern Approach, 8th ed., Norton,
2009 for a more detailed treatment.
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P

E
Demand Curve

Supply Curve

QQ*

P*

P1

P0

P � g (Q)

P � f (Q)

Figure 10.4.1 Market equilibrium

E

P

QQ*Q

P � f (Q)f (Q)

f (Q) � ΔQ

Figure 10.4.2 Consumer surplus, CS

is shaded in Fig. 10.4.2. If all consumers together buy Q∗ units of the commodity, the total
cost is P∗Q∗. This represents the area of the rectangle with base Q∗ and height P∗. It can
therefore be expressed as the integral

∫ Q∗
0 P∗ dQ. The consumer surplus is defined as the

total amount that consumers are willing to pay for the quantity Q∗, minus what they actually
pay for Q∗. This difference equals the integral

CS =
∫ Q∗

0
[f (Q) − P∗] dQ (10.4.6)

In Fig. 10.4.3,
∫ Q∗

0 f (Q) dQ is the area OP1EQ∗, whereas P∗Q∗ is the area OP∗EQ∗. So the
consumer surplus CS is equal to the area P∗P1E between the inverse demand curve and the
horizontal line P = P∗. In Fig. 10.4.3, this is the lighter-shaded area to the left of the curve
P = f (Q), which lies between the P-axis and the part P1E of the curve P = f (Q) above the
price P∗.

CS

PS

P

QQ*O

P*

P1

P0

P � g (Q)

P � f (Q)

E

Figure 10.4.3 Consumer and producer surplus, CS and PS

Many producers also derive positive benefit or “surplus” from selling at the equi-
librium price P∗ because they would be willing to supply the commodity for less than
P∗. In Fig. 10.4.3, even if the price is almost as low as P0, some producers are still
willing to supply the commodity. Consider the total surplus of all the producers who
receive more than the price at which they are willing to sell. It is equal to the total
revenue P∗Q∗ that producers actually receive, minus the revenue that would make
them willing to supply Q∗. We call this difference the producer surplus, denoted by PS.
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Geometrically it is represented by the darker-shaded area in Fig. 10.4.3. Analytically, it is
defined by

PS =
∫ Q∗

0
[P∗ − g(Q)] dQ (10.4.7)

In Fig. 10.4.3, the revenue P∗Q∗ is again the area OP∗EQ∗, whereas
∫ Q∗

0 g(Q) dQ is the
area OP0EQ∗. So PS is equal to the area P∗P0E between the inverse supply curve P = g(Q)

and the line P = P∗. In Fig. 10.4.3, this is the darker-shaded area to the left of the supply
curve—that is, between the P-axis and the part of the supply curve below the price P∗.

E X A M P L E 10.4.3 Suppose that the inverse demand curve for a commodity is P = f (Q) = 50 − 0.1Q
and the inverse supply curve is P = g(Q) = 0.2Q + 20. Find the equilibrium price. Then
compute the consumer and producer surplus.

Solution: The equilibrium quantity is determined by the equation 50 − 0.1Q∗ = 0.2Q∗ +
20, which gives Q∗ = 100. Then P∗ = 0.2Q∗ + 20 = 40 = 50 − 0.1Q∗. Hence,

CS =
∫ 100

0
[50 − 0.1Q − 40] dQ =

∫ 100

0
[10 − 0.1Q] dQ =

100

0
(10Q − 0.05Q2) = 500

and

PS =
∫ 100

0
[40 − (0.2Q + 20)] dQ =

∫ 100

0
[20 − 0.2Q] dQ =

100

0
(20Q − 0.1Q2) = 1000

E X E R C I S E S F O R S E C T I O N 1 0 . 4

1. Assume that the rate of extraction u(t) from an oil well decreases exponentially over time, with
u(t) = --ue−at, where --u and a are positive constants. Given the initial stock x(0) = K, find an expres-
sion x(t) for the remaining amount of oil at time t. Under what condition will the well never be
exhausted?

2.SM Following the pattern in Examples 10.4.1 and 10.4.2:

(a) Find the mean income m over the interval [b, 2b] when f (r) = Br−2, assuming that there are
n individuals in the population.

(b) Assume that the individuals’ demand function is D(p, r) = Apγ rδ with A > 0, γ < 0, δ > 0,
δ �= 1. Compute the total demand x(p) by using formula (10.4.5).

3. Solve the equation S = ∫ T
0 ert dt for T .

4. Let K(t) denote the capital stock of an economy at time t. Then net investment at time t, denoted
by I(t), is given by the rate of increase K̇(t) of K(t).

(a) If I(t) = 3t2 + 2t + 5 for t ≥ 0, what is the total increase in the capital stock during the interval
from t = 0 to t = 5?
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(b) If K(t0) = K0, find an expression for the total increase in the capital stock from time t = t0
to t = T when the investment function I(t) is as in part (a).

5. An oil company is planning to extract oil from one of its fields, starting today at t = 0, where t is
time measured in years. It has a choice between two different extraction profiles f and g giving the
rates of output flow, measured in barrels of oil per year. Both extraction profiles last for 10 years,
with f (t) = 10t2 − t3 and g(t) = t3 − 20t2 + 100t for t in [0, 10].

(a) Sketch the two profiles in the same coordinate system.

(b) Show that
∫ t

0 g(τ ) dτ ≥ ∫ t
0 f (τ ) dτ for all t in [0, 10].

(c) The company sells its oil at a price per unit given by p(t) = 1 + 1/(t + 1). Total
revenues from the two profiles are then given by

∫ 10
0 p(t)f (t) dt and

∫ 10
0 p(t)g(t) dt

respectively. Compute these integrals. Which of the two extraction profiles earns the higher
revenue?

6. Suppose that the inverse demand and supply curves are, respectively, P = f (Q) = 200 − 0.2Q
and P = g(Q) = 20 + 0.1Q. Find the equilibrium price and quantity, then compute the consumer
and producer surplus.

7. Suppose the inverse demand and supply curves for a particular commodity are, respectively,
P = f (Q) = 6000/(Q + 50) and P = g(Q) = Q + 10. Find the equilibrium price and quantity,
then compute the consumer and producer surplus.

10.5 Integration by Parts
Mathematicians, statisticians, and economists often need to evaluate integrals like∫

x3e2x dx, whose integrand is a product of two functions. We know that 1
4 x4 has x3 as

its derivative and that 1
2 e2x has e2x as its derivative. Yet the product 1

8 x4e2x of 1
4 x4 and

1
2 e2x certainly does not have x3e2x as its derivative. In general, because the derivative of a
product is not the product of the derivatives, the integral of a product is not the product of
the integrals.

The correct rule for differentiating a product allows us to derive an important and use-
ful rule for integrating products. The product rule for differentiation in Eq. (6.7.3) states
that

(f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x) (∗)

Now take the indefinite integral of each side in (∗), then use rule (10.1.9) stating that the
integral of a sum is the sum of integrals. The result is

f (x)g(x) =
∫

f ′(x)g(x) dx +
∫

f (x)g′(x) dx

where the constants of integration in both indefinite integrals have been left implicit.
Rearranging this last equation yields the following formula:
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∫
f (x)g′(x) dx = f (x)g(x) −

∫
f ′(x)g(x) dx (10.5.1)

At first sight, this formula does not look at all helpful. Yet the examples that follow show
how this impression is quite wrong, once one has learned to use the formula properly.

Indeed, suppose we are asked to integrate a function H(x) that can be written in the
form f (x)g′(x). By using (10.5.1), the problem can be transformed into that of integrating
f ′(x)g(x). Usually, a function H(x) can be written as f (x)g′(x) in several different ways. The
point is, therefore, to choose f and g so that it is easier to find

∫
f ′(x)g(x) dx than it is to

find
∫

f (x)g′(x) dx.

E X A M P L E 10.5.1 Use integration by parts to evaluate
∫

xex dx.

Solution: In order to use (10.5.1), we must write the integrand in the form f (x)g′(x). Let
f (x) = x and g′(x) = ex, implying that g(x) = ex. Then f (x)g′(x) = xex, and (10.5.1) gives∫

x · ex︸︷︷︸
f (x)g′(x)

dx = x · ex︸︷︷︸
f (x)g(x)

−
∫

1 · ex︸︷︷︸
f ′(x)g(x)

dx = xex −
∫

ex dx = xex − ex + C

The derivative of xex − ex + C is indeed ex + xex − ex = xex, so the integration by parts
formula (10.5.1) has given the correct answer.

An appropriate choice of f and g enabled us to evaluate the integral. Let us see what
happens if we interchange the roles of f and g, and try f (x) = ex and g′(x) = x instead.
Then g(x) = 1

2 x2. Again f (x)g′(x) = exx = xex, so, by (10.5.1),∫
ex · x︸︷︷︸

f (x)g′(x)

dx = ex · 1
2 x2︸ ︷︷ ︸

f (x)g(x)

−
∫

ex · 1
2 x2︸ ︷︷ ︸

f ′(x)g(x)

dx

In this case, the integral on the right-hand side is more complicated than the one we started
with. We conclude that this alternative choice of f and g fails to simplify the integral.

Example 10.5.1 illustrates why we must be careful about how we split the integrand.
Insights into making a good choice, if there is one, come only with practice.

Sometimes integration by parts works not by producing a simpler integral, but one that
is similar, as in part (a) of the next example.

E X A M P L E 10.5.2 Evaluate the following: (a) I = ∫
(1/x) ln x dx; and (b) J = ∫

x3e2x dx.

Solution:

(a) Choosing f (x) = 1/x and g′(x) = ln x leads nowhere. Choosing f (x) = ln x and g′(x) =
1/x instead gives

I =
∫

1
x

ln x dx =
∫

ln x · 1
x︸ ︷︷ ︸

f (x)g′(x)

dx = ln x · ln x︸ ︷︷ ︸
f (x)g(x)

−
∫

1
x

· ln x︸ ︷︷ ︸
f ′(x)g(x)

dx
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This works better because the last integral is exactly the one we started with, namely I
itself. So it must be true that I = (ln x)2 − I + C1 for some constant C1. Solving for I
yields I = 1

2 (ln x)2 + 1
2 C1. Putting C = 1

2 C1, we conclude that∫
1
x

ln x dx = 1
2
(ln x)2 + C

As always, one should check the answer by differentiating 1
2 (ln x)2 w.r.t. x.

(b) We begin by arguing rather loosely as follows. Differentiation makes x3 simpler
by reducing the power in the derivative 3x2 from 3 to 2. On the other hand, e2x

becomes about equally simple whether we differentiate or integrate it. Therefore,
we choose f (x) = x3 and g′(x) = e2x, so that integration by parts tells us to differ-
entiate f and integrate g′. This yields f ′(x) = 3x2 and we can choose g(x) = 1

2 e2x.
Therefore,

J =
∫

x3e2x dx = x3( 1
2 e2x) −

∫
(3x2)( 1

2 e2x) dx = 1
2 x3e2x − 3

2

∫
x2e2x dx (∗)

The last integral is somewhat simpler than the one we started with, because the power
of x has been reduced. Integrating by parts once more yields∫

x2e2x dx = x2( 1
2 e2x) −

∫
(2x)( 1

2 e2x) dx = 1
2 x2e2x −

∫
xe2x dx (∗∗)

Using integration by parts a third and final time gives∫
xe2x dx = x( 1

2 e2x) −
∫

1
2 e2x dx = 1

2 xe2x − 1
4 e2x + C1 (∗∗∗)

Successively inserting the results of (∗∗∗) and (∗∗) into (∗) yields:

J = 1
2 x3e2x − 3

4 x2e2x + 3
4 xe2x − 3

8 e2x + C

where C = 3C1/2. A good idea is to double-check by verifying that
dJ/dx = x3e2x.

There is a corresponding result for definite integrals. From the definition of the definite
integral and the product rule for differentiation, we have

∫ b

a

[
f ′(x)g(x) + f (x)g′(x)

]
dx =

∫ b

a

d
dx

[f (x)g(x)] dx =
b

a
f (x)g(x)

Evidently, this implies that

∫ b

a
f (x)g′(x) dx =

b

a
f (x)g(x) −

∫ b

a
f ′(x)g(x) dx (10.5.2)
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E X A M P L E 10.5.3 Evaluate
∫ 10

0 (1 + 0.4t)e−0.05t dt.

Solution: Put f (t) = 1 + 0.4t and g′(t) = e−0.05t. Then we can choose g(t) = −20e−0.05t,
so that (10.5.2) yields

∫ 10

0
(1 + 0.4t)e−0.05t dt =

10

0
(1 + 0.4t)(−20)e−0.05t −

∫ 10

0
(0.4)(−20)e−0.05t dt

= −100e−0.5 + 20 + 8
∫ 10

0
e−0.05t dt

= −100e−0.5 + 20 + 8
10

0
(−20)e−0.05t

= −100e−0.5 + 20 − 160(e−0.5 − 1)

= 180 − 260e−0.5 ≈ 22.3

E X E R C I S E S F O R S E C T I O N 1 0 . 5

1.SM Use integration by parts to evaluate the following:

(a)
∫

xe−x dx (b)
∫

3xe4x dx (c)
∫

(1 + x2)e−x dx (d)
∫

x ln x dx

2.SM Use integration by parts to evaluate the following:

(a)
∫ 1

−1
x ln(x + 2) dx (b)

∫ 2

0
x2x dx (c)

∫ 1

0
x2ex dx (d)

∫ 3

0
x
√

1 + x dx

In part (d) you should graph the integrand and decide if your answer is reasonable.

3. Use integration by parts to evaluate the following:

(a)
∫ 4

1

√
t ln t dt (b)

∫ 2

0
(x − 2)e−x/2 dx (c)

∫ 3

0
(3 − x)3x dx

4. Of course, f (x) = 1 · f (x) for any function f (x). Use this fact and integration by parts to
prove that

∫
f (x) dx = xf (x) − ∫

xf ′(x) dx. Apply this formula to f (x) = ln x. Compare with
Example 10.1.3.

5. Given ρ �= −1, show that
∫

xρ ln x dx = xρ+1

ρ + 1
ln x − xρ+1

(ρ + 1)2
+ C.

6.SM Evaluate the following integrals, for r �= 0:

(a)
∫ T

0
bte−rt dt (b)

∫ T

0
(a + bt)e−rt dt (c)

∫ T

0
(a − bt + ct2)e−rt dt
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10.6 Integration by Substitution
In this section we shall see how the chain rule for differentiation leads to an important
method for evaluating many complicated integrals. We start with a two-part example that
combines one indefinite integral with one definite integral.

E X A M P L E 10.6.1 Evaluate the integrals:

(a)
∫
(x2 + 10)50 2x dx (b)

∫ a
0 xe−cx2

dx, where c �= 0

Solution:

(a) Attempts to use integration by parts fail. Expanding (x2 + 10)50 to get a polynomial
of 51 terms, and then integrating term by term, would work in principle, but would
be extremely cumbersome. Instead, let us introduce u = x2 + 10 as a new variable.
Using differential notation, we see that du = 2x dx. Inserting these into the integral∫
(x2 + 10)50 2x dx yields

∫
u50 du. This integral is easy; in fact we have

∫
u50 du =

1
51 u51 + C. Because u = x2 + 10, it appears that∫

(x2 + 10)50 2x dx = 1
51

(x2 + 10)51 + C (∗)

To confirm this, we use the chain rule to differentiate the right-hand side of (∗). The
derivative is precisely the integrand (x2 + 10)50 2x, so (∗) is correct.

(b) First, we consider the indefinite integral
∫

xe−cx2
dx and substitute u = −cx2. Then

du = −2cx dx, and thus x dx = −du/2c. Therefore∫
xe−cx2

dx =
∫

− 1
2c

eu du = − 1
2c

eu + C = − 1
2c

e−cx2 + C

The definite integral is∫ a

0
xe−cx2

dx = − 1
2c

a

0
e−cx2 = 1

2c
(1 − e−ca2

)

In both parts of Example 10.6.1, the integrand could be written in the form f (u)u′,
where u = g(x). In part (a) we put f (u) = u50 with u = g(x) = x2 + 10. In part (b) we put
f (u) = eu with u = g(x) = −cx2. Then the integrand xe−cx2

is f (g(x))g′(x) multiplied by
the constant −1/(2c).

Let us try the same method on the more general integral∫
f (g(x))g′(x) dx

If we put u = g(x), then du = g′(x) dx, and so the integral reduces to
∫

f (u) du. Suppose
we could find an antiderivative function F(u) such that F′(u) = f (u). Then, we would have∫

f (u) du = F(u) + C, which implies that
∫

f (g(x))g′(x) dx = F(g(x)) + C.
Does this purely formal method always give the right result? To convince you that it does,

we use the chain rule to differentiate F(g(x)) + C w.r.t. x. The derivative is F′(g(x))g′(x),
which is precisely equal to f (g(x))g′(x). This confirms the following rule:
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C H A N G E O F V A R I A B L E

Suppose that g is differentiable, and that f has an indefinite integral (or
antiderivative) over the relevant range of g. Then putting u = g(x) gives∫

f (g(x))g′(x) dx =
∫

f (u) du (10.6.1)

E X A M P L E 10.6.2 Evaluate the integral
∫

8x2(3x3 − 1)16 dx.

Solution: Here we substitute u = 3x3 − 1. Then du = 9x2 dx, so 8x2 dx = 8
9 du. Hence

∫
8x2(3x3 − 1)16 dx = 8

9

∫
u16 du = 8

9
· 1

17
u17 + C = 8

153
(3x3 − 1)17 + C

The definite integral in part (b) of Example 10.6.1 can be evaluated more simply by
“carrying over” the limits of integration. We used the substitution u = −cx2. As x varies
from 0 to a, so u varies from 0 to −ca2. This allows us to write:

∫ a

0
xe−cx2

dx =
∫ −ca2

0
− 1

2c
eu du = − 1

2c
×

−ca2

0
eu = 1

2c
(1 − e−ca2

)

This method of carrying over the limits of integration works in general. In fact, correspond-
ing to the change of variable formula (10.6.1) for an indefinite integral, for the definite
integral the substitution u = g(x) leads to

∫ b

a
f (g(x))g′(x) dx =

∫ g(b)

g(a)

f (u) du (10.6.2)

The argument is simple: Provided that F′(u) = f (u), we obtain

∫ b

a
f (g(x))g′(x) dx =

b

a
F(g(x)) = F (g(b)) − F (g(a)) =

∫ g(b)

g(a)

f (u) du

E X A M P L E 10.6.3 Evaluate the integral
∫ e

1

1 + ln x
x

dx.

Solution: We try the substitution u = 1 + ln x. Then du = (1/x) dx. Also, when x = 1, then
u = 1; and when x = e, then u = 2. So, we have

∫ e

1

1 + ln x
x

dx =
∫ 2

1
u du = 1

2

2

1
u2 = 1

2
(4 − 1) = 3

2
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More Complicated Cases
The examples of integration by substitution considered so far were relatively simple. Now
we move on to some more challenging applications of this important method.

E X A M P L E 10.6.4 Assuming that x > 0, find a substitution that allows evaluation of∫
x − √

x

x + √
x

dx

Solution: Because
√

x occurs in both the numerator and the denominator, we try to simplify
the integral by substituting u = √

x. Then x = u2 and dx = 2u du, so we get∫
x − √

x

x + √
x

dx =
∫

u2 − u
u2 + u

2u du = 2
∫

u2 − u
u + 1

du

To evaluate this last integral, we use the technique introduced in Section 4.7 to perform the
polynomial division (u2 − u) ÷ (u + 1) with a remainder. We obtain∫

x − √
x

x + √
x

dx = 2
∫ (

u − 2 + 2
u + 1

)
du = u2 − 4u + 4 ln |u + 1| + C

To obtain the final answer, we replace u by
√

x in the last expression, while noting that√
x + 1 > 0 for all x. This yields∫

x − √
x

x + √
x

dx = x − 4
√

x + 4 ln
(√

x + 1
) + C

The last example shows the method that is used most frequently. We can summarize it
as follows:

A G E N E R A L M E T H O D

In order to find
∫

G(x) dx:

1. Pick out a “part” of G(x) and introduce this “part” as a new variable, u =
g(x).

2. Compute du = g′(x) dx.

3. Use the substitution u = g(x), implying that du = g′(x) dx, in order to sim-
plify, if possible, the integral

∫
G(x) dx to an integral of the form

∫
f (u) du.

4. Use ordinary integration, if possible, to find
∫

f (u) du = F(u) + C.

5. Replace u by g(x).

Then the final answer is
∫

G(x) dx = F(g(x)) + C.

At step 3 of this general method, it is crucial that the substitution u = g(x) results in
an integrand f (u) that only contains u (and du), without any remaining dependence on x.
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Probably the most common error when integrating by substitution is to replace dx by du,
rather than use the correct formula du = g′(x) dx.

Note that if one particular substitution does not work, one can always try another. But
as explained in Section 10.3, there is the possibility that, no matter how hard one looks, in
the end no substitution at all will work.

E X A M P L E 10.6.5 Evaluate the integrals:

(a)
∫

x3
√

1 + x2 dx (b)
∫ 1

0 x3
√

1 + x2 dx

Solution:

(a) We follow steps 1 to 5:

1. We pick a “part” of x3
√

1 + x2 as a new variable. Let us try u = √
1 + x2.

2. When u = √
1 + x2, then u2 = 1 + x2 and so 2u du = 2x dx, implying that u du =

x dx. Note that this is easier than differentiating u directly.

3.
∫

x3
√

1 + x2 dx = ∫
x2

√
1 + x2 x dx = ∫

(u2 − 1)uu du = ∫
(u4 − u2) du

4.
∫
(u4 − u2) du = 1

5 u5 − 1
3 u3 + C

5.
∫

x3
√

1 + x2 dx = 1
5 (

√
1 + x2 )5 − 1

3 (
√

1 + x2 )3 + C

(b) To evaluate the definite integral, we combine the results in steps 3 and 4 of part (a),
while noting that u = 1 when x = 0 and that u = √

2 when x = 1. The result is

∫ 1

0
x3

√
1 + x2 dx =

√
2

1

(
1
5

u5 − 1
3

u3
)

= 4
√

2
5

− 2
√

2
3

− 1
5

+ 1
3

= 2
15

(
√

2 + 1)

In this example the substitution u = 1 + x2 also works.

Integrating Rational Functions and Partial Fractions
In Section 4.7 we defined a rational function as the ratio P(x)/Q(x) of two polynomials.
Just occasionally economists need to integrate such functions. So we will merely give two
examples that illustrate a procedure one can use more generally. One example has already
appeared in Example 10.6.4, where a substitution transformed the integrand to the rational
function (u2 − u)/(u + 1). As explained in that example, the method of polynomial division
with a remainder that we introduced in Section 4.7 allowed this function to be simplified
so that it could be integrated directly.

That example was particularly simple because the denominator was a polynomial of
degree 1 in x. When the degree of the denominator exceeds 1, however, it is generally nec-
essary to combine polynomial division with a partial fraction expansion of the remainder.
Here is an example:

E X A M P L E 10.6.6 Evaluate the integral ∫
x4 + 3x2 − 4

x2 + 2x
dx
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Solution: We apply polynomial division to the integrand, which yields

x4 + 3x2 − 4
x2 + 2x

= x2 − 2x + 7 − 14x + 4
x2 + 2x

Integrating the first part of the right-hand side yields
∫
(x2 − 2x + 7) dx = 1

3 x3 − x2 + 7x +
C0. The last term, however, is a fraction with a denominator of degree 2. It is, however, the
product of the factors x and x + 2. To obtain an expression we can integrate, we expand this
term as the following sum of two partial fractions

14x + 4
x(x + 2)

= A
x

+ B
x + 2

(∗)

where A and B are constants to be determined. Note that the fraction is undefined for x = 0
and x = −2. For all other x, multiplying each side of the equation by the common denom-
inator x(x + 2) gives 14x + 4 = A(x + 2) + Bx, or (14 − A − B)x + 4 − 2A = 0. To make
this true for all x �= 0 and all x �= −2, where the fraction is defined, we require that both the
coefficient 14 − A − B of x and the constant 4 − 2A are 0. Solving these two simultaneous
equations gives A = 2 and B = 12. Finally, therefore, we can integrate the fourth remainder
term of the integrand to obtain∫

14x + 4
x2 + 2x

dx =
∫

2
x

dx +
∫

12
x + 2

dx = 2 ln |x| + 12 ln |x + 2| + C

Hence, the overall answer is∫
x4 + 3x2 − 4

x2 + 2x
dx = 1

3
x3 − x2 + 7x + 2 ln |x| + 12 ln |x + 2| + C

This answer, of course, should be verified by direct differentiation.

E X E R C I S E S F O R S E C T I O N 1 0 . 6

1. Use (10.6.1) to find each of the following integrals:

(a)
∫

(x2 + 1)82x dx (b)
∫

(x + 2)10 dx (c)
∫

2x − 1
x2 − x + 8

dx

2.SM Use an appropriate substitution to find each of the following integrals:

(a)
∫

x(2x2 + 3)5 dx (b)
∫

x2ex3+2 dx (c)
∫

ln(x + 2)

2x + 4
dx

(d)
∫

x
√

1 + x dx (e)
∫

x3

(1 + x2)3
dx (f)

∫
x5

√
4 − x3 dx

3. Find the following integrals:

(a)
∫ 1

0
x
√

1 + x2 dx (b)
∫ e

1

ln x
x

dx (c)
∫ 3

1

1
x2

e2/x dx (d)
∫ 8

5

x
x − 4

dx

Hint: In (d), as alternative methods to find the integral, use both: (i) integration by substitution;
(ii) expansion in partial fractions, as in Example 10.6.6.
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4. For x > 2, solve the equation
∫ x

3

2t − 2
t2 − 2t

dt = ln
(

2
3

x − 1
)

.

5. Show that
∫ t1

t0

S′(x(t))ẋ(t) dt = S(x(t1)) − S(x(t0)).

6.SM [HARDER] Calculate the following integrals:

(a)
∫ 1

0
(x4 − x9)(x5 − 1)12 dx (b)

∫
ln x√

x
dx (c)

∫ 4

0

1√
1 + √

x
dx

7.SM [HARDER] Calculate the following integrals:

(a)
∫ 4

1

e
√

x

√
x(1 + e

√
x)

dx (b)
∫ 1/3

0

1
ex + 1

dx (c)
∫ 41

8.5

1√
2x − 1 − 4√2x − 1

dx

Hints: For (b), substitute t = e−x. For (c), substitute z4 = 2x − 1.

8. [HARDER] Use one substitution that eliminates both fractional exponents in x1/2 and x1/3 in order
to find the integral

I =
∫

x1/2

1 − x1/3
dx

9. [HARDER] Use the method of partial fractions suggested in Example 10.6.6 to write

f (x) = cx + d
(x − a)(x − b)

as a sum of two fractions. Then use the result to integrate:

(a)
∫

x
(x + 1)(x + 2)

dx; (b)
∫

1 − 2x
x2 − 2x − 15

dx.

10.7 Improper Integrals
Infinite Intervals of Integration
In part (b) of Example 10.6.1, we proved that if c �= 0, then

∫ a

0
xe−cx2

dx = 1
2c

(1 − e−ca2
)

Now let a tend to infinity. Provided that c > 0, the right-hand expression tends to 1/(2c).
This makes it seem natural to write∫ ∞

0
xe−cx2

dx = 1
2c
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In statistics and economics such integrals over an infinite interval appear quite often. In
general, suppose f is a function that is continuous for all x ≥ a. Then

∫ b
a f (x) dx is defined for

each b ≥ a. We can then let b tend to infinity, and consider the associated improper integral∫ ∞
a f (x) dx. In case

∫ b
a f (x) dx tends to a finite limit as b → ∞, we say that it converges,

and that f is integrable over [a, ∞). Moreover, in this case one has

∫ ∞

a
f (x) dx = lim

b→∞

∫ b

a
f (x) dx (10.7.1)

If there is no finite limit, however, the improper integral is said to diverge.
Analogously, in case f is continuous for all x ≤ b, we define

∫ b

−∞
f (x) dx = lim

a→−∞

∫ b

a
f (x) dx (10.7.2)

If this limit exists, the improper integral is said to converge. Otherwise, it diverges.
In case f (x) ≥ 0 in [a, ∞), we interpret the integral (10.7.1) as the area below the graph

of f over the infinite interval [a, ∞). Here is an example:

E X A M P L E 10.7.1 The exponential distribution in statistics is defined for all x ≥ 0 by the density
function f (x) = λe−λx, where λ denotes a positive constant. The area below the graph of f
over [0, ∞) is illustrated in Fig. 10.7.1. Show that this area is equal to 1.

Solution: For b > 0, the area below the graph of f over [0, b] is equal to

∫ b

0
λe−λx dx =

b

0

(−e−λx) = −e−λb + 1

As b → ∞, so −e−λb + 1 approaches 1. Therefore,

∫ ∞

0
λe−λx dx = lim

b→∞

∫ b

0
λe−λx dx = lim

b→∞
(−e−λb + 1

) = 1

E X A M P L E 10.7.2 For a > 1, show that ∫ ∞

1

1
xa

dx = 1
a − 1

(∗)

Then study the improper integral in case a = 1 and in case a < 1.

Solution: For all a �= 1 and b > 1, one has

∫ b

1

1
xa

dx =
∫ b

1
x−a dx =

b

1

1
1 − a

x1−a = 1
1 − a

(b1−a − 1) (∗∗)
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f (x) � λe �λx

λ

A

y

x

Figure 10.7.1 Area A has an unbounded
base, but the height decreases to 0 so
rapidly that the total area is 1.

2

1

1 2 3

f (x) � 1�x

A

y

x

Figure 10.7.2 “A = ∫ ∞
1 (1/x) dx = ∞.”

The function 1/x does not approach 0
sufficiently fast, so the improper
integral diverges.

In case a > 1, one has b1−a = 1/ba−1 → 0 as b → ∞. So (∗) follows from (∗∗) by
letting b → ∞.

In case a = 1, the right-hand side of (∗∗) is undefined. Nevertheless,
∫ b

1 (1/x) dx =
ln b − ln 1 = ln b, which tends to ∞ as b tends to ∞. So

∫ ∞
1 (1/x) dx diverges to +∞,

as suggested by Fig. 10.7.2.
In case a < 1, the last expression in (∗∗) tends to ∞ as b tends to ∞. So the integral

diverges in this case also.

If both limits of integration are infinite, the improper integral of a continuous function
f on (−∞, ∞) is defined by

∫ ∞

−∞
f (x) dx =

∫ 0

−∞
f (x) dx +

∫ ∞

0
f (x) dx (10.7.3)

If both integrals on the right-hand side converge, the improper integral
∫ ∞
−∞ f (x) dx is said

to converge; otherwise, it diverges. Instead of using 0 as the point of subdivision, one could
use an arbitrary fixed real number c. The value assigned to the integral will always be the
same, provided that the integral does converge.

It is important to note that definition (10.7.3) requires both integrals on the right-hand
side to converge. Note in particular that

lim
b→∞

∫ b

−b
f (x) dx (10.7.4)

is not the definition of
∫ +∞
−∞ f (x) dx. Exercise 4 provides an example in which the inte-

gral (10.7.3) coverges, yet the integral in (10.7.4) diverges because
∫ 0
−b f (x) dx → −∞ as

b → ∞, and
∫ b

0 f (x) dx → ∞ as b → ∞. It follows that (10.7.4) is an unacceptable defi-
nition of

∫ ∞
−∞ f (x) dx, whereas (10.7.3) is acceptable.

The following result is very important in statistics. It is also related to Exercise 12.
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E X A M P L E 10.7.3 For c > 0, prove that the following integral converges, and find its value:∫ +∞

−∞
xe−cx2

dx

Solution: In the introduction to this section, we recalled part (b) of Example 10.6.1 showing
that

∫ ∞
0 xe−cx2

dx = 1/2c. In the same way we see that∫ 0

−∞
xe−cx2

dx = lim
a→−∞

∫ 0

a
xe−cx2

dx = lim
a→−∞

0

a
− 1

2c
e−cx2 = − 1

2c

It follows that ∫ ∞

−∞
xe−cx2

dx = − 1
2c

+ 1
2c

= 0 (10.7.5)

Another way to show this is to note that the function f (x) = xe−cx2
satisfies f (−x) = −f (x)

for all x, and so its graph is symmetric about the origin. So for all a ≤ 0 one has∫ 0
a xe−cx2

dx = − ∫ −a
0 xe−cx2

dx. Therefore the integral
∫ 0
−∞ xe−cx2

dx must also converge
to the limit −1/2c.

Integrals of Unbounded Functions
We turn next to improper integrals where the integrand is not bounded. Consider first the
function f (x) = 1/

√
x defined for x ∈ (0, 2], with graph shown in Fig. 10.7.3. Note that

f (x) → ∞ as x → 0+. The function f is continuous in the interval [h, 2] for any fixed num-
ber h in (0, 2). So the definite integral of f over the interval [h, 2] exists, and in fact∫ 2

h

1√
x

dx =
2

h
2
√

x = 2
√

2 − 2
√

h

2

3

1

1 2

f (x) � 1��x

h

y

x

Figure 10.7.3 f (x) = 1/
√

x

The limit of this expression as h → 0+ is 2
√

2. Then, by definition,∫ 2

0

1√
x

dx = 2
√

2
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The improper integral is said to converge in this case, and the area below the graph of f
over the interval (0, 2] is 2

√
2. The area over the interval (h, 2] is also shown in Fig. 10.7.3.

As h → 0 the shaded area becomes unbounded, but the graph of f approaches the y-axis so
quickly that the total area is finite.

More generally, suppose that f is a continuous function in the interval (a, b], but f (x) is
not defined at x = a. Then we can define

∫ b

a
f (x) dx = lim

h→0+

∫ b

a+h
f (x) dx (10.7.6)

provided the limit exists, in which case the improper integral of f is said to converge. If
f (x) ≥ 0 in (a, b], we can identify the integral as the area under the graph of f over the
interval (a, b].

In the same way, if f is not defined at b, we can define

∫ b

a
f (x) dx = lim

h→0+

∫ b−h

a
f (x) dx (10.7.7)

provided the limit exists, in which case the improper integral of f is said to converge.
Next, suppose that f is continuous in (a, b), but f may not even be defined at a or b.

For instance, suppose that f (x) → −∞ as x → a+ and that f (x) → +∞ as x → b−. In
this case, let c be an arbitrary fixed number in (a, b). Then, provided that the two inte-
grals

∫ c
a f (x) dx and

∫ b
c f (x) dx both converge, we say that f is integrable in (a, b), and

define

∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx (10.7.8)

Here, neither the convergence of the integral nor its value depends on the choice of c from
(a, b). On the other hand, if either of the integrals on the right-hand side of (10.7.8) does
not converge, the left-hand side is not well defined.

A Test for Convergence
The following convergence test for integrals is occasionally useful because it does not
require that the integral be evaluated.
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Suppose that for all x ≥ a, the two functions f and g are continuous, with
|f (x)| ≤ g(x). If

∫ ∞
a g(x) dx converges, then

∫ ∞
a f (x) dx also converges, and∣∣∣∣

∫ ∞

a
f (x) dx

∣∣∣∣ ≤
∫ ∞

a
g(x) dx

Considering the case in which f (x) ≥ 0, Theorem 10.7.1 can be interpreted as follows:
If the area below the graph of g is finite, then the area below the graph of f is finite as well,
because at no point in [a, ∞) does the graph of f lie above the graph of g. This result seems
quite plausible, especially after drawing a suitable figure, so we shall not give an analytical
proof. A corresponding theorem holds for the case where the lower limit of integration is
−∞. Also, similar comparison tests can be proved for unbounded functions defined on
bounded intervals.

E X A M P L E 10.7.4 Integrals of the form ∫ ∞

t0

U(c(t))e−αt dt (∗)

often appear in economic growth theory. Here, c(t) denotes consumption at time t, whereas
U is an instantaneous utility function, and α is a positive discount rate. Suppose that there
exist numbers M and β, with β < α, such that

|U(c(t))| ≤ Meβt (∗∗)

for all t ≥ t0 and for each possible consumption level c(t) at time t. Thus, the absolute value
of the utility of consumption is growing at a rate less than the discount rate α. Prove that in
this case the utility integral (∗) converges.

Solution: From (∗∗), we have
∣∣U(c(t))e−αt

∣∣ ≤ Me−(α−β)t for all t ≥ t0. Moreover,∫ T

t0

Me−(α−β)t dt =
T

t0

− M
α − β

e−(α−β)t = M
α − β

[
e−(α−β)t0 − e−(α−β)T]

Because α − β > 0, the last expression tends to [M/(α − β)] e−(α−β)t0 as T → ∞. From
Theorem 10.7.1 it follows that (∗) converges.

E X A M P L E 10.7.5 The function f (x) = e−x2
is extremely important in statistics. When multiplied by

the particular constant 1/
√

π , it is the density function associated with a Gaussian, or nor-
mal, distribution. We want to show convergence of the improper integral∫ +∞

−∞
e−x2

dx (∗)
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Recall from Section 10.1 that the indefinite integral of f (x) = e−x2
cannot be expressed in

terms of “elementary” functions. Yet, because f (x) = e−x2
is symmetric about the y-axis, it

follows that
∫ ∞
−∞ e−x2

dx = 2
∫ ∞

0 e−x2
dx. So it suffices to prove that

∫ ∞
0 e−x2

dx converges.
To show this, subdivide the interval of integration so that

∫ ∞

0
e−x2

dx =
∫ 1

0
e−x2

dx +
∫ ∞

1
e−x2

dx (∗∗)

Of course,
∫ 1

0 e−x2
dx presents no problem because it is the integral of a continuous function

over a bounded interval. On the other hand, for x ≥ 1, one has x2 ≥ x and so 0 ≤ e−x2 ≤ e−x.
Now

∫ ∞
1 e−x dx converges (to 1/e), so according to Theorem 10.7.1, the integral

∫ ∞
1 e−x2

dx
must also converge. From (∗∗), it follows that

∫ ∞
0 e−x2

dx converges. Thus, the integral
(∗) does converge, but we have not found its value. In fact, more advanced techniques of
integration are used in FMEA to show that

∫ +∞

−∞
e−x2

dx = √
π (10.7.9)

E X E R C I S E S F O R S E C T I O N 1 0 . 7

1. Determine the following integrals, if they converge. Indicate those that diverge.

(a)
∫ ∞

1

1
x3

dx (b)
∫ ∞

1

1√
x

dx (c)
∫ 0

−∞
ex dx (d)

∫ a

0

x√
a2 − x2

dx, where a > 0

2. In statistics, the uniform, or rectangular, distribution on the interval [a, b] is described by the
density function f defined for all x by f (x) = 1/(b − a) for x ∈ [a, b], and f (x) = 0 for x �∈ [a, b].
Find the following:

(a)
∫ +∞

−∞
f (x) dx (b)

∫ +∞

−∞
xf (x) dx (c)

∫ +∞

−∞
x2f (x) dx

3.SM In connection with the exponential distribution defined in Example 10.7.1, find the
following:

(a)
∫ ∞

0
xλe−λx dx (b)

∫ ∞

0

(
x − 1

λ

)2

λe−λx dx (c)
∫ ∞

0

(
x − 1

λ

)3

λe−λx dx

The three numbers you obtain are called respectively the expectation, the variance, and the third
central moment of the exponential distribution.

4. Prove that
∫ +∞
−∞ x/(1 + x2) dx diverges, but that limb→∞

∫ b
−b x/(1 + x2) dx converges.

5.SM The function f is defined for all x > 0 by f (x) = (ln x)/x3.

(a) Find the maximum and minimum points of f , if there are any.

(b) Examine the convergence of
∫ 1

0 f (x) dx and
∫ ∞

1 f (x) dx.
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6. Use Theorem 10.7.1 to prove the convergence of
∫ ∞

1

1
1 + x2

dx.

7.SM Show that
∫ 3

−2

(
1√

x + 2
+ 1√

3 − x

)
dx = 4

√
5.

8. The integral z = ∫ ∞
0 e−rsD(s) ds represents the present discounted value, at a constant interest

rate r, of the time-dependent stream of depreciation allowances D(s), defined for all s ≥ 0. Find
z as a function of τ in the following two cases:

(a) constant depreciation with D(s) = 1/τ for 0 ≤ s ≤ τ , and D(s) = 0 for s > τ ;

(b) straight-line depreciation D(s) = 2(τ − s)/τ 2 for 0 ≤ s ≤ τ , and D(s) = 0 for s > τ .

9. Suppose you evaluate
∫ +1
−1 (1/x2) dx by using the definition of the definite integral without think-

ing carefully. Show that you get a negative answer even though the integrand is never negative.
What has gone wrong?

10. Prove that the integral
∫ 1

0 (ln x/
√

x) dx converges and find its value. (Hint: See part (b) of Exer-
cise 10.6.6.)

11. Find the integral Ik =
∫ ∞

1

(
k
x

− k2

1 + kx

)
dx, where k is a positive constant. Then find the limit

of Ik as k → ∞, if it exists.

12.SM [HARDER] In statistics, the normal or Gaussian density function with mean μ and variance σ 2 is

defined by f (x) = 1

σ
√

2π
exp

[
− (x − μ)2

2σ 2

]
for all real x.7 Prove that:

(a)
∫ +∞
−∞ f (x) dx = 1 (b)

∫ +∞
−∞ xf (x) dx = μ (c)

∫ +∞
−∞ (x − μ)2f (x) dx = σ 2

(Hint: Use the substitution u = (x − μ)/
√

2σ , together with Eqs (10.7.9) and (10.7.5).)

R E V I E W E X E R C I S E S

1. Find the following integrals:

(a)
∫

(−16) dx (b)
∫

55 dx (c)
∫

(3 − y) dy (d)
∫

(r − 4r1/4) dx

(e)
∫

x8 dx (f)
∫

x2√x dx (g)
∫

1
p5

dp (h)
∫

(x3 + x) dx

2. Find the following integrals:

(a)
∫

2e2x dx (b)
∫

(x − 5e
2
5 x

) dx (c)
∫

(e−3x + e3x) dx (d)
∫

2
x + 5

dx

7 The formula for this function, along with its bell-shaped graph and a portrait of its inventor Carl
Friedrich Gauss (1777–1855), all appeared on the German 10 Deutsche mark banknote that was
used between 1991 and 2001, in the decade before the euro currency started to circulate instead.



�

� �

�

C H A P T E R 1 0 / R E V I E W E X E R C I S E S 397

3. Evaluate the following integrals:

(a)
∫ 12

0
50 dx (b)

∫ 2

0
(x − 1

2
x2) dx (c)

∫ 3

−3
(u + 1)2 du

(d)
∫ 5

1

2
z

dz (e)
∫ 12

2

3
t + 4

dt (f)
∫ 4

0
v
√

v2 + 9 dv

4.SM Find the following integrals:

(a)
∫ ∞

1

5
x5

dx (b)
∫ 1

0
x3(1 + x4)4 dx (c)

∫ ∞

0

−5t
et

dt (d)
∫ e

1
(ln x)2 dx

(e)
∫ 2

0
x2

√
x3 + 1 dx (f)

∫ 0

−∞
e3z

e3z + 5
dz (g)

∫ e/2

1/2
x3 ln(2x) dx (h)

∫ ∞

1

e−√
x

√
x

dx

5.SM Find the following integrals:

(a)
∫ 25

0

1

9 + √
x

dx (b)
∫ 7

2
t
√

t + 2 dt (c)
∫ 1

0
57x2 3

√
19x3 + 8 dx

6. Find F′(x) if:

(a) F(x) =
∫ x

4

(√
u + x√

u

)
du (b) F(x) =

∫ x

√
x

ln u du.

7. Let C(Y) be a consumption function for which the marginal propensity to consume satisfies
C′(Y) = 0.69 for all Y . Given that C(0) = 1000, find C(Y).

8. In manufacturing a product, the marginal cost of producing x units is C′(x) = αeβx + γ , with
β �= 0, whereas fixed costs are C0. Find the total cost function C(x).

9. Suppose that f and g are two continuous functions defined on [−1, 3] for which one has

∫ 3

−1
[f (x) + g(x)] dx = 6 and

∫ 3

−1
[3f (x) + 4g(x)] dx = 9

Find
∫ 3

−1
[f (x) + 2g(x)] dx.

10.SM In the following two cases, the inverse demand curve is f (Q) and the inverse supply curve is g(Q).
In each case, find the equilibrium price and quantity, then calculate the consumer and producer
surplus.

(a) f (Q) = 100 − 0.05Q and g(Q) = 10 + 0.1Q.

(b) f (Q) = 50
Q + 5

and g(Q) = 4.5 + 0.1Q.

11.SM Suppose that f is defined for t > 0 by f (t) = 4(ln t)2/t.

(a) Find f ′(t) and f ′′(t).

(b) Find possible local extreme points, and sketch the graph of f .

(c) Calculate the area below the graph of f over the interval
[
1, e2

]
.
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12. As discussed in Section 10.4, assume that a population of n individuals has an income density
function f (r) = (1/m)e−r/m for r in [0, ∞), where m is a positive constant.

(a) Show that m is the mean income.

(b) Suppose the demand function is D(p, r) = ar − bp. Compute the total demand x(p) when
f (r) is the income density function.
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T O P I C S I N F I N A N C E
A N D D Y N A M I C S

I can calculate the motions of heavenly bodies, but not the madness of people.
—Isaac Newton1

This chapter begins by treating some basic topics in the mathematics of finance. The main
concern is how the values of investments and loans at different times are affected by inter-

est rates. Sections 2.2 and 4.9 have already discussed some elementary calculations of interest
compounded at different constant rates. This chapter goes a step further and considers topics
like alterations in the frequency at which interest accrues. It also discusses in turn effective rates
of interest, continuously compounded interest, present values of future claims, annuities, mort-
gages, and the internal rate of return on investment projects. Some key calculations involve the
summation formula for geometric series, which we therefore derive.

In the last three sections of the chapter we give a brief introduction to some simple dynamic
models. In Section 11.8 we consider difference equations. They are followed by differential
equations in Sections 11.9 and 11.10.

11.1 Interest Periods and Effective Rates
In advertisements that offer bank loans or savings accounts, interest is usually quoted as
an annual rate, also called a nominal rate, even if interest actually interest accrues more
frequently than once per year. The interest period is the time that elapses between successive
dates when interest is added to the account. For some bank accounts the interest period is
one year, but it has become increasingly common for financial institutions to offer other
interest schemes. For instance, some bank accounts add interest daily, some others at least
monthly. If a bank offers 1.5% annual rate of interest with interest payments each month,
then 1

12 × 1.5% = 0.125% of the capital accrues at the end of each month. This illustrates

1 Attributed. It is claimed that he said this in 1720 soon after losing a significant part of his financial
wealth during the bursting of what was later known as the South Sea bubble.
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how the annual rate must be divided by the number of interest periods to get the periodic
rate—that is, the rate of interest per period.

Suppose a principal (or capital) of S0 yields interest at the rate p% per period, for example
one year. As explained in Section 2.2, after t periods it will have increased to the amount
S(t) = S0 (1 + r)t , where r = p/100, which is p%. Each period the principal increases by
the factor 1 + r.

The formula assumes that the interest is added to the principal at the end of each period.
Suppose that the annual interest rate is p%, but that interest is paid biannually (that is, twice
a year) at the rate 1

2 p/%. Then after half a year the principal will have increased to

S0 + S0
p/2
100

= S0

(
1 + r

2

)
This illustrates how the principal increases by the factor 1 + r/2 each half year. After two
periods, namely one year, it will have increased to S0(1 + r/2)2, and after t whole years, to

S0

(
1 + r

2

)2t

Note that a biannual interest payment at the rate 1
2 r is better for a lender than an annual

interest payment at the rate r. This is because (1 + 1
2 r)2 = 1 + r + 1

4 r2 > 1 + r.
More generally, suppose that interest at the rate p/n% is added to the principal at n dif-

ferent times distributed evenly throughout the year. For example, n = 4 if interest is added
quarterly, n = 12 if it is added monthly, etc. Then, the principal will be multiplied by a
factor (1 + r/n)n each year. After t years, the principal will have increased to

S0

(
1 + r

n

)nt
(11.1.1)

Example 11.2.3 shows that a greater n leads to interest accruing faster to the lender.

E X A M P L E 11.1.1 A deposit of £5 000 is put into an account earning interest at the annual rate of 9%,
with interest paid quarterly. How much will there be in the account after eight years?

Solution: The periodic rate r/n is 0.09/4 = 0.0225 per quarter. The number of quarters in
eight years is 4 · 8 = 32. So formula (11.1.1) gives:

5000(1 + 0.0225)32 ≈ 10 190.52

E X A M P L E 11.1.2 How long will it take for the deposit of £5 000 in Example 11.1.1 to increase to
£15 000?

Solution: After t quarterly payments the account will grow to 5000(1 + 0.0225)t pounds.
This reaches £15 000 when 1.0225t = 3. Taking the natural logarithm of each side gives
the equation t ln 1.0225 = ln 3, so

t = ln 3
ln 1.0225

≈ 49.37

So it takes approximately 49.37 quarterly periods, or approximately 12 years and four
months, for the account to increase to £15 000.
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Effective Rate of Interest
A consumer who needs a loan may receive different offers from several competing financial
institutions. It is therefore important to know how to compare various offers. The concept
of effective interest rate is often used in making such comparisons.

Consider a loan which implies an annual interest rate of 9% with interest at the rate
9/12 = 0.75% added 12 times a year. If no interest is paid in the meantime, after one year
an initial principal of S0 will have grown to a debt of S0(1 + 0.09/12)12 ≈ S0 · 1.094. In
fact, as long as no interest is paid, the debt will grow at a constant proportional rate that
is (approximately) 9.4% per year. For this reason, we call 9.4% the effective yearly rate.
More generally:

E F F E C T I V E Y E A R L Y R A T E

When interest is added n times during the year at the rate r/n per period, then
the effective yearly rate, R, is defined as

R =
(

1 + r
n

)n − 1 (11.1.2)

The effective yearly rate is independent of the amount S0. For a given value of r > 0, it
is increasing in n, as shown in Example 11.2.3.

E X A M P L E 11.1.3 What is the effective yearly rate R corresponding to an annual interest rate of 9%
with interest compounded: (a) each quarter; (b) each month?

Solution:

(a) Applying formula (11.1.2) with r = 0.09 and n = 4, the effective rate is

R =
(

1 + 0.09
4

)4

− 1 = (1 + 0.0225)4 − 1 ≈ 0.0931 or 9.31%

(b) In this case r = 0.09 and n = 12, so the effective rate is

R =
(

1 + 0.09
12

)12

− 1 = (1 + 0.0075)12 − 1 ≈ 0.0938 or 9.38%

A typical case in which we can use the effective rate of interest to compare different
financial offers is the following.

E X A M P L E 11.1.4 When investing in a savings account, which of the following offers are better:
(i) 5.9% with interest paid quarterly; or (ii) 6% with interest paid twice a year?
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Solution: Using formula (11.1.2), the effective rates for the two offers are, respectively:

R = (1 + 0.059/4)4 − 1 ≈ 0.0603 and R = (1 + 0.06/2)2 − 1 = 0.0609

The second offer is, therefore, better for the saver.

In many countries there is an official legal definition of effective interest rate which takes
into account different forms of fixed or “closing” costs incurred when initiating a loan. The
effective rate of interest is then defined as the rate which implies that the combined present
value of all the costs is equal to the size of the loan. This is the internal rate of return, as
defined in Section 11.7; present values are discussed in Section 11.3.

E X E R C I S E S F O R S E C T I O N 1 1 . 1

1. (a) What will be the size of an account after five years, if $8 000 is invested at an annual interest
rate of 5% compounded: (i) monthly; or (ii) daily (with 365 days in a year)?

(b) How long does it take for the investment to double with monthly compounding?

2. An investment of $5 000 earns interest at 3% per year.

(a) What will this amount have grown to after ten years?

(b) How long does it take for the investment to triple?

3. What annual percentage rate of growth is needed for a country’s GDP to become 100 times as large
after 100 years? (Use the approximation 100√100 ≈ 1.047).

4. An amount of €2 000 is invested at 7% per year.

(a) What is the balance in the account after (i) two years; and (ii) ten years?

(b) How long does it take, approximately, for the balance to reach €6 000?

5. Calculate the effective yearly interest if the nominal rate is 17% and interest is added:
(a) biannually; (b) quarterly; or (c) monthly.

6. Which terms are preferable for a borrower: (a) an annual interest rate of 21.5%, with interest paid
yearly; or (b) an annual interest rate of 20%, with interest paid quarterly?

7. A sum of $12 000 is invested at 4% annual interest.

(a) What will this amount have grown to after 15 years?

(b) How much should you have deposited in a bank account five years ago in order to have $50 000
today, given that the interest rate has been 5% per year over the period?

8. A credit card is offered with interest on the outstanding balance charged at 2% per month. What
is the effective annual rate of interest?
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9. What is the nominal yearly interest rate if the effective yearly rate is 28% and interest is com-
pounded quarterly?

11.2 Continuous Compounding
We saw in the previous section that if interest at the rate r/n is added to the principal S0 at n
different times during the year, the principal will be multiplied by a factor (1 + r/n)n each
year. After t years, the principal will have increased to S0(1 + r/n)nt. In practice, there is a
limit to how frequently interest can be added to an account. However, let us examine what
happens to the expression as the annual frequency n tends to infinity. We put r/n = 1/m.
Then n = mr and so

S0

(
1 + r

n

)nt = S0

(
1 + 1

m

)mrt

= S0

[(
1 + 1

m

)m]rt

(11.2.1)

As n → ∞ with r fixed, so m = n/r → ∞. Then, according to Example 7.11.2, we have
(1 + 1/m)m → e. Hence, the expression in (11.2.1) approaches S0ert as n tends to infinity,
implying that interest is compounded more and more frequently. In the limit, we talk about
continuous compounding of interest:

C O N T I N U O U S C O M P O U N D I N G O F I N T E R E S T

If the annual interest is r and there is continuous compounding of interest, then
after t years an initial principal of S0 will have increased to

S(t) = S0ert (11.2.2)

E X A M P L E 11.2.1 Suppose the sum of £5 000 is invested in an account earning interest at an annual
rate of 9%. What is the balance after eight years, if interest is compounded continuously?

Solution: Using formula (11.2.2) with r = 9/100 = 0.09, we see that the balance is

5000e0.09·8 = 5000e0.72 ≈ 10 272.17

This is more than in the case of quarterly compounding studied in Example 11.1.1.

If S(t) = S0ert as in (11.2.2), then applying formula (6.10.2) gives S′(t) = S0rert =
rS(t). It follows that S′(t)/S(t) = r. Using the terminology introduced in Section 6.4:

With continuous compounding of interest at the rate r, the principal increases at the con-
stant relative rate r, meaning that S′(t)/S(t) = r.
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From Eq. (11.2.2), we infer that S(1) = S0er, so that the principal increases by the factor
er during the first year. In general, S(t + 1) = S0er(t+1) = S0erter = S(t)er. Hence:

With continuous compounding of interest at the rate r, the principal increases each year by
a fixed factor er.

Comparing Different Interest Periods
Given any fixed interest rate of p% = 100r per year, Example 11.2.3 shows that continuous
compounding of interest is best for the lender. For comparatively low interest rates, how-
ever, and when the number of years of compounding is not too large, the difference between
annual and continuous compounding of interest is quite small.

E X A M P L E 11.2.2 Let K denote the amount to which one dollar increases in the course of a year when
the interest rate is 8% per year. Find K when interest is added: (a) yearly; (b) biannually;
or (c) continuously.

Solution: In this case r = 8/100 = 0.08, and we obtain:

(a) K = 1.08

(b) K = (1 + 0.08/2)2 = 1.042 = 1.0816

(c) K = e0.08 ≈ 1.08329

If we increase either the interest rate or the number of years over which interest accumu-
lates, then the difference between yearly and continuous compounding of interest increases.

In the previous section the effective yearly interest was defined by the formula
(1 + r/n)n − 1, when interest is compounded n times a year with rate r/n per period.
Letting n approach infinity in this formula, we see that the expression approaches

er − 1 (11.2.3)

This is called the effective interest rate with continuous compounding at the annual rate r.
Part (d) of the following Example 11.2.3 shows, in particular, that continuous compound-

ing at interest rate r is more profitable for the lender than interest payments n times a year
at interest rate r/n.

E X A M P L E 11.2.3

(a) Define the function h(u) = ln(1 + u) − u/(1 + u) for all u ≥ 0. Show that, for all u >

0, one has: (i) h′(u) > 0; (ii) h(u) > 0.

(b) Given any r > 0, consider the function defined by g(x) = (1 + r/x)x for all x > 0. Use
logarithmic differentiation to show that

g′(x) = g(x)
[

ln(1 + r/x) − r/x
1 + r/x

]
> 0

(c) Prove that (1 + r/n)n increases strictly with the natural number n.

(d) Prove that (1 + r/n)n < er for n = 1, 2, . . ..
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Solution:

(a) (i) We have h′(u) = 1
1 + u

− (1 + u) − u
(1 + u)2

= (1 + u) − 1
(1 + u)2

= u
(1 + u)2

> 0.

(ii) Also h(0) = h′(0) = 0, so h(u) > 0 for all u > 0.

(b) ln g(x) = x ln(1 + r/x), so

d
dx

[ln g(x)] = ln(1 + r/x) − x(r/x2)

1 + r/x
= ln(1 + r/x) − r/x

1 + r/x
= h(r/x) > 0

(c) Because (1 + r/n)n = g(n) > 0 and ln g(x) is strictly increasing in x for x > 0, it fol-
lows that (1 + r/n)n is strictly increasing in n.

(d) The argument we used to justify Eq. (11.2.2) shows, in particular, that (1 + r/n)n → er

as n → ∞. It follows from part (c) that (1 + r/n)n < er for n = 1, 2, . . ..

E X E R C I S E S F O R S E C T I O N 1 1 . 2

1. (a) How much does $8 000 grow to after five years if the annual interest rate is 5%, with contin-
uous compounding?

(b) How long does it take before the initial amount has doubled?

2. An amount $1 000 earns interest at 5% per year. What will this amount have grown to after:
(a) ten years, and (b) 50 years, when interest is compounded: (i) monthly, or (ii) continuously?

3. (a) Find the effective rate corresponding to an annual rate of 10% compounded continuously.

(b) What is the maximum amount of compound interest that can be earned at an annual rate of
10%?

4. The value v0 of a new car depreciates continuously at the annual rate of 10%, implying that its
value after t years is v(t) = v0e−δt where δ = 0.1. How many years does it take for the car to lose
90% of its original value?

5. The value of a machine depreciates continuously at the annual rate of 6%. How many years will
it take for the value of the machine to halve?

11.3 Present Value
The sum of $1 000 in your hand today is worth more than $1 000 to be received at some
date in the future. One important reason is that you can invest the $1 000 and hope to
earn some interest or other positive return. Another reason is that if prices are expected
to increase due to inflation, then $1 000 at some future date will buy less then than $1 000
does today.
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If the interest rate is 11% per year, then after one year the original $1 000 will have
grown to the amount 1000(1 + 11/100) = 1110, and after six years, it will have grown
to 1000(1 + 11/100)6 = 1000 · (1.11)6 ≈ 1870. This shows that, at the interest rate 11%
per year, $1 000 now has the same value as $1 110 next year, or $1 870 in six years, time.
Accordingly, if the amount $1 110 is due for payment 1 year from now and the interest rate
is 11% per year, then the present value of this amount is $1 000. Because $1 000 is less
than $1 110, we often speak of $1 000 as the present discounted value (or PDV) of $1 110
next year. The ratio 1000/1110 = 1/(1 + 11/100) ≈ 0.9009 is called the (annual) discount
factor, whose reciprocal 1.11 equals one plus the discount rate. This definition makes the
discount rate equal to the interest rate of 11%. Similarly, if the interest rate is 11% per year,
then the PDV of $1 870 due six years from now is $1 000. Again, the ratio 1000/1 870 ≈ 0.53
is called the discount factor, this time for money due in six years, time.

Suppose that an amount K is due for payment t years after the present date. What is
the present value when the interest rate is p% per year? Equivalently, how much must be
deposited today earning p% annual interest in order to have the amount K after t years? If
interest is paid annually, an amount A will have increased to A(1 + p/100)t after t years,
so that we need A(1 + p/100)t = K. Thus, A = K(1 + p/100)−t = K(1 + r)−t, where
r = p/100. Here the annual discount factor is (1 + r)−1, and (1 + r)−t is the discount
factor appropriate for t years. But if interest is compounded continuously, then the amount
A will have increased to Aert after t years. Hence, Aert = K, or A = Ke−rt. Here e−rt is the
discount factor. To summarize:

P R E S E N T D I S C O U N T E D V A L U E

Suppose that the interest or discount rate is p% per year. Let r denote p/100.
Then the present discounted value, or PDV, of an amount K that is payable in t
years is:

K(1 + r)−t with annual interest payments (11.3.1)

Ke−rt with continuous compounding of interest (11.3.2)

E X A M P L E 11.3.1 Find the present value of $100 000 which is due for payment after 15 years, if the
interest rate is 6% per year, compounded: (a) annually; or (b) continuously.

Solution:

(a) Using Eq. (11.3.1), the present value is 100 000(1 + 0.06)−15 ≈ 41 726.51.

(b) Using Eq. (11.3.2), the dollar PDV is 100 000e−0.06·15 = 100 000e−0.9 ≈ 40 656.97.

As expected, the present value with continuous compounding is smaller because capital
increases fastest with continuous compounding of interest.
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E X A M P L E 11.3.2 (When to Harvest a Tree?). Consider a tree that is planted at time t = 0. Let P(t)
denote its current market value at time t, where P(t) is differentiable with P(t) > 0 for all
t ≥ 0. Assume that the interest rate is 100r% per year, compounded continuously.

(a) At what time t∗ should this tree be cut down in order to maximize its present value?

(b) The optimal cutting time t∗ depends on the interest rate r. Find dt∗/dr.

Solution:

(a) The present value is f (t) = P(t)e−rt, whose derivative is

f ′(t) = P′(t)e−rt + P(t)(−r)e−rt = e−rt [P′(t) − rP(t)
]

(∗)

A necessary condition for t∗ > 0 to maximize f (t) is that f ′(t∗) = 0. This occurs when

P′(t∗) = rP(t∗) (∗∗)

The tree, therefore, should be cut down at a time t∗ when the relative rate of increase in
the value of the tree is precisely equal to the interest rate. Of course, some conditions
have to be placed on f in order for t∗ to be a maximum point. It suffices to have P′(t) ≥
rP(t) for t < t∗ and P′(t) ≤ rP(t) for t > t∗.

(b) Differentiating (∗∗) w.r.t. r yields

P′′(t∗)
dt∗

dr
= P(t∗) + rP′(t∗)

dt∗

dr

Solving for dt∗/dr,
dt∗

dr
= P(t∗)

P′′(t∗) − rP′(t∗)
(∗∗∗)

Differentiating (∗) w.r.t. t yields

f ′′(t) = P′′(t)e−rt − rP′(t)e−rt − P′(t)re−rt + r2P(t)e−rt

Consider the second-order condition f ′′(t∗) < 0. By (∗∗), this is satisfied if and only if

e−rt[P′′(t∗) − 2rP′(t∗) + r2P(t∗)] = e−rt[P′′(t∗) − rP′(t∗)] < 0

In this case dt∗/dr < 0. Thus, the optimal growing time shortens as r increases,
which makes the foresters more impatient. In particular, given any r > 0, the optimal
t∗ is less than the time that maximizes current market value P(t), which is optimal
only if r = 0.

We did not consider how, after harvesting, the land that the tree grows on may have a
further use, such as planting a new tree. This extension is the subject of Exercise 11.4.8.

E X E R C I S E S F O R S E C T I O N 1 1 . 3

1. Find the present value of £350 000 which is due after ten years if the interest rate is 8% per year:
(a) compounded annually, or (b) compounded continuously.
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2. Find the present value of €50 000 which is due after five years when the interest rate is 5.75% per
year, paid: (a) annually, or (b) continuously.

3. With reference to Example 11.3.2, consider the case where, for all t ≥ 0, f (t) = (t + 5)2e−0.05t.

(a) Find the value of t that maximizes f (t), and study the sign variation of f ′(t).

(b) Find limt→∞ f (t) and draw the graph of f .

11.4 Geometric Series
Geometric series have many applications in economics and finance. Here we shall use them
to calculate annuities and mortgage payments.

E X A M P L E 11.4.1 This year a firm has an annual revenue of $100 million that it expects to increase
throughout the next decade by 16% per year. How large is its expected revenue in the tenth
year, and what is the total revenue expected over the whole period?

Solution: The expected revenue in the second year is 100(1 + 16/100) = 100 · 1.16, in
millions of dollars, and in the third year it is 100 · (1.16)2. In the tenth year, the expected
revenue is 100 · (1.16)9. The total revenue expected during the whole decade is, therefore,

100 + 100 · 1.16 + 100 · (1.16)2 + · · · + 100 · (1.16)9

If we use a calculator to add these ten different numbers, we obtain a sum that is approxi-
mately $2 132 million.

Finding the sum in Example 11.4.1 by adding ten different numbers on a calculator was
very tedious. When there are infinitely many terms, it is obviously impossible. There is an
easier method, as we now explain.

Consider the n numbers a, ak, ak2, . . . , akn−1. Each term is obtained by multiplying its
predecessor by a constant k. We wish to find the sum

sn = a + ak + ak2 + · · · + akn−2 + akn−1 (11.4.1)

of these numbers. We call this sum a finite geometric series with quotient k. The sum in
Example 11.4.1 occurs in the case when a = 100, k = 1.16, and n = 10.

To find the sum sn of the series, we use a trick. First multiply both sides of Eq. (11.4.1)
by k, to obtain

ksn = ak + ak2 + ak3 + · · · + akn−1 + akn

Subtracting (11.4.1) from this equation yields

ksn − sn = akn − a (11.4.2)

We reach this answer because all the other n − 1 terms cancel. That is the precisely the
point of the trick!
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In case k = 1, all the terms in (11.4.1) are equal to a, so we see immediately that the
sum is sn = an. For k 
= 1, however, Eq. (11.4.2) implies that

sn = a
kn − 1
k − 1

In conclusion:

F I N I T E G E O M E T R I C S E R I E S

Provided that k 
= 1, one has

a + ak + ak2 + · · · + akn−1 = a · kn − 1
k − 1

(11.4.3)

E X A M P L E 11.4.2 For the sum in Example 11.4.1, we have a = 100, k = 1.16, and n = 10. Hence,
Eq. (11.4.3) yields

100 + 100 · 1.16 + · · · + 100 · (1.16)9 = 100
(1.16)10 − 1

1.16 − 1

Now it takes many fewer operations on the calculator than in Example 11.4.1 to show that
this sum is about 2132.

Infinite Geometric Series
Consider the infinite sequence of numbers

1,
1
2

,
1
4

,
1
8

,
1

16
,

1
32

, · · ·
Each term in the sequence is formed by halving its predecessor. This implies that the nth
term is 1/2n−1. The sum of the n first terms is a finite geometric series with quotient k = 1/2
whose first term is a = 1. Hence, formula (11.4.3) gives

1 + 1
2

+ 1
22

+ · · · + 1
2n−1

= 1 − ( 1
2

)n

1 − 1
2

= 2(1 − 2−n) = 2 − 1
2n−1

(∗)

We now ask what is meant by the “infinite sum”

1 + 1
2

+ 1
22

+ 1
23

+ · · · + 1
2n−1

+ · · · (∗∗)

Because all the terms are positive, and there are infinitely many of them, you might be
inclined to think that the sum must be infinitely large. According to formula (∗), however,
the sum of the n first terms is equal to 2 − 1/2n−1. This number is never larger than 2, no
matter how large is our choice of n. As n increases, the term 1/2n−1 comes closer and closer
to 0, and the sum in (∗) tends to 2 in the limit. This makes it natural to define the infinite
sum in (∗∗) as the number 2.
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In general, we ask what meaning can be given to the “infinite sum”

a + ak + ak2 + · · · + akn−1 + · · · (11.4.4)

We use the same idea as in (∗∗), and consider the sum sn of the n first terms in (11.4.4).
According to Eq. (11.4.3), when k 
= 1, we have

sn = a
1 − kn

1 − k

What happens to this expression as n tends to infinity? The answer evidently depends on
kn, because only this term depends on n. In fact, kn tends to 0 if −1 < k < 1, whereas kn

does not tend to any limit if either k > 1 or else k ≤ −1.2 It follows that if |k| < 1, then the
sum sn of the n first terms in (11.4.4) will tend to the limit a/(1 − k), as n tends to infinity.
In this case, we let the limit of (11.4.4) define the infinite sum, and we say that the infinite
series in (11.4.4) converges. To summarize:

I N F I N I T E G E O M E T R I C S E R I E S

If |k| < 1, then

a + ak + ak2 + · · · + akn−1 + · · · = a
1 − k

(11.4.5)

Suppose now we extend to infinite sums the summation notation that was introduced in
Section 2.9. In case |k| < 1, this allows us to write Eq. (11.4.5) as

∞∑
n=1

akn−1 = a
1 − k

In case |k| ≥ 1, however, we say that the infinite series (11.4.4) diverges. A divergent
series has no finite sum. Divergence is obvious if |k| > 1. When k = 1, then sn = na, which
tends to +∞ if a > 0 or to −∞ if a < 0. When k = −1, then sn is a when n is odd, but 0
when n is even; again there is no limit as n → ∞ (except in the trivial case when a = 0).

E X A M P L E 11.4.3 Find the sum of the infinite series

1 + 0.25 + (0.25)2 + (0.25)3 + (0.25)4 + · · ·

Solution: Inserting a = 1 and k = 0.25 in formula (11.4.5) gives

1 + 0.25 + (0.25)2 + (0.25)3 + (0.25)4 + · · · = 1
1 − 0.25

= 1
0.75

= 4
3

2 If you are not yet convinced by this claim, study the cases k = −2, k = −1, k = −1/2, k = 1/2,
and k = 2.
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E X A M P L E 11.4.4 A rough estimate at the beginning of 1999 of the total oil and gas reserves under
the Norwegian continental shelf was 13 · 109 = 13 billion tons of oil equivalent. Output
that year was approximately 250 · 106 = 250 million tons.

(a) When will the reserves be exhausted if output is kept at the same constant level?

(b) Suppose that, beginning in 1999, output each year falls by 2% per year. How long will
the reserves last in this case?

Solution:

(a) With 13 · 109 tons of reserves being depleted at the rate of 250 · 106 tons per
year, reserves will last for t years, where t satisfies 250 · 106 t = 13 · 109. Hence
t = 13 · 109 ÷ 250 · 106 = 52. So the reserves will be exhausted 52 years after the
beginning of 1999, which is at the end of the year 2050.

(b) In 1999, output was a = 250 · 106. In 2000, it would be a − 2a/100 = a · 0.98. In 2001,
it becomes a · 0.982, and so on. If this rate of decline continues forever, the total amount
extracted will be

a + a · 0.98 + a · (0.98)2 + · · · + a · (0.98)n−1 + · · ·
This geometric series has quotient k = 0.98. By formula (11.4.5), the infinite sum is

s = a
1 − 0.98

= 50a

Since a = 250 · 106, the sum s = 50 · 250 · 106 = 12.5 · 109, which is a little below
13 · 109. The reserves will last for ever, therefore, leaving 0.5 · 109 = 500 million tons
as “stranded assets” which will never be extracted.

General Series3

We briefly consider general infinite series, not necessarily geometric, denoted by

a1 + a2 + a3 + · · · + an + · · · (11.4.6)

What does it mean to say that this infinite series converges? By analogy with our derivation
of formula (11.4.5) for geometric series, we form the “partial” sum sn of the n first terms:

sn = a1 + a2 + · · · + an (11.4.7)

In particular, s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, and so on. As n increases, these
partial sums include more and more terms of the series. Hence, if sn tends toward a limit s
as n tends to ∞, it is reasonable to consider s as the sum of all the terms in the series. Then
we say that the infinite series is convergent with sum s. But if sn does not tend to a finite
limit as n tends to infinity, we say that the series is divergent, and that it has no sum.4

3 This subsection can be regarded as optional.
4 As with limits of functions, if sn → ±∞ as n → ∞, this is not regarded as a limit.



�

� �

�

412 C H A P T E R 1 1 / T O P I C S I N F I N A N C E A N D D Y N A M I C S

For a geometric series, the simple expression we found for sn made it easy to determine
when convergence occurs. For most series, however, there is no such simple formula for
the sum of the first n terms, making it difficult to determine whether or not converge occurs.
Nevertheless, several so-called convergence and divergence criteria do give the answer
in many cases. These criteria are seldom used directly in economics.

Let us make one general observation: If the series (11.4.6) converges, then the nth term
must tend to 0 as n tends to infinity. The argument is simple: If the series is convergent,
then sn in Eq. (11.4.7) will tend to a limit s as n tends to infinity. Now an = sn − sn−1,
and by definition of convergence, sn−1 will also tend to s as n tends to infinity. It
follows that an = sn − sn−1 must tend to s − s = 0 as n tends to infinity. Expressed
briefly,

a1 + a2 + · · · + an + · · · converges ⇒ lim
n→∞ an = 0 (11.4.8)

Hence, convergence of an to 0 is necessary for convergence of the series, but not suf-
ficient. That is, a series may satisfy the condition limn→∞ an = 0 and yet diverge. This is
shown by the following standard example:

E X A M P L E 11.4.5 Consider the harmonic series

1 + 1
2

+ 1
3

+ 1
4

+ · · · + 1
n

+ · · · (11.4.9)

Its nth term is 1/n, which tends to 0. But the series is still divergent. To see this, we group
the terms together in the following way:

1 + 1
2

+
(

1
3

+ 1
4

)
+

(
1
5

+ · · · + 1
8

)
+

(
1
9

+ · · · + 1
16

)
+

(
1
17

+ · · · + 1
32

)
+ · · ·

(∗)

Between the first pair of parentheses are the two terms 1/3 and 1/4 whose sum exceeds
2/4 = 1/2. Between the second pair of parentheses are four terms, three greater than 1/8
and the last equal to 1/8, so their sum exceeds 4/8 = 1/2. Between the third pair of paren-
theses are eight terms, seven greater than 1/16 and the last equal to 1/16, so their sum
exceeds 8/16 = 1/2. This pattern repeats itself infinitely often: between the nth pair of
parentheses are 2n terms, of which 2n − 1 are greater than 2−n−1, whereas the last is equal
to 2−n−1. So their sum exceeds 2n · 2−n−1 = 1/2. Thus, no matter how large n may be, if
m is large enough (in fact, if m ≥ 2n), then the sum of the first m terms in (∗) exceeds the
sum 1

2 n of n terms all equal to 1
2 . So the series in (∗) must diverge.5

In general, as you are asked to prove in Exercise 11:

∞∑
n=1

1
np

is convergent ⇐⇒ p > 1 (11.4.10)

5 According to H.H. Goldstine (1977), quoting Joseph Hofmann’s biography of Leibniz: “The deter-
mination of

∑
1/n occupied Leibniz all his life but the solution never came within his grasp.”
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E X E R C I S E S F O R S E C T I O N 1 1 . 4

1. (a) Find sn, the sum of the finite geometric series

1 + 1
3

+ 1
32

+ · · · + 1
3n−1

.

(b) What is the limit of sn when n approaches infinity?

(c) Find the sum
∑∞

n=1(1/3n−1).

2. Find the sums of the following geometric series:

(a)
1
5

+
(1

5

)2 +
(1

5

)3 +
(1

5

)4 + · · ·
(b) 0.1 + (0.1)2 + (0.1)3 + (0.1)4 + · · ·
(c) 517 + 517(1.1)−1 + 517(1.1)−2 + 517(1.1)−3 + · · ·
(d) a + a(1 + a)−1 + a(1 + a)−2 + a(1 + a)−3 + a(1 + a)−4 + · · ·, for a > 0

(e) 5 + 5 · 3
7

+ 5 · 32

72
+ · · · + 5 · 3n−1

7n−1
+ · · ·

3. Determine whether the following series are geometric, and find the sums of those geometric
series that do converge.

(a) 8 + 1 + 1/8 + 1/64 + · · · (b) −2 + 6 − 18 + 54 − · · ·
(c) 21/3 + 1 + 2−1/3 + 2−2/3 + · · · (d) 1 − 1/2 + 1/3 − 1/4 + · · ·

4. Examine the convergence of the following geometric series, and find their sums when they exist:

(a)
1
p

+ 1
p2

+ 1
p3

+ · · · (b) x + √
x + 1 + 1√

x
+ · · · (c)

∑∞
n=1

x2n

5. Find the sum
∞∑

k=0

b
(

1 + p
100

)−k
, for p > 0.

6.SM Total world consumption of iron was approximately 794 · 106 tons in 1971. If consumption had
increased by 5% each year and the resources available for mining in 1971 were 249 · 109 tons,
how much longer would the world’s iron resources have lasted?

7. The world’s total consumption of natural gas was 1 824 million tons oil equivalent (MTOE) in
1994. The reserves at the end of that year were estimated to be 128 300 MTOE. If consumption
had increased by 2% in each of the coming years, and no new sources were ever discovered,
how much longer would these reserves have lasted?

8.SM Consider Example 11.3.2. Assume that immediately after one tree is felled, a new tree of the
same type is planted. If we assume that a new tree is planted at times t, 2t, 3t, etc., then the
present value of all the trees will be f (t) = P(t)e−rt + P(t)e−2rt + · · ·.
(a) Find the sum of this infinite geometric series.

(b) Prove that if f (t) has a maximum for some t∗ > 0, then P′(t∗)/P(t∗) = r/(1 − e−rt∗ ).

(c) Examine the limit of P′(t∗)/P(t∗) as r → 0.
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9. Show that the following series diverge:

(a)
∞∑

n=1

n
1 + n

(b)
∞∑

n=1

(101/100)n (c)
∞∑

n=1

1

(1 + 1/n)n

10. Examine the convergence or divergence of the following series:

(a)
∞∑

n=1

(
100
101

)n

(b)
∞∑

n=1

1√
n

(c)
∞∑

n=1

1
n1.00000001

(d)
∞∑

n=1

1 + n
4n − 3

(e)
∞∑

n=1

(
−1

2

)n

(f)
∞∑

n=1

(√
3
)1−n

11.SM Use the results in Example 10.7.2 to prove the equivalence in (11.4.10). (Hint: For p > 0, draw
the graph of the function f (x) = x−p in [1, ∞). Then interpret each of the two sums

∑∞
n=1 n−p

and
∑∞

n=2 n−p geometrically as the sum of an infinite number of rectangular areas.)

11.5 Total Present Value
Suppose that three successive annual payments are to be made, with the amount $1 000
falling due after one year, then $1 500 after two years, and $2 000 after three years. How
much must be deposited in an account today in order to have enough savings to cover these
three payments, given that the interest rate is 11% per year? We call this amount the present
value of the three payments.

In order to have $1 000 after one year, the amount x1 we must deposit today must satisfy
x1(1 + 0.11) = 1000. That is,

x1 = 1000
1 + 0.11

= 1000
1.11

In order to have $1 500 after two years, the amount x2 we must deposit today must satisfy
x2(1 + 0.11)2 = 1500, so

x2 = 1500
(1 + 0.11)2

= 1500
(1.11)2

Finally, to have $2 000 after three years, the amount x3 we must deposit today must satisfy
x3(1 + 0.11)3 = 2000, so

x3 = 2000
(1 + 0.11)3

= 2000
(1.11)3

Hence, the total amount A that must be deposited today in order to cover all three payments,
which is the total present value of the three payments, is given by

A = 1000
1.11

+ 1500
(1.11)2

+ 2000
(1.11)3

The total is approximately A ≈ 900.90 + 1217.43 + 1462.38 = 3580.71.
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In general, suppose that n successive annual payments a1, . . . , an will be made, with a1

being paid after one year, a2 after two years, and so on. Given that the annual interest is r,
how much must be deposited today in order to have enough savings to cover all these future
payments? In other words, what is the present value of these n payments?

In order to have a1 after one year, we must deposit a1/(1 + r) today; to have a2 after
two years we must deposit a2/(1 + r)2 today; and so on. The total amount Pn that must be
deposited today in order to cover all n payments is, therefore,

Pn = a1

1 + r
+ a2

(1 + r)2
+ · · · + an

(1 + r)n
(11.5.1)

Here, Pn is the present value of the n instalments.
An annuity is a sequence of equal payments over some time span made at fixed

periods of time, typically one year. If a1 = a2 = · · · = an = a in Eq. (11.5.1), the equation
represents the present value of an annuity. In this case the sum in (11.5.1) is a finite
geometric series with n terms. The first term is a/(1 + r) and the quotient is 1/(1 + r).
According to the summation formula (11.4.3) for a geometric series, with k = (1 + r)−1,
the sum is

Pn = a
(1 + r)

1 − (1 + r)−n

1 − (1 + r)−1
= a

r

[
1 − 1

(1 + r)n

]
Here the second equality holds because the denominator of the middle expression reduces
to r. To summarize:

P R E S E N T V A L U E O F A N A N N U I T Y

Consider an annuity of a per payment period for n periods, at the rate of interest
r per period, where each payment is at the end of the period. Its present value
is given by

Pn = a
1 + r

+ · · · + a
(1 + r)n

= a
r

[
1 − 1

(1 + r)n

]
(11.5.2)

This sum is illustrated in Fig. 11.5.1.

a
1 � r
a

(1 � r)2

a
(1 � r)n

a a a

Figure 11.5.1 Present value of an annuity
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Formula (11.5.2) gives the present value of n future claims, each of a dollars. Suppose
instead we want to find how much has accumulated in the account after n periods, imme-
diately after the last deposit. This is the future value Fn of the annuity, given by:

Fn = a + a(1 + r) + a(1 + r)2 + · · · + a(1 + r)n−1 (∗)

This different sum is illustrated in Fig. 11.5.2.

a a a
a

a (1 � r)

a (1 � r)2

a (1 � r)n�1

Figure 11.5.2 Future value of an annuity

The summation formula for a geometric series yields:

Fn = a[1 − (1 + r)n]
1 − (1 + r)

= a
r

[(1 + r)n − 1]

We can also find the (undiscounted) future value by noticing that in the special case when
ai = a for all i, the terms on the right-hand side of (∗) repeat those of the right-hand side of
Eq. (11.5.1), when a1 = a2 = · · · = an = a, but taken in the reverse order and multiplied
by the interest factor (1 + r)n. This shows that Fn = Pn(1 + r)n, and so:

F U T U R E V A L U E O F A N A N N U I T Y

Suppose that an amount a is deposited in an account each period for n periods,
earning interest at r per period. Then the future value of the account, immedi-
ately after the last deposit, is

Fn = a
r

[(1 + r)n − 1] (11.5.3)

E X A M P L E 11.5.1 Compute the present and the future values of a deposit of $1 000 in each of the
coming eight years if the annual interest rate is 6%.

Solution: To find the present value, we apply formula (11.5.2) with a = 1000, n = 8 and
r = 6/100 = 0.06. This gives

P8 = 1000
0.06

(
1 − 1

(1.06)8

)
≈ 6209.79
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The future value is found by applying formula (11.5.3), which gives

F8 = 1000
0.06

[
(1.06)8 − 1

] ≈ 9897.47

Alternatively, F8 = P8(1.06)8 ≈ 6209.79 · (1.06)8 ≈ 9897.47.

Consider next an investment that pays a per period in perpetuity when the interest rate
is r > 0. To find its present value, we modify formula (11.5.2) by letting n tend to infinity.
Then (1 + r)n tends to infinity and so Pn tends to a/r. In the limit, therefore, one has

a
1 + r

+ a
(1 + r)2

+ · · · = a
r

(11.5.4)

E X A M P L E 11.5.2 Compute the present value of a series of deposits of $1 000 at the end of each year
in perpetuity, when the annual interest rate is 14%.

Solution: According to formula (11.5.4), we obtain

1000
1 + 0.14

+ 1000
(1 + 0.14)2

+ · · · = 1000
0.14

≈ 7142.86

The Value of a Continuous Income Stream
So far we have discussed the present and future values of a series of future payments which
are made at specific discrete moments in time. Yet it may be useful to consider assets as
accruing continuously, like the timber yield from a growing commercial forest. So we con-
sider an income stream where:

1. income is received continuously from time t = 0 to time t = T at the variable rate of
f (t) dollars per year at each time t;

2. interest is compounded continuously at the fixed rate r per year.

Let P(t) denote the present discounted value (PDV) of all payments made over the time
interval [0, t]. This means that P(T) represents the amount of money you would have to
deposit at time t = 0 in order to match what results from (continuously) depositing the
income stream f (t) at each time t during the time interval [0, T]. Given any �t > 0, the
present value of all the income received during the interval [t, t + �t] is P(t + �t) − P(t).
If �t is small, the total amount of income received during this time interval is approxi-
mately f (t)�t, whose PDV is approximately f (t) e−rt �t. It follows that P(t + �t) − P(t) ≈
f (t) e−rt �t, so

[P(t + �t) − P(t)] /�t ≈ f (t) e−rt (11.5.5)

This approximation improves as �t gets smaller. In fact, the left-hand side of (11.5.5) is
the Newton quotient at t of the function P(t), whose limit as �t → 0 is the derivative P′(t).
So (11.5.5) implies that P′(t) = f (t) e−rt. Because P(0) = 0, the definition of the definite
integral implies that P(T) = ∫ T

0 f (t) e−rtdt. So the present discounted value at time 0 of this
continuous income stream is
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PDV =
∫ T

0
f (t)e−rtdt (11.5.6)

Formula (11.5.6) gives the value at time 0 of the income stream f (t). The future dis-
counted value (FDV) at time T of this income stream is erT

∫ T
0 f (t) e−rtdt. Because erT is a

constant, we can rewrite the integral as

FDV =
∫ T

0
f (t) er(T−t)dt (11.5.7)

An easy modification of the argument leading to formula (11.5.6) gives us the discounted
value (DV) at any time s in [0, T] of the part of the income stream received after time s. In
fact, the DV at time s of the income f (t) received in the small time interval [t, t + dt] is
f (t) e−r(t−s)dt. Integrating over the time interval [s, T] gives

DV =
∫ T

s
f (t) e−r(t−s)dt (11.5.8)

In case s = 0, formula (11.5.8) reduces to (11.5.6), as one would expect.

E X A M P L E 11.5.3 Assume an interest rate of 8% annually, compounded continuously. Find the PDV

and the FDV of a constant income stream of $1 000 per year over the next ten years.

Solution: We apply formulas (11.5.6) and (11.5.7) with r = 0.08 and f (t) = 1000 for t in
the interval [0, 10]. The answers are

PDV =
∫ 10

0
1000e−0.08tdt =

10

0
1000

(
−e−0.08t

0.08

)
= 1000

0.08
(1 − e−0.8) ≈ 6883.39

and
FDV = e0.08·10 × PDV ≈ e0.8 · 6883.39 ≈ 15 319.27

E X E R C I S E S F O R S E C T I O N 1 1 . 5

1. What is the present value of 15 annual deposits of $3 500 if the first deposit is made after one year
and the annual interest rate is 12%?

2. An account has been dormant for many years earning interest at the constant rate of 4% per year.
Now the amount is $100 000. How much was in the account ten years ago?

3. At the end of each year for four years you deposit $10 000 into an account earning interest at a
rate of 6% per year. How much is in the account at the end of the fourth year?

4. Suppose you are given a choice between the following two alternatives: (i) $13 000 paid after ten
years; (ii) $1 000 paid each year for ten years, first payment today. The annual interest rate is 6%
per year for the whole period. Which alternative would you choose?
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5. An author is to be paid royalties for publishing a book. Two alternative offers are made:

(i) The author can be paid $21 000 immediately,

(ii) There can be five equal annual payments of $4 600, the first being paid at once.

Which of these offers will be more valuable if the interest rate is 6% per annum?

6. Compute the present value of a series of deposits of $1 500 at the end of each year in perpetuity
when the interest rate is 8% per year.

7. A trust fund is being set up with a single payment of K. This amount is to be invested at a fixed
annual interest rate of r. The fund pays out a fixed annual amount. The first payment is to be made
one year after the trust fund was set up. What is the largest amount that can be paid out each year
if the fund is to last for ever?

8. The present discounted value of a payment D growing at a constant rate g when the discount rate
is r is given by

D
1 + r

+ D(1 + g)

(1 + r)2
+ D(1 + g)2

(1 + r)3
+ · · ·

where r and g are positive. What is the condition for convergence? Show that if the series con-
verges, its sum P0 satisfies P0 = D/(r − g).

9. Find the PDV and FDV of a constant income stream of $500 per year over the next 15 years, assuming
an interest rate of 6% annually, compounded continuously.

11.6 Mortgage Repayments
Suppose a family takes out a home mortgage at a fixed interest rate. This means that, like
an annuity, equal payments are due each period (say, at the end of each month). Regular
payments continue until the loan is paid off after, say, 20 years. Each payment goes partly to
pay interest on the outstanding principal, and partly to repay principal (that is, to reduce the
outstanding balance). The interest part is largest for the first period, when interest has to be
paid on the whole loan. But it is smallest in the last period, because by then the outstanding
balance is small. For the principal repayment, which is the difference between the fixed
monthly payment and the interest, it is the other way around.

E X A M P L E 11.6.1 A person borrows $50 000 at the beginning of a year and is supposed to pay it off in
five equal instalments at the end of each year, with interest at 15% compounding annually.
Find the annual payment.

Solution: Suppose that the five repayments are each of amount $a. Then, according to
formula (11.5.2), the present value of these payments in dollars is

a
1.15

+ a
(1.15)2

+ a
(1.15)3

+ a
(1.15)4

+ a
(1.15)5

= a
0.15

[
1 − 1

(1.15)5

]



�

� �

�

420 C H A P T E R 1 1 / T O P I C S I N F I N A N C E A N D D Y N A M I C S

Each payment should be chosen to make this sum equal to $50 000, implying that

a
0.15

[
1 − 1

(1.15)5

]
= 50 000 (∗)

This has the solution a ≈ 14 915.78. Alternatively, we can calculate the sum of the future
values of all repayments and then equate it to the future value of the original loan. This
yields the equation

a + a(1.15) + a(1.15)2 + a(1.15)3 + a(1.15)4 = 50 000(1.15)5

This is equivalent to (∗).
To illustrate how the interest part and the principal repayment part of each yearly pay-

ment of $14 915.78 vary from year to year, we construct the following table:

Year Payment Interest Principal repayment Outstanding balance
1 14 915.78 7 500.00 7 415.78 42 584.22
2 14 915.78 6 387.63 8 528.15 34 056.07
3 14 915.78 5 108.41 9 807.37 24 248.70
4 14 915.78 3 637.31 11 278.47 12 970.23
5 14 915.78 1 945.55 12 970.23 0

Note that the interest payment each year is 15% of the outstanding balance from the
previous year. The rest of each annual payment of $14 915.78 is the principal repayment that
year. This is subtracted from the outstanding balance from the previous year. Figure 11.6.1
is a chart showing the amount of each year’s interest and principal repayment.

1 2 3 4 5

Principal Repayment

Interest

5 000

10 000

15 000

20 000

0

Figure 11.6.1 Interest and principal repayment in Example 11.6.1

Suppose a loan of K dollars is repaid in n equal instalments of a dollars each period,
where the interest rate is p% per period. In effect, this is an annuity with an interest rate
r = p/100. According to Eq. (11.5.2), the payment a each period must satisfy

K = a
r

[
1 − 1

(1 + r)n

]
= a

r
[1 − (1 + r)−n] (11.6.1)

Solving for a yields

a = rK
1 − (1 + r)−n

(11.6.2)
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E X A M P L E 11.6.2 Suppose that the loan in Example 11.6.1 is being repaid by equal monthly payments
at the end of each month with interest at the nominal rate 15% per year, compounding
monthly. Use formula (11.6.2) to find the monthly payment.

Solution: The interest period is one month and the monthly rate is 15/12 = 1.25%, so that
r = 1.25/100 = 0.0125. Also, n = 5 · 12 = 60, so with K = 5000 formula (11.6.2) gives:

a = 0.0125 · 5000
1 − 1.0125−60

≈ 1189.50

The annuities considered so far are ordinary annuities where each payment is made at
the end of the payment period. If the payment each period is made at the beginning of the
period, the annuity is called an annuity due. This kind of annuity can be handled easily by
regarding it as an ordinary annuity, except that there is an immediate initial payment.

E X A M P L E 11.6.3 A person assumes responsibility for a loan of $335 000 which is due to be repaid
in 15 equal repayments of $a each year, the first one immediately, and the following at the
beginning of each subsequent year. Find a if the annual interest rate is 14%.

Solution: The present value of the first payment is obviously a. The present value of the
subsequent 14 repayments is found by applying formula (11.6.1) with r = 0.14 and n = 14.
The sum of the present values must be equal to $335 000:

a + a
0.14

[
1 − 1

(1 + 0.14)14

]
= 335 000

This reduces to a + 6.0020715a = 335 000. Solving for a gives a ≈ $47 843.

Some lenders prefer to specify a fixed payment each period, and let the loan run for
however many periods it takes to pay off the debt. This way of paying off the loan functions
essentially as an annuity. The difference is that there will have to be a final adjustment in
the last payment in order to make the present value of all the payments equal the borrowed
amount. In this case it is convenient to solve Eq. (11.6.1) for n. Notice that

K = a
r

[1 − (1 + r)−n] ⇔ 1
(1 + r)n

= 1 − rK
a

= a − rK
a

⇔ (1 + r)n = a
a − rK

Taking the natural logarithm of each side yields n ln(1 + r) = ln [a/(a − rK)], so:

M O R T G A G E R E P A Y M E N T P E R I O D

The number of periods needed to pay off a loan of amount K at the rate a per
period, when the interest rate is r per period, is given by the smallest integer n
such that

n ≥ ln a − ln(a − rK)

ln(1 + r)
(11.6.3)

Unless this happens to be an equality, the last payment will need to be less
than a.
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E X A M P L E 11.6.4 A loan of $50 000 at the annual interest rate of 15% is to be repaid with a payment of
$20 000, covering both interest and the principal repayment, at the end of each succeeding
year. When is the loan paid off? What is the final payment?

Solution: We begin by computing the number n of annual payments of $20 000 which
are needed to pay off $50 000. According to Eq. (11.6.3), with r = 0.15, a = 20 000, and
K = 50 000, we obtain n as the smallest integer greater than or equal to

ln(20 000) − ln(20 000 − 0.15 · 50 000)

ln(1 + 0.15)
= ln 1.6

ln 1.15
≈ 3.3629

Thus, four payments are needed. The first three are $20 000, followed by an additional final
payment in the fourth year. To find this final payment, we calculate the future value of the
three payments of $20 000, three years after the loan was taken out. This value is:

20 000 · (1.15)2 + 20 000 · 1.15 + 20 000 = 20 000
0.15

[
(1.15)3 − 1

] ≈ 69 450

The future value of the $50 000 loan after the same three years is $50 000 · (1.15)3 =
$76 043.75. Thus the remaining debt after the third payment is $76 043.75 − $69 450 =
$6593.75. If the remaining debt and the accumulated interest are paid one year later, the
amount due is $6593.75 · 1.15 = $7582.81.

Deposits within an Interest Period
Many bank accounts have an interest period of one year, or at least one month. If you deposit
an amount within an interest period, the bank will often use simple interest, not compound
interest. In this case, if you make a deposit within an interest period, then at the end of
the period the amount you deposited will be multiplied by the factor 1 + rt, where t is the
remaining fraction of the interest period.

E X A M P L E 11.6.5 At the end of each quarter, beginning on 31 March, 2009, a person deposits $100 in
an account on which interest is paid annually at the rate 10% per year. How much is there
in the account on 31 December, 2011?

Solution: The deposits during 2009 are illustrated here:

100 100 100 100

31/3 30/6 30/9 31/12

These four deposits are made at the end of each quarter within the year 1999. In order
to find the balance at the end of 1999 (the interest period), we use simple (not compound)
interest. This gives

100
(

1 + 0.10 · 3
4

)
+ 100

(
1 + 0.10 · 2

4

)
+ 100

(
1 + 0.10 · 1

4

)
+ 100 = 415

Doing the same for the years 2010 and 2011 as well, we replace the 12 original deposits by
the amount $415 at the end of each of the years 2009, 2010, and 2011, as shown here:
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415 415 415

31/12/1999 31/12/2000 31/12/2001

The balance at the end of the three years is 415 · (1.10)2 + 415 · 1.10 + 415 = 1373.65.
So on 31 December, 2011, the person has $1 373.65.

E X E R C I S E S F O R S E C T I O N 1 1 . 6

1. A person borrows $80 000 at the beginning of one year.

(a) Suppose that the loan is to be repaid in ten equal instalments at the end of each year, with
interest at 7% compounding annually. Find the annual payment.

(b) Suppose that the loan is to be repaid in 120 equal instalments at the end of each month, with
interest at the annual rate of 7%, compounded monthly. Find the monthly payment.

2. Suppose that each year for six years, you deposit $8 000 in an account that earns interest at the
annual rate 7%. How much do you have immediately after the last deposit? How much do you
have four years after the last deposit?

3. Ronald invests money in a project which triples his money in 20 years. Assuming annual com-
pounding of interest, what is the rate of interest? What if you assume continuous compounding?

4. [HARDER] A construction firm wants to buy a building site and has the choice between three dif-
ferent payment schedules:

(i) Pay $670 000 in cash.

(ii) Pay $120 000 per year for eight years, where the first instalment is to be paid at once.

(iii) Pay $220 000 in cash and thereafter $70 000 per year for 12 years, where the first instalment
is to be paid after one year.

Determine which schedule is least expensive if the interest rate is 11.5% and the firm has at least
$670 000 available to spend in cash. What happens if the interest rate is 12.5%?

11.7 Internal Rate of Return
Suppose the numbers a0, a1, . . . , an represent the returns earned by an investment project
in n + 1 successive years. Negative numbers represent losses, whereas positive numbers
represent profits, so each ai is actually the net return. Also, for i = 1, 2, . . . n we think of ai as
associated with year i, whereas a0 is associated with the present period. In most investment
projects, a0 is a big negative number, because a large initial expense precedes any positive
returns. Consider an interest rate of p% per year, and let r = p/100. Then the net present
value of the profits accruing from the project is given by

A = a0 + a1

1 + r
+ a2

(1 + r)2
+ · · · + an

(1 + r)n
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Several different criteria are used to compare alternative investment projects. One is
simply to choose the project whose profit stream has the largest present value. The interest
rate to use could be an accepted rate for capital investments. A different criterion is based
on the internal rate of return, which is defined as an interest rate that makes the present
value of all payments equal to 0.

As a simple example, suppose you invest an amount a which pays back b one year later.
Then the rate of return is the interest rate r that makes the present value of the investment
project equal to zero. That is, r must satisfy −a + (1 + r)−1b = 0, so r = (b/a) − 1. For
example, when a = 1000 and b = 1200, the rate of return is r = (1200/1000) − 1 = 0.2,
or 20% per year.

For a general investment project yielding returns a0, a1, . . . , an, the internal rate of return
is a number r such that

a0 + a1

1 + r
+ a2

(1 + r)2
+ · · · + an

(1 + r)n
= 0 (11.7.1)

If two investment projects both have a unique internal rate of return, then a criterion for
choosing between them is to prefer the project that has the higher internal rate of return.
Note that Eq. (11.7.1) is a polynomial equation of degree n in the discount factor (1 + r)−1.
In general, this equation does not have a unique positive solution r.

E X A M P L E 11.7.1 An investment project has an initial outlay of $50 000, and at the end of the next
two years its returns are $30 000 and $40 000, respectively. Find the associated internal rate
of return.

Solution: In this case, Eq. (11.7.1) takes the form

−50 000 + 30 000
1 + r

+ 40 000
(1 + r)2

= 0

Put s = (1 + r)−1. Then the equation becomes

40 000s2 + 30 000s − 50 000 = 0

This can be reduced to the quadratic equation 4s2 + 3s − 5 = 0. Its only positive solution
is s = 1

8 (
√

89 − 3) ≈ 0.804. Then r = 1/s − 1 ≈ 0.243 = 24.3%.

Suppose that a0 < 0 and a1, . . . , an are all > 0. In this case Eq. (11.7.1) has a unique
solution r∗ satisfying 1 + r∗ > 0. So there is a unique internal rate of return r∗ > −1. Also,
the internal rate of return is positive if

∑n
i=0 ai > 0. Exercise 3 asks you to prove these

results.

E X E R C I S E S F O R S E C T I O N 1 1 . 7

1. An investment project has an initial outlay of $50 000 and at the end of each of the next two years
has returns of $30 000. Find the associated internal rate of return r.

2. Suppose that in Eq. (11.7.1) we have a0 < 0 and ai = a > 0 for i = 1, 2, . . . . Find an expression
for the internal rate of return in the limit as n → ∞.
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3. Consider an investment project with an initial loss, so that a0 < 0, and thereafter no losses. Sup-
pose also that the sum of the later profits is larger than the initial loss. Prove that there is a unique
internal rate of return, r∗ > −1, and that r∗ > 0 if

∑n
i=0 ai > 0. (Hint: Define f (r) as the expres-

sion on the left side of (11.7.1). Then study the signs of f (r) and f ′(r) on the interval (0, ∞).)

4. An investment in a certain machine is expected to earn a profit of $400 000 each year. What is the
maximum price that should be paid for the machine if it has a lifetime of seven years, the interest
rate is 17.5%, and the annual profit is earned at the end of each year?

5.SM [HARDER] An investment project has an initial outlay of $100 000, and at the end of each of the
next 20 years has a return of $10 000. Show that there is a unique positive internal rate of return,
and find its approximate value. (Hint: Use s = (1 + r)−1 as a new variable. Prove that the equation
you obtain for s has a unique positive solution. Verify that s = 0.928 is an approximate root.)

6. [HARDER] Alice is obliged to pay Bob $1 000 yearly for five years, starting at the end of the first
year. Bob sells this claim to Cathy for $4 340 in cash. Find an equation that determines the rate of
return p that Cathy obtains from this investment. Prove that it is a little less than 5%.

11.8 A Glimpse at Difference Equations
Many of the quantities economists study, such as income, consumption, and savings, are
recorded at fixed time intervals such as each day, week, quarter, or year. Equations that
relate such quantities at different discrete moments of time are called difference equations.
In fact difference equations can be viewed as the discrete time counterparts of the differential
equations in continuous time that will be studied in Sections 11.9 and 11.10.

Let t = 0, 1, 2, . . . denote different discrete time periods or moments of time. We usually
call t = 0 the initial period. If x(t) is a function defined for t = 0, 1, 2, . . . , we often use
x0, x1, x2, . . . to denote x(0), x(1), x(2), . . .. Thus, in general, we write xt for x(t).

A simple example of a first-order difference equation is

xt+1 = axt (11.8.1)

for t = 0, 1, . . . , where a is a constant. This is a first-order equation because it relates the
value of a function in period t + 1 to the value of the same function in the previous period
t only. Suppose x0 is given. Repeatedly applying (11.8.1) gives x1 = ax0; then x2 = ax1 =
a · ax0 = a2x0; next, x3 = ax2 = a · a2x0 = a3x0; and so on. In general,

xt = x0at (11.8.2)

The function xt = x0at satisfies (11.8.1) for all t, as can be verified directly. For the given
value of x0, there is clearly no other function that satisfies the equation.

E X A M P L E 11.8.1 Consider the difference equation xt+1 = 0.2xt, for t = 0, 1, . . ., where x0 = 100.
From Eq. (11.8.2), we have xt = 100(0.2)t.
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E X A M P L E 11.8.2 Let Kt denote the balance in an account at the beginning of period t when the
interest rate is r per period. Then the balance in the account at time t + 1 is given by the
difference equation Kt+1 = Kt + rKt = (1 + r)Kt, for t = 0, 1, . . . . It follows immediately
from (11.8.2) that Kt = K0(1 + r)t, as is well known to us already from Section 2.2, and
from earlier in this chapter. In general, this difference equation describes growth at the
constant proportional rate r each period.

E X A M P L E 11.8.3 (A Multiplier–Accelerator Model of Economic Growth). Let Yt denote GDP, It

total investment, and St total saving, all in period t. Suppose that savings are proportional
to GDP, and that investment is proportional to the change in income from period t to t + 1.
Then, for t = 0, 1, 2, . . . ,

(i) St = αYt (ii) It+1 = β(Yt+1 − Yt) (iii) St = It

The last equation is the equilibrium condition requiring that saving equals investment in
each period. Here α and β are positive constants, and we assume that β > α > 0. Deduce
a difference equation determining the path of Yt given Y0, and solve it.

Solution: From equations (i) and (iii) we have It = αYt, and so It+1 = αYt+1. Inserting this
into (ii) yields αYt+1 = β(Yt+1 − Yt), or (α − β)Yt+1 = −βYt. Thus,

Yt+1 = β

β − α
Yt =

(
1 + α

β − α

)
Yt (∗)

Using (11.8.2) gives the solution

Yt =
(

1 + α

β − α

)t

Y0 for t = 1, 2, . . .

Linear First-order Equations with Constant Coefficients
Consider next the first-order linear difference equation

xt+1 = axt + b (11.8.3)

for t = 0, 1, 2, . . . , where a and b are constant coefficients. Equation (11.8.1) is the special
case where b = 0. Starting with a given x0, we can calculate xt algebraically for small t.
Indeed,

x1 = ax0 + b

x2 = ax1 + b = a(ax0 + b) + b = a2x0 + (a + 1)b

x3 = ax2 + b = a(a2x0 + (a + 1)b) + b = a3x0 + (a2 + a + 1)b

and so on. This suggests a clear pattern. In general, provided that a 
= 1, we have

xt = atx0 + (at−1 + at−2 + · · · + a + 1)b
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It is straightforward to check directly that this satisfies (11.8.3). By the summation
formula for a geometric series, for a 
= 1 we have 1 + a + a2 + · · · + at−1 = (1 − at)/

(1 − a). Thus:

Given that a 
= 1,

xt+1 = axt + b ⇔ xt = at
(

x0 − b
1 − a

)
+ b

1 − a
for t = 0, 1, 2, . . . (11.8.4)

When a = 1, we have 1 + a + · · · + at−1 = t and xt = x0 + tb for t = 1, 2, . . . .

E X A M P L E 11.8.4 Solve the difference equation xt+1 = 1
3 xt − 8.

Solution: Using Eq. (11.8.4), we obtain the solution xt = ( 1
3

)t
(x0 + 12) − 12.

Equilibrium States and Stability
Consider the solution of xt+1 = axt + b given in (11.8.4). In case x0 = b/(1 − a), the solu-
tion reduces to xt = b/(1 − a) for all t. For this reason, the constant x∗ = b/(1 − a) is called
an equilibrium, or a stationary or steady state, for the difference equation xt+1 = axt + b.

Alternatively, note that if x∗ is a steady state, there must be a solution of the difference
equation that satisfies xt = x∗ for all t. In the case of Eq. (11.8.3), we must have xt+1 =
xt = x∗ and so x∗ = ax∗ + b. So, provided a 
= 1, we get x∗ = b/(1 − a) as before.

Suppose the constant a in Eq. (11.8.3) satisfies |a| < 1, or equivalently, −1 < a < 1.
Then at → 0 as t → ∞, so Eq. (11.8.4) implies that

xt → x∗ = b/(1 − a) as t → ∞
Hence, if |a| < 1, the solution converges to the equilibrium state as t → ∞. Then
Eq. (11.8.3) is said to be globally asymptotically stable. But if |a| > 1, then the abso-
lute value of at tends to ∞ as t → ∞. Now Eq. (11.8.4) implies that, except when
x0 = b/(1 − a), the solution xt moves farther and farther away from the equilibrium state.
Then Eq. (11.8.3) is said to be unstable. Illustrations of the different possibilities are given
in Section 11.1 of FMEA.

E X A M P L E 11.8.5 The equation in Example 11.8.4 is stable because a = 1/3. The equilibrium state
is −12. The solution given in that example shows that xt → −12 as t → ∞.

E X A M P L E 11.8.6 (Mortgage Repayments). A particular case of the difference equation in (11.8.3)
occurs when a family borrows an amount K at time 0 as a home mortgage. Suppose there
is a fixed interest rate r per period (usually a month rather than a year). Suppose too that
the mortgage payments are a each period, until the mortgage is paid off after n periods (for
example, 360 months, or 30 years). The outstanding balance or principal bt on the loan
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in period t satisfies the difference equation bt+1 = (1 + r)bt − a, with b0 = K and bn = 0.
Equation (11.8.4) gives the solution to this difference equation, which is

bt = (1 + r)t (K − a/r) + a/r

But bt = 0 when t = n, so 0 = (1 + r)n (K − a/r) + a/r. Solving for K yields

K = a
r

[
1 − (1 + r)−n] = a

n∑
t=1

(1 + r)−t (∗)

The original loan, therefore, must be equal to the present discounted value of n equal repay-
ments of amount a each period, starting in period 1. Solving for a instead yields

a = rK
1 − (1 + r)−n

= rK(1 + r)n

(1 + r)n − 1
(∗∗)

Formulas (∗) and (∗∗) are the same as those in Eqs (11.6.1) and (11.6.2), which were
derived by a more direct argument.

E X E R C I S E S F O R S E C T I O N 1 1 . 8

1. Find the solutions of the following difference equations:

(a) xt+1 = −2xt (b) 6xt+1 = 5xt (c) xt+1 = −0.3xt

2. Find the solutions of the following difference equations with the given values of x0:

(a) xt+1 = xt − 4, x0 = 0 (b) xt+1 = 1
2 xt + 2, x0 = 6

(c) 2xt+1 + 6xt + 5 = 0, x0 = 1 (d) xt+1 + xt = 8, x0 = 2

3. Suppose supply at price Pt is S(Pt) = αPt − β and demand at price Pt+1 is D(Pt+1) = γ − δPt+1.
Solve the difference equation S(Pt) = D(Pt+1), assuming that all constants are positive.

11.9 Essentials of Differential Equations
In economic growth theory, in studies of the extraction of natural resources, in many mod-
els in environmental economics, and in several other areas of economics, one encounters
equations where the unknowns include not only functions, but also the derivatives of these
functions. Such equations are called differential equations. Their study is one of the most
fascinating fields of mathematics.

Here we shall consider only a few simple types of differential equation. They will involve
functions of an independent variable that we denote by t, because most of the differential
equations in economics have time as the independent variable.

We have already solved the simplest type of differential equation. Given a particular
function f (t), find all functions that have f (t) as their derivative. This requires one to solve
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ẋ(t) = f (t) for the unknown function x(t), where ẋ denotes the derivative of x w.r.t. time t.
We already know that the solution is the indefinite integral:

ẋ(t) = f (t) ⇐⇒ x(t) =
∫

f (t) dt + C

We call x(t) = ∫
f (t) dt + C the general solution of the equation ẋ(t) = f (t).

We move on to some more challenging types of differential equation.

The Exponential Growth Law
Let x(t) denote an economic quantity such as the GDP of China. The ratio ẋ(t)/x(t) has
previously been called the relative rate of change of this quantity. Several economic models
postulate that the relative rate of change is a constant r. Thus, for all t

ẋ(t) = rx(t) (11.9.1)

Which functions have a constant relative rate of change? For r = 1 the differential
equation is ẋ = x, and we know that the derivative of x = et is ẋ = et, the same function.
More generally, the function x = Aet satisfies ẋ = x for all values of the constant A.

By trial and error you will probably be able to come up with x(t) = Aert as a solu-
tion of (11.9.1). In any case, this is easy to verify. Indeed, if x = Aert, then ẋ(t) = Arert =
rx(t). Moreover, we can prove that no other function satisfies (11.9.1). To do so, multiply
Eq. (11.9.1) by the positive function e−rt, then collect all terms on the left-hand side. This
gives

ẋ(t)e−rt − rx(t)e−rt = 0 (11.9.2)

Now Eq. (11.9.2) is entirely equivalent to Eq. (11.9.1). But the left-hand side of Eq. (11.9.2)

is the derivative of the product x(t)e−rt. So Eq. (11.9.2) can be rewritten as
d
dt

[x(t)e−rt] = 0.

It follows that x(t)e−rt must equal a constant A. Hence, any solution of (11.9.1) takes the
form x(t) = Aert. To determine the constant A, note that if the value of x(t) at t = 0 is x0,
then x0 = Ae0 = A. We conclude that:

E X P O N E N T I A L G R O W T H

ẋ(t) = rx(t) with x(0) = x0 ⇐⇒ x(t) = x0ert (11.9.3)

E X A M P L E 11.9.1 Let S(t) denote the sales volume per unit of time of a particular commodity, evalu-
ated at time t. Suppose that no sales promotion is carried out, leading sales to decelerate at
the constant proportional rate a > 0, implying that Ṡ(t) = −aS(t).

(a) Find an expression for S(t) when sales at time 0 are S0.

(b) Solve the equation S0e−at = 1
2 S0 for t. Interpret the answer.
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Solution:

(a) This is an equation like Eq. (11.9.1) with x = S and r = −a. According to Eq. (11.9.3),
the solution is S(t) = S0e−at.

(b) From S0e−at = 1
2 S0, we obtain e−at = 1

2 . Taking the natural logarithm of each side
yields −at = ln(1/2) = − ln 2. Hence t = ln 2/a. This is how much time it takes for
sales to halve.

Equation (11.9.1) has often been called the law of natural growth. Regardless of
its name, it is probably the most important differential equation in economics. So all
economists should know how to solve it.

The same equation is also important in biology. Indeed, let x(t) denote the number of
individuals in a population at time t. The population could be, for instance, a particular
colony of bacteria, or polar bears in the Arctic. In such a setting, the proportional rate of
growth ẋ(t)/x(t) can be called the per capita growth rate of the population. If there is neither
immigration nor emigration, then the per capita growth rate will be equal to the difference
between the per capita birth and death rates. These rates will depend on many factors such
as food supply, age distribution, available living space, predators, disease, and parasites,
among other things.

Equation (11.9.1) specifies a simple model of population growth, following what econ-
omists often call Malthus’s law. According to the solution (11.9.3), if the per capita growth
rate is constant, then the population must grow exponentially. In reality, of course, expo-
nential growth can go on only for a limited time. It is time to consider some more general
models of population growth.

Another way to solve (11.9.1) is to take logarithms. Note that d(ln x)/dt = ẋ/x = r, so
ln x(t) = ∫

r dt = rt + C. This implies that x(t) = ert+C = erteC = Aert, where A = eC. In
fact, a generalized version of Eq. (11.9.1) allows for the growth rate r to be a function r(t)
of time, giving the differential equation:

ẋ(t) = r(t)x(t) (11.9.4)

Provided that x(t) 
= 0, this can be rearranged to get

d
dt

ln x(t) = ẋ(t)
x(t)

= r(t)

The solution is ln x(t) − ln x(0) = R(t), where R(t) = ∫ t
0 r(s) ds. Taking exponentials, we

get x(t) = x(0)eR(t).
In applications, it is sometimes useful to have an “initial value” for a differential equation

at a time t other than t = 0. This is easily done, as t = 0 is essentially no more than a
convention. Indeed, if the evolution of x is given by Eq. (11.9.1), we know from (11.9.3)
that, for any other starting time t0, for all t one has

x(t0) = x0ert0 and x(t) = x0ert

Now, the latter is equivalent to

x(t) = x0er(t−t0+t0) = x0er(t−t0)et0 = (x0et0)er(t−t0) = x(t0)e
r(t−t0)

Thus, the initial reference point of the equation has been moved to t0.
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Growth Towards An Upper Limit
Suppose that the population size x(t) cannot exceed some carrying capacity K. Suppose
to that the rate of change of population is proportional to its deviation from this carrying
capacity. This is expressed by the equation

ẋ(t) = a[K − x(t)] (11.9.5)

With a little trick, it is easy to find all the solutions to this equation. Define a new function
u(t) = K − x(t), which at each time t measures the deviation of the population size from
the carrying capacity K. Then u̇(t) = −ẋ(t). Inserting this into (∗) gives −u̇(t) = au(t), or
u̇(t) = −au(t). This is an equation like (11.9.1). The solution is u(t) = Ae−at, so that K −
x(t) = Ae−at, hence x(t) = K − Ae−at. If x(0) = x0, then x0 = K − A, and so A = K − x0.
It follows that:

B O U N D E D E X P O N E N T I A L G R O W T H

ẋ(t) = a[K − x(t)] with x(0) = x0 ⇐⇒ x(t) = K − (K − x0)e
−at (11.9.6)

In Exercise 4 we shall see that the same equation describes the population in countries
where the indigenous population has a fixed relative rate of growth, but where there is
a fixed numerical quota of immigrants each year. The same equation can also represent
several other phenomena, some of which are discussed in other exercises for this section.

E X A M P L E 11.9.2 Let x(t) denote the population in millions of individuals at time t. Suppose that x(t)
starts from 50 million at time t = 0, and then follows the differential equation (11.9.5) with
a = 0.05 and a carrying capacity of K = 200 million. Find the solution of Eq. (11.9.5) in
this case, then sketch its graph.

Solution: Using Eq. (11.9.6) with a = 0.05 and K = 200, we find the solution

x(t) = 200 − (200 − 50)e−0.05t = 200 − 150e−0.05t

The graph is drawn in Fig. 11.9.1.

Note that the differential equation (11.9.5) is a special case of the general equation

ẋ + ax = b (11.9.7)

A trivial case occurs when a = 0 and the solution is x(t) = bt + C. Ruling this case out,
we show how a changing the variable from x to y = x − b/a can transform (11.9.7) into
(11.9.1), whose solution is already known.6 Indeed, inserting x = y + b/a into (11.9.7)
gives the new differential equation ẏ + a(y + b/a) = b, which reduces to ẏ + ay = 0. This,

6 Section 11.10 provides some motivation for this transformation.
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x (t) � 200 � 150 e �0.05 t
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Figure 11.9.1 Growth to level 200
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Figure 11.9.2 Logistic growth to level K

of course, is just the differential equation (11.9.1), but with x replaced by y and r replaced
by −a. The solution therefore takes the form y = Ae−at, where A is a constant. Because
x = y + b/a, the solution to ẋ + ax = b is

x(t) = Ae−at + b/a (11.9.8)

Logistic Growth
Instead of the differential equation (11.9.5), a more realistic assumption is that the relative
rate of increase is approximately constant while the population is small, but that it con-
verges to zero as the population approaches its carrying capacity K. A special form of this
assumption is expressed by the equation

ẋ(t) = rx(t)
[

1 − x(t)
K

]
(11.9.9)

Indeed, when the population x(t) is small in proportion to K, so that x(t)/K is small, then
ẋ(t) ≈ rx(t), which implies that x(t) increases (approximately) exponentially. As x(t)
becomes larger and approaches K, however, the shrinking factor 1 − x(t)/K becomes much
smaller and so increases in significance. In general, we claim that if x(t) satisfies (11.9.9)
and is not identically equal to 0, then x(t) must have the form

x(t) = K
1 + Ae−rt

(11.9.10)

for some constant A. The function x given in (11.9.10) is called a logistic function.

Proof: In order to prove that the solution in Eq. (11.9.10) is valid, we use a trick. Suppose
that x = x(t) is not 0 and introduce the new variable u = u(t) = −1 + K/x. Then differen-
tiating using the chain rule gives u̇ = −Kẋ/x2. Substituting for ẋ from Eq. (11.9.9) gives
u̇ = −(Kr/x) + r = r(−K/x + 1) = −ru. Hence u = u(t) = Ae−rt for some constant A.
But then −1 + K/x(t) = Ae−rt. Finally, solving this equation for x(t) yields (11.9.10).

Suppose that a population consists of x0 individuals at time t = 0, so that x(0) = x0.
Then (11.9.10) gives x0 = K/(1 + A), implying that A = (K − x0)/x0. To sum up, we have
shown that the unique solution to (11.9.9) with x(0) = x0 is

x(t) = K
1 + Ae−rt

, where A = K − x0

x0
(11.9.11)
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If 0 < x0 < K, it follows from (11.9.11) that x(t) is strictly increasing and that x(t) → K
as t → ∞, assuming r > 0. We say in this case that there is logistic growth up to the level
K. The graph of the solution is shown in Fig. 11.9.2. It has an inflection point at the height
K/2 above the t-axis. We verify this by differentiating Eq. (11.9.9) with respect to t. This
gives ẍ = rẋ(1 − x/K) + rx(−ẋ/K) = rẋ(1 − 2x/K). So ẍ = 0 when x = K/2, with ẍ > 0
for x < K/2 and ẍ < 0 for x > K/2.

Equations like (11.9.9), whose solutions are logistic functions of the form (11.9.10),
appear in many economic models, some of which are featured in the exercises.

The differential equation (11.9.9) can also be expressed in the simpler form

ẋ + ax = bx2

where a = −r and b = −r/K. Other than the trivial solution x = 0, the solution is given
by (11.9.10), where r = −a and K = −r/b = a/b. It follows that the non-trivial solution
to ẋ + ax = bx2 is

x(t) = a/b
1 + Aeat

= a
b − A1eat

(11.9.12)

where the arbitrary constants A and A1 are related by the equation A1 = −bA.

Recapitulation
The simple differential equations that have appeared in this section are so important that we
present them and their general solutions in a form which emphasizes a common structure.
As is often done in the theory of differential equations, we compress notation so that x(t)
and ẋ(t) become simply x and ẋ.

S O L U T I O N S O F S O M E S I M P L E D I F F E R E N T I A L E Q U A T I O N S

ẋ = ax for all t ⇐⇒ x = Aeat for some constant A (11.9.3)

ẋ + ax = b for all t ⇐⇒ x = Ae−at + b
a

for some constant A (11.9.8)

ẋ + ax = bx2 for all t ⇐⇒ x = a
b − Aeat

for some constant A (11.9.12)

Note that in (11.9.8) we must assume that a 
= 0. Also, in (11.9.12), we have ignored
the trivial solution with x(t) = 0 for all t.

E X E R C I S E S F O R S E C T I O N 1 1 . 9

1. For which of the following functions is the relative rate of increase ẋ/x constant?

(a) x = 5t + 10 (b) x = ln(t + 1) (c) x = 5et

(d) x = −3 · 2t (e) x = et2 (f) x = et + e−t
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2. Suppose that a firm’s capital stock K(t) satisfies the differential equation K̇(t) = I − δK(t),
where investment I is constant, and δK(t) denotes depreciation, with δ a positive constant.

(a) Find the solution of the equation if the capital stock at time t = 0 is K0.

(b) Let δ = 0.05 and I = 10. Explain what happens to K(t) as t → ∞ when:

(a) K0 = 150; (b) K0 = 250.

3. Let N(t) denote the number of people in a country whose homes have access to broadband
internet. Suppose that the rate at which new people gain access is proportional to the number
of people who still have no access. If the total population size is P, therefore, the differential
equation for N(t) is Ṅ(t) = k(P − N(t)), where k is a positive constant. Find the solution of this
equation if N(0) = 0. Then find the limit of N(t) as t → ∞.

4. A country’s annual natural rate of population growth (births minus deaths) is 2%. In addition
there is a net immigration of 40 000 persons per year. Write down a differential equation for the
function N(t) which denotes the number of persons in the country at time t (measured in years).
Suppose that the population at time t = 0 is 2 000 000. Find N(t).

5. As in Examples 4.5.1 and 4.9.1, let P(t) denote Europe’s population in millions t years after the
year 1960. According to UN estimates, P(0) = 641 and P(10) = 705. Suppose that P(t) grows
exponentially, with P(t) = 641ekt. Compute k and then find P(15), P(40) and P(55), which are
estimates of the population in the years 1975, 2000, and 2015.

6. When a colony of bacteria is subjected to strong ultraviolet light, they die as their DNA is
destroyed. In a laboratory experiment it was found that the number of living bacteria decreased
approximately exponentially with the length of time they were exposed to ultraviolet light.
Suppose that 70.5% of the bacteria still survive after 7 seconds of exposure. What percentage
will be alive after 30 seconds? How long does it take to kill 95% of the bacteria?

7. Solve the following differential equations by using one of (11.9.3), (11.9.8), and (11.9.12),
whichever is appropriate:

(a) ẋ = −0.5x (b) K̇ = 0.02K (c) ẋ = −0.5x + 5

(d) K̇ − 0.2K = 100 (e) ẋ + 0.1x = 3x2 (f) K̇ = K(−1 + 2K)

8. A study of how fast British agriculture mechanized during the years from 1950 onwards esti-
mated y, the number of tractors in use (measured in thousands), as a function of t (measured
in years, with t = 0 corresponding to 1950). The estimated function was approximately y(t) =
250 + x(t), where x = x(t) satisfies the logistic differential equation ẋ = 0.34x(1 − x/230), with
x(0) = 25.

(a) Find an expression for y(t).

(b) Find the limit of y(t) as t → ∞, and draw the graph of y(t).

9. In a model of how influenza spreads among a quarantined group of one thousand people, let N(t)
denote the number of group members who develop influenza t days after all its 1 000 members
have been in contact with a carrier of infection. Assume that

Ṅ(t) = 0.39N(t)
[

1 − N(t)
1000

]
, where N(0) = 1

(a) Find a formula for N(t). How many group members develop influenza after twenty days?
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(b) How many days does it take until 800 group members are sick?

(c) Will all one thousand group members eventually get influenza?

10.SM The logistic function (11.9.9) has been used for describing the stock of certain fish populations.
Suppose such a population is harvested at a rate proportional to the stock, so that

ẋ(t) = rx(t)
[

1 − x(t)
K

]
− fx(t)

(a) Solve this equation, when the population at time t = 0 is x0.

(b) Suppose f > r. Examine the limit of x(t) as t → ∞.

11. [HARDER] According to Newton’s law of cooling, the rate at which a warm object cools is pro-
portional to the difference between the temperature of the object and the “ambient” temperature
of its surroundings. If the temperature of the object at time t is T(t) and the (constant) ambient
temperature is C, then Ṫ(t) = k[C − T(t)] for some constant k > 0. Note that this equation is
like (11.9.6).

At 12 noon, some police enter a room and discover a dead body. Immediately they measure its
temperature, which is 35◦ Celsius. At 1 pm they take its temperature again, which is now down
to 32◦. The temperature in the room is constant at 20◦. When did the person die? (Hint: Let the
temperature be T(t), where t is measured in hours and 12 noon corresponds to t = 0.)

11.10 Separable and Linear Differential
Equations
In this final section of the chapter we consider two general types of differential equation that
are frequently encountered in economics. The discussion will be brief. For a more extensive
treatment, we refer the reader to FMEA.

Separable Equations
A differential equation is called separable if it takes the form

ẋ = f (t)g(x) (11.10.1)

Here the unknown function is x = x(t), and its rate of change ẋ is given as the product
of a function f (t) only of t and another function g(x) only of x. A simple case is ẋ = tx,
which is obviously separable, whereas ẋ = t + x is not. In fact, all the differential equations
studied Section 11.9 were separable equations of the especially simple form ẋ = g(x), with
f (t) ≡ 1. The equation ẋ + ax = bx2 in (11.9.12), for instance, is separable because it can
be rewritten as ẋ = g(x) where g(x) = −ax + bx2.
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The following general method for solving separable equations is justified in FMEA.

M E T H O D F O R S O L V I N G S E P A R A B L E D I F F E R E N T I A L E Q U A T I O N S

(i) Write Eq. (11.10.1) as
dx
dt

= f (t)g(x) (∗)

(ii) Separate the variables to get
1

g(x)
dx = f (t) dt.

(iii) Integrate each side to get
∫

1
g(x)

dx =
∫

f (t) dt.

(iv) Evaluate the two integrals, if possible, thus obtaining a solution of (∗),
possibly in implicit form. Then, if possible, solve for x(t).

Note that at step (ii) we divided by g(x), implicitly assuming that g(x) 
= 0. If in fact
there exists a such that g(a) = 0, then a particular solution of (∗) will be x(t) = a for all t.
Given the logistic equation (11.9.9), for instance, both x(t) = 0 for all t and x(t) = K for
all t are particular solutions.

E X A M P L E 11.10.1 Solve the differential equation dx/dt = etx2 and find the solution curve, which is
also called the integral curve, that passes through the point (t, x) = (0, 1).

Solution: We observe first that x(t) ≡ 0 is one (trivial) solution. To find the other solutions
we follow the remaining steps (ii)–(iv) of the recipe:

(ii) Separate: (1/x2) dx = et dt;

(iii) Integrate:
∫

(1/x2) dx = ∫
et dt;

(iv) Evaluate: −1/x = et + C;

From the result of (iv), it follows that:

x = −1
et + C

(∗)

To find the integral curve through (0, 1), we must determine the correct value of C. Because
we require x = 1 for t = 0, it follows from (∗) that 1 = −1/(1 + C), so C = −2. Thus, the
integral curve passing through (0, 1) is x = −1/(et − 2) = 1/(2 − et).

E X A M P L E 11.10.2 (Economic Growth7). Let X = X(t) denote the national product, K = K(t) the
capital stock, and L = L(t) the number of workers in a country at time t. Suppose that, for
all t ≥ 0, one has

(a) X = √
K

√
L (b) K̇ = 0.4X (c) L = e0.04t

7 This is a special case of the Solow–Swan growth model, developed jointly by American Nobel
Prize laureate Robert Solow (born 1924) and Australian economist Trevor Swan (1918–1989). See
Example 5.7.3 in FMEA.
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Derive from these equations a single differential equation for K = K(t). Then find the solu-
tion of that equation that satisfies K(0) = 10 000.8

Solution: From equations (a)–(c), we derive the single differential equation

K̇ = dK
dt

= 0.4
√

K
√

L = 0.4e0.02t
√

K ((i))

This is clearly separable. Using the recipe yields the successive equations:

(ii)
1√
K

dK = 0.4e0.02t dt

(iii)
∫

1√
K

dK = ∫
0.4e0.02t dt

(iv) 2
√

K = 20e0.02t + C.

If K = 10 000 for t = 0, then 2
√

10 000 = 20 + C, so C = 180. Then
√

K = 10e0.02t +
90, and so the required solution is

K(t) = (10e0.02t + 90)2 = 100(e0.02t + 9)2

The capital–labour ratio has a somewhat bizarre limiting value in this model: as t → ∞, so

K(t)
L(t)

= 100 × (e0.02t + 9)2

e0.04t
= 100

[
e0.02t + 9

e0.02t

]2

= 100(1 + 9e−0.02t)2 → 100

E X A M P L E 11.10.3 Solve the separable differential equation (ln x)ẋ = e1−t.

Solution: Following the recipe yields

(i) ln x
dx
dt

= e1−t;

(ii) ln x dx = e1−t dt;

(iii)
∫

ln x dx = ∫
e1−t dt;

(iv) x ln x − x = −e1−t + C, using the result in Example 10.1.3.

The desired functions x = x(t) are those that satisfy the last equation for all t in some
interval.

Why do we say “in some interval”? Note that x ln x − x ≥ −1 for all real numbers x,
so the equation x ln x − x = −e1−t + C requires that C ≥ −1 + e1−t, and so e1−t ≤ C + 1.
This is equivalent to t ≥ 1 − ln(C + 1).

We usually say that we have solved a differential equation even if, as in Example 11.10.3,
the solution cannot be expressed as an explicit function of t. The important point is that we
have defined the solution implicitly by an equation that does not include the derivative of
the unknown function.

8 In (a) we have a Cobb–Douglas production function; (b) says that aggregate investment is propor-
tional to output; (c) implies that the labour force grows exponentially.



�

� �

�

438 C H A P T E R 1 1 / T O P I C S I N F I N A N C E A N D D Y N A M I C S

First-Order Linear Equations
A first-order linear differential equation in the unknown function x = x(t) defined on an
interval I is one that can be written in the form

ẋ + a(t)x = b(t) (11.10.2)

where a(t) and b(t) denote known continuous functions of t in I. Equation (11.10.2) is called
is called “first-order” because it only involves the first derivative of x, and not higher-order
derivatives. It is called “linear” because the left-hand side is a linear function of x and ẋ.

The special case when a(t) and b(t) are both constants was discussed in Section 11.9.
There we introduced the new variable y = x − b/a to find the solution in (11.9.8). This can
be written as:

ẋ + ax = b ⇔ x = Ce−at + b
a

(11.10.3)

where C is a constant. In fact, the equation is separable, so the method we set out for solving
separable equations will also lead to the same solution.

If we let C = 0 we obtain the constant solution x(t) = b/a . We say that x = b/a is an
equilibrium state, steady state, or stationary state of the equation ẋ + ax = b in (11.10.2).
Observe how this solution can be obtained from ẋ + ax = b by letting ẋ = 0 and then solv-
ing the resulting equation for x.

If the constant a is positive, then the solution x = Ce−at + b/a in (11.10.3) converges to
b/a as t → ∞. In this case, because every solution of the equation converges to the steady
state as t approaches infinity, we say that the equation is stable. Stability like this is an
important issue for differential equations appearing in economics.9

E X A M P L E 11.10.4 Find the solution of ẋ + 3x = −9, and determine whether the equation is stable.

Solution: By (11.10.3), the solution is x = Ce−3t − 3. Here the equilibrium state is x = −3.
Moreover the equation is stable because a = 3 > 0, so x → −3 as t → ∞.

E X A M P L E 11.10.5 (A Stable Price Adjustment Mechanism). Let D(P) = a − bP and S(P)=
α + βP denote, respectively, the demand and the supply of a certain commodity, as
functions of the price P. Here a, b, α, and β are positive constants. Assume that the price
P = P(t) varies with time, and that Ṗ is proportional to excess demand D(P) − S(P). Thus,

Ṗ = λ[D(P) − S(P)]

where λ is a positive constant. Inserting the expressions for D(P) and S(P) into this equation
gives Ṗ = λ(a − bP − α − βP). Rearranging, we then obtain

Ṗ + λ(b + β)P = λ(a − α)

According to (11.10.3), the solution is

P = Ce−λ(b+β)t + a − α

b + β

9 For an extensive discussion of stability see, for instance, FMEA.



�

� �

�

S E C T I O N 1 1 . 1 0 / S E P A R A B L E A N D L I N E A R D I F F E R E N T I A L E Q U A T I O N S 439

Because λ(b + β) is positive, as t tends to infinity, so P converges to the equilibrium price
Pe = (a − α)/(b + β) at which D(Pe) = S(Pe). Thus, the equilibrium is stable.

Variable Right-Hand Side
Consider next the case where the right-hand side is not constant:

ẋ + ax = b(t) (11.10.4)

In this case the equation is no longer separable. Nevertheless, a clever trick helps find the
solution. We multiply each side of (11.10.4) by the positive factor eat, called an integrating
factor. This gives the equivalent equation

ẋeat + axeat = b(t)eat (∗)

Though it may not be obvious beforehand, this idea it works well because the left-hand side
of (∗) happens to be the exact derivative of the product xeat. Thus (∗) is equivalent to

d
dt

(xeat) = b(t)eat (∗∗)

This can be solved by simple integration. Indeed, by definition of the indefinite integral,
equation (∗∗) holds for all t in an interval if and only if xeat = ∫

b(t)eat dt + C for some
constant C. Multiplying this equation by e−at gives the solution for x. Briefly formulated:

N O N - A U T O N O M O U S , F I R S T - O R D E R L I N E A R E Q U A T I O N

ẋ + ax = b(t) ⇐⇒ x = Ce−at + e−at
∫

eatb(t) dt (11.10.5)

E X A M P L E 11.10.6 Find the solution of ẋ + x = t, and determine the solution curve passing
through (0, 0).

Solution: According to (11.10.5) with a = 1 and b(t) = t, the solution is given by

x = Ce−t + e−t
∫

tet dt = Ce−t + e−t(tet − et) = Ce−t + t − 1

where the second equality is shown by using integration by parts, as in Example 10.5.1, to
evaluate

∫
tet dt. If x = 0 when t = 0, we get 0 = C − 1, so C = 1. So the required solution

is x = e−t + t − 1.

E X A M P L E 11.10.7 (Economic Growth). Consider the following model of economic growth:

(a) X(t) = 0.2K(t) (b) K̇(t) = 0.1X(t) + H(t) (c) N(t) = 50e0.03t

This model is meant to capture the features of a developing country. Here X(t) is annual
GDP, K(t) is capital stock, H(t) is the net inflow of foreign investment per year, and N(t)
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is the size of the population, all measured at time t. In (a) we assume that the volume of
production is simply proportional to the capital stock, with the factor of proportionality 0.2
being called the average productivity of capital. In (b) we assume that the total growth of
capital per year is equal to internal savings plus net foreign investment. We assume that
savings are proportional to production, with the factor of proportionality 0.1 being called
the savings rate. Finally, (c) tells us that population increases at a constant proportional rate
of growth 0.03.

Assume that H(t) = 10e0.04t and derive from these equations a differential equation for
K(t). Find its solution given that K(0) = 200. Find also an expression for x(t) = X(t)/N(t),
which is domestic product per capita.

Solution: From (a) and (b), it follows that K(t) must satisfy the linear equation

K̇(t) − 0.02K(t) = 10e0.04t

Using (11.10.5), we obtain the solution

K(t) = Ce0.02t + e0.02t
∫

e−0.02t10e0.04t dt

= Ce0.02t + 10e0.02t
∫

e0.02t dt

= Ce0.02t + 10
0.02

e0.04t = Ce0.02t + 500e0.04t

At t = 0, where K(0) = C + 500, we must have K(0) = 200. So C = −300 and then

K(t) = 500e0.04t − 300e0.02t (∗)

Per capita production is x(t) = X(t)/N(t) = 0.2K(t)/50e0.03t = 2e0.01t − 1.2e−0.01t.

Solving the general linear differential equation (11.10.2) is somewhat more complicated.
Once again we refer the interested reader to FMEA for a detailed treatment. For the moment,
however, let us define A(t) as the indefinite integral

∫
a(t)dt of the coefficient a(t) of x in

Eq. (11.10.2). Then it turns out that the exponential eA(t) is an integrating factor that we can
apply as we did in deriving (11.10.5). Indeed, multiplying both sides of (11.10.2) by this
exponential gives

ẋeA(t) + a(t)xeA(t) = b(t)eA(t)

Because we assumed that A(t) = ∫
a(t)dt, the left-hand side of this equation equals the

derivative d
dt (xeA(t)). So the equation can be rewritten as d

dt (xeA(t)) = b(t)eA(t). Integrating
each side of this equation gives xeA(t) = C + ∫

b(t)eA(t)dt, where C is a constant. Finally,
multiplying each side by e−A(t) gives the solution

x = Ce−A(t) + e−A(t)
∫

eA(t)b(t) dt

This generalizes Eq. (11.10.5) to the case when a(t) is not a constant a.
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E X E R C I S E S F O R S E C T I O N 1 1 . 1 0

1. Solve the equation x4ẋ = 1 − t. Find the integral curve through (t, x) = (1, 1).

2.SM Solve the following differential equations:

(a) ẋ = e2t/x2 (b) ẋ = e−t+x (c) ẋ − 3x = 18

(d) ẋ = (1 + t)6/x6 (e) ẋ − 2x = −t (f) ẋ + 3x = tet2−3t

3. Suppose that y = αkeβt denotes output as a function of capital k, where the factor eβt is due to
technical progress. Suppose that a constant fraction s ∈ (0, 1) of output is saved, and that capital
accumulation is equal to savings. Then we have the separable differential equation k̇ = sαkeβt,
with k(0) = k0 . The constants α, β, and k0 are positive. Find the solution.

4. Suppose Y = Y(t) is GDP, C(t) is consumption, and --I is investment, which is constant. Suppose
Ẏ = α(C + --I − Y) and C = aY + b, where a, b, and α are positive constants with a < 1.

(a) Derive a differential equation in which Y is the only variable that depends on t.

(b) Find its solution when Y(0) = Y0 is given. What happens to Y(t) as t → ∞?

5.SM In a growth model, suppose that production Q is a function of capital K and labour L. Suppose
too that: (a) K̇ = γ Q; (b) Q = KαL; and (c) L̇/L = β. Assuming that L(0) = L0, β 
= 0 and α ∈
(0, 1), derive a differential equation for K. Then solve this equation when K(0) = K0.

6. As in Section 7.7, let Elt x(t) denote the elasticity of x(t) w.r.t. t. Assuming that both t and x are
positive and that a is a constant, find x(t) when Elt x(t) = a for all t > 0.

R E V I E W E X E R C I S E S

1. An amount $5 000 earns interest at 3% per year.

(a) What will this amount have grown to after ten years?

(b) How long does it take for the $5 000 to double?

2. An amount of €8 000 is invested at 5% per year.

(a) What is the balance in the account after three years?

(b) What is the balance after 13 years?

(c) How long does it take, approximately, for the balance to reach €32 000?

3. Which is preferable for a borrower: (i) to borrow at the annual interest rate of 11% with interest
paid yearly; or (ii) to borrow at annual interest rate 10% with interest paid monthly?

4. Suppose the sum of £15 000 is invested in an account earning interest at an annual rate of 7%.
What is the balance after 12 years if interest is compounded continuously?
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5. (a) How much has $8 000 increased to after three years, if the annual interest rate is 6%, with
continuous compounding?

(b) How long does it take before the $8 000 has doubled?

6. Find the sums of the following infinite series:

(a) 44 + 44 · 0.56 + 44 · (0.56)2 + · · · (b)
∞∑

n=0

20
(

1
1.2

)n

(c) 3 + 3 · 2
5

+ 3 · 22

52
+ · · · + 3 · 2n−1

5n−1
+ · · · (d)

∞∑
j=−2

1
20j

7. A constant income stream of a dollars per year is expected over the next T years.

(a) Find its PDV, assuming an interest rate of r annually, compounded continuously.

(b) What is the limit of the PDV as T → ∞? Compare this result with Eq. (11.5.4).

8. At the beginning of a year $5 000 is deposited in an account earning 4% annual interest. What
is the balance after four years?

9.SM At the end of each year for four years, $5 000 is deposited in an account earning 4% annual
interest. What is the balance immediately after the fourth deposit?

10.SM Suppose you had $10 000 in your account on 1st January 2006. The annual interest rate is
4%. You agreed to deposit a fixed amount K each year for eight years, the first deposit on
1st January 2009. What choice of the fixed amount K will imply that you have a balance of
$70 000 immediately after the last deposit?

11. A business borrows €500 000 from a bank at the beginning of one year. It agrees to pay it off in
ten equal instalments at the end of each year, with interest at 7% compounding annually.

(a) Find the annual payment. What is the total amount paid to the bank?

(b) What is the total amount if the business has to pay twice a year?

12. Lucy is offered the choice between the following three options:

(i) She gets $3 200 each year for ten years, with the first payment due after one year.

(ii) She gets $7 000 today, and thereafter $3 000 each year for five years, with the first payment
after one year.

(iii) She gets $4 000 each year for ten years, with the first payment only due after five years.

The annual interest rate is 8%. Calculate the present values of the three options. What would
you advise Lucy to choose?

13.SM With reference to Example 11.3.2, suppose that the market value of the tree is P(t) = 100e
√

t/2,
so that its present value is f (t) = 100e

√
t/2e−rt.

(a) Find the optimal cutting time t∗. By studying the sign variation of f ′(t), show that you have
indeed found the maximum. What is t∗ if r = 0.05?10

(b) Solve the same problem when P(t) = 200e−1/t and r = 0.04.

10 Note that t∗ decreases as r increases.
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14. The revenue produced by a new oil well is $1 million per year initially (t = 0), which is expected
to rise uniformly to $5 million per year after ten years. If we measure time in years and let
f (t) denote the revenue, in millions of dollars, per unit of time at time t, it follows that f (t) =
1 + 0.4t. If F(t) denotes the total revenue that accumulates over the time interval [0, t], then
F′(t) = f (t).

(a) Calculate the total revenue earned during the ten year period, F(10).

(b) Find the present value of the revenue stream over the time interval [0, 10], if we assume
continuously compounded interest at the rate r = 0.05 per year.

15. Solve the following difference equations with the given values of x0:

(a) xt+1 = −0.1xt with x0 = 1 (b) xt+1 = xt − 2 with x0 = 4

(c) 2xt+1 − 3xt = 2 with x0 = 2

16. Solve the following differential equations:

(a) ẋ = −3x (b) ẋ + 4x = 12 (c) ẋ − 3x = 12x2

(d) 5ẋ = −x (e) 3ẋ + 6x = 10 (f) ẋ − 1
2 x = x2

17.SM Solve the following differential equations:

(a) ẋ = tx2 (b) 2ẋ + 3x = −15 (c) ẋ − 3x = 30

(d) ẋ + 5x = 10t (e) ẋ + 1
2 x = et (f) ẋ + 3x = t2

18. Let V(x) denote the number of litres of fuel which is left in an aircraft’s fuel tank after it has flown
x km since takeoff. Suppose that V(x) satisfies the differential equation V ′(x) = −aV(x) − b,
where a and b are positive constants. (Thus, fuel consumption per km is the constant b plus the
extra amount aV(x) due to the weight of the remaining fuel.)

(a) Find the solution of the equation with V(0) = V0.

(b) How many km, x∗, can the plane fly if it takes off with V0 litres in its tank?

(c) What is the minimum number of litres, Vm, needed at takeoff if the plane is to fly x̂ km?

(d) Suppose that b = 8, a = 0.001, V0 = 12 000, and x̂ = 1200. Find x∗ and Vm in this case.
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M A T R I X A L G E B R A

Indeed, models basically play the same role in economics as in fashion. They provide an articulated
frame on which to show off your material to advantage... a useful role, but fraught with the dangers
that the designer may get carried away by his personal inclination for the model, while the customer
may forget that the model is more streamlined than reality.
—Jacques H. Drèze (1984)

Most mathematical models used by economists ultimately involve a system of several
equations, which usually express how one or more endogenous variables depend on sev-

eral exogenous parameters. If these equations are all linear, the study of such systems belongs to
an area of mathematics called linear algebra. Even if the equations are Hyphenate as non-linear,
we may still learn much from linear approximations around the solution we are interested
in. For example, we may learn how the solution responds to small shocks to the exogenous
parameters.

Indeed, linear models of this kind provide the logical basis for the econometric techniques
that are routinely used in most modern empirical economic analysis. Linear models become
much easier to understand if we use some key mathematical concepts such as matrices, vectors,
and determinants. These, as well as their application to economic models, will be introduced in
this chapter and in the next.

It is important to note that the usefulness of linear algebra extends far beyond its ability to
solve systems of linear equations. Fields of applied mathematics which rely on linear algebra
extensively include, for instance, the theory of differential and difference equations, linear and
nonlinear optimization theory, as well as statistics and econometrics.

12.1 Matrices and Vectors
A matrix is simply a rectangular array of numbers considered as one mathematical object.
Suppose the array has m rows and n columns. Then we have an m-by-n matrix, written as
m × n. We usually denote a matrix with a bold capital letter such as A, B, and so on. A
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general m × n matrix takes the form

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎞
⎟⎟⎟⎠ (12.1.1)

The matrix A in (12.1.1) is said to have order (or dimension) m × n. The mn numbers
that constitute A are called its entries or elements. In particular, aij denotes the entry in the
ith row and the jth column. For brevity, the m × n matrix in (12.1.1) is often expressed as
(aij)m×n, or more simply as (aij), if the order m × n is clear (or unimportant).

E X A M P L E 12.1.1 The following four rectangular arrays are all matrices:

A =
(

3 −2
5 8

)
, B =

(
−1, 2,

√
3, 16

)
, C =

⎛
⎜⎜⎝

−1 2
8 5
7 6
1 1

⎞
⎟⎟⎠ , and D =

⎛
⎝ 3

−1
12

⎞
⎠

Matrix A is 2 × 2, B is 1 × 4, C is 4 × 2, and D is 3 × 1. Also a21 = 5 and c32 = 6. Note
that a23 and c23 are both undefined because A and C only have two columns.

A matrix with either only one row or only one column is called a vector. It is usual
to distinguish between a row vector, which has only one row, and a column vector, which
has only one column. In Example 12.1.1, matrix B is a row vector, whereas D is a column
vector. Also, it is usual to denote vectors by bold lower-case letters such as x or y, rather
than by capital letters.

Thus, in case a is a 1 × n row vector, we write

a = (a1, a2, . . . , an)

The n numbers a1, a2, . . . , an are called the coordinates or components of a, with ai denoting
its ith coordinate or component. To emphasize that a vector has n components, we can call
it an n-vector, and say that it has dimension n.

E X A M P L E 12.1.2 Construct the 4 × 3 matrix A = (aij)4×3 with aij = 2i − j for all i and J.

Solution: The matrix A has 4 · 3 = 12 entries. Because aij = 2i − j, it follows that a11 =
2 · 1 − 1 = 1, a12 = 2 · 1 − 2 = 0, a13 = 2 · 1 − 3 = −1, and so on. The complete matrix
is

A =

⎛
⎜⎜⎝

2 · 1 − 1 2 · 1 − 2 2 · 1 − 3
2 · 2 − 1 2 · 2 − 2 2 · 2 − 3
2 · 3 − 1 2 · 3 − 2 2 · 3 − 3
2 · 4 − 1 2 · 4 − 2 2 · 4 − 3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 −1
3 2 1
5 4 3
7 6 5

⎞
⎟⎟⎠

Suppose an m × n matrix has m = n, so that it has the same number of columns as
rows. Then it is called a square matrix of order n. In this case, if A = (aij)n×n, then the n ele-
ments a11, a22, . . . , ann constitute the main, or principal, diagonal that runs from the top left
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element a11 to the bottom right element ann. For instance, the matrix A in Example 12.1.1
is a square matrix of order 2, whose main diagonal consists of the numbers 3 and 8. Note
that only a square matrix can have a main diagonal.

E X A M P L E 12.1.3 In Section 3.6 we considered the linear system of two equations in the two unknown
variables x and y. It took the form:

ax + by = c

dx + ey = f
(12.1.2)

It is natural to represent the coefficients of these unknowns by the 2 × 2 matrix(
a b
d e

)
Also, the two constants on the right-hand side of the system constitute the column vector(

c
f

)
For instance, consider the system

3x − 2y = 5

5x + y = −2

Its coefficient matrix and right-hand side column vector are respectively(
3 −2
5 1

)
and

(
5

−2

)

E X A M P L E 12.1.4 Consider a chain of stores with four outlets, each selling eight different commodi-
ties. Let aij denote (the dollar value of) the sales of commodity i at outlet j during a certain
month. A suitable way of recording these data is in the 8 × 4 matrix

A =

⎛
⎜⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24
...

...
...

...

a81 a82 a83 a84

⎞
⎟⎟⎟⎠

The eight rows refer to the eight commodities, whereas the four columns refer to the four
outlets. For instance, if a73 = 225, this means that the sales of commodity 7 at outlet 3 were
worth $225 for the month in question.

Suppose that A = (aij)m×n and B = (bij)m×n are both m × n matrices. Provided that
aij = bij for all i = 1, 2, . . . , m and for all j = 1, 2, . . . , n, we say that A and B are equal,
and write A = B. Thus, two matrices A and B are equal if they both have the same order
and all their corresponding entries are equal. If A and B are not equal, then we write
A �= B.
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E X A M P L E 12.1.5 Determine the conditions under which(
3 t − 1
2t u

)
=

(
t 2v

u + 1 t + w

)
Solution: Both sides of the equation are 2 × 2 matrices, each with four elements. So equal-
ity requires all four equations 3 = t, t − 1 = 2v, 2t = u + 1, and u = t + w between pairs
of corresponding elements to be satisfied. Solving these simultaneous equations shows that
the two matrices are equal if and only if t = 3, v = 1, u = 5, and w = 2. Then both matrices

are equal to each other, and also equal to
(

3 2
6 5

)
.

E X E R C I S E S F O R S E C T I O N 1 2 . 1

1. Determine the order of each of the following matrices:

(a) A =
⎛
⎝3 4

7 −2

⎞
⎠ (b) T =

⎛
⎝0.85 0.10 0.10

0.05 0.55 0.05

⎞
⎠

(c) C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 . . . c1j . . . c1n

...
...

...

ci1 . . . cij . . . cin

...
...

...

cm1 . . . cmj . . . cmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2. Construct the matrix A = (aij)3×3 where aii = 1 for i = 1, 2, 3, and aij = 0 for all pairs i �= j.

3. Determine for what values of u and v the following equality holds:⎛
⎝(1 − u)2 v2 3

v 2u 5
6 u −1

⎞
⎠ =

⎛
⎝4 4 u

v −3v u − v

6 v + 5 −1

⎞
⎠

12.2 Systems of Linear Equations
Section 3.6 has already introduced systems of two simultaneous linear equations in two
variables. Example 12.1.3 showed how matrices can be used to express those systems more
succinctly. We now use these ideas to study general systems of linear equations more sys-
tematically.

The first key step is to introduce suitable notation for what may be a large linear system
of equations. Specifically, we consider m equations in n unknowns, where m may be greater
than, equal to, or less than n. If the unknowns are denoted by x1, . . . , xn, we usually write
such a system in the form
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a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm

(12.2.1)

Here a11, a12, . . . , amn are called the coefficients of the system, and b1, . . . , bm are called the
constant terms, or right-hand sides. All of them are real numbers.

Note carefully the order of the subscripts. In general, aij denotes the coefficient in the ith
equation of the jth variable, which is xj. One or more of these coefficients may be 0. Indeed,
the system usually becomes easier to analyse and solve if many coefficients are 0.

A solution of system (12.2.1) is a list s1, s2, . . . , sn of n numbers such that all the
equations are satisfied simultaneously when we put x1 = s1, x2 = s2, . . . , xn = sn.
Usually, a solution is written as (s1, s2, . . . , sn). Note that the order in which we write the
components is essential in the sense that, even if (s1, s2, . . . , sn) satisfies (12.2.1), then a
rearranged list like (sn, sn−1, . . . , s1) will usually not be a solution.

If system (12.2.1) has at least one solution, it is said to be consistent. When the system
has no solution, it is said to be inconsistent.

E X A M P L E 12.2.1

(a) Write down the system of equations (12.2.1) when n = m = 3 and aij = i + j for i, j =
1, 2, 3, whereas bi = i for i = 1, 2, 3.

(b) Verify that (x1, x2, x3) = (2, −1, 0) is a solution, but (x1, x2, x3) = (2, 0, −1) is not.

Solution:

(a) The coefficients are a11 = 1 + 1 = 2, a12 = 1 + 2 = 3, etc. Set out in full, the system
of equations is

2x1 + 3x2 + 4x3 = 1

3x1 + 4x2 + 5x3 = 2

4x1 + 5x2 + 6x3 = 3

(b) Inserting (x1, x2, x3) = (2, −1, 0) in the system, we see that all three equations are satis-
fied, so this is a solution. On the other hand, suppose we change the order of the numbers
2, −1 and 0 to form the triple (x1, x2, x3) = (2, 0, −1). Then 2x1 + 3x2 + 4x3 = 0, so
the first equation is not satisfied, and so (2, 0, −1) is not a solution to the system.

It is natural to represent the coefficients of the unknowns in system (12.2.1) by the m × n
matrix A that is arranged as in (12.1.1). Then A is called the coefficient matrix of (12.2.1).
The vector of constants on the right-hand side of the system is

b =

⎛
⎜⎜⎜⎝

b1

b2
...

bm

⎞
⎟⎟⎟⎠
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E X A M P L E 12.2.2 The coefficient matrix of the system

3x1 − 2x2 + 6x3 = 5

5x1 + x2 + 2x3 = −2

is (
3 −2 6
5 1 2

)

The vector of constants of the system is the same as in Example 12.1.3.

E X E R C I S E S F O R S E C T I O N 1 2 . 2

1. Decide which of the following single equations in the variables x, y, z, and w are linear, and which
are not:

(a) 3x − y − z − w = 50 (b)
√

3x + 8xy − z + w = 0

(c) 3.33x − 4y + 800
3 z = 3 (d) 3(x + y − z) = 4(x − 2y + 3z)

(e) (x − y)2 + 3z − w = −3 (f) 2a2x − √|b| y + (2 + √|a| )z = b2

2. Let x1, y1, x2, and y2 be four constants, and consider the following equations in the four variables
a, b, c, and d.1

ax2
1 + bx1y1 + cy2

1 + d = 0

ax2
2 + bx2y2 + cy2

2 + d = 0

Is this a linear system of equations in a, b, c, and d?

3. Write down the system of equations (12.2.1) for the case when n = 4, m = 3, and

aij = i + 2j + (−1)i

for i = 1, 2, 3 and j = 1, 2, 3, 4, whereas bi = 2i for i = 1, 2, 3.

4. Write down the system of equations (12.2.1) for the case when n = m = 4 and aij = 1 for all i �= j,
while aii = 0 for i = 1, 2, 3, 4. Sum the four equations to derive a simple equation for

∑4
i=1 xi,

then solve the whole system.

5. Consider a collection of n individuals, each of whom owns a quantity of m different commodities.
Let aij be the number of units of commodity i owned by individual j, for i = 1, 2, . . . , m and j = 1,
2, . . . , n.

(a) What does the list (a1j, a2j, . . . , amj) represent?

(b) Explain in words what the sums a11 + a12 + · · · + a1n and ai1 + ai2 + · · · + ain represent.

(c) Let pi denote the price per unit of commodity i, for i = 1, 2, . . . , m. What is the total value of
the commodities owned by individual j?

1 We remark that in almost all other cases in this book, the letters a, b, c, and d denote constants!
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6.SM Trygve Haavelmo (1911–1999), a Norwegian Nobel prize-winning economist, devised a model
of the US economy for the years 1929–1941 that is based on the following four equations:

(i) C = 0.712Y + 95.05 (ii) Y = C + X − S (iii) S = 0.158(C + X) − 34.30 (iv) X = 93.53

Here X denotes total investment, Y is disposable income, S is the total saving by firms, and C is
total consumption. Write the system of equations in the form (12.2.1) when the variables appear
in the order X, Y , S, and C. Then find the solution of the system.

12.3 Matrix Addition
Matrices could be regarded as merely rectangular arrays of numbers that can store informa-
tion. Yet the real motivation for studying them is that there are useful rules for manipulating
them. These correspond, to some extent, with the familiar rules of ordinary algebra.

Let us return to Example 12.1.4. There the 8 × 4 matrix A represents, for a particular
month, the total sales of eight commodities at four outlets. Suppose that the (dollar values
of) sales for the next month are given by a corresponding 8 × 4 matrix B = (bij)8×4. For
these two months combined, the total sales revenues from each commodity in each of the
outlets would then be given by a new 8 × 4 matrix C = (cij)8×4, with elements given by
cij = aij + bij for i = 1, . . . , 8 and for j = 1, . . . , 4. The matrix C is called the “sum” of A
and B, and we write C = A + B.

M A T R I X A D D I T I O N

If A = (aij)m×n and B = (bij)m×n are two matrices of the same order, we define
the sum A + B of A and B as the m × n matrix (aij + bij)m×n. Thus,

A + B = (aij)m×n + (bij)m×n = (aij + bij)m×n (12.3.1)

To summarize, we add two matrices of the same order by adding their corresponding
entries. Now we argue that, to multiply a matrix by a scalar (which is just another word for
a number in matrix and vector algebra), we should multiply every entry in the matrix by
that scalar.

Returning to the chain of stores considered in Example 12.1.4, suppose that the sales
of each commodity from each outlet just happen to be exactly the same for both the two
months we are considering. This means that we have aij = bij for all i = 1, . . . , 8 and for
all j = 1, . . . , 4, so A = B. Hence, the sum C = A + B has elements given by cij = 2aij for
all i and all j. In this case, we would like to say that matrix C is “twice” or “double” the
matrix A. This motivates the following definition.

M U L T I P L I C A T I O N O F A M A T R I X B Y A S C A L A R

If A = (aij)m×n and α is any real number, we define the product αA as the
m × n matrix

αA = α(aij)m×n = (αaij)m×n (12.3.2)
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E X A M P L E 12.3.1 Compute A + B, 3A, and
(− 1

2

)
B when

A =
(

1 2 0
4 −3 −1

)
and B =

(
0 1 2
1 0 2

)

Solution: Using either Eq. (12.3.1) or (12.3.2), whichever is appropriate, we obtain

A + B =
(

1 3 2
5 −3 1

)
, 3A =

(
3 6 0
12 −9 −3

)
,

(− 1
2

)
B =

(
0 − 1

2 −1
− 1

2 0 −1

)

The matrix (−1)A is usually denoted by −A. Then the difference A − B between two
matrices A and B of the same order can be defined as the sum A + (−B). In our chain store
example, the matrix B − A denotes the increase in sales from the first month to the sec-
ond for each commodity from each outlet. Positive entries represent increases and negative
entries represent decreases.

Given the above definitions, it is easy to derive the following useful rules.

R U L E S F O R M A T R I X A D D I T I O N A N D M U L T I P L I C A T I O N B Y S C A L A R S

Let A, B, and C be arbitrary m × n matrices, and let α and β be real numbers.
Also, let 0 denote the m × n matrix whose mn elements are all zero, which is
called the zero matrix. Then:

(a) (A + B) + C = A + (B + C) (b) A + B = B + A

(c) A + 0 = A (d) A + (−A) = 0

(e) (α + β)A = αA + βA (f) α(A + B) = αA + αB

Each of these rules follows directly from the definitions and the corresponding rules for
ordinary numbers. Because of rule (a), there is no need to insert any parentheses in sums
like A + B + C. Note also that definitions (12.3.1) and (12.3.2) imply, for example, that
A + A + A is equal to 3A.

E X E R C I S E S F O R S E C T I O N 1 2 . 3

1. Evaluate A + B and 3A when A =
(

0 1
2 3

)
and B =

(
1 −1
5 2

)
.

2. Evaluate A + B, A − B, and 5A − 3B when A =
(

0 1 −1
2 3 7

)
and B =

(
1 −1 5
0 1 9

)
.
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12.4 Algebra of Vectors
Recall that a matrix with only one row is called a row vector, whereas a matrix with
only one column is called a column vector. We refer to both types as vectors and denote
them by bold lower-case letters. Clearly both the row vector (7, 13, 4) and the column
vector ⎛

⎝ 7
13
4

⎞
⎠

contain exactly the same information. Indeed, both the numerical elements and their order
are the same; only the arrangement of the numbers is different.

Operations on Vectors
Since a vector is just a special type of matrix, the algebraic operations introduced for matri-
ces are equally valid for vectors. So:

(i) Two n-vectors a and b are equal if and only if all their n corresponding components
are equal; then we write a = b.

(ii) If a and b are two n-vectors, their sum, denoted by a + b, is the n-vector obtained by
adding each component of a to the corresponding component of b.2

(iii) If a is an n-vector and t is a real number, we define ta as the n-vector for which each
component is t times the corresponding component in a.

(iv) The difference between two n-vectors a and b is defined as a − b = a + (−1)b.

Let a and b be two n-vectors, with t and s as real numbers. Then the n-vector ta + sb is
said to be a linear combination of a and b. In symbols, using column vectors, we have

t

⎛
⎜⎜⎜⎝

a1

a2
...

an

⎞
⎟⎟⎟⎠ + s

⎛
⎜⎜⎜⎝

b1

b2
...

bn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ta1 + sb1

ta2 + sb2
...

tan + sbn

⎞
⎟⎟⎟⎠

Linear combinations are frequently found in economics. For example, suppose a and b are
commodity vectors, whose jth components are quantities of commodity number j. Now,
if t persons all buy the same commodity vector a and s persons all buy commodity vec-
tor b, then the vector ta + sb represents the total amounts bought by all t + s persons
combined.

Of course, the rules for matrix addition and multiplication by scalars seen in Section 12.3
apply to vectors also.

2 If two vectors do not have the same dimension, their sum is simply not defined, nor is their differ-
ence. Nor should one add a row vector to a column vector, even if they have the same number of
elements.
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The Inner Product
Let us consider four different commodities such as apples, bananas, cherries, and dates.
Suppose you buy the commodity bundle x = (5, 3, 6, 7). This means, of course, that you
buy five units (say, kilos) of apples, three kilos of bananas, etc. Suppose the prices per kilo
of these four different fruits are given by the price vector p = (4, 5, 3, 8), meaning that the
price per kilo of the first good is $4, that of the second is $5, etc. Then you spend 4 · 5 = 20
dollars on apples, 5 · 3 = 15 dollars on bananas, etc. Thus, the total value of the fruit you
buy is 4 · 5 + 5 · 3 + 3 · 6 + 8 · 7 = 109.

Now, we can regard this total amount spent as the result of an operation denoted by p · x
that we apply to the two vectors p and x. The operation is called the inner product, scalar
product, or dot product of p and x. In general, we have the following definition, formulated
here for row vectors:

I N N E R P R O D U C T

The inner product of the two n-vectors

a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)

is defined as

a · b = a1b1 + a2b2 + · · · + anbn =
n∑

i=1

aibi (12.4.1)

Note that the inner product of two vectors is not a vector but a number. It is obtained by
simply multiplying all the pairs (aj, bj) (for j = 1, 2, . . . , n) of corresponding components
in the two vectors a and b to obtain the n products aj bj, then adding all these products. Note
too that a · b is defined only if a and b both have the same dimension.

Previously we considered the case when p is a price vector whose n components are
measured in dollars per kilo, whereas x is a commodity vector whose n components are mea-
sured in kilos. In this case, for each j = 1, 2, . . . , n, the product pjxj is the amount of money,
measured in dollars, spent on commodity j. Then the inner product p · x = ∑n

j=1 pjxj is the
total amount spent on the n commodities, also measured in dollars.

E X A M P L E 12.4.1 If a = (1, −2, 3) and b = (−3, 2, 5), compute a · b.

Solution: We get a · b = 1 · (−3) + (−2) · 2 + 3 · 5 = 8.
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Here are five important properties of the inner product:

R U L E S F O R T H E I N N E R P R O D U C T

If a, b, and c are all n-vectors and α is a scalar, then

(a) a · b = b · a (b) (αa) · b = a · (αb) = α(a · b)

(c) a · (b + c) = a · b + a · c (d) a · a ≥ 0

(e) a · a = 0 if and only if a = 0

Here, rules (a) and (b) are easy implications of the definitions. Rule (a) says that the
inner product is commutative, in the sense that reversing the order of the two vectors being
multiplied does not change their product. Rule (c) is the distributive law, which also follows
by definition. Rules (a) and (c) together imply that

(a + b) · c = a · c + b · c

Furthermore, rules (d) and (e) together imply that

a · a > 0 ⇔ a �= 0.

To see why this statement is true, note first that a · a = a2
1 + a2

2 + · · · + a2
n, which is always

nonnegative. Also, as in rule (e), it is zero if and only if all the components ai of a are 0.

E X E R C I S E S F O R S E C T I O N 1 2 . 4

1. Compute a + b, a − b, 2a + 3b, and −5a + 2b when a =
(

2
−1

)
and b =

(
3
4

)
.

2. Let a = (1, 2, 2), b = (0, 0, −3), and c = (−2, 4, −3). Compute the three vectors a + b + c,
a − 2b + 2c, and 3a + 2b − 3c.

3. If 3(x, y, z) + 5(−1, 2, 3) = (4, 1, 3), find x, y, and z.

4. If x + 0 = 0, what do you know about the components of x?

5. If 0x = 0, what do you know about the components of x?

6. Express the vector (4, −11) as a linear combination of (2, −1) and (1, 4).

7. Solve the vector equation 4x − 7a = 2x + 8b − a for x in terms of a and b.

8. Suppose that a and b are the two vectors specified in Exercise 1. Find the three inner products
a · a, a · b and a · (a + b). Then verify that a · a + a · b = a · (a + b).

9. For what values of x is the inner product of (x, x − 1, 3) and (x, x, 3x) equal to 0?

10. A residential construction company plans to build several houses of three different types: five of
type A, seven of type B, and 12 of type C. Suppose that each house of type A requires 20 units
of timber, type B requires 18 units, and type C requires 25 units.
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(a) Write down a 3-vector x whose components give the number of houses of each type.

(b) Write down a 3-vector u whose components give, for each type of house, the quantity of
timber required to build one house of that type.

(c) Find the total timber requirement, and show that it is given by the inner product u · x.

11. A firm produces nonnegative output quantities z1, z2, . . . , zn of n different goods, using as inputs
the nonnegative quantities x1, x2, . . . , xn of the same n goods. For each good i, define yi = zi − xi
as the net output of good i, and let pi be the price of good i. Let p = (p1, . . . , pn), x = (x1, . . . , xn),
y = (y1, . . . , yn), and z = (z1, . . . , zn).

(a) Calculate the firm’s revenue and its costs.

(b) Show that the firm’s profit is given by the inner product p · y. What if p · y is negative?

12. A firm produces the first of two different goods as its output, using the second good as its input.

Its net output vector, as defined in Exercise 11, is
(

2
−1

)
. The price vector it faces is (1, 3). Find

the firm’s input vector, output vector, costs, revenue, value of net output, and its profit or loss.

12.5 Matrix Multiplication
The rules we have given for adding or subtracting matrices, and for multiplying a matrix
by a scalar, should all seem entirely natural and intuitive. The rule we are about to give for
matrix multiplication, however, is much more subtle.3 Before stating the rule, however, we
motivate it by considering how to manipulate a particular equation system.

Consider first, as a simple example, the following two linear equation systems:

y1 = b11x1 + b12x2

y2 = b21x1 + b22x2

y3 = b31x1 + b32x2

(i)

and
z1 = a11y1 + a12y2 + a13y3

z2 = a21y1 + a22y2 + a23y3

(ii)

The coefficient matrices of these two systems of equations are, respectively,

B =
⎛
⎝b11 b12

b21 b22

b31 b32

⎞
⎠ and A =

(
a11 a12 a13

a21 a22 a23

)

3 It may be tempting to define the product of two matrices A = (aij)m×n and B = (bij)m×n of the same
order as simply the matrix C = (cij)m×n, where each element cij = aijbij is obtained by multiplying
the entries of the two matrices term by term. This is a respectable matrix operation that generates
the Hadamard product of A and B. However, the definition of matrix multiplication that we give
below is by far the most used and most useful in linear algebra.
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System (i) expresses the three y variables in terms of the two x variables, whereas in (ii) the
two z variables are expressed in terms of the y variables. So the z variables must be related
to the x variables. Indeed, take the expressions for y1, y2, and y3 in (i), then insert them
into (ii). The result is

z1 = a11(b11x1 + b12x2) + a12(b21x1 + b22x2) + a13(b31x1 + b32x2)

z2 = a21(b11x1 + b12x2) + a22(b21x1 + b22x2) + a23(b31x1 + b32x2)

Now gather the terms in x1, followed by those in x2. This yields

z1 = (a11b11 + a12b21 + a13b31)x1 + (a11b12 + a12b22 + a13b32)x2

z2 = (a21b11 + a22b21 + a23b31)x1 + (a21b12 + a22b22 + a23b32)x2

The coefficients of x1 and x2 in these expressons can be assembled in the following 2 × 2
coefficient matrix:

C =
(

a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32

a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32

)
The matrix A is 2 × 3 and B is 3 × 2. In particular, B has as many rows as A has columns.
Note that if we let C = (cik)2×2, then the number

c11 = a11b11 + a12b21 + a13b31

is the inner product of the first row in A and the first column in B. Likewise, c12 is the inner
product of the first row in A and the second column in B, and so on. Generally, each element
cik in C is the inner product of the ith row in A and the kth column in B.

The matrix C in this example is called the (matrix) product of A and B, and we write
C = AB. Here is a numerical example.

E X A M P L E 12.5.1 By definition, in this example the matrix product AB is:

(
1 0 3
2 1 5

)⎛
⎝1 3

2 5
6 2

⎞
⎠ =

(
1 · 1 + 0 · 2 + 3 · 6 1 · 3 + 0 · 5 + 3 · 2
2 · 1 + 1 · 2 + 5 · 6 2 · 3 + 1 · 5 + 5 · 2

)
=

(
19 9
34 21

)

In order to extend the argument to general matrices, assume that, as in (i), the variables
z1, . . . , zm are expressed linearly in terms of y1, . . . , yn, and that, as in (ii), the variables
y1, . . . , yn are expressed linearly in terms of x1, . . . , xp. Then z1, . . . , zm can be expressed
linearly in terms of x1, . . . , xp. Provided that the matrix B does indeed have as many rows
as A has columns, the result we get leads directly to the following definition:

M A T R I X M U L T I P L I C A T I O N

Suppose that A = (aij)m×n and that B = (bjk)n×p. Then the matrix product C =
AB is the m × p matrix C = (cik)m×p, whose element in the ith row and the



�

� �

�

460 C H A P T E R 1 2 / M A T R I X A L G E B R A

kth column is the inner product of the ith row of A and the kth column of B.
That is:

cik =
n∑

j=1

aijbjk = ai1b1k + ai2b2k + · · · + aijbjk + · · · + ainbnk (12.5.1)

Note that, in order to get the entry cik in row i and column k of C, we multiply each
component aij in the ith row of A by the corresponding component bjk in the kth column of
B, then add all the products. One way of visualizing matrix multiplication is this:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 . . . a1j . . . a1n
...

...
...

ai1 . . . aij . . . ain

...
...

...

am1 . . . amj . . . amn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b11 . . . . . . b1p
...

...

bj1 . . .

b1j
...

bkj
...

bnj

. . . bkp
...

...

bn1 . . . . . . bnp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c11 . . . c1j . . . c1p
...

...
...

ci1 . . . cij . . . cip

...
...

...

cm1 . . . cmj . . . cmp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

It bears repeating that the matrix product AB is defined if and only if the number of
columns in A is equal to the number of rows in B. Also, if it is defined, the product AB has
as many rows as A and as many columns as B.

Note too that AB might be defined, even if BA is not. For instance, if A is 6 × 3 and B
is 3 × 5, then AB is defined as a 6 × 5 matrix, whereas BA is not defined.

E X A M P L E 12.5.2 Let

A =
⎛
⎝0 1 2

2 3 1
4 −1 6

⎞
⎠ and B =

⎛
⎝ 3 2

1 0
−1 1

⎞
⎠

Compute the matrix product AB. Is the product BA defined?

Solution: A is 3 × 3 and B is 3 × 2, so AB is the following 3 × 2 matrix:4

AB =
⎛
⎝0 1 2

2 3 1
4 −1 6

⎞
⎠

⎛
⎝ 3 2

1 0
−1 1

⎞
⎠ =

⎛
⎝−1 2

8 5
5 14

⎞
⎠

The matrix product BA is not defined because the number of columns in B is not equal to
the number of rows in A.

Note that in the Example 12.5.2, the matrix product AB was defined but BA was not.
Exercise 1 and Example 12.6.4 show how, even in cases in which AB and BA are both

4 We have used colouring to indicate how the element in the second row and first column of AB is
found. It is the inner product of the second row in A and the first column in B; this is 2 · 3 + 3 · 1 +
1 · (−1) = 8.
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defined, they are usually not equal. To recognize this important distinction between the two
matrix products, when we write AB, we say that we postmultiply A by B, whereas in BA
we premultiply A by B.

E X A M P L E 12.5.3 Three firms share the market for a certain commodity. Initially, firm A has 20%
of the market, firm B has 60%, and firm C has 20%. In the course of the next year, the
following changes occur:

(a) firm A keeps 85% of its customers, while losing 5% to B and 10% to C;

(b) firm B keeps 55% of its customers, while losing 10% to A and 35% to C;

(c) firm C keeps 85% of its customers, while losing 10% to A and 5% to B.

We can represent market shares of the three firms by means of a market share vector,
defined as a column vector s whose components are all nonnegative and sum to 1. Define
the matrix T and the initial market share vector s by

T =
⎛
⎝0.85 0.10 0.10

0.05 0.55 0.05
0.10 0.35 0.85

⎞
⎠ and s =

⎛
⎝0.2

0.6
0.2

⎞
⎠

Notice that we have defined each element tij as the percentage of j’s customers who become
i’s customers in the next period. So T is called the transition matrix.

Compute the vector Ts. Then show that it is also a market share vector, and give an
interpretation. What is the interpretation of the successive products T(Ts), T(T(Ts)), . . . ?

Solution: Computing directly, we obtain

Ts =
⎛
⎝0.85 0.10 0.10

0.05 0.55 0.05
0.10 0.35 0.85

⎞
⎠

⎛
⎝0.2

0.6
0.2

⎞
⎠ =

⎛
⎝0.25

0.35
0.40

⎞
⎠

Because 0.25 + 0.35 + 0.40 = 1, the product Ts is also a market share vector. The first
entry in Ts is obtained from the calculation

0.85 · 0.2 + 0.10 · 0.6 + 0.10 · 0.2 = 0.25

Here 0.85 · 0.2 is A’s share of the market that it retains after one year, whereas 0.10 · 0.6 is
the share A gains from B, and 0.10 · 0.2 is the share A gains from C. The sum, is therefore,
firm A’s total share of the market after one year. The other entries in Ts can be interpreted
similarly. So Ts must be the new market share vector after one year, and T(Ts) (which
Exercise 8 asks you to find) is the market share vector after two years. And so on.

Systems of Equations in Matrix Form
The definition of matrix multiplication allows us to write linear systems of equations very
compactly by means of matrix multiplication. For instance, consider the system

3x1 + 4x2 = 5

7x1 − 2x2 = 2
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Now define the 2 × 2 coefficient matrix A, the 2-vector x of unknowns, and the right-hand
side 2-vector b, respectively, by

A =
(

3 4
7 −2

)
, x =

(
x1

x2

)
, and b =

(
5
2

)

Then we see that

Ax =
(

3 4
7 −2

) (
x1

x2

)
=

(
3x1 + 4x2

7x1 − 2x2

)

So the original system is equivalent to the matrix equation Ax = b.
In general, consider the linear system (12.2.1) with m equations and n unknowns. Sup-

pose we define

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎞
⎟⎟⎟⎠ , x =

⎛
⎜⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎟⎠ , and b =

⎛
⎜⎜⎜⎝

b1

b2
...

bm

⎞
⎟⎟⎟⎠

So A is m × n and x is n × 1. The matrix product Ax is therefore defined and is m × 1.
Moreover, you can easily check that (12.2.1) can be written as Ax = b. This very concise
notation turns out to be extremely useful.

E X E R C I S E S F O R S E C T I O N 1 2 . 5

1. Compute the products AB and BA, if possible, when A and B are, respectively:

(a)
(

0 −2
3 1

)
and

(−1 4
1 5

)
(b)

(
8 3 −2
1 0 4

)
and

⎛
⎝2 −2

4 3
1 −5

⎞
⎠

(c)
(−1 0

2 4

)
and

⎛
⎝ 3 1

−1 1
0 2

⎞
⎠ (d)

⎛
⎝ 0

−2
4

⎞
⎠ and

(
0 −2 3

)

2. Calculate the three matrices 3A + 2B − 2C + D, AB, and C(AB), given the matrices

A =
(

2 4
1 2

)
, B =

(−2 4
1 −2

)
, C =

(
2 3
6 9

)
, and D =

(
1 1
1 3

)

3. Find the six matrices A + B, A − B, AB, BA, A(BC), and (AB)C, given that

A =
⎛
⎝1 2 −3

5 0 2
1 −1 1

⎞
⎠ , B =

⎛
⎝3 −1 2

4 2 5
2 0 3

⎞
⎠ , and C =

⎛
⎝4 1 2

0 3 2
1 −2 3

⎞
⎠

4. Write out the three matrix equations that correspond to the following systems:

(a)
x1 + x2 = 3

3x1 + 5x2 = 5
(b)

x1 + 2x2 + x3 = 4

x1 − x2 + x3 = 5

2x1 + 3x2 − x3 = 1

(c)
2x1 − 3x2 + x3 = 0

x1 + x2 − x3 = 0
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5. Consider the three matrices

A =
(

2 2
1 5

)
, B =

(
2 0
3 2

)
, and I =

(
1 0
0 1

)
(a) Find a matrix C satisfying (A − 2I)C = I.

(b) Is there a matrix D satisfying (B − 2I)D = I?

6.SM Suppose that A is an m × n matrix and that B is another matrix such that the products AB and BA
are both defined. What must the order of B be?

7.SM Find all matrices B that “commute” with A =
(

1 2
2 3

)
in the sense that AB = BA.

8. In Example 12.5.3, compute T(Ts).

12.6 Rules for Matrix Multiplication
In Section 12.5 we saw that matrix multiplication is more complicated than the rather obvi-
ous operations of matrix addition and multiplication by a scalar that had been set out in
Section 12.3. So we need to examine carefully what rules matrix multiplication does sat-
isfy. We have already noticed that the commutative law AB = BA does not hold in general.
The following important rules are generally valid, however.

R U L E S F O R M A T R I X M U L T I P L I C A T I O N

Let A, B, and C be matrices and α a scalar. Then, whenever the orders of the
specified matrices are such that the matrix operations are defined, one has:

(AB)C = A(BC) (12.6.1)

A(B + C) = AB + AC (12.6.2)

(A + B)C = AC + BC (12.6.3)

(αA)B = A(αB) = α(AB) (12.6.4)

Rule (12.6.1) is known as the associative law, while rules (12.6.2) and (12.6.3) are,
respectively, the left and right distributive laws. Note that two laws are stated here because,
unlike for numbers, matrix multiplication is not commutative, and so A(B + C) is in general
different from (B + C)A.

E X A M P L E 12.6.1 Verify rules (12.6.1)–(12.6.2) for the following matrices:

A =
(

1 2
0 1

)
, B =

(
0 −1
3 2

)
, and C =

(
1 1
2 1

)
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Solution: All operations of multiplication and addition are defined, with

AB =
(

6 3
3 2

)
,

BC =
(−2 −1

7 5

)
,

(AB)C =
(

6 3
3 2

)(
1 1
2 1

)
=

(
12 9

7 5

)

A(BC) =
(

1 2
0 1

)(−2 −1
7 5

)
=

(
12 9

7 5

)
Thus, (AB)C = A(BC) in this case. Moreover,

B + C =
(

1 0
5 3

)
, A(B + C) =

(
1 2
0 1

)(
1 0
5 3

)
=

(
11 6

5 3

)
and

AC =
(

5 3
2 1

)
, AB + AC =

(
6 3
3 2

)
+

(
5 3
2 1

)
=

(
11 6

5 3

)
So A(B + C) = AB + AC.

Rules (12.6.1)–(12.6.4) for matrix multiplication can be proved simply by carefully
applying the definitions of the relevant operations, as well as the rules for the inner product
of two vectors. To illustrate, we now prove the associative law:

Proof of rule (12.6.1): Suppose A = (aij)m×n, B = (bjk)n×p, and C = (ckl)p×q. It is easy to
verify that these orders imply that (AB)C and A(BC) are both defined as m × q matrices.
We have to prove that their corresponding elements are all equal.

The element in row i and column l of (AB)C, denoted by [(AB)C]il, is the inner product
of the ith row in AB and the lth column in C. Similarly for the element [A(BC)]il of A(BC).
Using summation notation, we must prove the middle equality in the chain

[(AB)C]il =
p∑

k=1

⎛
⎝ n∑

j=1

aijbjk

⎞
⎠ ckl =

n∑
j=1

aij

( p∑
k=1

bjkckl

)
= [A(BC)]il

But this middle equality holds because the double sums on each side are both equal to the
overall sum of all the np terms aijbjkckl, as j runs from 1 to n and k runs from 1 to p.

We emphasize that proving rule (12.6.1) involved checking in detail that each element
of (AB)C equals the corresponding element of A(BC). The same sort of check is required
to prove the other three rules. We leave the details of these proofs to the reader.

Because of (12.6.1), parentheses are not required in a matrix product such as ABC. Of
course, a corresponding result is valid for products of more factors.

A useful technique in matrix algebra is to prove new results by using rules (12.6.1)–
(12.6.4), repeatedly if necessary, rather than by examining individual elements. For
instance, consider the statement that if A = (aij) and B = (bij) are both n × n matrices,
then

(A + B)(A + B) = AA + AB + BA + BB (12.6.5)

To prove this statement, note first that rules (12.6.2) and (12.6.3) together imply that

(A + B)(A + B) = (A + B)A + (A + B)B = (AA + BA) + (AB + BB)
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Equation (12.6.5) now follows from rules (a) and (b) for matrix addition that were set out
in Section 12.3.

Powers of Matrices
If A is a square matrix, we write the product AA as A2. The associative law (12.6.1) shows
that (A)2A = (AA)A = A(AA) = A(A)2, so we can write this product unambiguously
as A3. In general, for any natural number n, we write

An = AA · · · A︸ ︷︷ ︸
n factors

E X A M P L E 12.6.2 Given the matrix A =
(

1 −1
0 1

)
, compute A2, A3, and A4. Then guess the general

form of An. Finally, confirm your guess by using the principle of mathematical induction
introduced in Section 1.4.

Solution: Routine calculation shows that

A2 = AA =
(

1 −2
0 1

)
, A3 = A2A =

(
1 −3
0 1

)
, and A4 = A3A =

(
1 −4
0 1

)
A reasonable guess, therefore, is that for all natural numbers n, one has

An =
(

1 −n
0 1

)
(∗)

We confirm this by induction on n. Obviously, formula (∗) is correct for n = 1. As the
induction hypothesis, suppose that (∗) holds for n = k, that is,

Ak =
(

1 −k
0 1

)
Then, by definition, one has

Ak+1 = AkA =
(

1 −k
0 1

) (
1 −1
0 1

)
=

(
1 −k − 1
0 1

)
=

(
1 −(k + 1)

0 1

)
This completes the induction step showing that, if (∗) holds for n = k, then it holds for
n = k + 1. It follows that (∗) holds for all natural numbers n.

E X A M P L E 12.6.3 Suppose P and Q are two n × n matrices that satisfy PQ = Q2P. Prove then that
(PQ)2 = Q6P2.

Solution: The proof is simple if we repeatedly use rule (12.6.1) and also substitute PQ for
Q2P twice in order to derive the following chain of equalities:

(PQ)2 = (PQ)(PQ) = (Q2P)(Q2P) = (Q2P)Q(QP) = Q2(PQ)(QP)

Substituting Q2P for PQ twice while using rule (12.6.1) generates this second chain:

Q2(PQ)(QP) = Q2(Q2P)(QP) = Q2Q2(PQ)P = Q4(Q2P)P = Q6P2

Put together, these two chains imply that (PQ)2 = Q6P2.
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Note that it would be virtually impossible to solve this example by looking at individual
elements. It is important to note too that, in general (PQ)2 is not equal to P2Q2.

The Identity Matrix
The identity matrix of order n, denoted by In (or often just I), is defined as the n × n matrix
having as entries 1 along the main diagonal and 0 everywhere else. That is

In =

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎞
⎟⎟⎟⎠

n×n

If A is any m × n matrix, it is routine to use rule (12.5.1) for matrix multiplication in
order to verify that AIn = A. Likewise, if B is any n × m matrix, then InB = B.

From the previous paragraph, it follows that, for every n × n matrix A, one has

AIn = InA = A (12.6.6)

Thus, In is the matrix equivalent of 1 in the real number system. In fact, it is the only
matrix with this property. To prove this, suppose E is an arbitrary n × n matrix such that
AE = A for all n × n matrices A. Putting A = In in particular yields InE = In. But InE = E
according to Eq. (12.6.6). So E = In.

Errors to Avoid
The rules of matrix algebra make many arguments very easy. But it is essential to avoid
inventing new rules that do not work when multiplying general matrices, even if they would
work for numbers (or for 1 × 1 matrices). For example, consider Eq. (12.6.5). It is tempting
to simplify the expression AA + AB + BA + BB on the right-hand side to AA + 2AB +
BB. This is wrong! Even when AB and BA are both defined, AB is not necessarily equal
to BA. As the next example shows, matrix multiplication is not commutative.

E X A M P L E 12.6.4 Show that AB �= BA in case A =
(

2 0
0 3

)
and B =

(
0 1
1 0

)
.

Solution: Direct computation shows that AB =
(

0 2
3 0

)
�= BA =

(
0 3
2 0

)
.

One more result that does not extend from scalars to matrices is the following: if a and b
are real numbers, then ab = 0 implies that either a or b is 0. The corresponding result is not
true for matrices, as AB can be the zero matrix even if neither A nor B is the zero matrix.
The following example illustrates this.
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E X A M P L E 12.6.5 Compute AB, given that A =
(

3 1
6 2

)
and B =

(
1 2

−3 −6

)
.

Solution: Direct computation gives AB =
(

3 1
6 2

) (
1 2

−3 −6

)
=

(
0 0
0 0

)
.

Another rule for real numbers is that, if ab = ac and a �= 0, then we can multiply each
side of the equation by 1/a to derive b = c. This is the cancellation rule. An immediate
implication of Example 12.6.5 is that the corresponding cancellation “rule” for matrices is
not valid: there, AB = A0 and A �= 0, yet B �= 0. To summarize, in general:

(i) AB �= BA;

(ii) AB = 0 does not imply that either A = 0 or B = 0; and

(iii) AB = AC and A �= 0 do not imply that B = C.

Here, (i) says that matrix multiplication is not commutative in general, whereas (iii) shows
us that the cancellation law is generally invalid for matrix multiplication.5

The following two examples illustrate natural applications of matrix multiplication.

E X A M P L E 12.6.6 A firm uses m different raw materials R1, R2, . . . , Rm in order to produce the n
different commodities V1, V2, . . . , Vn. Suppose that for each j = 1, 2, . . . , n, each unit of
commodity Vj requires as inputs aij units of Ri, for all i = 1, 2, . . . , m. These input coeffi-
cients form the matrix

A = (aij)m×n =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎞
⎟⎟⎟⎠

Suppose that the firm plans a monthly production of uj units of each commodity Vj, j = 1,
2, . . . , n. This plan can be represented by an n × 1 matrix (column vector) u, called the
firm’s monthly production vector:

u =

⎛
⎜⎜⎜⎝

u1

u2
...

un

⎞
⎟⎟⎟⎠

Since ai1, in particular, is the amount of raw material Ri which is needed to produce one
unit of commodity V1, it follows that ai1u1 is the amount of raw material Ri which is needed
to produce u1 units of commodity V1. Similarly aijuj is the amount needed for uj units of
Vj (j = 2, . . . , n). The total monthly requirement of raw material Ri is therefore

ai1u1 + ai2u2 + · · · + ainun =
n∑

j=1

aijuj

5 The cancellation law (iii) is valid, however, in case A has an inverse, as defined in Section 13.6.
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This is the inner product of the ith row vector in A and the column vector u. The firm’s
monthly requirement vector r for all raw materials is therefore given by the matrix product
r = Au. Thus r is an m × 1 matrix, or a column vector.

Suppose that the prices per unit of the m raw materials are respectively p1, p2, . . . ,
pm. Let us denote by p by the price vector (p1, p2, . . . , pm). Then the total monthly cost
K of acquiring the required raw materials to produce the vector u is

∑m
i=1 piri. This sum

can also be written as the matrix product pr. Hence, K = pr = p(Au). But Rule (12.6.1)
tells us that matrix multiplication is associative, which allows us to write K = pAu without
parentheses.

E X A M P L E 12.6.7 Figure 12.6.1 indicates the number of daily international flights between major
airports in three different countries A, B, and C. The number attached to each connecting
line shows how many flights there are between the two airports. For instance, from airport
b3 in country B there are 4 flights to airport c3 in country C each day, but none to airport c2

in country C.

2
1
3

1
2
1

1

1
2
1

4
1

a1
c1

c2

c3

b1

b2

b3

b4

a2

Figure 12.6.1 Example 12.6.7

The relevant data can also be represented by the following two extended matrices, in
which we have added to each row and column the label for the corresponding airport:

P :

b1 b2 b3 b4

a1

a2

(
2 1 0 1
3 0 2 1

)
Q :

c1 c2 c3

b1

b2

b3

b4

⎛
⎜⎜⎝

1 0 2
1 0 0
1 0 4
0 1 0

⎞
⎟⎟⎠

Each element pij of the matrix P represents the number of daily flights between airports
ai and bj. Similarly, each element qjk of Q represents the number of daily flights between
airports bj and ck. How many ways are there of getting from ai to ck using two flights, with
one connection in country B? Between a2 and c3, for example, there are 3 · 2 + 0 · 0 + 2 ·
4 + 1 · 0 = 14 possibilities. This is the inner product of the second row vector in P and
the third column vector in Q. The same reasoning applies for each ai and ck. So the total
number of flight connections between the different airports in countries A and C is given
by the matrix product

R = PQ =
(

2 1 0 1
3 0 2 1

) ⎛
⎜⎜⎝

1 0 2
1 0 0
1 0 4
0 1 0

⎞
⎟⎟⎠ =

(
3 1 4
5 1 14

)
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E X E R C I S E S F O R S E C T I O N 1 2 . 6

1. Verify the distributive law A(B + C) = AB + AC when

A =
(

1 2
3 4

)
, B =

(
2 −1 1 0
3 −1 2 1

)
, and C =

(−1 1 1 2
−2 2 0 −1

)

2.SM Compute the matrix product

(
x y z

) ⎛
⎝a d e

d b f
e f c

⎞
⎠

⎛
⎝x

y
z

⎞
⎠

3. Use explicit calculation to verify that (AB)C = A(BC) in case

A =
(

a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
, and C =

(
c11 c12
c21 c22

)

4. Compute the following matrix products:

(a)

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

5 3 1

2 0 9

1 3 3

⎞
⎟⎟⎟⎠ (b)

(
1 2 −3

)
⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠

5. Suppose that A and B are square matrices of order n. Prove that, in general:

(a) (A + B)(A − B) �= A2 − B2; (b) (A − B)(A − B) �= A2 − 2AB + B2.

Find a necessary and sufficient condition for equality to hold in each case.

6. A square matrix A is said to be idempotent if A2 = A.

(a) Show that the matrix

⎛
⎝ 2 −2 −4

−1 3 4
1 −2 −3

⎞
⎠ is idempotent.

(b) Show that if AB = A and BA = B, then A and B are both idempotent.

(c) Show that if A is idempotent, then An = A for all positive integers n.

7. Suppose that P and Q are n × n matrices that satisfy P3Q = PQ. Prove that P5Q = PQ.

8.SM [HARDER] Consider the general 2 × 2 matrix A =
(

a b
c d

)
.

(a) Prove that A2 = (a + d)A − (ad − bc)I2.

(b) Use (a) to find an example of a 2 × 2 matrix A such that A2 = 0, but A �= 0.

(c) Use part (a) to show that if any 2 × 2 matrix A satisfies A3 = 0, then A2 = 0. (Hint: Multiply
the equality in part (a) by A, then use the equality A3 = 0 to derive an equation that you should
then multiply by A once again.)
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12.7 The Transpose
Consider any m × n matrix A. The transpose of A, denoted by A′ or sometimes by A�, is
defined as the n × m matrix whose first row is the first column of A, whose second row is
the second column of A, and so on. Thus, the transpose of the m × n matrix

A = (aij)m×n =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎞
⎟⎟⎟⎠

is the n × m matrix

A′ = (a′
rs)n×m =

⎛
⎜⎜⎜⎝

a′
11 a′

12 . . . a′
1m

a′
21 a′

22 . . . a′
2m

...
...

...

a′
n1 a′

n2 . . . a′
nm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a11 a21 . . . am1

a12 a22 . . . am2
...

...
...

a1n a2n . . . amn

⎞
⎟⎟⎟⎠ (12.7.1)

Succinctly, we have written A′ = (a′
rs) where a′

rs = asr for all r and s. The subscripts r and s
have had to be interchanged because, for example, the ith row of A becomes the ith column
of A′, whereas the jth column of A becomes the jth row of A′.

E X A M P L E 12.7.1 Find A′ and B′ for the matrices

A =
⎛
⎝−1 0

2 3
5 −1

⎞
⎠ and B =

(
1 −1 0 4
2 1 1 1

)

Solution: Applying the definition (12.7.1) of transpose gives

A′ =
(−1 2 5

0 3 −1

)
and B′ =

⎛
⎜⎜⎝

1 2
−1 1

0 1
4 1

⎞
⎟⎟⎠

E X A M P L E 12.7.2 Suppose that we treat the two n-vectors

a =
⎛
⎜⎝

a1
...

an

⎞
⎟⎠ and b =

⎛
⎜⎝

b1
...

bn

⎞
⎟⎠

as n × 1 matrices. Then the transpose a′ is a 1 × n matrix, so the matrix product a′b is well
defined as a 1 × 1 matrix. In fact,

a′b = (a1b1 + a2b2 + · · · + anbn)

We see that the single element of the matrix a′b is just the inner product of the two vectors
a and b, and with a slight abuse of notation we often write a′b = a · b.
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It is usual in economics to regard a typical vector x as a column vector, unless otherwise
specified. This is especially true if it is a quantity or commodity vector. Another common
convention is to regard a price vector as a row vector, often denoted by p′. Then p′x is the
1 × 1 matrix whose single element is equal to the inner product p · x.

The following rules apply to matrix transposition:

R U L E S F O R T R A N S P O S I T I O N

Given any two matrices A and B as well as any scalar α:

(A′)′ = A (12.7.2)

(A + B)′ = A′ + B′ provided that A + B is defined (12.7.3)

(αA)′ = αA′ (12.7.4)

(AB)′ = B′A′ provided that AB is defined (12.7.5)

Verifying the first three rules is very easy, and you should prove them in detail, using
the fact that a′

ij = aji for each i, j. Next, we prove the last rule:

Proof of (12.7.5) Suppose that A is m × n and B is n × p, so AB is defined as an m × p
matrix. Then A′ is n × m, and B′ is p × n, so B′A′ is also defined. It follows that both (AB)′
and B′A′ are p × m. It remains to prove that all the corresponding pairs of elements in these
two p × m matrices are equal.

Now the ki element of the transpose (AB)′ is, by definition, the ik element of AB,
which is

ai1b1k + ai2b2k + · · · + ainbnk (∗)

On the other hand, the ki element in B′A′ is

b′
k1a′

1i + b′
k2a′

2i + · · · + b′
kna′

ni (∗∗)

By definition of the transpose, one has b′
kj = bjk and a′

ji = aij for all j = 1, . . . , n. So the
expression (∗∗) becomes

b1kai1 + b2kai2 + · · · + bnkain (∗∗∗)

Since aijbjk = bjkaij for all j = 1, . . . , n, the sums in (∗) and (∗∗∗) are clearly equal, as
required.

E X A M P L E 12.7.3 Let x be the column vector (x1, x2, . . . , xn)
′. Then x′ is a row vector of n ele-

ments. By Example 12.7.2, the product x′x equals the scalar product x · x, which also equals∑n
i=1 x2

i .
The reverse product xx′, however, as the product of n × 1 and 1 × n matrices in that

order, is an n × n matrix whose ij element is xixj.



�

� �

�

472 C H A P T E R 1 2 / M A T R I X A L G E B R A

Symmetric Matrices
Square matrices with the property that they are equal to their own transposes are called
symmetric. For example,

(−3 2
2 0

)
,

⎛
⎝ 2 −1 5

−1 −3 2
5 2 8

⎞
⎠ and

⎛
⎝a b c

b d e
c e f

⎞
⎠

are all symmetric. Such matrices deserve this name because they are symmetric about the
main diagonal, in the sense that aij = aji for all i and j. Formally,

S Y M M E T R I C M A T R I X

The matrix A = (aij)n×n is symmetric if and only if aij = aji for all i, j. More
succinctly,

A is symmetric ⇐⇒ A = A′

E X A M P L E 12.7.4 If X is an m × n matrix, show that XX′ and X′X are both symmetric.

Solution: First, note that XX′ is m × m, whereas X′X is n × n. Using rule (12.7.5) and then
(12.7.2), we find that

(XX′)′ = (X′)′X′ = XX′

This proves that XX′ is symmetric. The proof that X′X is symmetric is almost identical.

E X E R C I S E S F O R S E C T I O N 1 2 . 7

1. Find the transposes of the three matrices

A =
(

3 5 8 3
−1 2 6 2

)
, B =

⎛
⎜⎜⎝

0
1

−1
2

⎞
⎟⎟⎠ , and C = (

1 5 0 −1
)

2. Let A =
(

3 2
−1 5

)
, B =

(
0 2
2 2

)
, and α = −2.

(a) Compute the eight matrices A′, B′, (A + B)′, (αA)′, AB, (AB)′, B′A′, and A′B′.

(b) For these particular values of A, B, and α, verify all the rules for transposition specified in
Eqs (12.7.2)–(12.7.5).

3. Show that the matrices A =
⎛
⎝3 2 3

2 −1 1
3 1 0

⎞
⎠ and B =

⎛
⎝0 4 8

4 0 13
8 13 0

⎞
⎠ are both symmetric.

4. Determine all the values of a for which the matrix

⎛
⎝ a a2 − 1 −3

a + 1 2 a2 + 4
−3 4a −1

⎞
⎠ is symmetric.
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5. Is the product of two symmetric matrices necessarily symmetric?

6.SM Provided that A1, A2, and A3 are three matrices for which all the relevant products are all defined,
show that (A1A2A3)

′ = A′
3A′

2A′
1. Generalize to products of n matrices.

7. An n × n matrix P is said to be orthogonal if P′P = In.

(a) For λ = ±1/
√

2, show that the matrix P =
⎛
⎝λ 0 λ

λ 0 −λ

0 1 0

⎞
⎠ is orthogonal.

(b) Show that the 2 × 2 matrix
(

p −q
q p

)
is orthogonal if and only if p2 + q2 = 1.

(c) Show that the product of two orthogonal n × n matrices is orthogonal.

8.SM Define the two matrices T =
⎛
⎝ p q 0

1
2 p 1

2
1
2 q

0 p q

⎞
⎠ and S =

⎛
⎝p2 2pq q2

p2 2pq q2

p2 2pq q2

⎞
⎠, where p + q = 1.

(a) Prove that TS = S, that T2 = 1
2 T + 1

2 S, and that T3 = 1
4 T + 3

4 S.

(b) Introduce the hypothesis that for n = 2, 3, . . . there exist two constants αn and βn such that
Tn = αnT + βnS. Under this hypothesis, use the results of part (a) to express αn+1 and βn+1
as functions of αn and βn. Use these relations to conjecture formulas for the constants αn and
βn. Then prove the formulas by induction.

12.8 Gaussian Elimination
In Example 3.6.1, the procedure of eliminating unknowns was introduced as Method 2
for finding solutions to two simultaneous equations in two unknowns. The same proce-
dure can be extended to larger equation systems. Because of its efficiency, it is the usual
starting point for computer algorithms. To see how it works, consider first the following
example.

E X A M P L E 12.8.1 Find all possible solutions of the system

2x2 − x3 = −7

x1 + x2 + 3x3 = 2 (i)

−3x1 + 2x2 + 2x3 = −10

Solution: The idea will be to modify the system in such a way that: (a) x1 appears only
in the first equation; (b) x2 appears only in the first and second equations; (c) finally x3

remains as the only variable in the third equation. And, of course, we must make sure that
the modified system has exactly the same solutions as the original system.
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In the example, we begin by interchanging the first two equations, which certainly will
not alter the set of solutions. We obtain

x1 + x2 + 3x3 = 2

2x2 − x3 = −7

−3x1 + 2x2 + 2x3 = −10

(ii)

This has removed x1 from the second equation. The next step is to use the first equation
in (ii) to eliminate x1 from the third equation. This is done by adding three times the first
equation to the last equation.6 This gives

x1 + x2 + 3x3 = 2

2x2 − x3 = −7

5x2 + 11x3 = −4

(iii)

Having eliminated x1, the next step in the systematic procedure is to multiply the second
equation in (iii) by 1/2, so that the coefficient of x2 becomes 1. Thus,

x1 + x2 + 3x3 = 2

x2 − 1
2 x3 = − 7

2

5x2 + 11x3 = −4

(iv)

Next, eliminate x2 from the last equation by multiplying the second equation by −5 and
adding the result to the last equation. This gives:

x1 + x2 + 3x3 = 2

x2 − 1
2 x3 = − 7

2

27
2 x3 = 27

2

(v)

Finally, multiply the last equation by 2/27 to obtain x3 = 1. After this the other two
unknowns can easily be found by “back substitution”. Indeed, inserting x3 = 1 into
the second equation in (v) gives x2 = −3. Next, inserting x2 = −3 and x3 = 1 into
the first equation in (v) yields x1 = 2. Therefore the only solution of system (i) is
(x1, x2, x3) = (2, −3, 1).

Our elimination procedure led to a “staircase” in system (v), with x1, x2, and x3 as leading
entries. In matrix notation, we have⎛

⎝1 1 3
0 1 −1/2

0 0 1

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝ 2

−7/2

1

⎞
⎠

The coefficient matrix on the left-hand side is said to be upper triangular because its only
nonzero entries are on or above the main diagonal. Moreover, in this example the diagonal
elements are all 1.

6 The same result is obtained if we solve the first equation for x1 to obtain x1 = −x2 − 3x3 + 2, and
then substitute this into the last equation.
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The solution method illustrated in Example 12.8.1 is called Gaussian elimination, or
sometimes the Gauss–Jordan method. The operations performed on the given system of
equations in order to arrive at system (v) are called elementary row operations. These come
in three different kinds:

1. Interchange any pair of rows, as in the step from (i) to (ii) in the above solution. This
will be indicated by a suitable two-way arrow linking the two rows.

2. Multiply any row by a nonzero scalar, as in the step from (iii) to (iv) in the above solution.
This will be indicated by writing the scalar multiplier beside the appropriate row.

3. Add any multiple of one row to a different row, as in the steps from (ii) to (iii) and
from (iv) to (v) in the above solution. This will be indicated by writing the scalar mul-
tiplier beside the appropriate row, then using an arrow to link that number to the other
row.

Sometimes the elementary row operations are continued until we also obtain zeros above
the leading entries. In the example above, this takes three more operations of type 3. The
first is as indicated in

x1 + x2 + 3x3 = 2

x2 − 1
2 x3 = − 7

2

x3 = 1

←
−1 (12.8.1)

This results in
x1 + 7

2 x3 = 11
2

x2 − 1
2 x3 = − 7

2

x3 = 1

←
←

1
2 − 7

2

(12.8.2)

Display (12.8.2) indicates the next two operations, which affect rows 1 and 2 respectively.
The final result is the simple equation system x1 = 2, x2 = −3, and x3 = 1.

Let us apply this method to another example.

E X A M P L E 12.8.2 Find all possible solutions of the following system of equations:

x1 + 3x2 − x3 = 4

2x1 + x2 + x3 = 7

2x1 − 4x2 + 4x3 = 6

3x1 + 4x2 = 11

Solution: We begin with three operations to remove x1 from the second, third, and fourth
equations, as indicated below:

x1 + 3x2 − x3 = 4

2x1 + x2 + x3 = 7

2x1 − 4x2 + 4x3 = 6

3x1 + 4x2 = 11

−2 −2 −3

←
←
←
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The result is:
x1 + 3x2 − x3 = 4

−5x2 + 3x3 = −1

−10x2 + 6x3 = −2

−5x2 + 3x3 = −1

×(− 1
5 )

where we have also indicated the next operation of multiplying row 2 by − 1
5 . Further oper-

ations on the result lead to

x1 + 3x2 − x3 = 4

x2 − 3
5 x3 = 1

5

−10x2 + 6x3 = −2

−5x2 + 3x3 = −1

10 5

←
←

and then to
x1 + 3x2 − x3 = 4

x2 − 3
5 x3 = 1

5

0 = 0

0 = 0

←
−3

We have now constructed the staircase. The last two equations are superfluous, so we drop
them, while applying one more row operation to create a zero above the leading entry x2.
The result is:

x1 + 4
5 x3 = 17

5

x2 − 3
5 x3 = 1

5

Equivalently, one has
x1 = − 4

5 x3 + 17
5

x2 = 3
5 x3 + 1

5

(∗)

Clearly, x3 can be chosen freely, after which both x1 and x2 are uniquely determined by (∗).
Putting x3 = t, we can represent the set of all possible solutions as

(x1, x2, x3) = (− 4
5 t + 17

5 , 3
5 t + 1

5 , t
)

where t is any real number. This solution will be discussed further in Example 15.10.1.

G A U S S I A N E L I M I N A T I O N M E T H O D

In order to solve a system of linear equations:

(i) Make a staircase with 1 as the coefficient for each nonzero leading entry.

(ii) Produce zeros above each leading entry.
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(iii) The general solution is found by expressing the unknowns that occur as
leading entries in terms only of those unknowns that do not. The latter
unknowns, if there are any, can then be chosen freely.

The number of unknowns that can be chosen freely, which may be none, is the
number of degrees of freedom.

This description of the recipe assumes that the system has solutions. However, the Gaus-
sian elimination method can also be used to show whether a linear system of equations is
inconsistent, in the sense of having no solutions. Before showing you an example of this, let
us introduce a device that reduces considerably the amount of notation we need. Looking
back at the last two examples, we realize that we only need to know the coefficients of the
system of equations and the right-hand side vector, while the variables only serve to indi-
cate the column in which to place the different coefficients. Thus, Example 12.8.2 can be
represented as follows by augmented coefficient matrices which each have an extra column
consisting of the corresponding vector of right-hand sides to the equations.

⎛
⎜⎜⎝

1 3 −1 4
2 1 1 7
2 −4 4 6
3 4 0 11

⎞
⎟⎟⎠

−2 −2 −3
←
←
←

∼

⎛
⎜⎜⎝

1 3 −1 4
0 − 5 3 −1
0 −10 6 −2
0 − 5 3 −1

⎞
⎟⎟⎠ ×(− 1

5 )

∼

⎛
⎜⎜⎝

1 3 − 1 4
0 1 −3/5 1/5
0 −10 6 − 2
0 − 5 3 − 1

⎞
⎟⎟⎠ 10 5

←
←

∼

⎛
⎜⎜⎝

1 3 − 1 4
0 1 −3/5 1/5
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

←
−3

∼

⎛
⎜⎜⎝

1 0 4/5 17/5
0 1 −3/5 1/5
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

The above display shows the elementary row operations that we have performed on four
successive different 4 × 4 augmented matrices. Also, we have used the equivalence symbol
∼ between two matrices to indicate that the latter has been obtained by applying elemen-
tary operations to the former. This is justified because such operations do always pro-
duce an equivalent system of equations. Note carefully how the system of equations in
Example 12.8.2 is represented by the first matrix, and how the last matrix is equivalent to
the system consisting of the two equations x1 + 4

5 x3 = 17
5 and x2 − 3

5 x3 = 1
5 .

E X A M P L E 12.8.3 For what values of the numbers a, b, and c does the following system have solutions?
Find the solutions when they exist.

x1 − 2x2 + x3 + 2x4 = a

x1 + x2 − x3 + x4 = b

x1 + 7x2 − 5x3 − x4 = c
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Solution: We represent the system by its augmented matrix. Then we perform elementary
row operations as required by the Gaussian method:⎛

⎝1 −2 1 2 a
1 1 −1 1 b
1 7 −5 −1 c

⎞
⎠ −1 −1

←
←

∼
⎛
⎝1 −2 1 2 a

0 3 −2 −1 b − a
0 9 −6 −3 c − a

⎞
⎠ −3

←

∼
⎛
⎝1 −2 1 2 a

0 3 −2 −1 b − a
0 0 0 0 2a − 3b + c

⎞
⎠

The last row represents the equation 0 · x1 + 0 · x2 + 0 · x3 + 0 · x4 = 2a − 3b + c. The
system therefore has solutions only if 2a − 3b + c = 0. In this case the last row has only
zeros. We continue using elementary operations till we end up with the following matrix:⎛

⎜⎝1 0 − 1
3

4
3

1
3 (a + 2b)

0 1 − 2
3 − 1

3
1
3 (b − a)

0 0 0 0 0

⎞
⎟⎠

This represents the equation system

x1 − 1
3 x3 + 4

3 x4 = 1
3 (a + 2b)

x2 − 2
3 x3 − 1

3 x4 = 1
3 (b − a)

Here x3 and x4 can be freely chosen. Once these have been chosen, however, components
x1 and x2 are uniquely determined linear functions of s = x3 and t = x4. The solution is:

x1 = 1
3 (a + 2b) + 1

3 s − 4
3 t

x2 = 1
3 (b − a) + 2

3 s + 1
3 t

where s and t are arbitrary real numbers.

E X E R C I S E S F O R S E C T I O N 1 2 . 8

1. Solve the following systems by Gaussian elimination.

(a)
x1 + x2 = 3

3x1 + 5x2 = 5
(b)

x1 + 2x2 + x3 = 4

x1 − x2 + x3 = 5

2x1 + 3x2 − x3 = 1

(c)
2x1 − 3x2 + x3 = 0

x1 + x2 − x3 = 0

2. Use Gaussian elimination to discuss, for different values of a and b, what are the possible solutions
of the system

x + y − z = 1

x − y + 2z = 2

x + 2y + az = b
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3.SM Find the values of c for which the following system has a solution, and find the complete solution
for these values of c:

2w + x + 4y + 3z = 1

w + 3x + 2y − z = 3c

w + x + 2y + z = c2

4.SM Find the values of a for which the following system has a unique solution:

ax + y + (a + 1)z = b1

x + 2y + z = b2

3x + 4y + 7z = b3

5.SM Find all solutions to the following system:

3
4 x + y + 7

4 z = b1

x + 2y + z = b2

3x + 4y + 7z = b3

12.9 Geometric Interpretation of Vectors
Vectors, unlike general matrices, are easily interpreted geometrically, at least if they have
dimension two or perhaps three. Actually, the word “vector” is originally Latin and was
used to mean both “carrier” and “passenger”. In particular, the word is related to the act
of moving a person or object from one place to another. Following this idea, a biologist is
likely to think of a “vector” as a carrier of disease, such as mosquitoes are for malaria.

In the xy-plane, any shift can be described by the distance a1 moved in the x-direction and
by the distance a2 moved in the y-direction. A movement in the plane is therefore uniquely
determined by an ordered pair or 2-vector (a1, a2). As Fig. 12.9.1 shows, such a movement
can be represented by an arrow from the start point P to the end point Q.

P�

Q�

P

Q

a1

a2

a1

a2

Figure 12.9.1 Vectors as movements in the plane

If we make a parallel displacement of the arrow so that it starts at P′ and ends at Q′,
the resulting arrow will represent exactly the same shift, because the x and y components
are still a1 and a2, respectively. The vector from P to Q is denoted by

−→
PQ, and we refer
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to it as a geometric vector or directed line segment. Two geometric vectors that have the
same direction and the same length are said to be equal (in much the same way as the two
fractions 2/6 and 1/3 are equal because they represent the same real number).

Suppose that the geometric vector a = (a1, a2) involves a movement from P = (p1, p2)

to Q = (q1, q2). Then the pair (a1, a2) that describes the movement in both the x and y
directions is given by a1 = q1 − p1, a2 = q2 − p2, or by (a1, a2) = (q1, q2) − (p1, p2). This
is illustrated in Fig. 12.9.2.

P
a1

a2

p1 q1

p2

q2
Q � (q1 , q2) � (p1 � a1 , p2 � a2)

a

Figure 12.9.2 Vectors as ordered pairs

On the other hand, if the pair (a1, a2) is given, the corresponding shift is obtained by
moving a1 units in the direction of the x-axis, as well as a2 units in the direction of the y-axis.
If we start at the point P = (p1, p2), therefore, we arrive at the point Q with coordinates
(q1, q2) = (p1 + a1, p2 + a2), also shown in Fig. 12.9.2.

This correspondence makes it a matter of convenience whether we think of a vector as
an ordered pair of numbers (a1, a2), or as a directed line segment such as

−→
PQ in Fig. 12.9.2.

Vector Operations
If we represent vectors by directed line segments, the vector operations a + b, a − b, and
ta can be given interesting geometric interpretations. Let a = (a1, a2) and b = (b1, b2) both
start at the origin (0, 0) of the coordinate system.

a

b

(a1 , a2)

(b1 , b2)

(a1 � b1 , a2 � b2)

a � b

Figure 12.9.3 Vector addition

O S

P

Q

R

T

a1

a2

b1

b2

b2

a

b
a � b

Figure 12.9.4 Geometry of vector
addition

The sum a + b shown in Fig. 12.9.3 is the diagonal in the parallelogram determined by
the two sides a and b. The geometric reason for this can be seen from Fig. 12.9.4, in which
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the two right-angled triangles OSR and PTQ are congruent. Thus, OR is parallel to PQ and
has the same length, so OPQR is a parallelogram.7

O

P

Q

a

ba � b

Figure 12.9.5 Vector addition

a

b

b � (a � b) � a

a � b

Figure 12.9.6 Vector subtraction

The parallelogram law of addition is also illustrated in Fig. 12.9.5. One way of interpret-
ing this figure is that if a takes you from O to P and b takes you on from P to Q, then the
combined movement a + b takes you from O to Q. Moreover, looking at Fig. 12.9.4 again,
the vector b takes you from O to R, whereas a takes you on from R to Q. So the combined
movement b + a takes you from O to Q. Of course, this verifies that a + b = b + a.

Figure 12.9.6 gives a geometric interpretation to the vector a − b. Note carefully the
direction of the geometric vector a − b. And note that b + (a − b) = a = (a − b) + b.

The geometric interpretation of ta, for any real number t, is also straightforward. If t > 0,
then ta is the vector with the same direction as a and whose length is t times the length of
a. If t < 0, the direction is reversed and the length is multiplied by the absolute value of t.
Indeed, multiplication by t is like rescaling the vector a; that is why the number t is often
called a scalar.

3-Space
Recall how, given any point in a plane, we used a pair of real numbers to represent it with
reference to a rectangular coordinate system in the plane that is specified by two mutually
orthogonal coordinate lines. This makes the plane a two-dimensional space, which is often
called 2-space and denoted by R

2. Similarly, any point or vector in three-dimensional space,
also called 3-space and denoted by R

3, can be represented by an ordered triple of real
numbers.

The three dimensions of the space R
3 are enough to allow three mutually orthogonal

coordinate axes, which are represented graphically in Fig. 12.9.7. The three lines that are
orthogonal to each other and intersect at the point O in the figure are the coordinate axes.
They are usually called the x-axis, y-axis, and z-axis respectively. We choose a unit to mea-
sure the length along each axis. We also select a positive direction along each axis, indicated
by an arrow.

7 This parallelogram law of adding vectors will be familiar to readers who have studied physics. For
example, if a and b represent two forces acting on a particle located at the point O, then the single
combined force a + b acting on the particle will produce exactly the same physical effect.
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x0

y0

z0

O

P 5 (x0 , y0 , z0)

y

z

x

Figure 12.9.7 A coordinate system

22

24

3

P 5 (22, 3,24)

z

x
y

Figure 12.9.8 P = (−2, 3, −4)

The equation x = 0 is satisfied by all the points in the unique coordinate plane that
contains both the y-axis and the z-axis. This is called the yz-plane. Two other coordinate
planes are the xy-plane in which z = 0, and the xz-plane in which y = 0. We often think of
the xy-plane as horizontal, with the z-axis passing vertically through it.

Each coordinate plane divides the space into two half-spaces. For example, the xy-plane
whose equation is z = 0 separates the space into two regions: (i) above the xy-plane, where
z > 0; (ii) below the xy-plane, where z < 0. The three coordinate planes together divide up
the space into eight octants. The particular octant in which x ≥ 0, y ≥ 0, and z ≥ 0 is called
the nonnegative octant.

Every point P in 3-space is now associated with a triple of numbers (x0, y0, z0) which
measure its respective distances from each of the closest points in the three planes x = 0,
y = 0, and z = 0. Conversely, it is clear that every triple of three real numbers also repre-
sents a unique point in 3-space, as suggested in Fig. 12.9.7. Note in particular that when z0

is negative, the point (x0, y0, z0) lies below the xy-plane in which z = 0. Figure 12.9.8 shows
how to construct the point P with coordinates (−2, 3, −4). The point P in Fig. 12.9.7 lies
in the positive octant where x, y, and z are all positive.

Furthermore, as with ordered pairs in the plane, there is a natural correspondence
between: (i) any ordered triple (a1, a2, a3); (ii) a geometric vector or movement in 3-space,
regarded as a directed line segment. The parallelogram law of addition remains valid
in 3-space, as does the geometric interpretation of the multiplication of a vector by a
scalar.

n-Space
The 3-space R3 of all ordered triples of real numbers can obviously be extended to the
n-space Rn of all n-vectors. These vectors were introduced in Section 12.1 as either row
vectors that are 1 × n matrices, or column vectors that are n × 1 matrices. Then it is usual
to call the set of all possible n-vectors x = (x1, x2, . . . , xn) of real numbers the Euclidean
n-dimensional space, or n-space, denoted by R

n.
For n = 1, n = 2, and n = 3, we have geometric representations of R

n as a line, a plane,
and a 3-space, respectively. When n ≥ 4, however, neither n-vectors nor the n-space R

n

to which they belong have any natural spatial interpretation. Nevertheless, because many
properties of R

2 and R
3 carry over to R

n, geometric language is sometimes still used to
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discuss its properties. In particular, the rules for addition, subtraction, and multiplication of
vectors by a scalar that were set out in Section 12.4 all remain exactly the same in R

n as
they are in R

2 and R
3.

Distances and Lengths of Vectors
In Section 5.5 we gave the formula for the distance between two points in the plane. Now
we want to do the same for points in 3-space.

Consider a rectangular box with edges of length a, b, and c, as shown in Fig. 12.9.9.
Applying Pythagoras’s theorem once, we conclude that (PR)2 = a2 + b2. Applying it a
second time shows that (PQ)2 = (PR)2 + (RQ)2 = a2 + b2 + c2. It follows that the diag-
onal that joins the points P and Q that are opposite corners of the box has length PQ =√

a2 + b2 + c2.

aP
b

R

c

Q

Figure 12.9.9 The distance PQ
between the two points P and Q

P 5 (x1 , y1 , z1)

Q 5 (x2 , y2 , z2)

x2 2 x1

z2 2 z1

y2 2 y1

y

z

x

Figure 12.9.10 The distance
between two typical points

Next we find the distance between two typical points P = (x1, y1, z1) and
Q = (x2, y2, z2) in 3-space, as illustrated in Fig. 12.9.10. These two points lie pre-
cisely at the opposite corners of a rectangular box whose edges have lengths a = |x2 − x1|,
b = |y2 − y1|, and c = |z2 − z1| respectively. Inserting these into our result for the box in
Fig. 12.9.9 gives

(PQ)2 = |x2 − x1|2 + |y2 − y1|2 + |z2 − z1|2 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2

This formula motivates the following definition:

D I S T A N C E

The distance d between two points (x1, y1, z1) and (x2, y2, z2) in 3-space is

d =
√(

x2 − x1

)2 + (
y2 − y1

)2 + (
z2 − z1

)2
(12.9.1)
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E X A M P L E 12.9.1 Calculate the distance d between the two points (1, 2, −3) and (−2, 4, 5).

Solution: According to formula (12.9.1),

d =
√

(−2 − 1)2 + (4 − 2)2 + (5 − (−3))2 =
√

(−3)2 + 22 + 82 = √
77 ≈ 8.77

We also define the length or norm of the 3-vector a = (a1, a2, a3), denoted by ‖a‖, as
the distance between a and the zero 3-vector 0 = (0, 0, 0). By formula (12.9.1), as well as
the definition of inner product in Section 12.4, we have

‖a‖ =
√

a2
1 + a2

2 + a2
3 = √

a · a (12.9.2)

The two definitions (12.9.1) and (12.9.2) evidently imply that the distance d(u, v) in R
3

between the two 3-vectors u = (u1, u2, u3) and v = (v1, v2, v3) is equal to the distance
between u − v and 0, which is the length of u − v. Hence d(u, v) = d(u − v, 0) = ‖u − v‖.

Next, we move onto n-space and introduce the following definitions:

L E N G T H A N D D I S T A N C E I N n-S P A C E

Given any n-vector a = (a1, a2, . . . , an), its length, or norm, is

‖a‖ =
√

a2
1 + a2

2 + · · · + a2
n = √

a · a (12.9.3)

The distance between any two n-vectors u and v is

d(u, v) = ‖u − v‖ =
√(

u1 − v1

)2 + (
u2 − v2

)2 + · · · + (
un − vn

)2
(12.9.4)

Note that, for any vector a in R
n, definition (12.9.3) implies:

‖αa‖ = √
(αa) · (αa) = |α|√a · a = |α| ‖a‖ for all real α (12.9.5)

‖a‖ ≥ 0 for all n-vectors a, with ‖a‖ = 0 if and only if a = 0 (12.9.6)

These accord with rules (b), (d) and (e) for inner products that were introduced in
Section 12.4.

The Cauchy–Schwarz Inequality
Definition (12.9.3) specifies ‖a‖ as the distance in R

n of the point (a1, a2, . . . , an) from
the origin (0, 0, . . . , 0). Exercise 4.6.9 asked you to prove the famous Cauchy–Schwarz
inequality. Using the notation we have just introduced, this inequality can be expressed
as (a · b)2 ≤ ‖a‖2 · ‖b‖2. Because ‖a‖ · ‖b‖ ≥ 0 by definition (12.9.3), this is equivalent
to

|a · b| ≤ ‖a‖ · ‖b‖ (12.9.7)
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E X A M P L E 12.9.2 Verify the Cauchy–Schwarz inequality (12.9.7) for the two 3-vectors a = (1, −2, 3)

and b = (−3, 2, 5).

Solution: First, we find that

‖a‖ =
√

12 + (−2)2 + 32 = √
14 and ‖b‖ =

√
(−3)2 + 22 + 52 = √

38

In Example 12.4.1, we calculated that a · b = 8. So inequality (12.9.7) makes the claim that
8 ≤ √

14
√

38. This is certainly true because
√

14 > 3 and
√

38 > 6.

Orthogonality
Consider any two n-vectors a and b in R

n, where n ≥ 2. Following Fig. 12.9.6, we use
Fig. 12.9.11 to represent the three vectors a, b, and a − b in the unique two-dimensional
plane in R

n that includes the three points O, A, and B.

θ
O A

B

a

b a � b

Figure 12.9.11 The angle between a and b

According to Pythagoras’s theorem, the angle θ between the two vectors a and b is a right
angle if and only if (OA)2 + (OB)2 = (AB)2, or ‖a‖2 + ‖b‖2 = ‖a − b‖2. This implies that
θ = 90◦ if and only if

a · a + b · b = (a − b) · (a − b) = a · a − a · b − b · a + b · b (∗)

Because a · b = b · a, equality (∗) requires that 2a · b = 0, and so a · b = 0. When the
angle between two vectors a and b is 90◦, they are said to be orthogonal, and we write
a ⊥ b. Thus, we have proved that two vectors in R

n are orthogonal if and only if their inner
product is 0. In symbols:

a ⊥ b ⇐⇒ a · b = 0 (12.9.8)

Let a and b be two nonzero vectors in R
n. Applying some elementary trigonometry to

Fig. 12.9.11 shows that the angle between them is the unique θ ∈ [0, π ] that satisfies

cos θ = a · b
‖a‖ · ‖b‖ (12.9.9)

This definition makes sense because the Cauchy–Schwarz inequality implies that the
right-hand side has an absolute value ≤ 1. Note also that according to Eq. (12.9.9),
cos θ = 0 if and only if a · b = 0. This agrees with (12.9.8) because, for θ ∈ [0, π ], we
have cos θ = 0 if and only if θ = π/2.
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E X A M P L E 12.9.3 Suppose we repeatedly observe a commodity’s price and the quantity demanded.
After n observations suppose we have the n pairs {(p1, d1), (p2, d2), . . . , (pn, dn)}, where pi

represents the price and di is the quantity at observation i, for i = 1, 2, . . . , n. Define the
statistical means

--p = 1
n

n∑
i=1

pi and
--
d = 1

n

n∑
i=1

di

Also, write the n deviations of the observed pairs (pi, di) from these means as the vectors

a = (p1 − --p, p2 − --p, . . . , pn − --p), b = (d1 − --
d, d2 − --

d, . . . , dn − --
d)

In statistics, the ratio a · b/ (‖a‖ · ‖b‖) that appears on the right-hand side of Eq. (12.9.9)
is called the correlation coefficient, often denoted by ρ. It is a measure of the degree of
“correlation” between the prices and demand quantities in the data. When ρ = 1, there is a
positive constant α > 0 such that di − --

d = α(pi − --p), implying that demand and price are
perfectly correlated. It is more plausible, however, that ρ = −1 because this relationship
holds for some α < 0. Generally, if ρ > 0 the variables are positively correlated, whereas
if ρ < 0 the variables are negatively correlated, and if ρ = 0 they are uncorrelated.

E X A M P L E 12.9.4 (Orthogonality in econometrics). In Example 9.3.1 on linear regression, we
assumed that the mean values of the observations of x and y satisfy μx = μy = 0. Then
the regression coefficient β was chosen to minimize the mean squared error loss function
defined by

L(β) = 1
T

T∑
t=1

e2
t = 1

T

T∑
t=1

(yt − βxt)
2

This required choosing β̂ = σxy/σxx, where σxx denotes the variance of xt, and σxy denotes
the covariance between xt and yt. For t = 1, 2, . . . , T , the resulting errors become

êt = yt − β̂xt = yt − σxy

σxx
xt

From our assumption that μx = μy = 0, it is immediate that the mean error satisfies

1
T

T∑
t=1

êt = 1
T

T∑
t=1

yt − β̂

T∑
t=1

xt = μy − β̂μx = 0 (∗)

In addition,

1
T

T∑
t=1

xtêt = 1
T

T∑
t=1

xtyt − 1
T

σxy

σxx

T∑
t=1

x2
t = σxy − σxy

σxx
σxx = 0 (∗∗)

Define the three vectors 1 = (1, 1 . . . , 1), x = (x1, . . . , xT), and ê = (ê1, . . . , êT). Then
equality (∗) shows that ê and 1 are orthogonal, whereas (∗∗) shows that ê and x are
orthogonal.
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E X E R C I S E S F O R S E C T I O N 1 2 . 9

1. Let a = (5, −1) and b = (−2, 4). Compute a + b and − 1
2 a, then illustrate geometrically with

vectors starting at the origin.

2.SM Given a = (3, 1) and b = (−1, 2), define x = λa + (1 − λ)b for any scalar λ.

(a) Compute x when λ = 0, 1/4, 1/2, 3/4, and 1, and illustrate the answers.

(b) If λ ∈ [0, 1], what set of points does x = λa + (1 − λ)b trace out?

(c) Show that if λ ∈ R, then x traces out the whole straight line through (3, 1) and (−1, 2).

3. Draw a three-dimensional coordinate system, including a box like those shown in Figs 12.9.7
and 12.9.8. Then mark in this coordinate system the four points P = (3, 0, 0), Q = (0, 2, 0), R =
(0, 0, −1), and S = (3, −2, 4).

4. Describe geometrically the set of points (x, y, z) in three dimensions, where:

(a) y = 2 and z = 3, while x varies freely; (b) y = x, while z varies freely.

5. Let a = (1, 2, 2), b = (0, 0, −3), and c = (−2, 4, −3). Compute ‖a‖, ‖b‖, and ‖c‖. Then verify
that a and b satisfy the Cauchy–Schwarz inequality (12.9.7).

6. Let a = (1, 2, 1) and b = (−3, 0, −2).

(a) Find numbers x1 and x2 such that x1a + x2b = (5, 4, 4).

(b) Prove that there are no real numbers x1 and x2 satisfying x1a + x2b = (−3, 6, 1).

7. Check which of the following three pairs of vectors are orthogonal:

(a) (1, 2) and (−2, 1) (b) (1, −1, 1) and (−1, 1, −1) (c) (a, −b, 1) and (b, a, 0)

8. For what values of x are the 4-vectors (x, −x − 8, x, x) and (x, 1, −2, 1) orthogonal?

9. [HARDER] In Exercise 12.7.7, an n × n matrix P was defined as orthogonal if P′P = In. Show
that P is orthogonal if and only if all pairs of different columns (or all pairs of different rows) are
orthogonal vectors.

10. [HARDER] If a and b are n-vectors, prove the triangle inequality ‖a + b‖ ≤ ‖a‖ + ‖b‖.
(Hint: Note that ‖a + b‖2 = (a + b) · (a + b). Then use the Cauchy–Schwarz inequality
(12.9.7).)

12.10 Lines and Planes
Let a = (a1, a2, a3) and b = (b1, b2, b3) be two distinct vectors in R

3. We can think
of them as arrows from the origin to the points with coordinates (a1, a2, a3) and
(b1, b2, b3), respectively. The straight line L passing through these two points is shown in
Fig. 12.10.1.
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L

b a

x

a � b

z

y

x

Figure 12.10.1 Line L goes through a and b

Now define the vector x(t) = (x1(t), x2(t), x3(t)) for each real number t so that

x(t) = b + t(a − b) = ta + (1 − t)b (12.10.1)

This makes x(t) a function of t that satisfies x(0) = b and x(1) = a. In Fig. 12.10.1, the
point x(t) moves to the left as t decreases, but to the right as t increases. By the geometric
rules for vectors that were presented in Section 12.9, the particular vector marked x in
Fig. 12.10.1 is approximately b + 2.5(a − b). As t runs through all the real numbers, the
function x(t) defined by (12.10.1) has a range consisting of the entire straight line L.

In the space R
n, after removing the three axes marked x, y and z from Fig. 12.10.1, we

can regard the resulting diagram as showing the four vectors a, b, x, and a − b in the unique
two-dimensional plane that contains a, b, and the origin 0. There is also the unique line L
that passes through a and b, which also includes x. This line meets the following definition:

L I N E I N n-S P A C E

The line L in R
n through the two distinct points a = (a1, . . . , an) and b =

(b1, . . . , bn) is the range of the function x(t) = (x1(t), . . . , xn(t)) defined for
each real number t by

x(t) = ta + (1 − t)b = b + t(a − b) (12.10.2)

In terms of the coordinates of a and b, Eq. (12.10.2) is equivalent to

x1(t) = ta1 + (1 − t)b1, x2(t) = ta2 + (1 − t)b2, . . . , xn(t) = tan + (1 − t)bn (12.10.3)

By definition (12.10.2) as well as rule (12.9.5), for all real t one has

‖x(t) − b‖ = ‖t(a − b)‖ = |t|‖a − b‖ (12.10.4)

In case t > 0 because x(t) and a are on the same side of b, it follows that t equals the ratio
‖x(t) − b‖/‖a − b‖ of the distance between x(t) and b to the distance between a and b.
But if t < 0 because x(t) and a are on opposite sides of b, then t is minus this ratio.
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E X A M P L E 12.10.1 Describe the straight line in R
3 through the two points (1, 2, 2) and (−1, −1, 4).

Where does it meet the x1x2-plane?

Solution: According to (12.10.3), the straight line is given by the three equations:

x1 = t · 1 + (1 − t) · (−1) = 2t − 1
x2 = t · 2 + (1 − t) · (−1) = 3t − 1
x3 = t · 2 + (1 − t) · 4 = 4 − 2t

This line meets the x1x2-plane when x3 = 0. Then 4 − 2t = 0, so t = 2, implying that
x1 = 3 and x2 = 5. It follows that the intersection occurs at (3, 5, 0), as shown in
Fig. 12.10.2.

x3

x1

x2
(1, 2,2)

1

1

1 (3, 5,0)

(�1, �1,4)

L

Figure 12.10.2 The line L through (1, 2, 2) and (−1, −1, 4)

Suppose that p = (p1, . . . , pn) ∈ R
n. The straight line L in R

n that passes through p in
the same direction as vector a = (a1, . . . , an) �= 0 is the set of all x in R

n for which there
exists a real number t such that

x = p + ta (12.10.5)

Note that, according to Eq. (12.10.2), the line through p in the direction a �= 0 is the line
through p and p + a. Conversely, provided that a �= b, the line through a and b is the line
through b in the direction a − b.

Hyperplanes
As shown in Fig. 12.10.3, a plane P in R

3 is defined by one point a = (a1, a2, a3) in the
plane, as well as one vector p = (p1, p2, p3) �= (0, 0, 0) which is orthogonal or perpendicular
to any line in the plane. Then the vector p is said to be a normal to the plane. Thus, if x =
(x1, x2, x3) is any point in P other than a, then the vector x − a is in a direction orthogonal
to p. So the inner product of p and x − a must be 0, implying that

p · (x − a) = 0 (12.10.6)

It follows that Eq. (12.10.6) is the general equation of a plane in R
3 passing through the

point a with normal p �= 0.
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a

x

p

P

x1

x2

x3

x � a

Figure 12.10.3 A hyperplane in R3

E X A M P L E 12.10.2 Find the equation for the plane in R
3 through a = (2, 1, −1) with p = (−1, 1, 3)

as a normal. Does the line in Example 12.10.1 intersect this plane?

Solution: Using Eq. (12.10.6), the equation is

−1 · (x1 − 2) + 1 · (x2 − 1) + 3 · (x3 − (−1)) = 0

or, equivalently, −x1 + x2 + 3x3 = −4. The line in Example 12.10.1 is given by the three
equations x1 = 2t − 1, x2 = 3t − 1, and x3 = 4 − 2t. It follows that, at any point where
this line is to meet the plane, we must have

−(2t − 1) + (3t − 1) + 3(4 − 2t) = −4

Solving this equation for t yields t = 16/5. So the unique point of intersection is given by
x1 = 32/5 − 1 = 27/5, x2 = 43/5, and x3 = −12/5.

Motivated by this characterization of a plane in R
3, we introduce the following general

definition in R
n.

H Y P E R P L A N E I N n-S P A C E

The hyperplane H in R
n through a = (a1, . . . , an) which is orthogonal to the

nonzero vector p = (p1, . . . , pn) is the set of all points x = (x1, . . . , xn) satis-
fying

p · (x − a) = 0 (12.10.7)

Note that if the normal vector p is replaced by any scalar multiple sp with s �= 0, then
precisely the same set of vectors x will satisfy the hyperplane equation (12.10.7).

Using the coordinate representation of the vectors, the hyperplane defined by (12.10.7)
has the equation

p1(x1 − a1) + p2(x2 − a2) + · · · + pn(xn − an) = 0 (12.10.8)

or equivalently p1x1 + p2x2 + · · · + pnxn = A, where A = p1a1 + p2a2 + · · · + pnan.
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E X A M P L E 12.10.3 A person has an amount m to spend on n different commodities, whose prices
per unit are p1, p2, . . . , pn, respectively. She can therefore afford any commodity vector
x = (x1, x2, . . . , xn) that satisfies the budget inequality

p1x1 + p2x2 + · · · + pnxn ≤ m (12.10.9)

When Eq. (12.10.9) is satisfied with equality, it describes the budget hyperplane, whose
normal is the price vector (p1, p2, . . . , pn).

Usually, it is implicitly assumed that x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0. For the case of two
commodities, we already found a graphical representation of the budget set in Fig. 4.4.12.8

For an example with n = 3 see Fig. 12.10.4. In both cases the vector of prices is normal to
the budget hyperplane.

x1

x2

x3

m/p1

m/p2

m/p3

Figure 12.10.4 Budget hyperplane

E X E R C I S E S F O R S E C T I O N 1 2 . 1 0

1. Find the equation for the line:

(a) that passes through the points (3, −2, 2) and (10, 2, 1);

(b) that passes through the point (1, 3, 2) and has the same direction as the vector (0, −1, 1).

2. The line L in R3 is given by the three equations x1 = −t + 2, x2 = 2t − 1, and x3 = t + 3.

(a) Verify that the point a = (2, −1, 3) lies on L, but that (1, 1, 1) does not.

(b) Find the equation for the plane P through a that is orthogonal to L.

(c) Find the point P where L intersects the plane 3x1 + 5x2 − x3 = 6.

3.SM Find the equation for the plane through the three points (1, 0, 2), (5, 2, 1), and (2, −1, 4).

8 There, the notation we used was p1 = p and p2 = q.
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4. In Example 12.10.3, suppose that the price vector is (2, 3, 5), and that you can just afford the
commodity vector (10, 5, 8). What inequality describes your budget constraint?

5. Let a = (−2, 1, −1).

(a) Show that a is a point in the plane −x + 2y + 3z = 1.

(b) Find the equation for the normal at a to the plane in part (a).

R E V I E W E X E R C I S E S

1. Construct the two matrices A = (aij)2×3, where for each pair (i, j) one has:

(a) aij = i + j (b) aij = (−1)i+j

2. Given the matrices

A =
(

2 0
−1 1

)
, B =

(−1 2
1 −1

)
, C =

(
2 3
1 4

)
, and D =

(
1 1 1
1 3 4

)

calculate (where possible):

(a) A − B (b) A + B − 2C (c) AB (d) C(AB)

(e) AD (f) DC (g) 2A − 3B (h) (A − B)′

(i) (C′A′)B′ (j) C′(A′B′) (k) D′D′ (l) D′D

3. Write the following three systems of equations in matrix notation:

(a)
2x1 − 5x2 = 3

5x1 + 8x2 = 5
(b)

x + y + z + t = a

x + 3y + 2z + 4t = b

x + 4y + 8z = c

2x + z − t = d

(c)

(a − 1)x + 3y − 2z = 5

ax + 2y − z = 2

x − 2y + 3z = 1

4. Find the matrices A + B, A − B, AB, BA, A(BC), and (AB)C, if

A =
⎛
⎝ 0 1 −2

3 4 5
−6 7 15

⎞
⎠ , B =

⎛
⎝ 0 −5 3

5 2 −1
−4 2 0

⎞
⎠ , and C =

⎛
⎝6 −2 −3

2 0 1
0 5 7

⎞
⎠

5. Find real numbers a, b, and x such that(
a b
x 0

) (
2 1
1 1

)
−

(
1 0
2 1

) (
a b
x 0

)
=

(
2 1
4 4

)

6. Let A denote the matrix

⎛
⎝ a b 0

−b a b
0 −b a

⎞
⎠ where a and b are arbitrary constants.

(a) Find AA = A2.



�

� �

�

C H A P T E R 1 2 / R E V I E W E X E R C I S E S 493

(b) A square matrix B is called skew-symmetric if B = −B′, where B′ denotes the transpose of B.
Show that if C is an arbitrary matrix such that C′BC is defined, then C′BC is skew-symmetric
if B is. When is the matrix A defined above skew-symmetric?

(c) If A is any square matrix, prove that the matrix A1 = 1
2 (A + A′) is symmetric, whereas

A2 = 1
2 (A − A′) is skew-symmetric. Verify that A = A1 + A2, then explain in words what

you have proved.

7.SM Solve each of the following three different equation systems by Gaussian elimination.

(a)
x1 + 4x2 = 1

2x1 + 2x2 = 8
(b)

2x1 + 2x2 − x3 = 2

x1 − 3x2 + x3 = 0

3x1 + 4x2 − x3 = 1

(c)
x1 + 3x2 + 4x3 = 0

5x1 + x2 + x3 = 0

8. Use Gaussian elimination to find for what values of a the following system has solutions. Then
find all the possible solutions.

x + ay + 2z = 0

−2x − ay + z = 4

2ax + 3a2y + 9z = 4

9. Let a = (−1, 5, 3), b = (1, 1, −3), and c = (−1, 2, 8). Compute ‖a‖, ‖b‖, and ‖c‖. Then verify
that the Cauchy–Schwarz inequality holds for a and b.

10.SM Suppose that P and Q are n × n matrices with PQ − QP = P.

(a) Prove that P2Q − QP2 = 2 P2 and P3Q − QP3 = 3 P3.

(b) Use induction to prove that PkQ − QPk = k Pk for k = 1, 2, . . . .
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13
D E T E R M I N A N T S ,
I N V E R S E S , A N D
Q U A D R A T I C F O R M S

You know we all became mathematicians for the same reason: we were lazy.
—Maxwell A. (Max) Rosenlicht (1949)

This chapter continues the study of matrix algebra. The first topic discussed is the determinant
of a square matrix. Though it is only one number, it nevertheless determines on its own some

key properties of the n2 elements of an n × n matrix. Some economists regard determinants as
almost obsolete because calculations that rely on them are very inefficient when the matrix is
large. Nevertheless, they are important in several areas of mathematics that interest economists.

After introducing determinants in Sections 13.1 to 13.5, we consider in Sections 13.6 and
13.7 the fundamentally important concept of the inverse of a square matrix and its main prop-
erties. Inverse matrices play a major role in the study of systems of linear equations. They are
also important in econometrics for deriving a linear relationship that fits a data set as well as
possible.

Next, Section 13.8 discusses Cramer’s rule for the solution of a system of n linear equations
and n unknowns. Although it becomes increasingly inefficient for solving systems of equations
as the number of unknowns expands beyond 3, Cramer’s rule is often used in theoretical studies.
An important theorem on homogeneous systems of equations is included. Then Section 13.9
gives a brief introduction to the Leontief input/output model.

The chapter ends with some material that is important when considering the concavity or
convexity of functions of several variables, as well as second-order conditions for optimization.
Section 13.10 is concerned with eigenvalues and eigenvectors, Section 13.11 with diagonalizing
square matrices, and the last Section 13.12 with quadratic forms.

13.1 Determinants of Order 2
Consider the pair of linear equations

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

(13.1.1)
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Its associated coefficient matrix is:

A =
(

a11 a12

a21 a22

)
Following a procedure such as that presented in Section 12.8 allows us to find the solution
to the equation system (13.1.1). Let D denote the number a11a22 − a21a12. Provided that
D �= 0, system (13.1.1) has a unique solution given by

x1 = b1a22 − b2a12

a11a22 − a21a12
, x2 = b2a11 − b1a21

a11a22 − a21a12
(13.1.2)

In particular, the constant D is the common denominator D in (13.1.2). Thus, the value
of D determines whether system (13.1.1) has a unique solution. Partly for this reason, the
number D = a11a22 − a21a12 is called the “determinant” of the matrix A. This determinant
is denoted by either det(A) or more usually, as in this book, simply by |A|. Thus,

D E T E R M I N A N T O F A 2 × 2 M A T R I X

For any 2 × 2 matrix A = (aij)2×2, its determinant is

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12 (13.1.3)

If a matrix is 2 × 2, its determinant is said to have order 2. For the special case of order 2
determinants, the rule for calculating |A| is: (a) multiply together the two elements on the
main diagonal; (b) multiply together the two off-diagonal elements; (c) subtract the product
of the off-diagonal elements from the product of the diagonal elements.

E X A M P L E 13.1.1 By direct computation:∣∣∣∣ 4 1
3 2

∣∣∣∣ = 4 · 2 − 3 · 1 = 5,

∣∣∣∣ b1 a12

b2 a22

∣∣∣∣ = b1a22 − b2a12, and

∣∣∣∣ a11 b1

a21 b2

∣∣∣∣ = b2a11 − b1a21

Geometrically, each of the two equations in (13.1.1) represents the graph of a straight
line. If D = |A| �= 0, then the two lines intersect at a unique point (x1, x2) given by (13.1.2).
But if D = |A| = 0, then the expressions in (13.1.2) for x1 and x2 become meaningless.
Indeed, in this case, equation system (13.1.1): (i) either has no solution because the two
lines are distinct but parallel; (ii) or else has infinitely many solutions because the two lines
coincide.

The last two parts of Example 13.1.1 show us how the numerators of the expressions
for x1 and x2 in the solution (13.1.2) can also be written as determinants. Indeed, provided
that |A| �= 0, one has

x1 = 1
|A|

∣∣∣∣ b1 a12

b2 a22

∣∣∣∣ and x2 = 1
|A|

∣∣∣∣ a11 b1

a21 b2

∣∣∣∣ (13.1.4)
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This is a special case of a result referred to as Cramer’s rule.1 It is quite convenient when
there are only two equations in two unknowns. But as Exercise 8 shows, it is often easier
to solve macroeconomic equation systems in particular by simple substitution.

E X A M P L E 13.1.2 Use (13.1.4) to find the solutions of

2x1 + 4x2 = 7

2x1 − 2x2 = −2

Solution: Applying (13.1.4) as well as definition (13.1.3) gives

x1 =

∣∣∣∣ 7 4
−2 −2

∣∣∣∣∣∣∣∣ 2 4
2 −2

∣∣∣∣
= −6

−12
= 1

2
and x2 =

∣∣∣∣ 2 7
2 −2

∣∣∣∣∣∣∣∣ 2 4
2 −2

∣∣∣∣
= −18

−12
= 3

2

Now you should check by substitution that x1 = 1/2, x2 = 3/2 really is a solution.

E X A M P L E 13.1.3 Use (13.1.4) to find QD
1 and QD

2 in terms of the parameters when

2(b + β1)Q
D
1 + bQD

2 = a − α1

bQD
1 + 2(b + β2)Q

D
2 = a − α2

Solution: The determinant of the coefficient matrix is

� =
∣∣∣∣ 2(b + β1) b

b 2(b + β2)

∣∣∣∣ = 4(b + β1)(b + β2) − b2

Provided that � �= 0, Eq. (13.1.4) tells us that the solution for QD
1 is

QD
1 =

∣∣∣∣ a − α1 b
a − α2 2(b + β2)

∣∣∣∣
�

= 2(b + β2)(a − α1) − b(a − α2)

�

with a similar expression for QD
2 .

In the next section, Cramer’s rule is extended to three equations in three unknowns, and
then in Section 13.8 to n equations in n unknowns.

A Geometric Interpretation
Determinants of order 2 have a nice geometric interpretation. Suppose we represent the
two rows of the matrix A = (aij)2×2 as the two 2-vectors shown in Fig. 13.1.1. Then its
determinant equals the shaded area of the parallelogram. If we interchange the two rows,
however, the determinant becomes a negative number equal to minus this shaded area.

Figure 13.1.2 illustrates why the result claimed in Fig. 13.1.1 is true. We want to find
area T . Note that the area of the whole rectangle in Fig. 13.1.2 satisfies

1 Named after the Swiss mathematician Gabriel Cramer, 1704–1752.
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T

(a21 , a22)

(a11 , a12)

Figure 13.1.1 Area T is the absolute
value of the determinant, Eq. (13.1.3)

P

Q

Ra21

a22

a12 � a22

a12

a11

T1

T2

T3

T1

T2

T3

a11 � a21

T

Figure 13.1.2 Illustration of Eq. (13.1.5)

2T1 + 2T2 + 2T3 + T = (a11 + a21)(a12 + a22) (13.1.5)

where T1 = a12a21, T2 = 1
2 a21a22, and T3 = 1

2 a11a12. By elementary algebra, it follows that
T = a11a22 − a21a12.

Note that a particularly simple case occurs when a12 = 0. Then the area determined by
the two rows of the matrix is as shown in Fig. 13.1.3. So the area of T can be computed
simply as the product of its base and its height, namely a11a22. Indeed, for this case one
has T1 = T3 = 0 as well as a12 = 0, so Eq. (13.1.5) reduces to 2T2 + T = (a11 + a21)a22.
Because T2 = 1

2 a21a22, it follows that T = a11a22 = |A| in this simple case.

(a21 ,a22)

a11

T

Figure 13.1.3 Area T is the absolute value of the determinant, Eq. (13.1.3), when a12 = 0

E X E R C I S E S F O R S E C T I O N 1 3 . 1

1. Calculate the following determinants:

(a)

∣∣∣∣ 3 0
2 6

∣∣∣∣ (b)

∣∣∣∣ a a
b b

∣∣∣∣ (c)

∣∣∣∣ 2 − x 1
8 −x

∣∣∣∣ (d)

∣∣∣∣ a + b a − b
a − b a + b

∣∣∣∣ (e)

∣∣∣∣ 3t 2t

3t−1 2t−1

∣∣∣∣
2. Illustrate the geometric interpretation in Fig. 13.1.1 for the determinant in Exercise 1(a).

3. Use Cramer’s rule (13.1.4) to solve the following systems of equations for x and y. Test each
answer by substitution.

(a)
3x − y = 8

x − 2y = 5
(b)

x + 3y = 1

3x − 2y = 14
(c)

ax − by = 1

bx + ay = 2
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4. The trace of a square matrix A is the sum of its diagonal elements, denoted by tr(A). Given the

variable matrix A =
(

a 3
b 1

)
, find two numbers a and b such that tr(A) = 0 and |A| = −10.

5. Find all the solutions to the equation

∣∣∣∣ 2 − x 1
8 −x

∣∣∣∣ = 0

6. Show that |AB| = |A| · |B| for the matrices A =
(

a11 a12
a21 a22

)
and B =

(
b11 b12
b21 b22

)
.2

7. Find two 2 × 2 matrices A and B such that |A + B| �= |A| + |B| .

8. Let Y denote GDP and C private consumption. Suppose that investment I0 and public expenditure
G0 are exogenous. Use Cramer’s rule to solve the system of equations

Y = C + I0 + G0 and C = a + bY

where a and b represent constants, with b < 1. Then look for an alternative simpler way of solving
the equations.

9.SM [HARDER] Consider the following macroeconomic model of two nations, i = 1, 2, that trade only
with each other:

Y1 = C1 + A1 + X1 − M1;
Y2 = C2 + A2 + X2 − M2;

C1 = c1Y1;
C2 = c2Y2;

M1 = m1Y1 = X2

M2 = m2Y2 = X1

Here, for each nation i = 1, 2, the variable Yi is its GDP, Ci is its consumption, Ai is its exogenous
expenditure, Xi denotes its exports, and Mi denotes its imports.

(a) Interpret the two equations M1 = X2 and M2 = X1.

(b) Given the system of eight equations in eight unknowns, use substitution to reduce it to a pair
of simultaneous equations that determine the two endogenous variables Y1 and Y2. Then solve
for the values of Y1, Y2 as functions of the exogenous variables A1 and A2.

(c) How does an increase in A1 affect Y2? Interpret your answer.

13.2 Determinants of Order 3
Consider the general system of three linear equations in three unknowns

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

(13.2.1)

2 This is a particular case of rule (13.4.1) below.
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Here the coefficient matrix A is 3 × 3. If we apply the method of elimination along with
some rather heavy algebraic computation, the system can be solved eventually for x1, x2,
and x3, except in a degenerate case. The resulting expression for x1 is

x1 = b1a22a33 − b1a23a32 − b2a12a33 + b2a13a32 + b3a12a23 − b3a22a13

a11a22a33 − a11a23a32 + a12a23a31 − a12a21a33 + a13a21a32 − a13a22a31
(13.2.2)

We shall not triple the demands on the reader’s patience and eyesight by giving the corre-
sponding expressions for x2 and x3. However, we do claim that these expressions share the
same denominator as that given for x1. This common denominator is called the determinant
of A, denoted by det(A) or |A|. When it is zero, we have a degenerate case. Thus,

D E T E R M I N A N T O F A 3 × 3 M A T R I X

For any 3 × 3 matrix A, its determinant is

|A| =
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ =
{

a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31
(13.2.3)

Expansion by Cofactors
The right-hand side of (13.2.3) is the sum of six terms. At first it looks quite messy, but a
method called expansion by cofactors makes it relatively easy to write down all the terms.
First, note that each of the three elements a11, a12, and a13 in the first row of A appears in
exactly two terms of (13.2.3). In fact, grouping terms allows |A| to be written as

|A| = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

Applying the rule for evaluating determinants of order 2, we see that this is the same as

|A| = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣ (13.2.4)

In this way, the computation of a determinant of order 3 can be reduced to calculating
three determinants of order 2. Note that a11 is multiplied by the second-order determinant
obtained by deleting row 1 and column 1 of |A|. Likewise a12, with a minus sign attached to
it, is multiplied by the determinant obtained by deleting row 1 and column 2 of |A|. Finally,
a13 is multiplied by the determinant obtained by deleting row 1 and column 3 of |A|.

E X A M P L E 13.2.1 Use formula (13.2.4) to calculate

|A| =
∣∣∣∣∣∣

3 0 2
−1 1 0

5 2 3

∣∣∣∣∣∣
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Solution: By direct application of formulas (13.2.4) and (13.1.3), one has

|A| = 3 ·
∣∣∣∣ 1 0
2 3

∣∣∣∣ − 0 ·
∣∣∣∣−1 0

5 3

∣∣∣∣ + 2 ·
∣∣∣∣−1 1

5 2

∣∣∣∣ = 3 · 3 − 0 · (−3) + 2 · (−7) = −5

E X A M P L E 13.2.2 Use formula (13.2.4) to prove that

|A| =
∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣ = (b − a)(c − a)(c − b)

Solution: By direct computation,

|A| = 1 ·
∣∣∣∣ b b2

c c2

∣∣∣∣ − a ·
∣∣∣∣ 1 b2

1 c2

∣∣∣∣ + a2 ·
∣∣∣∣ 1 b
1 c

∣∣∣∣ = bc2 − b2c − a(c2 − b2) + a2(c − b)

You are not expected to “see” that these six terms can be written as (b − a)(c − a)

(c − b). Rather, you should expand (b − a)[(c − a)(c − b)] and verify the equality
that way.

A careful study of the numerator in (13.2.2) reveals that it can also be written as a deter-
minant. The same is true of the corresponding formulas for x2 and x3. In fact, provided that
|A| �= 0, one can write the solution to the equation system (13.2.1) as

x1 =

∣∣∣∣∣∣
b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣
|A| , x2 =

∣∣∣∣∣∣
a11 b1 a13

a21 b2 a23

a31 b3 a33

∣∣∣∣∣∣
|A| , and x3 =

∣∣∣∣∣∣
a11 a12 b1

a21 a22 b2

a31 a32 b3

∣∣∣∣∣∣
|A| (13.2.5)

This is Cramer’s rule for the solution of (13.2.1), in the case when there are three equations
in three unknowns. See Section 13.8 for a full proof of the solution (13.2.5) in the general
case of n equations in n unknowns.

Each determinant appearing in the numerators of the expressions for x1, x2, and x3 in
(13.2.5) includes one column which equals⎛

⎝b1

b2

b3

⎞
⎠

This, of course, is the right-hand column in (13.2.1). This particular column vector shifts
from column 1 when solving for x1, to column 2 when solving for x2, and finally to column 3
when solving for x3. This makes it very easy to remember Cramer’s rule.

The method used in (13.2.4) for calculating the value of a 3 × 3 determinant is called
cofactor expansion along row 1. If we focus on the elements in row i instead of row 1, we
again find that |A| = ai1Ci1 + ai2Ci2 + ai3Ci3, where for j = 1, 2, 3, the factor Cij equals
(−1)i+j times the determinant of the 2 × 2 matrix we get by deleting row i and column j
from A. Thus, for j = 1, 2, or 3, we can also find the value of the determinant by cofac-
tor expansion along row i. Moreover, it turns out that |A| = a1jC1j + a2jC2j + a3jC3j. In
other words, we can calculate the determinant by cofactor expansion along column j. See
Section 13.5 for more about cofactor expansion.
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E X A M P L E 13.2.3 Use Cramer’s rule to solve the following system of equations:

2x1 + 2x2 − x3 = −3

4x1 + 2x3 = 8

6x2 − 3x3 = −12

Solution: In this case, the determinant |A| that appears in formula (13.2.5) is seen to be

|A| =
∣∣∣∣∣∣
2 2 −1
4 0 2
0 6 −3

∣∣∣∣∣∣ = −24

As you should verify, the three numerators in (13.2.5) are∣∣∣∣∣∣
−3 2 −1

8 0 2
−12 6 −3

∣∣∣∣∣∣ = −12,

∣∣∣∣∣∣
2 −3 −1
4 8 2
0 −12 −3

∣∣∣∣∣∣ = 12, and

∣∣∣∣∣∣
2 2 −3
4 0 8
0 6 −12

∣∣∣∣∣∣ = −72

Hence, formula (13.2.5) yields the solution

x1 = (−12)/(−24) = 1/2, x2 = 12/(−24) = −1/2, and x3 = (−72)/(−24) = 3

Inserting this into the original system of equations verifies that this is a correct answer.

A Geometric Interpretation
Like determinants of order 2, those of order 3 also have a geometric interpretation. This is
shown in Fig. 13.2.1. The rows of the determinant correspond to three different 3-vectors
represented in the diagram. Rather than a cuboid whose six faces are all rectangles (with
right-angles at each corner), these vectors determine a “parallelepiped” whose six faces are
all parallelograms, i.e. quadrilaterals whose opposite edges are parallel. Then the volume
of this parallelepiped must equal the absolute value of the determinant |A|, as defined by
Eq. (13.2.3).

To help see why this is the case, it is useful to consider the simple case when a12 = a13 =
a23 = 0, when the parallelepiped looks as in Fig. 13.2.2. The parallelogram that forms the
base of the parallelepiped is similar to Fig 13.1.3. As we saw in Section 13.1, its area is the
absolute value of the order 2 determinant∣∣∣∣ a11 0

a21 a22

∣∣∣∣ = a11a22

To compute the volume, then, we just need to multiply the area of the base by the height
of the parallelogram, which is |a33|. We thus obtain that the volume is the absolute
value of

a11a22a33 = a33

∣∣∣∣ a11 0
a21 a22

∣∣∣∣ =
∣∣∣∣∣∣
a11 0 0
a21 a22 0
a31 a32 a33

∣∣∣∣∣∣
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(a31 , a32 , a33)

(a21 , a22 , a23)

(a11 , a12 , a13)

z

y

x

Figure 13.2.1 Parallelepiped spanned
by the three row vectors in the matrix

y

x

z

a11

(a21,a22,0)

(a31,a32,a32)

Figure 13.2.2 Parallelepiped in the case
when a12 = a13 = a23 = 0

Sarrus’s Rule for 3 × 3 Determinants
Here is an alternative way of evaluating determinants of order 3 that many people find
convenient. First, form a 3 × 5 matrix, as shown below, by putting two copies of the original
3 × 3 matrix next to each other, but then deleting the copy of the last column:

a11
�

a12
�

a13
�

a11 a12

a21 a22
�

�
a23

�

�
a21

�

�
a22

a31
�

a32
�

a33
�

a31 a32

Now, first, multiply along the three diagonal lines falling to the right, giving all these prod-
ucts a plus sign, to yield the sum:

a11a22a33 + a12a23a31 + a13a21a32

Second, multiply along the three diagonal lines rising to the right, giving all these products
a minus sign, to yield the sum:

−a13a22a31 − a11a23a32 − a12a21a33

The sum of all the six terms is exactly equal to formula (13.2.3) for the determinant |A| of
order 3. It is very important to note that this method, known as Sarrus’s rule, only applies
to determinants of order 3.

E X E R C I S E S F O R S E C T I O N 1 3 . 2

1.SM Use either (13.2.4) or Sarrus’s rule to calculate the following determinants:

(a)

∣∣∣∣∣∣
1 −1 0
1 3 2
1 0 0

∣∣∣∣∣∣ (b)

∣∣∣∣∣∣
1 −1 0
1 3 2
1 2 1

∣∣∣∣∣∣ (c)

∣∣∣∣∣∣
a b c
0 d e
0 0 f

∣∣∣∣∣∣ (d)

∣∣∣∣∣∣
a 0 b
0 e 0
c 0 d

∣∣∣∣∣∣
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2. Let

A =
⎛
⎝1 −1 0

1 3 2
1 2 1

⎞
⎠ and B =

⎛
⎝1 2 3

2 3 4
0 1 −1

⎞
⎠

Calculate AB, |A|, |B|, |A| · |B|, and |AB|, then verify that |AB| = |A| · |B|.

3.SM Use Cramer’s rule to solve the following systems of equations. Check your answers.

(a)

x1 − x2 + x3 = 2

x1 + x2 − x3 = 0

−x1 − x2 − x3 = −6

(b)

x1 − x2 = 0

x1 + 3x2 + 2x3 = 0

x1 + 2x2 + x3 = 0

(c)

x + 3y − 2z = 1

3x − 2y + 5z = 14

2x − 5y + 3z = 1

4. Show that

∣∣∣∣∣∣
1 + a 1 1

1 1 + b 1
1 1 1 + c

∣∣∣∣∣∣ = abc + ab + ac + bc.

5. Given the matrix A =
⎛
⎝ a 1 0

0 −1 a
−b 0 b

⎞
⎠, find two numbers a and b such that tr(A) = 0 and |A| = 12,

where tr(A) denotes the sum of A’s principal diagonal elements.

6. Solve the equation

∣∣∣∣∣∣
1 − x 2 2

2 1 − x 2
2 2 1 − x

∣∣∣∣∣∣ = 0. (Hint: All roots of the equation are integers.)

7. For each value of the real parameter t, define the matrix At =
⎛
⎝ 1 t 0

−2 −2 −1
0 1 t

⎞
⎠.

(a) Calculate the determinant of At, and show that it is never 0.

(b) Find the matrix product A3
t , then show that there exists a value of t such that A3

t equals the
identity matrix I3.

8.SM Consider the simple macroeconomic model described by the three equations:

(i) Y = C + A0; (ii) C = a + b(Y − T); (iii) T = d + tY.

Here Y is GDP, C is consumption, T is tax revenue, A0 is the constant (exogenous) autonomous
expenditure, and a, b, d, and t are all positive parameters. Assuming that b(1 − t) < 1, find the
equilibrium values of the endogenous variables Y , C, and T by:

(a) successive elimination or substitution;

(b) writing the three equations in matrix form and applying Cramer’s rule.

13.3 Determinants in General
This section gives a definition of n × n determinants that is particularly useful when proving
general results. If you are not so interested in these proofs, you might skip this section and
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rely instead on expansion by cofactors, as explained in Section 13.5), for all your work on
determinants.

Formula (13.2.3) expressed the determinant of a 3 × 3 matrix A = (aij)3×3 in the form

a11a22a33 − a11a23a32 + a12a23a31 − a12a21a33 + a13a21a32 − a13a22a31 (13.3.1)

Examining this expression more closely reveals a definite pattern. Each term is the product
of three different elements of the matrix. Each product contains precisely one element from
each row of A, as well as precisely one element from each column.

Now, in a 3 × 3 matrix, there are precisely six different ways of picking three elements
that include one element from each row and one element from each column. All six cor-
responding products appear in (13.3.1). Now consider the six patterns, each consisting of
three circles, which are displayed in Fig. 13.3.1, You should disregard for now the lines and
signs below each pattern. The six different patterns of three circles are arranged in the order
of the corresponding products of three terms that appear in formula (13.3.1).

� � � � � �
Figure 13.3.1 The terms of a 3 × 3 determinant

It remains to determine the sign of each term in (13.3.1), which is repeated as the sign of
the corresponding pattern in Fig. 13.3.1. How do we do this? In Fig. 13.3.1, we have joined
each pair of circles in every box by a line. This line is solid if it rises to the right, but dashed
if it falls to the right. Now count the number of solid lines drawn in each of the six boxes,
and see if it is odd or even. This procedure leads to the following rule:

T H E S I G N R U L E

To determine the sign of any term in the sum, mark all the elements that
appear within the product in a corresponding pattern. Join each possible
pair of elements in the pattern with a line. Each line must either rise or fall
as one moves to the right. If the number of the rising lines is even, then
the corresponding term in the sum is assigned a plus sign; if it is odd, it is
assigned a minus sign.

Let us apply this rule to the six boxes in Fig. 13.3.1. In the first box, for example, no
lines rise to the right, so a11a22a33 has a plus sign. In the fourth box, exactly one line rises
to the right, so a12a21a33 has a minus sign. Similarly for the other four boxes.

Suppose A = (aij)n×n is an arbitrary n × n matrix. Suppose we pick n elements from A,
including exactly one element from each row and exactly one element from each column.
The product of these n elements can be written in the form

a1r1
· a2r2

· . . . · anrn
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Here the order r1, r2, . . . , rn of the second subscripts that indicate columns represents a
shuffling (or permutation) of the successive row numbers 1, 2, . . . , n. Now the numbers
1, 2, . . . , n can be permuted in n! = 1 · 2 . . . (n − 1)n different ways: indeed, for the first
element r1, there are n choices; for each of these first choices, there are n − 1 choices for
the second element r2; and so on. So overall there are n! different products of n factors
to consider.

Given any n × n matrix A, we are now equipped to define its determinant, denoted by
det(A) or |A|, as follows:

D E T E R M I N A N T

Let A be an n × n matrix. Then |A| is a sum of n! terms where:

1. Each term is the product of n elements of the matrix, consisting of one
element from each row and one element from each column. Moreover,
every product of n factors, in which each row and each column is repre-
sented exactly once, must appear in this sum.

2. The sign of each term is found by applying the sign rule.

Using (±) to denote the appropriate choice of either a plus or minus sign,
as determined by the sign rule, one can write

|A| =

∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
=

∑
(±)a1r1

a2r2
. . . anrn

(13.3.2)

You should take the time to see how, in the case of a 2 × 2 matrix, this definition agrees
with (13.1.3).

E X A M P L E 13.3.1 Consider the determinant of an arbitrary 4 × 4 matrix A = (
aij

)
4×4

. There are
4! = 4 · 3 · 2 · 1 = 24 terms. One of these is a13a21a32a44, whose corresponding factors
appear as boxed elements in the following array.

|A| =

∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14

a21 �����
a22 a23 a24

a31 a32
�
��
a33 a34

a41 a42 a43 a44

∣∣∣∣∣∣∣∣∣∣
What sign should this term have? According to the sign rule, the term should have the
plus sign because there are two rising lines.3 Use three more similar diagrams to check

3 We have omitted the dashed lines, because these do not count.
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that the three other indicated terms in the following sum have all been given the correct
sign:

|A| = a11a22a33a44 − a12a21a33a44 + · · · + a13a21a32a44 − · · · + a14a23a32a41

Note that there are 20 other terms which we have left out.

The determinant of an n × n matrix is called a determinant of order n. In general, it
is difficult to evaluate determinants by using definition (13.3.2) directly, even if n is only
4 or 5. If n > 5, the work is usually enormous. For example, if n = 6, then n! = 720,
so there are 720 terms in the sum (13.3.2). Fortunately other methods based on the
elementary row operations discussed in Section 12.8 can reduce the work considerably.
Several standard computer algorithms for evaluating determinants are based on such
methods.

There are a few special cases where it is easy to evaluate a determinant, even if the order
is high. One prominent example is∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

0 a22 . . . a2n
...

...
. . .

...

0 0 . . . ann

∣∣∣∣∣∣∣∣∣
= a11a22 . . . ann (13.3.3)

Here all the elements below the main diagonal are 0. The matrix whose determinant is given
in (13.3.3) is called upper triangular because all the nonzero terms lie in the triangle on or
above the main diagonal. For an upper triangular matrix, the sum (13.3.2) has at most one
nonzero term, and the determinant can be evaluated by taking the product of all the elements
on the main diagonal. To see why, note that in order to have a term in the sum (13.3.2) that
is not 0, we have to choose a11 from column 1. From column 2, having already picked a11

from the first row, we cannot choose a12. So the only way to get a nonzero product is to
pick a22. From the third column, a similar argument shows that we have to pick a33, and so
on. Thus, only the term a11a22 . . . ann can be nonzero. Of course, even this term is zero in
the case when at least one element aii on the principal diagonal is zero. The sign of the term
a11a22 . . . ann is plus because no line joining any pair of elements appearing in the product
rises to the right.

If a matrix is a transpose of an upper triangular matrix, so that all elements above the
main diagonal are 0, then the matrix is lower triangular. By using essentially the same
argument as for (13.3.3), we see that the determinant of a lower triangular matrix is also
equal to the product of the elements on its main diagonal:∣∣∣∣∣∣∣∣∣

a11 0 . . . 0
a21 a22 . . . 0
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
= a11a22 . . . ann (13.3.4)
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E X E R C I S E S F O R S E C T I O N 1 3 . 3

1.SM Use definition (13.3.2) of a determinant along with the sign rule in order to calculate each of the
following:

(a)

∣∣∣∣∣∣∣∣
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

∣∣∣∣∣∣∣∣ (b)

∣∣∣∣∣∣∣∣
1 0 0 1
0 1 0 0
0 0 1 0
a b c d

∣∣∣∣∣∣∣∣ (c)

∣∣∣∣∣∣∣∣
1 0 0 2
0 1 0 −3
0 0 1 4
2 3 4 11

∣∣∣∣∣∣∣∣
2. In case the two n × n matrices A and B are both upper triangular, show that |AB| = |A||B|.

3. The determinant of the following 5 × 5 matrix consists of 5! = 120 terms. One of them is the
product of the boxed elements. Write this term with its correct sign.∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

∣∣∣∣∣∣∣∣∣∣∣∣
4. Write the term indicated by the marked boxes with its correct sign.∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

∣∣∣∣∣∣∣∣∣∣∣∣
5. Solve the following equation for x:∣∣∣∣∣∣∣∣

2 − x 0 3 0
1 2 − x 0 3
0 0 2 − x 0
0 0 1 2 − x

∣∣∣∣∣∣∣∣ = 0

13.4 Basic Rules for Determinants
Definition (13.3.2) of the determinant of an n × n matrix A implies a number of important
properties. Eight are stated below. All are of theoretical interest, but some also make it
simpler to evaluate determinants.
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T H E O R E M 1 3 . 4 . 1 ( R U L E S F O R D E T E R M I N A N T S )

Let A be an n × n matrix. Then:

(i) If all the elements in a row (or column) of A are 0, then |A| = 0.

(ii) |A′| = |A|, where A′ is the transpose of A.

(iii) If all the elements in a single row (or column) of A are multiplied by any
number α, the determinant is multiplied by α.

(iv) If two rows (or two columns) of A are interchanged, the determinant
changes sign but its absolute value remains unchanged.

(v) If two of the rows (or columns) of A are proportional, then |A| = 0.

(vi) The value of the determinant of A is unchanged if a multiple of one row
(or one column) is added to a different row (or column) of A.

(vii) The determinant of the product of two n × n matrices A and B is the
product of the determinants of both matrices:

|AB| = |A| · |B| (13.4.1)

(viii) If α is any real number, then

|αA| = αn|A| (13.4.2)

It should be recalled that, in general, the determinant of a sum is not the sum of the
determinants:

|A + B| �= |A| + |B| (13.4.3)

Exercise 13.1.7 asked for an example of this general inequality.
Our geometric interpretations of determinants of order 2 and 3 support several of

these rules. For example, rule (iii) with, say, α = 2, reflects the fact that if one of the
vectors in Figs 13.1.1 or 13.2.1 is doubled in length, then the area or volume is twice
as big. A good exercise is to try to provide geometric interpretations of rules (i), (v),
and (viii).

Proofs for most of these properties are given at the end of this section. First, however,
let us verify them in the special case when A and B are general 2 × 2 matrices.

(i)

∣∣∣∣ a11 a12
0 0

∣∣∣∣ = a11 · 0 − a12 · 0 = 0.

(ii) |A| =
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21, while |A′| =
∣∣∣∣ a11 a21
a12 a22

∣∣∣∣ = a11a22 − a12a21.

(iii)

∣∣∣∣ a11 αa12
a21 αa22

∣∣∣∣ = a11(αa22) − a12(αa21) = α(a11a22 − a12a21) = α

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣.
(iv)

∣∣∣∣ a21 a22
a11 a12

∣∣∣∣ = a21a12 − a11a22 = −(a11a22 − a12a21) = −
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣.
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(v)

∣∣∣∣ a11 a12
βa11 βa12

∣∣∣∣ = a11(βa12) − a12(βa11) = β(a11a12 − a11a12) = 0.4

(vi) Multiply each entry in the first row of a determinant of order 2 by α and add it to the corre-
sponding entry in the second row. That is,5∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ α

← =
∣∣∣∣ a11 a12
a21 + αa11 a22 + αa12

∣∣∣∣
= a11(a22 + αa12) − a12(a21 + αa11)

= a11a22 + αa11a12 − a12a21 − αa12a11 = a11a22 − a12a21

=
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣
so the determinant does not change its value.

(vii) Exercise 13.1.6 already asked for a proof of this rule, for general 2 × 2 matrices.

(viii)

∣∣∣∣ αa11 αa12
αa21 αa22

∣∣∣∣ = αa11αa22 − αa12αa21 = α2(a11a22 − a12a21) = α2

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣
Theorem 13.4.1 lists some of the most important rules for determinants. Confidence in

applying them comes only from doing many problems.
Rule (vi) is particularly useful for evaluating large or complicated determinants.6 The

idea is to convert the matrix into one that is (upper or lower) triangular. This can be done
by adapting the Gaussian elimination method that we described in Section 12.8. We give
two examples involving 3 × 3 matrices.

E X A M P L E 13.4.1 ∣∣∣∣∣∣
1 5 −1

−1 1 3
3 2 1

∣∣∣∣∣∣
1

← =
∣∣∣∣∣∣

1 5 −1
−1 + 1 1 + 5 3 + (−1)

3 2 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 5 −1
0 6 2
3 2 1

∣∣∣∣∣∣
−3

←

=
∣∣∣∣∣∣
1 5 −1
0 6 2
0 −13 4

∣∣∣∣∣∣ 13
6

←
=

∣∣∣∣∣∣
1 5 −1
0 6 2
0 0 25/3

∣∣∣∣∣∣ = 1 · 6 · 25
3

= 50

Here at step one, 1 times the first row has been added to the second row in order to obtain
a zero in the first column. At step two (−3) times the first row has been added to the third,
which gives a second zero in the first column. At step three 13/6 times the second row has
been added to the third, which creates an extra zero in the second column. Note the way
in which we have indicated these operations. In the end, they produce an upper triangular
matrix whose determinant is easy to evaluate using formula (13.3.3).

4 This rule helps to confirm, in part, the result in Example 13.2.2. Note that the product (b − a)

(c − a)(c − b) is 0 if b = a, or if c = a, or if c = b. Also, in each of these three cases, two rows of
the matrix are proportional, in fact equal.

5 Note carefully the way in which we indicate this operation. See also Section 12.8.
6 To calculate a general 10 × 10 determinant using definition (13.3.2) directly requires no fewer than

10! − 1 = 3 628 799 operations of addition or multiplication! Systematic use of rule (vi) can reduce
the required number of operations to about 380.
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E X A M P L E 13.4.2 In this example, the first and third equalities both result from applying more than
one operation simultaneously. The second equality makes use of rule (iii). The fourth equal-
ity follows from formula (13.3.3).∣∣∣∣∣∣

a + b a a
a a + b a
a a a + b

∣∣∣∣∣∣
← ←

1
1

=
∣∣∣∣∣∣
3a + b 3a + b 3a + b

a a + b a
a a a + b

∣∣∣∣∣∣

= (3a + b)

∣∣∣∣∣∣
1 1 1
a a + b a
a a a + b

∣∣∣∣∣∣
−a −a

←
←

= (3a + b)

∣∣∣∣∣∣
1 1 1
0 b 0
0 0 b

∣∣∣∣∣∣
= (3a + b) · 1 · b · b = b2(3a + b)

E X A M P L E 13.4.3 Check that |AB| = |A| · |B| when

A =
⎛
⎝ 1 5 −1

−1 1 3
3 2 1

⎞
⎠ and B =

⎛
⎝ 3 0 2

−1 1 0
5 2 3

⎞
⎠

Solution: In Example 13.4.1 we showed that |A| = 50. Using Sarrus’s rule, or otherwise,
you should verify that |B| = −5. Moreover, multiplying the two matrices yields

AB =
⎛
⎝−7 3 −1

11 7 7
12 4 9

⎞
⎠

Again, by using Sarrus’s rule, or otherwise, we find that |AB| = −250 = 50 · (−5). This
confirms that |AB| = |A| · |B|.

For general n × n matrices, we offer an argument for Theorem 13.4.1, one rule at a
time:

(i) Each of the n! terms in the determinant must take one element from whichever row (or column)
consists of only zeros. So the whole determinant is 0.

(ii) Each term in |A| is the product of entries chosen from A to include exactly one element from
each row and one element from each column. Exactly the same terms, therefore, must appear
also in |A′| also.

The sign of each term depends on the number of lines joining one pair (i, j) to another pair
(k, l) that rise upward to the right, which occurs if and only if i − k and j − l have opposite
signs. But each such line linking (i, j) to (k, l) in A corresponds exactly to one and only one
line linking (j, i) to (l, k) in A′. Moreover, the pair i − k and j − l have opposite signs if and
only if the matching pair k − i and l − j have opposite signs, since both signs are reversed.
Hence each term in A is matched by a corresponding term in A′ that also has the same
sign.

(iii) Let B be the matrix obtained from A by multiplying every element in a certain row (or column)
of A by α. Then each term in the sum defining |B| is the corresponding term in the sum defining
|A| multiplied by α. Hence, |B| = α|A|.
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(iv) If two rows are interchanged, or two columns, the terms involved in definition (13.3.2)
of determinant remain the same, except that the sign of each term is reversed. Show-
ing this, however, involves a somewhat intricate argument, so we offer only this brief
explanation.7

(v) By rule (iii), the factor of proportionality can be put outside the determinant. The resulting
determinant then has two equal rows (or columns). Interchanging these two rows (or columns)
obviously leaves the determinant unchanged. Yet by rule (iv), the determinant changes its sign.
So |A| = −|A|, implying that |A| = 0.

(vi) For the case when the scalar multiple α of row i is added to row j, one has

∑
(±)a1r1

. . . airi
. . . (ajrj

+ αairj
) . . . anrn

=
∑

(±)a1r1
. . . airi

. . . ajrj
. . . anrn

+ α
∑

(±)a1r1
. . . airi

. . . airj
. . . anrn

By rule (v) the last sum is zero because it is equal to a determinant with rows i and j equal. So
the left-hand side reduces to |A| + α · 0 = |A|.

(vii) The proof of this rule for the case n = 2 is the object of Exercise 13.1.6. The case when A and
B are both upper triangular is covered in Problem 13.3.2. To prove the general case, one can use
elementary row and column operations to convert both matrices A and B to upper triangular
form. But we omit the proof.

(viii) The matrix αA is obtained by multiplying every row of A by α. This involves n multiplications,
one for each row. By rule (iii) applied n times, |αA| = αn|A|.

E X E R C I S E S F O R S E C T I O N 1 3 . 4

1. Let A =
(

1 2
3 4

)
and B =

(
3 4
5 6

)
.

(a) Calculate AB, BA, A′B′, and B′A′.

(b) Show that |A| = |A′| and |AB| = |A| · |B|.
(c) Is |A′B′| = |A′| · |B′|?

2. Given the matrix A =
⎛
⎝2 1 3

1 0 1
1 2 5

⎞
⎠, first determine A′, and then show that |A| = |A′|.

3. Evaluate the following three determinants as simply as possible:

(a)

∣∣∣∣∣∣
3 0 1
1 0 −1
2 0 5

∣∣∣∣∣∣ (b)

∣∣∣∣∣∣∣∣
1 2 3 4
0 −1 2 4
0 0 3 −1

−3 −6 −9 −12

∣∣∣∣∣∣∣∣ (c)

∣∣∣∣∣∣∣∣
a1 − x a2 a3 a4

0 −x 0 0
0 1 −x 0
0 0 1 −x

∣∣∣∣∣∣∣∣
4. Suppose that A and B are both 3 × 3 matrices with |A| = 3 and |B| = −4. Consider the six

expressions |AB|, 3|A|, |−2B|, |4A|, |A| + |B|, and |A + B|. For each expression, specify its
numerical value given |A| and |B| when this is uniquely determined; otherwise, specify that the
value cannot be uniquely determined.

7 Most books on linear algebra offer proofs of this rule and of rule (vii), which we also leave unproved.
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5. Calculate A2 and |A| for the matrix A =
⎛
⎝a 1 4

2 1 a2

1 0 −3

⎞
⎠.

6. Prove that each of the following determinants is zero:

(a)

∣∣∣∣∣∣
1 2 3
2 4 5
3 6 8

∣∣∣∣∣∣ (b)

∣∣∣∣∣∣
1 a b + c
1 b c + a
1 c a + b

∣∣∣∣∣∣ (c)

∣∣∣∣∣∣
x − y x − y x2 − y2

1 1 x + y
y 1 x

∣∣∣∣∣∣
7. Calculate X′X and |X′X| if

X =

⎛
⎜⎜⎝

1 0 0
1 1 1
1 2 0
1 0 1

⎞
⎟⎟⎠

8. For each a calculate |Aa| if Aa =
⎛
⎝a 2 2

2 a2 + 1 1
2 1 1

⎞
⎠. Then, in case a = 1, calculate |A6

1|.

9. For an orthogonal matrix P, as defined in Exercise 12.7.7, show that |P| must be 1 or −1.

10. A square matrix A of order n is called involutive if A2 = In.

(a) Show that the determinant of an involutive matrix is 1 or −1.

(b) Show that for all a the two matrices
(−1 0

0 −1

)
and

(
a 1 − a2

1 −a

)
are both involutive.

(c) Show that the square matrix A is involutive if and only if (In − A)(In + A) = 0.

11. Determine which of the following equalities are (generally) true or false:

(a)

∣∣∣∣ a b
c d

∣∣∣∣ = −
∣∣∣∣ a −b

c −d

∣∣∣∣ = 2

∣∣∣∣ a/2 b/2
c/2 d/2

∣∣∣∣ (b)

∣∣∣∣ a b
c d

∣∣∣∣ =
∣∣∣∣ a b
0 0

∣∣∣∣ +
∣∣∣∣ 0 0

c d

∣∣∣∣
(c)

∣∣∣∣ a b
c d

∣∣∣∣ =
∣∣∣∣ 0 b
0 d

∣∣∣∣ +
∣∣∣∣ a b

c d

∣∣∣∣ =
∣∣∣∣∣∣

a 0 b
−1 1 0

c 0 d

∣∣∣∣∣∣ (d)

∣∣∣∣ a b
c d

∣∣∣∣ =
∣∣∣∣ a b
c − 2a d − 2b

∣∣∣∣
12. Let B be a given n × n matrix. An n × n matrix P is said to commute with B if BP = PB. Show

that if P and Q both commute with B, then PQ will also commute with B.

13. [HARDER] Without computing the determinants, show that

∣∣∣∣∣∣
b2 + c2 ab ac

ab a2 + c2 bc
ac bc a2 + b2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0 c b
c 0 a
b a 0

∣∣∣∣∣∣
2
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14.SM [HARDER] Prove the following useful result (which reduces to Example 13.4.2 in case n = 3):

Dn =

∣∣∣∣∣∣∣∣∣

a + b a . . . a
a a + b . . . a
...

...
. . .

...

a a . . . a + b

∣∣∣∣∣∣∣∣∣
= bn−1(na + b)

13.5 Expansion by Cofactors
In Section 13.2, which was devoted to determinants of order 3, we introduced the
topic of expansion by cofactors. We gave formula (13.2.4) as rule for calculating such
determinants. That formula involved cofactors expressed as determinants of order
2. In this section we will consider expansion by cofactors for determinants of order
n ≥ 3, including formulas that involve cofactors expressed as determinants of order
n − 1.

According to definition (13.3.2), the determinant of an n × n matrix A = (aij) is a sum
of n! terms. Each term contains one element from each row and one element from each
column. Consider in particular row i. First pick out all the terms that have ai1 as a factor,
then all the terms that have ai2 as a factor, and so on. Because all these selected terms have
precisely one factor from row i, in this way we include all the terms of |A|. So we can
write

|A| = ai1Ci1 + ai2Ci2 + · · · + aijCij + · · · + ainCin (13.5.1)

The coefficients Ci1, . . . , Cin are the cofactors of the elements ai1, . . . , ain. Then Eq. (13.5.1)
is called the cofactor expansion of |A| along (or by) row i.

Similarly, one has the cofactor expansion of |A| along (or by) column j, which is

|A| = a1jC1j + a2jC2j + · · · + aijCij + · · · + anjCnj (13.5.2)

What makes expansions (13.5.1) and (13.5.2) useful is the following procedure for
calculating any cofactor Cij of the determinant |A|. First, delete row i and column j
to arrive at a determinant of order n − 1, which is called a minor. Second, multiply
the minor by the factor (−1)i+j. This gives the cofactor Cij which, in symbols, is
given by

Cij = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1,j−1 a1j a1,j+1 . . . a1n

a21 . . . a2,j−1 a2j a2,j+1 . . . a2n
...

...
...

...
...

ai1 . . . ai,j−1 aij ai,j+1 . . . ain

...
...

...
...

...

an1 . . . an,j−1 anj an,j+1 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(13.5.3)
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Note that we have drawn a box to indicate the particular element cij, as well as
lines to cross out row i and column j, both of which have to be deleted from the
determinant |A|.

The claim is that one can find the determinant |A| by inserting the cofactors that are
defined by formula (13.5.3) into either formula (13.5.1) for any row i, or formula (13.5.2)
for any column j. We skip the proof. But if we look back at (13.2.4), it does confirm (13.5.3)
in the special case when we expand a determinant of order 3 along its first row. Indeed, the
three relevant cofactors are

C11 = (−1)1+1

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ , C12 = (−1)1+2

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ , and C13 = (−1)1+3

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
Putting these into formula (13.5.1) for row i = 1 gives |A| = a11C11 + a12C12 + a13C13,
which accords precisely with (13.2.4).

For n > 3 formula (13.5.3) is rather complicated. Studying the following example
should aid your understanding.

E X A M P L E 13.5.1 Check that the cofactor of the element c in the determinant

|A| =

∣∣∣∣∣∣∣∣
3 0 0 2
6 1 c 2

−1 1 0 0
5 2 0 3

∣∣∣∣∣∣∣∣ is C23 = (−1)2+3

∣∣∣∣∣∣
3 0 2

−1 1 0
5 2 3

∣∣∣∣∣∣
Then find the value of |A| by using (13.5.2) and Example 13.2.1.

Solution: Because the element c is in row 2 and column 3, its cofactor has been written
correctly. To find the numerical value of |A| we use the cofactor expansion along its third
column, because this has more zeros than any other row or column. Using the answer to
Example 13.2.3, this yields

|A| = a23C23 = c · (−1)2+3

∣∣∣∣∣∣
3 0 2

−1 1 0
5 2 3

∣∣∣∣∣∣ = c · (−1)(−5) = 5c

In Example 13.5.1, column 3 of the matrix A has only one nonzero term, so expansion
by cofactors along this column is particularly simple. Even if not enough zeros are
there initially, we can often create more by using elementary row operations while
appealing to rule (vi) in Theorem 13.4.1. The following two examples illustrate this
approach.

E X A M P L E 13.5.2 ∣∣∣∣∣∣
3 −1 2
0 −1 −1
6 1 2

∣∣∣∣∣∣
−2

←
=

∣∣∣∣∣∣
3 −1 2
0 −1 −1
0 3 −2

∣∣∣∣∣∣
(∗)= 3

∣∣∣∣ −1 −1
3 −2

∣∣∣∣ = 3(2 + 3) = 15

To derive the equality labelled (∗), expand by column 1.
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E X A M P L E 13.5.3 ∣∣∣∣∣∣∣∣
2 0 3 −1
0 4 0 0
0 1 −1 2
3 2 5 −3

∣∣∣∣∣∣∣∣
(∗)= (−1)2+2 · 4

∣∣∣∣∣∣
2 3 −1
0 −1 2
3 5 −3

∣∣∣∣∣∣
−3/2

←
= 4

∣∣∣∣∣∣
2 3 −1
0 −1 2
0 1/2 −3/2

∣∣∣∣∣∣
(∗∗)= 4 · 2

∣∣∣∣ −1 2
1/2 −3/2

∣∣∣∣ = 8
( 3

2 − 2
2

) = 4

For equality (∗), expand by row 2. For equality (∗∗), expand by column 1.

Expansion by Alien Cofactors
According to the cofactor expansions (13.5.1) and (13.5.2), if each element aij in any row
or column of a determinant is multiplied by the corresponding cofactor Cij and then all the
products are added, the result is the value of the determinant. What happens if we multiply
the elements of a row by the cofactors of a different (alien) row? Or the elements of a column
by the cofactors of an alien column? Consider the following example.

E X A M P L E 13.5.4 If A = (aij)3×3, the cofactor expansion of |A| along the second row is

|A| = a21C21 + a22C22 + a23C23

Suppose we replace the elements a21, a22, and a23 of the second row by a, b, and c. Then, the
corresponding cofactors C21, C22, and C23 remain unchanged. So the cofactor expansion of
the new determinant along its second row is∣∣∣∣∣∣

a11 a12 a13

a b c
a31 a32 a33

∣∣∣∣∣∣ = aC21 + bC22 + cC23 (∗)

In particular, suppose we replace a, b, and c in (∗) by a11, a12, and a13 taken from row 1,
or by a31, a32, and a33 taken from row 3. In either case two rows of the determinant in (∗)

become equal, so the right-hand side becomes 0. Hence,

a11C21 + a12C22 + a13C23 = 0

a31C21 + a32C22 + a33C23 = 0

That is, the sum of the products of all the elements in either row 1 or row 3 multiplied by
the corresponding cofactors of the elements in row 2 is zero.

Obviously, the argument used in this example can be generalized: If we multiply the
elements of any row by the cofactors of an alien row, and then add the products, the result
is 0. Similarly if we multiply the elements of a column by the cofactors of an alien column,
then add.
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We summarize all the results in this section in the following theorem:

T H E O R E M 1 3 . 5 . 1 ( C O F A C T O R E X P A N S I O N O F A D E T E R M I N A N T )

Let A = (aij)n×n. Suppose that the cofactors Cij are defined as in (13.5.3).
Then:

(i) ai1Ci1 + ai2Ci2 + · · · + ainCin = |A|;
(ii) if k �= i, then ai1Ck1 + ai2Ck2 + · · · + ainCkn = 0;

(iii) a1jC1j + a2jC2j + · · · + anjCnj = |A|;
(iv) if k �= j, then a1jC1k + a2jC2k + · · · + anjCnk = 0.

Theorem 13.5.1 says that an expansion of a determinant by row i in terms of the cofactors
of row k vanishes when k �= i, but is equal to |A| if k = i. Likewise, an expansion by column
j in terms of the cofactors of column k vanishes when k �= j, but is equal to |A| if k = j.

E X E R C I S E S F O R S E C T I O N 1 3 . 5

1.SM Calculate the following determinants:

(a)

∣∣∣∣∣∣
1 2 4
1 3 9
1 4 16

∣∣∣∣∣∣ (b)

∣∣∣∣∣∣∣∣
1 2 3 4
0 −1 0 11
2 −1 0 3

−2 0 −1 3

∣∣∣∣∣∣∣∣ (c)

∣∣∣∣∣∣∣∣
2 1 3 3
3 2 1 6
1 3 0 9
2 4 1 12

∣∣∣∣∣∣∣∣
2. Calculate the following determinants:

(a)

∣∣∣∣∣∣
0 0 a
0 b 0
c 0 0

∣∣∣∣∣∣ (b)

∣∣∣∣∣∣∣∣
0 0 0 a
0 0 b 0
0 c 0 0
d 0 0 0

∣∣∣∣∣∣∣∣ (c)

∣∣∣∣∣∣∣∣∣∣

0 0 0 0 1
0 0 0 5 1
0 0 3 1 2
0 4 0 3 4
6 2 3 1 2

∣∣∣∣∣∣∣∣∣∣

13.6 The Inverse of a Matrix
The number 1 is the “multiplicative identity” in the real number system in the sense that
1 · α = α · 1 = α for all real α. Furthermore, in case α �= 0, there is a unique number α−1

with the property that αα−1 = α−1α = 1. We call α−1 the (multiplicative) inverse of α. In
Section 12.6 we introduced the n × n identity matrix I, with elements equal to 1 all along
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the main diagonal and to 0 everywhere else.8 It is the multiplicative identity among n × n
matrices in the sense that IX = XI = X for all n × n matrices X. By analogy with the real
number system, we look for a (multiplicative) inverse X of an n × n matrix A that satisfies
AX = XA = I.

Formally, for any given matrix A, we say that X is an inverse of A if it satisfies

AX = XA = I (13.6.1)

Provided such an inverse exists, the matrix A is said to be invertible. The equivalent
equations XA = AX = I imply that the matrix A is also an inverse of X. That is, A and X
are inverses of each other.

Note that the two matrix products AX and XA are defined and equal only if A and X are
square matrices of the same order. Thus, only square matrices can have inverses. But not
even all square matrices have inverses, as part (b) of the following example shows.

E X A M P L E 13.6.1

(a) Show that the following matrices are inverses of each other:

A =
(

5 6
5 10

)
and X =

(
1/2 −3/10

−1/4 1/4

)

(b) Show that the matrix A =
(

1 0
0 0

)
has no inverse.

Solution:

(a) We simply multiply directly to show that(
5 6
5 10

)(
1/2 − 3/10

−1/4 1/4

)
=

(
5/2 − 6/4 − 15/10 + 6/4

5/2 − 10/4 − 15/10 + 10/4

)
=

(
1 0
0 1

)
Likewise, we verify that XA = I.

(b) Observe that for all real numbers x, y, z, and w, one has(
1 0
0 0

) (
x y
z w

)
=

(
x y
0 0

)
Because the element in row 2 and column 2 of the last matrix is 0 and not 1, there is no
way of choosing x, y, z, and w to make the product of these two matrices equal to I.

The following questions arise: (i) Which matrices have inverses? (ii) Can a given matrix
have more than one inverse? (iii) How do we find the inverse if it exists?

For question (i), it is easy to find a necessary condition for a matrix A to have
an inverse. In fact, from (13.6.1) and rule (vii) in Theorem 13.4.1, it follows that
|AX| = |A| · |X| = |I|. Using (13.3.3), we see that the identity matrix of any order has

8 From now on, we often write I instead of In whenever the order n of the identity matrix seems
obvious.
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determinant 1. So if X is an inverse of A, then |A| · |X| = 1. Because |A| = 0 would
contradict this equation, we conclude that |A| �= 0 is a necessary condition for A to have an
inverse.

As we shall see in Section 13.7, the condition |A| �= 0 is also sufficient for A to have an
inverse. Hence, for any square matrix A,

A has an inverse ⇐⇒ |A| �= 0 (13.6.2)

A square matrix A is said to be singular if |A| = 0, but nonsingular if |A| �= 0. According
to (13.6.2), therefore, a matrix is invertible if and only if it is nonsingular.

Concerning question (ii), the answer is that a matrix cannot have more than one
inverse. Indeed, suppose that X satisfies (13.6.1) and that AY = I for any square matrix Y.
Then

Y = IY = (XA)Y = X(AY) = XI = X

A similar argument shows that if YA = I, then Y = X. Thus, the inverse of A is unique, if
it exists.

If the inverse of A exists, it is usually written as A−1. Whereas for numbers we can write
a−1 = 1/a, the symbol I/A has no meaning. Dividing matrices makes no sense. Note also
that even if the product A−1B is defined, it is usually quite different from BA−1 because in
general matrix multiplication is not commutative.

The full answer to question (iii) is given in the next section. For now we only consider
the case of 2 × 2 matrices.

E X A M P L E 13.6.2 Find the inverse of the matrix A =
(

a b
c d

)
, when it exists.

Solution: We look for a 2 × 2 matrix X such that AX = I, after which it is easy to check
that XA = I. Solving AX = I requires finding numbers x, y, z, and w such that(

a b
c d

)(
x y
z w

)
=

(
1 0
0 1

)

Matrix multiplication implies that

ax + bz = 1, cx + dz = 0, ay + bw = 0, and cy + dw = 1 (∗)

Note that here we have two different systems of two equations in two unknowns, one given
by the first pair of equations, and the other by the second pair of equations. Both these
systems have A as a common coefficient matrix. Now recall Cramer’s rule for the 2 × 2
case, as stated in (13.1.4). Provided that |A| = ad − bc �= 0, we can use it twice to find the
unique solution to (∗), which is

x = d
ad − bc

, z = −c
ad − bc

, y = −b
ad − bc

, and w = a
ad − bc
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Hence, we have proved the following result:

I N V E R S E O F A M A T R I X O F O R D E R 2

Provided that |A| = ad − bc �= 0,

A =
(

a b
c d

)
=⇒ A−1 = 1

ad − bc

(
d −b

−c a

)
(13.6.3)

Note that in the inverse matrix, the elements on the main diagonal of the original 2 × 2
matrix changed places, whereas the off-diagonal elements just changed sign, and then the
whole matrix was divided by the determinant of A.

For square matrices of order 3, one can use Cramer’s rule (13.2.5) to derive a formula
for the inverse. Again, the requirement for the inverse to exist is that the determinant of the
coefficient matrix is not 0. Full details will be given in Section 13.7.

Some Useful Implications
If A−1 is the inverse of A, then A−1A = I and AA−1 = I. Actually, each of these equations
characterizes the inverse of A, in the sense that

AX = I ⇐⇒ X = A−1 (13.6.4)

YA = I ⇐⇒ Y = A−1 (13.6.5)

The implications in the direction ⇐ follow immediately from the definition of an inverse
matrix. To prove ⇒ in (13.6.4), suppose AX = I. Then |A| · |X| = 1, and so |A| �= 0. By
(13.6.2), it follows that A−1 exists. Multiplying AX = I from the left by A−1 yields X =
A−1. The proof of ⇒ in (13.6.5) is almost the same.

Implications (13.6.4) and (13.6.5) are used repeatedly in proving properties of the
inverse. Here are two examples.

E X A M P L E 13.6.3 Find the inverse of the n × n matrix A if A − A2 = I.

Solution: The matrix equation A − A2 = I is equivalent to A(I − A) = I. Then (13.6.4)
implies that A has the inverse A−1 = I − A.

E X A M P L E 13.6.4 Let B be a nonzero n × n matrix such that B2 = 3B. Prove that there exists a unique
number s such that I + sB is the inverse of I + B.

Solution: Because of (13.6.5), it suffices to find a number s such that (I + sB)(I + B) = I.
Repeatedly applying the rules for matrix multiplication, the definition of I, and the equality
B2 = 3B together imply that

(I + sB)(I + B) = II + IB + sBI + sB2 = I + B + sB + 3sB = I + (1 + 4s)B

This equals I if and only if (1 + 4s)B = 0. Because B �= 0, this holds if and only if 1 + 4s =
0, or if and only if s = −1/4.
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Properties of The Inverse
We shall now prove some useful rules for the inverse.

T H E O R E M 1 3 . 6 . 1 ( P R O P E R T I E S O F T H E I N V E R S E )

Suppose that A and B are invertible n × n matrices. Then:

(a) the matrix A−1 is invertible, and (A−1)−1 = A;

(b) the matrix AB is invertible, and (AB)−1 = B−1A−1;

(c) the transpose matrix A′ is invertible, and (A′)−1 = (A−1)′;
(d) if c is a nonzero scalar, then (cA)−1 = c−1A−1.

In order to prove these properties, we use (13.6.4) or (13.6.5) in each case:

Proof:

(a) By (13.6.1) we have A−1A = I. Now apply (13.6.4) with A replaced by A−1. This
shows that A = (A−1)−1.

(b) By rule (12.6.1) as well as the definitions of I and matrix inverse, we have

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

From (13.6.4), it follows that (AB)−1 = B−1A−1.

(c) Rule (12.7.5) states that (AC)′ = C′A′ for every n × n matrix C. Applying this rule
with C = A−1 implies that (A−1)′A′ = (AA−1)′ = I′ = I. By (13.6.5), it follows that
(A′)−1 = (A−1)′.

(d) Here rule (12.6.4) implies that (cA)(c−1A−1) = cc−1AA−1 = 1 · I = I. From (13.6.4),
it follows that (cA)−1 = c−1A−1.

Suppose that the invertible matrix A is symmetric, in the sense that A′ = A. Then prop-
erty (c) implies that (A−1)′ = (A′)−1 = A−1, so A−1 is symmetric. In summary, the inverse
of a symmetric matrix is symmetric.

Also note that property (b) can be extended to products of several matrices. For instance,
if A, B, and C are all invertible n × n matrices, then using property (b) twice implies
that

(ABC)−1 = [(AB)C)]−1 = C−1(AB)−1 = C−1(B−1A−1) = C−1B−1A−1

Finally, note the assumption in property (b) that A and B are both n × n matrices.
In statistics and econometrics, we often consider products of the form XX′, where
X is n × m, with n �= m. Then XX′ is n × n. If the determinant |XX′| is not 0, then
(XX′)−1 exists, but property (b) does not apply because X−1 and X′−1 are only defined if
n = m.
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Solving Equations by Matrix Inversion
Let A be any n × n matrix. If B is an arbitrary matrix, we consider whether there are matrices
X and Y of suitable order such that AX = B and YA = B. For the first requirement to be
possible, the matrix B must have n rows; for the second, B must have n columns. These
prior considerations should help explain the following result:

T H E O R E M 1 3 . 6 . 2

Suppose that A is an n × n matrix satisfying |A| �= 0. Then:

provided that B has n rows, AX = B ⇐⇒ X = A−1B (13.6.6)

provided that B has n columns, YA = B ⇐⇒ Y = BA−1 (13.6.7)

Proof: (This is easy.) Provided that |A| �= 0 and B has n rows, we can multiply each side
of the equation AX = B in (13.6.6) on the left by A−1. This yields A−1(AX) = A−1B.
Because (A−1A)X = IX = X, we conclude that X = A−1B is the only possible solution
of AX = B. On the other hand, by substituting X = A−1B into AX = B, we see that this
value of X really does satisfy the equation.

The proof of (13.6.7) is similar: multiply each side of YA = B on the right by A−1.

E X A M P L E 13.6.5 Solve the following system of equations by using Theorem 13.6.2:

2x + y = 3

2x + 2y = 4

Solution: Suppose we define the matrices

A =
(

2 1
2 2

)
, x =

(
x
y

)
, and b =

(
3
4

)

Then the system is equivalent to the matrix equation Ax = b. Because |A| = 2 �= 0, the
matrix A has an inverse. So according to Eq. (13.6.6) in the case when B and X both have
only one column, one has x = A−1b. After using Eq. (13.6.3) to find A−1, we have(

x
y

)
= A−1

(
3
4

)
= 1

2

(
2 −1

−2 2

)(
3
4

)
=

(
1 −1/2

−1 1

) (
3
4

)
=

(
1
1

)

The solution is therefore x = 1, y = 1.

You should check by substitution that this really is the correct solution to Example
13.6.5. Note also that it is much easier to solve the system by subtracting the first equation
from the second to obtain y = 1 immediately, from which it follows that x = 1.
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E X E R C I S E S F O R S E C T I O N 1 3 . 6

1. Prove that:

(a)
(

3 0
2 −1

)−1

=
(

1/3 0
2/3 −1

)
(b)

⎛
⎝1 1 −3

2 1 −3
2 2 1

⎞
⎠−1

=
⎛
⎝ − 1 1 0

8/7 −1 3/7
−2/7 0 1/7

⎞
⎠

2. Find numbers a and b that make A the inverse of B when

A =
⎛
⎝ 2 −1 −1

a 1/4 b
1/8 1/8 −1/8

⎞
⎠ and B =

⎛
⎝1 2 4

0 1 6
1 3 2

⎞
⎠

3. Solve the following systems of equations by using Theorem 13.6.2 and then formula
(13.6.3):

(a)
2x − 3y = 3

3x − 4y = 5
(b)

2x − 3y = 8

3x − 4y = 11
(c)

2x − 3y = 0

3x − 4y = 0

4. Given the matrix A = 1
2

(−1 −√
3√

3 −1

)
, show that A3 = I2, and then use this to find A−1.

5. Let A =
⎛
⎝0 1 0

0 1 1
1 0 1

⎞
⎠.

(a) Calculate |A|, A2, A3, and A3 − 2A2 + A − I3.

(b) Use the last calculation to show that A has an inverse and that A−1 = (A − I3)
2.

(c) Find a matrix P such that P2 = A. Are there any other matrices with this property?

6. Let A =
(

2 1 4
0 −1 3

)
.

(a) Calculate AA′, |AA′|, and (AA′)−1.

(b) The matrices AA′ and (AA′)−1 in part (a) are both symmetric. Is this a coincidence?

7.SM Given B =
(−1/2 5

1/4 −1/2

)
, calculate B2 + B and B3 − 2B + I. Then find B−1.

8. Suppose that X is an m × n matrix and that |X′X| �= 0. Show that the matrix defined
by A = Im − X(X′X)−1X′ satisfies A2 = A (and so is idempotent, as defined in Exercise
12.6.6).
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9. Find a matrix X that satisfies AB + CX = D, where:

A =
(−2 0 1

1 −1 5

)
, B =

⎛
⎝ 3 1

0 1
−1 2

⎞
⎠ , C =

(
1 2
3 4

)
, and D =

(−9 3
−8 17

)
.

10. Let C be an n × n matrix that satisfies C2 + C = I.

(a) Show that C−1 = I + C. (b) Show that C3 = −I + 2C and C4 = 2I − 3C.

13.7 A General Formula for the Inverse
The previous section presents the most important facts about the inverse and its proper-
ties. As such, it contains “what every economist should know”. It is perhaps less important
for most economists to know much about how to calculate the inverses of large matrices,
because powerful computer programs are available. Nevertheless, this section presents an
explicit formula for the inverse of any nonsingular n × n matrix A. Though this formula
is extremely inefficient for computing inverses of large matrices, it does have theoretical
interest. The key to this formula are the rules for the cofactor expansion of determinants.

Let C11, . . . , Cnn denote the n2 cofactors of the elements in A. By Theorem 13.5.1, the
n2 cofactor expansions for i, k = 1, . . . , n result in the n2 equations

ai1Ck1 + ai2Ck2 + · · · + ainCkn =
{

|A| if i = k

0 if i �= k
(∗)

Note that each sum on the left-hand side looks very much like the kind of inner product
that appears in the definition of matrix multiplication. In fact, the collection of all the n2

different equations in (∗) can be reduced to the single matrix equation⎛
⎜⎜⎜⎜⎜⎜⎝

a11 a12 . . . a1n
...

...
...

ai1 ai2 . . . ain
...

...
...

an1 an2 . . . ann

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

C11 . . . Ck1 . . . Cn1

C12 . . . Ck2 . . . Cn2
...

...
...

C1n . . . Ckn . . . Cnn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

|A| 0 . . . 0
0 |A| . . . 0
...

...
. . .

...

0 0 . . . |A|

⎞
⎟⎟⎟⎠ (∗∗)

The matrix on the right-hand side of (∗∗) equals the product |A| · In of the scalar |A| and
the identity matrix. As for the left-hand side of (∗∗), let C+ = (Cij)n×n denote the matrix
of all the cofactors of A. Then the second matrix in the product on the left-hand side is C+,
except that its row and column indices have been interchanged. This makes it the transpose
(C+)′ of C+. This special matrix is called the adjugate of A, denoted by adj(A). That is

adj(A) = (C+)′ =

⎛
⎜⎜⎜⎝

C11 . . . Ck1 . . . Cn1

C12 . . . Ck2 . . . Cn2
...

...
...

C1n . . . Ckn . . . Cnn

⎞
⎟⎟⎟⎠ (13.7.1)
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Now definition (13.7.1) allows equation (∗∗) to be written as A adj(A) = |A| · In. In case
|A| �= 0, this evidently implies that A−1 = (1/|A|) · adj(A). To summarize:

T H E O R E M 1 3 . 7 . 1 ( G E N E R A L F O R M U L A F O R T H E I N V E R S E )

Any square matrix A = (
aij

)
n×n

with determinant |A| �= 0 has a unique inverse
A−1 satisfying AA−1 = A−1A = I. This inverse matrix is given by

A−1 = 1
|A| · adj(A) (13.7.2)

If |A| = 0, then there is no matrix X such that AX = XA = I.

E X A M P L E 13.7.1 Use Theorem 13.7.1 to show that the matrix

A =
⎛
⎝2 3 4

4 3 1
1 2 4

⎞
⎠

has an inverse. Then find that inverse.

Solution: According to Theorem 13.7.1, the matrix A has an inverse if and only if |A| �= 0.
Some computation determines that |A| = −5. So the inverse exists. The cofactors of A
are

C11 =
∣∣∣∣ 3 1
2 4

∣∣∣∣ = 10,

C21 = −
∣∣∣∣ 3 4
2 4

∣∣∣∣ = −4,

C31 =
∣∣∣∣ 3 4
3 1

∣∣∣∣ = −9,

C12 = −
∣∣∣∣ 4 1
1 4

∣∣∣∣ = −15,

C22 =
∣∣∣∣ 2 4
1 4

∣∣∣∣ = 4,

C32 = −
∣∣∣∣ 2 4
4 1

∣∣∣∣ = 14,

C13 =
∣∣∣∣ 4 3
1 2

∣∣∣∣ = 5

C23 = −
∣∣∣∣ 2 3
1 2

∣∣∣∣ = −1

C33 =
∣∣∣∣ 2 3
4 3

∣∣∣∣ = −6

By formulas (13.7.2) and (13.7.1), the inverse of A is

A−1 = 1
|A|

⎛
⎝C11 C21 C31

C12 C22 C32

C13 C23 C33

⎞
⎠ = −1

5

⎛
⎝ 10 −4 −9

−15 4 14
5 −1 −6

⎞
⎠

One should check the result by showing that AA−1 = I.

Finding Inverses by Elementary Row Operations
Theorem 13.7.1 presented a general formula for the inverse of a nonsingular matrix.
Although this formula is important theoretically, it is computationally useless for matrices
much larger than 2 × 2.
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Instead, an efficient way to find the inverse of an invertible n × n matrix A starts by
first forming the n × 2n matrix (A | I) consisting of the n columns of A, followed by a
vertical bar, and then the n columns of I. Next, we apply a sequence of elementary row
operations systematically to successive n × 2n matrices in order to transform, if possible,
the initial matrix (A | I) to a final matrix (I | B) whose first n columns form the identity
matrix I. If this transformation succeeds, it will follow that B = A−1. But if it fails because
the systematic procedure cannot be completed successfully, that will be because A has no
inverse. The method is illustrated by the following example.

E X A M P L E 13.7.2 Use elementary row operations to find the inverse of

A =
⎛
⎝1 3 3

1 3 4
1 4 3

⎞
⎠

Solution: First, write down the 3 × 6 matrix

(A | I) =
⎛
⎝1 3 3 1 0 0

1 3 4 0 1 0
1 4 3 0 0 1

⎞
⎠

whose first three columns are the columns of A, and whose last three columns are those
of the 3 × 3 identity matrix. The idea is now to use elementary operations on this matrix
so that, in the end, the first three columns constitute an identity matrix. Then the last three
columns will constitute the inverse of A.

For the first step, we multiply the first row by −1 and add the result to the second
row. This gives a zero in the second row and the first column. You should be able then to
understand the other operations used and why they are chosen. Note that the last operation
involves interchanging rows 2 and 3.⎛

⎝1 3 3 1 0 0
1 3 4 0 1 0
1 4 3 0 0 1

⎞
⎠ −1

← ∼
⎛
⎝1 3 3 1 0 0

0 0 1 −1 1 0
1 4 3 0 0 1

⎞
⎠ −1

←

∼
⎛
⎝1 3 3 1 0 0

0 0 1 −1 1 0
0 1 0 −1 0 1

⎞
⎠ ←

−3
∼

⎛
⎝1 0 3 4 0 −3

0 0 1 −1 1 0
0 1 0 −1 0 1

⎞
⎠ ←

−3

∼
⎛
⎝1 0 0 7 −3 −3

0 0 1 −1 1 0
0 1 0 −1 0 1

⎞
⎠ ←

←
∼

⎛
⎝1 0 0 7 −3 −3

0 1 0 −1 0 1
0 0 1 −1 1 0

⎞
⎠

Hence A−1 =
⎛
⎝ 7 −3 −3

−1 0 1
−1 1 0

⎞
⎠, as can be checked by verifying that AA−1 = I.
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E X E R C I S E S F O R S E C T I O N 1 3 . 7

1.SM Use Theorem 13.7.1 to calculate the inverses of the following matrices, if they exist:

(a)
(

2 3
4 5

)
(b)

⎛
⎝1 0 2

2 −1 0
0 2 −1

⎞
⎠ (c)

⎛
⎝ 1 0 0

−3 −2 1
4 −16 8

⎞
⎠

2. Find the inverse of

A =
⎛
⎝−2 3 2

6 0 3
4 1 −1

⎞
⎠

3.SM Find (I − A)−1 when

A =
⎛
⎝0.2 0.6 0.2

0 0.2 0.4
0.2 0.2 0

⎞
⎠

4.SM Repeated observations of an empirical phenomenon lead to p different systems of equations

a11x1 + · · · + a1nxn = b1k

. . . . . . . . . . . . . . . . . . . . . . .

an1x1 + · · · + annxn = bnk

(∗)

for k = 1, . . . , p, which all share the same n × n coefficient matrix (aij). Explain how to find all
p solutions (xk1, . . . , xkn) (k = 1, . . . , p) of the system simultaneously by using elementary row
operations to get

⎛
⎜⎝

a11 . . . a1n b11 . . . b1p
...

. . .
...

...
...

an1 . . . ann bn1 . . . bnp

⎞
⎟⎠ ∼

⎛
⎜⎝

1 . . . 0 b∗
11 . . . b∗

1p
...

. . .
...

...
...

0 . . . 1 b∗
n1 . . . b∗

np

⎞
⎟⎠

What is the solution of the system of equations (∗) when there is an r such that the vector of
right-hand sides has components bjr for j = 1, 2, . . . , n?

5.SM Use the method of elementary row operations described in Example 13.7.2 in order to calculate
the inverse, provided it exists, for each of the three matrices:

(a) A =
⎛
⎝1 2

3 4

⎞
⎠ (b) B =

⎛
⎜⎜⎜⎝

1 2 3

2 4 5

3 5 6

⎞
⎟⎟⎟⎠ (b) C =

⎛
⎜⎜⎜⎝

3 2 −1

−1 5 8

−9 −6 3

⎞
⎟⎟⎟⎠

13.8 Cramer’s Rule
Cramer’s rule for solving n linear equations in n unknowns is a direct generalization of
the same rule for systems of equations with two or three unknowns, as set out in formulas
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(13.1.4) and (13.2.5). Indeed, consider the system

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + · · · + annxn = bn

(13.8.1)

For j = 1, . . . , n, let Dj denote the determinant obtained from |A| by replacing the
original jth column with the alternative column whose elements are b1, b2, . . . , bn.
Thus,

Dj =

∣∣∣∣∣∣∣∣∣

a11 . . . a1,j−1 b1 a1,j+1 . . . a1n

a21 . . . a2,j−1 b2 a2,j+1 . . . a2n
...

...
...

...
...

an1 . . . an,j−1 bn an,j+1 . . . ann

∣∣∣∣∣∣∣∣∣
(13.8.2)

The cofactor expansion of Dj along its jth column is

Dj = C1jb1 + C2jb2 + · · · + Cnjbn (13.8.3)

where the cofactors Cij (i = 1, 2, . . . , n) are given by (13.5.3). Now we have:

T H E O R E M 1 3 . 8 . 1 ( C R A M E R ’ S R U L E )

The general linear system of equations (13.8.1) with n equations and n
unknowns has a unique solution if and only if the coefficient matrix A is
nonsingular ( |A| �= 0). In this case the solution is

x1 = D1

|A| , x2 = D2

|A| , . . . , xn = Dn

|A| (13.8.4)

where D1, D2, . . . , Dn are the determinants defined by (13.8.2).

A proof of the “if” part is as follows:

Proof of ⇐: System (13.8.1) can be written in matrix form as Ax = b. Suppose
that |A| �= 0. Then the inverse A−1 exists, and Eq. (13.6.6) implies that there is a
unique solution x = A−1b. Using formulas (13.7.2) and (13.7.1), this solution can be
expressed as ⎛

⎜⎜⎜⎝
x1

x2
...

xn

⎞
⎟⎟⎟⎠ = 1

|A|

⎛
⎜⎜⎜⎝

C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
. . .

...

C1n C2n · · · Cnn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

b1

b2
...

bn

⎞
⎟⎟⎟⎠ (∗)
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where the cofactors Cij are given by (13.5.3). For each j = 1, 2, . . . , n, the jth row of Eq. (∗)
is

xj = 1
|A| (C1jb1 + C2jb2 + · · · + Cnjbn) = Dj

|A|
where the last equality follows from formula (13.8.3). This proves (13.8.4).

The “only if” part is proved in detail in FMEA. Here, in the next subsection, we will merely
give some intuition behind the argument.

E X A M P L E 13.8.1 For all values of p, find the solutions of the system

px + y = 1

x − y + z = 0

2y − z = 3

Solution: A cofactor expansion along its first row or column shows that the coefficient
matrix has determinant

|A| =
∣∣∣∣∣∣
p 1 0
1 −1 1
0 2 −1

∣∣∣∣∣∣ = 1 − p

According to Theorem 13.8.1, the system has a unique solution if and only if 1 − p �= 0, or
equivalently, if and only if p �= 1. In this case, the determinants in (13.8.2) are

D1 =
∣∣∣∣∣∣
1 1 0
0 −1 1
3 2 −1

∣∣∣∣∣∣ , D2 =
∣∣∣∣∣∣
p 1 0
1 0 1
0 3 −1

∣∣∣∣∣∣ and D3 =
∣∣∣∣∣∣
p 1 1
1 −1 0
0 2 3

∣∣∣∣∣∣
Their values are respectively D1 = 2, D2 = 1 − 3p, and D3 = −1 − 3p. Then, provided
that p �= 1, Eq. (13.8.4) yields the solution

x = D1

|A| = 2
1 − p

, y = D2

|A| = 1 − 3p
1 − p

, and z = D3

|A| = −1 − 3p
1 − p

On the other hand, in case p = 1, the first equation becomes x + y = 1. Yet adding the last
two of the original three equations implies that x + y = 3. There is no solution to these two
contradictory equations in case p = 1.9

Homogeneous Systems of Equations
Consider the special case in which the right-hand side of the equation system (13.8.1) con-
sists only of zeros. Then the system of n equations and n unknowns, whose matrix form
is Ax = 0, is called homogeneous. A homogeneous system always has the so-called triv-
ial solution x1 = x2 = · · · = xn = 0. Often it is important to know when a homogeneous
system has nontrivial solutions.

9 It should be instructive to solve this problem by using Gaussian elimination, starting by interchang-
ing the first two equations.
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T H E O R E M 1 3 . 8 . 2 ( N O N T R I V I A L S O L U T I O N S O F H O M O G E N E O U S S Y S T E M S )

Let A denote the coefficient matrix
(
aij

)
n×n

, and 0 denote the zero column
n-vector. Then the homogeneous linear system takes the form

Ax = 0 (13.8.5)

It has nontrivial solutions if and only if |A| = 0.

As with Theorem 13.8.1, we prove one part of this result, the “only if” part in this case:

Proof of ⇒: Suppose that |A| �= 0. Then the inverse A−1 exists, and Eq. (13.6.6) implies
that there is a unique solution x = A−10. Because A−10 = 0, the system only has the trivial
solution. In other words, system (13.8.5) has nontrivial solutions only if the determinant |A|
vanishes.

As for the “if” part, concepts from FMEA can be used to show that in case |A| = 0, the
rank of A is less than n, so system (13.8.5) has at least one degree of freedom. That is, apart
from the trivial solution, there are infinitely many nontrivial solutions which take the form
αx where x �= 0, and α is an arbitrary nonzero scalar.

Theorem 13.8.2 allows us to provide the following:

Proof: of ⇒ in Theorem 13.8.1: In case |A| = 0, there are two possibilities. First, the
equation system (13.8.1), which we write in matrix form Ax = b, may have no solutions.
Second, it may have at least one particular solution xP. But by Theorem 13.8.2 the corre-
sponding homogeneous system Ax = 0 certainly has solutions of the form αxH , where xH

is a nonzero vector with AxH = 0, and α is an arbitrary real number. Then all vectors of
the form xP + αxH are also solutions of the equation system Ax = b. In particular, (13.8.1)
has a unique solution only if |A| �= 0.

Suppose that xP is any particular solution of Ax = b, and that x̂ is any alternative solu-
tion. Then Ax̂ = AxP = b, implying that A(x̂ − xP) = 0. It follows that the general solution
of Ax = b is the sum x = xP + xH of any particular solution xP, plus any solution xH of
the homogeneous system Ax = 0.

E X A M P L E 13.8.2 Find the values of λ for which the following system of equations has nontrivial
solutions:

5x + 2y + z = λx

2x + y = λy

x + z = λz

(∗)

Solution: The variables x, y, and z appear on both sides of the equations, so we start by
putting the system into standard form:

(5 − λ)x + 2y + z = 0

2x + (1 − λ)y = 0

x + (1 − λ)z = 0
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According to Theorem 13.8.2, this homogeneous system has a nontrivial solution if and
only if the coefficient matrix is singular, or if and only if:∣∣∣∣∣∣

5 − λ 2 1
2 1 − λ 0
1 0 1 − λ

∣∣∣∣∣∣ = 0

Using expansion by cofactors, it is routine to find the value of the determinant, which is
λ(1 − λ)(λ − 6). Hence, the equation system (∗) has nontrivial solutions if and only if
λ = 0, 1, or 6.10

E X E R C I S E S F O R S E C T I O N 1 3 . 8

1.SM Use Cramer’s rule to solve the following two systems of equations:

(i)

x + 2y − z = −5

2x − y + z = 6

x − y − 3z = −3

(ii)

x + y = 3

x + z = 2

y + z + u = 6

y + u = 1

2. Use Theorem 13.8.1 to prove that the following system of equations has a unique solution for all
values of b1, b2, b3, and then find that solution.

3x1 + x2 = b1

x1 − x2 + 2x3 = b2

2x1 + 3x2 − x3 = b3

3.SM Prove that the homogeneous system of equations

ax + by + cz = 0

bx + cy + az = 0

cx + ay + bz = 0

has a nontrivial solution if and only if a3 + b3 + c3 − 3abc = 0.

13.9 The Leontief Model
In order to illustrate why linear systems of equations are important in economics, we briefly
discuss a simple example of the Leontief model.

E X A M P L E 13.9.1 Once upon a time, in an ancient land perhaps not too far from Norway, an economy
had only three industries. These were fishing, forestry, and boat building.

10 Using terminology explained in Section 13.10 below, this example asks us to find the eigenvalues
of the coefficient matrix that appears on the left-hand side of system (∗).
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(i) To produce each ton of fish requires the services of α fishing boats.

(ii) To produce each ton of timber requires β tons of fish, as extra food for the energetic
foresters.

(iii) To produce each fishing boat requires γ tons of timber.

These are the only inputs needed for each of these three industries. Suppose there is no final
(external) demand for fishing boats because their only use is to help catch fish. Find what
gross outputs each of the three industries must produce in order to meet the final demands
of d1 tons of fish to feed the general population, plus d2 tons of timber to build houses.

Solution: Let x1 denote the total number of tons of fish to be produced, x2 the total number
of tons of timber, and x3 the total number of fishing boats.

Consider first the demand for fish. Because βx2 tons of fish are needed to produce x2

units of timber, and because the final demand for fish is d1, we must have x1 = βx2 + d1.
Note that producing fishing boats does not require any fish as an input, so there is no term
with x3.

In the case of timber, a similar argument shows that the equation x2 = γ x3 + d2 must be
satisfied. Finally, for boat building, only the fishing industry needs boats; there is no final
demand in this case, and so x3 = αx1. Thus, the following three equations must be satisfied:

(i) x1 = βx2 + d1 (ii) x2 = γ x3 + d2 (iii) x3 = αx1 (∗)

One way to solve these equations begins by using (iii) to insert x3 = αx1 into (ii). This
gives x2 = γαx1 + d2, which inserted into (i) yields x1 = αβγ x1 + βd2 + d1. Provided that
αβγ �= 1, we can solve this last equation for x1 to obtain x1 = (d1 + βd2)/(1 − αβγ ). The
corresponding expressions for the two other variables are easily found. The results are:

x1 = d1 + βd2

1 − αβγ
, x2 = αγ d1 + d2

1 − αβγ
, and x3 = αd1 + αβd2

1 − αβγ
(∗∗)

Clearly, this solution for (x1, x2, x3) only makes sense when αβγ < 1. Let us now think
about the economic significance of this key inequality.

Suppose we fix the final demands (d1, d2) for fish and timber, and consider an increase
in any one of the three parameters α, β and γ . This increase can be regarded as due to a
decrease in the productivity of whichever industry is directly affected. Yet evidently all three
output levels (x1, x2, x3) given by (∗∗) must increase. This is because whichever industry
has become less efficient requires more input from one other industry. Producing this affects
the remaining industry in turn.

In general, consider any increases in the three parameters α, β and γ which together
make αβγ approach 1. Then the economy is becoming so much less productive that all
the required outputs levels given by (∗∗) tend to +∞. Even worse, if αβγ > 1, there is no
solution to (∗∗) with x1, x2 and x3 all positive unless we allow at least at least one of the pair
(d1, d2) to become negative. This signifies that the economy has become so unproductive
that it needs an outside supply of fish or timber in order to function. Or of boats if we
replace equation (iii) of (∗) with x3 = αx1 + d3 where d3 < 0. Note that as one moves from
a productive economy to one that is unproductive, one passes through the critical case when
αβγ = 1 and so the solution in (∗∗) becomes undefined.
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To summarize, if αβγ ≥ 1, then without some outside supplies it is impossible for this
economy to meet any positive final demands for fish and timber, because production in the
economy is too inefficient.

The General Leontief Model
In Example 13.9.1 we considered a simple example of the Leontief model. More generally,
the Leontief model describes an economy with n interlinked industries, each of which pro-
duces a single good using only one process of production. To produce its output good, each
industry typically uses inputs from at least some other industries. For example, the steel
industry needs goods from the iron mining and coal industries, as well as from many other
industries. In addition to supplying its own good to other industries that need it, each indus-
try also faces an external demand for its product from consumers, governments, foreigners,
and so on. The amount of each good needed to meet this external demand is called the final
demand.

Given any industry i, let xi denote the total number of units of good i that it is going to
produce in a certain year. Furthermore, let

aij = the number of units of good i needed to produce one unit of good j (13.9.1)

An important feature of the Leontief model is that the input requirements are assumed to
be directly proportional to the amount produced. Thus

aijxj = the number of units of good i needed to produce xj units of good j (13.9.2)

In order that the combination of x1 units of good 1, x2 units of good 2, . . . , and xn units of
good n can be produced, each industry i needs to supply a total of

ai1x1 + ai2x2 + · · · + ainxn

units of good i. If we require industry i also to supply bi units to meet final demand, then
equilibrium between supply and demand requires that

xi = ai1x1 + ai2x2 + · · · + ainxn + bi

The same goes for all i = 1, 2, . . . , n. So we arrive at the following system of equations:

x1 = a11x1 + a12x2 + · · · + a1nxn + b1

x2 = a21x1 + a22x2 + · · · + a2nxn + b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn = an1x1 + an2x2 + · · · + annxn + bn

(13.9.3)

Note that in the first equation, x1 appears on the left-hand side and also in the first term on
the right-hand side. In the second equation, x2 appears on the left-hand side and also in the
second term on the right-hand side, and so on. To put system (13.9.3) into standard form,



�

� �

�

534 C H A P T E R 1 3 / D E T E R M I N A N T S , I N V E R S E S , A N D Q U A D R A T I C F O R M S

we move all terms involving x1, . . . , xn to the left-hand side, then rearrange. The result is
the system of equations

(1 − a11)x1 − a12x2 − · · · − a1nxn = b1

− a21x1 + (1 − a22)x2 − · · · − a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
− an1x1 − an2x2 − · · · + (1 − ann)xn = bn

(13.9.4)

This system of equations is called the Leontief system. The numbers a11, a12, . . . , ann are
called input (or technical) coefficients. Given any collection of final demand quantities
(b1, b2, . . . , bn), a solution (x1, x2, . . . , xn) of (13.9.4) will give outputs for each industry
that are just enough to meet the combination of interindustry and final demands. Of course,
since industrial activities are typically irreversible, only nonnegative values for xi make
sense.

It is natural to use matrix algebra to study the Leontief model. Define the matrices:

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

⎞
⎟⎟⎟⎠ , x =

⎛
⎜⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎟⎠ and b =

⎛
⎜⎜⎜⎝

b1

b2
...

bn

⎞
⎟⎟⎟⎠ (13.9.5)

The elements of the matrix A are the input coefficients, so it is called the input or Leontief
matrix. Recall that the element aij denotes the number of units of commodity i which is
needed to produce one unit of commodity j.

With these definitions, system (13.9.3) can expressed as

x = Ax + b (13.9.6)

This equation is evidently equivalent to the equation x − Ax = b. If In denotes the identity
matrix of order n, then (In − A)x = Inx − Ax = x − Ax. So Eq. (13.9.3) is equivalent to
the following matrix version of system (13.9.4):11

(In − A)x = b (13.9.7)

Suppose now that we introduce prices into the Leontief model, with pi denoting the price
of one unit of commodity i. Because aij denotes the number of units of commodity i needed
to produce one unit of commodity j, the sum a1jp1 + a2jp2 + · · · + anjpn is the total cost of
the n commodities needed to produce each unit of commodity j. The expression

pj − a1jp1 − a2jp2 − · · · − anjpn

is the difference between the price of one unit of commodity j and the cost of producing
that unit. This is called unit value added in sector j, which we denote by vj. Then for each
sector j = 1, 2, . . . , n, we have:

p1 − a11p1 − a21p2 − · · · − an1pn = v1

p2 − a12p1 − a22p2 − · · · − an2pn = v2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
pn − a1np1 − a2np2 − · · · − annpn = vn

(13.9.8)

11 Note in particular that “x − Ax = (1 − A)x” is nonsensical: 1 − A, with the number 1, is mean-
ingless.
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Note that the input–output coefficients aij appear in transposed order. Suppose we define

p =

⎛
⎜⎜⎜⎝

p1

p2
...

pn

⎞
⎟⎟⎟⎠ and v =

⎛
⎜⎜⎜⎝

v1

v2
...

vn

⎞
⎟⎟⎟⎠ (13.9.9)

This allows us to write (13.9.8) in the matrix form p − A′p = v, or

(In − A′)p = v (13.9.10)

Now transpose each side of (13.9.10) while using Eq. (12.7.4). Because I′
n = In and (A′)′ =

A, the result is
p′(In − A) = v′ (13.9.11)

Evidently this is closely related to the system (13.9.7). See, for example, Exercise 7.

E X E R C I S E S F O R S E C T I O N 1 3 . 9

1. In Example 13.9.1, let α = 1/2, β = 1/4, γ = 2, d1 = 100, and d2 = 80. Write down system (∗)

in this case and find the solution of the system. Confirm that this solution is given by the general
formulas in (∗∗).

2. Consider an economy which is divided into an agricultural sector labelled A, and an industrial
sector labelled I. To produce one unit in sector A requires 1/6 unit from A and 1/4 unit from
sector I. To produce one unit in sector I requires 1/4 unit from A and 1/4 unit from I. Suppose
that the final demand in each of the two sectors is 60 units.

(a) Write down the Leontief system for this economy.

(b) How many units must each sector produce in order to meet the final demands?

3. Consider the Leontief model described by the equation system (13.9.4).

(a) What is the interpretation of the condition that aii = 0 for all i.

(b) What is the interpretation of the sum ai1 + ai2 + · · · + ain?

(c) What is the interpretation of the row vector (a1j, a2j, . . . , anj) of input coefficients?

(d) Can you give any interpretation to the sum a1j + a2j + · · · + anj?

4. Write down system (13.9.4) when n = 2, a11 = 0.2, a12 = 0.3, a21 = 0.4, a22 = 0.1, b1 = 120,
and b2 = 90. What is the solution to this system?

5. Consider an input–output model with three sectors. Sector 1 is heavy industry, sector 2 is light
industry, and sector 3 is agriculture. The input requirements per unit of output for each of these
three sectors are given by the following table:

Heavy industry Light industry Agriculture

Input of heavy industry goods a11 = 0.1 a12 = 0.2 a13 = 0.1

Input of light industry goods a21 = 0.3 a22 = 0.2 a23 = 0.2

Input of agricultural goods a31 = 0.2 a32 = 0.2 a33 = 0.1
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Suppose the final demands for the goods produced by these three industries are 85, 95, and 20
units, respectively. If x1, x2, and x3 denote the number of units that have to be produced in the
three sectors, write down the Leontief system for the problem. Verify that x1 = 150, x2 = 200,
and x3 = 100 is a solution.

6. Write down the input matrix for the simple Leontief model of Example 13.9.1. Compare the
condition for efficient production discussed in that example with the requirement that the sum of
the elements of each column in the input matrix be less than 1.

7. Suppose that x = x0 is a solution of (13.9.3) and that p′ = p′
0 is a solution of (13.9.11). Prove that

p′
0b = v′x0.

13.10 Eigenvalues and Eigenvectors
Many applied problems, especially in dynamic economics, involve successive powers An

(n = 1, 2, . . . ), of a square matrix A. Let x be a given nonzero vector. If the dimension of A
is very large, then it will usually be a major problem to compute A5x or, even worse, A100x.
But suppose there is a scalar λ which, together with the given vector x, happens to satisfy
the special property that

Ax = λx (13.10.1)

In this case, we would have A2x = A(Ax) = A(λx) = λAx = λλx = λ2x and, in general,
Anx = λnx. Many of the properties of A and An can be deduced by finding the pairs (λ, x)

with x �= 0 that satisfy (13.10.1). These satisfy the following definition:

E I G E N V A L U E S A N D E I G E N V E C T O R S

A nonzero vector x that solves (13.10.1) is called an eigenvector of A, and the
associated scalar λ is called an eigenvalue.

The eigenvalues and eigenvectors of a matrix are also referred to as its characteristic
values and vectors.12

It should be noted that if x is an eigenvector associated with the eigenvalue λ, then so is
αx for every scalar α �= 0. The zero solution x = 0 of (13.10.1) is not very interesting, of
course, because A0 = λ0 for every square matrix A and every scalar λ.

12 The English noun “eigenvalue” is a partial translation of the German noun “Eigenwert”, which the
mathematical giant David Hilbert (1862–1943) introduced in his 1912 work on integral equations.
The German (and Dutch) word eigen translates roughly as the adjective “own”, chosen to indi-
cate that the linear function Ax on the left-hand side of Eq. (13.10.1) maps the nonzero vector x
into a scalar multiple of itself. Latinate languages such as French, Italian, Portuguese, and Span-
ish also use phrases including a word meaning “own” or “self” to describe eigenvalues and
eigenvectors.
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Matrices of Order 2
In the case when n = 2, Eq. (13.10.1) reduces to(

a11 a12

a21 a22

)(
x1

x2

)
= λ

(
x1

x2

)
This is the matrix representation of the equation system

a11x1 + a12x2 = λx1

a21x1 + a22x2 = λx2

This system can be rewritten as

(a11 − λ)x1 + a12x2 = 0

a21x1 + (a22 − λ)x2 = 0

In matrix form, this is the system

(A − λI)x = 0 (13.10.2)

where I denotes the identity matrix of order 2. According to Theorem 13.8.1, this homo-
geneous system has a solution x �= 0 if and only if its coefficient matrix has determinant
|A − λI| that is equal to 0. Evaluating this 2 × 2 determinant, we get the equation

|A − λI| =
∣∣∣∣ a11 − λ a12

a21 a22 − λ

∣∣∣∣ = λ2 − (a11 + a22)λ + (a11a22 − a12a21) = 0 (13.10.3)

So the eigenvalues λ are the solutions of this quadratic equation, and the eigenvectors are
the nonzero vectors x that satisfy system (13.10.2).

E X A M P L E 13.10.1 Find the eigenvalues and associated eigenvectors of the 2 × 2 matrix A =
(

1 2
3 0

)
.

Solution: For this matrix, the eigenvalue equation (13.10.3) becomes

|A − λI| =
∣∣∣∣ 1 − λ 2

3 −λ

∣∣∣∣ = λ2 − λ − 6 = 0

This quadratic equation has the two solutions λ1 = −2 and λ2 = 3, which are the eigen-
values of A.

For the eigenvalue λ = λ1 = −2, the two equations of system (13.10.2) both reduce
to 3x1 + 2x2 = 0. Choosing x2 = t, we have x1 = − 2

3 t. The eigenvectors associated with
λ1 = −2, therefore, are the nonzero scalar multiples

x = t
(−2/3

1

)
, t �= 0

of the vector
(−2/3

1

)
. Putting t = −3s, we can equivalently represent the eigenvectors as

x = s
(

2
−3

)
, s �= 0
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For the other eigenvalue λ = 3, system (13.10.2) implies that x1 = x2, so the associated
eigenvectors are the nonzero scalar multiples

t
(

1
1

)
, t �= 0

For a general 2 × 2 matrix A, its eigenvalues λ1 and λ2 are the two roots of the
quadratic equation (13.10.3). Given these roots, the left-hand side of Eq. (13.10.3) can be
written as

λ2 − (a11 + a22)λ + (a11a22 − a12a21) = (λ − λ1)(λ − λ2)

= λ2 − (λ1 + λ2)λ + λ1λ2

(13.10.4)

We see from Eq. (13.10.4) that the sum λ1 + λ2 of the eigenvalues is equal to a11 + a22, the
sum of the diagonal elements. This is also called the trace of the matrix, denoted by tr A.
The product λ1λ2 of the eigenvalues is equal to a11a22 − a12a21 = |A|. In symbols,

λ1 + λ2 = tr A and λ1λ2 = |A| (13.10.5)

Many dynamic economic models involve a square matrix. Its eigenvalues determine
the model’s stability properties. It is important to know when the eigenvalues are real and
what signs they have. In the 2 × 2 case, Eq. (13.10.3) is quadratic with roots

λ1,2 = 1
2 (a11 + a22) ±

√
1
4 (a11 + a22)

2 − (a11a22 − a12a21)

= 1
2 tr A ±

√
1
4 (tr A)2 − |A|

(13.10.6)

These two roots are real if and only if (tr A)2 ≥ 4|A| or (a11 + a22)
2 ≥ 4(a11a22 − a12a21),

which is equivalent to (a11 − a22)
2 + 4a12a21 ≥ 0. In particular, if the matrix is symmetric

because a12 = a21, then we have the sum of two squares and so both eigenvalues are real.
But Example 13.10.1 shows that a matrix may have real eigenvalues even if it is not sym-
metric. On the other hand, the following example shows that the 2 × 2 orthogonal matrix
presented in part (b) of Exercise 12.7.7 has no real eigenvalues except in a degenerate case
when it is either plus or minus the identity matrix.

E X A M P L E 13.10.2 Prove that any matrix P =
(

p −q
q p

)
with q �= 0 and p2 + q2 = 1 has no real

eigenvalues.

Solution: In this case Eq. (13.10.3) becomes

|P − λI| =
∣∣∣∣ p − λ −q

q p − λ

∣∣∣∣ = (p − λ)2 + q2

It follows that |P − λI| > 0 for all real λ except in the degenerate case when q = 0 and so
p = ±1, implying that P = ±I2.

We conclude our treatment of 2 × 2 matrices with the following useful rules, which are
implied by the discussion surrounding (13.10.6):
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R U L E S F O R T H E E I G E N V A L U E S O F 2 × 2 M A T R I C E S

For a 2 × 2 matrix A, its two eigenvalues are real if and only if (tr A)2 ≥ 4|A|,
which holds if (but not only if) the matrix is symmetric. In case the eigenvalues
are real:

(a) both are positive if and only if |A| > 0 and tr A > 0;

(b) both are negative if and only if |A| > 0 and tr A < 0;

(c) they have opposite signs if and only if |A| < 0;

(d) they coincide if and only if |A| = 1
4 (tr A)2;

(e) there is a 0 eigenvalue if and only if |A| = 0, and then the other eigenvalue
is tr A.

Matrices of Order n
Let us turn briefly to the general case in which A is an n × n matrix. As in the 2 × 2 case,
if A is an n × n matrix, then a scalar λ is an eigenvalue of A if there is a nonzero n-vector x
such that Eq. (13.10.1) holds. In this case x is an eigenvector of A associated with λ. If the
vector x has components x1, . . . , xn, then (13.10.1) can be written as

(a11 − λ)x1 + a12x2 + · · · + a1nxn = 0

a21x1 + (a22 − λ)x2 + · · · + a2nxn = 0 (13.10.7)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + · · · + (ann − λ)xn = 0

An eigenvector associated with λ is any non-trivial solution (x1, . . . , xn) of (13.10.7).
Once again, suppose we rewrite the system (13.10.7) in matrix form (A − λI)x = 0,

as in Eq. (13.10.2), where I now denotes the identity matrix of order n. Notice that this is
the homogeneous matrix equation (13.8.5), but with the matrix A replaced by A − λI. So
according to Theorem 13.8.5, the equation (A − λI)x = 0 has a non-trivial solution x �= 0
if and only if the coefficient matrix satisfies the equation |A − λI| = 0.

To study the solutions to this equation, consider the function p(λ) which is defined for
all real λ by

p(λ) = |A − λI| =

∣∣∣∣∣∣∣∣∣

a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

...
. . .

...

an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣∣
(13.10.8)

In case n = 2, one has p(λ) = (a11 − λ)(a22 − λ) − a12a21, which is the quadratic func-
tion λ2 − λ tr A + |A|. The two roots λ1 and λ2, which equal the eigenvalues of A, have a
sum λ1 + λ2 equal to the trace tr A, and a product λ1λ2 equal to the determinant |A|.

For n > 2, we state the following corresponding result for n × n matrices. It involves
the trace of A defined by

tr A = a11 + a22 + · · · + ann
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The function p(λ) defined by Eq. (13.10.8) is a polynomial of degree n called
the characteristic polynomial of A. The equation p(λ) = 0 has n roots (real or
complex, possibly repeated) which are the n eigenvalues λ1, λ2, . . . , λn. This
polynomial takes the form

p(λ)=(−1)n(λ − λ1)(λ − λ2) . . . (λ − λn)=(−λ)n + tr A(−λ)n−1 + · · · + |A|
Moreover, the n eigenvalues of A satisfy

tr A = λ1 + λ2 + · · · + λn and |A| = λ1λ2 . . . λn

Proof. Following Eq. (13.3.2), the determinant in Eq. (13.10.8) is the sum of n! terms,
each made up of the product of n terms that include exactly one element from each row
and exactly one element from each column of the matrix A − λI. One is the product (a11 −
λ)(a22 − λ) · · · (ann − λ) of the n terms on the principal diagonal of A − λI. This prod-
uct is evidently a polynomial of degree n in λ whose two leading terms are (−λ)n and
tr A(−λ)n−1. But the coefficient of λn−1 in the polynomial p(λ) is (−1)n(−λ1 − λ2 − · · · −
λn) = (−1)n−1(λ1 + λ2 + · · · + λn).

Each of the other n! − 1 products will be a polynomial of degree k in λ, where k is the
number of diagonal elements in the product. This number satisfies k ≤ n − 2 because, once
n − 1 diagonal elements have been included, the one remaining diagonal element must also
be included. Hence the overall sum of all the other n! − 1 products must be a polynomial
of degree n − 2.

Finally, putting λ = 0 gives the constant term of the polynomial. Definition (13.10.8)
implies that this is p(0) = |A|. But it also equals (−1)n(−λ1)(−λ2) . . . (−λn), so |A| =
λ1λ2 . . . λn.

The equation
p(λ) = |A − λI| = 0 (13.10.9)

is called the characteristic equation of A. Because p(λ) is a polynomial of degree n in λ, the
fundamental theorem of algebra that was discussed in Section 4.7 implies that the charac-
teristic Eq. (13.10.9) has exactly n roots, provided that we include complex roots and count
any multiple roots appropriately. Because these roots may not all be real, a full understand-
ing of eigenvalues and eigenvectors requires knowledge of complex numbers. We defer a
more detailed study of this topic to FMEA. Here we conclude with an example of a 3 × 3
matrix.

E X A M P L E 13.10.3 Find the eigenvalues and the associated eigenvectors of the matrix

A =
⎛
⎝ 5 −6 −6

−1 4 2
3 −6 −4

⎞
⎠
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Solution: After some routine calculation, one can show that the characteristic polynomial
satisfies

|A − λI| =
∣∣∣∣∣∣
5 − λ −6 −6
−1 4 − λ 2
3 −6 −4 − λ

∣∣∣∣∣∣ = −(λ − 2)2(λ − 1)

Its two distinct roots λ1 = 1 and λ2 = 2 are the eigenvalues of A.
For λ1 = 1, the eigenvectors are the nonzero solutions of the matrix equation

(A − I)x =
⎛
⎝ 4 −6 −6

−1 3 2
3 −6 −5

⎞
⎠

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠

By Gaussian elimination or some similar procedure, it can be shown that these solutions
take the form

x = t

⎛
⎝ 3

−1
3

⎞
⎠ , t �= 0

For λ2 = 2, the eigenvectors are the nonzero solutions of the equation system

3x1 − 6x2 − 6x3 = 0

−x1 + 2x2 + 2x3 = 0

3x1 − 6x2 − 6x3 = 0

The three equations are all proportional, so only one of them is relevant. From the second
equation, the solution is any nonzero (x1, x2, x3) with x1 = 2x2 + 2x3. The solution therefore
takes the form

x =
⎛
⎝2s + 2t

s
t

⎞
⎠ =

⎛
⎝2

1
0

⎞
⎠ s +

⎛
⎝2

0
1

⎞
⎠ t

with s and t not both equal to 0.

E X A M P L E 13.10.4 Let D = diag[a1, . . . , an) be an n × n diagonal matrix with diagonal elements a1,
. . . , an. The characteristic polynomial is

|D − λI| = (a1 − λ)(a2 − λ) · · · (an − λ)

Hence, the eigenvalues of D are precisely the diagonal elements of D. Let ej denote the
jth unit vector in R

n, defined so that its jth component is 1, but all the other components
equal 0. Then Dej is a vector of the form λej, with all components except its jth equal to
zero. In fact Dej = ajej. It follows that, for any j = 1, 2, . . . , n, every nonzero multiple of ej

is an eigenvector associated with the eigenvalue aj.

E X A M P L E 13.10.5 Let t = 0, 1, . . . denote different time periods. Suppose we know that the evolu-
tion of some n-vector x of economic variables is governed by the following “difference
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equation”: if the variables take the value xt at time t, then in the next period they are given
by xt+1 = Axt, where A is a known constant n × n coefficient matrix.

Suppose further that the evolution of this vector starts from an initial value x0. Then, by
applying the difference equation xt+1 = Axt repeatedly, we obtain

x1 = Ax0

x2 = Ax1 = AAx0 = A2x0

x3 = Ax2 = AA2x0 = A3x0

...

xt = Axt−1 = AAt−1x0 = Atx0

(∗)

Suppose too that x0 just happens to be an eigenvector for matrix A, with associated eigen-
value λ. Then we will have

Ax0 = λx0

In this case, the sequence in (∗) becomes, simply

x1 = Ax0 = λx0

x2 = Ax1 = Aλx0 = λAx0 = λλx0 = λ2x0

x3 = Ax2 = Aλ2x0 = λ2Ax0 = λ2λx0 = λ3x0

...

xt = Axt−1 = Aλt−1x0 = λt−1Ax0 = λt−1λx0 = λtx0

(∗∗)

Now the equation xt = λtx0 describes the evolution, as time progresses, of the n-vector x
of variables under the assumption that the initial value x0 is an eigenvector of the coefficient
matrix. System (∗∗) also shows that the sign and magnitude of the associated eigenvalue
are critical in determining this evolution. For example, if λ = 1, then the variables remain
constant at all times, whereas if λ = −1, then they oscillate between x0 in even periods
and −x0 in odd periods. Furthermore, if |λ| < 1, then all components of xt converge to
0 as t → ∞. But if |λ| > 1, then at least one component of xt will diverge to infinity as
t → ∞.

E X E R C I S E S F O R S E C T I O N 1 3 . 1 0

1.SM For each of the following matrices, find both the eigenvalues and the eigenvectors that are associ-
ated with each eigenvalue:

(a)

⎛
⎝2 −7

3 −8

⎞
⎠ (b)

⎛
⎝1 4

6 −1

⎞
⎠ (c)

⎛
⎜⎜⎜⎝

2 0 0

0 3 0

0 0 4

⎞
⎟⎟⎟⎠
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2. Suppose that the symmetric matrix A =
⎛
⎝a b c

b d e
c e f

⎞
⎠ is known to have the three eigenvalues λ1 = 3,

λ2 = 1, and λ3 = 4 with corresponding eigenvectors

v1 =
⎛
⎝ 1

0
−1

⎞
⎠ , v2 =

⎛
⎝1

2
1

⎞
⎠ , and v3 =

⎛
⎝ 1

−1
1

⎞
⎠

Determine the numerical values of a, b, c, d, e, f .

13.11 Diagonalization
We begin by noting a simple and useful result. Let A and P be n × n matrices with P invert-
ible. Then

A and P−1AP have the same eigenvalues (13.11.1)

This is true because the two matrices have the same characteristic polynomial:

|P−1AP − λI| = |P−1(A − λI)P| = |P−1| |A − λI| |P| = |A − λI|
where we made use of the product rule for determinants, as stated in part (vii) of Theorem
13.4.1, which also implies that |P−1| = 1/|P|. The following theorem confirms this,
as well as showing how the matrix P transforms each eigenvector of the first matrix into
an eigenvector of the second matrix that is associated with the same eigenvalue.

T H E O R E M 1 3 . 1 1 . 1

Let A and P be n × n matrices with P invertible. Then the nonzero vector x is
an eigenvector of P−1AP with eigenvalue λ if and only if Px is an eigenvector
of A with the same eigenvalue λ.

Proof: First, note that if any n-vector x satisfies Px = 0, then because P is invertible, it
follows that x = P−1Px = 0. Conversely, if x �= 0, then Px �= 0.

Let B denote P−1AP. Suppose that λ and x �= 0 are an eigenvalue and associated eigen-
vector of B because they jointly satisfy Bx = λx. So P−1APx = λx. Multiplying the last
equation on the left by the matrix P implies that

λPx = PP−1APx = IAPx = APx

Furthermore, x �= 0 implies that Px �= 0. It follows that Px is an eigenvector of A with
eigenvalue λ.

For the converse, note that B = P−1AP implies A = PBP−1 = Q−1BQ where Q = P−1

and so Q−1 = P. Now apply the result of the first part of the proof with A and P replaced by
B and Q. It follows that if λ and Px = y �= 0 are an eigenvalue and associated eigenvector
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of A = Q−1BQ, then λ and Qy = P−1Px = x are an eigenvalue and associated eigenvector
of B.

Now we introduce the following key definition:

An n × n matrix A is diagonalizable if there exist an invertible n × n matrix P
and an n × n diagonal matrix D such that

P−1AP = D (13.11.2)

If A is diagonalizable, so that (13.11.2) holds, then either Eq. (13.11.1) or Theorem
13.11.1 implies that the matrices A and D have the same eigenvalues. But then Example
13.10.4 shows that the eigenvalues of the diagonal matrix D are its diagonal elements. It
follows that P−1AP = diag(λ1, . . . , λn) where λ1, . . . , λn are the eigenvalues of A. Two
questions arise:

(A) Which square matrices are diagonalizable?

(B) If A is diagonalizable, how do we find the matrix P in (13.11.2)?

The answers to both of these questions are given in the next theorem:

T H E O R E M 1 3 . 1 1 . 2 ( D I A G O N A L I Z A B L E M A T R I C E S )

An n × n matrix A is diagonalizable if and only if there exists an invertible
n × n matrix P whose columns are n eigenvectors x1, . . . , xn of A, with λ1, . . . ,
λn respectively as associated eigenvalues. In that case, one has

P−1AP = diag(λ1, . . . , λn) (13.11.3)

Proof: Suppose that the matrix P with eigenvectors as columns is invertible. Now AP is the
matrix whose jth column, for each j = 1, 2, . . . , n, equals Axj, and so λjxj because of the
hypothesis that xj is an eigenvector with associated eigenvalue λj. But λjxj is evidently the
jth column of the matrix PD where D = diag(λ1, . . . , λn). Since all n columns of the two
matrices AP and PD are equal, we have AP = PD. Because P is invertible by hypothesis,
we can premultiply by P−1 to obtain (13.11.3).

Conversely, if A is diagonalizable, then by definition (13.11.2) must hold. Premulti-
plying by P gives AP = PD. Then the columns of P must be eigenvectors of A, and the
diagonal elements of D must be the corresponding eigenvalues.

E X A M P L E 13.11.1 It follows from (13.11.3) that A = P diag(λ1, . . . , λn) P−1. It follows from
Exercise 3 that for any natural number m, one has

Am = P diag(λm
1 , . . . , λm

n ) P−1 (13.11.4)

When A is diagonalizable, this offers a simple formula for computing Am even if m is
large.
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The Symmetric Case
Many of the matrices encountered in economics are symmetric. One reason for this is the
key role of symmetric matrices in the theory of multivariable optimization, the subject of
Chapter 17. Though many non-symmetric matrices cannot be diagonalized, it turns out that
every symmetric matrix is diagonalizable. Moreover, the invertible matrix P that appears in
the diagonalization (13.11.3) of Theorem 13.11.2 has the special property of orthogonality
that we have already encountered in Exercise 12.7.7 and in Example 13.10.2. Here is a
formal definition:

An n × n matrix P is said to be orthogonal if it and its transpose P′ together
satisfy P′P = I, implying that P′ = P−1.

This definition implies that any matrix P is orthogonal if and only if its transpose P′ is
also orthogonal. Furthermore, given any pair of vectors x and y, consider the dot product
defined by (12.4.1) of the transformed vectors Px and Py. Because of Example 12.7.2, this
must satisfy

(Px) · (Py) = (Px)′(Py) = x′P′Py = x′Iy = x′y = x · y

From the subsequent respective definitions (12.9.3), (12.9.8), and (12.9.9), it follows
that pre-multiplication by any orthogonal matrix P preserves the length

√
x · x of any

vector x, as well as the orthogonality of and the angle between any pair of vectors x
and y.

Let x1, . . . , xn denote the list of n column vectors of an orthogonal matrix P. Then their
respective transposes x′

1, . . . , x′
n are the row vectors of the transposed matrix P′. With this

notation, the orthogonality condition P′P = I is equivalent to a system of n2 equations stat-
ing that, for all pairs (i, j), the inner product x′

ixj of columns i and j in P satisfies x′
ixj = 1

if i = j, but x′
ixj = 0 if i �= j. Thus, following the definitions (12.9.8) and (12.9.3), we have

the following result:

T H E O R E M 1 3 . 1 1 . 3 ( C H A R A C T E R I Z A T I O N O F A N O R T H O G O N A L M A T R I X )

The n × n matrix P is orthogonal if and only if its columns x1, . . . , xn are mutu-
ally orthogonal vectors, all of which have length 1.

For symmetric matrices, we now have the following important diagonalization
result:13

13 In 1904 Hilbert gave the name “spectral theory” to the study of the eigenvalues of linear operators,
which are more general than square matrices. Only in the late 1920s was the close connection to
the quantum mechanics of light spectra recognized.
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Suppose that the n × n matrix A is symmetric. Then:

(a) any eigenvalue of A is real;

(b) any two eigenvectors associated with different eigenvalues are orthogonal;

(c) there exists an n × n orthogonal matrix P with columns v1, v2, . . . , vn such
that

P−1AP =

⎛
⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞
⎟⎟⎟⎠ (13.11.5)

where, for i = 1, 2, . . . , n, each diagonal element λi is an eigenvalue of A
associated with the corresponding eigenvector vi of length 1.

Proof:

(a) Suppose λ is any eigenvalue of A, possibly complex, so that Ax = λx for some vector
x �= 0 that may have complex components.14 Then (Ax)′(Ax) is a real number ≥ 0.
Also, because A is a symmetric matrix with real entries, one has

--
A = A = A′ and

(Ax)′ = (
--
A--x)′ = --x′A. So

0 ≤ (Ax)′(Ax) = ( --x′A)(Ax) = ( --x′A)(λx) = λ--x′(Ax) = λ--x′(λx) = λ2 --x′x.

Since --x′x is a positive real number, it follows that λ2 is real and ≥ 0. We conclude that
λ is real.

(b) Suppose that Axi = λixi and Axj = λjxj with λi �= λj. Since A is symmetric, transpos-
ing the second equality yields x′

jA = λjx
′
j. Multiplying this equality on the right by xi

yields x′
jAxi = λjx

′
jxi, whereas multiplying the first equality on the left by x′

j yields
x′

jAxi = λix
′
jxi. But then we have λix

′
ixj = λjx

′
ixj, which implies that (λi − λj)x

′
ixj = 0.

Since λi �= λj, it follows that x′
ixj = 0. So xi and xj are orthogonal vectors.

(c) Our proof restricts attention to the case when there are n different eigenvalues λ1, λ2,
. . . , λn. By part (a), all the eigenvalues are real, and so therefore are the n associated
eigenvectors x1, x2, . . . , xn. According to part (b), because the eigenvalues are differ-
ent, these eigenvectors are mutually orthogonal. Now replace each eigenvector xj by
xj/‖xj‖ so that the rescaled eigenvector has length 1. Consider the matrix P whose
respective columns are the n rescaled eigenvectors. By Theorem 13.11.3, the n × n
matrix P is orthogonal. Moreover, the matrix P satisfies the sufficiency condition in

14 This proof is the only part of the book that uses complex numbers. These take the form x = a + ib,
where a and b are real and i is the basic imaginary number defined to satisfy i2 = −1. The com-
plex conjugate of x = a + ib is defined by --x = a − ib. There are similar definitions for the complex
conjugate of any vector or matrix with complex components. Two key properties of complex con-
jugates used in the proof are that, for any complex n-vector x and any complex n × n matrix A:
(i) --x′x is real and ≥ 0, with --x′x > 0 if x �= 0; (ii) Ax = --A--x.
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Theorem 13.11.2 for A to be diagonalizable. Finally, Eq. (13.11.3) is satisfied, which
implies Eq. (13.11.5).
In the general case when some of the eigenvalues may be coincident real roots of the
characteristic equation, it is still possible to construct recursively n eigenvectors which
form the columns of an orthogonal matrix. For a proof see, for example, Theorem 8.2.5
of Körner (2013).

E X E R C I S E S F O R S E C T I O N 1 3 . 1 1

1.SM Verify Eq. (13.11.5) for the following matrices by finding the matrix P explicitly:

(a)
(

2 1
1 2

)
(b)

⎛
⎝1 1 0

1 1 0
0 0 2

⎞
⎠ (c)

⎛
⎝1 3 4

3 1 0
4 0 1

⎞
⎠

2. Let the matrices Ak and P be given by

Ak =
⎛
⎝1 k 0

3 −2 −1
0 −1 1

⎞
⎠ and P =

⎛
⎝1/

√
10 −3/

√
35 3/

√
14

0 5/
√

35 2/
√

14
3/

√
10 1/

√
35 −1/

√
14

⎞
⎠

(a) Find the characteristic equation of Ak and show that it has a root equal to 1.

(b) Determine the values of k that make all the eigenvalues of Ak real. What are its eigenvalues
in case k = 3?

(c) Show that the columns of P are eigenvectors of A3, and compute the matrix product P′A3P.
What do you see?

3. (a) Prove that if A = PDP−1, where P and D are n × n matrices, then A2 = PD2P−1.

(b) Show by induction that Am = PDmP−1 for every positive integer m.

4. Use Eq. (13.11.1) to prove that if A and B are both invertible n × n matrices, then AB and BA
have the same eigenvalues.

13.12 Quadratic Forms
Many applications of mathematics to economics, including our discussion of multivariable
optimization in Chapter 17, use a special kind of function of n variables called a quadratic
form. A general quadratic form in two variables is

Q(x1, x2) = a11x2
1 + a12x1x2 + a21x2x1 + a22x2

2 (13.12.1)

It follows from the definition of matrix multiplication that

Q(x1, x2) = (
x1, x2

) (
a11 a12

a21 a22

)(
x1

x2

)
(13.12.2)
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Of course, x1x2 = x2x1, so we can write a12x1x2 + a21x2x1 = (a12 + a21)x1x2. Suppose we
replace each of a12 and a21 by their average 1

2 (a12 + a21). Then the new numbers a12 and a21

become equal without changing Q(x1, x2). Thus, in (13.12.1) we can assume that a12 = a21.
This makes the matrix (aij)2×2 in (13.12.2) become symmetric, and then

Q(x1, x2) = a11x2
1 + 2a12x1x2 + a22x2

2 (13.12.3)

Especially in optimization theory, we are often interested in conditions on the coeffi-
cients a11, a12, and a22 which ensure that Q(x1, x2) in (13.12.3) has the same sign for all
(x1, x2). Actually there are five cases to consider, depending on what happens to the sign of
Q(x1, x2) as the pair (x1, x2) assumes all possible values except (0, 0) where Q(x1, x2) = 0
trivially. In fact, according as Q(x1, x2) > 0, Q(x1, x2) ≥ 0, Q(x1, x2) < 0, or Q(x1, x2) ≤ 0
for all (x1, x2) �= (0, 0), both the quadratic form Q(x1, x2) and its associated symmetric
matrix in (13.12.2) are said to be positive definite, positive semidefinite, negative definite,
or negative semidefinite. There is a fifth case when there exist vectors (x∗

1, x∗
2) and (y∗

1, y∗
2)

such that Q(x∗
1, x∗

2) < 0 and Q(y∗
1, y∗

2) > 0; then the quadratic form Q(x1, x2) is said to be
indefinite. Thus, an indefinite quadratic form assumes both negative and positive values.
Indefiniteness should be seen as a commonly occurring case.

Sometimes we can see the sign of a quadratic form immediately, as in the next example.

E X A M P L E 13.12.1 Determine the definiteness of the following five quadratic forms:

Q1 = x2
1 + x2

2, Q2 = −x2
1 − x2

2, Q3 = (x1 − x2)
2 = x2

1 − 2x1x2 + x2
2

Q4 = −(x1 − x2)
2 = −x2

1 + 2x1x2 − x2
2, Q5 = x2

1 − x2
2

Solution: Q1 is positive definite because it is always ≥ 0 and it is 0 only if both x1 and
x2 are 0. Q3 is positive semidefinite because it is always ≥ 0, but it is not positive definite
because it is 0 if, say, x1 = x2 = 1. Q5 is indefinite, because it is 1 for x1 = 1, x2 = 0, but
it is −1 for x1 = 0, x2 = 1. Evidently, Q2 = −Q1 is negative definite and Q4 = −Q3 is
negative semidefinite.

In Example 13.12.1 it was very easy to determine the sign of all five quadratic forms. In gen-
eral, this task is harder. Nevertheless, in the case we have been considering of two variables
and an associated 2 × 2 symmetric matrix, the old trick of completing the square is useful.
Indeed, provided that a11 > 0, Eq. (13.12.3) implies that

Q(x1, x2) = a11

(
x1 + a12

a11
x2

)2

+
(

a22 − a2
12

a11

)
x2

2 (13.12.4)

Now we have:

The quadratic form Q(x1, x2) and its associated symmetric matrix (aij)2×2 are:

(a) positive definite ⇐⇒ a11 > 0 and a11a22 − a2
12 > 0 (13.12.5)

(b) positive semidefinite ⇐⇒ a11 ≥ 0, a22 ≥ 0, and a11a22 − a2
12 ≥ 0 (13.12.6)
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(c) negative definite ⇐⇒ a11 < 0 and a11a22 − a2
12 > 0 (13.12.7)

(d) negative semidefinite ⇐⇒ a11 ≤ 0, a22 ≤ 0, and a11a22 − a2
12 ≥ 0 (13.12.8)

Proof: To prove ⇐ in part (a), suppose that a11 > 0 and a11a22 − a2
12 > 0. By (13.12.4),

one has Q(x1, x2) ≥ 0 for all (x1, x2). If Q(x1, x2) = 0, then x1 + a12x2/a11 = 0 and x2
2 = 0,

so x1 = x2 = 0.
To prove ⇒ in part (a), suppose Q(x1, x2) > 0 for all (x1, x2) �= (0, 0). In particular

Q(1, 0) = a11 > 0. Hence (13.12.4) is valid, and so Q(−a12/a11, 1) = (a11a22 − a2
12)/a11.

Because a11 > 0 and Q(−a12/a11, 1) > 0, it follows that a11a22 − a2
12 > 0.

To prove ⇐ in part (b), suppose first that a11 ≥ 0, a22 ≥ 0, and a11a22 − a2
12 ≥ 0. In

case a11 = 0, then a11a22 − a2
12 ≥ 0 implies a12 = 0, and so Q(x1, x2) = a22x2

2 ≥ 0 for all
(x1, x2). But in case a11 > 0 and a11a22 − a2

12 ≥ 0, Eq. (13.12.4) evidently implies that
Q(x1, x2) ≥ 0 for all (x1, x2).

To prove ⇒ in part (b), suppose that Q(x1, x2) is positive semidefinite. Then in partic-
ular one has Q(1, 0) = a11 ≥ 0 and Q(0, 1) = a22 ≥ 0. To find the sign of a11a22 − a2

12,
consider first the case when a11 > 0 and so (13.12.4) is valid. Because Q is assumed to be
positive semidefinite, one has Q(−a12/a11, 1) = a22 − a2

12/a11 ≥ 0, so a11a22 − a2
12 ≥ 0.

In the other case when a11 = 0 one has Q(x1, 1) = 2a12x1 + a22. Now a12 ≤ 0 because
otherwise choosing x1 < − 1

2 a22/a12 would make Q(x1, 1) < 0. Similarly a12 ≥ 0 because
otherwise choosing x1 > − 1

2 a22/a12 would make Q(x1, 1) < 0. It follows that a12 = 0 as
well, and so a11a22 − a2

12 = 0.

Finally, parts (c) and (d) follow easily from parts (a) and (b) because Q(x1, x2) is evi-
dently negative definite or semidefinite if and only if −Q(x1, x2) = −a11x2

1 − 2a12x1x2 −
a22x2

2 is, respectively, positive definite or semidefinite.

E X A M P L E 13.12.2 Use whichever of conditions (13.12.5)–(13.12.8) is appropriate in order to inves-
tigate the definiteness or semi definiteness of

(i) Q(x1, x2) = 5x2
1 − 2x1x2 + x2

2 (ii) Q(x1, x2) = −4x2
1 + 12x1x2 − 9x2

2

Solution: (a) Note that a11 = 5, a12 = −1 (not −2!), and a22 = 1. Thus a11 > 0 and
a11a22 − a2

12 = 5 − 1 = 4 > 0. So (13.12.5) implies that Q(x1, x2) is positive definite.

(b) Here a11 = −4, a12 = 6 (not 12), and a22 = −9. It follows that a11 ≤ 0, a22 ≤ 0, and
a11a22 − a2

12 = 36 − 36 = 0 ≥ 0. By (13.12.8), Q(x1, x2) is negative semidefinite.

Note: Conditions (13.12.5) and (13.12.7) say nothing about the sign of a22. To explain
why, note how a11a22 − a2

12 > 0 implies that a11a22 > a2
12 ≥ 0, so a11a22 > 0. It follows

that either both a11 and a22 are positive, or both are negative. So it would be superfluous to
add any condition on the sign of a22.

In conditions (13.12.6) and (13.12.8), however, one cannot drop the condition on the
sign of a22. Consider for example Q(x1, x2) = −x2

2, which is Eq. (13.12.1) with a11 = 0,
a12 = 0, and a22 = −1. Even though a11 ≥ 0 and a11a22 − a2

12 = 1 ≥ 0, the quadratic form
is evidently not positive semidefinite because Q(0, 1) = −1 < 0.
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Quadratic Forms in n Variables
A quadratic form in n variables is a function Q that can be expressed as

Q(x1, . . . , xn) =
n∑

i=1

n∑
j=1

aijxixj = a11x2
1 + a12x1x2 + · · · + aijxixj + · · · + annx2

n

(13.12.9)
with constant coefficients aij. Each term in the double sum contains either the square x2

i of
one variable, or the product xixj of exactly two distinct variables. To see the structure of the
quadratic form better, we write it as:

Q(x1, . . . , xn) = a11x2
1 + a12x1x2 + · · · + a1nx1xn

+ a21x2x1 + a22x2
2 + · · · + a2nx2xn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ an1xnx1 + an2xnx2 + · · · + annx2
n

(13.12.10)

Suppose we put x = (x1, x2, . . . , xn)
′ and A = (aij)n×n. By definition of matrix multiplica-

tion, it follows that
Q(x1, . . . , xn) = Q(x) = x′Ax (13.12.11)

Following the argument we used to derive the symmetric expression (13.12.3) when n =
2, in (13.12.10) we can assume that aij = aji for all i and j. Then A in (13.12.11) is the
symmetric matrix associated with Q, and Q is a symmetric quadratic form.

E X A M P L E 13.12.3 Write Q(x1, x2, x3) = 3x2
1 + 6x1x3 + x2

2 − 4x2x3 + 8x2
3 in the matrix form

(13.12.11) with A symmetric.

Solution: We first write Q as follows:

Q = 3x2
1 + 0 · x1x2 + 3x1x3 + 0 · x2x1 + x2

2 − 2x2x3 + 3x3x1 − 2x3x2 + 8x2
3

Then Q = x′Ax, where A =
⎛
⎝3 0 3

0 1 −2
3 −2 8

⎞
⎠ and x =

⎛
⎝x1

x2

x3

⎞
⎠.

Next, we want to generalize to general quadratic forms the definitions after (13.12.3) and
associated characterization results like (13.12.5) to (13.12.8).

D E F I N I T E N E S S O F A Q U A D R A T I C F O R M

A quadratic form Q(x) = x′Ax, as well as its associated symmetric matrix A,
are said to be positive definite, positive semidefinite, negative definite, or neg-
ative semidefinite according as, for all x �= 0, one has

Q(x) > 0, Q(x) ≥ 0, Q(x) < 0, Q(x) ≤ 0
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The quadratic form Q(x) is said to be indefinite if there exist vectors x∗ and y∗
such that Q(x∗) < 0 and Q(y∗) > 0. Thus an indefinite quadratic form assumes
both negative and positive values.

The easiest way to determine the definiteness of a quadratic form is often just to consider
the signs of the eigenvalues of the associated matrix. Recall that, by Theorem 13.11.4, these
eigenvalues are all real. Here is the elegant result:

T H E O R E M 1 3 . 1 2 . 1

Let Q = x′Ax be a quadratic form, where the matrix A is symmetric. Let
λ1, λ2, . . . , λn denote the (real) eigenvalues of A. Then:

(a) Q is positive definite ⇐⇒ λ1 > 0, λ2 > 0, . . . , λn > 0

(b) Q is positive semidefinite ⇐⇒ λ1 ≥ 0, λ2 ≥ 0, . . . , λn ≥ 0

(c) Q is negative definite ⇐⇒ λ1 < 0, λ2 < 0, . . . , λn < 0

(d) Q is negative semidefinite ⇐⇒ λ1 ≤ 0, λ2 ≤ 0, . . . , λn ≤ 0

(e) Q is indefinite ⇐⇒ A has both positive and negative
eigenvalues

Proof: By Theorem 13.11.4, there exists an orthogonal matrix P such that P′AP = P−1AP
is the matrix diag(λ1, λ2, . . . , λn). Given any column n-vector x, let y = (y1, y2, . . . , yn)

′
be the column n-vector defined by y = P−1x. Then x = Py, and also x = 0 if and only if
y = 0. It follows that

x′Ax = y′P′APy = y′ diag(λ1, λ2, . . . , λn) y = λ1y2
1 + λ2y2

2 + · · · + λny2
n (13.12.12)

So x′Ax ≥ 0 (resp. ≤ 0) for all x �= 0 if and only if y′P′APy ≥ 0 (resp. ≤ 0) for all y �=
0. Also x′Ax > 0 (resp. < 0) for all x �= 0 if and only if y′P′APy > 0 (resp. < 0) for all
y �= 0. Because y′P′APy = λ1y2

1 + λ2y2
2 + · · · + λny2

n, parts (a)–(d) all follow immediately.
Furthermore, case (e) occurs if and only if none of cases (a)–(d) are true.

E X A M P L E 13.12.4 Use Theorem 13.12.1 to determine the definiteness of the quadratic form
Q = −x2

1 + 6x1x2 − 9x2
2 − 2x2

3.

Solution: The symmetric matrix and corresponding characteristic polynomial associated
with Q are

A =
⎛
⎝−1 3 0

3 −9 0
0 0 −2

⎞
⎠ and

∣∣∣∣∣∣
−1 − λ 3 0

3 −9 − λ 0
0 0 −2 − λ

∣∣∣∣∣∣
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The characteristic equation is

|A − λI| = (−2 − λ)[(1 + λ)(9 + λ) − 9] = −(λ + 2)(λ2 + 10λ)

= −λ(λ + 2)(λ + 10) = 0

So the eigenvalues are 0, −2, and −10. Because all are non positive, Theorem 13.12.1
tells us that the quadratic form is negative semidefinite (but not negative definite).

It should be noted that the definiteness of the quadratic form in Example 13.12.4 is most
easily checked by noting that for all (x1, x2, x3) �= (0, 0, 0) one has

Q = −x2
1 + 6x1x2 − 9x2

2 − 2x2
3 = −(x1 − 3x2)

2 − 2x2
3 ≤ 0

with Q < 0 unless x1 = 3x2.

Characterization by Principal Minors
In order to generalize to n × n symmetric matrices the characterization results (13.12.5) to
(13.12.8), we need a few new concepts. In Section 13.5 we defined the minors of a matrix.
We need some particular minors in order to determine the definiteness of quadratic forms.

An arbitrary principal minor of order r in an n × n matrix A = (aij) is the determinant
of an r × r matrix obtained by deleting n − r matching rows and columns of A. That is, the
ith row is deleted if and only if the ith column is also deleted. This implies that a principal
minor of order r always includes exactly r elements of the main (principal) diagonal. The
determinant |A| itself is also the particular principal minor in which no rows or columns
are deleted.

A principal minor is called a leading principal minor of order r (1 ≤ r ≤ n) if it consists
of the first (“leading”) r rows and columns of |A|. Thus, for each r, there are

(n
r

)
principal

minors of order r, but only one leading principal minor of order r.
Note that if the matrix A is symmetric, then so is each matrix whose determinant is a

principal minor.

E X A M P L E 13.12.5 Write down the principal and the leading principal minors of

A =
(

a11 a12

a21 a22

)
and B =

⎛
⎝b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞
⎠

Solution: By deleting row 2 and column 2 in A we get (a11), which has determinant a11.
Deleting row 1 and column 1 in A we get (a22), which has determinant a22. The principal
minors of A are therefore a11, a22, and |A|. The leading principal minors are a11 and |A|.

The principal minors of B are |B| itself, and

b11, b22, b33,

∣∣∣∣ b11 b12

b21 b22

∣∣∣∣ ,

∣∣∣∣ b11 b13

b31 b33

∣∣∣∣ , and

∣∣∣∣ b22 b23

b32 b33

∣∣∣∣
while the leading principal minors are b11,

∣∣∣∣ b11 b12

b21 b22

∣∣∣∣, and |B| itself.
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Suppose A = (aij)n×n is an arbitrary n × n matrix. Its leading principal minors are

Dk =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...

ak1 ak2 · · · akk

∣∣∣∣∣∣∣∣∣
, k = 1, 2, . . . , n (13.12.13)

For successive values of k, these are obtained from A according to the following pattern:∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
. . .

...

an1 an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
(13.12.14)

Given any k = 1, 2, . . . , n and any subset K consisting of k elements chosen from the
set {1, 2, . . . , n}, let �K

k denote the principal minor of order k. This is the determinant of
the k × k submatrix of A whose diagonal elements form the set {aii : i ∈ K}. Evidently
this definition implies that for each k = 1, 2, . . . , n, the principal minor �

{1,2,...,k}
k equals the

leading principal minor Dk.
These definitions allow us to formulate the following theorem:

T H E O R E M 1 3 . 1 2 . 2 ( S Y L V E S T E R ’ S C R I T E R I O N )

Given the symmetric matrix A, consider the quadratic form

Q(x) =
n∑

i=1

n∑
j=1

aijxixj = x′Ax

For each k = 1, . . . , n, let Dk denote the leading principal minor of order k
defined by (13.12.13), and let �K

k denote an arbitrary principal minor of A of
order k. Then Q is:

(a) positive definite ⇐⇒ Dk > 0 for all k = 1, . . . , n

(b) positive semidefinite ⇐⇒ �K
k ≥ 0 for all �K

k of any order k

(c) negative definite ⇐⇒ (−1)kDk > 0 for all k = 1, . . . , n

(d) negative semidefinite ⇐⇒ (−1)k�K
k ≥ 0 for all �K

k of any order k

For the case when n = 2 the conclusions of Theorem 13.12.2 are set out in
(13.12.5)–(13.12.8), which have already been proved. For the case when n > 2,
first note that if B is any k × k matrix, then rule (viii) of Theorem 13.4.1 implies that
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|−B| = |(−1)B| = (−1)k|B|. But the quadratic form Q = ∑∑
aijxixj is negative definite

(or semidefinite) if and only if −Q = ∑∑
(−aij)xixj is positive definite (or semidefinite).

It follows that parts (c) and (d) in Theorem 13.12.2 follow from parts (a) and (b)
respectively.

For the important special case when A is a diagonal matrix, each principal minor �K
k , or

leading principal minor Dk, is the product of a subset of diagonal elements, which are also
the eigenvalues of A. Now Theorem 13.12.1 tells us how the definiteness of A is related to
the signs of these eigenvalues, so Theorem 13.12.2 is easy to prove in this special case. For
a proof that applies to a general symmetric matrix A, see for example Section 7.6 of Meyer
(2000).

WARNING: A rather common misconception is that to obtain a sufficient condition for a
symmetric matrix A to be positive semidefinite, one can weaken each inequality Dk > 0 in
part (a) of Theorem 13.12.2 to Dk ≥ 0. Yet part (b) tells us that the condition for positive
semidefiniteness involves the sign of every principal minor, not just every leading principal
minor. For a counterexample see the note that follows Example 13.12.2.

E X A M P L E 13.12.6 Use Theorem 13.12.2 to determine the definiteness of the quadratic forms

(a) Q = 3x2
1 + 6x1x3 + x2

2 − 4x2x3 + 8x2
3; (b) Q = −x2

1 + 6x1x2 − 9x2
2 − 2x2

3.

Solution: It makes sense to check the leading principal minors first, in case the matrix turns
out to be definite rather than merely semidefinite.

(a) The associated symmetric matrix A was set out in Example 13.12.3. Its leading princi-
pal minors are

D1 = 3, D2 =
∣∣∣∣ 3 0
0 1

∣∣∣∣ = 3, and D3 =
∣∣∣∣∣∣
3 0 3
0 1 −2
3 −2 8

∣∣∣∣∣∣ = 3

All are positive, so we conclude that Q is positive definite.

(b) We encountered this quadratic form already in Example 13.12.4. The associated sym-
metric matrix is

A =
⎛
⎝−1 3 0

3 −9 0
0 0 −2

⎞
⎠

Note that the second row of A is −3 times its first row. Thus, the leading principal minors
are D1 = −1, D2 = 0, and D3 = 0. It follows that none of the conditions in parts (a), (b),
or (c) of Theorem 13.12.2 are satisfied.

To check the conditions in part (d) of Theorem 13.12.2, we examine all the principal
minors of A, including those that are not leading. As in Example 13.12.5, the 3 × 3 matrix A
has three principal minors of order 1 whose values are the three diagonal elements. So these
principal minors satisfy

(−1)1�
{1}
1 = (−1)(−1) = 1, (−1)1�

{2}
1 = (−1)(−9) = 9, (−1)1�

{3}
1 = (−1)(−2) = 2
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There are also three second-order principal minors, which satisfy

�
{1,2}
2 =

∣∣∣∣−1 3
3 −9

∣∣∣∣ = 0, �
{1,3}
2 =

∣∣∣∣−1 0
0 −2

∣∣∣∣ = 2, �
{2,3}
2 =

∣∣∣∣−9 0
0 −2

∣∣∣∣ = 18

Hence (−1)2�
{1,2}
2 = 0, (−1)2�

{1,3}
2 = 2, and (−1)2�

{2,3}
2 = 18. Finally, the only

third-order principal minor satisfies (−1)3�
{1,2,3}
3 = (−1)3D3 = 0. It follows that for

k = 1, 2, 3, one has (−1)k�K
k ≥ 0 for each principal minor �K

k of order k in the matrix A.
This verifies the sufficient condition in part (d) of Theorem 13.12.2. It follows that Q is
negative semidefinite.

Our observation after Example 13.12.4 bears repeating: analysing the second quadratic
form in Example 13.12.6 is much easier if one recognizes that Q = −(x1 − 3x2)

2 − 2x2
3.

E X E R C I S E S F O R S E C T I O N 1 3 . 1 2

1. Use whichever of conditions (13.12.5)–(13.12.8) is appropriate in order to investigate the defi-
niteness or semi definiteness of

(a) Q(x1, x2) = −x2
1 + 2x1x2 − 6x2

2 (b) Q(x1, x2) = 4x2
1 + 2x1x2 + 25x2

2

2. Write out the double sum in Eq. (13.12.9) when n = 3 and aij = aji for i, j = 1, 2, 3.

3. Find the symmetric matrix A that is associated with each of the following quadratic forms:

(a) x2 + 2xy + y2 (b) ax2 + bxy + cy2 (c) 3x2
1 − 2x1x2 + 3x1x3 + x2

2 + 3x2
3

4. Find the symmetric matrix A that is associated with the quadratic form

3x2
1 − 2x1x2 + 4x1x3 + 8x1x4 + x2

2 + 3x2x3 + x2
3 − 2x3x4 + x2

4

5.SM Using Theorem 13.12.1, or Theorem 13.12.2, or otherwise, determine the definiteness of

(a) Q = x2
1 + 8x2

2 (b) Q = 5x2
1 + 2x1x3 + 2x2

2 + 2x2x3 + 4x2
3

(c) Q = −(x1 − x2)
2 (d) Q = −3x2

1 + 2x1x2 − x2
2 + 4x2x3 − 8x2

3

6. Let A = (aij)n×n be symmetric and positive semidefinite. Prove that

A is positive definite ⇐⇒ |A| �= 0

7.SM For what values of c is the quadratic form Q(x, y) = 3x2 − (5 + c)xy + 2cy2:
(i) positive definite; (ii) positive semidefinite; (iii) indefinite?

8.SM Let B be an n × n matrix. Show that the matrix A = B′B is positive semidefinite. Can you find
a necessary and sufficient condition on B for A to be positive definite rather than just positive
semidefinite?

9. Use Theorem 13.12.2 to show that if the quadratic form Q = x′Ax in (13.12.11) is positive

definite, then: (a) aii > 0 for i = 1, . . . , n; (b)

∣∣∣∣ aii aij
aji ajj

∣∣∣∣ > 0 for all i, j = 1, . . . , n with i < j.
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10. [HARDER] Let A be a symmetric matrix. Write its characteristic polynomial (13.10.8) as

ϕ(λ) = (−1)n(λn + an−1λ
n−1 + · · · + a1λ + a0)

Prove that A is negative definite if and only if ai > 0 for i = 0, 1, . . . , n − 1.

R E V I E W E X E R C I S E S

1. Calculate the following determinants:

(a)

∣∣∣∣ 5 −2
3 −2

∣∣∣∣ (b)

∣∣∣∣ 1 a
a 1

∣∣∣∣ (c)

∣∣∣∣ (a + b)2 a − b
(a − b)2 a + b

∣∣∣∣ (d)

∣∣∣∣ 1 − λ 2
2 4 − λ

∣∣∣∣
2. Calculate the following determinants, using suitable elementary row operations for (b)

and (c):

(a)

∣∣∣∣∣∣
2 2 3
0 3 5
0 4 6

∣∣∣∣∣∣ (b)

∣∣∣∣∣∣
4 5 6
5 6 8
6 7 9

∣∣∣∣∣∣ (c)

∣∣∣∣∣∣
31 32 33
32 33 35
33 34 36

∣∣∣∣∣∣
3. Find A when A−1 − 2I2 = −2

(
1 1
1 0

)
.

4. For each real t, let At =
⎛
⎝1 0 t

2 1 t
0 1 1

⎞
⎠ and B =

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠.

(a) For what values of t does At have an inverse?

(b) When t = 1, find a matrix X such that B + XA−1
1 = A−1

1 .

5.SM Define the two 3 × 3 matrices A =
⎛
⎝q −1 q − 2

1 −p 2 − p
2 −1 0

⎞
⎠ and E =

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠.

(a) Calculate |A| and |A + E|.
(b) For what values of p and q does A + E have an inverse?

(c) Why does the product matrix BE never have an inverse for any 3 × 3 matrix B?

6. Use Cramer’s rule to find the values of t for which the system of equations

−2x + 4y − tz = t − 4

−3x + y + tz = 3 − 4t

(t − 2)x − 7y + 4z = 23

has a unique solution for the three variables x, y, and z.

7. Prove that if A is any n × n matrix such that A4 = 0, then (I − A)−1 = I + A + A2 + A3.
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8.SM Let U denote the n × n matrix where all n2 elements are equal to 1.

(a) Show that (In + aU)(In + bU) = In + (a + b + nab)U for all real numbers a and b.

(b) Use the result in (a) to find the inverse of A =
⎛
⎝4 3 3

3 4 3
3 3 4

⎞
⎠.

9. Let A, B, C, X, and Y be n × n matrices, with |A| �= 0, which satisfy the two matrix equations
AX + Y = B and X + 2A−1Y = C. Find X and Y expressed in terms of A, B, and C.

10.SM Consider the system of equations

⎧⎪⎪⎨
⎪⎪⎩

ax + y + 4z = 2

2x + y + a2z = 2

x − 3z = a

⎫⎪⎪⎬
⎪⎪⎭ in the unknowns x, y, z.

(a) For what values of a does the system have one, none, or infinitely many solutions?

(b) Replace the right-hand sides of the system by b1, b2, and b3, respectively. Find a necessary
and sufficient condition for the new system of equations to have infinitely many solutions.

11. Let A =
(

11 −6
18 −10

)
.

(a) Compute |A|. Show that there exists a real number c such that A2 + cA = 2I2, and then find
the inverse of A.

(b) Show that there is no 2 × 2 matrix B such that B2 = A.

12. Suppose A and B are invertible n × n matrices with A′A = In. Show that (A′BA)−1 = A′B−1A.

13. Examine for what values of the constants a and b the system of equations

ax + y = 3

x + z = 2

y + az + bu = 6

y + u = 1

has a unique solution in the unknowns x, y, z, and u. When it exists, find this unique solution,
expressed in terms of a and b.

14. Prove that

∣∣∣∣ a + x b + y
c d

∣∣∣∣ =
∣∣∣∣ a b

c d

∣∣∣∣ +
∣∣∣∣ x y
c d

∣∣∣∣.
15. [HARDER] Suppose that the 3 × 3 matrix B satisfies the equation B3 = −B. Show that B cannot

have an inverse. (Hint: Use part (vii) of Theorem 13.4.1.)

16.SM [HARDER] Suppose that A, B, and C are n × n matrices that differ only in their rth rows, with
the rth row in C equal to the sum of the rth rows of A and B respectively. Prove that then
|A| + |B| = |C|. (Hint: Consider the cofactor expansions of the determinants along the rth
row.)
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17.SM [HARDER] Solve for x the equation ∣∣∣∣∣∣∣∣
x a x b
b x a x
x b x a
a x b x

∣∣∣∣∣∣∣∣ = 0

(Hint: Use elementary row or column operations to evaluate the determinant.)

18. Prove that λ is an eigenvalue of the matrix A if and only if λ is an eigenvalue of A′.

19. Suppose A is a square matrix and let λ be an eigenvalue of A. Prove that if |A| �= 0, then λ �= 0.
In this case, show that 1/λ is an eigenvalue of the inverse A−1.

20. Let A = (aij)n×n be a matrix in which, for each j = 1, 2, . . . , n, the jth column sum satisfies∑n
i=1 aij = 1. Prove that λ = 1 is an eigenvalue of A.

21.SM For each of the following matrices, find both the eigenvalues and the eigenvectors associated
with each of those eigenvalues:

(a)

⎛
⎜⎝2 1 −1

0 1 1
2 0 −2

⎞
⎟⎠ (b)

⎛
⎜⎝ 1 −1 0

−1 2 −1
0 −1 1

⎞
⎟⎠

(Hint: The eigenvalues are all integers.)
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F U N C T I O N S O F M A N Y
V A R I A B L E S

Mathematics is not a careful march down a well-cleared highway, but a journey into a strange wilderness,
where the explorers often get lost.
—William S. Anglin (1992)

The first two parts of this book were concerned almost exclusively with functions of one
variable. Yet a realistic description of economic phenomena often requires considering a

large number of variables. For example, one consumer’s demand for a good like orange juice
depends not only on its price, but also on the consumer’s income, as well as on the prices of
substitutes like other soft drinks, or complements like some kinds of food.

So we now move on to functions of several variables. Most of what economists need to
know about them consists of relatively simple extensions of properties presented in the previ-
ous chapters for functions of one variable. Moreover, most of the difficulties already arise in
the transition from one variable to two variables. To help readers see how to overcome these
difficulties, Sections 14.1 to 14.3 deal exclusively with functions of two variables. These have
graphs in three dimensions which can be represented even in two-dimensional figures, though
with some difficulty. However, as the previous example of the demand for orange juice suggests,
there are many interesting economic problems that can only be represented mathematically by
functions of many variables. These are discussed in Sections 14.4 to 14.9. We devote the final
Section 14.10 to the economically important topic of elasticity.

14.1 Functions of Two Variables
We begin with the following definition, where D is a subset of the xy-plane.
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A function f of two real variables x and y with domain D is a rule that assigns
a specified number

f (x, y) to each point (x, y) in D. (14.1.1)

If f is a function of two variables, we often let a letter like z denote the value of f at a
point (x, y), so z = f (x, y). Then we call x and y the independent variables, or the arguments
of f , whereas z is called the dependent variable. This is because the value z, in general,
depends on the values of x and y. The domain of the function f is then the set of all pairs
(x, y) of the independent variables where f (x, y) is defined, whereas its range is the set of
corresponding values of the dependent variable. In economics, x and y are often called the
exogenous variables, whereas z is the endogenous variable.1

E X A M P L E 14.1.1 Consider the function f that, to every pair of real numbers (x, y), assigns the number
2x + x2y3. The function f is thus defined by

f (x, y) = 2x + x2y3

What are f (1, 0), f (0, 1), f (−2, 3), and f (a + 1, b)?

Solution: First, f (1, 0) is the value when x = 1 and y = 0. So f (1, 0) = 2 · 1 + 12 · 03 = 2.
Similarly, we have f (0, 1) = 2 · 0 + 02 · 13 = 0, and then f (−2, 3) = 2(−2) + (−2)2 ·
33 = −4 + 4 · 27 = 104. Finally, we find f (a + 1, b) by replacing x with a + 1 and y with
b in the formula for f (x, y), which gives f (a + 1, b) = 2(a + 1) + (a + 1)2b3.

E X A M P L E 14.1.2 A study of the demand for milk found the relationship

x = A
m2.08

p1.5

where x is milk consumption, p is the relative price of milk, m is income per family, and A
is a positive constant. This equation defines x as a function of p and m whenever both are
positive. Note that, as seems reasonable, milk consumption goes up when income increases,
and down when the price of milk increases.

E X A M P L E 14.1.3 A function of two variables appearing in many economic models is

F(x, y) = Axayb (14.1.2)

where A, a, and b are constants. Economists usually assume that F is defined only for x > 0
and y > 0.

1 In economic models with several simultaneous equations, the distinction between exogenous and
endogenous variables is much more nuanced.
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A function F of the form (14.1.2) is generally called a Cobb–Douglas function.2 It is
most often used to describe certain production processes. Then x and y are called input
factors, while F(x, y) is the number of units produced, or the output. In this case, F is called
a production function.

Note that the function defined in Example 14.1.2 is a Cobb–Douglas function, because
we have x = Ap−1.5m2.08.

It is important to become thoroughly familiar with standard functional notation.

E X A M P L E 14.1.4 For the function F specified in Example 14.1.3, find expressions for F(2x, 2y) and
for F(tx, ty), where t is an arbitrary positive number. Find also an expression for F(x +
h, y) − F(x, y). Give economic interpretations.

Solution: We find that

F(2x, 2y) = A(2x)a(2y)b = A2axa2byb = 2a2bAxayb = 2a+bF(x, y)

When F is a production function, this shows that if each of the input factors is doubled,
then the output is 2a+b times as large. For example, if a + b = 1, then doubling both inputs
will double the output. In the general case,

F(tx, ty) = A(tx)a(ty)b = Ataxatbyb = tatbAxayb = ta+bF(x, y) (∗)

(How do you formulate this result in your own words?)3

Finally, we see that

F(x + h, y) − F(x, y) = A(x + h)ayb − Axayb = Ayb[(x + h)a − xa] (∗∗)

This shows the change in output when the first input factor is changed by h units while the
other input factor is unchanged. For example, suppose A = 100, a = 1/2, and b = 1/4, in
which case F(x, y) = 100x1/2y1/4. If we now choose x = 16, y = 16, and h = 1, then (∗∗)

implies that the change of output is

F(16 + 1, 16) − F(16, 16) = 100 · 161/4[171/2 − 161/2] = 100 · 2[
√

17 − 4] ≈ 24.6

Hence, if we increase the input of the first factor from 16 to 17, while keeping the input of
the second factor constant at 16 units, then we increase production by about 24.6 units.

Domains
For functions studied in economics, there are usually explicit or implicit restrictions on the
domain where the function is defined. For instance, if f (x, y) is a production function, we
usually assume that the input quantities are nonnegative, so x ≥ 0 and y ≥ 0. In economics,
it is often crucially important to be clear what are the domains of the functions being used.

2 The function in (14.1.2) is named after American researchers C.W. Cobb and P.H. Douglas, who
applied it, with a + b = 1, in a paper that appeared in 1927 on the estimation of production func-
tions. The function, however, should properly be called a “Wicksell function”, because the Swedish
economist K. Wicksell (1851–1926) introduced such production functions before 1900.

3 Because of property (∗), we call function F homogeneous of degree a + b. Homogeneous functions
are discussed in Sections 15.6 and 15.7.
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In the same way as for functions of one variable, we assume, unless otherwise stated,
that the domain of a function defined by a formula is the largest domain in which that
formula gives a meaningful and unique value.

Sometimes it is helpful to draw a graph of the domain D in the xy-plane.

E X A M P L E 14.1.5 For each of the two functions specified by the following formulas, determine its
domain, then draw the graph of that domain in the xy-plane.

(a) f (x, y) = √
x − 1 + √

y (b) g(x, y) = 2
(x2 + y2 − 4)1/2

+
√

9 − (x2 + y2)

Solution: (a) The two square roots
√

x − 1 and
√

y only have meaning in case x ≥ 1 and
y ≥ 0. The (unbounded) domain where both these inequalities are satisfied is indicated in
Fig. 14.1.1.
(b) The square root (x2 + y2 − 4)1/2 = √

x2 + y2 − 4 is only defined if x2 + y2 ≥ 4. We
must also have x2 + y2 �= 4, otherwise the denominator would be 0. Moreover we require
that 9 − (x2 + y2) ≥ 0, or x2 + y2 ≤ 9. All in all, therefore, we must have 4 < x2 + y2 ≤ 9.
Now the graph of x2 + y2 = r2 consists of all the points on the circle with centre at the
origin and radius r. So the domain of g is the set of points (x, y) that lie both: (i) outside, but
not on, the circle x2 + y2 = 4; and (ii) inside or on the circle x2 + y2 = 9. This set is shown
in Fig. 14.1.2, where the solid circle is in the domain, but the dashed circle is excluded
from it.

x $ 1, y $ 0

1

y

x

Figure 14.1.1 Domain of f (x, y)

4 , x2 1 y2 # 9

1

1 2 3

y

x

Figure 14.1.2 Domain of g(x, y)

E X E R C I S E S F O R S E C T I O N 1 4 . 1

1. Let f (x, y) = x + 2y. Find the values of f (0, 1), f (2, −1), f (a, a), and f (a + h, b) − f (a, b).

2. Let f (x, y) = xy2. Find the values of f (0, 1), f (−1, 2), f (104, 10−2), f (a, a), f (a + h, b), and
f (a, b + k) − f (a, b).

3. Let f (x, y) = 3x2 − 2xy + y3. Find the values of f (1, 1), f (−2, 3), f (1/x, 1/y), as well as of
p = [f (x + h, y) − f (x, y)]/h and q = [f (x, y + k) − f (x, y)] /k.

4. Let f (x, y) = x2 + 2xy + y2.

(a) Find the values of f (−1, 2), f (a, a), and f (a + h, b) − f (a, b).

(b) Prove that f (2x, 2y) = 22f (x, y) and that f (tx, ty) = t2f (x, y) for all t.
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5. Let F(K, L) = 10K1/2L1/3, for K ≥ 0 and L ≥ 0. Find the values of F(1, 1), F(4, 27), F(9, 1/27),
F(3,

√
2), F(100, 1000), and F(2K, 2L).

6. Examine the domains of the functions given by the following formulas. Then for (b) and (c) draw
in the xy-plane the graphs of the domains:

(a)
x2 + y3

y − x + 2
(b)

√
2 − (x2 + y2) (c)

√
(4 − x2 − y2)(x2 + y2 − 1)

7. Find the domains of the functions defined by the following formulas:

(a) 1/(ex+y − 3) (b) ln(x − a)2 + ln(y − b)2 (c) 2 ln(x − a) + 2 ln(y − b)

14.2 Partial Derivatives with Two Variables
For a function y = f (x) of one variable, the derivative f ′(x) is a number which measures the
function’s rate of change as x changes. For a function of two variables such as z = f (x, y),
we also want to examine how quickly the value of the function changes w.r.t. a change in
the value of either one of the two independent variables. For instance, if f (x, y) is a firm’s
profit when it uses quantities x and y of two different inputs, we want to know whether and
by how much profit can increase as either x or y is varied.

As an example, consider the function

z = x3 + 2y2 (∗)

Suppose first that y is held constant. Then the term 2y2 is constant, which implies that z has
been reduced to a function of the single variable x. Of course, because x3 is differentiable,
the rate of change of z w.r.t. x is given by

dz
dx

= 3x2

On the other hand, we can keep x fixed in (∗) and examine how z varies as y varies. This
involves taking the derivative of z w.r.t. y while keeping x constant. The result is

dz
dy

= 4y

Obviously, there are many other variations we could study. For example, x and y could
vary simultaneously. But in this section, we restrict our attention to variations in either
x or y.

For functions of two variables, mathematicians (and economists) usually write ∂z/∂x
instead of dz/dx for the derivative of z w.r.t. x when y is held fixed. This slight but impor-
tant change of notation, replacing d by ∂ , is intended to remind the reader that only one
independent variable is changing, with the other(s) held fixed. In the same way, we write
∂z/∂y instead of dz/dy when y varies with x held fixed. With this notation, we have
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z = x3 + 2y2 =⇒ ∂z
∂x

= 3x2 and
∂z
∂y

= 4y

In general, we introduce the following definitions:

P A R T I A L D E R I V A T I V E S

If z = f (x, y), then

∂z/∂x is the derivative of f (x, y) w.r.t. x, when y is held constant (14.2.1)

∂z/∂y is the derivative of f (x, y) w.r.t. y, when x is held constant (14.2.2)

When z = f (x, y), we also denote the derivative ∂z/∂x by ∂f /∂x, and this is called the
partial derivative of z (or f ) w.r.t. x. Similarly ∂z/∂y = ∂f /∂y denotes the partial derivative
of z (or f ) w.r.t. y. Note that ∂f /∂x indicates the rate of change of f (x, y) w.r.t. x when y is
constant, and correspondingly for ∂f /∂y. Of course, because there are two variables, there
can be two different partial derivatives.

It is usually easy to find the partial derivatives of a function z = f (x, y). To find ∂f /∂x,
just think of y as a constant and differentiate f (x, y) w.r.t. x as if f were a function only of x.
The rules for finding derivatives of functions of one variable can all be used when we want
to compute ∂f /∂x. The same is true for ∂f /∂y. Let us look at some further examples.

E X A M P L E 14.2.1 Find the partial derivatives of the following functions:

(a) f (x, y) = x3y + x2y2 + x + y2 (b) f (x, y) = xy
x2 + y2

Solution: (a) Holding y constant, we find
∂f
∂x

= 3x2y + 2xy2 + 1.

Similarly, holding x constant, we find
∂f
∂y

= x3 + 2x2y + 2y.

(b) For this function, applying the quotient rule to find each partial derivative gives

∂f
∂x

= y(x2 + y2) − xy · 2x

(x2 + y2)
2 = y3 − x2y

(x2 + y2)
2 ,

∂f
∂y

= x3 − y2x

(x2 + y2)
2

Observe that the function is symmetric in x and y, in the sense that its value is unchanged
if we interchange x and y. By interchanging x and y in the formula for ∂f /∂x, therefore, we
will find the correct formula for ∂f /∂y.
It is a good exercise for you to find ∂f /∂y in the usual way and check that the foregoing
answer is correct.

Several other forms of notation are often used to indicate the partial derivatives of the
function z = f (x, y). Some of the most common are
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∂f
∂x

= ∂z
∂x

= z′
x = f ′

x(x, y) = f ′
1(x, y) = ∂

∂x
f (x, y) = ∂f (x, y)

∂x
= ∂f

∂x
(x, y)

∂f
∂y

= ∂z
∂y

= z′
y = f ′

y(x, y) = f ′
2(x, y) = ∂

∂y
f (x, y) = ∂f (x, y)

∂y
= ∂f

∂y
(x, y)

Among these, we find f ′
1(x, y) and f ′

2(x, y) to be the most satisfactory. Here the numerical
subscript refers to the position of the argument in the function. Thus, f ′

1 indicates the par-
tial derivative w.r.t. the first variable, and f ′

2 w.r.t. the second variable. This notation also
reminds us that the partial derivatives themselves are functions of x and y. Finally, the
notation f ′

1(a, b) and f ′
2(a, b) is suitable to indicate the values of the partial derivatives at

a specific point (a, b) rather than at the general point (x, y). For example, given the function
f (x, y) = x3y + x2y2 + x + y2 in part (a) of Example 14.2.1, one has

f ′
1(x, y) = 3x2y + 2xy2 + 1, f ′

1(a, b) = 3a2b + 2ab2 + 1

In particular, f ′
1(0, 0) = 1 and f ′

1(−1, 2) = 3(−1)22 + 2(−1)22 + 1 = −1.
We note that the alternative notation f ′

x(x, y) and f ′
y(x, y) is often used, but it is sometimes

too ambiguous when applied to composite functions. For instance, what is meant by the
expression f ′

x(x
2y, x − y)?

Remember that the two expressions f ′
1(x, y) and f ′

2(x, y) represent numbers that measure
the rate of change of f w.r.t. x and y, respectively. For example, if f ′

1(x, y) > 0, then a small
increase in x will lead to an increase in f (x, y).

E X A M P L E 14.2.2 In Example 14.1.2 we studied the function x = Ap−1.5m2.08. Find the partial deriva-
tives of x w.r.t. p and m, and discuss their signs.

Solution: By the usual rules for differentiating a function of one variable, we find that
∂x/∂p = −1.5Ap−2.5m2.08 and ∂x/∂m = 2.08Ap−1.5m1.08. Because we assumed that A, p,
and m are all positive, it follows that ∂x/∂p < 0 and ∂x/∂m > 0. These signs accord with
the remarks at the end of Example 14.1.2.

Formal Definitions of Partial Derivatives
So far all the functions considered in this Chapter have been given by explicit formulas for
which we could find the partial derivatives by using the ordinary rules for differentiation.
When these rules cannot be used, however, we must resort to the formal definition of partial
derivative. This is derived from the definition of derivative for functions of one variable in
the following rather obvious way.

Given the function z = f (x, y) of two variables, for each fixed y we can define the func-
tion g(x) = f (x, y) of one variable. Then the partial derivative of f (x, y) w.r.t. x is simply
g′(x). By definition of derivative, one has

g′(x) = lim
h→0

g(x + h) − g(x)
h

(14.2.3)
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But f ′
1(x, y) = g′(x), so it follows that:

P A R T I A L D E R I V A T I V E S

Let f (x, y) be a function of two variables. Then, provided that the relevant limit
exists, one has

f ′
1(x, y) = lim

h→0

f (x + h, y) − f (x, y)
h

(14.2.4)

f ′
2(x, y) = lim

k→0

f (x, y + k) − f (x, y)
k

(14.2.5)

If the limit in (14.2.4) does not exist, we say that f ′
1(x, y) does not exist, or that f is not dif-

ferentiable w.r.t. x at the point. Similarly, if the limit in (14.2.5) does not exist, then f ′
2(x, y)

does not exist and f is not differentiable w.r.t. y at that point. For instance, the function
f (x, y) = |x| + |y| is not differentiable, w.r.t. either x or y, at the point (x, y) = (0, 0).

If h is small in absolute value, then Eq. (14.2.4) implies the approximation

f ′
1(x, y) ≈ f (x + h, y) − f (x, y)

h
(14.2.6)

Similarly, if k is small in absolute value, then Eq. (14.2.5) implies

f ′
2(x, y) ≈ f (x, y + k) − f (x, y)

k
(14.2.7)

These two approximations can be interpreted as follows:

A P P R O X I M A T I O N S T O P A R T I A L D E R I V A T I V E S

Given f (x, y):

(i) The partial derivative f ′
1(x, y) is approximately equal to the change in

f (x, y) per unit increase in x, holding y constant.

(ii) The partial derivative f ′
2(x, y) is approximately equal to the change in

f (x, y) per unit increase in y, holding x constant.

These approximations must be used with caution. Roughly speaking, each will not be
too inaccurate provided that the partial derivative does not vary too much over the rele-
vant interval. Of course, this warning was also true in the one-variable case we first saw in
Section 6.4, and then in Section 7.4. But it applies more forcefully here, as even a seemingly
small variation in either x or y can change f ′

1(x, y), say, in a significant manner. Section 15.8
and FMEA discuss such approximations in more detail.
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E X A M P L E 14.2.3 Let Y = F(K, L) be the number of units produced when K units of capital and L
units of labour are used as inputs in a production process. What is the economic interpre-
tation of F′

K(100, 50) = 5?

Solution: The statement F′
K(100, 50) = 5 means that, starting from K = 100 and holding

labour input fixed at 50, any small enough increase in K increases output by five units per
unit increase in K.

Higher-Order Partial Derivatives
If z = f (x, y), then ∂f /∂x and ∂f /∂y are called first-order partial derivatives. These partial
derivatives are, in general, again functions of the two variables. From ∂f /∂x, provided this
derivative is itself differentiable, we can generate two new functions by taking the partial
derivatives of ∂f /∂x w.r.t. x and y. In the same way, we can take the partial derivatives of
∂f /∂y w.r.t. x and y. The four functions we obtain by differentiating twice in this way are
called second-order partial derivatives of f (x, y). They can be expressed as

∂

∂x

(
∂f
∂x

)
= ∂2f

∂x2
,

∂

∂x

(
∂f
∂y

)
= ∂2f

∂x∂y
,

∂

∂y

(
∂f
∂x

)
= ∂2f

∂y∂x
, and

∂

∂y

(
∂f
∂y

)
= ∂2f

∂y2

For brevity, we sometimes refer to the first- and second-order “partials”, suppressing the
word “derivatives”.

E X A M P L E 14.2.4 For the function in part (a) of Example 14.2.1, differentiating their two first-order
partials gives

∂2f
∂x2

= 6xy + 2y2,
∂2f
∂y∂x

= 3x2 + 4xy,
∂2f
∂x∂y

= 3x2 + 4xy, and
∂2f
∂y2

= 2x2 + 2

As with first-order partial derivatives, several other kinds of notation for second-order
partial derivatives are also in frequent use. For example, ∂2f /∂x2 may also be denoted by
f ′′
11(x, y) or f ′′

xx(x, y). In the same way, ∂2f /∂y∂x may also be written as f ′′
12(x, y) or f ′′

xy(x, y).
Note that f ′′

12(x, y) means that we differentiate f (x, y) first w.r.t. the first argument x and then
second w.r.t. the second argument y. To find f ′′

21(x, y), we must differentiate in the reverse
order. It is important to recognize how these conventions imply that

f ′′
xy(x, y) = ∂

∂y
∂f
∂x

= ∂2f
∂y∂x

and f ′′
yx(x, y) = ∂

∂x
∂f
∂y

= ∂2f
∂x∂y

(14.2.8)

with the order of x and y interchanged in each case.
In Example 14.2.4, these two second-order “cross” partial derivatives (otherwise called

“mixed-partials”) are equal. For most functions z = f (x, y), it will actually be the case that

∂2f
∂x∂y

= ∂2f
∂y∂x

(14.2.9)

Sufficient conditions for this equality are given in Theorem 14.6.1.
It is very important to note the exact meaning of the different symbols for partial differ-

entiation that have been introduced. For example, it would be a serious mistake to believe
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that the two expressions in (14.2.9) are equal because ∂x∂y is the same as ∂y∂x. As (14.2.8)
should make clear, the left-hand side of (14.2.9) is in fact the partial derivative of ∂f /∂y
w.r.t. x, whereas the right-hand side is the partial derivative of ∂f /∂x w.r.t. y. It is a remark-
able fact, and not a triviality, that these two are usually equal.

It is also very important to observe that ∂2z/∂x2 is quite different from (∂z/∂x)2. For
example, if z = x2 + y2, then ∂z/∂x = 2x. So ∂2z/∂x2 = 2, whereas (∂z/∂x)2 = 4x2.

We can define partial derivatives of the third, fourth, and higher orders analogously.
For example, we write ∂4z/∂x∂y3 = z(4)

yyyx to indicate that we first differentiate z three times
w.r.t. y, and then differentiate the result once more w.r.t. x. Here is an additional example.

E X A M P L E 14.2.5 If f (x, y) = x3ey2
, find the first- and second-order partial derivatives at the point

(x, y) = (1, 0).

Solution: To find f ′
1(x, y), we differentiate x3ey2

w.r.t. x while treating y as a constant. When
y is a constant, so is ey2

. Hence, f ′
1(x, y) = 3x2ey2

. At (x, y) = (1, 0) we have

f ′
1(1, 0) = 3 · 12e02 = 3

To find f ′
2(x, y), we differentiate f (x, y) w.r.t. y while treating x as a constant:

f ′
2(x, y) = x32yey2 = 2x3yey2

At (x, y) = (1, 0) we have f ′
2(1, 0) = 0.

To find the second-order partial f ′′
11(x, y), we must differentiate f ′

1(x, y) w.r.t. x once more,
while treating y as a constant. Hence, f ′′

11(x, y) = 6xey2
and so

f ′′
11(1, 0) = 6 · 1e02 = 6

To find f ′′
22(x, y), we must differentiate f ′

2(x, y) = 2x3yey2
w.r.t. y once more, while treating

x as a constant. Because yey2
is a product of two functions, each involving y, we use the

product rule to obtain

f ′′
22(x, y) = (2x3)(1 · ey2 + y · 2yey2

) = 2x3ey2 + 4x3y2ey2

Evaluating this at (1, 0) gives f ′′
22(1, 0) = 2. Moreover,

f ′′
12(x, y) = ∂

∂y

[
f ′
1(x, y)

] = ∂

∂y
(3x2ey2

) = 3x2 · 2yey2 = 6x2yey2

and f ′′
21(x, y) = ∂

∂x

[
f ′
2(x, y)

] = ∂

∂x
(2x3yey2

) = 6x2yey2

Hence, f ′′
12(x, y) = f ′′

21(x, y) for all x and y, with f ′′
12(1, 0) = f ′′

21(1, 0) = 0.

E X E R C I S E S F O R S E C T I O N 1 4 . 2

1. Find ∂z/∂x and ∂z/∂y for each of the following functions:

(a) z = 2x + 3y (b) z = x2 + y3 (c) z = x3y4 (d) z = (x + y)2
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2. Find ∂z/∂x and ∂z/∂y for each of the following functions:

(a) z = x2 + 3y2 (b) z = xy (c) z = 5x4y2 − 2xy5 (d) z = ex+y

(e) z = exy (f) z = ex/y (g) z = ln(x + y) (h) z = ln(xy)

3. Find f ′
1(x, y), f ′

2(x, y), and f ′′
12(x, y) for each of the following functions:

(a) f (x, y) = x7 − y7 (b) f (x, y) = x5 ln y (c) f (x, y) = (x2 − 2y2)5

4. Find all the first- and second-order partial derivatives for each of the following functions:

(a) z = 3x + 4y (b) z = x3y2 (c) z = x5 − 3x2y + y6

(d) z = x/y (e) z = (x − y)/(x + y) (f) z = √
x2 + y2

5.SM Find all the first- and second-order partial derivatives for each of the following functions:

(a) z = x2 + e2y (b) z = y ln x (c) z = xy2 − exy (d) z = xy

6. The estimated production function for a certain fishery is F(S, E) = 2.26 S0.44E0.48, where S
denotes the stock of lobsters, E the harvesting effort, and F(S, E) the catch.

(a) Find F′
S(S, E) and F′

E(S, E).

(b) Show that SF′
S + EF′

E = kF for a suitable constant k.

7. Prove that if z = (ax + by)2, then xz′
x + yz′

y = 2z.

8. Let z = 1
2 ln(x2 + y2). Show that ∂2z/∂x2 + ∂2z/∂y2 = 0.

9. Suppose that if a household consumes x units of one good and y units of a second good, its satis-
faction is measured by the function s(x, y) = 2 ln x + 4 ln y. Suppose that the household presently
consumes 20 units of the first good and 30 units of the second. What is the approximate increase
in satisfaction from consuming one extra unit of: (a) the first good? (b) the second good?

14.3 Geometric Representation
When studying functions of one variable, we saw how useful it was to represent the function
by its graph in a coordinate system in the plane. This section considers how to visualize
functions of two variables as having graphs which form surfaces in a three-dimensional
space, or 3-space.

The Graph of a Function of Two Variables
Suppose z = f (x, y) is a function of two variables defined over a domain D in the xy-plane.
The graph of the function f is the set of all points (x, y, f (x, y)) in 3-space that are obtained
by letting (x, y) “run through” the whole of D. Provided that f is a sufficiently “nice”
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function, the graph of f will be a connected smooth surface in 3-space, like that shown
in Fig. 14.3.1. In particular, if (x0, y0) is a point in the domain D, we see how the point
P = (x0, y0, f (x0, y0)) on the surface is obtained by letting f (x0, y0) be the “height” of f at
(x0, y0).

P 5 (x0 , y0 , f (x0 , y0))

f (x0 , y0)

(x0 , y0)

y

z

x

D

Figure 14.3.1 Graph of z = f (x, y)

z

y
x

Figure 14.3.2 Graph of z = x4 − 3x2y2 + y4

A 3D printer (or a talented sculptor with plenty of time and resources) could in principle
construct a three-dimensional graph of the function z = f (x, y), or as another example, of
the graph that appears in Fig. 14.3.2 of the function z = x4 − 3x2y2 + y4. Even drawing
figures like 14.3.1 and 14.3.2, which represent the functions in two dimensions, requires
some artistic ability.4

We now describe a second kind of geometric representation that often does better when
we are confined to two dimensions, as we are in the pages of this book.

Level Curves
Skilled map makers can describe some topographical features of the earth’s surface such
as hills and valleys even within the confines of a plane surface. The usual way involves
a set of level curves or contours that connect points on the map which represent places
on the earth’s surface having the same altitude above sea level. For instance, one contour
may correspond to 100 metres above sea level, others to 200, 300, and 400 metres above
sea level, and so on. Off the coast, or in places like the valley of the River Jordan, which
drains into the Dead Sea, there may be contours for 100 metres below sea level, etc. Where
the contours are closer together, that indicates a hill with a steeper slope. Thus, studying a
contour map carefully can give a good idea how the altitude varies on the ground.

The same idea can be used to give a geometric representation of an arbitrary function
z = f (x, y). The graph of the function in 3-space is visualized as being cut by horizontal
planes parallel to the xy-plane. The resulting intersection between each plane and the graph

4 Computer graphics can produce fairly easily graphs of quite complicated functions of two variables.
These can even be rotated, coloured, or otherwise transformed in order to display the shape of the
graph better.



�

� �

�

S E C T I O N 1 4 . 3 / G E O M E T R I C R E P R E S E N T A T I O N 573

is then projected onto the xy-plane. If the intersecting plane is z = c, then the projection of
the intersection onto the xy-plane is called the level curve at height c for f . This level curve
will consist of all the points that satisfy the equation f (x, y) = c. Figure 14.3.3 illustrates
how to construct one such level curve.

z 5 f (x, y)

f (x, y) 5 c

z 5 c

y

z

x

Figure 14.3.3 The graph of z = f (x, y) and one of its level curves

E X A M P L E 14.3.1 Consider the function of two variables defined by the equation

z = x2 + y2 (∗)

What are its level curves? Draw both a set of level curves and the graph of the function.

Solution: The variable z can only assume values ≥ 0. Each level curve has the equation

x2 + y2 = c

for some c ≥ 0. We see that these are circles in the xy-plane centred at the origin and with
radius

√
c, as in Fig. 14.3.4, which also shows the level curves for c = 1, 2, 3, 4, 5.

c 5 5
c 5 4
c 5 3
c 5 2
c 5 1

y

x

Figure 14.3.4 Solutions of x2 + y2 = c

y
x

z

Figure 14.3.5 The graph of z = x2 + y2

Now we turn to the three-dimensional graph of the function defined by (∗). For y = 0,
we have z = x2, implying that the graph of (∗) cuts the xz-plane (where y = 0) in a parabola.
Similarly, for x = 0, we have z = y2, which is the graph of a parabola in the yz-plane. In
fact, the graph of (∗) is obtained by rotating the parabola z = x2 around the z-axis. This
surface of revolution is called a paraboloid, with its lowest part shown in Fig. 14.3.5. This
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figure also indicates the five raised circles which correspond to the five level curves in the
xy-plane that are shown in Fig. 14.3.4.

E X A M P L E 14.3.2 Suppose F(K, L) denotes a firm’s output when its inputs of capital and labour are,
respectively, K and L. A level curve for this production function is a curve in the KL-plane
given by F(K, L) = Y0, where Y0 is a constant. This curve is called an isoquant, signifying
“equal quantity”. Consider the Cobb–Douglas function F(K, L) = AKaLb, with a + b < 1
and A > 0. Figures 14.3.6 and 14.3.7, respectively, show a part of the graph near the origin,
and three of the isoquants.

L

Y

K

Figure 14.3.6 Graph of a
Cobb–Douglas production function

Y 5 c3
Y 5 c2
Y 5 c1

K

L

Figure 14.3.7 Isoquants of a
Cobb–Douglas production function

E X A M P L E 14.3.3 Show that all points (x, y) satisfying xy = 3 lie on the same level curve of the
function

g(x, y) = 3(xy + 1)2

x4y4 − 1

Solution: By substituting xy = 3 in the expression for g, we find

g(x, y) = 3(xy + 1)2

(xy)4 − 1
= 3(3 + 1)2

34 − 1
= 48

80
= 3

5

This shows that, for all (x, y) where xy = 3, the value of g(x, y) is a constant 3/5. Hence,
any point (x, y) satisfying xy = 3 is on a level curve (at height 3/5) for g.5

Geometric Interpretations of Partial Derivatives
Partial derivatives of the first order have an interesting geometric interpretation. Let
z = f (x, y) be a function of two variables, with its graph as shown in Fig. 14.3.8. Let us
keep the value of y fixed at b. The points (x, y, f (x, y)) on the graph of f that have y = b are

5 In fact, g(x, y) = 3(c + 1)2/(c4 − 1) whenever xy = c �= ±1, so this equation represents a level
curve for g for every c �= ±1.
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those that lie on the curve Ky indicated in the figure. The partial derivative f ′
x(a, b) is the

derivative of z = f (x, b) w.r.t. x at the point x = a, and is therefore the slope of the tangent
line �y to the curve Ky at x = a. In the same way, f ′

y(a, b) is the slope of the tangent line �x

to the curve Kx at y = b.

y

x

z

Ky

Kx

�y

�x

z = f (x,y)
P

b

a

Figure 14.3.8 Partial derivatives

z 5 2
z 5 4
z 5 6
z 5 8

1 2 3 4 5 6

3

4

5

2

1

y

x

P

Q

Figure 14.3.9 Level curves

This geometric interpretation of the two partial derivatives can be explained in another
way. Imagine that the graph of f looks like the surface of a mountain, as in Fig. 14.3.8, and
suppose that we are standing at point P with coordinates (a, b, f (a, b)) in three dimensions,
where the height is f (a, b) units above the xy-plane. The slope of the ground at P varies as
we look in different directions. In particular, suppose we look in the direction parallel to
the positive x-axis. Then f ′

x(a, b) is a measure of the “steepness” in this direction, which in
Fig. 14.3.8 is negative. This is because moving away from P along the tangent line �x in the
direction of increasing x will take us downwards. Similarly, we see that f ′

y(x0, y0) measures
the “steepness” along �y in the direction of increasing y. In Fig. 14.3.8 we see that f ′

y(x0, y0)

is positive, meaning that the slope is upward in this direction.
Let us now briefly consider the geometric interpretation of the “direct” second-order

derivatives f ′′
xx and f ′′

yy. Consider the curve Ky on the graph of f , as shown in Fig. 14.3.8. It
seems that f ′′

xx(x, b) is negative, because f ′
x(x, b) decreases as x increases along this curve.

In particular, f ′′
xx(a, b) < 0. In the same way, we see that moving along Kx makes f ′

y(a, y)
decrease as y increases, so f ′′

yy(a, y) < 0. In particular, f ′′
yy(a, b) < 0.

The cross-partials f ′′
xy and f ′′

yx are not so easy to interpret geometrically. Indeed, consider
again the curve Ky in Fig. 14.3.8. Recall that its position is determined by the value of y,
namely b, which is kept fixed when computing the partial w.r.t. x. The first partial is f ′

x(x, b),
which is the slope of the line ly in the direction of the x-axis. Suppose now you increase b
slightly, so that the curve Ky gets pushed in the direction of the y-axis. Of course, the line
ly gets pushed too, and its slope may change. The cross-partial f ′′

xy measures the magnitude
of that change.

E X A M P L E 14.3.4 Consider Fig. 14.3.9 which shows some level curves of a function z = f (x, y). On
the basis of this figure, answer the following questions:
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(a) What are the signs of f ′
x(x, y) and f ′

y(x, y) at the points P and Q? Estimate also the value
of f ′

x(3, 1).

(b) What are the solutions of the equations: (i) f (3, y) = 4; and (ii) f (x, 4) = 6?

(c) What is the largest value that f (x, y) can attain when x = 2, and for which y value does
this maximum occur?

Solution: (a) If you stand at P, you are on the level curve f (x, y) = 2. If you look in the
direction of the positive x-axis, along the line y = 4, then you will see the terrain sloping
upwards, because the nearest level curves correspond to larger z values. Hence, f ′

x > 0. But
if you look from P in the direction of the positive y-axis, along x = 2, the terrain will slope
downwards. Thus, at P, we must have f ′

y < 0. At Q, we find similarly that f ′
x < 0 and f ′

y > 0.
To estimate f ′

x(3, 1), we use f ′
x(3, 1) ≈ f (4, 1) − f (3, 1) = 2 − 4 = −2.6

(b) Equation (i) has the solutions y = 1 and y = 4, because the line x = 3 cuts the level curve
f (x, y) = 4 at (3, 1) and at (3, 4). Equation (ii) has no solutions, because the line y = 4 does
not meet the level curve f (x, y) = 6 at all.
(c) The highest value of c for which the level curve f (x, y) = c has a point in common with
the line x = 2 is c = 6. The largest value of f (x, y) when x = 2 is therefore 6, and we see
from Fig. 14.3.9 that this maximum value is attained when y ≈ 2.2.

Gradients
To conclude this section, we give a geometric interpretation in the xy-plane of the two partial
derivatives. At any point (x, y) = (a, b), these can be written together as the ordered pair

( f ′
1(a, b), f ′

2(a, b)) (14.3.1)

This pair represents a point in the plane, which in Fig. 14.3.10 is denoted by ∇f (a, b).7

As in Fig. 12.9.1, we have also drawn with an arrow the two-dimensional vector that
corresponds to a movement that starts at the origin and ends at the point ∇f (a, b). Suppose
that, as in Fig. 12.9.2, we shift this vector so that its starting point is the point (a, b) rather
than the origin. Then the point in Fig. 14.3.10 where the shifted vector ends has co-ordinates
that can be found by adding (a, b) to the pair (∗), which yields

(a, b) + ∇f (a, b) = (a + f ′
1(a, b), b + f ′

2(a, b))

This property leads us to define the ordered pair ∇f (a, b) given by (14.3.1) as the gradient
vector of the function f at the point (a, b).

6 This approximation is actually far from exact. If we keep y = 1 and decrease x by one unit, then
f (2, 1) ≈ 4, which should give the estimate f ′

x(3, 1) ≈ 4 − 4 = 0. The “map” has too few contours
near the point Q.

7 The symbol ∇, which looks somewhat like an upside down �, is often pronounced as “nabla”, or
sometimes as “del”. The ancient Greeks applied the word “nabla” to a harp, whose foreign origins
are disputed.
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y
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f ′2(a,b)

a f ′1(a,b) x

∇ f (a,b)

(a,b)+∇ f (a,b)

f (x,y) = c

Figure 14.3.10 The gradient vector

In Fig. 14.3.10 we have also drawn a line through the point (a, b) that is perpendicular
to the shifted vector that goes from (a, b) to (a, b) + ∇f (a, b). As the figure suggests, this
line happens to be the tangent to the level curve through (a, b) at that point. Indeed, as we
explain in FMEA, there are three important ideas to remember:

1. The line that is perpendicular to the arrow is also tangent to the level curve; this implies
that a small change to (x, y) in the direction of that line leaves the value of the function
unchanged.

2. A small change to (x, y) in the direction of the arrow, on the other hand, induces the
fastest possible increase in the value of the function. A step in the direction opposite to
the arrow would induce the fastest possible decrease in the value of the function.

3. The length of the arrow indicates the rate of change by which the function would increase
after a perturbation to (x, y) in that direction. The longer the arrow, the faster the increase.

The gradient vector defined by (14.3.1) is a very useful object. In more advanced differ-
ential calculus, it allows our analysis to be generalized to changes in (x, y) in any direction
on the plane, and not just parallel to one of the two axes. Furthermore, given a function
z = f (x1, . . . xn) = f (x) of n variables that is differentiable at the n-vector x0 = (x0

1, . . . x0
n),

in FMEA we present similar results concerning the tangent to a level surface, as well as the
rate at which f increases in different directions. These results involve the gradient n-vector
of f at x0, which is defined by

∇f (x0) = ( f ′
1(x

0), f ′
2(x

0), . . . , f ′
n(x

0) (14.3.2)

E X E R C I S E S F O R S E C T I O N 1 4 . 3

1. Show that x2 + y2 = 6 is a level curve of f (x, y) = √
x2 + y2 − x2 − y2 + 2.

2. Show that x2 − y2 = c is a level curve of f (x, y) = ex2
e−y2 + x4 − 2x2y2 + y4 for all values of the

constant c.

3. Explain why two level curves of the function z = f (x, y) corresponding to different values of z
cannot intersect.
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4. Let f (x) represent a function of one variable. The equation g(x, y) = f (x) defines a function of
two variables, without y in its formula. Explain how the graph of g is obtained from the graph of
f . Illustrate with the two functions f (x) = x and f (x) = −x3.

5. Draw the graphs of the following functions in 3-space, as well as a few level curves for each:

(a) z = 3 − x − y (b) z = √
3 − x2 − y2

5

4

3

2

1

1 2 3 4 5 6 7

z 5 10

z 5 8

z 5 6

z 5 4
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B

C

y

x

Figure 14.3.11 Exercise 6.
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Figure 14.3.12 Exercise 7.

6. Suppose that Fig. 14.3.11 shows some level curves for the function z = f (x, y).

(a) What is f (2, 3)? Solve the equation f (x, 3) = 8 for x.

(b) Find the smallest value of z = f (x, y) if x = 2. What is the corresponding value of y?

(c) What are the signs of f ′
1(x, y) and f ′

2(x, y) at the points A, B, and C? Estimate the values of
these two partial derivatives at A.

7.SM Figure 14.3.12 shows some level curves for z = f (x, y), as well as the line 2x + 3y = 12.

(a) What are the signs of f ′
x and f ′

y at the points P and Q?

(b) Find possible solutions of the equations: (i) f (1, y) = 2; (ii) f (x, 2) = 2.

(c) Among those (x, y) that satisfy 2x + 3y = 12, which gives the largest value of f (x, y)?

8.SM [HARDER] Suppose F(x, y) is a function about which all we know is that: (i) F(0, 0) = 0; (ii)
F′

1(x, y) ≥ 2 for all (x, y); (iii) F′
2(x, y) ≤ 1 for all (x, y). What can be said about the relative values

of F(0, 0), F(1, 0), F(2, 0), F(0, 1), and F(1, 1)? Write down all the inequalities that must hold
between these five numbers.

14.4 Surfaces and Distance
In Section 5.4 we saw how an equation in two variables, such as f (x, y) = c, can be repre-
sented by a set of points in the co-ordinate plane, called the graph of the equation. Similarly,
an equation in the three variables x, y, and z, such as g(x, y, z) = c, can be represented by
a set of points in 3-space, also called the graph of the equation. This graph consists of all
triples (x, y, z) that satisfy the equation. It will often form what we call a surface in 3-space.
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One of the simplest types of equation in three variables is

ax + by + cz = d (14.4.1)

with a, b, and c not all 0. This particular case of Eq. (12.10.7) is the general equation for
a plane in the three-dimensional Euclidean space. Assuming that a and b are not both 0,
the graph of this equation intersects the xy-plane when z = 0. Then ax + by = d, which is
a straight line in the xy-plane, unless a = b = 0. In the same way we see that, provided at
most one of a, b, and c is equal to zero, the graph intersects the two other coordinate planes
in straight lines.

Let us rename the coefficients and consider the equation

p1x1 + p2x2 + p3x3 = m (14.4.2)

where p1, p2, p3, and m are all positive. This is the budget equation considered in
Example 12.10.3 for a person who has an amount m to spend on three different com-
modities, whose prices per unit are p1, p2, and p3. If the person buys x1 units of the first,
x2 units of the second, and x3 units of the third commodity, then the total expense is the
left-hand side of Eq. (14.4.2). Only bundles (x1, x2, x2) that satisfy (14.4.2) can be bought
if expenditure must equal m. Assuming that the individual cannot consume negative
amounts of any of the three commodities but can underspend, the budget set is defined as

B = {(x1, x2, x3) : p1x1 + p2x2 + p3x3 ≤ m, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 }
This represents the three-dimensional body bounded by the three coordinate planes and the
budget plane, as in Fig. 12.10.4.

Another rather interesting surface, called an ellipsoid, appears in Fig. 14.4.1. It intersects
the three axes at the points (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c), where a > b = c. Some
readers may recognize it as having the shape of a rugby ball.

y

z

x

Figure 14.4.1 x2/a2 + y2/b2 + z2/c2 = 1 where a > b = c

Spheres in 3-Space
Let (a, b, c) be a point in 3-space. The sphere with radius r and centre at (a, b, c) is the set
of all points (x, y, z) whose distance from (a, b, c) is equal to r. Using the distance formula
(12.9.1), we obtain
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√
(x − a)2 + (y − b)2 + (z − c)2 = r

Squaring each side yields:

E Q U A T I O N F O R A S P H E R E

The equation for the sphere in 3-space with centre at (a, b, c) and radius r is

(x − a)2 + (y − b)2 + (z − c)2 = r2 (14.4.3)

E X A M P L E 14.4.1 Find the equation for the sphere with centre at (−2, −2, −2) and radius 4.

Solution: According to formula (14.4.3), the equation is

(x − (−2))2 + (y − (−2))2 + (z − (−2))2 = 42

This can be simplified to

(x + 2)2 + (y + 2)2 + (z + 2)2 = 16

E X A M P L E 14.4.2 How do you interpret the expression (x + 4)2 + (y − 3)2 + (z + 5)2? Is it: (a) the
sphere with centre at the point (−4, 3, −5); (b) the distance between the points (x, y, z) and
(−4, 3, −5); or (c) the square of the distance between the points (x, y, z) and (−4, 3, −5)?

Solution: Only (iii) is correct.

E X E R C I S E S F O R S E C T I O N 1 4 . 4

1. Sketch graphs of the surfaces in 3-space described by each of the following equations:

(a) x = a (b) y = b (c) z = c

2. Find the distance between each of the following pairs of points:

(a) (−1, 2, 3) and (4, −2, 0) (b) (a, b, c) and (a + 1, b + 1, c + 1)

3. Find the equation for the sphere with centre at (2, 1, 1) and radius 5.

4. What is the geometric interpretation of the equation (x + 3)2 + (y − 3)2 + (z − 4)2 = 25?

5. Suppose that the graph of z = x2 + y2 is a paraboloid, as shown in Fig. 14.3.5. If the point (x, y, z)
lies on this paraboloid, interpret the expression (x − 4)2 + (y − 4)2 + (z − 1/2)2.
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14.5 Functions of n Variables
Many of the most important functions we study in economics, such as the GDP of a country,
depend on a very large number of variables. Mathematicians and economists express this
dependence by saying that GDP is a function of the different variables.

Following the terminology and notation introduced in Section 12.1, any ordered collec-
tion (x1, x1, . . . , xn) of n numbers will be called an n-vector, denoted by x.

F U N C T I O N S O F n V A R I A B L E S

Given a domain D of n-vectors, a function f of n variables x1, . . . , xn with
domain D is a rule that for each n-vector x = (x1, . . . , xn) in D specifies a
unique number

f (x) = f (x1, . . . , xn) (14.5.1)

E X A M P L E 14.5.1

(a) The demand for sugar in the United States during the period 1929–1935 was estimated
to be given, approximately, by the formula

x = 108.83 − 6.0294p + 0.164w − 0.4217t

Here x is the demand for sugar, p is its price, w is a production index, and t is the date
(where t = 0 corresponds to 1929).

(b) The following formula is an estimate for the demand for beer in the UK:

x = 1.058x0.136
1 x−0.727

2 x0.914
3 x0.816

4

Here the quantity demanded x is a function of four variables: x1, the income of the
individual; x2, the price of beer; x3, a general price index for all other commodities;
and x4, the strength of the beer.

The simpler of the two functions in Example 14.5.1 is the one in part (a). This is because
the variables p, w, and t occur here only to the first power. Moreover, they are only multi-
plied by constants, not by each other. Such functions are called linear.8 In general, a linear
function in n variables takes the form

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · · + anxn + b (14.5.2)

where a1, a2, . . . , an, and b are constants.

8 This is rather common terminology, although many mathematicians would insist that f should really
be called affine if b �= 0, and linear only if b = 0.
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The function in part (b) of Example 14.5.1 is a special case of the general Cobb–Douglas
function

F(x1, x2, . . . , xn) = Axa1
1 xa2

2 · · · xan
n (14.5.3)

with A > 0, a1, . . . , an as constants. The function is defined for all x1 > 0, x2 > 0, . . . , xn >

0. It is used very often in this book.
Note that taking the natural logarithm of each side of Eq. (14.5.3) gives

ln F = ln A + a1 ln x1 + a2 ln x2 + · · · + an ln xn (14.5.4)

This shows that the Cobb–Douglas function is log-linear (or ln-linear), because ln F is a
linear function of ln x1, ln x2, . . . , ln xn.

E X A M P L E 14.5.2 Suppose that an economist records the price of apples in n different stores, and
observes the n positive numbers x1, x2, . . . , xn. In statistics, several different measures for
the average price are used. Three of the most common are the following, which appeared
in Exercise 2.6.8 for the case n = 2:

(a) the arithmetic mean: --xA = 1
n (x1 + x2 + · · · + xn)

(b) the geometric mean: --xG = n
√

x1x2 . . . xn

(c) the harmonic mean: --xH = 1
1
n

(
1
x1

+ 1
x2

+ · · · + 1
xn

)
Note that --xA is a linear function of x1, . . . , xn, whereas --xG and --xH are nonlinear functions,

though --xG is log-linear.
As an example, if four observations are x1 = 1, x2 = 2, x3 = 3, and x4 = 4, then

--xA = (1 + 2 + 3 + 4)/4 = 2.5, --xG = 4√1 · 2 · 3 · 4 = 4√24 ≈ 2.21,

and --xH = [(1/1 + 1/2 + 1/3 + 1/4)/4]−1 = 48/25 = 1.92

In this case --xH < --xG < --xA. As Exercise 2.6.8 asked you to show for the case n = 2, it turns
out that for general n one has the corresponding weak inequalities

--xH ≤ --xG ≤ --xA (14.5.5)

E X A M P L E 14.5.3 A household must decide what quantities of n different commodities to buy dur-
ing a given time period. Consumer demand theory often assumes that the household’s
preferences can be represented by a utility function U(x1, x2, . . . , xn) which measures the
household’s satisfaction from acquiring x1 units of good 1, x2 units of good 2, and so on.
This is an important economic example of a function of n variables, to which we return
several times.

One model of consumer demand is the linear expenditure system, which is based on the
particular utility function

U
(
x1, x2, . . . , xn

) = a1 ln
(
x1 − c1

) + a2 ln
(
x2 − c2

) + · · · + an ln(xn − cn)
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This depends on the 2n nonnegative parameters a1, a2, . . . , an and c1, c2, . . . , cn. Here, each
ci represents the quantity of the commodity numbered i that the household needs to survive.
Some, or even all, of the constants ci could be 0.

Because ln z is only defined when z > 0, we see that all n inequalities x1 > c1, x2 > c2,
. . . , xn > cn must be satisfied if U(x1, x2, . . . , xn) is to be defined. Of course, the condition
ai > 0 implies that the consumer prefers more of the particular good i.

Limits and Continuity with n Variables
In Sections 7.8 and 7.9, we introduced the concept of continuity for functions of one variable
that we provided in (7.8.1). Here we extend this concept to functions of several variables.
Roughly speaking, a function z = f (x1, x2, . . . , xn) = f (x) of n variables is continuous if
any small enough change in the n-vector x of independent variables induces a small change
in the function value f (x).

To make this more precise requires first specifying what we mean by a “small change”
in the n-vector x. In one dimension, the change from a to x is said to be small if |x − a| is
small. We note, of course, that |x − a| = √

(x − a)2. Then, in n dimensions, we consider
the norm ‖x − a‖ of their difference x − a, which was defined in (12.9.3) as

‖x − a‖ =
√

(x1 − a1)
2 + (x2 − a2)

2 + . . . + (xn − an)
2

Specifically, the change from a to x is said to be small if the norm ‖x − a‖ is small.
This definition permits the following obvious extension to a function z = f (x) of n vari-

ables of the informal definition of limit that was set out in Section 6.5, as well as of the
subsequent more formal definition in Section 7.9.

L I M I T O F A F U N C T I O N O F n V A R I A B L E S

limx→a f (x) = A means that |f (x) − A| can be made as small as we want for
all x �= a with ‖x − a‖ sufficiently small.

More formally, say that f (x) has limit A as x tends to a if, for each number
ε > 0, there exists an associated number δ > 0 such that |f (x) − A| < ε for
every x with 0 < ‖x − a‖ < δ.

Here is the promised extension to functions of n variables of the definition in (7.8.1).

C O N T I N U I T Y

The function f (x is continuous at x = a if lim
x→a

f (x) = f (a) (14.5.6)
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Just as in the one-variable case, we have the following useful rule:

P R E S E R V A T I O N O F C O N T I N U I T Y

Any function of n variables that can be constructed from continuous functions
by combining the operations of addition, subtraction, multiplication, division
and functional composition is continuous wherever it is defined.

If a function of one variable is continuous, it will also be continuous when considered
as a function of several variables. For example, f (x, y, z) = x2 is a continuous function of x,
y, and z because small changes in x, y, and z give at most small changes in x2.

E X A M P L E 14.5.4 Where are the functions given by the following formulas continuous?

(a) f (x, y, z) = x2y + 8x2y5z − xy + 8z (b) g(x, y) = xy − 3
x2 + y2 − 4

Solution: (a) As the sum of products of positive powers, the function f is defined and
continuous for all x, y, and z.

(b) The function g is defined and continuous for all pairs (x, y) except those that lie on the
circle x2 + y2 = 4. There the denominator is zero, so g(x, y) is not defined.

Representing Functions of n Variables
In Section 12.9, we introduced the n-space R

n as the set of all possible n-vectors
x = (x1, x2, . . . , xn), each of which is an ordered set of n real numbers. Suppose that the
equation z = f (x1, x2, . . . , xn) = f (x) represents a function of n variables. When n = 1,
its graph is defined as the set in the plane R

2 that consists of all pairs (x1, f (x1) with x1

in the domain of f . It often forms a curve in the plane. When n = 2, its graph is defined
as the set in the 3-space R

3 that consists of all triples (x1, x2, f (x1, x2) with (x1, x2) in the
domain of f . It often forms a surface in 3-space. For general n, including when n ≥ 3, a
corresponding definition of the graph of f would be as a subset of R

n+1. Even though
points in the space R

n+1 lack the obvious interpretation of points in R
2 of R

3 when n ≥ 3,
we still use this definition of the graph of a function of three or more variables.

Specifically, if z = f (x1, x2, . . . , xn) = f (x) represents a function of n variables, we
define the graph of f as the set of all points (x, f (x)) in R

n+1 for which x belongs to the
domain of f . We also call this graph a surface (or sometimes a hypersurface) in R

n+1.
For z = z0 (constant), the set of points in R

n satisfying f (x) = z0 is called a level surface
of f . Notice that when n = 3, in principle these level curves can be represented in R3, even
though the graph of the function in R4 has no direct graphical representation. When f (x) is a
linear function such as a1x1 + a2x2 + · · · + anxn + b, then any level surface, which would
be a line if n = 2 or a plane if n = 3, is called a hyperplane when n > 3.

In both producer and consumer theory, it is usual to give level surfaces a different
name. If x = f (v) = f (v1, v2, . . . , vn) is the amount produced when the input quantities
of n different factors of production are respectively v1, v2, . . . , vn, the level surfaces where
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f (v1, v2, . . . , vn) = x0 (constant) are called isoquants, as in Example 14.3.2. On the other
hand, if u = U(x) is a utility function that represents the consumer’s preferences, the level
surface where U(x) = u0 is called an indifference surface.

E X E R C I S E S F O R S E C T I O N 1 4 . 5

1. Let f (x, y, z) = xy + xz + yz.

(a) Find f (−1, 2, 3) and f (a + 1, b + 1, c + 1) − f (a, b, c).

(b) Show that f (tx, ty, tz) = t2f (x, y, z) for all t.

2. A study of milk production found that

y = 2.90 x0.015
1 x0.250

2 x0.350
3 x0.408

4 x0.030
5

where y is the output of milk, and x1, . . . , x5 are the quantities of five different input factors.

(a) If all the factors of production were doubled, what would happen to y?

(b) Write the relation in log-linear form.

3.SM A pension fund decides to invest $720 million in the shares of XYZ Inc., a company with a volatile
share price. Rather than invest everything all at once and so risk paying an unduly high price, the
fund practises “dollar cost averaging” by investing $120 million per week in each of six consecu-
tive weeks. The prices it pays are $50 per share in the first week, followed by $60, $45, $40, $75,
and then $80 in the subsequent five weeks.

(a) How many shares in total does it buy?

(b) Which is the most accurate representation of the average price: the arithmetic mean, the geo-
metric mean, or the harmonic mean?

4. An American bank A and a European bank E agree a currency swap. In n successive weeks w = 1,
2, . . . , n, bank A will buy $100 million worth of euros from bank E, at a price of $pw per euro
determined by the spot exchange rate at the end of week w. After n weeks:

(a) How many euros will bank A have bought?

(b) What is the dollar price per euro it will have paid, on average?

5. [HARDER] It is observed that three machines A, B, and C produce, respectively, 60, 80, and 40 units
of a product during one workday lasting 8 hours. The average output is then 60 units per day. We
see that A, B, and C use, respectively, 8, 6, and 12 minutes to make one unit.

(a) If all machines were equally efficient and jointly produced 60 + 80 + 40 = 180 units during
a day, then how much time would be required to produce each unit? (Note that the answer is
not (8 + 6 + 12)/3.)

(b) Suppose that n machines A1, A2, . . . , An produce the same product simultaneously during a
time interval of length T . Given that the production times per unit are respectively t1, t2, . . . , tn,
find the total output Q. Show that if all the machines were equally efficient and together had
produced exactly the same total amount Q in the time span T , then the time needed for each
machine to produce one unit would be precisely the harmonic mean --tH of t1, t2, . . . , tn.
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14.6 Partial Derivatives with Many
Variables
The last section gave several economic examples of functions involving many variables.
Accordingly, we need to extend the concept of partial derivative to functions of more than
two variables.

P A R T I A L D E R I V A T I V E S I N n V A R I A B L E S

Suppose that z = f (x) = f (x1, x2, . . . , xn). Then ∂f /∂xi, for i = 1, 2, . . . , n,
denotes the partial derivative of f (x1, x2, . . . , xn) w.r.t. xi, when all the other
variables xj, for j �= i, are held constant.

So, provided that they all exist, there are n partial derivatives of first order, one
for each variable xi, for i = 1, . . . , n. Other notation used for the first-order partials of
z = f (x1, x2, . . . , xn) includes

∂f
∂xi

= ∂z
∂xi

= ∂z/∂xi = z′
i = f ′

i

(
x1, x2, . . . , xn

)

E X A M P L E 14.6.1 Find the three first-order partials of f (x1, x2, x3) = 5x2
1 + x1x3

2 − x2
2x2

3 + x3
3.

Solution: We find that

f ′
1 = 10x1 + x3

2, f ′
2 = 3x1x2

2 − 2x2x2
3, and f ′

3 = −2x2
2x3 + 3x2

3

As in (14.2.6), we have the following rough approximation:

A P P R O X I M A T E P A R T I A L D E R I V A T I V E S

The partial derivative ∂z/∂xi is approximately equal to the per-unit change in
z = f (x1, x2, . . . , xn) caused by an increase in xi, while holding constant all the
other xj for j �= i.

In symbols, for small h one has

f ′
i (x1, . . . , xn)

≈ f
(
x1, . . . , xi−1, xi + h, xi+1, . . . , xn

) − f
(
x1, . . . , xi−1, xi, xi+1, . . . , xn

)
h

(14.6.1)

For each of the n first-order partials ∂z/∂xi of f , we have the n second-order partials:

∂

∂xj

(
∂f
∂xi

)
= ∂2f

∂xj∂xi
= z′′

ij

provided that all the derivatives exist. Here both i and j may take any value 1, 2, . . . , n, so
altogether there are n2 second-order partials.
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It is usual to display these second-order partials in an n × n square array

f′′(x) =

⎛
⎜⎜⎜⎝

f ′′
11(x) f ′′

12(x) . . . f ′′
1n(x)

f ′′
21(x) f ′′

22(x) . . . f ′′
2n(x)

...
...

. . .
...

f ′′
n1(x) f ′′

n2(x) . . . f ′′
nn(x)

⎞
⎟⎟⎟⎠ (14.6.2)

Following the terminology of Chapter 12, the RHS of (14.6.2) is an n × n matrix that we call
the Hessian matrix (or simply Hessian) of f at the point x = (x1, x2, . . . , xn).

The n second-order partial derivatives f ′′
ii found by differentiating twice w.r.t. the same

variable are called direct second-order partials. The other n(n − 1) second-order partial
derivatives f ′′

ij , where i �= j, are called mixed or cross partials.

E X A M P L E 14.6.2 Find the Hessian matrix of the function f defined in Example 14.6.1.

Solution: We differentiate partially the first-order partial derivatives that were found in
Example 14.6.1. The resulting Hessian matrix is⎛

⎝f ′′
11 f ′′

12 f ′′
13

f ′′
21 f ′′

22 f ′′
23

f ′′
31 f ′′

32 f ′′
33

⎞
⎠ =

⎛
⎝ 10 3x2

2 0
3x2

2 6x1x2 − 2x2
3 −4x2x3

0 −4x2x3 −2x2
2 + 6x3

⎞
⎠

E X A M P L E 14.6.3 For any square matrix A, consider the quadratic function q(x) of n variables which,
for each n-vector x = (x1, x2, . . . , xn), is defined by the double sum

q(x) = x′Ax =
n∑

i=1

n∑
j=1

aijxixj (14.6.3)

Show that at any n-vector x, the Hessian matrix q′′(x) of q(x) is the sum A + A′ of A and
its transpose, which is symmetric.

Solution: First, in order to make partial differentiation easier, we separate out the square
terms in the double sum (14.6.3) and rewrite it as

q(x) =
n∑

i=1

aiix
2
i +

∑
i�=j

aijxixj (∗)

Now, for each k = 1, 2, . . . , n, the terms in (∗) that involve the variable xk are akkx2
k , as well

as akjxkxj for each j �= k when i = k, and also aikxixk for each i �= k when j = k. It follows
that differentiating the sum (∗) term by term partially w.r.t. xk gives

q′
k(x) = ∂

∂xk
q(x) = 2akkxk +

∑
j�=k

akjxj +
∑
i�=k

aikxi (∗∗)

So evidently q′′
kk(x) = 2akk. Furthermore, for each � = 1, 2, . . . , n with � �= k, the terms in

(∗∗) that involve x� are ak�x� when j = �, and a�kx� when i = �. Differentiating (∗∗) partially
once again, therefore, it follows that q′′

k�(x) = ak� + a�k whenever � �= k.
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To summarize, after replacing k by i and � by j, we see that all the elements q′′
ij(x) of the

Hessian matrix q′′(x) satisfy

q′′
ii = 2aii (i = 1, . . . , n) and q′′

ij = q′′
ji = aij + aji (i, j = 1, . . . , n)

By definition of the transpose matrix A′, it follows that q′′(x) = A + A′.

In the important special case when A′ = A because A is symmetric, then Eq. (14.6.3)
defines the quadratic form in Eq. (13.12.9) that is associated with A, and Example 14.6.3
shows that its Hessian matrix satisfies q′′(x) = 2A.

Young’s Theorem
If z = f (x1, x2, . . . , xn), then the two second-order cross-partial derivatives z′′

ij and z′′
ji are

usually equal, as they were in Examples 14.6.2 and 14.6.3. That is,

∂

∂xj

(
∂f
∂xi

)
= ∂

∂xi

(
∂f
∂xj

)

This means that the order of differentiation does not matter, and so the Hessian matrix is
symmetric. The next theorem makes precise a more general result.

T H E O R E M 1 4 . 6 . 1 ( Y O U N G ’ S T H E O R E M )

Suppose that all the mth order partial derivatives of the function
f (x1, x2, . . . , xn) are continuous. If any two of them involve differentiating
w.r.t. each of the variables the same number of times, then they are necessarily
equal.

To explain this result, suppose that m = m1 + · · · + mn, and that f (x1, x2, . . . , xn) is dif-
ferentiated partially m1 times w.r.t. x1, m2 times w.r.t. x2, . . . , and mn times w.r.t. xn. Of
course, some of the integers m1, . . . , mn can be zero. Suppose too that all these mth order
partial derivatives are themselves continuous functions. Then we end up with exactly the
same result no matter what is the order of differentiation, because each of the final partial
derivatives is equal to

∂mf

∂xm1
1 ∂xm2

2 . . . ∂xmn
n

In the particular case when m = 2, for i = 1, . . . , n and j = 1, . . . , n, one has

∂2f
∂xj∂xi

= ∂2f
∂xi∂xj

provided that both these partial derivatives are continuous. A proof of Young’s theorem is
given in most advanced calculus books. Exercise 11 shows that the cross partial derivatives
are not always equal.
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Formal Definitions of Partial Derivatives
In Section 14.2, we gave a formal definition of partial derivatives for functions of two vari-
ables. This was done by modifying the definition of the derivative for a function of one
variable. The same modification works for a function of n variables.

Indeed, if z = f (x1, . . . , xn), then for each i = 1, 2, . . . , n we can define the function

g(xi) = f (x1, . . . , xi−1, xi, xi+1, . . . , xn)

of the single variable xi, where we think of all the variables xj other than xi as constants. Fol-
lowing the justification of (14.2.4) and (14.2.5) for the case of two variables, the definition
of partial derivative evidently implies that ∂z/∂xi = g′(xi). Now we can use the definition
(6.2.2) of g′(xi), provided the limit exists, to obtain

∂z
∂xi

= lim
h→0

f (x1, . . . , xi + h, . . . , xn) − f (x1, . . . , xi, . . . , xn)

h
(14.6.4)

As in Section 14.2, if the limit in (14.6.4) does not exist, then we say that ∂z/∂xi does
not exist, or that z is not differentiable w.r.t. xi at the point. Similarly, the approximation
in (14.6.1) holds because the fraction on the right-hand side of Eq. (14.6.4) is close to the
limit if h �= 0 is small enough.

Virtually all the functions we consider have continuous partial derivatives everywhere
in their domains. If z = f (x1, x2, . . . , xn) has continuous partial derivatives of first order in
a domain D, we call f continuously differentiable in D. In this case, f is also called a C1

function on D. If all partial derivatives up to order k exist and are continuous, then f is called
a Ck function.

E X E R C I S E S F O R S E C T I O N 1 4 . 6

1. For the function F(x, y, z) = x2exz + y3exy of three variables, calculate the three first-order partial
derivatives F′

1(1, 1, 1), F′
2(1, 1, 1), and F′

3(1, 1, 1).

2.SM Calculate all the first-order partial derivatives of the following six functions:

(a) f (x, y, z) = x2 + y3 + z4 (b) f (x, y, z) = 5x2 − 3y3 + 3z4 (c) f (x, y, z) = xyz

(d) f (x, y, z) = x4/yz (e) f (x, y, z) = (x2 + y3 + z4)6 (f) f (x, y, z) = exyz

3. Let x and y be the populations of two cities and d the distance between them. Suppose that the
number of travellers T between the two cities is given by T = kxy/dn, where k and n are positive
constants.9 Find ∂T/∂x, ∂T/∂y, and ∂T/∂d, then discuss their signs.

4. Let g be defined for all (x, y, z) by

g(x, y, z) = 2x2 − 4xy + 10y2 + z2 − 4x − 28y − z + 24

(a) Calculate g(2, 1, 1), g(3, −4, 2), and g(1, 1, a + h) − g(1, 1, a).

9 Especially when n = 2, economists often refer to this as a “gravity model”, following Newton’s
“inverse square law” of gravitational attraction between two point masses.
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(b) Find all partial derivatives of the first and second order.

5. Suppose that π(p, r, w) = 1
4 p2(1/r + 1/w). Find the partial derivatives of π w.r.t. p, r, and w.

6. Find all first- and second-order partials of w(x, y, z) = 3xyz + x2y − xz3.

7. If f (x, y, z) = p(x) + q(y) + r(z), what are f ′
1, f ′

2, and f ′
3?

8. Find the Hessian matrices of: (a) f (x, y, z) = ax2 + by2 + cz2; (b) g(x, y, z) = Axaybzc.

9. Prove that if w =
(

x − y + z
x + y − z

)h

, then x
∂w

∂x
+ y

∂w

∂y
+ z

∂w

∂z
= 0.

10.SM Define the function f (x, y, z) = xyz
for x > 0, y > 0, and z > 0. Find its first-order partial deriva-

tives by differentiating ln f .

11.SM [HARDER] Consider the function which is defined by f (x, y) = xy(x2 − y2)/(x2 + y2) for all
(x, y) �= (0, 0), with f (0, 0) = 0. Find expressions for f ′

1(0, y) and f ′
2(x, 0). Then show that

f ′′
12(0, 0) = −1 and f ′′

21(0, 0) = 1. Check that nevertheless Young’s theorem is not contradicted
because f ′′

12 and f ′′
21 are both discontinuous at the point (0, 0).

14.7 Convex Sets

S T U

a

b
V

c

d

Figure 14.7.1 Two convex and two non-convex sets

A set in the plane is said to be convex if each pair of points in the set can be joined by a line
segment lying entirely within it. Examples include the sets S and T shown in Fig. 14.7.1.
In both of these sets, if you take any pair of points and then draw the line segment that
connects them, this does not leave the set. This is not true for the other two sets U and V .
The segment that connects points a and b in U, for instance, passes outside the set. The
same is true of points c and d in V . These two sets, therefore, are not convex.

To be sure, there are non-convex sets where one can find some pairs of points that are
connected by segments contained entirely within the sets. This is true of sets U and V in
Fig. 14.7.1. But the property of convexity requires that the segment connecting any two
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points be contained within the set. Thus, for a set to be non-convex, it suffices that there are
two points for which the segment that joins them leaves the set somewhere.

E X A M P L E 14.7.1 (Budget set). Consider Example 4.4.7 once again. A consumer can buy any non-
negative amounts x and y of two commodities, subject to the constraint that total expenditure
is at most m when the prices of the two commodities are p > 0 and q > 0, respectively. The
consumer’s budget set, which was shown in Fig. 4.4.12, is

B = {(x, y) : px + qy ≤ m, x ≥ 0, y ≥ 0}
From that earlier figure, it is easy to see that any two points in the set B are connected by a
straight line segment that lies entirely within B. So B is convex.

E X A M P L E 14.7.2 (An indivisible commodity). In the consumer situation of the previous example,
suppose that commodity y is indivisible in the sense that it is available only in integer
amounts. This is true, for instance, of cars or cell phones. If we let Z+ denote the set of
nonnegative integers, then the requirement is that y ∈ Z+. Assuming that commodity x is
not subject to a similar indivisibility, the budget set now is

{(x, y) : px + qy ≤ m, x ≥ 0, y = 0, 1, 2, . . .} = {(x, y) : px + qy ≤ m, x ≥ 0, y ∈ Z+}
This set consists of the horizontal lines illustrated in Fig. 14.7.2. Each horizontal line cor-
responds to a different integer level of y, and it consists of all the values of x ≥ 0 which
satisfy px ≤ m − qy for that value of y.

To show that the budget set is not convex in this case, take any two bundles on different
horizontal lines. Because y is restricted to the set Z+, it is then obvious that the line segment
which connects these two will not lie entirely within the budget set.

x

y

(m
p ,0)

(0, m
q )

px+qy = m

Figure 14.7.2 The budget set in
Example 14.7.2

x

a c b

c−a b− c

b−a

� = 1 � = 0

1−� = c−a
b−a � = b−c

b−a

Figure 14.7.3 c as a weighted average
of a and b

For a more formal definition of convexity, we must characterize the concept of a “line
segment that connects two points”. In the case of the real line, given any two numbers a
and b with a < b, the line segment joining them is simply the closed interval [a, b]. Also,
note that a ≤ c ≤ b if and only if c belongs to the interval [a, b], in which case we have
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c = b − c
b − a

a + c − a
b − a

b

Now let λ = (b − c)/(b − a). Then 1 − λ = (c − a)/(b − a), whereas 0 ≤ λ ≤ 1 and

c = λa + (1 − λ)b (14.7.1)

In this way the number c has been expressed as a weighted average of a and b, with respec-
tive weights λ and 1 − λ. Figure 14.7.3 illustrates this construction. The length b − a of the
interval [a, b] is divided in proportion to the differences b − c and c − a. Then the result-
ing weights are assigned to the two points a and b, taking care that λ = 0 corresponds to
the case c = b, while λ = 1 gives c = a. This procedure allows any point c in [a, b] to be
written as in Eq. (14.7.1) for a unique appropriately chosen λ in [0, 1]. So we can write

[a, b] = {c ∈ R : c = λa + (1 − λ)b for some λ in [0, 1]}
or, more concisely

[a, b] = {λa + (1 − λ)b : λ ∈ [0, 1]}
Once we go beyond the one-dimensional real line, recall that according to definition

(12.10.2), the unique straight line in R
n that joins any two distinct n-vectors a and b is the

entire range of the function defined by

x(λ) = λa + (1 − λ)b = b + λ(a − b) (14.7.2)

as λ ranges over the whole of the real line R. Figure 12.10.1 illustrates this line in the
three-dimensional case, and Fig. 14.7.4 in the two-dimensional case.

x

y�

a
↙

0 < λ < 1
↙
λ > 1

b ↙
λ < 0

Figure 14.7.4 The line segment connecting a and b.

Note that for any n, even n = 1, as λ increases from large negative to large positive
numbers, so the point x(λ) defined by Eq. (14.7.2): (i) starts out when λ < 0 on the other
side of b from a; (ii) passes through b when λ = 0; (iii) moves along the line away from b
and toward a as λ increases from 0 toward 1; (iv) passes through a when λ = 1; (v) is on
the side of a away from b when λ > 1, and moves further away from a as λ increases away
from 1. In particular, by applying Eq. (14.7.2) with λ ranging from 0 to 1, we obtain any
point in the “interval” [a, b] as we did in Eq. (14.7.1), though now in n dimensions.

With this in mind, it is now easy to formulate the definitions of a line segment and of a
convex set in R

n:
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D E F I N I T I O N S O F A L I N E S E G M E N T A N D C O N V E X S E T I N n - S P A C E

1. Given any two distinct vectors a and b in R
n, the line segment [a, b] joining

a to b is the subset of R
n defined by

[a, b] = {λa + (1 − λ)b : λ ∈ [0, 1]} (14.7.3)

2. A set S in R
n is said to be convex if the line segment [a, b] joining a to b is

a subset of S for all distinct vectors a and b in S, or equivalently, if:

λa + (1 − λ)b ∈ S for all a, b in S and all λ in [0, 1] (14.7.4)

Another way to help remember this definition is to define a convex combination of two
points a and b in R

n as any point that can be written as λa + (1 − λ)b, with λ in [0, 1].
Thus, the line segment [a, b] joining a and b is the set of all convex combinations of those
two points. And a set is convex if and only if it contains all the convex combinations of any
pair of points within it.

E X A M P L E 14.7.3 We can now verify, formally, the conclusion from Example 14.7.1 that, with two
goods, the standard budget set B defined in Example 4.4.7 is convex. To do this, fix any two
bundles a = (a1, a2) and b = (b1, b2) in B, as well as any λ ∈ [0, 1]. By definition of B, we
have a1 ≥ 0, a2 ≥ 0, b1 ≥ 0, b2 ≥ 0, as well as the budget inequalities pa1 + qa2 ≤ m and
pb1 + qb2 ≤ m.

Let (x, y) be the convex combination λa + (1 − λ)b, meaning that

x = λa1 + (1 − λ)b1 and y = λa2 + (1 − λ)b2

Since λ ∈ [0, 1], we have λ ≥ 0 and 1 − λ ≥ 0. Moreover, because a1 ≥ 0 and b1 ≥ 0, we
can conclude that λa1 ≥ 0 and (1 − λ)b1 ≥ 0. These imply in turn that

x = λa1 + (1 − λ)b1 ≥ 0 (i)

Similarly we have

y = λa2 + (1 − λ)b2 ≥ 0 (ii)

After recalling the definition of the inner product from Section 12.4, it follows from (i) and
(ii) that

(p, q) · (x, y) = px + qy = p[λa1 + (1 − λ)b1] + q[λa2 + (1 − λ)b2]

= λ(pa1 + qa2) + (1 − λ)(pb1 + qb2)
(iii)

Now, using once again the inequalities λ ≥ 0 and 1 − λ ≥ 0, but this time in combination
with the budget inequalities, we have
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λ(pa1 + qa2) ≤ λm and (1 − λ)(pb1 + qb2) ≤ (1 − λ)m (iv)

Incorporating (iii) with the sum of these two inequalities yields

(p, q) · (x, y) ≤ λm + (1 − λ)m = m (v)

Conditions (i), (ii) and (v) together imply that the bundle (x, y) is in the budget set. Since the
two points a = (a1, a2) and b = (b1, b2) in B along with the scalar λ ∈ [0, 1] were arbitrary,
this argument proves that the set B is convex.

E X A M P L E 14.7.4 Suppose that one of the commodities in indivisible, as in Example 14.7.2. Then the
budget set is no longer convex. To see this, suppose that m > q, implying that the bundles
(0, 0) and (0, 1) are both in the budget set of that example. Then the bundle (0, 1/2) is a
convex combination of (0, 0) and (0, 1) with λ = 1/2. Yet it is not in the budget set since
the quantity of the indivisible commodity y is not an integer.

Note in particular that the empty set and also any set consisting of one single point are
convex. Intuitively speaking, a convex set must be “connected” without any “holes”, and
its boundary must not “bend inwards” at any point.

I N T E R S E C T I O N A N D U N I O N O F C O N V E X S E T S

If S and T are two convex sets, then their intersection S ∩ T is also convex. The
union of convex sets, however, is usually not convex.

The reason why this result is true can be seen in Fig. 14.7.5. Since the two sets S and T
are both convex, their intersection is also convex, but their union is not. The formal proof
of the first statement is, in fact, almost as easy as the graphical argument:

S TS∩T

Figure 14.7.5 Sets S, T , and S ∩ T are all convex; set S ∪ T is not

Proof: Suppose that a and b both lie in S ∩ T . Then a and b both lie both in S and in T .
Because S is convex, any convex combination of x and y must lie in S. The same is true
for T . It follows that the convex combination lies in the intersection S ∩ T . This means that
S ∩ T is convex.
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E X E R C I S E S F O R S E C T I O N 1 4 . 7

1. Determine which of the following sets are convex by drawing each of them in the xy-plane.

(a) {(x, y) : x2 + y2 < 2} (b) {(x, y) : x ≥ 0, y ≥ 0}
(c) {(x, y) : x2 + y2 > 8} (d) {(x, y) : x ≥ 0, y ≥ 0, xy ≥ 1}
(e) {(x, y) : xy ≥ 1} (f) {(x, y) :

√
x + √

y ≤ 2}

s

t

S

T S×T

Figure 14.7.6 Exercise 2

2. If S and T are any two sets, the Cartesian product S × T of S and T is defined as the set

S × T = {(s, t) : s ∈ S, t ∈ T}
of all ordered pairs (s, t) with s ∈ S and t ∈ T (see Section 4.3).

(a) For the case illustrated in Fig 14.7.6 when S and T are both intervals of the real line, so convex,
prove that S × T is a convex subset of the plane.

(b) The Cartesian product of Rm and Rn can be identified with Rm+n via the correspondence
between the pair ((x1, . . . xm), (y1, . . . yn)) inRm × Rn and (x1, . . . , xm, y1, . . . , yn) inRm+n. Given
two arbitrary convex sets S and T inRm andRn, respectively, is the Cartesian product S × T convex
in Rm+n?

14.8 Concave and Convex Functions
Two Variables
Recall from Chapter 8 that a function of one variable y = f (x) defined on interval I is called
concave if its graph looks like ∩, with its hollow side turned downwards, like a cave roof.
On the other hand, the function y = f (x) is convex on I if its graph looks like ∪, with its
hollow side turned upwards, like a ditch.

We now look for a definition that is valid for functions of more than one variable. Intu-
ition based on the geometry in the case of one variable suggests this: A function f is concave
(convex) if it is defined on a convex set and the line segment joining any two points on its
graph is never above (below) the graph.
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Figure 14.8.1 A convex domain for f (x, y) Figure 14.8.2 A concave function defined on S

In order to allow the graph of a function to be drawn in three dimensions, we consider
the special case when z = f (x, y), a function of two variables. Suppose that f is defined
on the convex set S illustrated in Fig. 14.8.1, which has the particular points a = (a1, a2)

and b = (b1, b2) as two of its members. Figure 14.8.1 also shows the unique line � in the
xy-plane that includes these two points. From the discussion surrounding Eqs (14.7.3) and
(14.7.4), convexity of S implies that every point of � which belongs to the line segment
[a, b] connecting these two points also lies within S.

Figure 8.2.1 showed the graph in two dimensions of a concave function of one variable.
The analogue for a function of two variables is a graph in three dimensions, part of which
is represented in Fig. 14.8.2. The figure also includes the shaded set marked S which rep-
resents all points whose coordinates (x, y, z) satisfy (x, y) in S and z = 0; this is effectively
a copy of the set S shown in Fig. 14.8.1.

The graph of f consists of all points (x, y, z) in 3-space that satisfy (x, y) in S and
z = f (x, y). It includes the two particular points A and B shown in Fig. 14.8.2, whose
coordinates in three dimensions are respectively

(a, f (a)) = (a1, a2, f (a1, a2)) and (b, f (b)) = (b1, b2, f (b1, b2))

Because f is defined on the whole of the convex set S, it is defined in particular for each point
(x, y) in the line segment [a, b]. Figure 14.8.2 includes a curve joining the two points A and
B that appears highlighted. It is the part of the graph of f defined on S that, in Fig. 14.8.2, lies
above the line segment [a, b] in the plane z = 0. This curve consists of all the triples (x, y, z)
in R

3 where (x, y) is a convex combination of a and b, and z = f (x, y). The solid straight line
connecting the two end points A and B of this curve is never above the highlighted curve
joining A to B that forms the relevant part of the graph of the function. This is precisely
what is required for the function f to be concave, as in the following:

C O N C A V E A N D C O N V E X F U N C T I O N S

Let z = f (x) be a function defined on a convex set S in the plane. Then f is
concave if, for all a and b in S and for all λ in [0, 1], one has

f (λa + (1 − λ)b) ≥ λf (a) + (1 − λ)f (b) (14.8.1)
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Similarly, f is convex on S if, for all a and b in S and for all λ in [0, 1], one has

f (λa + (1 − λ)b) ≤ λf (a) + (1 − λ)f (b) (14.8.2)

Clearly, these definitions imply that f is concave if and only −f is convex.
The arguments of f in these two definitions are written in vector form. For the function

z = f (x, y) of two variables, an equivalent version of (14.8.1) is

f (λx1 + (1 − λ)x2, λy1 + (1 − λ)y2) ≥ λf (x1, y1) + (1 − λ)f (x2, y2)

Similarly for Eq. (14.8.2). It is useful to note, also, that the inequalities (14.8.1) and (14.8.2)
are identical to (8.2.1) and (8.2.2), respectively, except that f now has two arguments. This
shows that the definitions of concavity and convexity we just gave are rather simple exten-
sions of those we saw in Chapter 8.

As in that chapter, if the inequality (14.8.1) is always strict when a �= b and 0 < λ < 1,
then f is strictly concave, whereas if the inequality (14.8.2) is always strict when a �= b and
0 < λ < 1, then the function is strictly convex. Unsurprisingly, f is strictly convex if and
only if −f is strictly concave.

It is usually impractical to apply the definition directly to show that a function is concave
or convex in a certain set. We shall later develop a number of theorems that often help us
to decide with ease whether a function is concave or convex. Even so, here is one example
where we use the definition directly.

E X A M P L E 14.8.1 Consider the function f (x, y) of two variables defined by f (x, y) = 1 − x2 (so y does
not appear in the formula for f ). Show that f is concave. Is it strictly concave?

Solution: Let (x1, y1) and (x2, y2) be two arbitrary points in the plane. For f to be concave,
we must show that for all λ in [0, 1], one has

f (λx1 + (1 − λ)x2, λy1 + (1 − λ)y2) ≥ λf (x1, y1) + (1 − λ)f (x2, y2) (∗)

Using the definition of f , we see that inequality (∗) is equivalent to

1 − [λx1 + (1 − λ)x2]2 ≥ λ(1 − x2
1) + (1 − λ)(1 − x2

2)

or to
1 − [λx1 + (1 − λ)x2]2 − λ(1 − x2

1) − (1 − λ)(1 − x2
2) ≥ 0 (∗∗)

Expanding and collecting all terms on the LHS of the inequality (∗∗) yields the expression

λ(1 − λ)[x2
1 − 2x1x2 + x2

2] = λ(1 − λ)(x1 − x2)
2 (∗∗∗)

This expression is obviously nonnegative for all λ in [0, 1]. So (∗∗) is satisfied, confirming
that f (x, y) is concave.

When x1 = x2, the expression (∗∗∗) is zero, implying equality in (∗∗), and so in (∗), for
all values of y1 and y2, even when y1 �= y2. It follows that f cannot be strictly concave.
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The one-variable function g(x) = 1 − x2 is concave. The previous example showed that
it is also concave considered as a function of the two variables x and y.

Figure 14.8.3 shows a portion of the graph of a particular function that takes the form
f (x, y) = g(x). Here g is concave, and therefore so is f . Through each point on the graph
there is a straight line parallel to the y-axis that lies in the graph. This shows that f cannot
be strictly concave, even though g is.

x

z

y

z = f (x,0) = g(x)

z = f (x,y) = g(x)

Figure 14.8.3 Function g(x) is strictly concave, but f (x, y) is only concave

E X A M P L E 14.8.2 Consider the linear (affine) function f (x, y) = ax + by + c, where a, b and c are
constants. It follows immediately from the definition that f is both concave and convex.
The graph of f is a plane in R

3. All points on the line segment between any two points in
the plane lie within the same plane.

Sums and Composite Functions
In Section 8.3 we presented some useful results for sums and composites of functions that
are concave or convex. With only some obvious formal modifications, the same results hold
for functions of two variables as well. Since the way to demonstrate them is actually just
the same, we simply state them here without further discussion.

T H E O R E M 1 4 . 8 . 1 ( P R O P E R T I E S O F C O N C A V E F U N C T I O N S )

Let S be a convex subset in the plane, and f (x, y) a function defined on S.

(i) Let h be the function defined on S by h(x, y) = −f (x, y). Then f is (strictly)
concave if and only if h is (strictly) convex.

(ii) Suppose now that g(x, y) is another function defined on S. If f and g are
both concave, then so is the function f (x, y) + g(x, y). If either f or g is
also strictly concave, then so is the function f (x, y) + g(x, y).

(iii) Let F(z) be an increasing and concave function defined over an interval
that includes the range of f . If f is concave, then so is the composite func-
tion F(f (x, y)). If f is strictly concave, and F is strictly increasing as well
as concave, then F(f (x, y)) is strictly concave.
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These results can be combined to obtain further results, and to obtain properties of con-
vex functions.

Concavity and Convexity Using Second Derivatives
For functions of one variable, the four characterizations (8.5.3) to (8.5.6) often provide a
quick way to decide where a function is (strictly) concave or (strictly) convex by checking
the sign of the second derivative. For functions of two variables there is a corresponding
test which is very often used.

Open Closed Neither open
nor closed

Interior
point

Boundary
point

S

Figure 14.8.4 Open and closed sets

Our test of concavity or convexity requires us to extend the concept of an open interval
in the line R

1 to that of an open set in the plane R
2. First, a point a is called an interior

point of a set S in R
2 if there exists a circle centred at a such that all points inside the circle

lie in S. This is illustrated by the point marked “interior point” in Fig. 14.8.4. On the other
hand, if every circle around a contains at least one point from S and at least one that does
not belong to S, then a is called a boundary point of S. Finally, a is an exterior point of S if
there is a circle centred at a that does not contain any points of S. Note that, since any circle
contains its centre, no exterior point of S can belong to S.

A set S in R
2 is open if all its points are interior points. This is true for the second set

illustrated in Fig. 14.8.4, where we indicate boundary points that belong to the set by a solid
curve, and those that do not by a dashed curve. Some other examples include: the open first
quadrant {(x, y) : x > 0, y > 0}; the set {(x, y) : x2 + y2 < 1} of all points strictly inside the
unit circle; the open rectangle {(x, y) : 0 < x < 5, 2 < y < 4}; the entire plane R

2; and the
empty set ∅.

In all but the last of these examples it will be obvious from a picture that for any point
in the set we can find a small circle around that point such that anything inside that circle
belongs to the set. But what about the empty set? Well, there is no point at all in ∅, so every
point in ∅ is trivially an interior point.

The set of all interior points of a set S is called the interior of S. It is not hard to show
that the interior of S is an open set.

A boundary point of S does not necessarily belong to S. If S contains all its boundary
points, like the third set in Fig. 14.8.4, then S is called closed. Note that a set that contains
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some but not all of its boundary points, like the last of those illustrated in Fig. 14.8.4, is
neither open nor closed. In fact, a set is closed if and only if its complement is open.10

Given any subset S of the plane, its interior, exterior, and boundary together form a
“partition” of the entire plane into three pairwise disjoint sets. Of these three sets, the interior
and exterior of S are both open, whereas the boundary that “separates” the interior of S from
its exterior is closed.

These illustrations give only very loose indications of what it means for a set to be either
open or closed. Of course, if a set is not even precisely defined, it is impossible to decide
conclusively whether it is open or closed.

Having explained the concept of an open set, we can formulate the following result:

C O N C A V I T Y A N D C O N V E X I T Y C O N D I T I O N S U S I N G S E C O N D D E R I V A T I V E S

Suppose that the function z = f (x, y) is defined and C2 on a set S that is open
and convex. Then,

f is concave ⇐⇒ f ′′
11 ≤ 0, f ′′

22 ≤ 0, and f ′′
11f ′′

22 − (f ′′
12)

2 ≥ 0 (14.8.3)

f is convex ⇐⇒ f ′′
11 ≥ 0, f ′′

22 ≥ 0, and f ′′
11f ′′

22 − (f ′′
12)

2 ≥ 0 (14.8.4)

For strict concavity or convexity, here are sufficient but not necessary condi-
tions:

f ′′
11 < 0 and f ′′

11f ′′
22 − (f ′′

12)
2 > 0 =⇒ f is strictly concave (14.8.5)

f ′′
11 > 0 and f ′′

11f ′′
22 − (f ′′

12)
2 > 0 =⇒ f is strictly convex (14.8.6)

The inequalities in all four statements are understood to hold at all points (x, y)
in S.

The implications in (14.8.5) and (14.8.6) cannot be reversed. For example, the function
f (x, y) = x4 + y4 is strictly convex in the whole plane, even though f ′′

11(0, 0) = 0.
Note too that the two inequalities specified in (14.8.5) together imply that f ′′

22(x, y) < 0
as well.11 Similarly, the two inequalities in (14.8.6) together imply that f ′′

22 > 0.

E X A M P L E 14.8.3 Let f (x, y) = 2x − y − x2 + 2xy − y2 for all (x, y). Is f concave/convex?

Solution: Here f ′′
11 = −2, f ′′

12 = f ′′
21 = 2, and f ′′

22 = −2. Hence f ′′
11f ′′

22 − (f ′′
12)

2 = 0. So all
three conditions in (14.8.3) are satisfied, implying that f is concave for all (x, y).

E X A M P L E 14.8.4 Find the largest set S on which f (x, y) = x2 − y2 − xy − x3 is concave.

10 In everyday usage the words “open” and “closed” are antonyms: a shop is either open or closed.
In topology, however, a set that contains some but not all its boundary points is neither open nor
closed. To make matters even stranger, in topology there always exist “clopen” sets that are both
open and closed. In R2 these include ∅ and R2 itself. This is explained in FMEA.

11 In fact, the second inequality implies that f ′′
11f ′′

22 > (f ′′
12)

2 ≥ 0. So f ′′
11 and f ′′

22 must have the same
sign.
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Solution: Here f ′′
11 = 2 − 6x, f ′′

12 = f ′′
21 = −1, and f ′′

22 = −2. Hence f ′′
11 ≤ 0 iff x ≥ 1/3.

Moreover, f ′′
11f ′′

22 − (f ′′
12)

2 = 12x − 5 ≥ 0 iff x ≥ 5/12. Since 5/12 > 1/3, we conclude
from (14.8.3) that the set S consists of all (x, y) where x ≥ 5/12.

E X A M P L E 14.8.5 Check the (strict) concavity or convexity of the Cobb–Douglas function defined on
the set S = {(x, y) : x > 0, y > 0} by f (x, y) = xayb, where the parameters a and b together
satisfy a ≥ 0, b ≥ 0, and a + b ≤ 1.

Solution: Here f ′′
11 = a(a − 1)xa−2yb, f ′′

12 = abxa−1yb−1, and f ′′
22 = b(b − 1)xayb−2. Since a

and b belong to the interval [0, 1], one has f ′′
11 ≤ 0 and f ′′

22 ≤ 0. Moreover, throughout S one
has f ′′

11f ′′
22 − (f ′′

12)
2 = abx2a−2y2b−2(1 − a − b) ≥ 0. So the conditions in Eq. (14.8.3) are

satisfied, implying that f (x, y) is concave in S. In case a > 0, b > 0, and a + b < 1, one has
f ′′
11 < 0 and f ′′

11f ′′
22 − (f ′′

12)
2 > 0. Then (14.8.5) implies that f is strictly concave.

Finally, in (14.6.2) we introduced the notation that, in the case of a function of two
variables reduces to

f′′(x, y) =
(

f ′′
11(x, y) f ′′

12(x, y)
f ′′
21(x, y) f ′′

22(x, y)

)
for the symmetric Hessian matrix. Students who are already familiar with determinants will
know that, following (13.1.3), one has |f′′| = f ′′

11f ′′
22 − (f ′′

12)
2. With this notation, conditions

(14.8.3)–(14.8.6) may become easier to remember when restated as follows:

C O N C A V I T Y A N D C O N V E X I T Y U S I N G S E C O N D D E R I V A T I V E S

Let the function z = f (x, y) be defined and C2 on an open and convex set S in
the plane. Then

f is concave ⇐⇒ f ′′
11 ≤ 0, f ′′

22 ≤ 0, and |f′′| ≥ 0 (14.8.7)

f is convex ⇐⇒ f ′′
11 ≥ 0, f ′′

22 ≥ 0, and |f′′| ≥ 0 (14.8.8)

f ′′
11 < 0 and |f′′| > 0 =⇒ f is strictly concave (14.8.9)

f ′′
11 > 0 and |f′′| > 0 =⇒ f is strictly convex (14.8.10)

where the inequalities in the four statements are understood to hold
throughout S.

Many Variables
We now consider conditions for the concavity or convexity of a function z = f (x) of n > 2
variables which is defined on a subset S of R

n. Of course, we can no longer draw the graph of
f , since that is a set in n + 1-space and n + 1 > 3. Nevertheless, it is fairly easy to extend
the concepts and definitions of convex set and of (strictly) concave (or convex) function
from the case of two variables (x, y) that we have been considering so far to the case of n
variables specified by the n-vector x.
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S

T

Figure 14.8.5 One convex and one non-convex set in R3

First, note that definitions (14.8.1) and (14.8.2) of concave and convex function have
already been expressed in a way that allows the domain S of the function z = f (x) to be
a subset of R

n. To use the definitions, however, we must check whether the domain S of
z = f (x) is a convex set. Following definitions (14.7.3) and (14.7.4), a set S in Rn is convex if
and only if, for every pair of points a, b in S, it contains the line segment [a, b] consisting of
all convex combinations of a and b. For three-dimensional sets such as those in Fig. 14.8.5,
a graphical representation is still possible, and allows us to see that the set S, which is
shaped like a solid rugby ball, is convex, unlike the set T , which is a solid whose boundary
is shaped like a conical flask or coffee pot with a neck and a tight-fitting cover on top. For
n > 3, however, we must rely on definition (14.7.4) to determine whether a set S in Rn is
convex or non-convex.

Second, we need to extend from the plane R
2 to R

n our previous definitions of an interior
point and open set. Indeed, the modification is rather obvious: for a point a in R

n to be an
interior point of the set S, there must be an sphere rather than a circle centred at a such
that all points in the sphere lie in S. To understand this clearly, you may need to review the
definition (14.4.3) of a sphere with centre a and radius r in R

3, which in R
n becomes the

set {x : ‖x − a‖ = r}. With this definition, that of an open set does not change: a set S in
R

n is open if every point of S is in the interior of S.
Third, even though we cannot draw the graph of z = f (x) when x is an n-vector with

n ≥ 3, a two-dimensional graphical representation of the inequalities in definitions (14.8.1)
and (14.8.2) is still possible. Indeed, given any two distinct points a and b of the convex set
S, consider the function ϕ(t) of one variable defined for all t in the interval [0, 1] by

ϕ(t) = f (ta + (1 − t)b)

As a function of only one variable, this has a graph in two dimensions. That graph will be a
curve in the plane joining the two end points where (t, z) = (0.f (b)) and (t, z) = (1.f (a)).
Then definition (14.8.1), for instance, states that if f is concave, then every point on the curve
that is the graph of z = ϕ(t) for 0 ≤ t ≤ 1 must be on or above the line segment that joins
its two end points. That line segment is the set {(t, z) : 0 ≤ t ≤ 1 and z = ta + (1 − t)b}.
Another implication of z = f (x) being concave is that the function z = ϕ(t) is concave over
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the whole of [0, 1]. In other words, f is concave over the line segment [a, b]. Conversely, if
f is concave over every line segment in S, then f is concave over S.

Fourth, it is easy to see that the results of Theorem 14.8.1 extend from functions of two
variables to functions of n variables.

Much less straightforward is the characterization of a concave or convex function
using its second derivatives. Already the conditions in (14.8.3) to (14.8.6) for functions
of two variables are certainly more complicated than their counterparts (8.5.3) to (8.5.6)
for functions of one variable. They also require that the function f have continuous first-
and second-order partial derivatives. There are even more complications when considering
a function of n ≥ 3 variables. The conditions given below involve the definiteness of the
Hessian matrix, relying on the definitions we introduced in Section 13.12. See FMEA for
further discussion of the result.

T H E O R E M 1 4 . 8 . 2 ( C O N C A V I T Y A N D C O N V E X I T Y U S I N G
S E C O N D D E R I V A T I V E S )

Suppose that the function f (x) is defined and C2 on a set S in the space R
n that

is open and convex. Let f′′(x) denote the Hessian matrix defined in (14.6.2).
Then:

(i) f is concave if and only if for all x in S the matrix f′′(x) is negative semidef-
inite;

(ii) f is convex if and only if for all x in S the matrix f′′(x) is positive semidef-
inite;

(iii) f is strictly concave if for all x in S the matrix f′′(x) is negative definite;

(iv) f is strictly convex if for all x in S the matrix f′′(x) is positive definite.

Note that, like the corresponding results for functions of one or two variables, although
the conditions specified in parts (i) and (ii) are both necessary and sufficient for f to be
concave or convex, those specified in parts (iii) and (iv) are sufficient but not necessary
for f to be strictly concave or strictly convex.

E X A M P L E 14.8.6 Prove that the function defined for all real x1, x2, and x3 by

f (x1, x2, x3) = 100 − 2x2
1 − x2

2 − 3x3 − x1x2 − ex1+x2+x3

is strictly concave.

Solution: We have to show that the Hessian matrix of f is negative definite. Routine calcu-
lation of the first-order and then the second-order partial derivatives of f shows that

f′′(x1, x2, x3) =
⎛
⎝−4 − eu −1 − eu −eu

−1 − eu −2 − eu −eu

−eu −eu −eu

⎞
⎠
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where u = x1 + x2 + x3. By Theorem 13.12.2, it is enough to show that the three principal

minors of f′′ satisfy: (i) f ′′
11 < 0; (ii)

∣∣∣∣ f ′′
11 f ′′

12
f ′′
21 f ′′

22

∣∣∣∣ > 0; (iii) |f′′| < 0.

Note first that f ′′
11 = −4 − eu < 0. To check (ii), we subtract the first row of the

second-order principal minor from its second row to obtain∣∣∣∣∣ f ′′
11 f ′′

12

f ′′
21 f ′′

22

∣∣∣∣∣ =
∣∣∣∣−4 − eu − 1 − eu

−1 − eu − 2 − eu

∣∣∣∣ =
∣∣∣∣−4 − eu − 1 − eu

3 − 1

∣∣∣∣ = 7 + 4eu > 0

As for (iii), to evaluate the determinant of f′′(x1, x2, x3) we first subtract its third row from
both its first and second rows, then use cofactor expansion along the third column. The
result is

|f′′| =
∣∣∣∣∣∣
−4 − eu −1 − eu −eu

−1 − eu −2 − eu −eu

−eu −eu −eu

∣∣∣∣∣∣ =
∣∣∣∣∣∣

−4 −1 0
−1 −2 0
−eu −eu −eu

∣∣∣∣∣∣ = (−eu)

∣∣∣∣ −4 −1
−1 −2

∣∣∣∣ = −7eu < 0

By Theorem 13.12.2, this sign pattern confirms that the Hessian matrix f′′ is negative defi-
nite, so f is strictly concave.

Rather than a proof of the characterization we introduced in Theorem 14.8.2, instead we
offer an informative example.

E X A M P L E 14.8.7 Given any symmetric matrix A = (aij)n×n, show that the function defined on R
n

by f (x) = x′Ax is concave, strictly concave, convex, or strictly convex according as the
matrix A is negative semidefinite, negative definite, positive semidefinite, or positive defi-
nite. Consider first the special case when A is a diagonal matrix, then treat the general case
by considering the diagonalization P′AP of A whose existence is ensured by the Spectral
Theorem 13.11.4.

Solution: In the special case when A is the n × n diagonal matrix D = diag(λ1, λ2, . . . , λn),
the quadratic form is f (x) = x′Dx = ∑n

i=1 λix
2
i . Now each term λix

2
i of the sum is respec-

tively strictly concave, both concave and convex, or strictly convex according as λi is
negative, zero, or positive. It follows from Theorem 14.8.1 extended to functions of n vari-
ables that the sum of all n terms is respectively concave, or strictly concave, or convex,
or strictly convex according as the coefficients λi, which are the eigenvalues of the diago-
nal matrix D, are all simultaneously nonpositive, or negative, or nonnegative, or positive.
By Theorem 13.12.1, this is equivalent to D being respectively negative semidefinite, or
negative definite, or positive semidefinite, or positive definite.

For the general case, because A is symmetric, the Spectral Theorem 13.11.4 implies that
A has a diagonalization D = P′AP, where P is orthogonal in the sense that P−1 = P′. Then,
arguing as in the proof of Theorem 13.12.1, the diagonal elements of D are the eigenvalues
of both D and A. Moreover, following Eq. (13.12.12), one has x′Ax = y′Dy = ∑n

i=1 λiy
2
i

where y = P′x. As in the previous special case when A is diagonal, the result follows from
Theorem 13.12.1.
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Recall from Example 14.6.3 that, given any symmetric n × n matrix A, the Hessian
matrix of the quadratic form x′Ax satisfies f′′ = 2A.

This result and its proof should help reinforce in your mind the importance and useful-
ness of the Spectral Theorem 13.11.4, as well as of Theorem 13.12.1 which characterizes
the definiteness of the quadratic form by the signs of the eigenvalues of its associated sym-
metric matrix. A very closely related result will appear in Chapter 17 when we consider
second-order conditions for optimization.

E X E R C I S E S F O R S E C T I O N 1 4 . 8

1. Which of the functions whose graphs are shown in Fig. 14.8.6 below are (presumably) con-
vex/concave, strictly concave/strictly convex?

y

x

z = f (x,y)

x

z = g(x,y)

y

x

z = h(x,y)

y

Figure 14.8.6 Exercise 14.8.1

2. For what values of the constant a is the following function concave/convex?

f (x, y) = −6x2 + (2a + 4)xy − y2 + 4ay

3.SM Examine the convexity/concavity of the following functions:

(a) z = x + y − ex − ex+y (b) z = ex+y + ex−y − 1
2 y (c) w = (x + 2y + 3z)2

(Hint: For part (c), recognize that w is a quadratic form, and determine its sign. Then use the result
of Example 14.8.7.)

4. [HARDER] Suppose that z = f (x, y) is a production function which determines output z as a function
of the pair (x, y) of nonnegative factor inputs Assume that f (0, 0) = 0. Also, for each fixed (x, y)
with x ≥ 0, and y ≥ 0, for all λ > 0, define g(λ; x, y) = f (λx, λy)/λ. Show that:

(a) If f is twice continuously differentiable and concave, then for all x, y one has f ′′
11(x, y) ≤ 0 and

f ′′
22(x, y) ≤ 0 (so each marginal product is decreasing).

(b) If f is concave, then g(λ; x, y) is decreasing as a function of λ, for each x ≥ 0 and y ≥ 0.

(c) In case there exists a fixed (x, y) with x ≥ 0 and y ≥ 0 such that f displays “constant returns”
in the sense that g(λ; x, y) is independent of λ, then f is not strictly concave.

(Hint: For parts (b) and (c), given any fixed x ≥ 0 and y ≥ 0 with (x, y) �= (0, 0), show that
g(λ; x, y) is the slope s(0, λ) of f (λx, λy), viewed as a function of the one variable λ defined for
all λ ≥ 0. Then use Theorem 8.2.1.)
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14.9 Economic Applications
This section considers several economic applications of partial derivatives.

E X A M P L E 14.9.1 Consider an agricultural production function Y = F(K, L, T), where Y is the output
produced, K is capital invested, L is labour input, and T is the area of agricultural land that
is used. Then ∂Y/∂K = F′

K is called the marginal product of capital. It is the rate of change
of output Y w.r.t. K when L and T are held fixed. Similarly, ∂Y/∂L = F′

L and ∂Y/∂T = F′
T

are the marginal products of labour and of land, respectively. For example, if K is the value
of capital equipment measured in dollars, and ∂Y/∂K = 5, then increasing capital input by
h units would increase output by approximately 5h units.

Suppose, in particular, that F is the Cobb–Douglas function F(K, L, T) = AKaLbTc,
where A, a, b, and c are positive constants. Find the marginal products, and the second-order
partials. Discuss their signs.

Solution: The three marginal products are

F′
K = AaKa−1LbTc, F′

L = AbKaLb−1Tc, and F′
T = AcKaLbTc−1

When K, L, and T are all positive, the marginal products are all positive. Thus, an increase
in capital, labour, or land will increase output.

The cross second-order partials, also called mixed partials, are:12

F′′
KL = AabKa−1Lb−1Tc, F′′

KT = AacKa−1LbTc−1, and F′′
LT = AbcKaLb−1Tc−1

Note that all these cross partials are positive. For any two inputs, we say they any are com-
plementary because more of one increases the marginal product of the other.

The direct second-order partials are

F′′
KK = Aa(a − 1)Ka−2LbTc, F′′

LL = Ab(b − 1)KaLb−2Tc, F′′
TT = Ac(c − 1)KaLbTc−2

For instance, F′′
KK is the partial derivative of the marginal product F′

K of capital w.r.t. K. If
a < 1, then F′′

KK < 0, indicating that there is a diminishing marginal product of capital. That
is, a small increase in the capital invested will lead to a decrease in the marginal product of
capital. We can interpret this as saying that, although small increases in capital cause output
to rise, so that F′

K > 0, this rise occurs at a decreasing rate, since F′′
KK < 0. Similarly for

labour if b < 1, and for land if c < 1.

E X A M P L E 14.9.2 Let x be the GDP of a country, and let y be a measure of its level of pollution. Suppose
that the function u(x, y) purports to measure the total well-being of the society. What signs
do you expect u′

x(x, y) and u′
y(x, y) to have? Can you guess what economists usually assume

about the sign of u′′
xy(x, y)?

Solution: It is reasonable to believe that social well-being increases as GDP x increases,
but decreases as pollution y increases. So we expect that u′

x(x, y) > 0 and u′
z(x, y) < 0.

12 Check for yourself that Young’s Theorem 14.6.1 holds by differentiating in the reverse order to
obtain F′′

LK , F′′
TK , and F′′

TL, respectively.
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According to Eq. (14.6.1) applied to the function u′
x(x, y), its partial derivative

u′′
xy = (∂/∂y)(u′

x) is the approximate change in u′
x per unit increase in y, the level of

pollution. Moreover, u′
x is the approximate increase in well-being per unit increase in x.

It is often assumed that u′′
xy < 0. This implies that the increase in well-being obtained

from a fixed small increase h in GDP x is likely to decrease when the level of pollution
increases.13 Economists usually assume, often without any thought, that the function u is
C2. By Young’s Theorem 14.6.1, the inequality u′′

xy < 0 then implies that u′′
yx < 0. Thus

the increase in welfare obtained from being exposed to a little less pollution, which is
approximately −u′

y per unit, increases with consumption x. This accords with the highly
controversial view that poor people may tolerate pollution more easily.14

E X E R C I S E S F O R S E C T I O N 1 4 . 9

1. One estimate of the demand for money M in the United States during the period 1929–1952
involves the equation

M = 0.14Y + 76.03(r − 2)−0.84

Here Y denotes annual national income, and r denotes the interest rate in percent per year, with
r > 2. Find the partial derivatives ∂M/∂Y and ∂M/∂r, then discuss their signs.

2.SM If a and b are positive constants, compute the expression KY ′
K + LY ′

L for the following:

(a) Y = AKa + BLa (b) Y = AKaLb (c) Y = K2L2

aL3 + bK3

3. The demand D for a firm’s product depends on the price p that it charges, as well as on the price q
charged by a competing firm. It is given by D(p, q) = a − bpq−α , where a, b, and α are positive
constants with α < 1. Find the partial derivatives D′

p(p, q) and D′
q(p, q), then comment on their

signs.

4. Let F(K, L, M) = AKaLbMc. Show that KF′
K + LF′

L + MF′
M = (a + b + c)F.

5. Let D(p, q) and E(p, q) be the demands for two commodities when the prices per unit are p and
q, respectively. Suppose the commodities are substitutes in consumption, such as butter and mar-
garine. What are the normal signs of the partial derivatives of D and E w.r.t. p and q?

6. Find ∂U/∂xi when U(x1, x2, . . . , xn) = 100 − e−x1 − e−x2 − · · · − e−xn .

7.SM [HARDER] Calculate the expression KY ′
K + LY ′

L for the CES production function specified by

Y = Aeλt [aK−ρ + bL−ρ
]−μ/ρ

13 Here is an example. When a nonsmoker sits in a room filled with tobacco smoke, the extra sat-
isfaction from eating a slightly larger piece of cake might well decrease if the concentration of
smoke increases too much.

14 A particular controversy arose from the claim that dumping polluting activities on poor countries,
where they might be better tolerated, could be better for the world as a whole. The sorry history
of a “doctored” World Bank “toxic memo” suggesting this is set out in the May 2001 issue of the
Harvard Magazine, available at https://www.harvardmagazine.com/2001/05/toxic-memo.html.

https://www.harvardmagazine.com/2001/05/toxic-memo.html
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14.10 Partial Elasticities
Section 7.7 introduced the concept of elasticity for functions of one variable. Here we
extend that concept to functions of several variables. This enables us to consider, for
instance, the price and income elasticities of demand, as well as different price elasticities.

Two Variables
Suppose that z = f (x, y). We use the partial derivatives of z, when they exist, to define its
partial elasticities w.r.t. x and y as

Elx z = x
z

∂z
∂x

, Ely z = y
z

∂z
∂y

(14.10.1)

Often economists just refer to the elasticity rather than the partial elasticity. Thus, Elx z is
the elasticity of z w.r.t. x when y is held constant, and Ely z is the elasticity of z w.r.t. y when
x is held constant. The number Elx z is, very roughly, the percentage change in z caused by
a 1% increase in x when y is held constant; Ely z has a corresponding interpretation.

As in Section 7.7, when all the variables are positive, elasticities can be expressed as
logarithmic derivatives. Accordingly,

Elx z = ∂ ln z
∂ ln x

and Ely z = ∂ ln z
∂ ln y

(14.10.2)

E X A M P L E 14.10.1 Find the partial elasticity Elx z when: (a) z = Axayb; (b) z = xyex+y.

Solution: (a) When finding the elasticity of Axayb w.r.t. x, the variable y, and thus Ayb, is
held constant. From Example 7.7.1 we obtain Elx z = a. In the same way, Ely z = b.

(b) It is convenient here to use Eq. (14.10.2). Assuming all variables are positive, tak-
ing appropriate natural logarithms gives ln z = ln x + ln y + x + y = ln x + ln y + eln x + y.
Hence Elx z = ∂ ln z/∂ ln x = 1 + eln x = 1 + x.

E X A M P L E 14.10.2 One estimate of the demand D1 for potatoes in the United States during the period
1927 to 1941 is given by D1 = Ap−0.28m0.34, where p is the price of potatoes and m is mean
income. The demand for apples was estimated to be D2 = Bq−1.27m1.32, where q is the price
of apples.

Find the price elasticities of demand, Elp D1 and Elq D2, as well as the income elasticities
of demand, Elm D1 and Elm D2. Then comment on their respective signs.

Solution: According to part (a) in Example 14.10.1, we have Elp D1 = −0.28. So if the
price of potatoes increases by the small proportion h%, their demand decreases by approx-
imately 0.28h%. Furthermore, Elq D2 = −1.27, Elm D1 = 0.34, and Elm D2 = 1.32.

Both price elasticities Elp D1 and Elq D2 are negative. So demand decreases when the
own price increases, as seems reasonable. Both income elasticities Elm D1 and Elm D2 are
positive. So demand for both potatoes and apples increases when mean income increases,
as seems reasonable once again. Note that the demand for apples is more sensitive to both
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price and income changes than the demand for potatoes. This also seems reasonable, since
at that time potatoes were more indispensable than apples for most consumers.

More Variables
For the function z = f (x1, x2, . . . , xn) = f (x) of n variables, we define the (partial) elasticity
of z, or of f , w.r.t. xi as the elasticity of z w.r.t. xi when the other n − 1 variables are all held
constant. Thus, assuming all the variables are positive, we can write

Eli z = xi

f (x)

∂f (x)

∂xi
= xi

z
∂z
∂xi

= ∂ ln z
∂ ln xi

(14.10.3)

So, for small changes, the number Eli z is approximately equal to the percentage change
in z per 1% increase in the ith variable xi, keeping all the other variables xj constant. Apart
from Eli z, other commonly used forms of notation include Eli f (x), Elxi

z, εi, ei, and ẑi. The
latter, of course, is pronounced “z hat i”.

E X A M P L E 14.10.3 Suppose D = Axa1
1 xa2

2 · · · xan
n is defined for all x1 > 0, x2 > 0, . . . , xn > 0, where

A > 0 and a1, a2, . . . , an are constants. For i = 1, . . . , n, find the elasticity of D w.r.t. xi.

Solution: Calculating the partial elasticity w.r.t. any xi requires us to keep all the factors
except xai

i constant. So we can apply Eq. (7.7.3) to obtain the result Eli D = ai.

As a special case of Example 14.10.3, suppose that the demand for good i is given by

Di = Amαp−β

i pγ

j (14.10.4)

where m denotes income, pi denotes the own price, and pj denotes the price of a substitute
good. Then α is the income elasticity of demand, defined as in Example 14.10.2. On the
other hand, −β is the elasticity of demand w.r.t. changes in its own price pi, so it is called
the own-price elasticity of demand. Because own-price elasticities of demand are usually
negative, however, one often describes β rather than −β as being the own-price elasticity of
demand. Finally, γ is the elasticity of demand w.r.t. the price of the specified substitute. By
analogy with the cross-partial derivatives defined in Section 14.6, it is called a cross-price
elasticity of demand.

Given the demand function specified by Eq. (14.10.4), note that the proportion of income
spent on good i is

piDi

m
= Amα−1p1−β

i pγ

j

When the income elasticity α < 1, this proportion is a decreasing function of income.
Economists describe a good with this property as a necessity. When α > 1, on the other
hand, the proportion of income spent on good i rises with income, in which case economists
describe good i as a luxury. Referring back to Example 14.10.2, these definitions imply that
during the period 1927–1941, which includes the years of the Great Depression, potatoes
were a necessity, but apples were a (relative) luxury.

Exercise 4 considers this distinction between necessities and luxuries for more general
demand functions.
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E X E R C I S E S F O R S E C T I O N 1 4 . 1 0

1. Find the partial elasticities of z w.r.t. x and y in the following cases:

(a) z = xy (b) z = x2y5 (c) z = xnexyney (d) z = x + y

2. Let z = (axd
1 + bxd

2 + cxd
3)

g, where a, b, c, d, and g are constants. Find
∑3

i=1 Eli z.

3. Suppose that z = xp
1 · · · xp

n exp(a1x1 + · · · + anxn), where the common power p and the parame-
ters a1, . . . , an are all constants. Find the partial elasticities of z w.r.t. x1, . . . , xn.

4.SM Let D(p, m) indicate a typical consumer’s demand for a particular commodity, as a function of its
price p and the consumer’s own income m. Show that the proportion pD/m of income spent on the
commodity increases with income if Elm D > 1 (in which case the good is a “luxury”, whereas it
is a “necessity” if Elm D < 1).

R E V I E W E X E R C I S E S

1. Let f (x, y) = 3x − 5y. Find the values of f (0, 1), f (2, −1), f (a, a), and f (a + h, b) − f (a, b).

2. Let f (x, y) = 2x2 − 3y2. Find the values of f (−1, 2), f (2a, 2a), f (a, b + k) − f (a, b), and
f (tx, ty) − t2f (x, y).

3. Let f (x, y, z) = √
x2 + y2 + z2. Find the values of f (3, 4, 0), f (−2, 1, 3), and of f (tx, ty, tz) for

any t ≥ 0.

4. Let Y = F(K, L) = 15K1/5L2/5 denote the number of units of output that are produced when K
units of capital and L units of labour are used as inputs.

(a) Compute F(0, 0), F(1, 1), and F(32, 243).

(b) Find an expression for F(K + 1, L) − F(K, L), and give an economic interpretation.

(c) Compute F(32 + 1, 243) − F(32, 243), and compare the result with what you get by calcu-
lating F′

K(32, 243).

(d) Show that F(tK, tL) = tkF(K, L) for a constant k.

5. A study of industrial fishing concluded that the annual herring catch Y , as a function of the
catching effort K and the herring stock S, is given by Y(K, S) = 0.06157K1.356S0.562.

(a) Find ∂Y/∂K and ∂Y/∂S.

(b) If K and S are both doubled, what happens to the catch?

6. For which pairs of numbers (x, y) are the functions given by the following formulas defined?

(a) 3xy3 − 45x4 − 3y (b)
√

1 − xy (c) ln(2 − (x2 + y2))

7. For which pairs of numbers (x, y) are the functions given by the following formulas defined?

(a) 1/
√

x + y − 1 (b)
√

x2 − y2 + √
x2 + y2 − 1 (c)

√
y − x2 − √√

x − y
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8. Complete the following implications:

(a) z = (x2y4 + 2)5 ⇒ ∂z
∂x

=

(b) F(K, L) = (
√

K + √
L)2 ⇒ √

K
∂F
∂K

=
(c) F(K, L) = (Ka + La)1/a ⇒ KF′

K(K, L) + LF′
L(K, L) =

(d) g(t, w) = 3t
w

+ wt2 ⇒ ∂2g
∂w∂t

=
(e) g(t1, t2, t3) = (t2

1 + t2
2 + t2

3)
1/2 ⇒ g′

3(t1, t2, t3) =
(f) f (x, y, z) = 2x2yz − y3 + x2z2 ⇒ f ′

1(x, y, z) = and f ′′
13(x, y, z) =

9. Let f be defined for all (x, y) by f (x, y) = (x − 2)2(y + 3)2.

(a) Calculate f (0, 0), f (−2, −3), and f (a + 2, b − 3). (b) Find f ′
x and f ′

y .

10. Verify that the points (−1, 5) and (1, 1) lie on the same level curve for the function

g(x, y) = (2x + y)3 − 2x + 5
y

11. For each c �= 0, verify that x − y = c is a level curve for F(x, y) = ln(x2 − 2xy + y2) + e2x−2y.

12.SM Let f be defined for all (x, y) by f (x, y) = x4 + 2y2 − 4x2y + 4y.

(a) Find f ′
1(x, y) and f ′

2(x, y).

(b) Find all pairs (x, y) which solve both equations f ′
1(x, y) = 0 and f ′

2(x, y) = 0.

Figure 14.R.1 Review Exercise 13

13. The graph of the function z = f (x, y) = (x − 1
2 )2 − (y − 1

2 )2 + 1
2 appears in Fig. 14.R.1.

(a) Use this graph in order to determine whether the function is concave, strictly concave, con-
vex, or strictly convex.

(b) Use Eqs (14.8.7) to (14.8.10) to confirm your conclusion.
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14. Let f be defined for all x, y by f (x, y) = x − y − x2.

(a) Use (14.8.3) to show that f is concave. (b) Show that −e−f (x,y) is concave.

15. Let f (x, y) = ax2 + 2bxy + cy2 + px + qy + r , where a, b, c, p, q and r are constants.

(a) Show that f is: (i) strictly concave if ac − b2 > 0 and a < 0; (ii) strictly convex if ac − b2 >

0 and a > 0.

(b) Find necessary and sufficient conditions for f (x, y) to be concave/convex.

16. Find the partial elasticities of z w.r.t. x and y in the following cases:

(a) z = x3y−4 (b) z = ln(x2 + y2) (c) z = ex+y (d) z = (x2 + y2)1/2

17. (a) If F(x, y) = e2x(1 − y)2, find ∂F/∂y.

(b) If F(K, L, M) = (ln K)(ln L)(ln M), find F′
L and F′′

LK .

(c) If w = xxyxzx, with x, y, and z positive, find w′
x using logarithmic differentiation.

18. [HARDER] Compute ∂p+qz/∂yq∂xp at (0, 0) for the following:

(a) z = ex ln(1 + y)

(b) z = ex+y(xy + y − 1) (Hint: First prove by induction on n that
dn

dun
(euu) = eu(u + n).)

19. [HARDER] Show that if u = Axayb, then u′′
xy/u′

xu′
y can be expressed as a function of u alone. Use

this to prove that
1
u′

x

∂

∂x

(
u′′

xy

u′
xu′

y

)
= 1

u′
y

∂

∂y

(
u′′

xy

u′
xu′

y

)
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Logic merely sanctions the conquests of the intuition.
—Jacques S. Hadamard (1945)

Economists use the phrase “comparative statics” to describe a particular technique that uses
partial derivatives. The analysis starts with a mathematical model showing how economic

quantities such as demand and supply are determined as endogenous variables that satisfy an
equation system. It then addresses the question of how these variables respond to changes
in exogenous parameters, like preferences or productivity shocks. More generally, when the
parameters of an optimization problem change, what happens to its solution? Or to the solu-
tion of an equation system that describes an equilibrium of demand and supply? Some simple
examples will be studied in this chapter; more demanding problems are treated in FMEA.

When differentiating functions of one variable, a key tool is the chain rule that was intro-
duced in Section 6.8. Here Sections 15.1 to 15.4 introduce what we need to extend the chain
rule to functions of two or more variables. Thereafter Section 15.5 discusses the concept of
elasticity of substitution, which economists often use to characterize the “curvature” of a level
curve. Another important topic in economics concerns the homogeneous and homothetic func-
tions that are studied in Sections 15.6 and 15.7. Then Sections 15.8 and 15.9 consider linear
approximations and then differentials, respectively. The final two Sections 15.10 and 15.11
of the chapter are concerned with systems of equations, along with some properties of their
differentials.

15.1 A Simple Chain Rule
Many economic models involve composite functions, which for functions of one variable
were introduced in Section 6.8. Here we consider functions of several variables which are
themselves functions of other basic variables. For example, many models of economic
growth regard output as a function of capital and labour, both of which are functions of
time. How then does output vary with time? More generally, what happens to the value of
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a composite function as its basic variables change? This is the general problem we address
in this and the next three sections.

Suppose z = f (x, y) is a function of x and y, where both x = g(t) and y = h(t) are func-
tions of a variable t. Substituting for x and y in z = f (x, y) gives the composite function

z = F(t) = f (g(t), h(t))

This reduces z to a function of t alone. A change in t will in general lead to changes in
both g(t) and h(t), as well as a resulting change in z = F(t). How then does z change when
t changes? For example, will a small increase in t lead to an increase or a decrease in z?
Answering such questions becomes much easier once we have found an expression for
dz/dt, the rate of change of z w.r.t. t. This is provided by the following extension to two
variables of the chain rule that was introduced in Section 6.8:

T H E C H A I N R U L E

Let z = f (x, y) with x = g(t) and y = h(t). If f is C1 (i.e., if it has continuous
first-order partial derivatives), and if g and h are differentiable, then

dz
dt

= f ′
1(x, y)

dx
dt

+ f ′
2(x, y)

dy
dt

(15.1.1)

It is important to understand the precise content of (15.1.1). It gives the derivative of
z = f (x, y) w.r.t. t when x and y are both differentiable functions of t. This derivative is
called the total derivative of z w.r.t. t. According to (15.1.1), one contribution to the total
derivative occurs because the first variable x in f (x, y) depends on t. This first contribution
is f ′

1(x, y) dx/dt. A second contribution arises because the second variable y in f (x, y) also
depends on t. This second contribution is f ′

2(x, y) dy/dt. The total derivative dz/dt is the sum
of these two contributions.

Note: It is important to realize that if f is not C1, then formula (15.1.1) may fail, as
Exercise 9 shows.

E X A M P L E 15.1.1 Find dz/dt when z = f (x, y) = x2 + y3 with x = t2 and y = 2t.

Solution: In this case f ′
1(x, y) = 2x, f ′

2(x, y) = 3y2, dx/dt = 2t, and dy/dt = 2. Inserting
these four expressions into formula (15.1.1) gives

dz
dt

= 2x · 2t + 3y2 · 2 = 4tx + 6y2 = 4t3 + 24t2

Here the last equality comes from substituting the appropriate functions of t for x and y
respectively. In a simple case like this, we can verify the chain rule by substituting x = t2

and y = 2t in the formula for f (x, y), then differentiating w.r.t. t. The result is

z = x2 + y3 = (t2)
2 + (2t)3 = t4 + 8t3 ⇒ dz

dt
= 4t3 + 24t2

This is the same answer as before.
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E X A M P L E 15.1.2 Find dz/dt when z = f (x, y) = xe2y with x = √
t and y = ln t.

Solution: Here f ′
1(x, y) = e2y, f ′

2(x, y) = 2xe2y, dx/dt = 1/2
√

t, and dy/dt = 1/t. Note that
y = ln t implies e2y = e2 ln t = (eln t)2 = t2, so formula (15.1.1) gives

dz
dt

= e2y 1

2
√

t
+ 2xe2y 1

t
= t2 1

2
√

t
+ 2

√
tt2 1

t
= 5

2
t3/2

As in Example 15.1.1, we can verify the chain rule directly by substituting x = √
t and y =

ln t in the formula for f (x, y). Doing so gives z = xe2y = √
t · t2 = t5/2, whose derivative is

dz/dt = 5
2 t3/2.

Here are some typical examples of how economists use (15.1.1).

E X A M P L E 15.1.3 Let D = D(p, m) denote a consumer’s demand for a commodity as a function of
both its price p and the consumer’s income m. Suppose that p = p(t) and m = m(t) are both
differentiable functions of time t. So demand is a function D = D(p(t), m(t)) of t alone. Find
an expression for Ḋ/D, the relative rate of growth of D.

Solution: Using (15.1.1) with time derivatives denoted by “dots”, we obtain

Ḋ = ∂D(p, m)

∂p
ṗ + ∂D(p, m)

∂m
ṁ

The first term on the right-hand side gives the effect on demand that arises because the price
p is changing, whereas the second term gives the effect of the change in m. We can write
the relative rate of growth of D as

Ḋ
D

= p
D

∂D(p, m)

∂p
ṗ
p

+ m
D

∂D(p, m)

∂m
ṁ
m

= ṗ
p

Elp D + ṁ
m

Elm D

Here the last equality follows from the formula for partial elasticity that was introduced in
Section 14.10. So the relative rate of growth is found by multiplying the relative rates of
change of price and income by their respective partial elasticities, then adding.

E X A M P L E 15.1.4 As in Example 14.9.2, let u(x, y) denote the total well-being of a society, where x
denotes GDP and y denotes a measure of the pollution level. As in that example, assume that
u′

x(x, y) > 0 and u′
y(x, y) < 0.

Suppose now that pollution increases as the economy grows, thus making pollution an
increasing function y = h(x) of x, with h′(x) > 0. Then total well-being becomes a function
U(x) = u(x, h(x)) of x alone. Find a necessary condition for U(x) to have a maximum at
x = x∗ > 0, and give this condition an economic interpretation.

Solution: By Theorem 9.1.1, a necessary condition for U(x) to have a maximum at x∗ > 0
is that U′(x∗) = 0. Now we use the chain rule (15.1.1) to obtain:

U′(x) = u′
x(x, h(x)) · 1 + u′

y(x, h(x)) · h′(x) (∗)
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So U′(x∗) = 0 requires that

u′
x(x

∗, h(x∗)) = −u′
y(x

∗, h(x∗))h′(x∗) (∗∗)

To interpret this condition, consider increasing x∗ by a small amount δ, which can be pos-
itive or negative. By Eq. (14.2.6), the gain due to the increase in GDP is approximately
u′

x(x
∗, h(x∗))δ. On the other hand, the level of pollution increases by about h′(x∗)δ units.

But we lose −u′
y(x

∗, h(x∗)) in well-being per unit increase in pollution. So all in all we lose
about −u′

y(x
∗, h(x∗))h′(x∗)δ from the extra pollution that results from this increase in x∗.

Equation (∗∗) just states that the direct gain from increasing x∗ by any small amount δ must
equal the indirect loss from the increased pollution that results from this increase. Other-
wise a slight increase in well-being could be achieved by a small change δ in x whose sign
matches the sign of U′(x∗) given by Eq. (∗).

Higher-Order Derivatives
Sometimes we use the second derivative of a composite function. A general formula for
d2z/dt2, based on formula (15.1.1), is suggested in Exercise 8. Here we consider a spe-
cial case that is relevant to optimization theory, the subject of Chapter 17. It concerns
the function F that records what happens to f as one moves away from the point (a, b) to
(a + t�, b + tk). If t > 0, this move is in the direction (�, k), but if t < 0 it is in the reverse
direction (−�, −k). See Fig. 15.1.1.

y

x

z

(�,k)

(a+ t�,b+ tk)
(a,b)

Figure 15.1.1 F(t) = f (a + t�, b + tk)

E X A M P L E 15.1.5 Suppose that z = f (x, y) where x = a + t� and y = b + tk. Keeping (a, b) and (�, k)
fixed makes z a function z = F(t) of the one variable t. Find expressions for F′(t) and F′′(t).

Solution: With x = a + t� and y = b + tk, we have F(t) = f (x, y). Using (15.1.1) we get

F′(t) = f ′
1(x, y)

dx
dt

+ f ′
2(x, y)

dy
dt

= f ′
1(a + t�, b + tk)� + f ′

2(a + t�, b + tk)k
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To find the second derivative F′′(t) requires differentiating again w.r.t. t. This yields

F′′(t) = d
dt

f ′
1(x, y)� + d

dt
f ′
2(x, y)k (∗)

To evaluate the derivatives on the right-hand side, we use the chain rule (15.1.1) once again.
This gives

d
dt

f ′
1(x, y) = f ′′

11(x, y)
dx
dt

+ f ′′
12(x, y)

dy
dt

= f ′′
11(x, y)� + f ′′

12(x, y)k

d
dt

f ′
2(x, y) = f ′′

21(x, y)
dx
dt

+ f ′′
22(x, y)

dy
dt

= f ′′
21(x, y)� + f ′′

22(x, y)k

After inserting these two expressions into (∗), while also using the equality f ′′
12 = f ′′

21 due
to Young’s Theorem in order to simplify, we obtain

F′′(t) = f ′′
11(x, y)�2 + 2f ′′

12(x, y)�k + f ′′
22(x, y)k2

A Proof of the Chain Rule
None of the earlier rules for partial differentiation is enough to show that the chain rule (15.1.1) for
a function of two variables is valid. Instead, we extend the argument that was used in Section 6.8 to
prove the chain rule for functions of one variable.

Proof of 15.1.1: Suppose that z = f (x, y) is continuously differentiable, where x = g(t) and y = h(t)
are both differentiable. Fix any s that lies in the domains of both g and h, as well as a = g(s) and b =
h(s). Given the function F(t) = f (g(t), h(t)), we need to prove the following version of Eq. (15.1.1):

F′(a) = f ′
1(a, b)g′(s) + f ′

2(a, b)h′(s)

To do so, define the following two functions of (x, y):

ϕ1(x, y) =

⎧⎪⎨
⎪⎩

f (x, y) − f (a, y)
x − a

if x �= a

f ′
1(a, y) if x = a

and ϕ2(x, y) =

⎧⎪⎨
⎪⎩

f (x, y) − f (x, b)

y − b
if y �= b

f ′
2(x, b) if y = b

Define also the following function of t:

γ (t) =

⎧⎪⎨
⎪⎩

g(t) − a
t − s

if t �= s

g′(s) if t = s

and η(t) =

⎧⎪⎨
⎪⎩

h(t) − b
t − s

if t �= s

h′(s) if t = s

By construction, the following six properties all hold:

(i) for all y, limx→a ϕ1(x, y) = ϕ1(a, y); (ii) for all x, limy→b ϕ2(x, y) = ϕ2(x, b);

(iii) γ (t)→γ (s) and η(t)→η(s) as t → s; (iv) f (x, y) − f (a, y) = ϕ1(x, y)(x − a);

(v) f (x, y) − f (x, b) = ϕ2(x, y)(y − b); (vi) g(t)−a=γ (t)(t−s) and h(t)−b=η(t)(t−s).
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Now, for all δ sufficiently close to 0,

F(s + δ) − F(s) = f (g(s + δ), h(s + δ)) − f (g(s), h(s))

= f (g(s + δ), h(s + δ)) − f (a, h(s + δ)) + f (a, h(s + δ)) − f (a, b)

= ϕ1(g(s + δ), h(s + δ)) [g(s + δ) − a] + ϕ2(a, h(s + δ)) [h(s + δ) − b]

= ϕ1(g(s + δ), h(s + δ)) γ (s + δ)δ + ϕ2(a, h(s + δ)) η(s + δ)δ

where the first equality follows from the definition of F, the second just adds and subtracts the same
number, the third uses properties (iv) and (v), and the last uses property (vi). It follows that the Newton
quotient of F at s is:

F(s + δ) − F(s)
δ

= ϕ1(g(s + δ), h(s + δ))γ (s + δ) + ϕ2(a, h(s + δ))η(s + δ)

By definition of derivative, it follows that

F′(s) = lim
δ→0

[ϕ1(g(s + δ), h(s + δ))γ (s + δ) + ϕ2(a, h(s + δ))η(s + δ)] (∗)

By property (iii), as δ → 0, so γ (s + δ) → g′(s) and η(s + δ) → h′(s). Since h is differentiable, it is
also continuous and so h(s + δ) → b By (ii), it follows that

ϕ2(a, h(s + δ)) → f ′
2(a, b) (∗∗)

All that remains to consider is the term ϕ1(g(s + δ), h(s + δ)), which is slightly more complicated.
Because g is also continuous, we have g(s + δ) → a. Since f is continuously differentiable,
both f ′

1 and ϕ1 are continuous functions. So property (i) and continuity of h(t) at t = s together
imply that

lim
δ→0

ϕ1(g(s + δ), h(s + δ)) = ϕ1(a, b) = f ′
1(a, b) (∗∗∗)

Substituting (∗∗) and (∗∗∗) into (∗), we get

F′(s) = lim
δ→0

[ϕ1(g(s + δ), h(s + δ))γ (s + δ)] + lim
δ→0

[ϕ2(a, h(s + δ))η(s + δ)]

= ϕ1(a, b)g′(s) + f ′
2(a, b)h′(s) = f ′

1(a, b)g′(s) + f ′
2(a, b)h′(s)

E X E R C I S E S F O R S E C T I O N 1 5 . 1

1. In the following cases, find dz/dt by using the chain rule (15.1.1). Check each answer by first
substituting the expressions for x and y and then differentiating.

(a) z = F(x, y) = x + y2, x = t2, y = t3 (b) z = F(x, y) = xpyq, x = at, y = bt

2. Find dz/dt when:

(a) z = F(x, y) = x ln y + y ln x with x = t + 1 and y = ln t.

(b) z = F(x, y) = ln x + ln y with x = Aeat and y = Bebt.

3. If z = F(t, y) and y = g(t), find a formula for dz/dt. Consider in particular the case where
z = t2 + yey and y = t2.
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4. If Y = F(K, L) and K = g(L), find a formula for dY/dL.

5. Let Y = 10KL − √
K − √

L. Suppose too that K = 0.2t + 5 and L = 5e0.1t. Find dY/dt when
t = 0.

6.SM Suppose that x = g(t), y = h(t), and G(x) are differentiable functions. What is the result in each
case if you apply the chain rule of Eq. (15.1.1) to the following five functions f (x, y)?
(a) f (x, y) = x + y; (b) f (x, y) = x − y; (c) f (x, y) = x · y; (d) f (x, y) = x/y; (e) f (x, y) = G(x).

7.SM [HARDER] Consider Example 15.1.4, where u(x, y) = ln(xα + yα) − α ln y and y = h(x) =
3√ax4 + b with positive constant parameters α, a, and b. Find the optimal x∗ in this case.

8.SM [HARDER] Suppose that z = F(x, y), x = g(t), and y = h(t). Modify the solution to Example 15.1.5
in order to prove that, under appropriate assumptions on F, g, and h, one has

d2z
dt2

= ∂z
∂x

d2x
dt2

+ ∂z
∂y

d2y
dt2

+ ∂2z
∂x2

(
dx
dt

)2

+ 2
∂2z
∂x∂y

(
dx
dt

)(
dy
dt

)
+ ∂2z

∂y2

(
dy
dt

)2

9.SM [HARDER] Consider the function f : R2 → R given by

f (x, y) =
⎧⎨
⎩

y3

x2 + y2
, if (x, y) �= (0, 0)

0, if (x, y) = (0, 0)

Furthermore, suppose that x(t) = at and y(t) = bt where a �= 0 and b �= 0 are constants.

(a) Find f ′
1(0, 0) and f ′

2(0, 0).

(b) Let z(t) = f (x(t), y(t)) and find z′(0).

(c) Show that z′(0) �= f ′
1(x(0), y(0))

dx
dt

+ f ′
2(x(0), y(0))

dy
dt

.

(d) Explain why the inequality in part (c) does not contradict the chain rule in
Eq. (15.1.1).

15.2 Chain Rules for Many Variables
Economists often need even more general chain rules than the simple one for two variables
presented in the previous section. Exercise 11, for example, considers the example of a
railway company whose fares for peak and off-peak fares are set by a regulatory authority.
The costs it faces for running enough trains to carry all the passengers depend on demand
for both kinds of journey. These demands are obviously affected by both peak and off-peak
fares because some passengers will choose when to travel based on the fare difference. The
general chain rule we are about to present allows us to work out how these costs change
when either fare is increased.
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A general problem of this kind involves the function z = f (x, y), with x = g(t, s) and
y = h(t, s). In this case z is a function of both t and s, with

z = F(t, s) = f (g(t, s), h(t, s))

Here it makes sense to look for both partial derivatives ∂z/∂t and ∂z/∂s. If we keep s fixed,
then z is a function of t alone. Provided that f is C1 and g, h are partially differentiable
w.r.t. t, this allows us to use the chain rule (15.1.1). Similarly, keeping t fixed, provided that
f is C1 and g, h are partially differentiable w.r.t. s, we can differentiate z partially w.r.t. s.
The result is the following:

T H E C H A I N R U L E

If z = f (x, y) with x = g(t, s) and y = h(t, s), then

∂z
∂t

= f ′
1(x, y)

∂x
∂t

+ f ′
2(x, y)

∂y
∂t

(15.2.1)

and
∂z
∂s

= f ′
1(x, y)

∂x
∂s

+ f ′
2(x, y)

∂y
∂s

(15.2.2)

E X A M P L E 15.2.1 Find ∂z/∂t and ∂z/∂s when z = F(x, y) = x2 + 2y2, with x = t − s2 and y = ts.

Solution: We obtain

F′
1(x, y) = 2x, F′

2(x, y) = 4y,
∂x
∂t

= 1,
∂x
∂s

= −2s,
∂y
∂t

= s, and
∂y
∂s

= t

Equations (15.2.1) and (15.2.2) therefore give:

∂z
∂t

= 2x · 1 + 4y · s = 2(t − s2) + 4tss = 2t − 2s2 + 4ts2

∂z
∂s

= 2x · (−2s) + 4y · t = 2(t − s2)(−2s) + 4tst = −4ts + 4s3 + 4t2s

It is a good exercise to check these answers by first expressing z as a function of t and s,
then finding the partial derivatives directly.

E X A M P L E 15.2.2 Find z′
t(1, 0) if z = ex2 + y2exy, with x = 2t + 3s and y = t2s3.

Solution: We obtain

∂z
∂x

= 2xex2 + y3exy,
∂z
∂y

= 2yexy + xy2exy,
∂x
∂t

= 2, and
∂y
∂t

= 2ts3

Using somewhat more concise notation, the chain rule gives

z′
t(t, s) = ∂z

∂x
∂x
∂t

+ ∂z
∂y

∂

∂t
= (2xex2 + y3exy) · 2 + (2yexy + xy2exy) · 2ts3

When t = 1 and s = 0, then x = 2 and y = 0, so z′
t(1, 0) = 4e4 · 2 = 8e4.
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The General Case
In consumer demand theory, economists typically assume that a household’s utility depends
on the number of units of each good it is able to consume. The number of units consumed
will depend in turn on the prices of these goods and on the household’s income. Thus the
household’s utility is related, indirectly, to all the prices and to income. By how much, then,
does utility respond to an increase in one of the prices, or to an increase in income? The
following general chain rule extends to this kind of problem.

Suppose that z = f (x1, . . . , xn), where for each i = 1, 2, . . . , n the variable xi is given
by the function xi = gi(t1, . . . , tm) of the m variables t1, . . . , tm. Substituting into the func-
tion f for all the variables xi as functions of the variables tj allows z to be expressed as the
composite function

z = F(t1, . . . , tm) = f (g1(t1, . . . , tm), . . . , gn(t1, . . . , tm))

Using vector notation allows us to write z = F(t) = f (x(t)). An obvious generalization
of (15.2.1) and (15.2.2) is as follows:

T H E G E N E R A L C H A I N R U L E

Suppose that z = f (x1, . . . , xn) is continuously differentiable, and that the func-
tion xi = gi(t1, . . . , tm) is differentiable, for each i = 1, 2, . . . , n. Then for each
j = 1, 2, . . . , m one has

∂z
∂tj

= ∂z
∂x1

∂x1

∂tj
+ ∂z

∂x2

∂x2

∂tj
+ · · · + ∂z

∂xn

∂xn

∂tj
(15.2.3)

This is an important formula that every economist should understand. A small change
in a basic variable tj sets off a chain reaction. First, every xi depends on tj in general, so it
changes when tj is changed. This affects z in turn. The contribution to the total derivative
of z w.r.t. tj that results from the change in xi is (∂z/∂xi)(∂xi/∂tj). Formula (15.2.3) shows
that ∂z/∂tj is the sum of all these contributions. In alternative notation,

F′
j(t) = f ′

1(x(t))
∂g1

∂tj
(t) + f ′

2(x(t))
∂g2

∂tj
(t) + · · · + f ′

n(x(t))
∂gn

∂tj
(t)

E X A M P L E 15.2.3 Example 14.9.1 considered an agricultural production function taking the form Y =
F(K, L, T), where Y is the size of the harvest, K is capital invested, L is labour, and T is the
area of agricultural land used to grow the crop. Suppose that K, L, and T are all functions
of time, which is denoted by t. Then, according to (15.2.3),

dY
dt

= ∂F
∂K

dK
dt

+ ∂F
∂L

dL
dt

+ ∂F
∂T

dT
dt

In the special case when F is the Cobb–Douglas function F(K, L, T) = AKaLbTc, we have

dY
dt

= aAKa−1LbTc dK
dt

+ bAKaLb−1Tc dL
dt

+ cAKaLbTc−1 dT
dt

(∗)
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Denoting time derivatives by dots, and dividing each term in (∗) by Y = AKaLbTc, we get

Ẏ
Y

= a
K̇
K

+ b
L̇
L

+ c
Ṫ
T

The relative rate of change of output is, therefore, a weighted sum of the relative rates of
change of capital, labour, and land. The weights are the respective powers a, b, and c.

E X E R C I S E S F O R S E C T I O N 1 5 . 2

1. Use (15.2.1) and (15.2.2) to find ∂z/∂t and ∂z/∂s for the following cases:

(a) z = F(x, y) = x + y2, where x = t − s and y = ts;

(b) z = F(x, y) = 2x2 + 3y3, where x = t2 − s and y = t + 2s3.

2.SM Using (15.2.1) and (15.2.2), find ∂z/∂t and ∂z/∂s for the following cases:

(a) z = xy2, where x = t + s2 and y = t2s; (b) z = x − y
x + y

, where x = et+s and y = ets.

3. If z = F(u, v, w) where u = r2, v = −2s2, and w = ln r + ln s, find ∂z/∂r and ∂z/∂s.

4. If z = F(x) and x = g(t1, t2), find ∂z/∂t1 and ∂z/∂t2 .

5. If x = F(s, g(s), h(s, t)), find ∂x/∂s and ∂x/∂t.

6. If z = F(u, v, w) where u = f (x, y), v = x2h(y) and w = 1/y, find ∂z/∂x and ∂z/∂y.

7. Use the general chain rule in Eq. (15.2.3) to find ∂w/∂t for the following cases:

(a) w = xy2z3, where x = t2, y = s, and z = t;

(b) w = x2 + y2 + z2, where x = √
t + s, y = ets, and z = s3.

8. Find expressions for dz/dt when:

(a) z = F(t, t2, t3) (b) z = F(t, f (t), g(t2))

9. Suppose Z = G + Y2 + r2, where Y and r are both differentiable functions of G. Find dZ/dG.

10. Suppose Z = G + I(Y , r), where I is a differentiable function of two variables, and Y , r are both
differentiable functions of G. Find dZ/dG.

11. Each week a suburban railway company has a long-run cost C = aQ1 + bQ2 + cQ2
1 of provid-

ing Q1 passenger kilometres of service during rush hours and Q2 passenger kilometres during
off-peak hours. As functions of the regulated fares p1 and p2 per kilometre for the rush hours
and off-peak hours, respectively, the demands for the two kinds of service are Q1 = Ap−α1

1 pβ1
2

and Q2 = Bpα2
1 p−β2

2 , where the constants A, B, α1, α2, β1, β2 are all positive. Assuming that the
company runs enough trains to meet the demand, find expressions for the partial derivatives of C
w.r.t. p1 and p2.
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12.SM If u = ln(x3 + y3 + z3 − 3xyz), show that

(a) x
∂u
∂x

+ y
∂u
∂y

+ z
∂u
∂z

= 3 (b) (x + y + z)
(

∂u
∂x

+ ∂u
∂y

+ ∂u
∂z

)
= 3

13. If z = f (x2y) where f is a differentiable function of one variable, show that x
∂z
∂x

= 2y
∂z
∂y

.

14. Find a formula for ∂u/∂r in case u = f (x, y, z, w) where f is C1 and x, y, z, and w are all differ-
entiable functions of two variables r and s.

15. Suppose that u = xyzw, where x = r + s, y = r − s, z = rs, and w = r/s. Find ∂u/∂r at the
point (r, s) = (2, 1).

15.3 Implicit Differentiation along a Level
Curve
Economists often need to differentiate functions that are defined implicitly by an equation.
In Section 9.3 we considered some simple cases; it is a good idea to review those examples
now. Here we study the problem from a more general point of view.

Let F be a C1 function of two variables, and consider the equation F(x, y) = c, where c is
a constant. The equation represents a level curve for F, as defined in Section 14.3. Suppose
this equation defines y implicitly as a function y = f (x) of x in some interval I, as illustrated
in Fig. 15.3.1. This means that, for all x in I, one has

F(x, f (x)) = c (15.3.1)

If f is differentiable, what is the derivative of y = f (x)? If the graph of f looks like that in
Fig. 15.3.1, the problem is to find the slope of the graph at each point like P.1

F (x, y) 5 c

y

x

P

I

Figure 15.3.1 Differentiation along a level curve

To find an expression for this slope, we introduce the auxiliary function u that is defined
for all x in I by u(x) = F(x, f (x)). Then, since the function F is C1, the chain rule gives

u′(x) = F′
1(x, f (x)) · 1 + F′

2(x, f (x)) · f ′(x)

1 A particular case of this problem was Example 7.1.5.
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Also, together with the definition of the function u, Eq. (15.3.1) implies that u(x) = c for
all x in I. The derivative of a constant is 0, so we have

u′(x) = F′
1(x, f (x)) + F′

2(x, f (x)) · f ′(x) = 0

If we replace f (x) by y and solve for f ′(x) = y′, we reach the conclusion:

S L O P E O F A L E V E L C U R V E

If F(x, y) = c, then provided that F′
2(x, y) �= 0, one has

y′ = −F′
1(x, y)

F′
2(x, y)

(15.3.2)

This is an important result. Before applying this formula for y′, however, recall that the
pair (x, y) must satisfy the equation F(x, y) = c. On the other hand, note that there is no
need to solve the equation F(x, y) = c explicitly for y before applying (15.3.2) in order to
find y′. Example 15.3.3 shows how this can be important.

The same argument with x and y interchanged gives a result analogous to (15.3.2). Thus,
if x is a continuously differentiable function of y which satisfies F(x, y) = c, then

F(x, y) = c =⇒ dx
dy

= −∂F/∂y
∂F/∂x

= −F′
2(x, y)

F′
1(x, y)

(15.3.3)

provided that ∂F/∂x �= 0.

E X A M P L E 15.3.1 Use formula (15.3.2) to find y′ when xy = 5.

Solution: We put F(x, y) = xy. Then F′
1(x, y) = y and F′

2(x, y) = x. Hence, (15.3.2) gives

y′ = −F′
1(x, y)

F′
2(x, y)

= −y
x

This confirms the result in Example 7.1.1.

E X A M P L E 15.3.2 For the curve given by x3 + x2y − 2y2 − 10y = 0, find the slope and then the
equation for the tangent at the point (x, y) = (2, 1).

Solution: Let F(x, y) = x3 + x2y − 2y2 − 10y, implying that the given equation is equiv-
alent to F(x, y) = 0, which is a level curve for F. First, note that F(2, 1) = 0, confirming
that (x, y) = (2, 1) is a point on the level curve. Also, F′

1(x, y) = 3x2 + 2xy and F′
2(x, y) =

x2 − 4y − 10. So (15.3.2) implies that

y′ = − 3x2 + 2xy
x2 − 4y − 10

For x = 2 and y = 1 in particular, one has y′ = 8/5. Then the point–slope formula for
a line implies that the tangent at (2, 1) must have the equation y − 1 = (8/5)(x − 2), or
5y = 8x − 11. See Fig. 15.3.2, in which the curve has been drawn by a computer program.
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Note that, for many values of x, there is more than one corresponding value of y such that
(x, y) lies on the curve. For instance, the two points (2, 1) and (2, −4) with x = 2 both lie
on the curve. Note that y′ = 0.4 at (2, −4); confirming this would be good practice.

x 3 1 x 2y 2 2y2 2 10y 5 0

22232425 21 1 2 3 4 5

3

23

4

24

5

25

2

22

1

21

y

x

Figure 15.3.2 Example 15.3.2

E X A M P L E 15.3.3 Assume that the equation exy2 − 2x − 4y = c implicitly defines y as a differentiable
function y = f (x) of x. Find a value of the constant c such that f (0) = 1. Then find y′ at
(x, y) = (0, 1).

Solution: When x = 0 and y = 1, the equation becomes 1 − 4 = c, so c = −3.
To find the derivative y′, define F(x, y) = exy2 − 2x − 4y. Then F′

1(x, y) = y2exy2 − 2,

and F′
2(x, y) = 2xyexy2 − 4. Thus, from (15.3.2) we have y′ = −F′

1(x, y)

F′
2(x, y)

= − y2exy2 − 2

2xyexy2 − 4
.

At (x, y) = (0, 1), we find y′ = −1/4.

Note that in this example it was impossible to solve exy2 − 2x − 4y = −3 explicitly for y.
Even so, we managed to find an explicit expression for the derivative of y w.r.t. x.

Here is an important economic example involving a function that is defined implicitly
by the equation which says that demand must equal supply.

E X A M P L E 15.3.4 We generalize Example 7.2.2, and assume that D = f (t, P) is the demand for a com-
modity that depends on the price P before tax, as well as on the sales tax per unit, denoted
by t. Suppose that S = g(P) is the supply function. At equilibrium, when supply is equal
to demand, the equilibrium price P = P(t) depends on t. Indeed, P = P(t) must satisfy the
equation

f (t, P) = g(P) (∗)

for all t in some relevant interval. Suppose that (∗) defines P implicitly as a differentiable
function of t. Find an expression for dP/dt, then discuss its sign.

Solution: Let F(t, P) = f (t, P) − g(P). Then (∗) becomes F(t, P) = 0, so (15.3.2) yields

dP
dt

= − F′
t(t, P)

F′
P(t, P)

= − f ′
t (t, P)

f ′
P(t, P) − g′(P)

= f ′
t (t, P)

g′(P) − f ′
P(t, P)

(∗∗)
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It is reasonable to assume that g′(P) > 0, meaning that supply increases if price increases,
as well as that f ′

t (t, P) and f ′
P(t, P) are both < 0, meaning that demand decreases if either

the tax or the price increases. Then (∗∗) tells us that dP/dt < 0, implying that the pre-tax
price P faced by suppliers decreases as the tax t increases. Thus the suppliers, as well as the
consumers, are adversely affected if the tax on their product rises.

We can also derive formula (∗∗) by implicitly differentiating (∗) w.r.t. t. This gives

f ′
t (t, P) · 1 + f ′

P(t, P)
dP
dt

= g′(P)
dP
dt

Solving this equation for dP/dt yields (∗∗) once again.

Marginal Rate of Substitution
Economists are often interested in the slope of the tangent to a level curve at a particular
point. Often, the level curve is downwards sloping, but economists prefer a positive answer.
So, inspired by Example 7.1.5, we change the sign of the slope defined by (15.3.2), and use
a special name:

M A R G I N A L R A T E O F S U B S T I T U T I O N

The ratio

Ryx = F′
x(x, y)

F′
y(x, y)

(15.3.4)

is known as the marginal rate of substitution of y for x, abbreviated as MRS.

Note that Ryx = −y′ ≈ −
y/
x when we move along the level curve F(x, y) = c. If

x = −1 in particular, then Ryx ≈ 
y. Thus, Ryx is approximately the quantity of y we
must add per unit of x removed, if we are to stay on the same level curve.

E X A M P L E 15.3.5 Let F(K, L) = 100 be an isoquant for a production function, where K is capital
input, L is labour input, and 100 is the output. Look at Fig. 15.3.3. At all the points P, Q, and
R, an output of 100 units is produced. At P a little capital input and a lot of labour input are
used. The slope of the isoquant at P is approximately −4, so the MRS at P is approximately 4.
This means that for each four units of labour that are taken away, adding only one unit of
capital will ensure that output remains at (approximately) 100 units. Provided that units
are chosen so that capital and labour have the same price, at P capital is more “valuable”
than labour. At Q the MRS is approximately 1, so capital and labour are equally “valuable”.
Finally, at R, the MRS is approximately 1/5, so here approximately five units of capital are
required to compensate for the loss of one unit of labour.

The Second Derivative
As in Eq. (15.3.1), suppose that the equation F(x, y) = c of a level curve defines the function
y = f (x) implicitly. Sometimes economists need to know whether this function is concave
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 F (K, L) 5 100

P

Q

R

L

K

Figure 15.3.3 An isoquant

or convex. One way to find out is to calculate y′′, the derivative of y′ = −F′
1(x, y)/F′

2(x, y).
Write G(x) = F′

1(x, y) and H(x) = F′
2(x, y), where y is a function of x. Now we want to

differentiate y′ = −G(x)/H(x) w.r.t. x. The rule for differentiating quotients gives us

y′′ = −G′(x)H(x) − G(x)H′(x)
[H(x)]2

(∗)

Keeping in mind that y is a function of x, both G(x) and H(x) are composite functions. So
we differentiate them both by using the chain rule, thereby obtaining

G′(x) = F′′
11(x, y) · 1 + F′′

12(x, y) · y′

H′(x) = F′′
21(x, y) · 1 + F′′

22(x, y) · y′

Assume that F is a C2 function, so Young’s Theorem 14.6.1 implies F′′
12 = F′′

21. Now
replace y′ in both the preceding equations by the quotient −F′

1/F′
2, and then insert the

results into (∗). After some algebraic simplification, this yields the formula

y′′ = − 1
(F′

2)
3

[F′′
11(F

′
2)

2 − 2F′′
12F′

1F′
2 + F′′

22(F
′
1)

2] (15.3.5)

Using formula (13.2.3) for the determinant of a 3 × 3 matrix allows us to express this result
in a more memorable form as

d2y
dx2

= 1
(F′

2)
3

∣∣∣∣∣∣
0 F′

1 F′
2

F′
1 F′′

11 F′′
12

F′
2 F′′

21 F′′
22

∣∣∣∣∣∣
This requires, of course, that F′

2 �= 0.
Occasionally, formula (15.3.5) is used in theoretical arguments. Generally, however, it

is easier to find y′′ by direct differentiation, as in the examples we considered in Section 7.1.

E X A M P L E 15.3.6 Use (15.3.5) to find y′′ when xy = 5.

Solution: With F(x, y) = xy we have F′
1 = y, F′

2 = x, F′′
11 = 0, F′′

12 = 1, and F′′
22 = 0.

According to (15.3.5), we obtain

y′′ = − 1
x3

(−2 · 1 · y · x) = 2y
x2

This result is the same as the one we found in Example 7.1.6.
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E X E R C I S E S F O R S E C T I O N 1 5 . 3

1. Use formula (15.3.2) with F(x, y) = 2x2 + 6xy + y2 and c = 18 to find y′ when y is defined implic-
itly by 2x2 + 6xy + y2 = 18. Compare with the result in Exercise 7.1.5.

2.SM Along each of the following level curves, use (15.3.2) to find y′, and then (15.3.5) to find y′′.

(a) x2y = 1 (b) x − y + 3xy = 2 (c) y5 − x6 = 0

3.SM A curve in the xy-plane is given by the equation 2x2 + xy + y2 − 8 = 0.

(a) Find y′, y′′, and the equation for the tangent at the point (2, 0).

(b) At which points on the curve is there a horizontal tangent?

4. The equation 3x2 − 3xy2 + y3 + 3y2 = 4 defines y implicitly as a function h(x) of x in a neigh-
bourhood of the point (1, 1). Find h′(1).

5. Suppose that the aggregate demand D(P, r) for a certain commodity (like an electric car) depends
on its price P and the interest rate r. What signs should one expect the partial derivatives of D
w.r.t. P and r to have? Suppose the supply S is constant, so that D(P, r) = S in equilibrium. Dif-
ferentiate implicitly to find dP/dr, and comment on its sign.

6. Let D = f (R, P) denote the demand for a commodity when the price is P and R is advertising
expenditure. What signs should one expect the partial derivatives f ′

R and f ′
P to have? If the supply

is S = g(P), equilibrium in the market requires that f (R, P) = g(P). What is dP/dR? Discuss its
sign.

7. Let f be a differentiable function of one variable, and let a and b be two constants. Suppose that the
equation x − az = f (y − bz) defines z as a differentiable function of x and y. Prove that z satisfies
az′

x + bz′
y = 1.

15.4 Level Surfaces
Consider the function F(x, y, z) of three variables. It has level surfaces in three-dimensional
space consisting of all the triples (x, y, z) that, for some value of the constant c, satisfy
the equation F(x, y, z) = c. Often this level surface will include the graph of a function
z = f (x, y) that, for all (x, y) in some domain A that is an open set in the plane, is
defined implicitly by the equation F(x, y, z) = c. Consider the function g defined by
g(x, y) = F(x, y, f (x, y)) for all (x, y) in A. Then, for all (x, y) in this domain A, one has

g(x, y) = F(x, y, f (x, y)) = c (15.4.1)

Suppose that the functions F and f are both differentiable. Because Eq. (15.4.1) must hold
for all (x, y) in A, the partial derivatives g′

x and g′
y must both be 0. But g(x, y) is a composite

function of x and y whose partial derivatives can be found by using the general chain rule
in Eq. (15.2.3). Therefore,



�

� �

�

S E C T I O N 1 5 . 4 / L E V E L S U R F A C E S 629

g′
x = F′

x · 1 + F′
z · z′

x = 0, g′
y = F′

y · 1 + F′
z · z′

y = 0

Provided that F′
z �= 0, this equation implies the following expressions for the partial deriva-

tives of z = f (x, y):

F(x, y, z) = c =⇒ z′
x = −F′

x

F′
z

and z′
y = −F′

y

F′
z

(15.4.2)

We emphasize once again that Eq. (15.4.2) allows z′
x and z′

y to be found even if it is impos-
sible to solve the equation F(x, y, z) = c explicitly for z as a function of x and y.

E X A M P L E 15.4.1 The equation x − 2y − 3z + z2 = −2 implicitly defines z as a twice differentiable
function of x and y about the point (x, y, z) = (0, 0, 2). Find z′

x and z′
y, followed by z′′

xx, z′′
xy,

and z′′
yy. Find also the values at (x, y) = (0, 0) of all these partial derivatives.

Solution: Let F(x, y, z) = x − 2y − 3z + z2 and c = −2. Then one has F′
x = 1, F′

y = −2,
and F′

z = 2z − 3. Whenever z �= 3/2, we have F′
z �= 0, so (15.4.2) gives

z′
x = − 1

2z − 3
and z′

y = − −2
2z − 3

= 2
2z − 3

For x = 0, y = 0, and z = 2 in particular, we obtain z′
x = −1 and z′

y = 2.
We find z′′

xx by differentiating the expression for z′
x partially w.r.t. x. Near (x, y, z) =

(0, 0, 2), keeping in mind that z is a function of x and y, we get z′′
xx = (∂/∂x)(−(2z −

3)−1) = (2z − 3)−22z′
x. At the point (x, y, z) = (0, 0, 2), where z′

x = −1, we have

z′′
xx = ∂

∂x
z′

x = ∂

∂x
[−(2z − 3)−1] = (2z − 3)−22z′

x = −2
(2z − 3)3

= −2

Correspondingly,

z′′
xy = ∂

∂y
z′

x = ∂

∂y
[−(2z − 3)−1] = (2z − 3)−22z′

y = 4
(2z − 3)3

= 4

and
z′′

yy = ∂

∂y
z′

y = ∂

∂y
[2(2z − 3)−1] = −2(2z − 3)−22z′

y = −8
(2z − 3)3

= −8

E X A M P L E 15.4.2 A firm produces Q = f (L) units of a commodity using L units of labour. We assume
that f ′(L) > 0 and f ′′(L) < 0, so f is strictly increasing and strictly concave.2

(a) If the firm is paid P per unit produced and pays w for a unit of labour, write down the
profit function, then find the first-order condition for profits to be maximized at L∗ > 0.

(b) Use implicit differentiation of the first-order condition to examine how changes in P
and w influence the optimal choice of L∗.

2 See Exercise 3, where a special case is considered.
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Solution:

(a) The profit function is π(L) = Pf (L) − wL, so π ′(L) = Pf ′(L) − w. By Theorem 9.1.1,
an optimal L∗ must satisfy the first-order condition

Pf ′(L∗) − w = 0 (∗)

(b) Suppose we define F(P, w, L∗) = Pf ′(L∗) − w. Then (∗) is equivalent to F(P, w,
L∗) = 0. According to (15.4.2), one has

∂L∗

∂P
= − F′

P

F′
L∗

= − f ′(L∗)
Pf ′′(L∗)

and
∂L∗

∂w
= − F′

w

F′
L∗

= − −1
Pf ′′(L∗)

= 1
Pf ′′(L∗)

The sign assumptions on f ′ and f ′′ imply that ∂L∗/∂P > 0 and ∂L∗/∂w < 0. Thus, the
optimal labour input goes up if the price P increases, but goes down if labour costs
increase. This accords with the usual economic intuition.3

E X A M P L E 15.4.3 (Gains from search). Suppose a baker intends to buy x0 units of flour. Right now, it
can be bought at a price of p0 per kilo. But the baker expects that searching among other sell-
ers will uncover a lower price. Let p(t) denote the lowest price per kilo that the baker expects
to find after searching the market for t hours. It is reasonable to assume that p′(t) < 0. More-
over, since it is usually harder to find lower prices as the search progresses, we assume that
p′′(t) > 0.

Suppose the baker’s hourly wage is w. By searching for t hours, the baker’s saving is
p0 − p(t) dollars for each kilo bought, so the total savings from buying x0 units are [p0 −
p(t)]x0. On the other hand, searching for t hours costs wt in forgone wages. So the baker’s
expected profit from searching for t hours is

π(t) = [p0 − p(t)]x0 − wt

A necessary first-order condition for t = t∗ > 0 to maximize the baker’s profit is that

π ′(t∗) = −p′(t∗)x0 − w = 0 (∗)

This condition is also sufficient, because π ′′(t) = −p′′(t)x0 < 0 for all t.
To interpret (∗), first we rewrite it as −p′(t∗)x0 = w. Suppose now that the baker

searches for an extra small fraction τ of an hour. The gain expected from finding a lower
price is [p(t∗) − p(t∗ + τ)]x0, which is approximately −p′(t∗)τx0. On the other hand, the
baker loses wτ of wage income. So the first-order condition says that the baker should
search until the marginal gain per unit of extra search time is just offset by the wage.

The optimal search time t∗ depends on x0 and w. Economists typically want to know
how t∗ changes as x0 or w changes. We see that Eq. (∗) here is similar to Eq. (∗) in
Example 15.4.2, but with x0 = −P, p = f , and t∗ = L∗. It follows immediately that

∂t∗

∂x0
= − p′(t∗)

p′′(t∗)x0
> 0, and

∂t∗

∂w
= − 1

p′′(t∗)x0
< 0

3 Economists often prefer to use implicit differentiation rather than relying on formula (15.4.2).
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with the signs as indicated because p′(t∗) < 0, p′′(t∗) > 0, and x0 > 0. Thus, the opti-
mal search time t∗ rises as the quantity to be bought increases, and falls as the wage rate
rises.

These qualitative results can easily be obtained by a geometric argument. Figure 15.4.1
illustrates how the optimal search time t∗ is the value of t at which the tangent to the
curve R = [p0 − p(t)]x0 has slope w, and so is parallel to the line C = wt. If x0 increases,
the R curve expands vertically but not horizontally, so t∗ moves to the right. But if w

increases, the straight line C = wt rotates anti-clockwise about the origin, so the optimal
t∗ decreases.

 C 5 wt  R 5 (p 0 2 p (t))x 0
π

tt*

Figure 15.4.1 Optimal search

The General Case
The foregoing analysis can be extended to a function of any number of variables. Assuming
that ∂F/∂z �= 0, we have

F(.x1, . . . , xn, z) = c ⇒ ∂z
∂xi

= −∂F/∂xi

∂F/∂z
for all i = 1, 2, . . . , n (15.4.3)

The proof of this is a direct extension of the argument that we gave for Eq. (15.4.2), so is
left to the reader.

E X E R C I S E S F O R S E C T I O N 1 5 . 4

1. Use (15.4.2) to find ∂z/∂x for the following equations:

(a) 3x + y − z = 0 (b) xyz + xz3 − xy2z5 = 1 (c) exyz = 3xyz

2. Find z′
x, z′

y, and z′′
xy when x3 + y3 + z3 − 3z = 0.

3.SM Consider the problem that was analysed in Example 15.4.2.

(a) Suppose that Q = f (L) = √
L. Write down the first-order condition in Eq. (∗) for this case,

and then find an explicit expression for L∗ as a function of P and w. Find the partial derivatives
of L∗ w.r.t. P and w. Then verify that their signs are those that were obtained in the example.
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(b) Suppose the profit function is replaced by π(L) = Pf (L) − C(L, w), where C(L, w) is the
“cost function”. What is the first-order condition for L∗ to be optimal in this case? Find the
partial derivatives of L∗ w.r.t. P and w.

4. For all x > 0 and y > 0, the equation xy + yz + zx = k, where k is a positive constant, defines z as
a positive-valued function of x and y. Find the partial derivatives of z w.r.t. x and y.

5. Consider the model of Exercise 15.3.6, applied to the market for an agricultural crop. Replace
S = g(P) by S = g(w, P), where w is an index for how favourable the weather has been. Assume
that g′

w(w, P) > 0. Equilibrium now requires f (R, P) = g(w, P). Assume that this equation defines
P implicitly as a differentiable function of R and w. Find an expression for P′

w , and comment on
its sign.

6.SM The function F is defined for all x and y by F(x, y) = xey−3 + xy2 − 2y. Show that the point (1, 3)

lies on the level curve F(x, y) = 4, and find the equation for the tangent line to the curve at the
point (1, 3).

7.SM The Nerlove–Ringstad production function y = y(K, L) is defined implicitly by

y1+c ln y = AKαLβ

where A, α, and β are positive constants. Find the marginal productivities of capital and labour,
namely ∂y/∂K and ∂y/∂L. (Hint: Take the logarithm of each side and then differentiate implicitly.)

15.5 Elasticity of Substitution

 F (x, y) 5 c

y

y

xx

P

Q

R

Figure 15.5.1 Ryx at Q

Consider a level curve F(x, y) = c for a function F of two variables. The MRS Ryx, which
was defined in Eq. (15.3.4), is minus the slope of the tangent to this level curve at a point
like Q shown in Fig. 15.5.1. At point P, the MRS is a large positive number. At point Q, the
number Ryx is about 1, and at point R it is about 0.2. As we move along the level curve from
left to right, the MRS Ryx is strictly decreasing as a function of the ratio x/y, with values that
range over some positive interval I. Conversely, for each value of Ryx in I, there is a unique
corresponding point (x, y) on the level curve F(x, y) = c, and thus a corresponding value of
y/x. The ratio y/x is therefore a function of Ryx, allowing us to define the following:
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E L A S T I C I T Y O F S U B S T I T U T I O N

Along the level curve F(x, y) = c, the elasticity of substitution between y and
x is

σyx = ElRyx
(y/x) (15.5.1)

This defines σyx as the elasticity of the fraction y/x w.r.t. the MRS Ryx. Thus, for every
small δ, the number σyxδ is the approximate percentage change in the fraction y/x when we
move along the level curve F(x, y) = c far enough so that δ is the percentage increase in Ryx.
Note that σyx is symmetric in x and y. In fact, Rxy = 1/Ryx, and so the logarithmic formula
for elasticities implies that σxy = σyx. Also, Exercise 3 asks you to work with a (symmetric)
expression for the elasticity of substitution in terms of the first- and second-order partial
derivatives of F.

E X A M P L E 15.5.1 Calculate σKL for the Cobb–Douglas function F(K, L) = AKaLb.

Solution: The MRS of K for L is

RKL = F′
L

F′
K

= bAKaLb−1

aAKa−1Lb
= b

a
K
L

Thus, K/L = (a/b)RKL. So the elasticity of K/L w.r.t. RKL is 1. This shows that σKL = 1
for the Cobb–Douglas function.

E X A M P L E 15.5.2 Find the elasticity of substitution for the CES function

F(K, L) = A(aK−ρ + bL−ρ)−μ/ρ

where A, a, b, μ, and ρ are constants, with A > 0, a > 0, b > 0, μ �= 0, ρ > −1, and ρ �= 0.

Solution: Here

F′
K = A(−μ/ρ)(aK−ρ + bL−ρ)(−μ/ρ)−1a(−ρ)K−ρ−1

and F′
L = A(−μ/ρ)(aK−ρ + bL−ρ)(−μ/ρ)−1b(−ρ)L−ρ−1

It follows that the MRS between K and L is given by

RKL = F′
L

F′
K

= b
a

L−ρ−1

K−ρ−1
= b

a

(
K
L

)ρ+1

Inverting this equation gives

K
L

=
(a

b

)1/(ρ+1)

(RKL)
1/(ρ+1)

Recalling that the elasticity of Axb w.r.t. x is b, definition (15.5.1) implies that

σKL = ElRKL

(
K
L

)
= 1

ρ + 1
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So the function F has constant elasticity of substitution 1/(ρ + 1). This, of course, explains
why the function F is said to be CES, which stands for “constant elasticity of substitution”.

Note that the elasticity of substitution for the CES function tends to 1 as ρ → 0, which
is precisely the elasticity of substitution for the Cobb–Douglas function in the previous
example. This accords with the result in Example 7.12.5.

E X E R C I S E S F O R S E C T I O N 1 5 . 5

1. Calculate the elasticity of substitution between y and x for F(x, y) = 10x2 + 15y2.

2. Let F(x, y) = xa + ya, where a is a constant with a �= 0 and a �= 1.

(a) Find the marginal rate of substitution of y for x.

(b) Calculate the elasticity of substitution between y and x.

3.SM The elasticity of substitution defined in (15.5.1) can be expressed in terms of the partial derivatives
of the function F. Indeed, along the typical isoquant F(x, y) = c, one has

σyx = −F′
1F′

2(xF′
1 + yF′

2)

xy[(F′
2)

2F′′
11 − 2F′

1F′
2F′′

12 + (F′
1)

2F′′
22]

Use this formula to derive the result in Example 15.5.1.

15.6 Homogeneous Functions of Two
Variables
A production function like Y = F(K, L) indicates the amount Y of output that can be pro-
duced when K units of capital and L units of labour are used as inputs. For such a production
function, economists often ask what happens to output if we double the inputs of both cap-
ital and labour? Will production rise by more or less than a factor of two? Example 14.1.4
answered such questions for Cobb–Douglas technologies. To answer them for general func-
tions of two variables, we introduce the concept of homogeneity.

H O M O G E N E I T Y

A function f (x, y) of two variables x and y defined in a domain D is said to be
homogeneous of degree k if, for all (x, y) in D and all t > 0, one has

f (tx, ty) = tkf (x, y) (15.6.1)

In words, this means that multiplying both variables by a positive factor t will
multiply the value of the function by the factor tk.

The degree of homogeneity of a function can be an arbitrary real number—positive,
zero, or negative. Earlier, we determined the degree of homogeneity for several particular
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functions. In Example 14.1.4, for instance, we found that the Cobb–Douglas function F
defined by F(x, y) = Axayb is homogeneous of degree a + b. An even simpler example is:

E X A M P L E 15.6.1 Show that f (x, y) = 3x2y − y3 is homogeneous of degree 3.

Solution: If we replace x by tx and y by ty in the formula for f (x, y), we obtain

f (tx, ty) = 3(tx)2(ty) − (ty)3 = 3t2x2 · ty − t3y3 = t3(3x2y − y3) = t3f (x, y)

So f is homogeneous of degree 3. If we let t = 2, for example, then

f (2x, 2y) = 23f (x, y) = 8f (x, y)

After doubling both x and y, the value of this function increases by a factor of 8.

Note that the sum of the exponents in each term of the polynomial in Example 15.6.1 is
equal to 3. In general, a polynomial is homogeneous of degree k if and only if the sum of the
exponents in every one of its terms is equal to k. Other types of polynomial with different
sums of exponents in different terms, such as f (x, y) = 1 + xy or g(x, y) = x3 + xy, are not
homogeneous of any degree, as Exercise 6 asks you to show.

Euler’s Theorem
Homogeneous functions of two variables have some important properties of interest to
economists. The first is:

T H E O R E M 1 5 . 6 . 1 ( E U L E R ’ S T H E O R E M )

The continuously differentiable function f (x, y) is homogeneous of degree k if
and only if

xf ′
1(x, y) + yf ′

2(x, y) = kf (x, y) (15.6.2)

Here is an easy demonstration that Eq. (15.6.2) must hold when f is homogeneous of
degree k:

Proof: Differentiate each side of Eq. (15.6.1) w.r.t. t, using the chain rule to differentiate
the left-hand side. The result is

xf ′
1(tx, ty) + yf ′

2(tx, ty) = ktk−1f (x, y)

Putting t = 1 gives xf ′
1(x, y) + yf ′

2(x, y) = kf (x, y) immediately.

Theorem 15.7.1 in the next section proves the converse, and also considers the case of n
variables.

We note three other interesting general properties of functions f (x, y) that are homoge-
neous of degree k:

f ′
1(x, y) and f ′

2(x, y) are both homogeneous of degree k − 1 (15.6.3)
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f (x, y) = xkf (1, y/x) = ykf (x/y, 1) provided that x > 0 and y > 0 (15.6.4)

x2f ′′
11(x, y) + 2xyf ′′

12(x, y) + y2f ′′
22(x, y) = k(k − 1)f (x, y) (15.6.5)

Again, these results are not difficult to demonstrate:

Proof: To prove (15.6.3), we keep t and y constant while differentiating Eq. (15.6.1) par-
tially w.r.t. x. The result is tf ′

1(tx, ty) = tkf ′
1(x, y), implying that f ′

1(tx, ty) = tk−1f ′
1(x, y). This

confirms that f ′
1(x, y) is homogeneous of degree k − 1. A similar argument shows that

f ′
2(x, y) is homogeneous of degree k − 1.

To prove the two equalities in (15.6.4), we replace t in (15.6.1) first by 1/x and then by
1/y, respectively.

Finally, to show (15.6.5), assuming that f (x, y) is twice continuously differentiable, we
note first that because f ′

1(x, y) and f ′
2(x, y) are both homogeneous of degree k − 1, Euler’s

theorem (15.6.2) can be applied separately first to f ′
1 and then to f ′

2. Doing so gives us

xf ′′
11(x, y) + yf ′′

12(x, y) = (k − 1)f ′
1(x, y) (15.6.6)

xf ′′
21(x, y) + yf ′′

22(x, y) = (k − 1)f ′
2(x, y) (15.6.7)

Let us now multiply (15.6.6) by x and (15.6.7) by y, before adding the two. Because f
is C2, Young’s theorem (Theorem 14.6.1) implies that f ′′

12 = f ′′
21, so the resulting equation

simplifies to

x2f ′′
11(x, y) + 2xyf ′′

12(x, y) + y2f ′′
22(x, y) = (k − 1)[xf ′

1(x, y) + yf ′
2(x, y)]

By Euler’s theorem, however, xf ′
1(x, y) + yf ′

2(x, y) = kf (x, y), so (15.6.5) is verified.

E X A M P L E 15.6.2 Check properties (15.6.2) to (15.6.5) for the function f (x, y) = 3x2y − y3.

Solution: We find that f ′
1(x, y) = 6xy and f ′

2(x, y) = 3x2 − 3y2. Hence,

xf ′
1(x, y) + yf ′

2(x, y) = 6x2y + 3x2y − 3y3 = 3(3x2y − y3) = 3f (x, y)

Example 15.6.1 showed that f is homogeneous of degree 3, so this confirms (15.6.2).
Obviously, f ′

1 and f ′
2 are both polynomials that are homogeneous of degree 2, which

confirms (15.6.3). As for (15.6.4), in this case it takes the form

3x2y − y3 = x3[3(y/x) − (y/x)3] = y3[3(x/y)2 − 1]

Finally, to show (15.6.5), we first calculate all the second-order partial derivatives of f ,
which are f ′′

11(x, y) = 6y, f ′′
12(x, y) = 6x, and f ′′

22(x, y) = −6y. Hence,

x2f ′′
11(x, y) + 2xyf ′′

12(x, y) + y2f ′′
22(x, y) = 6x2y + 12x2y − 6y3 = 6(3x2y − y3)

= 3 · 2f (x, y)

This confirms (15.6.5) as well.

E X A M P L E 15.6.3 Suppose that the production function Y = F(K, L) is homogeneous of degree 1.
Show that one can express the output–labour ratio Y/L as a function Y/L = f (K/L) of
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the capital–labour ratio k = K/L, where f (k) = F(k, 1). Find the form of f when F is the
Cobb–Douglas function AKaLb, with a + b = 1.

Solution: Because F is homogeneous of degree 1, as a special case of (15.6.4) one has

Y = F(K, L) = F(L(K/L), L · 1) = LF(k, 1) = Lf (k) where k = K/L

For the function F(K, L) = AKaL1−a, one has f (k) = F(k, 1) = Aka.

Geometric Aspects of Homogeneous Functions
Homogeneous functions in two variables have some interesting geometric properties. Let
f (x, y) be homogeneous of degree k. As shown in Fig 15.6.1, consider a ray in the xy-plane
that starts from the origin (0, 0) and passes through the point (x0, y0) �= (0, 0). An arbitrary
point on this ray takes the form (tx0, ty0) for some positive number t. If we let f (x0, y0) = c,
then f (tx0, ty0) = tkf (x0, y0) = tkc. This shows that, above any ray in the xy-plane through
a point (x0, y0), the relevant portion of the graph of f consists of the curve z = tkc, where
t measures the distance along the ray from the origin, and c = f (x0, y0). A function that is
homogeneous of degree k is therefore completely determined by its value c = f (x0, y0) at
any one point (x0, y0) on each ray through the origin.

(x0 , y0) (tx0 , ty0)

z

y

x

c
tkc

Figure 15.6.1 Function f along a ray

z 5 f (x, y)

z

y

x

Figure 15.6.2 Homogeneity of degree 1

In particular, let k = 1 so that f (x, y) is homogeneous of degree 1. The curve z = tkc
that lies vertically above each relevant ray through the origin is then the straight line z = tc.
Because of this, it is often said that the graph of a homogeneous function of degree 1 is
generated by straight lines through the origin. The portion of the graph of z = f (x, y) that
is shown in Figure 15.6.2 illustrates this.

For a function f (x, y) of two variables, we have seen how it is often convenient to con-
sider its level curves in the xy-plane instead of its three-dimensional graph. What can we
say about the level curves of a homogeneous function? It turns out that for a homogeneous
function, even if only one of its level curves is known, then so are all its other level curves.
To see this, consider a function f (x, y) that is homogeneous of degree k, and let f (x, y) = c
be one of its level curves, as illustrated in Fig. 15.6.3.

We now explain how to construct the level curve through an arbitrary point A not lying
on f (x, y) = c: First, draw the unique ray from the origin that passes through A. This ray
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 f (x, y) 5 c

C

D

A

B

y

x

(x2 , y2)

(x1 , y1)

(tx2 , ty2)

(tx1 , ty1)

Figure 15.6.3 Level curves for a homogeneous function

must intersect the level curve f (x, y) = c at a unique point D whose coordinates we denote
by (x1, y1). The coordinates of A will then be (tx1, ty1) for some unique value of t, which in
the figure is about 1.7.

In order to construct any other point on the same level curve f (x, y) = f (tx1, ty1) through
A, first draw any new ray through the origin. Again, this must intersect the original level
curve f (x, y) = c at a unique point C whose coordinates we denote by (x2, y2). Now move
along the ray through C to the new point B with coordinates (tx2, ty2), where t is the value
found earlier when constructing D from A. The new point B must be on the same level curve
as A because homogeneity of degree k implies that

f (tx2, ty2) = tkf (x2, y2) = tkc = tkf (x1, y1) = f (tx1, ty1)

By repeating this construction for different rays through the origin that intersect the level
curve f (x, y) = c, we can find any point we wish on the new level curve f (x, y) = f (tx1, ty1).
Moreover, the output at each point (x, y) on this new level curve is f (x, y) = tkf (x1, y1).

The preceding argument shows that a homogeneous function f (x, y) is entirely deter-
mined by any one of its level curves and by its degree of homogeneity. The shape of each
level curve of a homogeneous function is often determined by specifying its elasticity of
substitution, as defined in (15.5.1).

Another feature of Fig. 15.6.3 is that, given any two points on a ray through the
origin, the tangents to the two level curves at those points are parallel lines. To see why,
recall from Eq. (15.3.2) that the slope of the level curve f (x, y) = c at any point (x, y)
is −f ′

1(x, y)/f ′
2(x, y). Now keep the assumption that f is homogeneous of degree k. By

Eq. (15.6.3), it follows that the first-order partial derivatives of f are both homogeneous of
degree k − 1. At the points A and D in Fig. 15.6.3, therefore, there is a common slope of
the level curve that satisfies

− f ′
1(tx1, ty1)

f ′
2(tx1, ty1)

= − tk−1f ′
1(x1, y1)

tk−1f ′
2(x1, y1)

= − f ′
1(x1, y1)

f ′
2(x1, y1)

(15.6.8)

This shows that, along any ray from the origin, the slope of the corresponding level curve at
any point will be constant. Moreover, following the definition in Eq. (15.3.4) of the MRS of
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y for x, removing the minus signs from Eq. (15.6.8) tells us that this MRS is a homogeneous
function of degree 0.

E X E R C I S E S F O R S E C T I O N 1 5 . 6

1. Use definition (15.6.1) to show that f (x, y) = x4 + x2y2 is homogeneous of degree 4.

2. Find the degree of homogeneity of x(p, r) = Ap−1.5r2.08.

3.SM Show that f (x, y) = xy2 + x3 is homogeneous of degree 3. Verify that the four properties stated in
Eqs (15.6.2) to (15.6.5) all hold.

4. Determine whether the function f (x, y) = xy/(x2 + y2) is homogeneous, and if it is, check Euler’s
theorem.

5. Prove that the CES function F(K, L) = A(aK−ρ + bL−ρ)−1/ρ is homogeneous of degree one. Then
adapt the argument of Example 15.6.3 to express F(K, L)/L as a function of k = K/L.

6. Show that f (x, y) = x3 + xy is not homogeneous of any degree. (Hint: Let x = y = 1.
Apply (15.6.1) with t = 2 and t = 4 to get a contradiction.)

7. Use Eqs (15.6.6) and (15.6.7) to show that if f (x, y) is homogeneous of degree 1, for all x > 0 and
y > 0, then f ′′

11(x, y)f ′′
22(x, y) − [f ′′

12(x, y)]2 = 0.

8. Suppose that f (x, y) is homogeneous of degree 2, with f ′
1(2, 3) = 4 and f ′

2(4, 6) = 12. Find f (6, 9).

9.SM [HARDER] Prove that if F(x, y) is homogeneous of degree 1, then the elasticity of substitution
can be expressed as σyx = F′

1F′
2/FF′′

12. (Hint: Use Euler’s theorem, together with Eqs (15.6.6)
and (15.6.7), as well as the result in Exercise 15.5.3.)

15.7 Homogeneous and Homothetic
Functions
Suppose that f is a function of n variables defined in a domain D. The set D is called a cone
if, whenever (x1, x2, . . . , xn) ∈ D and t > 0, the point (tx1, tx2, . . . , txn) also lies in D. When
D is a cone, we say that f is homogeneous of degree k on D if

f (tx1, tx2, . . . , txn) = tkf (x1, x2, . . . , xn) (15.7.1)

for all t > 0. The constant k can be any real number—positive, zero, or negative.

E X A M P L E 15.7.1 Test the homogeneity of

f (x1, x2, x3) = x1 + 2x2 + 3x3

x2
1 + x2

2 + x2
3
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Solution: Here, f is defined on the set D of all points in three-dimensional space excluding
the origin, which is a cone. Also,

f (tx1, tx2, tx3) = tx1 + 2tx2 + 3tx3

(tx1)
2 + (tx2)

2 + (tx3)
2

= t(x1 + 2x2 + 3x3)

t2(x2
1 + x2

2 + x2
3)

= t−1f (x1, x2, x3)

Hence, f is homogeneous of degree −1.

Euler’s theorem, which we saw as Theorem 15.6.1 for the case of functions of two vari-
ables, can be generalized to functions of n variables:

T H E O R E M 1 5 . 7 . 1 ( E U L E R ’ S T H E O R E M )

Suppose f is a C1 function of n variables, defined in an open cone D. Then f is
homogeneous of degree k if and only if, for all x in D, one has:

n∑
i=1

xi f ′
i (x) = kf (x) (15.7.2)

The following proof of this result is a routine extension of the argument we gave for
Theorem 15.6.1:

Proof of Euler’s Theorem: Suppose f is homogeneous of degree k, so that Eq. (15.7.1)
holds. Differentiating this equation w.r.t. t, with x fixed, yields

n∑
i=1

xi f ′
i (tx) = ktk−1f (x)

Setting t = 1 gives (15.7.2) immediately.
To prove the converse, assume that Eq. (15.7.2) is valid for all x in the cone D. Keep x

fixed and define the function g for all t > 0 by g(t) = t−kf (tx) − f (x). Differentiating this
w.r.t. t gives

g′(t) = −kt−k−1f (tx) + t−k
n∑

i=1

xi f ′
i (tx) (∗)

Because tx lies in D, Eq. (15.7.2) must also be valid when each xi is replaced by txi, which
implies that

∑n
i=1(txi)f

′
i (tx) = kf (tx). Multiplying each side of this last equation by t−k−1

gives

t−k
n∑

i=1

xif
′
i (tx) = kt−k−1f (tx) (∗∗)

It follows from (∗) and (∗∗) that, for all t > 0, one has g′(t) = 0, so g(t) must be a constant
C. Obviously g(1) = 0, so C = 0, implying that g(t) = 0 for all t > 0. By definition of g,
this proves that f (tx) = tkf (x), so f is indeed homogeneous of degree k.

An interesting version of the Euler equation (15.7.2) results from dividing each term
of the equation by f (x), provided this is not 0. Using the definition of partial elasticity in
(14.10.3), we can write Eli f (x) = (xi/f (x))f ′

i (x). So

El1 f (x) + El2 f (x) + · · · + Eln f (x) = k (15.7.3)



�

� �

�

S E C T I O N 1 5 . 7 / H O M O G E N E O U S A N D H O M O T H E T I C F U N C T I O N S 641

Thus, given a function of n variables that is homogeneous of degree k, the sum of its partial
elasticities must equal k.

The results in Eqs (15.6.3) to (15.6.5) can also be extended to functions of n variables.
The proofs are similar, so they can be left to the interested reader. We simply state the
extensions of Eqs (15.6.3) and (15.6.5): if f (x) is homogeneous of degree k, then for each
i = 1, 2, . . . , n one has:

f ′
i (x) is homogeneous of degree k − 1 (15.7.4)

n∑
i=1

n∑
j=1

xixj f ′′
ij (x) = k(k − 1)f (x) (15.7.5)

Economic Applications
Let us consider some typical examples of homogeneous functions in economics.

E X A M P L E 15.7.2 Let f (v) = f (v1, . . . , vn) denote the output of a production process when the input
quantities are v1, . . . , vn. It is often assumed that if all the input quantities are scaled by a
factor t, then t times as much output as before is produced, so that for all t > 0,

f (tv) = tf (v) (∗)

This implies that f is homogeneous of degree 1. Production functions with this property are
said to exhibit constant returns to scale.

For any fixed input vector v, consider the function ϕ(t) = f (tv)/t. This indicates the
average returns to scale, meaning the average output per unit input when all inputs are
rescaled by the same factor. When t = 2, for example, all inputs are doubled. But when
t = 3/4, all inputs are reduced proportionally by 1/4.

Now, when (∗) holds, then ϕ(t) = f (v), independent of t. Also, a production function
that is homogeneous of degree k < 1 is said to have decreasing returns to scale because
ϕ(t) = tk−1f (v) and so ϕ′(t) < 0. On the other hand, a production function has increasing
returns to scale if k > 1 because then ϕ′(t) > 0.

E X A M P L E 15.7.3 The general Cobb–Douglas function F(v1, . . . , vn) = Av
a1
1 · · · van

n is often used
as an example of a production function with n inputs. Prove that it is homogeneous, and
examine whether it has constant, decreasing, or increasing returns to scale. Also confirm
Eq. (15.7.3) in this case.

Solution: The definition of Cobb–Douglas function implies that

F(tv) = A(tv1)
a1 . . . (tvn)

an = Ata1v
a1
1 . . . tanvan

n = ta1+···+an F(v)

It follows that F is homogeneous of degree a1 + · · · + an. So F has constant, decreasing,
or increasing returns to scale according as the sum a1 + · · · + an of its powers is equal,
smaller, or greater than 1. Also, for each i = 1, . . . , n the partial elasticity is Eli F = ai,
implying that

∑n
i=1 Eli F = ∑n

i=1 ai. This confirms (15.7.3).
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E X A M P L E 15.7.4 Consider a market with three commodities whose quantities are denoted by x, y,
and z, with prices per unit that are p, q, and r respectively. Suppose that the demand for
one of the commodities by a consumer with income m is given by D(p, q, r, m). Suppose
too that the three prices and income m are all multiplied by the same factor t > 0.4 Then
the consumer’s budget constraint px + qy + rz ≤ m becomes tpx + tqy + trz ≤ tm, which
is exactly the same constraint. The multiplicative constant t is irrelevant to the consumer. It
is therefore natural to assume that the consumer’s demand remains unchanged, with

D(tp, tq, tr, tm) = D(p, q, r, m)

Requiring this equation to be valid for all t > 0 means that the demand function D is homo-
geneous of degree 0. In this case, it is often said that demand is not influenced by “money
illusion”: a consumer with 10% more money to spend should realize that nothing has really
changed if all prices have also risen by 10%.

As a specific example of a function that is common in demand analysis, consider

D(p, q, r, m) = mpb

pb+1 + qb+1 + rb+1

where b is a constant. Here

D(tp, tq, tr, tm) = (tm)(tp)b

(tp)b+1 + (tq)b+1 + (tr)b+1
= D(p, q, r, m)

because the factor tb+1 in each term can be cancelled.

Sometimes we encounter non-homogeneous functions of several variables that are, how-
ever, “partially homogeneous” in the sense that they are homogeneous when regarded as
functions of some of the variables only, with the other variables fixed. For instance, the
(minimum) cost of producing y units of a single output good is often expressed as a func-
tion C(w, y) of y and of the vector w = (w1, . . . , wn) whose components are the prices of n
different input factors. In this case, if all input prices double, an economist usually expects
the production cost to double. So a common assumption is that C(tw, y) = t C(w, y) for all
t > 0, meaning that the cost function is “partially homogeneous” of degree 1 in the input
price vector w, for each fixed output level y. See Exercise 7 for a prominent example.

Homothetic Functions
Let f be a function of n variables x = (x1, . . . , xn) defined in a cone K. Then f is called
homothetic if

x, y ∈ K, f (x) = f (y), t > 0 =⇒ f (tx) = f (ty) (15.7.6)

For instance, if f is some consumer’s utility function, Eq. (15.7.6) requires that whenever
there is indifference between the two commodity bundles x and y, then there is also indiffer-
ence after they have both been magnified or shrunk by the same proportion t. For example,

4 Imagine, for example, that income and the prices of all commodities rise by 10%. Or that all prices
and incomes have been converted into euros from, say, German marks.
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a consumer who is indifferent between two litres of soda and three litres of juice must also
be indifferent between four litres of soda and six litres of juice. Evidently, this property may
be true of some consumers, but one should not assume it of all people.

A homogeneous function f of any degree k is homothetic. In fact, it is easy to prove a
more general result:

T H E O R E M 1 5 . 7 . 2

Suppose that function F can be written as the composition of two real-valued
functions H and f , so that F(x) = H(f (x)). If H is strictly increasing and f is
homogeneous of any degree, then F is homothetic.

Proof: Suppose that F(x) = F(y), or equivalently, that H(f (x)) = H(f (y)). Because H is
strictly increasing, this implies that f (x) = f (y). Suppose that f is homogeneous of degree k.
Then for any t > 0 one has

F(tx) = H(f (tx)) = H(tkf (x)) = H(tkf (y)) = H(f (ty)) = F(ty)

This proves that F(x) satisfies definition (15.7.6), and so is homothetic.

Hence, any strictly increasing function of a homogeneous function is homothetic. It
is actually quite common to take this property as the definition of a homothetic function,
usually with k = 1.5

The next example shows that not all homothetic functions are homogeneous.

E X A M P L E 15.7.5 Show that the function F(x, y) = xy + 1, which is obviously not homogeneous, is
nevertheless homothetic.

Solution: Define the two functions H(u) = u + 1 and f (x, y) = xy. Then for all x, y one
has F(x, y) = xy + 1 = H(f (x, y)), where H is strictly increasing and f is homogeneous of
degree 2. So Theorem 15.7.2 implies that F is homothetic. Alternatively, one can use the
definition in (15.7.6) to show directly that F is homothetic.

Suppose that F(x) = F(x1, x2, . . . , xn) is a differentiable production function, defined
for all n-vectors x = (x1, . . . , xn) satisfying xi ≥ 0 for i = 1, . . . , n. Recall that the marginal
rate of substitution, or MRS, of factor j for factor i is defined, for i, j = 1, 2, . . . , n, by

hji(x) = ∂F(x)

∂xi
÷ ∂F(x)

∂xj
(15.7.7)

5 Suppose that F(x) is any continuous homothetic function defined on the cone K consisting of all
n-vectors x satisfying xi ≥ 0 for all i = 1, . . . , n. (In other words, K is the nonnegative orthant of
R

n.) Suppose too that F(tx0) is a strictly increasing function of t for each fixed x0 �= 0 in K. Then
one can prove that there exists a strictly increasing function H such that F(x) = H(f (x)), where the
function f (x) is homogeneous of degree 1. Actually, f could be made a homogeneous function of
any positive degree k by modifying H so it becomes the power function H̃(u) = uk.
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Suppose that F(x) = H(f (x)), where H is a differentiable function of one variable with
H′(u) > 0 for all u in its domain. Suppose too that f (x) is homogeneous of degree k. Then

∂F(x)

∂xi
= H′(f (x))

∂f (x)

∂xi

This implies that wherever f ′
j (x) > 0 and so F′

j(x) > 0, one has

∂F(x)

∂xi
÷ ∂F(x)

∂xj
= ∂f (x)

∂xi
÷ ∂f (x)

∂xj
(15.7.8)

Replacing x by tx in (15.7.7) and (15.7.8) implies that

hji(tx) = ∂f (tx)

∂xi
÷ ∂f (tx)

∂xj
(15.7.9)

But f is homogeneous of degree k. So (15.7.4) and (15.7.9) together imply that, for all t > 0,
one has

hji(tx) = ∂f (tx)

∂xi
÷ ∂f (tx)

∂xj
= tk−1 ∂f (x)

∂xi
÷

[
tk−1 ∂f (x)

∂xj

]
= hji(x) (15.7.10)

Formula (15.7.10) shows that the marginal rates of substitution are homogeneous of
degree 0. This demonstrates the following general result: Suppose that the function
F(x) = H(f (x)) is a strictly increasing transformation H(u) of a homogeneous function
u = f (x), as in the premises of Theorem 15.7.2, where H is differentiable with H′(u) > 0
for all u in its domain. Then the marginal rates of substitution of F(x) are homogeneous of
degree 0.6 This result generalizes to n variables the observation made for the case of two
variables at the end of Section 15.6.

E X E R C I S E S F O R S E C T I O N 1 5 . 7

1.SM Find the degree of homogeneity, if there is one, for each of the following functions:

(a) f (x, y, z) = 3x + 4y − 3z (b) g(x, y, z) = 3x + 4y − 2z − 2

(c) h(x, y, z) =
√

x + √
y + √

z

x + y + z
(d) G(x, y) = √

xy ln
(

x2 + y2

xy

)

(e) H(x, y) = ln x + ln y (f) p(x1, . . . , xn) = ∑n
i=1 xn

i

2.SM Find the degree of homogeneity, if there is one, for each of the following functions:

(a) f (x1, x2, x3) = (x1x2x3)
2

x4
1 + x4

2 + x4
3

(
1
x1

+ 1
x2

+ 1
x3

)

(b) the CES function: x(v1, v2, . . . , vn) = A
(
δ1v

−ρ
1 + δ2v

−ρ
2 + · · · + δnv

−ρ
n

)−μ/ρ

3. Examine the homogeneity of the three means --xA, --xG, and --xH , as defined in Example 14.5.2.

6 Because of our previous footnote, the same must be true if F is any homothetic function with the
property that F(tx) is an increasing function of the scalar t for each fixed vector x.
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4. Consider a utility function u(x) = u(x1, . . . , xn) whose continuous partial derivatives, for some

constant a, satisfy
∑n

i=1 xi
∂u
∂xi

= a for all x1 > 0, . . . , xn > 0. Show that the function v(x) =
u(x) − a ln(x1 + · · · + xn) is homogeneous of degree 0.7 (Hint: Use Euler’s theorem.)

5.SM Which of the following functions f (x, y) are homothetic?

(a) (xy)2 + 1 (b)
2(xy)2

(xy)2 + 1
(c) x2 + y3 (d) ex2y

6. [HARDER] Suppose that f (x) and g(x) are homogeneous of degree r and s, respectively. Determine
which of the following functions h are homogeneous. Find the degree of homogeneity in each
case, if there is one.

(a) h(x) = f (xm
1 , xm

2 , . . . , xm
n ) (b) h(x) = g(x)p (c) h = f + g

(d) h = fg (e) h = f /g

7.SM [HARDER] The transcendental logarithmic, or “translog”, cost function C(w, y) is defined implic-
itly, for each n-vector w = (w1, w2, . . . , ) of positive factor prices, and each positive level of output
y, by

ln C(w, y) = a0 + c1 ln y +
n∑

i=1

ai ln wi + 1
2

n∑
i=1

n∑
j=1

bij ln wi ln wj + ln y
n∑

i=1

ci ln wi

Prove that, for each fixed y, this cost function is homogeneous of degree 1 in w provided that
the various parameters satisfy all the following equations: (i)

∑n
i=1 ai = 1; (ii)

∑n
i=1 ci = 0;

(iii)
∑n

j=1 bij = 0 for all i; and (iv)
∑n

i=1 bij = 0 for all j.

15.8 Linear Approximations
In Section 7.4 we discussed the linear approximation f (a + h) ≈ f (a) + f ′(a)h for a func-
tion of one variable, which can be derived by putting h = x − a in (7.4.1). It is important
to understand the size of the error or remainder R(h) = f (a + h) − f (a) − f ′(a)h in this
approximation. It is rather obvious that R(h) → 0 as h → 0, But the definition of the deriva-
tive f ′(a) implies the stronger property that, as h → 0, so

1
h

R(h) = 1
h

[f (a + h) − f (a)] − f ′(a) → f ′(a) − f ′(a) = 0 (15.8.1)

We will now find a similar linear approximation for a C1 function f of two variables,
and later for a function of n variables.

For fixed numbers x0, y0, x, and y, define the function g(t) of one variable by

g(t) = f (x0 + t(x − x0), y0 + t(y − y0)) (15.8.2)

7 This function was first studied by D.W. Katzner.
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We see that g(0) = f (x0, y0) and g(1) = f (x, y). For general t, we see that g(t) is the value
of f at the point

(x(t), y(t)) = (x0 + t(x − x0), y0 + t(y − y0)) = ((1 − t)x0 + tx, (1 − t)y0 + ty)

which lies on the line joining (x0, y0) to (x, y). According to the chain rule (15.1.1), because
x′(t) = x − x0 and y′(t) = y − y0, the derivative g′(t) equals

f ′
1(x0 + t(x − x0), y0 + t(y − y0))(x − x0) + f ′

2(x0 + t(x − x0), y0 + t(y − y0))(y − y0)

Putting t = 0 gives

g′(0) = f ′
1(x0, y0)(x − x0) + f ′

2(x0, y0)(y − y0) (15.8.3)

So, using the approximation g(1) ≈ g(0) + g′(0), we obtain the result:

L I N E A R A P P R O X I M A T I O N

The linear approximation to f (x, y) about (x0, y0) is

f (x, y) ≈ f (x0, y0) + f ′
1(x0, y0)(x − x0) + f ′

2(x0, y0)(y − y0) (15.8.4)

Putting h = x − x0 and k = y − y0 in (15.8.4) and including the remainder or error term
R(h, k) gives

f (x0 + h, y0 + k) = f (x0, y0) + f ′
1(x0, y0)h + f ′

2(x0, y0)k + R(h, k)

Let ‖(h, k)‖ = √
h2 + k2 denote the norm of (h, k). Provided that the function f (x, y) is

C1 near (x0, y0), this error term satisfies R(h, k)/‖(h, k)‖ → 0 as ‖(h, k)‖ → 0. This is the
extension of (15.8.1) to functions of two variables. Later in this section we will discuss the
corresponding general result when f is a function of n variables.

E X A M P L E 15.8.1 Find the linear approximation to f (x, y) = ex+y(xy − 1) about (0, 0).

Solution: Here one has f (0, 0) = −1, as well as

f ′
1(x, y) = ex+y(xy − 1) + ex+yy and f ′

2(x, y) = ex+y(xy − 1) + ex+yx

So f ′
1(0, 0) = −1 and f ′

2(0, 0) = −1. Hence, Eq. (15.8.4) gives

ex+y(xy − 1) ≈ −1 − x − y

So for x and y close to 0, the complicated function z = ex+y(xy − 1) is approximated by the
simple linear function z = −1 − x − y.

Formula (15.8.4) can be used to find approximate values of a function near any point
where the function and its derivatives are easily evaluated, as in the following example.
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E X A M P L E 15.8.2 Let f (x, y) = xy3 − 2x3. Then f (2, 3) = 38. Using (15.8.4), find an approximate
numerical value for f (2.01, 2.98).

Solution: Here f ′
1(x, y) = y3 − 6x2 and f ′

2(x, y) = 3xy2, so f ′
1(2, 3) = 3 and f ′

2(2, 3) = 54.
Putting x0 = 2, y0 = 3, x = 2 + 0.01, and y = 3 − 0.02, we obtain

f (2.01, 2.98) ≈ f (2, 3) + f ′
1(2, 3) · 0.01 + f ′

2(2, 3) · (−0.02) = 38 + 3(0.01) + 54(−0.02)

which equals 36.95. The exact value is f (2.01, 2.98) = 36.95061792. The error in the
approximation, therefore, is only a little larger than 0.0006 in absolute value.

Approximation (15.8.4) can be generalized to functions of several variables.

L I N E A R A P P R O X I M A T I O N

Given a C1 function f (x) = f (x1, . . . , xn) of n variables, the linear approxima-
tion to f about the point x0 = (x0

1, . . . , x0
n) is

f (x) ≈ f (x0) + f ′
1(x

0)(x1 − x0
1) + · · · + f ′

n(x
0)(xn − x0

n) (15.8.5)

Exercise 8 asks you to provide a proof. Equation (14.3.2) introduced the notation
∇f (x0) = (

f ′
1(x

0), . . . , f ′
n(x

0)
)

for the gradient n-vector evaluated at x0. Using dot product
notation then allows us to rewrite Eq. (15.8.5) more concisely as

f (x) ≈ f (x0) + ∇f (x0) · (x − x0) (15.8.6)

Differentiability and Gradient Vectors
In order to discuss the size of the error in Eq. (15.8.6), we will use the definition in (14.5.6)
of continuity for a function of n variables, as well as the following definition:

D I F F E R E N T I A B I L I T Y A N D D E R I V A T I V E

Suppose that the function f (x) = f (x1, . . . , xn) of n variables is defined on the
subset S of R

n. Let a be an interior point of S. Then f is said to be differentiable
at a, with the n-vector p as its derivative at a, provided that

1
‖h‖ [f (a + h) − f (a) − p · h] → 0 as h → 0 (15.8.7)

In n-space, a direction can be identified with an n-vector u which lies in the unit sphere
because ‖u‖ = √

u · u = 1. In the case when n = 2 and so the unit sphere is a circle, one
can think of a compass whose needle points in a direction u that is measured around a circle
marked with indicators such as SW for south-west. There is a close relationship between
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the derivative of a function of n variables, which is defined by (15.8.7), and its directional
derivatives, which we are about to define.

D I R E C T I O N A L D E R I V A T I V E

Suppose that the function f (x) of n variables is defined on the subset S of R
n.

Let a be an interior point of S, and u any direction vector. Then the directional
derivative of f at a, in the direction u, is defined by

∇uf (a) = lim
θ→0

1
θ

[f (a + θu) − f (a)] (15.8.8)

Thus ∇uf (a) is the ordinary derivative of the function of one variable defined for all
small θ by gu(a; θ) = f (a + θu). The following result uses both directional derivatives and
the gradient vector to characterize the derivative p that was defined in (15.8.7).

T H E O R E M 1 5 . 8 . 1 ( C H A R A C T E R I Z I N G T H E D E R I V A T I V E )

Suppose that the function f (x) of n variables is defined on the subset S of R
n

and is differentiable at an interior point a of S, with derivative equal to the
n-vector p. Then the derivative p equals the gradient vector ∇f (a). Moreover,
the directional derivative ∇uf (a) of f at a in any direction u with ‖u‖ = 1 exists
and is given by

∇uf (a) = p · u = ∇f (a) · u (15.8.9)

Proof: Given any direction u in the unit sphere of n-space and any small θ > 0, put h = θu.
Then one has

1
θ

[f (a + θu) − f (a) − p · (θu)] = 1
‖h‖ [f (a + h) − f (a) − p · h)]

As θ → 0 and so h → 0, using (15.8.8) shows that the limit of the left-hand side equals
∇uf (a) − p · u, whereas using (15.8.7) shows that the limit of the right-hand side is 0. This
proves that ∇uf (a) = p · u.

Next, for each i = 1, 2, . . . , n, consider the case when u = ei, defined as the direction
vector whose ith component is 1, implying that all other components are 0. Then the equal-
ity ∇ei

f (a) = p · ei evidently implies that the ith partial derivative satisfies f ′
i (a) = pi, the

ith component of p. So the definition of ∇f (a) as the vector of partial derivatives implies
that it must equal the derivative p.

In (7.9.3) we showed that if a function of one variable is differentiable at x = a, then it
is continuous at x = a. The definition in (15.8.7) implies a similar result for a function of n
variables.
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T H E O R E M 1 5 . 8 . 2 ( D I F F E R E N T I A B I L I T Y I M P L I E S C O N T I N U I T Y )

If the function f (x) of n variables is defined on the subset S of R
n and is dif-

ferentiable at an interior point a of S, then f is continuous at a.

Proof: Let p denote the derivative, defined so that Eq. (15.8.7) is satisfied. As discussed
in Section 14.5, the linear function p · x = p1 + · · · + pnxn is evidently continuous in x. It
follows that p · h → 0 as h → 0. Furthermore

f (a + h) − f (a) = ‖h‖
(

1
‖h‖ [f (a + h) − f (a) − p · h]

)
+ p · h

Now, as h → 0, the definition of p implies that the fraction in parentheses tends to 0, as
does p · h. It follows that f (a + h) → f (a), so f is continuous at a.

Exercise 10 asks you to consider a function of two variables which has both partial
derivatives at (0, 0). Using the argument that was used to derive Eq. (15.8.3), it follows
that f has a directional derivative ∇uf (a) for every direction vector u in the unit circle of
2-space. Yet f is not even continuous, let alone differentiable, at (0, 0). As the following
result shows, this is because its partial derivatives are not continuous.

A C1 FUNCTION IS DIFFERENTIABLE

If the function f (x) of n variables is defined and C1 on the subset S of R
n, then

f is differentiable at any interior point a of S.

The following proof considers the two-dimensional case. For a proof that applies for
n > 2, see FMEA.

Proof: In the two-dimensional case, given any (h, k) �= (0, 0), we have

f (x + h, y + k) − f (x, y) = [f (x + h, y + k) − f (x + h, y)] + [f (x + h, y) − f (x, y)] (∗)

Because the partial derivatives of f (x + h, y + k) w.r.t. both h and k are continuous for all
small h and k, so are the derivatives of the functions ϕ(θ) = f (x + θh, y) of θ and ψ(η) =
f (x + h, y + ηk) of η, both defined on [0, 1]. It follows from the Mean Value Theorem 9.4.2
that there exist θ∗ and η∗ in (0, 1) such that

f (x + h, y) − f (x, y) = ϕ(1) − ϕ(0) = ϕ′(θ∗) = f ′
1(x + θ∗h, y) h (∗∗)

and f (x + h, y + k) − f (x + h, y) = ψ(1) − ψ(0) = ψ ′(η∗) = f ′
2(x + h, y + η∗k) k

(∗∗∗)

Now, for all (h, k) near but not equal to (0, 0), define

R(h, k) = f (x + h, y + k) − f (x, y) − f ′
1(x, y) h − f ′

2(x, y) k
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It follows from (∗), (∗∗) and (∗∗∗) that

R(h, k) = [f ′
1(x + θ∗h, y) − f ′

1(x, y)] h + [f ′
2(x + h, y + η∗k) − f ′

2(x, y)] k

Dividing each side of this equation by the norm ‖(h, k)‖, we see that

1
‖(h, k)‖R(h, k) = [f ′

1(x + θ∗h, y) − f ′
1(x, y)]

h
‖(h, k)‖ + [f ′

2(x + h, y + η∗k) − f ′
2(x, y)]

k
‖(h, k)‖

We have assumed that f ′
1 and f ′

2 are both continuous at (x, y), so R(h, k)/‖(h, k)‖ → 0 as
(h, k) → (0, 0). It follows that the function f is differentiable at (x, y), with derivative equal
to the gradient vector (f ′

1(x, y), f ′
2(x, y)).

Tangent Planes
In Eq. (15.8.4), the function z = f (x, y) is approximated by the linear function

z = f (x0, y0) + f ′
1(x0, y0)(x − x0) + f ′

2(x0, y0)(y − y0)

The graph of z = f (x, y) is a plane which passes through the point P = (x0, y0, z0) that is on
the graph because z0 = f (x0, y0). This plane is called the tangent plane to z = f (x, y) at P:

T A N G E N T P L A N E

At the point (x0, y0, z0) with z0 = f (x0, y0), the tangent plane to the graph of
z = f (x, y) has the equation

z − z0 = f ′
1(x0, y0)(x − x0) + f ′

2(x0, y0)(y − y0) (15.8.10)

z 5 f (x, y)

Tangent plane

P

(x0 , y0)

z

y

x

Figure 15.8.1 The graph of z = f (x, y) and the tangent plane at P

This tangent plane is illustrated in Fig. 15.8.1. Does it deserve that name? Look back at
Fig. 14.3.8, where lx and ly are the tangents at P to the two curves Kx and Ky that lie in the
surface. Since the slope of the line lx is f ′

2(x0, y0), the points (x, y, z) of lx are characterized
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by x = x0 and z − z0 = f ′
2(x0, y0)(y − y0). But Eq. (15.8.10) implies that these points also

lie in the tangent plane. Similarly, we see that the line ly also lies in the tangent plane.
Because the graph of Eq. (15.8.10) is the only plane that contains both tangent lines lx and
ly, it makes good sense to call it the “tangent plane” at (x0, y0, z0).

E X A M P L E 15.8.3 Find the tangent plane at P = (x0, y0, z0) = (1, 1, 5) to the graph of

f (x, y) = x2 + 2xy + 2y2

Solution: Because f (1, 1) = 5, the point P is on the graph of f . But f ′
1(x, y) = 2x + 2y and

f ′
2(x, y) = 2x + 4y, so f ′

1(1, 1) = 4 and f ′
2(1, 1) = 6. Applying Eq. (15.8.10) yields

z − 5 = 4(x − 1) + 6(y − 1)

This simplifies to z = 4x + 6y − 5.

Supergradients and Subgradients
Let z = f (x, y) be any function defined on the domain S in the xy-plane. Recall from defini-
tion (14.3.1) that if f is differentiable at the point (x0, y0), then its gradient vector ∇f (x0, y0)

at that point is the ordered pair (f ′
1(x0, y0), f ′

2(x0, y0)) of its partial derivatives.
Particularly in the case of a function which is concave or convex, we may be able to

specify the sign of the error in the linear approximation (15.8.4). Indeed, following the def-
initions (8.4.1) and (8.4.2) of supergradient and subgradient for a function of one variable,
we introduce the following definitions for functions of two variables:

S U P E R G R A D I E N T A N D S U B G R A D I E N T V E C T O R S

Suppose that the function z = f (x, y) defined on the domain S in
the xy-plane is differentiable at (x0, y0). Then its gradient vector
∇f (x0, y0) = (f ′

1(x0, y0), f ′
2(x0, y0)) at that point is said to be:

(i) a supergradient vector if, for all x in S, one has

f (x, y) ≤ f (x0, y0) + f ′
1(x0, y0)(x − x0) + f ′

2(x0, y0)(y − y0) (15.8.11)

(ii) a subgradient vector if, for all x in S, one has

f (x, y) ≥ f (x0, y0) + f ′
1(x0, y0)(x − x0) + f ′

2(x0, y0)(y − y0) (15.8.12)

Thus, in the case of a supergradient vector, the error in the linear approximation formula
(15.8.4) is nonnegative, so it gives an over-approximation. On the other hand, in the case
of a subgradient vector, formula (15.8.4) gives an under-approximation, because the error
is nonpositive.

The main reason for introducing the concepts of supergradient and subgradient vectors
is that they allow us to state the following important result:
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T H E O R E M 1 5 . 8 . 3 ( S U P E R G R A D I E N T S A N D S U B G R A D I E N T S )

Suppose the function z = f (x, y) is defined on the convex domain S in the
xy-plane, and is differentiable at the interior point (x0, y0) of S. Then the gra-
dient vector ∇f (x0, y0) = (f ′

1(x0, y0), f ′
2(x0, y0)) at (x0, y0) is:

(i) a supergradient vector in case f is concave;

(ii) a subgradient vector in case f is convex.

Proof: Fix any pair (x, y) in S that is different from (x0, y0). Then consider once again the
function of one variable defined in (15.8.2) by

g(t) = f (x0 + t(x − x0), y0 + t(y − y0))

Because S is convex, the function g(t) is defined for all t in [0, 1]. Because (x0, y0) is an
interior point of S, there exists an ε > 0 that is small enough for g(t) to be defined on an
interval I that includes (−ε, 1]. Finally, because f is differentiable at (x0, y0), it follows from
(15.8.3) that g is differentiable at t = 0 with

g′(0) = f ′
1(x0, y0)(x − x0) + f ′

2(x0, y0)(y − y0)

Consider now the case when the function f is concave on S. Suppose that u and v are
any two points in I. Fix any scalar λ in [0, 1], and let s = λu + (1 − λ)v. Consider the
three points (x(t), y(t)) = (x0 + t(x − x0), y0 + t(y − y0)) defined for t = u, v, s. The above
definitions imply that all three points belong to S, and satisfy (x(s), y(s)) = λ(x(u), y(u)) +
(1 − λ)(x(v), y(v)). Now concavity of f on S implies that g is concave on I because

g(s) = f (x(s), y(s)) ≥ λf (x(u), y(u)) + (1 − λ)f (x(v), y(v)) = λg(u) + (1 − λ)g(v)

Because g(t) is concave on I and differentiable at t = 0, which is an interior point of I,
it follows from the supergradient property in Theorem 8.4.1 for functions of one variable
that, for all t in I, one has g(t) − g(0) ≤ g′(0)(t − 0). In particular, when t = 1 one has
g(1) ≤ g(0) + g′(0). By definition of g, it follows that the gradient vector ∇f (x0, y0) at
(x0, y0) has the supergradient property defined by the inequality (15.8.11).

The case when f is convex follows because then −f is concave, implying that its gradient
vector ∇(−f ) = −∇f is a supergradient vector of −f . This is equivalent to ∇f being a
subgradient vector of f .

With n variables, the two inequalities (15.8.11) and (15.8.12) that determine whether
the gradient vector ∇f (x0) = (f ′

1(x
0), . . . , f ′

n(x
0)) is a supergradient or subgradient, respec-

tively, can be written using dot product notation as:

f (x) − f (x0) ≤ f ′
1(x

0)(x1 − x0
1) + · · · + f ′

n(x
0)(xn − x0

n) = ∇f (x0) · (x − x0) (15.8.13)

f (x) − f (x0) ≥ f ′
1(x

0)(x1 − x0
1) + · · · + f ′

n(x
0)(xn − x0

n) = ∇f (x0) · (x − x0) (15.8.14)

Apart from their inherent interest, Theorem 15.8.3 and the two inequalities (15.8.13)
and (15.8.14) will be used in Chapter 17 to show that any interior critical point of a
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concave function is a maximum, whereas any interior critical point of a convex function is
a minimum.

We conclude this section by extending Theorem 8.4.2 to functions of n variables, thus
deriving a supergradient sufficient condition for concavity, and a subgradient sufficient con-
dition for concavity.

T H E O R E M 1 5 . 8 . 4 ( S U F F I C I E N T C O N D I T I O N S F O R C O N C A V I T Y
A N D C O N V E X I T Y )

Suppose that the function f is defined on an open convex domain D in n-space.
Then f will be:

(i) concave if it is has a supergradient vector p at every point of I;

(ii) convex if it is has a subgradient vector p at every point of I.

Proof: Fix a and b in D, as well as λ in [0, 1]. Let c = λa + (1 − λ)b, which belongs to D
since we assumed that D is a convex set. Suppose f has a supergradient vector p at c, so

both f (a) − f (c) ≤ p · (a − c) and f (b) − f (c) ≤ p · (b − c)

Now multiply both sides of the first inequality by λ, and then both sides of the second
inequality by 1 − λ, then add. Because both multipliers are nonnegative, we obtain

λf (a) + (1 − λ)f (b) − f (c) ≤ p · [λ(a − c) + (1 − λ)(b − c)] = p · 0 = 0

Hence f (λa + (1 − λ)b) ≥ λf (a) + (1 − λ)f (b), as required for f to be concave.

E X E R C I S E S F O R S E C T I O N 1 5 . 8

1. Find the linear approximation about (0, 0) for each of the following:

(a) f (x, y) = (x + 1)5(y + 1)6 (b) f (x, y) = √
1 + x + y (c) f (x, y) = ex ln(1 + y)

2. Find the linear approximation about (x0, y0) for f (x, y) = Axayb.

3. Suppose that g(μ, ε) = [(1 + μ)(1 + ε)α]1/(1−β) − 1, with α and β as constants. Show that if μ

and ε are close to 0, then g(μ, ε) ≈ (μ + αε)/(1 − β).

4. Let f (x, y) = 3x2y + 2y3, implying that f (1, −1) = −5. Use the linear approximation (15.8.4)
about the point (x, y) = (1, −1) in order to estimate the value of f (0.98, −1.01). How large is
the error involved in this approximation?

5. Let f (x, y) = 3x2 + xy − y2.

(a) Compute f (1.02, 1.99) exactly.

(b) Use (15.8.4) to find the linear approximation about (x, y) = (1, 2) to the function value
f (1.02, 1.99) = f (1 + 0.02, 2 − 0.01). How large is the error?

6. Suppose you are told that a differentiable function v of two variables satisfies v(1, 0) = −1,
v′

1(1, 0) = −4/3, and v′
2(1, 0) = 1/3. Find an approximate value for v(1.01, 0.02).
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7.SM Find the tangent planes to the following two surfaces at the indicated points:

(a) z = x2 + y2 at (1, 2, 5); (b) z = (y − x2)(y − 2x2) at (1, 3, 2).

8.SM [HARDER] Define the function

g(t) = f (x0
1 + t (x1 − x0

1), . . . , x0
n + t (xn − x0

n))

Following the argument used to derive Eq. (15.8.4), use the approximation g(1) ≈ g(0) + g′(0)

in order to derive Eq. (15.8.5).

9. [HARDER] Let f (x, y) be any continuously differentiable function. Prove that f is homogeneous
of degree 1 if and only if the tangent plane at every point on its graph passes through the origin.

10. [HARDER] For all (x, y) �= (0, 0), define f (x, y) = xy2

x2 + y4
, and let f (0, 0) = 0.

(a) For each real α, show that in the xy-plane, all points on the curve x = αy2 other than (0, 0)

are on the same level curve of f .

(b) Show that f is not continuous at (0, 0).

(c) Show that f ′
1(x, y) and f ′

2(x, y) both exist for all (x, y).

(d) Show that f has a directional derivative in every direction at every point.

(e) Is f differentiable at (0, 0)?

15.9 Differentials
Suppose that z = f (x, y) is a continuously differentiable function of two variables. Let dx
and dy be any two real numbers, not necessarily small. Then we define the differential of
z = f (x, y) at (x, y), denoted by dz or df , so that

z = f (x, y) =⇒ dz = f ′
1(x, y) dx + f ′

2(x, y) dy (15.9.1)

On the other hand, when x is changed to x + dx and y is changed to y + dy, then the
actual change in the value of the function is the increment


z = f (x + dx, y + dy) − f (x, y)

If dx and dy are small in absolute value, then 
z can be approximated by dz:


z ≈ dz = f ′
1(x, y) dx + f ′

2(x, y) dy, when |dx| and |dy| are small (15.9.2)

This approximation follows from (15.8.4). To show this, we first replace x − x0 by dx and
y − y0 by dy. Then, in the formula which emerges, replace x0 by x and y0 by y.

The approximation in (15.9.2) can be interpreted geometrically, as shown in Fig. 15.9.1.
The error that arises from replacing 
z by dz is a result of “following the tangent plane”
from P to the point S, instead of “following the graph” from P to the point R.
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More formally, the tangent plane at P = (x, y, f (x, y)) is defined as the set of points
(X, Y , Z) whose co-ordinates satisfy the linear equation

Z − f (x, y) = f ′
1(x, y)(X − x) + f ′

2(x, y)(Y − y)

Letting X = x + dx and Y = y + dy, we obtain

Z = f (x, y) + f ′
1(x, y) dx + f ′

2(x, y) dy = f (x, y) + dz

The length of the line segment QS in Fig. 15.9.1 is therefore f (x, y) + dz.

z 5 f (x, y)

Dz

Q 5 (x 1 dx, y 1 dy)

dz
P

R

S

(x, y)

z

x

y

Figure 15.9.1 
z and the differential dz

x

y xy

dy x dy

dx

dx dy

y dx

Figure 15.9.2 
z − dz = dx dy

A word of caution is worthwhile here. In the literature on mathematics for economists, a
common definition of the differential dz in Eq. (15.9.1) requires that dx and dy be “infinites-
imal”, or “infinitely small”. In this case, it is often claimed, 
z becomes equal to dz.
Imprecise ideas of this sort have caused confusion over the centuries since Leibniz first
introduced them, and they have largely been abandoned in mathematics.8

E X A M P L E 15.9.1 Let z = f (x, y) = xy. Then


z = f (x + dx, y + dy) − f (x, y) = (x + dx)(y + dy) − xy = y dx + x dy + dx dy

In this case dz = f ′
1(x, y)dx + f ′

2(x, y)dy = y dx + x dy, so 
z − dz = dx dy. The error term
is dx dy, and the approximation is illustrated in Fig. 15.9.2. In this example, if dx and dy are
both “very small” numbers like 10−3, then the error term dx dy will be a “very, very small”
number like 10−6.

E X A M P L E 15.9.2 Let Y = F(K, L) be a production function with K and L as capital and labour inputs,
respectively. Then F′

K and F′
L are the marginal products of capital and labour. Now, if dK

and dL are arbitrary increments in K and L, respectively, then the differential of Y = F(K, L)

is dY = F′
K dK + F′

L dL. Then the increment 
Y = F(K + dK, L + dL) − F(K, L) in Y can

8 However, in nonstandard analysis, a respectable branch of modern mathematics, a modified version
of Leibniz’s ideas about infinitesimals can be made precise. There have been some interesting
applications of nonstandard analysis to theoretical economics.
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be approximated by dY provided that dK and dL are small in absolute value. This allows
us to write


Y = F(K + dK, L + dL) − F(K, L) ≈ F′
K dK + F′

L dL

Note that, provided z = f (x, y) is differentiable, we can always find its differential dz =
df by first finding the partial derivatives f ′

1(x, y) and f ′
2(x, y), and then using the definition

(15.9.1) of dz. Conversely, once we know the differential df of a function f of two variables,
this allows us to find the partial derivatives. Indeed, suppose that dz = A dx + B dy for all
dx and dy. By definition, dz = f ′

1(x, y) dx + f ′
2(x, y) dy for all dx and dy. Putting dx = 1 and

dy = 0 yields A = f ′
1(x, y). Similarly, putting dx = 0 and dy = 1 yields B = f ′

2(x, y). So

dz = A dx + B dy =⇒ ∂z
∂x

= A and
∂z
∂y

= B (15.9.3)

Rules for Differentials
Section 7.4 developed several rules for working with differentials of functions of one vari-
able. The same rules apply to functions of several variables. Indeed, suppose that f (x, y)
and g(x, y) are differentiable, with differentials df = f ′

1 dx + f ′
2 dy and dg = g′

1 dx + g′
2 dy,

respectively. Using d( ) to denote the differential of the expression inside the parentheses,
the following rules are exactly the same as rules (7.4.4) to (7.4.6):

R U L E S F O R D I F F E R E N T I A L S

Let f and g be differentiable functions of x and y, and let a and b be constants.
Then the following rules hold:

d(af + bg) = a df + b dg (15.9.4)

d(fg) = g df + f dg (15.9.5)

and, if g �= 0,

d
(

f
g

)
= g df − f dg

g2
(15.9.6)

These rules are, again, quite easy to prove. The argument for rule (15.9.5) is not very
different from the one we gave for rule (7.4.5). Indeed, because (fg)(x, y) = f (x, y) · g(x, y),
we have

d(fg) = ∂

∂x
[f (x, y) · g(x, y)] dx + ∂

∂y
[f (x, y) · g(x, y)] dy

= (f ′
x · g + f · g′

x) dx + (f ′
y · g + f · g′

y) dy

= g(f ′
x dx + f ′

y dy) + f (g′
x dx + g′

y dy)

= g df + f dg
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There is also a chain rule for differentials. Suppose that z = F(x, y) = g(f (x, y)), where g
is a differentiable function of one variable. Then,

dz = F′
x dx + F′

y dy

= g′(f (x, y))f ′
x dx + g′(f (x, y))f ′

y dy

= g′(f (x, y))(f ′
x dx + f ′

y dy)

= g′(f (x, y)) df

because F′
x = g′f ′

x, F′
y = g′f ′

y, and df = f ′
x dx + f ′

y dy. Briefly formulated:

T H E C H A I N R U L E F O R D I F F E R E N T I A L S

z = g(f (x, y)) =⇒ dz = g′(f (x, y)) df (15.9.7)

E X A M P L E 15.9.3 Find an expression for dz in terms of dx and dy for the following:

(a) z = Axa + Byb; (b) z = exu with u = u(x, y); (c) z = ln(x2 + y).

Solution:

(a) dz = A d(xa) + B d(yb) = Aaxa−1 dx + Bbyb−1 dy

(b) Arguing directly, using abbreviated notation that drops (x, y) throughout, one has

dz = exu d(xu) = exu(x du + u dx) = exu{x[u′
1 dx + u′

2 dy] + u dx}
= exu{[xu′

1 + u] dx + xu′
2 dy}

(c) dz = d ln(x2 + y) = d(x2 + y)
x2 + y

= 2x dx + dy
x2 + y

Invariance of the Differential
Suppose that z = f (x, y), x = g(t, s), and y = h(t, s) are all differentiable functions. Then z
is a differentiable composite function of t and s together. Suppose that t and s are changed
by dt and ds, respectively. The differential of z is then

dz = z′
t dt + z′

s ds

Using the expressions for z′
t and z′

s obtained from the chain rule (15.1.1), we find that

dz = [f ′
1(x, y)x′

t + f ′
2(x, y)y′

t] dt + [f ′
1(x, y)x′

s + f ′
2(x, y)y′

s] ds

= f ′
1(x, y)(x′

t dt + x′
s ds) + f ′

2(x, y)(y′
t dt + y′

s ds)

= f ′
1(x, y) dx + f ′

2(x, y) dy
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Here dx and dy denote the differentials of x = g(t, s) and y = h(t, s), respectively, as func-
tions of t and s.

Note especially that the final expression for dz is precisely the definition of the differen-
tial of z = f (x, y) when x and y are changed by dx and dy, respectively. Thus, the differential
of z has the same form whether x and y are free variables, or depend on other variables t
and s. This property is referred to as the invariance of the differential.

The Differential of a Function of n Variables
As an obvious extension of (15.9.1), we define the differential of a differentiable function
z = f (x1, x2, . . . , xn) of n variables as

dz = df = f ′
1 dx1 + f ′

2 dx2 + · · · + f ′
n dxn (15.9.8)

If the absolute values of dx1, . . . , dxn are all small, then as in (15.9.2) one has 
z ≈ dz,
where 
z is the actual increment of z when the n-vector x = (x1, . . . , xn) is changed to
x + dx = (x1 + dx1, . . . , xn + dxn).

The rules for differentials in Eqs (15.9.4) to (15.9.6), as well as the chain rule (15.9.7),
are all valid for functions of n variables. There is also a general rule for invariance of the dif-
ferential: The differential of z = F(x1, . . . , xn) has the same form whether x1, . . . , xn are free
variables, or depend on other basic variables. Proofs of these results are easy extensions
of those for two variables.

E X E R C I S E S F O R S E C T I O N 1 5 . 9

1. Determine the differential of z = xy2 + x3 by:

(a) computing ∂z/∂x and ∂z/∂y, then using the definition of dz;

(b) using the rules in Eqs (15.9.4) to (15.9.6).

2. Calculate the differentials of the following functions:

(a) z = x3 + y3 (b) z = xey2
(c) z = ln(x2 − y2)

3. Find dz expressed in terms of dx and dy when u = u(x, y) and

(a) z = x2u (b) z = u2 (c) z = ln(xy + yu)

4.SM Find an approximate value for T = [(2.01)2 + (2.99)2 + (6.02)2]1/2 by using the approximation

T ≈ dT .

5. Find dU expressed in terms of dx and dy when U = U(x, y) satisfies the equation UeU = x
√

y.

6. Find the differential of the function X = ANβeρt, where A, β, and ρ are constants.

7. Find the differential of the function X1 = BXEN1−E, where B and E are constants.
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8. Calculate the differentials of the following functions, where a1, . . . , an, A, δ1, . . . , δn, and ρ all
are positive constants:

(a) U = a1u2
1 + · · · + anu2

n (b) U = A(δ1u−ρ
1 + · · · + δnu−ρ

n )−1/ρ

9. Find dz when z = Axa1
1 xa2

2 . . . xan
n for x1 > 0, x2 > 0, . . . , xn > 0, where A, a1, a2, . . . , an are all

constants with A positive. (Hint: First, take the natural logarithm of each side.)

10. [HARDER] The differential dz defined in (15.9.1) is called the differential of first order. If f has
continuous second-order partial derivatives, we define the differential of second order d2z as the
differential d(dz) of dz = f ′

1(x, y) dx + f ′
2(x, y) dy. This implies that

d2z = d(dz) = f ′′
11(x, y) (dx)2 + 2f ′′

12(x, y) dx dy + f ′′
22(x, y) (dy)2

(a) Calculate d2z for z = xy + y2.

(b) Suppose that x = t and y = t2. For the function in part (a), express dz and d2z in terms of dt.
Also find d2z/dt2, then show that d2z �= (d2z/dt2)(dt)2. (This result shows that there is no
invariance property for the second-order differential.)

15.10 Systems of Equations
Many economic models relate a large number of variables to each other through a system of
simultaneous equations. To keep track of the structure of the model, the concept of degrees
of freedom is very useful.

Let x1, x2, . . . , xn be n variables. Suppose no restrictions are placed on them. Then, by
definition, there are n degrees of freedom, because all n variables can be freely chosen.9

If the variables are required to satisfy one equation of the form f1(x1, x2, . . . , xn) = 0,
then the number of degrees of freedom is usually reduced by one. Whenever one further
“independent” restriction is introduced, the number of degrees of freedom is again
reduced by one. In general, introducing m < n independent restrictions on the variables
x1, x2, . . . , xn means that they satisfy a system of m independent equations having the
form

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

. . . . . . . . .
fm(x1, x2, . . . , xn) = 0

(15.10.1)

Then, provided that m < n, the remaining number of degrees of freedom is n − m. The rule
that emerges from these considerations is rather vague, especially as it is hard to explain
precisely what it means for equations to be “independent”. Nevertheless, the following
rule is much used in economics and statistics:

9 When the system gives zero degrees of freedom, none of the variables can be freely chosen and so
all of them must be solved from the system.
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T H E C O U N T I N G R U L E

The number of degrees of freedom for a system of equations depends on n,
the number of variables, and m, the number of “independent” equations. In
general:

(i) if n > m, then the system has n − m degrees of freedom;

(ii) if n < m, then the system has no solution.

This rule of counting variables and equations is used to justify the following economic
proposition: “The number of independent targets the government can pursue cannot pos-
sibly exceed the number of available policy instruments”. For example, suppose that a
national government seeks simultaneous low inflation, low unemployment, and stability
of its currency’s exchange rate against, say, the US dollar. Then to meet these three targets
it needs at least three independent policy instruments.10

It is obvious that the word “independent” cannot be dropped from the statement of the
counting rule. For instance, if we just repeat an equation that has appeared before, the num-
ber of degrees of freedom will certainly not be reduced. Furthermore, part (b) of Exercise 4
shows that the counting rule is not generally valid even if there is only one equation.

The concept of degrees of freedom introduced earlier needs to be generalized.

D E G R E E S O F F R E E D O M F O R A S Y S T E M O F E Q U A T I O N S

A system of equations in n variables is said to have k degrees of freedom if
there is a set of k variables that can be freely chosen, while the remaining n − k
variables are uniquely determined once the k free variables have been assigned
specific values.

In order for a system to have k degrees of freedom, it suffices that there exist k of the
variables that can be freely chosen. We do not require that any set of k variables can be
chosen freely. If the n variables are restricted to vary within a subset A of R

n, we say that
the system has k degrees of freedom in A.

E X A M P L E 15.10.1 In Example 12.8.2 we considered the system of equations

x1 + 3x2 − x3 = 4

2x1 + x2 + x3 = 7

2x1 − 4x2 + 4x3 = 6

3x1 + 4x2 = 11

10 Many economists know this as the “Tinbergen rule”. It is named after Jan Tinbergen (1903–1994),
who shared the first Nobel Prize in Economics. The rule appeared in his 1956 book Economic
Policy: Principles and Design.
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We showed that the solutions of this system are given by

(x1, x2, x3) = (− 4
5 t + 17

5 , 3
5 t + 1

5 , t
)

where t is any real number. This leads us to say that the solution set of the system has one
degree of freedom, since one of the variables can be freely chosen. Once this variable has
been given a fixed value, however, the other two variables are uniquely determined.

In Example 15.10.1, there is one degree of freedom even though the system has four
equations in only three unknowns. Nevertheless, in general, the counting rule claims that if
the number of equations is larger than the number of variables, then the system is inconsis-
tent in the sense that it has no solutions. Consider, for example, the system of two variables
and the following three equations

f (x, y) = 0, g(x, y) = 0, h(x, y) = 0

This system is usually inconsistent. Indeed, each of the three equations represents a curve
in the plane, and any pair of curves will usually have at least one point in common. But if
we add a third equation, the corresponding curve will seldom pass through any point where
the first two curves intersect, so the system is usually inconsistent.

So far, we have discussed the two cases m < n and m > n. What about the case m = n, in
which the number of equations is equal to the number of unknowns? Even in the simplest
case of one equation f (x) = 0 in one variable, there could be any number of solutions.
Consider, for instance, the following three different single equations in one variable:

x2 + 1 = 0, x − 1 = 0, (x − 1)(x − 2)(x − 3)(x − 4)(x − 5) = 0

These three equations have zero, one, and five solutions, respectively. Those of you
who know something about trigonometric functions will realize that the simple equation
sin x = 0 has infinitely many solutions, namely x = nπ for any integer n.

In general, a system with as many equations as unknowns is usually consistent in the
sense of having solutions, but it may have several solutions. Economists, however, ide-
ally like their models to have a system of equations that produces a unique, economically
meaningful solution, because then the model purports to predict the values of particular
economic variables. Based on the earlier discussion, we can at least formulate the follow-
ing rough rule: A system of equations does not, in general, have a unique solution unless
there are exactly as many equations as unknowns.

E X A M P L E 15.10.2 Consider the macroeconomic model described by the system of equations:

(i) Y = C + I + G; (ii) C = f (Y − T); (iii) I = h(r); (iv) r = m(M).
Here f , h, and m are given functions, whereas Y is GDP, C is consumption, I is investment, G
is public expenditure, T is tax revenue, r is the interest rate, and M is the quantity of money
in circulation. How many degrees of freedom are there?

Solution: The system has seven variables and four equations, so the counting rule says
that there should be 7 − 4 = 3 degrees of freedom. Usually macroeconomists regard M,



�

� �

�

662 C H A P T E R 1 5 / P A R T I A L D E R I V A T I V E S I N U S E

T , and G as the exogenous (free) variables determined by economic policy. Then generally
the system will determine the four endogenous variables Y , C, I, and r simultaneously as
functions of the three exogenous variables M, T , and G.11

E X A M P L E 15.10.3 Consider the alternative macroeconomic model consisting of the equations

(i) Y = C + I + G, (ii) C = f (Y − T), (iii) G = --
G,

whose variables are to be interpreted as they were in Example 15.10.2. Here the level of
public expenditure is the constant

--
G. Determine the number of degrees of freedom in the

model.

Solution: There are now three equations in the five variables Y , C, I, G, and T . So the count-
ing rule suggests that there should be two degrees of freedom. Provided that the function f
is suitable, two variables can be freely chosen, while allowing the other three variables to
be determined once the values of these two are fixed. It is natural to consider I and T as the
two free variables. Note that G cannot be chosen as a free variable in this case because it is
fixed by equation (iii).

E X E R C I S E S F O R S E C T I O N 1 5 . 1 0

1. Use the counting rule to find the number of degrees of freedom for each of the following equation
systems, where in (c) you should assume that f and g are specified functions:

(a)
xu3 + v = y2

3uv − x = 4
(b)

x2
2 − x3

3 + 2y1 − y3
2 = 1

x3
1 − x2 + y5

1 − y2 = 0
(c)

f (y + z + w) = x3

x2 + y2 + z2 = w2

g(x, y) − z3 = w3

2. Consider the macroeconomic model with the equations (i) Y = C + I + G; (ii) C = F(Y , T , r);
and (iii) I = f (Y , r). Here the variables are to be interpreted as in Example 15.10.2, with F and f
as two given functions. Use the counting rule to find the number of degrees of freedom.

3. For each of the following three systems of equations, determine the number of degrees of freedom,
if any, and discuss whether the counting rule applies:

(a)

3x − y = 2

6x − 2y = 4

9x − 3y = 6

(b)
x − 2y = 3

x − 2y = 4
(c)

x − 2y = 3

2x − 4y = 6

4. For each of the following two “systems” consisting of just one equation, determine the number of
degrees of freedom, if any, and discuss whether the counting rule applies:

(a) x2
1 + x2

2 + · · · + x2
100 = 1 (b) x2

1 + x2
2 + · · · + x2

100 = −1

11 For a further analysis of this model, see Example 15.11.3. For further discussion of exogenous and
endogenous variables, see Section 15.11.
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15.11 Differentiating Systems of Equations
This section shows how using differentials can be an efficient way to find the partial
derivatives of functions defined implicitly by a system of equations. We begin with three
examples.

E X A M P L E 15.11.1 Consider the following system of two linear equations in four variables:

5u + 5v = 2x − 3y

2u + 4v = 3x − 2y

It has two degrees of freedom, and can be used to define u and v as functions of x and y.
Differentiate the system and then find the differentials du and dv expressed in terms of dx
and dy. Derive the partial derivatives of u and v w.r.t. x and y. Check the results by solving
the system explicitly for u and v.

Solution: For both equations, use the rules in Section 15.9 to take the differential of each
side. The result is

5 du + 5 dv = 2 dx − 3 dy

2 du + 4 dv = 3 dx − 2 dy

Note that in a linear system like this, without any constant terms, the differentials satisfy
exactly the same equations as the variables.

Solving simultaneously for du and dv in terms of dx and dy yields the unique
solution

du = − 7
10

dx − 1
5

dy, dv = 11
10

dx − 2
5

dy

Now we can simply read off the partial derivatives, which are u′
x = − 7

10 , u′
y = − 1

5 ,
v′

x = 11
10 , and v′

y = − 2
5 .

Suppose that instead of finding the differential, we solve the given equation system
directly for u and v as functions of x and y. The result is u = − 7

10 x − 1
5 y and v = 11

10 x − 2
5 y.

From these expressions we easily confirm the above values for the partial derivatives.

E X A M P L E 15.11.2 Consider the following system of two nonlinear equations:

u2 + v = xy and uv = −x2 + y2

(a) What has the counting rule to say about this system?

(b) Find the differentials of u and v expressed in terms of dx and dy. What are the partial
derivatives of u and v w.r.t. x and y?

(c) The point P = (x, y, u, v) = (1, 0, 1, −1) satisfies the system. If x = 1 is increased by
0.01 and y = 0 is increased by 0.02, what is an approximate new value of u?

(d) Calculate u′′
12 at the point P.
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Solution:

(a) There are four variables and two equations, so there should be two degrees of free-
dom. Suppose we choose fixed values for x and y. Then there are two equations for
determining the two remaining variables, u and v. For example, if x = 1 and y = 0,
then the system reduces to u2 = −v and uv = −1, from which we find that u3 = 1, so
u = 1 and v = −1. For other values of x and y, it is more difficult to find solutions for u
and v. However, it seems reasonable to assume that the system defines u = u(x, y) and
v = v(x, y) as differentiable functions of x and y, at least if the domain of the pair (x, y)
is suitably restricted.

(b) The two sides of each equation in the system must be equal functions of x and y. So we
can equate the differentials of each side to obtain the two equations d(u2 + v) = d(xy)
and d(uv) = d(−x2 + y2). Using the rules for differentials, we obtain

2u du + dv = y dx + x dy

v du + u dv = −2x dx + 2y dy

Using matrix notation, this can be written as the equation

(
2u 1
v u

) (
du
dv

)
=

(
y x

−2x 2y

) (
dx
dy

)
(15.11.1)

Note that by the invariance property of the differential stated in Section 15.9, this system
is valid no matter which pair of variables we treat as independent.

Provided that v �= 2u2, we can use one of the methods set out in Section 3.6 or
Chapter 13 to find the unique solution of the 2 × 2 matrix equation (15.11.1), which is

du = 2x + yu
2u2 − v

dx + xu − 2y
2u2 − v

dy, dv = −4xu − yv
2u2 − v

dx + 4uy − xv
2u2 − v

dy

From these two equations, we obtain immediately that

u′
1 = 2x + yu

2u2 − v
, u′

2 = xu − 2y
2u2 − v

, v′
1 = −4xu − yv

2u2 − v
, v′

2 = 4uy − xv
2u2 − v

(∗)

(c) We use the approximation u(x + dx, y + dy) ≈ u(x, y) + du near the point P, where
(x, y, u, v) = (1, 0, 1, −1). By (∗) one has u′

1 = 2
3 and u′

2 = 1
3 at P, so

u(1 + 0.01, 0 + 0.02) ≈ u(1, 0) + u′
1(1, 0) · 0.01 + u′

2(1, 0) · 0.02

= 1 + 2
3 · 0.01 + 1

3 · 0.02

= 1 + 4
3 · 0.01

≈ 1.0133

Note that, in this case, it is not easy to find the exact value of u(1.01, 0.02).
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(d) To find u′′
12 we use the chain rule as follows:

u′′
12 = ∂

∂y
(u′

1) = ∂

∂y

(
2x + yu
2u2 − v

)
= (yu′

2 + u)(2u2 − v) − (2x + yu)(4uu′
2 − v′

2)

(2u2 − v)2

At the point P where (x, y, u, v) = (1, 0, 1, −1), it follows from part (c) that u′
2 = 1/3

and from (∗) that v′
2 = 1/3, so u′′

12 = 1/9.

E X A M P L E 15.11.3 Consider again the macroeconomic model of Example 15.10.2. Assume that f ,
h, and m are differentiable functions with 0 < f ′ < 1, h′ < 0, and m′ < 0. Then the four
equations of the model will determine the endogenous variables Y , C, I, and r as differen-
tiable functions of the exogenous variables M, T , and G.

(a) Differentiate the system and express the differentials of Y , C, I, and r in terms of the
differentials of M, T , and G. Find ∂Y/∂T and ∂C/∂T , and comment on their signs.

(b) Suppose moreover that P0 = (M0, T0, G0, Y0, C0, I0, r0) is an initial equilibrium point
for the system. If the money supply M, tax revenue T , and public expenditure G are all
slightly changed as a result of government policy or central bank intervention, find the
approximate changes 
Y and 
C in national income Y and consumption C.

Solution:

(a) Taking differentials of Eqs (i)–(iv) in Example 15.10.2 yields the system of four
equations

dY = dC + dI + dG (v)

dC = f ′(Y − T)(dY − dT) (vi)

dI = h′(r) dr (vii)

dr = m′(M) dM (viii)

We wish to solve this linear system in order to express the differential changes dY , dC,
dI, and dr in the four endogenous variables in terms of the differentials dM, dT , and
dG of the three exogenous policy variables. To do so, start by substituting (viii) into
(vii) to obtain dI = h′(r)m′(M) dM. Then insert into (v) this expression for dI and the
right-hand side of (vi) for dC in order to obtain the single equation

dY = f ′(Y − T)(dY − dT) + h′(r)m′(M) dM + dG

Because we assumed that f ′ < 1, we can solve this equation for dY . In simplified nota-
tion, the result is

dY = h′m′

1 − f ′ dM − f ′

1 − f ′ dT + 1
1 − f ′ dG (ix)

Next, after inserting (ix) into (vi) and simplifying the result, one obtains

dC = f ′h′m′

1 − f ′ dM − f ′

1 − f ′ dT + f ′

1 − f ′ dG (x)
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Equations (ix) and (x) express the differentials dY and dC as linear functions of the
differentials dM, dT , and dG.
From the four equations (vii)–(x), it is easy to find the partial derivatives of Y , C, I, and
r w.r.t. M, T , and G. For example, ∂Y/∂T = ∂C/∂T = −f ′/(1 − f ′) and ∂r/∂T = 0.
Note that because 0 < f ′ < 1, we have ∂Y/∂T = ∂C/∂T < 0. Thus, a small increase
in the tax level, keeping M and G constant, decreases GDP. But if the extra tax revenue
is all spent by the government, one will have dT = dG = dx (and dM = 0). In this case
the changes will be dY = dx and dC = dI = dr = 0.

(b) If |dM|, |dT|, and |dG| are all small, then the approximate changes will satisfy


Y = Y(M0 + dM, T0 + dT , G0 + dG) − Y(M0, T0, G0) ≈ dY

and 
C = C(M0 + dM, T0 + dT , G0 + dG) − C(M0, T0, G0) ≈ dC

When computing dY and dC, all the partial derivatives must be evaluated at the initial
equilibrium point P0.

Some textbooks recommend that students should first use a matrix equation to represent
macro models like the one we analysed in Examples 15.10.2 and 15.11.3, before going
on to use either Cramer’s rule or matrix inversion to find the solution. When it works, the
elimination method we used to solve Example 15.11.3 is much simpler, which drastically
reduces the risk of making errors.

E X A M P L E 15.11.4 Suppose that the two equations

(z + 2w)5 + xy2 = 2z − yw

(1 + z2)3 − z2w = 8x + y5w2

define z and w as differentiable functions z = ϕ(x, y) and w = ψ(x, y) of x and y in a neigh-
bourhood around the point (x, y, z, w) = (1, 1, 1, 0).

(a) Compute ∂z/∂x, ∂z/∂y, ∂w/∂x, and ∂w/∂y at (1, 1, 1, 0).

(b) Use the above results to find an approximate value of ϕ(1 + 0.1, 1 + 0.2).

Solution:

(a) Equating the differentials of each side of the two equations, treated as functions of (x, y),
we obtain

5(z + 2w)4(dz + 2 dw) + y2 dx + 2xy dy = 2 dz − w dy − y dw

3(1 + z2)22z dz − 2zw dz − z2 dw = 8 dx + 5y4w2 dy + 2y5w dw

At the particular point (x, y, z, w) = (1, 1, 1, 0), this system reduces to:

3 dz + 11 dw = −dx − 2 dy; 24 dz − dw = 8 dx
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Solving these two equations simultaneously for dz and dw in terms of dx and dy yields

dz = 29
89

dx − 2
267

dy and dw = −16
89

dx − 16
89

dy

So ∂z/∂x = 29/89, ∂z/∂y = −2/267, ∂w/∂x = −16/89, and ∂w/∂y = −16/89.

(b) If x = 1 is increased by dx = 0.1 and y = 1 is increased by dy = 0.2, the associated
change in z = ϕ(x, y) is approximately dz = (29/89) · 0.1 − (2/267) · 0.2 ≈ 0.03.
Hence ϕ(1 + 0.1, 1 + 0.2) ≈ ϕ(1, 1) + dz ≈ 1 + 0.03 = 1.03.

General Systems
When economists deal with systems of equations, notably in comparative static analysis, the
variables are usually divided a priori into two types: endogenous variables, which the model
is intended to determine; and exogenous variables, which are supposed to be determined by
“forces” outside the economic model such as government policy, consumers’ tastes, or tech-
nical progress. This classification depends on the model in question. Public expenditure, for
example, is often treated as exogenous in public finance theory, which seeks to understand
how tax changes affect the economy. But it is often endogenous in a “political economy”
model which tries to explain how political variables like public expenditure emerge from
the political system.

Economic models often give rise to a general system of structural equations having the
form

f1(x1, x2, . . . , xn, y1, y2, . . . , ym) = 0
f2(x1, x2, . . . , xn, y1, y2, . . . , ym) = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, . . . , xn, y1, y2, . . . , ym) = 0

(15.11.2)

Here we distinguish between the n-vector x = (x1, . . . , xn) of exogenous variables and the
m-vector y = (y1, . . . , ym) of endogenous variables. We assume that there is an “initial
equilibrium” or “status quo” solution (x0, y0) = (x0

1, . . . , x0
n, y0

1, . . . , y0
m). This equilibrium

might, for instance, represent a state in which the m endogenous variables are determined
so that they equate the current supply and demand for each of m different goods.

Note that system (15.11.2) has m equations in n + m unknowns. So if the counting
rule applies, there are n + m − m = n degrees of freedom. Suppose the system defines all
the endogenous variables y1, . . . , ym as C1 functions of x1, . . . , xn in a neighbourhood of
points near (x0, y0). “In principle” one can solve for y1, . . . , ym in terms of x1, . . . , xn to
give

y1 = ϕ1(x1, . . . , xn), . . . , ym = ϕm(x1, . . . , xn) (15.11.3)

In this case, system (15.11.3) is said to be the reduced form of the structural equation
system (15.11.2). The endogenous variables have all been expressed as functions of
the exogenous variables. The form of the functions ϕ1, ϕ2, . . . , ϕm is not necessarily
known.

The previous examples show how we can often find an explicit expression for the par-
tial derivative of any endogenous variable w.r.t. any exogenous variable. The same type of
argument can be used more generally, but a detailed discussion is left for FMEA.
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1. Suppose that a, b, c, d, e, f , g, and h are constants satisfying af �= be. Differentiate the system

au + bv = cx + dy

eu + f v = gx + hy

Then find the partial derivatives of u and v w.r.t. x and y.

2. Consider the equation system defined by xu3 + v = y2 and 3uv − x = 4.

(a) Differentiate the system and then solve for du and dv in terms of dx and dy.

(b) Find u′
x and v′

x by using the results in part (a).

(c) Verify that the point (x, y, u, v) = (0, 1, 4/3, 1) satisfies the system. Then find u′
x and v′

x at
this point.

3.SM Suppose that y1 and y2 are implicitly defined as differentiable functions of x1 and x2 by the
system: 3x1 + x2

2 − y1 − 3y3
2 = 0; x3

1 − 2x2 + 2y3
1 − y2 = 0. Find ∂y1/∂x1 and ∂y2/∂x1.

4.SM A version of the “IS–LM” macroeconomic model leads to the system of equations I(r) = S(Y) and
aY + L(r) = M, where a is a positive parameter, whereas I, S, and L are three given continuously
differentiable functions.12 Suppose that the system defines Y and r implicitly as differentiable
functions of a and M. Find expressions for ∂Y/∂M and ∂r/∂M.

5. Find the second derivative u′′
xx when u and v are defined as functions of x and y by the two

equations xy + uv = 1 and xu + yv = 0.

6. Consider the macroeconomic model

(i) Y = C + I + G (ii) C = F(Y , T , r) (iii) I = f (Y , r)

where F and f are continuously differentiable functions, with F′
Y > 0, F′

T < 0, F′
r < 0, f ′

Y > 0,
f ′
r < 0, and F′

Y + f ′
Y < 1.

(a) Differentiate the system, and express dY in terms of dT , dG, and dr.

(b) What happens to Y if T increases? What if T and G undergo equal increases?

7. Suppose that Y is GDP, r is the interest rate, I is total investment, α is public consumption, β is
public investment, and M is the money supply. Consider the macroeconomic model

(i) Y = C(Y , r) + I + α (ii) I = F(Y , r) + β (iii) M = L(Y , r)

where C, F, and L are given differentiable functions.

(a) Determine the number of degrees of freedom in the model.

12 The first “IS” equation involves the investment function I and savings function S. The second “LM”
equation involves the liquidity preference function L (the demand for money) and the money sup-
ply M. The variable Y denotes GDP and r denotes the interest rate. The IS–LM model was originally
devised by J.R. Hicks.
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(b) Differentiate the system. Put dβ = dM = 0, and then find dY , dr, and dI expressed in terms
of dα.

8. A standard macroeconomic model consists of the two equations:

(i) M = αPy + L(r) and (ii) S(y, r, g) = I(y, r)

where M, α, and P are positive constants, whereas L, S, and I are differentiable functions.

(a) By using the counting rule, explain why it is reasonable to assume that the system, in general,
defines y and r as differentiable functions of g.

(b) Differentiate the system and find expressions for dy/dg and dr/dg.

9. The two equations u2v − u = x3 + 2y3 and eux = vy together define u and v as differentiable
functions of x and y around the point P = (x, y, u, v) = (0, 1, 2, 1).

(a) Find the differentials of u and v expressed in terms of the differentials of x and y. Then find
∂u/∂y and ∂v/∂x at P.

(b) If x increases by 0.1 and y decreases by 0.2 from their values at P, what are the approximate
changes in u and v?

10. [HARDER] When there are two goods, consumer demand theory involves the equation system

(i) U′
1(x1, x2) = λp1 (ii) U′

2(x1, x2) = λp2 (iii) p1x1 + p2x2 = m

Here U(x1, x2) is a given utility function. Suppose that the system defines x1, x2, and λ as differ-
entiable functions of p1, p2, and m. Find an expression for ∂x1/∂p1.

R E V I E W E X E R C I S E S

1. In each of the following two cases, first find dz/dt by using the chain rule. Second, check the
answers by inserting the expressions for x and y into F, then differentiating:

(a) z = F(x, y) = 6x + y3, with x = 2t2 and y = 3t3

(b) z = F(x, y) = xp + yp, with x = at and y = bt

2. Let z = G(u, v), with u = ϕ(t, s) and v = ψ(s). Find expressions for ∂z/∂t and ∂z/∂s.

3. Find expressions for ∂w/∂t and ∂w/∂s when w = x2 + y3 + z4 with x = t + s, y = t − s, and
z = st.

4.SM Suppose production X depends on the number of workers N according to the formula
X = Ng(ϕ(N)/N), where g and ϕ are given differentiable functions. Find expressions for
dX/dN and d2X/dN2.

5. Suppose that a household’s demand for a commodity is a function E(p, m) = Ap−amb of the
price p and income m, where A, a, and b are positive constants.
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(a) Suppose that p and m are both differentiable functions of time t. Then demand E is a function
only of t. Find an expression for Ė/E in terms of ṗ/p and ṁ/m.

(b) Put p = p0(1.06)t and m = m0(1.08)t, where p0 is the price and m0 is the income at time
t = 0. Show that in this case Ė/E = ln Q, where Q = (1.08)b/(1.06)a.

6. The equation x3 ln x + y3 ln y = 2z3 ln z defines z as a differentiable function of x and y in a
neighbourhood of the point (x, y, z) = (e, e, e). Calculate z′

1(e, e) and z′′
11(e, e).

7. What is the elasticity of substitution between y and x when F(x, y) = x2 − 10y2?

8. Find the MRS between y and x when:

(a) U(x, y) = 2x0.4y0.6 (b) U(x, y) = xy + y (c) U(x, y) = 10(x−2 + y−2)−4

9. Find the degree of homogeneity, if there is one, for each of the following functions:

(a) f (x, y) = 3x3y−4 + 2xy−2 (b) Y(K, L) = (Ka + La)2ceK2/L2

(c) f (x1, x2) = 5x4
1 + 6x1x3

2 (d) F(x1, x2, x3) = ex1+x2+x3

10. What is the elasticity of substitution between y and x when U(x, y) = 10(x−2 + y−2)−4?

11.SM Find the elasticity of y w.r.t. x when y2ex+1/y = 3. (Hint: Put u = ln x and v = ln y, and recall
that then Elx y = v′

u.)

12. Find the degree of homogeneity, if there is one, for each of the following functions:

(a) f (x, y) = xg(y/x), where g is an arbitrary function of one variable.

(b) F(x, y, z) = zkf (x/z, y/z), where f is an arbitrary function of two variables.

(c) G(K, L, M, N) = Ka−bLb−cMc−dNd−a, where a, b, c, and d are constants.

13. Suppose that the production function F(K, L), which is defined for all K > 0 and L > 0, is
homogeneous of degree 1. If F′′

KK < 0, so that the marginal productivity of capital is strictly
decreasing as K increases, prove that F′′

KL > 0, so that the marginal productivity of capital is
strictly increasing as labour input increases.13 (Hint: Use Eq. (15.6.6) or (15.6.7).)

14. Show that no generalization of the concept of a homogeneous function emerges if one replaces
tk in definitions (15.6.1) or (15.7.1) by an arbitrary function g(t). (Hint: Differentiate the new
definition w.r.t. t, and let t = 1. Then use Euler’s theorem.)

15. The following pair of equations defines u = u(x, y) and v = v(x, y) as differentiable functions
of x and y around the point P = (x, y, u, v) = (1, 1, −1, 0):

u + xey + v = e − 1; x + eu+v2 − y = e−1

Differentiate the system and find the values of u′
x, u′

y, v′
x, and v′

y at the point P.

16.SM An equilibrium model of labour demand and output pricing leads to the pair of equations:

pF′(L) − w = 0; pF(L) − wL − B = 0

13 This is called Wicksell’s law.
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Here, assume that all the variables are positive and that the function F(L) is defined and twice
differentiable for all L > 0, with F′(L) > 0 and F′′(L) < 0. Treat w, B as exogenous variables,
and p, L as endogenous variables which are functions of w and B.

(a) Use implicit differentiation to find expressions for ∂p/∂w, ∂p/∂B, ∂L/∂w, and ∂L/∂B.

(b) What can be said about the signs of these partial derivatives? Show, in particular, that
∂L/∂w < 0.

17. Given the positive constant powers α and β, the following pair of equations defines
u = u(x, y) and v = v(x, y) as differentiable functions of x and y around the point
P = (x, y, u, v) = (1, 1, 1, 2):

uα + vβ = 2βx + y3; uαvβ − vβ = x − y

(a) Differentiate the system, then find ∂u/∂x, ∂u/∂y, ∂v/∂x, and ∂v/∂y at the point P.

(b) Find an approximation to u(0.99, 1.01).

18. A study of a commodity market involves, for positive constants T , r, and g, the integral

S =
T∫

0

e−rx(eg(T−x) − 1) dx

(a) Show that
r(r + g)S = regT + ge−rT − (r + g) (∗)

(b) Equation (∗) defines T as a differentiable function of g, r, and S. Use the equation to find an
expression for ∂T/∂g.

19.SM Suppose that a vintage car has an appreciating market value given by the function V(t) of time t.
Suppose that maintaining the car requires a continuous expenditure at the constant rate m per
year, until the time it is sold. So, allowing for continuous time discounting at the constant rate of
r per year, the present discounted value from selling the car at time t would be P(t) = V(t)e−rt −∫ t

0 me−rτ dτ .

(a) Show that the optimal choice t∗ of t that maximizes P(t) must satisfy the equation V ′(t∗) =
rV(t∗) + m, and give this condition an economic interpretation.

(b) Show that the standard second-order condition P′′(t∗) for P(t) to have a strict local maximum
at t∗(r, m) reduces to the condition that D = V ′′(t∗) − rV ′(t∗) < 0.

(c) Find the partial derivatives ∂t∗/∂r and ∂t∗/∂m. Then use the condition D < 0 derived in the
answer to (b) in order to discuss how an economist would interpret their signs.
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M U L T I P L E I N T E G R A L S

A mathematical theory is not to be considered complete until you have made it so clear that you can
explain it to the first man whom you meet on the street.1

—David Hilbert (1900)

This chapter is a brief introduction to the topic of multiple integrals. These arise in statistics
when considering multidimensional continuous (probability) distributions. Double integrals

also play a role in some interesting continuous time dynamic optimization problems. We study
only the simplest case where the domain of integration is essentially a rectangle. We leave more
general cases for FMEA.

16.1 Double Integrals Over Finite
Rectangles
The first topic is integration of functions of two variables defined over rectangles in the
xy-plane. In Section 10.2 we related the definite integral of a function of one variable that
has nonnegative values to the area under its two-dimensional graph. Here we relate the
integral of a function of two variables that has nonnegative values to the volume under its
three-dimensional graph.

By definition, the Cartesian product of the two intervals [a, b] and [c, d] is the rectangular
set R = [a, b] × [c, d] of points (x, y) in the plane that satisfy the four inequalities a ≤ x ≤ b
and c ≤ y ≤ d. Let f be a continuous function defined on R that happens to satisfy f (x, y) ≥
0 for all (x, y) in R. Now consider Fig. 16.1.1, which shows a solid block of a material like
wood. The base of this block is the perfectly flat rectangle R in the horizontal plane z = 0,
whereas its curved top surface is the graph of f . The block consists of all points (x, y, z) in
3-space satisfying (x, y) ∈ R and 0 ≤ z ≤ f (x, y). This is also called the ordinate set of f
over R.

1 Part of the famous address by Hilbert (Germany, 1862–1943) to the Second International Congress
of Mathematicians held in Paris 1900, where he presented what he then considered to be the greatest
open problems in mathematics. The ultimate source seems to be a much earlier letter written in
French by J.-D. Gergonne to W.H. Fox Talbot, dated 16 December 1826.
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Figure 16.1.1 Volume under the graph Figure 16.1.2 Limiting the domain
to x ≤ t

We will define the double integral of f over R so that it equals the volume V of this block.
Figure 10.2.1 illustrated the relationship between the definite integral of a nonnegative val-
ued function of one variable and the area beneath its graph. The analogue for a function f
defined on the rectangular domain R is shown in Fig. 16.1.1.

Let t be an arbitrary point in the interval [a, b]. In Fig. 10.2.2, we illustrated the
truncated area that results from the restricting the domain of integration to the interval
[a, t], whose upper limit occurs at x = t. Similarly, in Fig. 16.1.2 we have constructed
the unique vertical plane that is parallel to the yz-plane and intersects the x-axis at x = t.
This plane cuts the ordinate set of f into two parts. Indeed, using a very thin saw to cut
a block of wood along this plane would produce two smaller blocks separated by the
shaded plane surface in Fig. 16.1.2 that is labelled as UPQV . The area of this surface
depends on t, so we denote it by the function α(t). It is the area under the curve PQ
shown in Fig. 16.1.2 that connects P to Q as y varies over the interval [c, d]. This curve
is the intersection between the graph of z = f (x, y) and the plane x = t, so we can write
its equation as z = g(y) = f (t, y), with t fixed and y ∈ [c, d]. So the area under the curve
PQ is

α(t) =
∫ d

c
g(y) dy =

∫ d

c
f (t, y) dy (16.1.1)

Consider next the volume of the truncated ordinate set of f whose base has become the
variable rectangle [a, t] × [c, d], after sawing off the part of the ordinate set that lies above
(t, b] × [c, d]. Let V(t) denote this truncated volume, which is analogous to the truncated
area A(t) defined in Fig. 10.2.2. Evidently V(t) is an increasing function of t. In particular,
at the lower end of the interval [a, b] one has V(a) = 0, and at the upper end V(b) = V ,
which is the total volume to be evaluated.

If we add δ > 0 to t, the incremental volume is � = V(t + δ) − V(t). In Fig. 16.1.3 this
is the volume of the slice that lies between the two parallel surfaces UPQV and U′P′Q′V ′.
If δ were the thickness of the saw used to cut the wood block into two pieces, this could
be regarded as the slice that the sawing process has converted into sawdust. Provided that
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δ is small, the volume of the sawdust that had constituted this slice is approximately equal
to α(t)δ. It follows that V(t + δ) − V(t) ≈ α(t)δ, implying that after dividing each side by
δ > 0, one has

V(t + δ) − V(t)
δ

≈ α(t)

In general this approximation improves as the slice gets thinner because the area function
varies less over [t, t + δ] as δ gets smaller. Think of a slice of bread: the thinner it is, the less
variation is there in the thickness of the crust. The left-hand side of the approximation is a
Newton quotient of the function V(t), so we can reasonably expect that, for each t in [a, b],
one has V ′(t) = α(t) in the limit as δ → 0. Then the definition of definite integral implies
that V(b) − V(a) = ∫ b

a α(t) dt. Because V(a) = 0 and V(b) = V , we can use Eq. (16.1.1)
to derive the double integral

V =
∫ b

a

[∫ d

c
f (t, y) dy

]
dt (16.1.2)

Figure 16.1.3 Cross sections of f over x Figure 16.1.4 A cross section of f over y

E X A M P L E 16.1.1 Suppose that f (x, y) = k for all (x, y) in the rectangle R = [a, b] × [c, d] shown in
Fig. 16.1.1, where k is a positive constant. Then the block that makes up the ordinate set
of f over R is a solid rectangular box or prism, also called a cuboid. Its base area is (b −
a)(d − c) and its height is k, so its volume is k(b − a)(d − c). Show that (16.1.2) gives the
same result.

Solution: We insert f (x, y) = k into (16.1.2), then evaluate the integrals, to obtain∫ b

a

[∫ d

c
k dy

]
dt =

∫ b

a

(
d

c
ky

)
dt =

∫ b

a
k(d − c) dt =

b

a
k(d − c)t = k(d − c)(b − a)
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This example suggests that formula (16.1.2) does indeed give a correct measure of the
volume under the graph of a function f . Before confirming this, we should understand what
happens if we change the order in which we integrate w.r.t. the two variables x and y.

Suppose we try to find the volume V of the ordinate set of f over R = [a, b] × [c, d] by
using the same argument above, except for one important change. Specifically suppose that,
as illustrated in Fig. 16.1.4, we first choose s in [c, d], and then construct the intersecting
plane as the only one that is parallel to the xz-plane while passing through the point y = s
on the y-axis. The intersection between the ordinate set and the plane y = s is the area of
the plane surface below the curve labelled MN in Fig. 16.1.4. This curve has the equation
z = f (x, s), where s is fixed. So the area below the curve is

∫ b
a f (x, s) dx. The formula for

the volume becomes the integral of this area, as s varies from c to d, which is

V =
∫ d

c

[∫ b

a
f (x, s) dx

]
ds (16.1.3)

Because we are computing the same volume V in both cases, then provided our intuitive
argument above is correct, we should get the same answer, The next theorem guarantees
that the two numbers obtained in Eqs (16.1.2) and (16.1.3) are indeed equal, provided that f
is continuous on R. Replacing the dummy variables t and s of integration by x and y respec-
tively, we obtain the following result.2

T H E O R E M 1 6 . 1 . 1 ( I N V A R I A N C E T O O R D E R O F I N T E G R A T I O N )

Let f be a continuous function defined over the rectangle R = [a, b] × [c, d].
Then ∫ b

a

[∫ d

c
f (x, y) dy

]
dx =

∫ d

c

[∫ b

a
f (x, y) dx

]
dy

Let f be an arbitrary continuous function over the rectangle R = [a, b] × [c, d]. We
define the double integral of f over R, denoted by

∫∫
R f (x, y) dx dy, as

∫∫
R

f (x, y) dx dy =
∫ b

a

[∫ d

c
f (x, y) dy

]
dx =

∫ d

c

[∫ b

a
f (x, y) dx

]
dy (16.1.4)

We can use either of the two last expressions to define the double integral because Theorem
16.1.1 tells us that both are equal. Together Theorem 16.1.1 and formula (16.1.4) allow us
to calculate

∫ b
a [

∫ d
c f (x, y) dy] dx in two stages as follows:

(a) First, keep x fixed and integrate f (x, y) w.r.t. y from y = c to y = d. This gives α(x) =∫ d
c f (x, y) dy, a function of x.

(b) Then integrate α(x) from x = a to x = b to obtain
∫ b

a [
∫ d

c f (x, y) dy] dx.

2 See Protter and Morrey (1991), Chapter 8, for one of many possible proofs.
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Notice that definition (16.1.4) does not require that the integrand f (x, y) should be non-
negative. Just as a single integral need not always be interpreted as an area, so a double
integral need not always be interpreted as a volume.

Here are some applications of formula (16.1.4).

E X A M P L E 16.1.2 Compute
∫∫

R (x2y + xy2 + 2x) dx dy where R = [0, 1] × [−1, 3].

Solution: The integrand is continuous everywhere. Consider first

∫ 1

0

[∫ 3

−1
(x2y + xy2 + 2x) dy

]
dx

Treating x as a constant, first evaluate the inner integral to obtain:

∫ 3

−1
(x2y + xy2 + 2x) dy =

y=3

y=−1

( 1
2 x2y2 + 1

3 xy3 + 2xy
)

= ( 9
2 x2 + 9x + 6x

) − ( 1
2 x2 − 1

3 x − 2x
) = 4x2 + 52

3 x

Integrating a second time gives

∫ 1

0

[∫ 3

−1
(x2y + xy2 + 2x) dy

]
dx =

∫ 1

0
(4x2 + 52

3 x) dx = 1
0(

4
3 x3 + 26

3 x2) = 10

Let us now perform the integration in the reverse order. First, holding y constant, we get

∫ 1

0
(x2y + xy2 + 2x) dx =

x=1

x=0

( 1
3 x3y + 1

2 x2y2 + x2
) = 1

3 y + 1
2 y2 + 1

Therefore, integrating a second time gives

∫ 3

−1

[∫ 1

0
(x2y + xy2 + 2x) dx

]
dy =

∫ 3

−1

( 1
3 y + 1

2 y2 + 1
)

dy =
y=3

y=−1

( 1
6 y2 + 1

6 y3 + y
)

= ( 3
2 + 9

2 + 3
) − ( 1

6 − 1
6 − 1

) = 10

Both procedures gave the same answer, which confirms Theorem 16.1.1 in this case. So
there is no ambiguity in writing∫∫

R
(x2y + xy2 + 2x) dx dy = 10

when R = [0, 1] × [−1, 3]

E X A M P L E 16.1.3 Compute
∫ b

1

[∫ d

1

y − x
(y + x)3

dy

]
dx where b and d are both constants greater

than 1.
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Solution: First, to make it somewhat easier to integrate w.r.t. y, note that

y − x
(y + x)3

= 1
(y + x)2

− 2x
(y + x)3

Now the inner integral becomes∫ d

1

y − x
(y + x)3

dy =
∫ d

1

1
(y + x)2

dy − 2x
∫ d

1

1
(y + x)3

dy

=
y=d

y=1

(
− 1

y + x

)
− 2x

y=d

y=1

(
−1

2
1

(y + x)2

)

= − 1
d + x

+ 1
1 + x

+ x
(x + d)2

− x
(1 + x)2

= − d
(x + d)2

+ 1
(x + 1)2

Next, integrating this w.r.t. x gives

∫ b

1

[∫ d

1

y − x
(y + x)3

dy

]
dx =

∫ b

1

[
− d

(x + d)2
+ 1

(x + 1)2

]
dx =

x=b

x=1

(
d

x + d
− 1

x + 1

)

= d
b + d

− 1
b + 1

− d
d + 1

+ 1
2

(∗)

Choosing instead to integrate w.r.t. x first, a similar trick leads to

y − x
(y + x)3

= − 1
(y + x)2

+ 2y
(y + x)3

Now the inner integral w.r.t. x becomes∫ b

1

y − x
(y + x)3

dx =
x=b

x=1

[
1

y + x
− y

(y + x)2

]

=
[

1
y + b

− y
(y + b)2

]
−

[
1

y + 1
− y

(y + 1)2

]
= b

(y + b)2
− 1

(y + 1)2

Then∫ d

1

[ ∫ b

1

y − x
(y + x)3

dx

]
dy =

y=d

y=1

(
− b

y + b
+ 1

y + 1

)
= − b

b + d
+ b

b + 1
+ 1

d + 1
− 1

2
(∗∗)

One way to show that the two results are equal is to subtract (∗∗) from (∗), which gives(
d

b + d
− 1

b + 1
− d

d + 1
+ 1

2

)
−

(
− b

b + d
+ b

b + 1
+ 1

d + 1
− 1

2

)

By simple algebra, this can be reduced to 1 − 1 − 1 + 1 = 0.

It is important to note that the equality in Theorem 16.1.1 does not always hold if the
limits of integration are infinite.

.
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E X A M P L E 16.1.4 In statistics, two random variables X and Y are said to have the bivariate uniform
distribution over the set [a, b] × [c, d] with a < b and c < d if, for any pair of numbers x
in [a, b] and y in [c, d], the probability F(x, y) that both X ≤ x and Y ≤ y is given by

F(x, y) = x − a
b − a

· y − c
d − c

The function F(x, y) and is called the joint probability distribution of X and Y . The corre-
sponding joint density function is defined for all x in [a, b] and y in [c, d] by

f (x, y) = k = 1
(b − a)(d − c)

(∗)

independent of x and y. It is easy to check that these definitions of F and f imply that, for
all x in [a, b] and y in [c, d], one has F(x, y) = ∫ x

a

∫ y
c f (s, t) dt ds.

Now, given the random variable Z = X + Y , compute its expected value, which is
defined as

E(Z) =
∫ b

a

∫ d

c
(x + y)f (x, y) dy dx

Solution: Because of (∗), one has

E(Z) = k
∫ b

a

[∫ d

c
(x + y) dy

]
dx = k

∫ b

a

[
d

c

(
xy + 1

2 y2
)]

dx

= k
∫ b

a

(
xd + 1

2 d2 − xc − 1
2 c2

)
dx = k

∫ b

a

[
(d − c)x + 1

2 (d2 − c2)
]

dx

= k
b

a

[
(d − c) 1

2 x2 + 1
2 (d2 − c2)x

] = 1
2 k

[
(d − c)(b2 − a2) + (d2 − c2)(b − a)

]
= 1

2 k [(d − c)(b + a)(b − a) + (d − c)(d + c)(b − a)]

= 1
2 k(b − a)(d − c)(a + b + c + d) = 1

2 (a + b + c + d)

E X E R C I S E S F O R S E C T I O N 1 6 . 1

1.SM Evaluate the following double integrals:

(a)
∫ 2

0

∫ 1

0
(2x + 3y + 4) dx dy (b)

∫ a

0

∫ b

0
(x − a)(x − b) dx dy (c)

∫ 3

1

∫ 2

1

x − y
x + y

dx dy

2.SM Assuming that a > 1 and b > 0, find

I =
∫ a

1

(∫ b

0

1
x3

ey/x dy

)
dx
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3.SM Consider the function

f (x, y) = 2k
(x + y + 1)3

where k is a constant. Let R be the rectangle R = [0, a] × [0, 1], where a > 0 is a constant. Deter-
mine the value ka of k such that

∫∫
R f (x, y) dx dy = 1. Show that ka > 2 for all a > 0.

4. Compute the double integral I = ∫ 2
0

[∫ 1
−2(x

2y3 − (y + 1)2) dy
]

dx.

16.2 Infinite Rectangles of Integration
In Section 10.7 we extended the definition of the integral of a one-variable function to the
case of an infinite interval of integration. In Eq. (10.7.3) this interval was the whole real line.
Let us now consider the analogous bi-variate problem of extending our definition (16.1.4)
of a double integral so that ∫∫

R
f (x, y) dy dx (16.2.1)

makes sense even when the rectangle R becomes the whole xy-plane (−∞, ∞) ×
(−∞, ∞). We postpone a deeper analysis to FMEA. Here we merely try rewriting the
integral in Eq. (16.2.1) as the double integral∫ ∞

−∞

[∫ ∞

−∞
f (x, y) dy

]
dx

Note first that the inner integral
∫ ∞
−∞ f (x, y) dy is an improper integral of the kind that was

considered in (10.7.3). Suppose that this inner integral converges for all values of x to a
value we denote by I(x) = ∫ ∞

−∞ f (x, y) dy. Then we can further re-write

∫∫
R

f (x, y) dy dx =
∫ ∞

−∞
I(x) dx (16.2.2)

Now, the right-hand side of (16.2.2) is once again an improper integral of one variable. So,
provided that it also converges so that Eq. (10.7.3) applies, then we can define the improper
double integral (16.2.1) as

∫ ∞
−∞ I(x) dx.

E X A M P L E 16.2.1 In Example 10.7.5 and then Exercise 10.7.12, we considered the normal distribu-
tion, with density function3

f (x) = 1√
2π

e− 1
2 x2

3 This is actually the standard normal density function. It is the function considered in Exercise
10.7.12, in the special case when μ = 0 and σ 2 = 1.
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We observed that there that the distribution is well defined in the sense that the improper
integral

∫ +∞
−∞ f (x) dx converges, and satisfies

∫ +∞

−∞
f (x) dx = 1√

2π

∫ +∞

−∞
e− 1

2 x2
dx = 1 (16.2.3)

The bi-variate normal distribution is a natural extension of this distribution to R
2. It is

defined by the joint density

f (x, y) = 1
2π

1√
1 − ρ2

exp
{
−

[
x2 − 2ρxy + y2

2(1 − ρ2)

]}

Here ρ is a constant in the interval [−1, 1], known as the correlation coefficient between X
and Y . Show that the improper integral

∫ +∞

−∞

∫ +∞

−∞
f (x, y) dy dx

converges to 1.

Solution: The integral in question can be written as

1
2π

1√
1 − ρ2

∫ +∞

−∞

∫ +∞

−∞
exp

{
−

[
x2 − 2ρxy + y2

2(1 − ρ2)

]}
dy dx (16.2.4)

Ignoring for the moment the constant terms and the outer integral, we first need to compute,
for any value of the constant x, the inner integral

I(x) =
∫ +∞

−∞
exp

{
−

[
x2 − 2ρxy + y2

2(1 − ρ2)

]}
dy (∗)

Now use integration by substitution with the new variable u = (y − ρx)/
√

2(1 − ρ2). Note
that, with x fixed, one has

du = 1√
2(1 − ρ2)

dy and u2 = y2 − 2ρxy + ρ2x2

2(1 − ρ2)

Then the fraction in square brackets in (∗) becomes

x2 − 2ρxy + y2

2(1 − ρ2)
= x2 − ρ2x2 + ρ2x2 − 2ρxy + y2

2(1 − ρ2)
= x2

2
+ u2

Because dy = √
2(1 − ρ2) du and x is a constant, the integral (∗) can be rewritten as

I(x) =
∫ +∞

−∞
e
−

(
1
2 x2+u2

)√
2(1 − ρ2) du = e− 1

2 x2√
2(1 − ρ2)

∫ +∞

−∞
e−u2

du
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As discussed in Eq. (10.7.9), however, the last integral is
√

π . So, substituting the result for
I(x) into Eq. (16.2.4) and then using Eq. (16.2.3) for the last step, we get

∫ +∞

−∞

∫ +∞

−∞
f (x, y) dy dx = 1

2π

1√
1 − ρ2

∫ +∞

−∞
I(x) dx

= 1
2π

1√
1 − ρ2

∫ +∞

−∞
e−x2/2

√
2(1 − ρ2)

√
π dx

= 1√
2π

∫ +∞

−∞
e−x2/2 dx = 1

16.3 Discontinuous Integrands and Other
Extensions
So far we have only considered double integrals where the integrand is continuous. Consider
now two random variables X and Y whose joint density is the discontinuous function

f (x, y) =
{

e−y, if 0 < x < y;
0, otherwise

(16.3.1)

In order to verify that this is a well-defined density, we need to check that the volume under
its graph is exactly 1 because

∫ ∞

−∞

∫ ∞

−∞
f (x, y) dy dx = 1 (16.3.2)

But since function f is defined piecewise, it is convenient for us to divide the domain of
integration as in Fig. 16.3.1. This is drawn so that the density f (x, y) is positive if and only
if (x, y) belongs to the shaded area where 0 < x < y. This infinite wedge-shaped area allows
any x > 0, but for any given value of x, permits only y in the interval (x, ∞). So we can
calculate the volume as the double integral

∫ ∞

0

[∫ ∞

x
e−y dy

]
dx

Here x is both the lower bound of the inner integral and the variable of integration of the
outer integral.

In FMEA we discuss general integrals that display this feature. In this chapter, however,
we just verify that the density function in (16.3.1) does satisfy (16.3.2). To do so, first note
that, since the inner integral treats x as a constant, it is simply

∫ ∞

x
e−y dy = lim

b→∞

∫ b

x
e−y dy = − lim

b→∞

b

x
e−y = − lim

b→∞
e−b + e−x = e−x
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x

y y = x

f = e−y

f = 0

f = 0

f = 0
f = 0

f = 0

Figure 16.3.1 Domain of f (x, y) in Eq. (16.3.1)

It follows that

∫ ∞

0

[∫ ∞

x
e−y dy

]
dx =

∫ ∞

0
e−x dx = lim

b→∞

∫ b

0
e−x dx = − lim

b→∞

b

0
e−x = − lim

b→∞
e−b + 1 = 1

This confirms Eq. (16.3.2).

E X A M P L E 16.3.1 Consider the two random variables X and Y of Example 16.1.4, for the special case
when a = c = 0 and b = d = 1. Compute the density function of variable Z, and use it to
confirm that the value of E(Z) is 1 in this special case.

Solution: First define the distribution function G(z) of Z for all real z so that G(z) is the
probability that Z = X + Y ≤ z. Note that both X and Y take values in the interval [0, 1]. It
follows that if z < 0 then X + Y ≤ z is impossible and so G(z) = 0, whereas if z > 2 then
X + Y ≤ z is certain and so G(z) = 1.

z

z

x

y

1

1

x+ y ≤ z

Figure 16.3.2 x + y ≤ z when z ≤ 1 in
Example 16.1.4

x

y

1

1 z

z

x+ y ≤ z

Figure 16.3.3 x + y ≤ z when
1 < z ≤ 2 in Example 16.1.4
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Now, in case 0 ≤ z ≤ 1, the probability that X + Y ≤ z equals the area of the shaded
region in Fig. 16.3.2. This is the probability that X ≤ z and Y ≤ z − X, which is

G(z) =
∫ z

0

[∫ z−x

0
f (x, y) dy

]
dx =

∫ z

0

(∫ z−x

0
1 dy

)
dx =

∫ z

0

( z−x

0
y
)

dx

=
∫ z

0
(z − x) dx =

z

0

(
zx − 1

2 x2
) = 1

2 z2

In this case when 0 < z < 1, the associated density of Z is g(z) = G′(z) = z.
On the other hand, in case 1 < z ≤ 2, the probability that X + Y ≤ z equals the area of

the shaded region in Fig. 16.3.3. Exercise 1 asks you to show that

G(z) = 1 − 1
2 (2 − z)2

In this case when 1 < z < 2, the associated density of Z is g(z) = G′(z) = 2 − z.
It follows that the expectation of Z is given by

E(Z) =
∫ 2

0
zg(z) dx =

∫ 1

0
z2 dx +

∫ 2

1
(2z − z2) dx

=
1

0

1
3 z3 + 2

1

(
z2 − 1

3 z3
) = 1

3 − 0 + (
4 − 8

3 − 1 + 1
3

) = 1

E X E R C I S E S F O R S E C T I O N 1 6 . 3

1. Show that the area of the shaded region in Fig. 16.3.3 equals 1 − (2 − z)2/2.

16.4 Integration Over Many Variables
In this brief section we discuss how to go beyond integrals of functions that have only
two variables. Instead of a two-dimensional rectangle, let R denote the n-fold Cartesian
product [a1, b1] × · · · × [an, bn] of the closed intervals [a1, b1], . . . , [an, bn]. It is the set of
all n-vectors x = (x1, x2, . . . , xn) in R

n such that ai ≤ xi ≤ bi for i = 1, 2, . . . , n. We call
the set R an n-dimensional rectangle or n-dimensional cuboid.

Suppose that f is a continuous function defined on R. Then we define the multiple inte-
gral of f over R as

∫
· · ·

∫
R

f (x1, . . . , xn−1, xn) dx1 . . . dxn−1d xn

=
∫ bn

an

{∫ bn−1

an−1

. . .

[∫ b1

a1

f (x1, . . . , xn−1, xn)dx1

]
. . . dxn−1

}
dxn (16.4.1)
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The meaning of the notation on the right-hand side of Eq. (16.4.1) is that integration is
to be performed n times. We start by integrating w.r.t. x1, all other variables being treated
as constants. Next we integrate w.r.t. x2, treating the remaining variables (x3, . . . , xn) as
constants. And so on, for n steps in all.

Definition (16.4.1) is a simple generalization of (16.1.4). In this general case with n
variables of integration, one can still prove that the order of integration on the right-hand
side is immaterial, provided that f is continuous in R.

E X E R C I S E F O R S E C T I O N 1 6 . 4

1.SM [HARDER] Find

I =
∫∫∫

C
(x2

1 + x2
2 + x2

3) dx1 dx2 dx3

where C is the unit cube in R3 that is determined by the inequalities 0 ≤ xi ≤ 1 for i = 1, 2, 3.
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17
U N C O N S T R A I N E D
O P T I M I Z A T I O N

At first sight it is curious that a subject as pure and passionless as mathematics can have anything useful
to say about that messy, ill-structured, chancy world in which we live.
Fortunately we find that whenever we comprehend what was previously mysterious, there is at the centre
of everything order, pattern and common sense.
—Patrick (B.H.P.) Rivett (1978)

Chapter 9 was concerned with optimization problems involving functions of one variable.
Most interesting economic optimization problems, however, require the simultaneous

choice of several variables. For example, a profit-maximizing producer of a single commodity
chooses not only its output level, but also the quantities of many different inputs. A consumer
chooses quantities of the many different goods that are available to buy in a market.

Most of the mathematical difficulties arise already in the transition from one to two variables.
Furthermore, textbooks in economics often illustrate economic problems by using functions of
only two variables, for which one can at least draw level curves in the plane. We therefore
begin this chapter by studying the two-variable case. Section 17.1 presents the basic results,
illustrated by relatively simple examples and problems. In Sections 17.2, 17.3, and 17.5 we
give a more systematic presentation of the theory with two variables. The intermediate Section
17.4 treats the relatively simple special case when the objective is to maximize or minimize a
quadratic function. Subsequently, in Section 17.6, we consider how the theory can be extended
to functions of several variables.

Much of economic analysis involves seeing how the solution to an optimization problem
responds when the situation changes. Often, this changing situation is described by alterations
in some relevant parameters. Thus, the theory of the firm considers how a change in the price of
a good that is either an input or an output can affect the optimal quantities of all the inputs and
outputs, as well as the maximum profit. Some simple results of this kind are briefly introduced
at the end of the chapter.

This chapter treats unconstrained optimization problems. Different kinds of constrained opti-
mization problem are the subject of our last three chapters.
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17.1 Two Choice Variables: Necessary
Conditions
Consider a differentiable function z = f (x, y) defined on a set S in the xy-plane. Recall from
Section 14.8 the definition of an interior point. Suppose that f attains its largest value (its
maximum) at an interior point (x0, y0) of S, as indicated in Fig. 17.1.1 by the point P in
three-dimensional space, whose coordinates are (x, y, z) = (x0, y0, f (x0, y0)).

1

Suppose we now we keep y fixed at y0, and let D denote the set of all x such that (x, y0)

is in S. Consider now the function of one variable defined by g(x) = f (x, y0) for all x in the
domain D. Because f is differentiable, so is g, with derivative g′(x) exactly the same as the
partial derivative f ′

1(x, y0) for all x in D. Furthermore, the hypothesis that f (x, y) ≤ f (x0, y0)

for all (x, y) in S implies that g(x) ≤ g(x0) = f (x0, y0) for all x ∈ D, so x0 is a maximum
point of g over D. Finally, because we assumed that (x0, y0) is an interior point of S, and so
can be surrounded by a small circle of points in S, it follows that x0 can be surrounded by
a small interval of points in D, implying that x0 is an interior point in D.

The argument in the paragraph above implies that all the conditions of Theorem 9.1.1
hold. By that theorem, it follows that at x0 one has g′(x0) = 0. But g′(x) = f ′

1(x, y0) for all x
in D, so f ′

1(x0, y0) = 0.
Suppose next that we keep x fixed at x0 rather than y at y0, and then consider the func-

tion h of the single variable y that is defined for all y near y0 by h(y) = f (x0, y). Using
a similar argument, one can show that h is differentiable with derivative h′(y) = f ′

2(x0, y),
and that it achieves a maximum at the interior point y = y0. Once again, therefore, we can
invoke Theorem 9.1.1, which implies that h′(y0) = f ′

2(x0, y) = 0.
A point (x0, y0) where both first-order partial derivatives are 0 is called a critical (or

stationary) point of f .
If f attains its smallest value (its minimum) at an interior point (x0, y0) of S, a simi-

lar argument shows that in this case too (x0, y0) must be a critical point. So we have the
following important result:

T H E O R E M 1 7 . 1 . 1 ( N E C E S S A R Y F I R S T - O R D E R C O N D I T I O N S )

A differentiable function z = f (x, y) can have a maximum or minimum at an
interior point (x0, y0) of its domain only if it is a critical point in the sense that
the pair (x, y) = (x0, y0) satisfies the following two first-order conditions, or
FOCs:

f ′
1(x, y) = 0 and f ′

2(x, y) = 0 (17.1.1)

In Fig. 17.1.2, the three points P, Q, and R of the graph all correspond to critical points
in the domain S of f , but only P is a maximum.2 In the examples and exercises of this

1 The concept of interior point was introduced in Section 14.8, before the statements of the
second-order conditions (14.8.3)–(14.8.6) for a function to be concave or convex.

2 Later, we shall say that Q corresponds to a local maximum, whereas R corresponds to a saddle
point.
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z 5 f (x, y)

x0

y0

P 5 (x0 , y0 , f (x0 , y0))z

y

x

S

Q

R

Figure 17.1.1 At the maximum point P,
(x0, y0) is critical.

P
Q

R

z

x

y

Figure 17.1.2 Only point P is a
maximum.

Section, only the first-order conditions are considered. Section 17.2 explains how to use
second-order conditions in order to verify that we have found a maximum or minimum.

E X A M P L E 17.1.1 The function f is defined for all (x, y) by

f (x, y) = −2x2 − 2xy − 2y2 + 36x + 42y − 158

Assume that f has a maximum point. Find it.

Solution: Theorem 17.1.1 applies, so a maximum point (x, y) must be a critical point that
satisfies the two first-order conditions:

f ′
1(x, y) = −4x − 2y + 36 = 0 and f ′

2(x, y) = −2x − 4y + 42 = 0

These are two linear simultaneous equations which together determine both x and y. They
can be solved to show that (x, y) = (5, 8) is the only pair of numbers which satisfies both
equations. Assuming there is a maximum point, these must be its coordinates. Inserting
(x, y) = (5, 8) into the definition of f determines the maximum value, which is f (5, 8) =
100. (In Example 17.2.2 we will prove that (5, 8) really is a maximum point.)

E X A M P L E 17.1.2 A firm produces two different kinds of a commodity, which are labelled A and B.
The daily cost in dollars of producing x units of A and y units of B is

C(x, y) = 0.04x2 + 0.01xy + 0.01y2 + 4x + 2y + 500

Suppose that the firm sells all its output at a price per unit of $15 for A and $9 for B. Find
the daily production levels x and y that maximize profit per day.

Solution: Profit per day in dollars is π(x, y) = 15x + 9y − C(x, y), implying that

π(x, y) = 15x + 9y − 0.04x2 − 0.01xy − 0.01y2 − 4x − 2y − 500

= −0.04x2 − 0.01xy − 0.01y2 + 11x + 7y − 500

If the two quantities x > 0 and y > 0 jointly maximize profit, then the pair (x, y) must satisfy
the following two FOCs:

∂π

∂x
= −0.08x − 0.01y + 11 = 0 and

∂π

∂y
= −0.01x − 0.02y + 7 = 0
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These two linear equations in x and y have the unique solution x = 100, y = 300. The cor-
responding maximum dollar profit is π(100, 300) = 1100. (We have not proved that this
actually is a maximum. For that, see Exercise 17.2.1.)

E X A M P L E 17.1.3 (Profit Maximization). Suppose that Q = F(K, L) is a production function, with
K ≥ 0 as the capital input, and L ≥ 0 as the labour input. Denote the price per unit of output
by p, the cost (or rental) per unit of capital by r, and the wage rate by w, where p, r, and
w are all positive constants. The profit π from producing and selling F(K, L) units is then
given by the function

π(K, L) = pF(K, L) − rK − wL

If F is differentiable and π has a maximum with K > 0, L > 0, then the two FOCs are

π ′
K(K, L) = pF′

K(K, L) − r = 0 and π ′
L(K, L) = pF′

L(K, L) − w = 0

So the necessary conditions for profit to be a maximum when K = K∗ and L = L∗ are

pF′
K(K∗, L∗) = r and pF′

L(K
∗, L∗) = w (∗)

The first equation in (∗) says that r, the cost of capital, must equal the value, at the price
p per unit, of the marginal product of capital. Suppose we think of increasing capital input
from the level K∗ by k units, where k is small. How much would profit increase? Production
would increase by approximately F′

K(K∗, L∗)k units. Because each extra unit is priced at
p, the revenue gain is approximately pF′

K(K∗, L∗)k. But how much is lost? The answer is
rk, because r is the cost of each unit of capital. At a profit maximum, these two must be
equal.

The second equation in (∗) has a similar interpretation. Provided that � is small, increas-
ing labour input by � units from level L∗ will lead to the approximate gain pF′

L(K
∗, L∗)�

in revenue, whereas the extra labour cost is approximately w�. The profit-maximizing pair
(K∗, L∗) thus has the property that the extra revenue from increasing either input is just
offset by the extra cost.

Economists often divide the first-order conditions (∗) by the positive price p to reach
the alternative form F′

K(K, L) = r/p and F′
L(K, L) = w/p. So, to obtain maximum profit,

the firm must choose K and L to equate the marginal productivity of capital to its “rela-
tive” price r/p, and also to equate the marginal productivity of labour to its relative price
w/p.

Note that the conditions in (∗) are necessary, but generally not sufficient for an interior
maximum. Conditions that are sufficient for an optimum are explored in Example 17.3.3.

E X A M P L E 17.1.4 Find the only possible solution to the following special case of Example 17.1.3:

max π(K, L) = 12K1/2L1/4 − 1.2K − 0.6L

Solution: The first-order conditions are

π ′
K(K, L) = 6K−1/2L1/4 − 1.2 = 0 and π ′

L(K, L) = 3K1/2L−3/4 − 0.6 = 0
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These equations imply that K−1/2L1/4 = K1/2L−3/4 = 0.2 = 1/5. Multiplying each side of
the first equation here by K1/2L3/4 reduces it to L = K. So K−1/4 = L−1/4 = 1/5. It follows
that K = L = 54 = 625 is the only possible solution. (See Example 17.2.3 for a proof that
this is indeed a maximum point.)

E X A M P L E 17.1.5 Consider a firm that is a monopolist in its domestic market, but takes as given the
price pw of its product in the world market. Denote the quantities it sells in the two markets
by xd and xw, respectively. Suppose that the price obtained in the domestic market, as a
function of its sales, is given by the inverse demand function pd = P(xd). Suppose too that
the cost of producing x units in total is C(x), regardless of how this output is distributed
between the domestic and world markets.

(a) Find the profit function π(xd, xw), then write down the FOCs for profit to be maximized
at xd > 0, xw > 0. Give economic interpretations of these conditions.

(b) Suppose that in the domestic market the firm is faced with a demand curve whose con-
stant price elasticity is equal to −2. What is the relationship between the prices in the
domestic and world markets?

Solution:

(a) The revenue from selling xd units in the domestic market at the price pd = P(xd)

is P(xd) · xd. In the world market the revenue is pwxw. The profit function is
π = π(xd, xw) = P(xd)xd + pwxw − C(xd + xw). So the two first-order conditions are

π ′
1 = pd + P′(xd) xd − C′(xd + xw) = 0 (∗)

π ′
2 = pw − C′(xd + xw) = 0 (∗∗)

According to (∗∗), in the world market the marginal cost must equal the price pw, which
is the marginal revenue in this case. In the domestic market the marginal cost must also
equal the marginal revenue, which is pd + P′(xd)xd.
Suppose the firm contemplates producing and selling a little extra in its domestic mar-
ket. The extra revenue per unit increase in output equals pd minus the loss that arises
because of the induced price reduction for all domestic sales. The latter loss is approxi-
mately P′(xd) · xd. Since the cost of an extra unit of output is approximately the marginal
cost C′(xd + xw), condition (∗) expresses the requirement that, per unit of extra output,
the domestic revenue gain is just offset by the cost increase.

(b) The price elasticity of demand is −2, meaning that Elpd
xd = (pd/xd)(dxd/dpd) = −2.

From the rule for differentiating inverse functions, it follows that

P′(xd) = dpd

dxd
= 1/(dxd/dpd) = −1

2
pd

xd
(∗∗∗)

Then Eqs (∗), (∗∗), and (∗∗∗) together imply that 1
2 pd = C′(xd + xw) = pw. So in the

domestic market where the firm is a monopolist, the price it receives is twice that in the
world market, where it must take the price as given.
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E X E R C I S E S F O R S E C T I O N 1 7 . 1

1. The function f defined for all (x, y) by f (x, y) = −2x2 − y2 + 4x + 4y − 3 has a maximum. Find
the corresponding values of x and y.

2. Consider the function f defined for all (x, y) by f (x, y) = x2 + y2 − 6x + 8y + 35.

(a) The function has a minimum point. Find it.

(b) Show that f (x, y) can be written in the form f (x, y) = (x − 3)2 + (y + 4)2 + 10. Explain why
this shows that you have really found the minimum in part (a).

3. In the profit-maximizing problem of Example 17.1.3, let p = 1, r = 0.65, w = 1.2, and

F(K, L) = 80 − (K − 3)2 − 2(L − 6)2 − (K − 3)(L − 6)

Find the only possible values of K and L that maximize profits.

4. Suppose that a firm’s annual profit is given by P(x, y) = −x2 − y2 + 22x + 18y − 102, where x
and y denote the amounts spent per year on, respectively, product development and advertising.

(a) Find the firm’s annual profit when x = 10, y = 8 and when x = 12, y = 10.

(b) Find the only possible values of x and y that can maximize profit, along with the corresponding
profit.

17.2 Two Choice Variables: Sufficient
Conditions
Concavity or Convexity as a Sufficient Condition
We start by recalling some relevant results from Chapters 8 and 9. Indeed, suppose that f
is a concave function of one variable defined in an interval I of the real line. Recall the
supergradient property set out in Theorem 8.4.1, stating that the gradient of the function at
any interior point where it is differentiable is a supergradient, in the sense that the tangent
line lies above the graph of the function. This led to Theorem 9.2.2, stating a very simple
sufficient condition for an interior critical point of I to be a maximum point, which is that
the function f is concave. The reason is that the gradient of f at a critical point is zero, by
definition. So, by the supergradient property of concave functions, at a critical point zero is
a supergradient, implying immediately that the critical point is a maximum point.

This result for one variable is valid even if the function f is not differentiable at many
points of I. Indeed, all that matters is that it should be differentiable at an interior critical
point, since that is sufficient for a concave function to have a maximum point there. Simi-
larly, a sufficient condition for an interior critical point in I to be a minimum point is that f
is convex.

For a function of two variables, similar results hold. First, recall from Section 14.7 that
a set S in the xy-plane is convex if for each pair of points P and Q in S, the whole line



�

� �

�

S E C T I O N 1 7 . 2 / T W O C H O I C E V A R I A B L E S : S U F F I C I E N T C O N D I T I O N S 695

segment between P and Q lies in S. Recall too from Section 14.8 the definition of a concave
or convex function. Now let z = f (x, y) be a concave function of two variables defined on a
convex set S. At any interior point (x0, y0) where f is differentiable, consider its gradient vec-
tor ∇f (x0, y0) = (

f ′
1(x

0, y0), f ′
2(x

0, y0)
)

and associated tangent plane given by Eq. (15.8.10),
which can be rewritten as

z − f (x0, y0) = f ′
1(x

0, y0)(x − x0) + f ′
2(x

0, y0)(y − y0) (17.2.1)

Then the supergradient property set out in Theorem 15.8.3 states that the gradient vector
∇f (x0, y0) of the concave function f is a supergradient vector, in the sense that the tangent
plane given by Eq. (17.2.1) lies above the graph of the function. That is, for all (x, y) in S,
one has

f (x, y) − f (x0, y0) ≤ f ′
1(x

0, y0)(x − x0) + f ′
2(x

0, y0)(y − y0) (17.2.2)

Now, by the definition in Theorem 17.1.1, the gradient vector ∇f (x0, y0) of the function f at
an interior critical point (x0, y0) is the zero vector (0, 0). Putting f ′

1(x
0, y0) = f ′

2(x
0, y0) = 0

in (17.2.2) evidently implies that, for all (x, y) in S, one has

f (x, y) − f (x0, y0) ≤ 0 (17.2.3)

This, of course, states that the interior critical point (x0, y0) is a maximum point of the
concave function f . Also, using a standard argument, in case the function f is convex and so
−f is concave, the interior critical point (x0, y0) is a maximum point of the concave function
−f and so a minimum point of the convex function f . So we have proved the following key
result:

T H E O R E M 1 7 . 2 . 1 ( C O N C A V I T Y O R C O N V E X I T Y A S A
S U F F I C I E N T C O N D I T I O N )

Suppose that the function z = f (x, y) of two variables is defined on a convex
domain S, and that (x0, y0) is an interior critical point in S. Then:

(a) in case the function f is concave, the point (x0, y0) is a maximum point;

(b) in case the function f is convex, the point (x0, y0) is a minimum point.

Second-order Conditions for Concavity or Convexity
Now we look for conditions on the second-order partial derivatives of a function f which
ensure that it is concave or convex, thus allowing Theorem 17.2.1 to be applied. First, sup-
pose that f is a twice differentiable function of only one variable defined in an interval I of
the real line. In this case Eq. (8.5.3) provides a necessary and sufficient condition for f to
be concave on I, which is that f ′′(x) ≤ 0 for all x in the interior of I. Similarly, Eq. (8.5.4)
provides a necessary and sufficient condition for f to be convex on I, which is that f ′′(x) ≥ 0
for all x in the interior of I.

For a function of two variables, in (14.8.3)–(14.8.6) we provided corresponding tests
for concavity or convexity, as well as sufficient conditions for strict concavity or convexity,
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based on second-order partial derivatives. Provided the function has an interior critical
point, this test implies that its graph is a surface shaped like the one in Fig. 17.1.1.

Consider any curve which, like QPR in Fig. 17.1.1, lies in the surface and is parallel to
the xz-plane. Any such curve is the graph of a concave function of one variable, implying
that f ′′

11(x, y) ≤ 0. A similar argument holds for any curve in the surface that is parallel to the
yz-plane, implying that f ′′

22(x, y) ≤ 0. In general, however, having these two second-order
partial derivatives be nonpositive is not sufficient on its own to ensure that the function is
concave, with a graph whose shape is like that in Fig. 17.1.1. This is clear from the next
example.

E X A M P L E 17.2.1 The function f (x, y) = 3xy − x2 − y2 has f ′′
11(x, y) = f ′′

22(x, y) = −2. Each curve
parallel to the xz-plane that lies in the surface defined by the graph has the equation z =
3xy0 − x2 − y2

0 for some fixed y0. It is therefore a concave parabola. So is each curve par-
allel to the yz-plane that lies in the surface. But along the line y = x the function reduces to
f (x, x) = x2, whose graph is a convex rather than a concave parabola. It follows that f has
no maximum (or minimum) at (0, 0), which is its only critical point.

What Example 17.2.1 shows is that conditions ensuring that the graph of f looks like
the one in Fig. 17.1.1 cannot ignore the second-order cross partial derivative f ′′

12(x, y).
Let z = f (x, y) be a twice differentiable function of two variables defined on a convex

domain S. Recall the second-order conditions in (14.8.3) for f to be concave, and those in
(14.8.4) for f to be convex. The following result builds on Theorem 17.2.1 by using those
second-order conditions for concavity or convexity in order to derive sufficient conditions
for an interior critical point of f to be a maximum or minimum.

T H E O R E M 1 7 . 2 . 2 ( S U F F I C I E N T C O N D I T I O N S F O R A
M A X I M U M O R M I N I M U M )

Suppose that (x0, y0) is an interior critical point for a C2 function f (x, y) defined
in a convex set S in R

2.

(a) If for all (x, y) in S, one has

f ′′
11(x, y) ≤ 0, f ′′

22(x, y) ≤ 0, and f ′′
11(x, y)f ′′

22(x, y) − [
f ′′
12(x, y)

]2 ≥ 0

then f is concave, and (x0, y0) is a maximum point for f (x, y) in S.

(b) If for all (x, y) in S, one has

f ′′
11(x, y) ≥ 0, f ′′

22(x, y) ≥ 0, and f ′′
11(x, y)f ′′

22(x, y) − [
f ′′
12(x, y)

]2 ≥ 0

then f is convex, and (x0, y0) is a minimum point for f (x, y) in S.

The conditions in part (a) of Theorem 17.2.2 are sufficient for an interior critical point
to be a maximum point. They are far from being necessary. This is clear from the function
whose graph is shown in Fig. 17.1.2, which has a maximum at P, but where the conditions
in (a) are certainly not satisfied in the whole of its domain.
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E X A M P L E 17.2.2 Show that the critical point we found in Example 17.1.1 is a maximum.

Solution: We found that f ′
1(x, y) = −4x − 2y + 36 and f ′

2(x, y) = −2x − 4y + 42. Further-
more, f ′′

11 = −4, f ′′
12 = −2, and f ′′

22 = −4. Thus, f ′′
11(x, y) ≤ 0, f ′′

22(x, y) ≤ 0, and

f ′′
11(x, y)f ′′

22(x, y) − [
f ′′
12(x, y)

]2 = 16 − 4 = 12 ≥ 0

According to part (a) in Theorem 17.2.2, these inequalities guarantee that the critical point
(5, 8) is a maximum point.

E X A M P L E 17.2.3 Show that the critical point we found in Example 17.1.4 is a maximum.

Solution: For all K > 0 and L > 0, the second-order partial derivatives are

π ′′
KK = −3K−3/2L1/4, π ′′

KL = 3
2 K−1/2L−3/4, and π ′′

LL = − 9
4 K1/2L−7/4

Clearly we have π ′′
KK < 0 and π ′′

LL < 0. Moreover

π ′′
KKπ ′′

LL − (π ′′
KL)

2 = 27
4 K−1L−3/2 − 9

4 K−1L−3/2 = 9
2 K−1L−3/2 > 0

These three signs tell us that the critical point (K, L) = (625, 625) maximizes profit.

This section concludes with two examples of optimization problems where the choice
of variables is subject to constraints. Nevertheless, a simple transformation can be used to
convert the problem into the form we have been discussing, without any constraints.

E X A M P L E 17.2.4 Suppose that any production by the firm in Example 17.1.2 creates pollution, so it
is legally restricted to produce a total of 320 units of the two kinds of output. The firm’s
problem has become

max −0.04x2 − 0.01xy − 0.01y2 + 11x + 7y − 500 subject to x + y = 320

What are the optimal quantities of the two kinds of output now?

Solution: The firm still wants to maximize its profits. Because of the restriction y = 320 −
x, however, its profit can be expressed as a function only of x. Indeed, the new profit func-
tion is

π̂(x) = −0.04x2 − 0.01x(320 − x) − 0.01(320 − x)2 + 11x + 7(320 − x) − 500

We find that π̂ ′(x) = −0.08x + 7.2, so π̂ ′(x) = 0 for x = 7.2/0.08 = 90. But we have
π̂ ′′(x) = −0.08 < 0 for all x, so the critical point x = 90 does maximize π̂ . The corre-
sponding value of y is y = 320 − 90 = 230. The maximum profit is 1040.

E X A M P L E 17.2.5 A firm has three factories that all produce the same output good. Let x, y, and z
denote the respective output quantities that the three factories produce in order to fulfil an
order for 2 000 units in total. Hence, x + y + z = 2000. Suppose that the respective cost
functions for the three factories are

C1(x) = 200 + 1
100

x2, C2(y) = 200 + y + 1
300

y3, and C3(z) = 200 + 10z
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Find the values of x, y, and z that minimize the total cost C(x, y, z) = C1(x) + C2(y) + C3(z)
of fulfilling the order.

Solution: Solving the equation x + y + z = 2000 for z in terms of x and Y gives z = 2000 −
x − y. Inserting this expression for z into the expression for C, then simplifying, yields

Ĉ(x, y) = C1(x) + C2(y) + C3(2000 − x − y) = 1
100

x2 − 10x + 1
300

y3 − 9y + 20 600

Any critical points of Ĉ must satisfy the two equations

Ĉ′
1(x, y) = 1

50
x − 10 = 0 and Ĉ′

2(x, y) = 1
100

y2 − 9 = 0

We rule out the solution with y < 0, leaving x = 500 and y = 30 as the only economically
sensible solution. It follows that z = 1470. The corresponding value of C is 17 920.

The second-order partials of Ĉ are

Ĉ′′
11(x, y) = 1

50
, Ĉ′′

12(x, y) = 0, and Ĉ′′
22(x, y) = 1

50
y

It follows that for all x ≥ 0, y ≥ 0, one has Ĉ′′
11(x, y) ≥ 0, Ĉ′′

22(x, y) ≥ 0, and

Ĉ′′
11(x, y)Ĉ′′

22(x, y) − Ĉ′′
12(x, y)2 = y

2500
≥ 0

Now we can apply part (b) of Theorem 17.2.2 to show that (500, 30) is a minimum point of
Ĉ within the convex domain of points (x, y) satisfying x ≥ 0, y ≥ 0, and x + y ≤ 2000. It
follows that (500, 30, 1470) is a minimum point of C within the domain of (x, y, z) satisfying
x ≥ 0, y ≥ 0, z ≥ 0, and x + y + z = 2000.

E X E R C I S E S F O R S E C T I O N 1 7 . 2

1. Prove that the true maximum has been found in each of the following:

(a) Example 17.1.2; (b) Exercise 17.1.1; (c) Exercise 17.1.3.

2. A firm produces two different kinds of a commodity, labelled A and B. The total daily cost of
producing x units of A and y units of B is

C(x, y) = 2x2 − 4xy + 4y2 − 40x − 20y + 514

Suppose that the firm sells all its output of each kind of good at a price per unit of $24 for A and
$12 for B.

(a) Find the daily production levels x and y that maximize profit.

(b) The firm is required to produce exactly 54 units per day of the two kinds combined. What is
the optimal production plan now?

3.SM Maximize the utility function U(x, y, z) = xyz subject to x + 3y + 4z = 108 and x, y, z > 0, by
eliminating the variable x and defining an appropriate function of only y and z.
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4. The prices p and q per unit that a monopolist receives for each of its two products are determined
by the inverse demand functions p = 25 − x and q = 24 − 2y, where x and y are the corresponding
output quantities, which the monopolist chooses. The total cost of producing x units of the first
good and y units of the second is C(x, y) = 3x2 + 3xy + y2.

(a) Find the monopolist’s profit π(x, y) from producing and selling x units of the first good and y
units of the other.

(b) Find the values of x and y that maximize π(x, y). Verify that you have found the maximum
profit.

5. A firm produces two goods. The cost of producing x units of good 1 and y units of good 2 is

C(x, y) = x2 + xy + y2 + x + y + 14

Suppose the firm sells all its output of each good at positive prices per unit of p and q respectively.
Assuming 1

2 p + 1
2 < q < 2p − 1, find the values of x and y that maximize profit.

6. The profit function of a firm is π(x, y) = px + qy − αx2 − βy2, where p and q are the prices per
unit, and αx2 + βy2 is the total cost of producing and selling x units of the first good and y units
of the other. The constants are all positive.

(a) Find the values of x and y that maximize profits. Denote them by x∗ and y∗. Verify that the
second-order conditions are satisfied.

(b) Define the function π∗ so that π∗(p, q) = π(x∗, y∗) is the firm’s maximum profit at prices p
and q. Verify that ∂π∗(p, q)/∂p = x∗ and ∂π∗(p, q)/∂q = y∗. Give these two equations eco-
nomic interpretations.

7. Find the smallest value of x2 + y2 + z2 when we require that 4x + 2y − z = 5.3

8. Let A, a, and b be positive constants, and p, q, and r arbitrary constants. Show that the function
f (x, y) = Axayb − px − qy − r is concave for x > 0, y > 0 provided that a + b ≤ 1.

17.3 Local Extreme Points
Quite often economists need to consider local extreme points of a function of two variables.
Here we extend the definitions and results for functions of one variable that we gave in
Section 9.6. Thus, the point (x0, y0) is said to be a local maximum point of f in S if f (x, y) ≤
f (x0, y0) for all pairs (x, y) in S that lie sufficiently close to (x0, y0). More precisely, the
definition is that there exists a positive number r such that f (x, y) ≤ f (x0, y0) for all (x, y)
in S that lie inside the circle with centre (x0, y0) and radius r. If the inequality is strict for
(x, y) �= (x0, y0), then (x0, y0) is a strict local maximum point.

A (strict) local minimum point is defined in the obvious way. It should also be clear what
we mean by local maximum and minimum values, local extreme points, and local extreme

3 Geometrically, the problem is to find the point in the plane 4x + 2y − z = 5 which is closest to the
origin.
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values. Note how these definitions imply that a global extreme point is also a local extreme
point; the converse is not true, of course.

In searching for maximum and minimum points, the first-order conditions we presented
in Theorem 17.1.1 were very useful. The same conditions also apply to local extreme points:
Any local extreme point in the interior of the domain of a differentiable function must be crit-
ical. This follows because, in the argument for Theorem 17.1.1, it was enough to consider
how the function behaves in a small neighbourhood of the optimal point.

These first-order conditions are necessary in the sense that, given any differentiable func-
tion z = f (x, y) defined on a set S in the plane, only a critical point can be a local extreme
point. However, a critical point may not be a local extreme point. Indeed, consider a critical
point (x0, y0) of f which, like the point (0, 0) in Fig. 17.3.1, is neither a local maximum
nor a local minimum point. Because the graph shown in that figure is shaped rather like
the saddle that one usually finds on the back of a horse which a rider is about to mount,
that critical point is called a saddle point of f . More precisely: A saddle point (x0, y0) is
a critical point with the property that there exist points (x, y) and (x′, y′), both arbitrarily
close to (x0, y0), such that f (x, y) < f (x0, y0) and f (x′, y′) > f (x0, y0).

E X A M P L E 17.3.1 Show that (0, 0) is a saddle point of f (x, y) = x2 − y2, and draw its graph.

Solution: It is easy to check that (0, 0) is a critical point at which f (0, 0) = 0. Moreover,
one has f (x, 0) = x2 and f (0, y) = −y2. So f (x, y) takes both positive and negative values
arbitrarily close to the origin. This shows that (0, 0) is a saddle point. See the graph in
Fig. 17.3.1.

z

y

x

Figure 17.3.1 z = x2 − y2, with saddle
point at (0, 0)

z

y
x

Figure 17.3.2 z = x4 − 3x2y2 + y4,
with saddle point at (0, 0)

Local extreme points and saddle points can be illustrated by thinking of the mountains
in the Himalayas. Every summit is a local maximum, but only the highest (Mount Everest)
is the (global) maximum. The deepest points of the lakes or glaciers are local minima. At
every mountain pass there will be a saddle point that is the highest point in one compass
direction but the lowest in another. That said, the surface in Fig. 17.3.2 shows that not all
saddle points have graphs that look as neat as the one shown in Fig. 17.3.1.

Our definitions imply that the critical points of a function thus fall into one of three
categories: local maximum points, local minimum points, and saddle points. How do we
distinguish between these three?
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Consider first the case when z = f (x, y) has a local maximum at (x0, y0). The two func-
tions g(x) = f (x, y0) and h(y) = f (x0, y) describe the behaviour of f along the respective
straight lines y = y0 and x = x0, as shown in Fig. 17.1.1. The functions g and h must achieve
local maxima at x0 and y0, respectively. It follows that the two second-order conditions
g′′(x0) = f ′′

11(x
0, y0) ≤ 0 and h′′(y0) = f ′′

22(x
0, y0) ≤ 0 must both be satisfied.

On the other hand, if g′′(x0) < 0 and h′′(y0) < 0, then we know that g and h really
do achieve local maxima at x0 and y0, respectively. Stated differently, the conditions
f ′′
11(x

0, y0) < 0 and f ′′
22(x

0, y0) < 0 will ensure that f (x, y) has a local maximum in the
two particular directions through (x0, y0) that happen to be parallel to the x-axis and the
y-axis. Note, however, that the signs of f ′′

11(x
0, y0) and f ′′

22(x
0, y0) on their own do not

reveal much about the behaviour of the graph of z = f (x, y) when we move away from
(x0, y0) in directions other than these two particular directions. Example 17.3.1 illustrates
the difficulty. Thus, in order to have a correct second-derivative test for functions f of
two variables, it turns out that the mixed second-order partial f ′′

12(x
0, y0) must also be

considered, just as it had to be in Section 17.2.

For a function f (x) of one variable defined on an interval I, let x0 be a critical point in
the interior of I. Now Theorem 9.2.2 implies that if the weak inequality f ′′(x) ≤ 0 holds
throughout I, then f is concave and so x0 is a maximum point. On the other hand, Theorem
9.6.2 implies that if f is twice continuously differentiable near x0 and the strict inequality
f ′′(x0) < 0 holds at the critical point, then x0 is a strict local maximum point. There are
obvious corresponding tests for x0 to be a minimum point, or local minimum point.

Next, consider a function f (x, y) of two variables defined on a set S in the plane, and
let (x0, y0) be a critical point in the interior of S. Now, provided the domain S is convex,
Theorem 17.2.2 implies that if the three weak inequalities f ′′

11(x, y) ≤ 0, f ′′
22(x, y) ≤ 0, and

f ′′
11(x, y)f ′′

22(x, y) − [f ′′
12(x, y)]2 ≥ 0 all hold throughout S, then f is concave and so (x0, y0),

is a maximum point. As ever, there is an obvious corresponding test for a minimum point.
Now, as for functions of one variable, by making the inequalities strict but requiring them
to hold only at the critical point, we arrive at conditions which are sufficient for that point
to be a strict local maximum or minimum point. This is implied by the following theorem:

T H E O R E M 1 7 . 3 . 1 ( S E C O N D - D E R I V A T I V E T E S T F O R L O C A L E X T R E M A )

Suppose that the function f (x, y) is C2 in its domain S. Let (x0, y0) be an interior
critical point of S, and define

A = f ′′
11(x

0, y0), B = f ′′
12(x

0, y0), and C = f ′′
22(x

0, y0)

Now:

(a) if A < 0 and AC − B2 > 0, then (x0, y0) is a strict local maximum point.

(b) if A > 0 and AC − B2 > 0, then (x0, y0) is a strict local minimum point.

(c) if AC − B2 < 0, then (x0, y0) is a saddle point.

(d) if AC − B2 = 0, then (x0, y0) could be a local maximum, a local minimum,
or a saddle point.
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Note that the condition AC − B2 > 0 in parts (a) and (b) implies that AC > B2 ≥ 0, and
so AC > 0. It follows that either A and C are both positive, or both negative. So the inequal-
ity C < 0 in part (a) or C > 0 in part (b) is included indirectly in the other assumptions.

The conditions in parts (a), (b), and (c) are usually called local second-order conditions.
Note that these are sufficient conditions for a critical point to be, respectively, a strict local
maximum point, a strict local minimum point, or a saddle point. None of these condi-
tions is necessary. The results in Exercise 4 will confirm part (d), because they show that
a critical point where AC − B2 = 0 can fall into any of the other three categories. The
second-derivative test is inconclusive in this case.

The proof of Theorem 17.3.1 is discussed at the end of this section.

E X A M P L E 17.3.2 Find the critical points and classify them when f (x, y) = x3 − x2 − y2 + 8.

Solution: The critical points must satisfy the two equations f ′
1(x, y) = 3x2 − 2x = 0 and

f ′
2(x, y) = −2y = 0. Because 3x2 − 2x = x(3x − 2), we see that the first equation has the

solutions x = 0 and x = 2/3. The second equation has the solution y = 0. We conclude that
(0, 0) and (2/3, 0) are the only critical points.

Furthermore, f ′′
11(x, y) = 6x − 2, f ′′

12(x, y) = 0, and f ′′
22(x, y) = −2. Using the notation A,

B, and C as defined in Theorem 17.3.1, it is convenient to classify the critical points in a
table like the following:

(x, y) A B C AC − B2 Type of point
(0, 0) −2 0 −2 4 Local maximum point

(2/3, 0) 2 0 −2 −4 Saddle point

E X A M P L E 17.3.3 Consider Example 17.1.3 and suppose that the production function F is twice dif-
ferentiable. Define

�(K, L) = F′′
KK(K, L)F′′

LL(K, L) − [
F′′

KL(K, L)
]2

Then let (K∗, L∗) be an input pair satisfying the first-order conditions (∗) in the example.

(a) Prove that if

F′′
KK(K, L) ≤ 0, F′′

LL(K, L) ≤ 0 and �(K, L) ≥ 0 for all K ≥ 0 and L ≥ 0 (∗)

so that the production function F is concave, then (K∗, L∗) maximizes profit.

(b) Prove also that if
F′′

KK(K∗, L∗) < 0 and �(K∗, L∗) > 0 (17.3.1)

then (K∗, L∗) is a strict local maximum for the profit function.

Solution:

(a) The second-order partials of the profit function are:

π ′′
KK(K, L) = pF′′

KK(K, L); π ′′
KL(K, L) = pF′′

KL(K, L); π ′′
LL(K, L) = pF′′

LL(K, L)

Since p > 0, the conclusion follows from part (a) in Theorem 17.2.2.

(b) In this case the conclusion follows from part (a) in Theorem 17.3.1.
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On Proving the Second-Derivative Test
We now want to discuss how one might prove the sufficiency Theorem 17.3.1. The discus-
sion will build on the corresponding Theorem 9.6.2, which applies when f is a function of
only one variable. Before doing so, however, it is instructive to develop some intuition by
determining some necessary conditions for a critical point to be a local extremum.

(h, k) (x0 1 th , y0 1 tk)
(x0 , y0)

z

y

x

Figure 17.3.3 The second-derivative test

Let z = f (x, y) be the C2 function graphed in Fig. 17.3.3, with (x0, y0) as a local maxi-
mum point in the interior of the domain of f . Take any fixed real numbers h and k satisfying
(h, k) �= (0, 0). Then whenever |t| is sufficiently small, the function f will be defined at
(x0 + th, y0 + tk). So for all small |t|, we can define the function g of one variable by

g(t) = f (x0 + th, y0 + tk)

This function tells us the value of f as one moves away from (x0, y0) a small distance in the
direction (h, k) when t > 0, or in the reverse direction (−h, −k) when t < 0.

Following the application of the chain rule that was used to derive Eq. (15.8.3) from the
definition (15.8.2), it follows that the first and second derivatives of g(t) both exist for all
small |t|. Moreover, they can be calculated as

g′(t) = f ′
1(x

0 + th, y0 + tk) h + f ′
2(x

0 + th, y0 + tk) k

g′′(t) = f ′′
11(x

0 + th, y0 + tk) h2 + 2f ′′
12(x

0 + th, y0 + tk) hk + f ′′
22(x

0 + th, y0 + tk) k2

In particular, the second derivative of g at t = 0 is

g′′(0) = f ′′
11(x

0, y0) h2 + 2f ′′
12(x

0, y0) hk + f ′′
22(x

0, y0) k2 (17.3.2)

Now, if f has a local maximum at (x0, y0), then g(t) must certainly have a local maximum
at t = 0. Because g(t) is a C2 function for small |t|, it follows from Theorem 9.1.1 and
Eq. (9.6.3) that the necessary conditions g′(0) = 0 and g′′(0) ≤ 0 must hold. So if f is to
have a local maximum at (x0, y0), then the expression in Eq. (17.3.2) must be nonpositive
for all choices of the pair (h, k).

Having obtained a necessary condition for f to have a local maximum at (x0, y0), we
now look for sufficient conditions. For the one-variable case, we know from part (i) in
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Theorem 9.6.2 that the conditions g′(0) = 0 and g′′(0) < 0 are sufficient for g to have a
strict local maximum at t = 0. So the following conjecture seems plausible:

If f ′
1(x

0, y0) = f ′
2(x

0, y0) = 0 and the expression for g′′(0) in (17.3.2) is negative
for all directions (h, k) �= (0, 0), then (x0, y0) is a (strict) local maximum point
for f .

This turns out to be correct, as will be proved in FMEA. Exercise 6, however, shows that
the expression in (17.3.2) really must be negative for all directions (h, k), without exception.
Relying on this conjecture, we can prove part (a) of Theorem 17.3.1 by considering the
quadratic form Ah2 + 2Bhk + Ck2 and invoking condition (13.12.7) for it to be negative
definite. It follows straight away that A < 0 and AC − B2 > 0 together imply

Ah2 + 2Bhk + Ck2 < 0 for all (h, k) �= (0, 0) (17.3.3)

This is what we needed to prove.

E X E R C I S E S F O R S E C T I O N 1 7 . 3

1. Consider the function f defined for all (x, y) by f (x, y) = 5 − x2 + 6x − 2y2 + 8y.

(a) Find all its partial derivatives of the first and second order.

(b) Find the only critical point and classify it by using the second-derivative test. What does
Theorem 17.2.2 tell us?

2. Consider the function f defined for all (x, y) by f (x, y) = x2 + 2xy2 + 2y2.

(a) Find all its partial derivatives of the first and second order.

(b) Show that its critical points are (0, 0), (−1, 1) and (−1, −1), and classify them.

3.SM Let f be the function of two variables which, for each pair (x, y) in the plane, is given by f (x, y; a) =
(x2 − axy)ey, where a �= 0 is a parameter.

(a) For each a �= 0, find the critical points of f and decide for each of them if it is a local maximum
point, a local minimum point, or a saddle point.

(b) For each a �= 0, let (x∗(a), y∗(a)) denote the critical point that satisfies x∗(a) �= 0, and then
define the function f ∗ so that f ∗(a) = f (x∗(a), y∗(a); a). Show that f ∗ is differentiable, then
find df ∗(a)/da. Show too that, if we regard f as a function of (x, y, a), then

f ′
3(x

∗(a), y∗(a); a) = df ∗(a)

da

4. Consider the three functions: (i) z = −x4 − y4; (ii) z = x4 + y4; and (iii) z = x3 + y3.

(a) Prove that the origin is a critical point for each one of these functions, and that using the
notation of Theorem 17.3.1, in each case one has AC − B2 = 0 at the origin.
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(b) By studying each of the three functions directly, prove that the origin is respectively a maxi-
mum point for (i), a minimum point for (ii), and a saddle point for (iii).

5.SM [HARDER] Consider the function f (x, y) = ln(1 + x2y).

(a) Find the domain on which it is defined.

(b) Prove that its critical points are all the points on the y-axis.

(c) Show that the second-derivative test fails to identify any local maxima or minima.

(d) Classify the critical points by looking directly at the sign of f (x, y).

6. [HARDER] Consider the function f (x, y) = (y − x2)(y − 2x2) defined on the whole xy-plane.

(a) Show that the graph of f intersects the xy-plane z = 0 in two parabolas.

(b) In the xy-plane, draw the regions where f is negative, and where f is positive.

(c) Show that (0, 0) is the only critical point, and that it is a saddle point.

(d) For any fixed direction vector (h, k) �= (0, 0), define g(t) = f (th, tk) for all real t. Show that
the function g has a local minimum at t = 0, whatever the direction (h, k) may be.4

17.4 Linear Models with Quadratic
Objectives
In this section we consider some other interesting economic applications of optimization
theory when there are two variables. Versions of the first example have already appeared in
Example 17.1.5 and Exercise 17.2.4.

E X A M P L E 17.4.1 (Discriminating Monopolist). Consider a firm that sells the same product in two
isolated geographical areas. Unless prohibited from doing so, it may want to charge different
prices in the two different areas because what is sold in one area cannot easily be resold
in the other.5 Suppose that such a firm also has some monopoly power to influence the
different prices it faces in the two separate markets by adjusting the quantity it sells in each.
Economists generally use the term “discriminating monopolist” to describe a firm having
this power.

Faced with two such isolated markets, the discriminating monopolist faces two indepen-
dent demand curves. Suppose that, in inverse form, these are

P1 = a1 − b1Q1 and P2 = a2 − b2Q2 (17.4.1)

4 Thus, although (0, 0) is a saddle point, the function has a local minimum at the origin in every
direction.

5 As an example, it seems that express mail or courier services find it possible to charge much higher
prices in Europe than they can in North America. An even more prominent example is that pharma-
ceutical firms often charge much more for the same medication in the USA than they do in Europe
or Canada.
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for market areas 1 and 2, respectively. Suppose too that the total cost is proportional to total
production, so C(Q) = αQ for some positive constant α.6 We assume that the other four
parameters a1, a2, b1, b2 are also positive, with a1 and a2 both greater than α.

As a function of Q1 and Q2, total profits are

π(Q1, Q2) = P1Q1 + P2Q2 − C(Q1 + Q2)

= (a1 − b1Q1)Q1 + (a2 − b2Q2)Q2 − α(Q1 + Q2)

= (a1 − α)Q1 + (a2 − α)Q2 − b1Q2
1 − b2Q2

2

The firm wants to find the values of Q1 ≥ 0 and Q2 ≥ 0 that maximize its profits. The
first-order conditions are

π ′
1(Q1, Q2) = (a1 − α) − 2b1Q1 = 0 and π ′

2(Q1, Q2) = (a2 − α) − 2b2Q2 = 0

The solutions of these two equations are obviously

Q∗
1 = (a1 − α)/2b1 and Q∗

2 = (a2 − α)/2b2 (17.4.2)

Our assumptions on parameter values imply that Q∗
1 and Q∗

2 are both positive.
Furthermore, one has π ′′

11(Q1, Q2) = −2b1, π ′′
12(Q1, Q2) = 0, and π ′′

22(Q1, Q2) = −2b2.
Hence, for all (Q1, Q2), it follows that

π ′′
11 ≤ 0, π ′′

22 ≤ 0, and π ′′
11π

′′
22 − (π ′′

12)
2 = 4b1b2 ≥ 0

At the critical point both Q∗
1 and Q∗

2 are positive, so (Q∗
1, Q∗

2) is an interior point in the
domain of π . Hence, by Theorem 17.2.2, the pair (Q∗

1, Q∗
2) really does maximize profits.

The corresponding prices can be found by inserting these values into (17.4.1) to get

P∗
1 = a1 − b1Q∗

1 = 1
2 (a1 + α) and P∗

2 = a2 − b2Q∗
2 = 1

2 (a2 + α) (17.4.3)

The maximum profit is

π∗ = (a1 − α)2

4b1
+ (a2 − α)2

4b2

Given our assumptions that a1 > α and a2 > α, both P∗
1 and P∗

2 exceed α. This implies
that there is no “dumping”, with the price in one market less than the cost α. Nor is there
any “cross-subsidy”, with the losses due to dumping in one market being subsidized out of
profits in the other market. It is notable that the optimal prices are independent of b1 and
b2. More important, note that the prices are not the same in the two markets, except in the
special case when a1 = a2. Indeed, P∗

1 > P∗
2 if and only if a1 > a2. This says that the price

is higher in the market where consumers are willing to pay a higher price for each unit when
the quantity is close to zero.

6 It is true that this cost function neglects transport costs. But the point to be made is that, even though
supplies to the two areas are perfect substitutes in production, the monopolist will generally be able
to earn higher profits by charging different prices, if this is allowed.
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E X A M P L E 17.4.2 Suppose that the monopolist in Example 17.4.1 faces the demand functions P1 =
100 − Q1 and P2 = 80 − Q2, and that its cost function is C(Q) = 6Q.

(a) How much should be sold in the two markets to maximize profits? What are the corre-
sponding prices?

(b) How much profit is lost if it becomes illegal to discriminate?

(c) The authorities impose a tax of τ per unit sold in the first market. Discuss the conse-
quences.

Solution:

(a) This is Example 17.4.1 with specific numerical parameter values a1 = 100, a2 = 80,
b1 = b2 = 1, and α = 6. Inserting these values into Eqs (17.4.2) and (17.4.3) gives the
numerical answers

Q∗
1 = (100 − 6)/2 = 47, Q∗

2 = 37, P∗
1 = 1

2 (100 + 6) = 53, and P∗
2 = 43

The corresponding profit is P∗
1Q∗

1 + P∗
2Q∗

2 − 6(Q∗
1 + Q∗

2) = 3578.

(b) If price discrimination is not permitted, so P1 = P2 = P, then the demand equations
(17.4.1) imply that Q1 = 100 − P and Q2 = 80 − P. Then total demand is given by
Q = Q1 + Q2 = 180 − 2P, implying that P = 90 − 1

2 Q. So profits become

π = (
90 − 1

2 Q
)

Q − 6Q = 84Q − 1
2 Q2

This has a maximum at Q = 84. Then P = 48. The corresponding profit has become
π = 3528, so the loss in profit is 3578 − 3528 = 50.

(c) With the introduction of the tax on sales in the first market, the new profit function is

π̂ = (100 − Q1)Q1 + (80 − Q2)Q2 − 6(Q1 + Q2) − τQ1

It is easy to see that this has a maximum at Q̂1 = 47 − 1
2τ and Q̂2 = 37, with cor-

responding prices P̂1 = 53 + 1
2τ and P̂2 = 43. The tax therefore has no influence on

sales in market 2. In market 1, however, the amount sold falls while the price rises. The
optimal profit π∗ is easily worked out: it equals

(53 + 1
2τ)(47 − 1

2τ) + 43 · 37 − 6(84 − 1
2τ) − τ(47 − 1

2τ) = 3578 − 47τ + 1
4τ 2

So, compared to (a), introducing the tax makes the profit fall by 47τ − 1
4τ 2. The author-

ities who control market 1 receive an amount of tax revenue given by

T = τ Q̂1 = τ(47 − 1
2τ) = 47τ − 1

2τ 2

This shows that profits fall by 1
4τ 2 more than the tax revenue. The amount 1

4τ 2 repre-
sents the so-called deadweight loss from the tax.

A monopolistic firm faces a downward-sloping demand curve. A discriminating monop-
olist such as in Example 17.4.1 faces separate downward-sloping demand curves in two or
more isolated markets. A monopsonistic firm, on the other hand, faces an upward-sloping
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supply curve for one or more of its factors of production. Then, by definition, a discriminat-
ing monopsonist faces two or more upward-sloping supply curves for different kinds of the
same input, such as workers of different race or gender. With good reason, discrimination
by race or gender has been made illegal in many countries. Economists, however, should
understand the possible implications for wages and jobs of failing to institute and enforce
regulations that prohibit such discrimination.

E X A M P L E 17.4.3 (Discriminating Monopsonist). Consider a firm that uses quantities L1 and L2 of
two kinds of labour as its only inputs in order to produce output Q according to the simple
production function Q = L1 + L2. Thus, both output and labour supply are measured so
that each unit of labour produces one unit of output. Note especially how the two kinds
of labour are essentially indistinguishable, because each unit of each type makes an equal
contribution to the firm’s output. Suppose, however, that there are two segmented labour
markets, with different inverse supply functions specifying the wage that must be paid to
attract a given labour supply. Specifically, suppose that

w1 = α1 + β1L1 and w2 = α2 + β2L2

where the parameters α1, β1, α2, and β2 are all positive. Assume moreover that the firm is
competitive in its output market, taking price P as fixed. Then the firm’s profits are

π(L1, L2) = PQ − w1L1 − w2L2

= P(L1 + L2) − (α1 + β1L1)L1 − (α2 + β2L2)L2

= (P − α1)L1 − β1L2
1 + (P − α2)L2 − β2L2

2

The firm wants to maximize profits. The first-order conditions for it to do so are

π ′
1(L1, L2) = (P − α1) − 2β1L1 = 0 and π ′

2(L1, L2) = (P − α2) − 2β2L2 = 0

These have the solutions

L∗
1 = P − α1

2β1
and L∗

2 = P − α2

2β2

Provided that P > α1 and P > α2, it is easy to see that the sufficient conditions in Theorem
13.2.1 are satisfied, so that L∗

1, L∗
2 really do maximize profits. The maximum profit is

π∗ = (P − α1)
2

4β1
+ (P − α2)

2

4β2

The corresponding wages are

w∗
1 = α1 + β1L∗

1 = 1
2 (P + α1) and w∗

2 = α2 + β2L∗
2 = 1

2 (P + α2)

Hence, w∗
1 = w∗

2 only if α1 = α2. Generally, the wage is higher for the type of labour that
demands a higher wage for very low levels of labour supply. Perhaps this is the type of
labour that can find better job prospects elsewhere.
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E X A M P L E 17.4.4 (Econometrics: Linear Regression II). Suppose it is thought that one economic
variable y depends upon another economic variable x. Suppose moreover that we have
observations (xt, yt) of both variables at times t = 1, 2, . . . , T . Under the assumption that
both variables have zero arithmetical mean, in Example 9.3.1 we introduced the technique
of linear regression that allows economists to estimate a function of the form yt = βxt. If
the variables in question have a nonzero mean, however, the technique of linear regression
seeks to fit to the data a linear function

y = α + βx (∗)

et  5 yt 2 (α 1 βxt)

y 5 α 1 βx

y

x

(xt , yt)

Figure 17.4.1 Linear regression

Figure 17.4.1 shows seven data points, as well as a line that fits them as closely as
possible, in some sense. Indeed, as the figure suggests, regardless of how α and β are chosen
in Eq. (∗), one has to allow an error term. This leads us to consider instead the equation

yt = α + βxt + et, for t = 1, 2, . . . , T

In Example 9.3.1 we considered the quadratic loss function that equals the mean (or aver-
age) square error. In this example the corresponding loss becomes

L(α, β) = 1
T

T∑
t=1

e2
t = 1

T

T∑
t=1

(
yt − α − βxt

)2
(∗∗)

Expanding the square now gives the following quadratic function of α and β:

L(α, β) = 1
T

T∑
t=1

(
y2

t + α2 + β2x2
t − 2αyt − 2βxtyt + 2αβxt

)
Let us denote by μx = 1

T

∑T
t=1 xt and μy = 1

T

∑T
t=1 yt the arithmetic means of the two

variables, as defined in Example 2.10.2. Let us also extend the definition of their statistical
variances and covariance, respectively, so that they become

σxx = 1
T

T∑
t=1

(xt − μx)
2, σyy = 1

T

T∑
t=1

(yt − μy)
2, and σxy = 1

T

T∑
t=1

(xt − μx)(yt − μy)

Assume once again that σxx > 0. Using the result in Example 2.10.2, we have

σxx = 1
T

T∑
t=1

x2
t − μ2

x and σyy = 1
T

T∑
t=1

y2
t − μ2

y
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You should then verify that, similarly,

σxy = 1
T

T∑
t=1

xtyt − μxμy

With this notation, the expression for L(α, β) becomes

L (α, β) = (
σyy + μ2

y

) + α2 + β2 (
σxx + μ2

x

) − 2αμy − 2β
(
σxy + μxμy

) + 2αβμx

= α2 + μ2
y + β2μ2

x − 2αμy − 2βμxμy + 2αβμx + β2σxx − 2βσxy + σyy

The first-order conditions for a minimum of L(α, β) take the form

L′
1(α, β) = 2α − 2μy + 2βμx = 0

L′
2(α, β) = 2βμ2

x − 2μxμy + 2αμx + 2βσxx − 2σxy = 0

Note that L′
2(α, β) = μxL′

1(α, β) + 2βσxx − 2σxy. So the unique critical point of L(α, β)

occurs at (α̂, β̂), where

β̂ = σxy

σxx
and α̂ = μy − β̂μx = μy − σxy

σxx
μx (∗∗∗)

Furthermore, L′′
11 = 2, L′′

12 = 2μx, L′′
22 = 2μ2

x + 2σxx. Thus L′′
11 ≥ 0, L′′

22 ≥ 0, and

L′′
11L′′

22 − (L′′
12)

2 = 2(2μ2
x + 2σxx) − (2μx)

2 = 4σxx = 4
T

T∑
t=1

(xt − μx)
2 ≥ 0

We conclude that the conditions in part (b) of Theorem 17.2.2 are satisfied, and therefore
the pair (α̂, β̂) given by (∗∗∗) minimizes L(α, β). The problem is then completely solved:

The straight line that best fits the observations (x1, y1), (x2, y2), . . . , (xT , yT), in the sense of minimizing
the mean square error in (∗∗), is y = α̂ + β̂x, where the estimated coefficients α̂ and β̂ are given by
(∗∗∗).

Note in particular that this estimated straight line passes through the mean (μx, μy) of
the observed pairs (xt, yt), t = 1, . . . , T . Also, with a little bit of tedious algebra we obtain

L(α, β) = (
α + βμx − μy

)2 + σxx

(
β − σxy

σxx

)2

+ σxxσyy − σ 2
xy

σxx

The first two terms on the right are always nonnegative. Moreover, with α = α̂ and β = β̂

both these terms are zero. This confirms that the pair (α̂, β̂) really does minimize L(α, β).

E X E R C I S E S F O R S E C T I O N 1 7 . 4

1. Suppose that the monopolist in Example 17.4.1 faces the two inverse demand functions P1 =
200 − 2Q1 and P2 = 180 − 4Q2, and that the cost function is C = 20(Q1 + Q2).

(a) How much should be sold in the two markets to maximize total profit? What are the corre-
sponding prices?
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(b) How much profit is lost if it becomes illegal to discriminate?

(c) Discuss the consequences of imposing a tax of τ = 5 per unit on the product sold in market 1.

2.SM A firm produces and sells a product in two separate markets. When the price in market 1 is P1
per ton, and the price in market 2 is P2 per ton, the demand in tons per week in the two markets
are, respectively, Q1 = α1 − β1P1 and Q2 = α2 − β2P2. The cost function is C(Q1, Q2) = γ +
δ(Q1 + Q2). All constants are positive.

(a) Find the firm’s profit as a function of the prices P1 and P2, and then find the pair (P∗
1, P∗

2) that
maximizes profit.

(b) Suppose it becomes unlawful to discriminate by price, so that the firm must charge the same
price in the two markets. What price P̂ will now maximize profit?

(c) In the case δ = 0, find the firm’s loss of profit if it has to charge the same price in both markets.
Comment.

3. In Example 17.4.1, discuss the effects of a tax of τ per unit imposed on the output Q1 in market 1.

4.SM The following table shows the Norwegian gross national product (GNP) and spending on foreign
aid (FA) for the period 1970–1973, measured in millions of Norwegian crowns:

Year 1970 1971 1972 1973
GNP 79 835 89 112 97 339 110 156
FA 274 307 436 524

The growth of both GNP and FA was almost exponential during the period. Specifically, one has
the approximation GNP = Aea(t−t0), with t0 = 1970. Define x = t − t0 and b = ln A. Then taking
natural logs gives ln(GNP) = ax + b. On the basis of the table above, one gets the following

Year 1970 1971 1972 1973
y = ln(GNP) 11.29 11.40 11.49 11.61

(a) Using the method of least squares, determine the straight line y = ax + b which best fits the
data in the last table.

(b) Repeat the method above to estimate c and d, where ln(FA) = cx + d.

(c) The Norwegian government had a stated goal of eventually giving 1% of its GNP as foreign aid.
If the time trends of the two variables had continued as they did during the years 1970–1973,
when would this goal have been reached?

5.SM (Duopoly) Each of two firms A and B produces its own brand of a commodity such as mineral
water in amounts denoted by x and y, which are sold at prices p and q per unit, respectively. Each
firm determines its own price and produces exactly as much as is demanded. The demands for the
two brands are given by

x = 29 − 5p + 4q and y = 16 + 4p − 6q

Firm A has total costs 5 + x, whereas firm B has total costs 3 + 2y. (In the following, you may
assume that the functions to be maximized achieve maxima at positive prices.)

(a) Initially, the two firms collude in order to maximize their combined profit, as one monopolist
would. Find the prices (p, q), the production levels (x, y), and the total profit of the two firms
A and B.
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(b) Then an anti-trust authority prohibits collusion, leading each producer to maximize its own
profit, taking the other’s price as given. If q is fixed, how will A choose p as a function p =
pA(q) of q? If p is fixed, how will B choose q as a function q = qB(p) of p?

(c) Under the assumptions in part (b), what pairs of prices (p, q) are possible? What are the pro-
duction levels and profits in this case?

(d) Draw a diagram with p along the horizontal axis and q along the vertical axis, and draw the
“reaction” curves pA(q) and qB(p). Show on the diagram how the two firms’ prices change
over time if A breaks the cooperation first by maximizing its profit, taking B’s initial price
as fixed, then B answers by maximizing its profit with A’s price fixed, then A responds, and
so on.

17.5 The Extreme Value Theorem
As with functions of one variable, it is easy to find examples of functions of several variables
that do not have any maximum or minimum points. But the extreme value Theorem 9.4.1
provides very useful sufficient conditions which ensure that extreme points do exist for
functions of one variable. The theorem can be directly generalized to functions of several
variables. Before formulating the extreme value theorem for many variables, however, we
should recall the key concepts of open and closed sets, as well as of interior and bound-
ary points. These were introduced in Section 14.8 and illustrated in Fig. 14.8.4 which, for
convenience, is reproduced below as Fig. 17.5.1.

Open Closed Neither open
nor closed

Interior
point

Boundary
point

S

Figure 17.5.1 Open and closed sets

In many of the optimization problems considered in economics, sets are defined by one
or more inequalities. Then boundary points occur where one or more of these inequalities
are satisfied with equality. For instance, provided that p, q, and m are positive parameters,
there is a closed “budget” set of points (x, y) that satisfy the inequalities

px + qy ≤ m, x ≥ 0, y ≥ 0 (∗)

This set is a triangle, as was shown in Fig. 4.4.12. Its boundary consists of the three sides
of the triangle. Each of the three sides corresponds to having one of the inequalities in (∗)

be satisfied with equality. On the other hand, the set that results from replacing ≤ by < and
each ≥ by > in (∗) is open.
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In general, suppose that g(x, y) is a continuous function and c is a real number. Then the
three sets

{(x, y) : g(x, y) ≥ c }, {(x, y) : g(x, y) ≤ c }, {(x, y) : g(x, y) = c}

with weak inequality signs are all closed. But the corresponding three sets

{(x, y) : g(x, y) > c }, {(x, y) : g(x, y) < c }, {(x, y) : g(x, y) �= c}

with strict inequality signs are all open.
A set S in the plane is said to be bounded if the whole set S can be enclosed within a

sufficiently large circle of finite radius. The four sets in Fig. 17.5.1 and the budget triangle
in Fig. 4.4.12 are all bounded. On the other hand, the set of all (x, y) satisfying x ≥ 1 and
y ≥ 0, which appears in Fig. 14.1.1, is a closed but unbounded set. It is closed because it
contains all its boundary points, but it is unbounded because no circle of finite radius can
enclose all of it. This example shows that closed sets need not be bounded. The opposite
implication does not hold either: for example, the fourth set depicted in Fig. 17.5.1 is neither
open nor closed, but it is bounded. Importantly, a set in the plane that is both closed and
bounded is often called compact.

We are now ready to formulate the main result in this section.

T H E O R E M 1 7 . 5 . 1 ( T H E E X T R E M E V A L U E T H E O R E M )

Suppose that the function f (x, y) is continuous throughout a nonempty, closed
and bounded set S in the plane. Then there exist both a point (a, b) in S where f
has a minimum and a point (c, d) in S where it has a maximum. That is, there
exist points (a, b) and (c, d) in S such that, for all (x, y) in S, one has

f (a, b) ≤ f (x, y) ≤ f (c, d)

Theorem 17.5.1 is a pure existence theorem. It tells us nothing about how to find the
extreme points. Its proof is found in most advanced calculus books and in FMEA. Also, even
though the conditions of the theorem are sufficient to ensure the existence of extreme points,
they are far from necessary. This is true even for functions of one variable, as was discussed
in Section 9.4.

Finding Maxima and Minima
Sections 17.1 and 17.2 presented some simple cases where we could find the maximum and
minimum points of a function of two variables by finding its critical points. The procedure
set out in the following frame covers many additional optimization problems. Its parts (i)
and (ii) usually find only a small finite set of interior and boundary points, respectively.
Thus, the comparisons required in part (iii) should not be too onerous.
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In order to find the maximum and minimum values of a differentiable function
f (x, y) defined on a closed, bounded set S in the plane:

(i) Find all critical points of f in the interior of S.

(ii) Find the largest value and the smallest value of f on the boundary of S,
along with the associated points. If it is convenient, subdivide the bound-
ary into several pieces and find the largest and smallest value on each
piece.

(iii) Compute the values of the function at all the different points found in
parts (i) and (ii). The largest function value is the maximum value of f
in S; the smallest one is the minimum value of f in S.

We try out this procedure on the function whose graph is depicted in Fig. 17.5.2. Because
the function is not specified analytically, we can give only a rough geometric argument. Note
first that the function has a rectangular domain S of points (x, y) in the xy-plane.

z 5 f (x, y)

(x0 , y0)

PQ

S

Rz

y

x

Figure 17.5.2 Finding maxima and minima

Part (i) of the procedure yields the only critical point of f , which is (x0, y0), correspond-
ing to the point P of the graph. Moving onto part (ii) of the procedure, the boundary of S
consists of four straight-line segments. The point R vertically above one corner point of S
represents the maximum value of f along the boundary; similarly, Q represents the mini-
mum value of f along the boundary. The only candidates for a maximum or minimum are,
therefore, the three points P, Q, and R. Moving on to part (iii) of the procedure, we com-
pare the values of f at these three points. The result that emerges is that P represents the
minimum value of f in S, whereas R represents the maximum value.

As an aspiring economist, doubtless you will be glad to hear that most optimization
problems in economics, especially those appearing in textbooks, rarely create enough diffi-
culties to call for the full recipe. Usually, there is an interior optimum that can be found by
equating all the first-order partial derivatives to zero. Conditions that are sufficient for this
easier approach to work were already discussed in Section 17.2. Nevertheless, we consider
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an example of a harder problem which illustrates how the whole recipe is sometimes needed.
This recipe is also needed in several of the examples and exercises in this section. In par-
ticular, Exercise 3 provides a practical economic application.

E X A M P L E 17.5.1 Find the extreme values for f (x, y) defined over S, where

f (x, y) = x2 + y2 + y − 1 and S = {(x, y) : x2 + y2 ≤ 1 }

Solution: As shown in Fig. 17.5.3, the set S consists of all the points on or inside the circle
of radius 1 centred at the origin. Because the function f is continuous and the domain S is
closed and bounded, the extreme value theorem 17.5.1 implies that f attains both a maxi-
mum and a minimum over S.

1

1

y

x

S

Figure 17.5.3 The domain in Example 17.5.1

Following part (i) of the preceding recipe, we start by finding all the critical points in
the interior of S. These critical points satisfy the two equations

f ′
1(x, y) = 2x = 0 and f ′

2(x, y) = 2y + 1 = 0

It follows that (x, y) = (0, −1/2) is the only critical point. Moreover, it is in the interior
of S, with f (0, −1/2) = −5/4.

Moving on to part (ii) of the recipe, the boundary of S consists of the circle x2 + y2 = 1.
Note that if (x, y) lies on this circle, then in particular both x and y lie in the interval [−1, 1].
Inserting x2 + y2 = 1 into the expression for f (x, y) shows that, along the boundary of S,
the value of f is given by the following function of one variable:

g(y) = 1 + y − 1 = y, defined for y ∈ [−1, 1]

The maximum value of g is 1 at y = 1, where x = 0. The minimum value is −1 at y = −1,
where again x = 0.

We have now found the only three possible candidates for extreme points, which are

(0, −1
2
), (0, 1), and (0, −1)

But f (0, − 1
2 ) = −5/4, f (0, 1) = 1, and f (0, −1) = −1. We conclude that the maximum

value of f in S is 1, which is attained at (0, 1), whereas the minimum value is −5/4, which
is attained at (0, − 1

2 ).
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E X E R C I S E S F O R S E C T I O N 1 7 . 5

1. Suppose f (x, y) = 4x − 2x2 − 2y2 is defined on the domain S = {(x, y) : x2 + y2 ≤ 25 }.
(a) Compute f ′

1(x, y) and f ′
2(x, y), then find the only critical point for f .

(b) Find the extreme points for f over S.

2.SM Find the maximum and minimum points for the following two functions:

(a) f (x, y) = x3 + y3 − 9xy + 27 defined on S = {(x, y) : 0 ≤ x ≤ 4 and 0 ≤ y ≤ 4}.
(b) f (x, y) = x2 + 2y2 − x defined on S = {(x, y) : x2 + y2 ≤ 1}.

3.SM In one study of the quantities x and y of natural gas that Western Europe should import from
Norway and Siberia, respectively, it was assumed that the benefits were given by the function

f (x, y) = 9x + 8y − 6(x + y)2

Because of capacity constraints, the quantities x and y had to satisfy 0 ≤ x ≤ 5 and 0 ≤ y ≤ 3.
Finally, for political reasons, it was felt that imports from Norway should not provide too small a
fraction of total imports at the margin, so that x ≥ 2(y − 1). In the xy-plane, draw the set S of all
points satisfying all the constraints. Then find the quantities that maximize the benefits, subject to
these constraints.

4. Consider the function f (x, y) = ax2y + bxy + 2xy2 + c.

(a) Determine values of the constants a, b, and c such that f has a local minimum at the point
(2/3, 1/3), with local minimum value −1/9.

(b) With the values of a, b, and c found in part (a), find the maximum and minimum values of f
over the set S = {(x, y) : x ≥ 0, y ≥ 0, 2x + y ≤ 4}.

5.SM Consider the function defined for all real x and y by f (x, y) = xe−x(y2 − 4y).

(a) Find all the critical points of f , then classify them by using the second-derivative test.

(b) Show that f has neither a global maximum nor a global minimum.

(c) Let S = {(x, y) : 0 ≤ x ≤ 5, 0 ≤ y ≤ 4 }. Prove that f has global maximum and minimum
points in S, then find them.

(d) Find the slope of the tangent to the level curve xe−x(y2 − 4y) = e − 4 at the point where x = 1
and y = 4 − e.

6. Determine whether each of the following sets is open, closed, bounded, or compact:

(a) { (x, y) : 5x2 + 5y2 ≤ 9 } (b) { (x, y) : x2 + y2 > 9 } (c) { (x, y) : x2 + y2 ≤ 9 }
(d) { (x, y) : 2x + 5y ≥ 6 } (e) { (x, y) : 5x + 8y = 8 } (f) { (x, y) : 5x + 8y > 8 }

7. [HARDER] Give an example of a discontinuous function g of one variable such that the set {x :
g(x) ≤ 1} is not closed.
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17.6 Functions of More Variables
So far, this chapter has considered optimization problems for functions of two variables. In
order to be prepared to understand modern economic theory we need to extend the analysis
to an arbitrary number of variables.

There are almost obvious extensions of the definitions of maximum and minimum
points, extreme points, etc. Let f (x) = f (x1, . . . , xn) be a function of n variables defined on
set S in R

n. Then c = (c1, . . . , cn) is a (global) maximum point for f in S if

f (x) ≤ f (c) for all x in S (17.6.1)

If this is the case, then −f (x) ≥ −f (c) for all x in S. Thus, c maximizes f over S if and
only if c minimizes −f over S. We can use this simple observation to convert maximization
problems into minimization problems and vice versa.7

The concepts of interior and boundary points, and of open, closed, and bounded sets, are
also easy to generalize. First, define the distance between any two points x = (x1, . . . , xn)

and y = (y1, . . . , yn) in R
n by

‖x − y‖ =
√

(x1 − y1)
2 + (x2 − y2)

2 + · · · + (xn − yn)
2 (17.6.2)

For n = 1, 2, and 3 this reduces to the concept of Euclidean distance that we discussed
earlier. In particular, if y = 0, then Eq. (17.6.2) reduces to

‖x‖ =
√

x2
1 + x2

2 + · · · + x2
n

This, of course, is the distance between x and the origin. The number ‖x‖ is also called the
norm or length of the vector x.

The open ball with centre at a = (a1, . . . , an) and radius r is the set of all points x =
(x1, . . . , xn) in R

n such that ‖x − a‖ < r. The definitions in Section 17.5 of interior point,
open set, boundary point, closed set, bounded set, and compact set all become valid for sets
in R

n, provided that we replace the word “circle” by “ball”. If A is an arbitrary set in R
n,

we define the interior of A as the set of interior points in A. If A is open, the interior of A is
equal to the set itself.8

If g(x) = g(x1, . . . , xn) is a continuous function, and c is a real number, then each of the
three sets {x : g(x) ≥ c}, {x : g(x) ≤ c}, and {x : g(x) = c} is closed. As in the case when
n = 1 or 2, if ≥ is replaced by >, ≤ by <, or = by �=, then the corresponding set is open.

A critical (or stationary) point for a function of n variables is a point where all the
first-order partial derivatives exist and equal 0. We have the following important general-
ization of Theorem 17.1.1:

T H E O R E M 1 7 . 6 . 1 ( N E C E S S A R Y F I R S T - O R D E R C O N D I T I O N S
F O R A N I N T E R I O R E X T R E M U M )

Suppose that the function f is defined in a set S in R
n. Let c = (c1, . . . , cn) be an

interior point in the domain S where f is differentiable. A necessary condition

7 Recall Fig. 9.1.1, which illustrates this for the case of functions of one variable.
8 These topological definitions and results are dealt with in some detail in FMEA.
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for c to be a maximum or minimum point for f is that c is a critical point for f .
That is, the point x = c must satisfy the n first-order conditions stating that, for
each i = 1, . . . , n,

f ′
i (x) = 0 (17.6.3)

We already have everything we need to prove this theorem.

Proof: Let the point c be a maximum point for f in the interior of S at which f is differ-
entiable. Given any fixed i = 1, . . . , n, let Si(c) denote the set of all those real x such that
(c1, . . . , ci−1, x, ci+1, . . . , cn) belongs to S. On the domain Si(c), we can define the function

g(x) = f (c1, . . . , ci−1, x, ci+1, . . . , cn)

If c = (c1, . . . , cn) is a maximum point for f , then the function g of one variable must
attain a maximum at x = ci. Because c is an interior point of S, it follows that ci is also
an interior point in Si(c). Hence, according to Theorem 9.1.1, we must have g′(ci) = 0. But
g′(ci) = f ′

i (c1, . . . , cn), so the conclusion follows. The argument when c is a minimum is
identical.

In the space R
n, a set S is said to be bounded if there exists a point x0 in R

n and a
finite r ≥ 0 such that S is a subset of the ball {x ∈ R

n : ‖x − x0‖ ≤ r} with centre x0 and
radius r. With this definition, the extreme value theorem is valid also for functions of n
variables:

T H E O R E M 1 7 . 6 . 2 ( T H E E X T R E M E V A L U E T H E O R E M )

Suppose that function f is continuous throughout a nonempty, closed and
bounded set S in R

n. Then there exist both a point a in S where f has a
minimum and a point c in S where f has a maximum. That is, there exist a and
c in S such that, for all x in S, one has

f (a) ≤ f (x) ≤ f (c)

If f (x) is defined over a set S in R
n, then the maximum and minimum points, if

there are any, must lie either in the interior of S or on the boundary of S. According to
Theorem 17.6.1, if f is differentiable, then any maximum or minimum point in the interior
must satisfy the first-order conditions. Consequently, the recipe in Section 17.5 is also
valid for any function of n variables defined on a closed and bounded set in R

n.

Sufficient Conditions with Concavity or Convexity
In the first part of Section 17.2 we discussed how, for a function of two variables, concav-
ity or convexity would serve as a sufficient condition for an interior critical point to be a
maximum or minimum. We also presented second-order conditions for concavity or con-
vexity. Here we present extensions of these results for functions of n variables, making free
use of vector notation. The second-order conditions for functions of n variables do become
considerably more complicated than they were for two variables.
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Indeed, let z = f (x) be a function of n variables defined on a convex set S in R
n. At any

interior point x0 of S where f is differentiable, consider its gradient vector

∇f (x0) = (
f ′
1(x

0), f ′
2(x

0), . . . , f ′
n(x

0)
)

of first-order partial derivatives. Now, if f is concave, then ∇f (x0) is a supergradient vector,
as specified in (15.8.13), in the sense that

f (x) − f (x0) ≤ ∇f (x0) · (x − x0) for all x in S (17.6.4)

On the other hand, if f is convex, then ∇f (x0) is a subgradient vector, as specified in
(15.8.14), in the sense that (17.6.4) holds with ≤ replaced by ≥. These results lead imme-
diately to the following extension of Theorem 17.2.1 when x0 is a critical point at which
∇f (x0) = 0.

T H E O R E M 1 7 . 6 . 3 ( C O N C A V I T Y O R C O N V E X I T Y A S A
S U F F I C I E N T C O N D I T I O N )

Suppose that the function z = f (x) of n variables is defined on a convex domain
S in R

n, and that x0 is an interior critical point in S. Then:

(a) in case the function f is concave, the point x0 is a maximum point;

(b) in case the function f is convex, the point x0 is a minimum point.

Second-Order Conditions for Concavity or Convexity
Following what we did in Section 17.2 for functions of two variables, here we look for
conditions on the second-order partial derivatives of a function f of n variables which ensure
that it is concave or convex, thus allowing Theorem 17.6.3 to be applied. Indeed, let z = f (x)

be any C2 function of n variables defined on a convex domain S. In this case, Theorem 14.8.2
provided conditions on the Hessian matrix f′′(x) of second-order partial derivatives at each
interior point of S which ensure that f is concave or convex, possibly strictly. This result
allows us to apply Theorem 17.6.3 in order to derive sufficient conditions for an interior
critical point of f to be a maximum or minimum.

T H E O R E M 1 7 . 6 . 4 ( S U F F I C I E N T C O N D I T I O N S F O R A
M A X I M U M O R M I N I M U M )

Suppose that z = f (x) is a C2 function of n variables which is defined on a
convex set S in R

n, with Hessian matrix f′′(x) at each point x in the interior of
S. Let x0 be an interior critical point.

(a) If f′′(x) is negative semi definite for all (x, y) in S, then f is concave, and
x0 is a maximum point for f (x, y) in S.

(b) If f′′(x) is positive semi definite for all (x, y) in S, then f is convex, and x0

is a minimum point for f (x, y) in S.
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(c) If f′′(x) is negative definite for all (x, y) in S, then f is strictly concave, and
x0 is the unique maximum point for f (x, y) in S.

(d) If f′′(x) is positive definite for all (x, y) in S, then f is strictly convex, and
x0 is the unique minimum point for f (x, y) in S.

We note that Theorem 17.2.2 is a special case of this result because the conditions it uses
for a function of two variables ensure that the 2 × 2 Hessian matrix is negative or positive
semi definite. Another special case considered in Example 14.8.7 occurs when the function
z = f (x) is itself a quadratic form x′Ax where A is a symmetric n × n matrix.

Conditions for Local Extreme Points
We began Section 17.3 with definitions for functions of two variables of local maximum,
local minimum, strict local maximum, and strict local minimum points. We refrain from
stating the obvious extensions of these definitions for functions of n variables. Instead we
merely state extensions for functions of n variables of the results regarding local extreme
points that were set out for functions of one variable in Section 9.6, and for functions of
two variables in Theorem 17.3.1. These extensions rely on the definiteness properties of the
Hessian matrix of second-order partial derivatives evaluated at the relevant critical point.
Recall that these definiteness properties were defined and characterized in Section 13.12.

T H E O R E M 1 7 . 6 . 5 ( S E C O N D - D E R I V A T I V E T E S T S F O R L O C A L E X T R E M A )

Suppose that the function z = f (x) of n variables is C2 in its domain S. Let
x0 be an interior critical point of S, where the n × n Hessian matrix is f′′(x0).
Now:

(a) If f′′(x0) is negative definite, then x0 is a strict local maximum point.

(b) If f′′(x0) is positive definite, then x0 is a strict local minimum point.

(c) If f′′(x0) is either negative semi definite or positive semi definite, then x0

could be a local maximum, a local minimum, or a saddle point.

(d) If f′′(x0) is indefinite, then x0 is a saddle point.

(e) If x0 is a local maximum point, then f′′(x0) is negative semi definite.

(f) If x0 is a local minimum point, then f′′(x0) is positive semi definite.

Of the six statements in Theorem 17.6.5, the first two are sufficient conditions for a
strict local maximum or minimum, whereas the last two are necessary conditions for a local
maximum or minimum, even if it is not strict. Condition (d) is a sufficient condition for a
saddle point. Finally, condition (c) emphasizes that negative or positive semidefiniteness is
insufficient to establish that the interior critical point x0 is even a weak local maximum or
minimum. The results of Exercise 17.3.4 can be used to justify this claim.
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Increasing Transformations
We conclude this section with one simple result of considerable interest in theoretical eco-
nomics. It is this: maximizing a function is equivalent to maximizing a strictly increasing
transformation of that function. For instance, suppose we want to find all pairs (x, y) that
maximize f (x, y) over a set S in the xy-plane. Instead we can find those (x, y) that maximize
over S any one of the following objective functions:

1. af (x, y) + b (provided that the constant a > 0);

2. ef (x,y); and

3. ln f (x, y) (provided that f (x, y) > 0 throughout S).

The maximum points are exactly the same. But the maximum values are, of course, quite
different. As a concrete example, because the transformation u 
→ ln u is strictly increasing
when u > 0, the following two problems have exactly the same solutions: for (x, y) ∈ S,

max ex2+2xy2−y3
and max x2 + 2xy2 − y3

T H E O R E M 1 7 . 6 . 6

Suppose f (x) = f (x1, . . . , xn) is defined over a set S in R
n. Let F be a function

of one variable defined over the range of f , and let c be a point in S. Define the
function g over S by g(x) = F(f (x)).

(a) If F is increasing and c maximizes (minimizes) f over S, then the same
point c also maximizes (resp. minimizes) g over S.

(b) If F is strictly increasing, then c maximizes (minimizes) f over S if and
only if c maximizes (resp. minimizes) g over S.

We give a proof only for the maximization case, since the minimization case is similar.

Proof:

(a) Because the point c maximizes f over S, we have f (x) ≤ f (c) for all x in S. Then,
because F is increasing, we have g(x) = F(f (x)) ≤ F(f (c)) = g(c) for all x in S. It
follows that c maximizes g over S.

(b) Suppose that F is also strictly increasing and f (x) > f (c). Then one has
g(x) = F(f (x)) > F(f (c)) = g(c). So g(x) ≤ g(c) for all x in S implies that
f (x) ≤ f (c) for all x in S.

Note how extremely simple the argument was. No continuity or differentiability assump-
tions were required; instead, the proof is based only on the concepts of maximum, and of
increasing/strictly increasing functions. Some people appear to distrust such simple, direct
arguments and replace them by inefficient or even insufficient arguments based on “differ-
entiating everything in sight” in order to use first- or second-order conditions. Such distrust
merely makes matters unnecessarily complicated and risks introducing errors.



�

� �

�

722 C H A P T E R 1 7 / U N C O N S T R A I N E D O P T I M I Z A T I O N

E X E R C I S E S F O R S E C T I O N 1 7 . 6

1. Each of the following functions has a maximum point. Find it.

(a) f (x, y, z) = 2x − x2 + 10y − y2 + 3 − z2

(b) f (x, y, z) = 3 − x2 − 2y2 − 3z2 − 2xy − 2xz

2. Define f (x) = e−x2
.

(a) Let F(u) = ln u. Verify that the two functions f (x) and F(f (x)) both have maxima at the same
values of x.

(b) Let F(u) = 5. Then g(x) = F(f (x)) = 5. Explain why this example shows that the implication
in part (a) of Theorem 17.6.6 cannot be reversed. (Recall that our definition of an increasing
function is satisfied by a constant function.)

3. Suppose g(x) = F(f (x)) where f : Rn → R and F : R→ R are differentiable functions, with
F′ �= 0 everywhere. Prove that x is a critical point for f if and only if it is a critical point for g.

4.SM Find the first-order partial derivatives of the function of three variables given by

f (x, y, z) = −2x3 + 15x2 − 36x + 2y − 3z +
∫ z

y
et2 dt

Then determine its eight critical points.

5. Suggest how to simplify each of the following two maximization problems:

(a) max 1
2 [ex2+y2−2x − e−(x2+y2−2x)], subject to (x, y) ∈ S;

(b) max Axa1
1 · · · xan

n , subject to x1 + x2 + · · · + xn = 1, where A > 0 and x1 > 0, . . . , xn > 0.

17.7 Comparative Statics and the Envelope
Theorem
Optimization problems in economics typically involve either maximizing or minimizing
an objective function which depends on endogenous variables that can be chosen. But very
often the function also depends on one or more exogenous parameters like prices, tax rates,
or income levels that cannot be chosen. Although these parameters must be held constant
during the optimization, they vary according to exogenous circumstances affecting the eco-
nomic situation. For example, according to the standard definition of a perfectly competitive
or “price-taking” firm, we should calculate its profit-maximizing input and output quanti-
ties while treating the prices it faces as parameters. But then we may ask how these optimal
quantities respond to changes in those prices, or to changes in any other exogenous param-
eters which affect the maximization problem we are considering.

Consider first the following simple problem, which we treat as a maximization problem
while noting the theory is essentially identical for the case of minimization. Suppose a
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function f depends on a single variable x as well as on a single parameter r. We wish to
maximize f (x, r) w.r.t. x while keeping r constant, which we write as:

max
x

f (x, r)

The value of x that maximizes f will usually depend on r, so we denote it by x∗(r). Inserting
x∗(r) into f (x, r), we obtain the value function:

f ∗(r) = f (x∗(r), r)

What happens to the value function as r changes? Assuming that f ∗(r) is differentiable,
applying the chain rule yields

df ∗(r)
dr

= f ′
1(x

∗(r), r)
dx∗(r)

dr
+ f ′

2(x
∗(r), r) (17.7.1)

Now, if f achieves a maximum at an interior point x∗(r) in the domain where f (x) is defined,
then the FOC f ′

1(x
∗(r), r) = 0 must be satisfied. It follows that the first term on the right-hand

side of Eq. (17.7.1) is zero, so the equation reduces to

df ∗(r)
dr

= f ′
2(x

∗(r), r) (17.7.2)

Note that when the parameter r is changed, then f ∗(r) changes for two reasons. First, a
change in r changes the value of f ∗ directly because r is the second variable in f (x, r). Sec-
ond, a change in r changes the value of the function x∗(r), and hence f (x∗(r), r) is changed
indirectly. Equation (17.7.2) shows that the total effect is simply found by computing the
partial derivative of f (x∗(r), r) w.r.t. r, ignoring entirely the indirect effect of the depen-
dence of x∗ on r. At first sight, this seems very surprising. On further reflection, however,
you may realize that the first-order condition f ′

1(x
∗(r), r) = 0 for x∗(r) to maximize f (x, r)

w.r.t. x implies that any small change in x, whether or not it is induced by a small change
in r, must have a zero marginal effect on the value f ∗(r) of f (x∗, r).

E X A M P L E 17.7.1 Suppose that when a firm produces and sells x units of a commodity, it has revenue
R(x) = rx, where the price r is a positive parameter. Suppose too that the firm’s cost is
C(x) = x2, so the firm’s profit is

π(x, r) = R(x) − C(x) = rx − x2

Find the optimal choice x∗ of x, and verify (17.7.2) in this case.

Solution: The quadratic profit function has a maximum when π ′
1 = r − 2x = 0, which

occurs when x∗ = r/2. So the maximum profit as a function of r is given by

π∗(r) = rx∗ − (x∗)2 = r(r/2) − (r/2)2 = r2/4

Its derivative is dπ∗/dr = r/2. Using (17.7.2) is much more direct, however. Indeed,
because π ′

2(x, r) = x, the formula implies that dπ∗/dr = π ′
2(x

∗(r), r) = x∗(r) = 1
2 r.
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E X A M P L E 17.7.2 In Example 9.6.5 we studied a firm with the profit function π̂(Q, τ) = R(Q) −
C(Q) − τQ, where τ denoted a tax per unit produced. Let Q∗ = Q∗(τ ) denote the opti-
mal choice of Q as a function of the tax rate τ , and let π∗(τ ) denote the corresponding
value function. Because π̂ ′

2 = −Q, formula (17.7.2) yields

d
dτ

π∗(τ ) = π̂ ′
2(Q

∗(τ ), τ) = −Q∗(τ )

This is the result we found earlier.

Consider the case when there is an n-vector x = (x1, . . . , xn) of choice variables and an
m-vector r = (r1, . . . , rm) of parameters. Then, assuming that the function f (x, r) and the
value function f ∗(r) are suitably differentiable, here is an obvious generalization of formula
(17.7.2) that holds for all the m first-order partial derivatives (∂/∂rj)f

∗(r):

T H E O R E M 1 7 . 7 . 1 ( E N V E L O P E T H E O R E M )

For all parameter vectors r near r0, suppose that the value function f ∗(r) =
maxx f (x, r) exists, and let x∗(r) denote a value of x that maximizes f (x, r)
w.r.t. x. Also, let x0 denote x∗(r0). Assuming that the two functions f (x0, r) and
f ∗(r) of r are both differentiable at r0, for each j = 1, . . . , m, their respective
jth partial derivatives at r0 satisfy

∂f ∗(r)
∂rj

∣∣∣∣∣
r=r0

= ∂f (x∗(r), r)
∂rj

∣∣∣∣∣
r=r0

(17.7.3)

Note that the equalities (17.7.3) hold if we minimize f (x, r) w.r.t. x instead of maximiz-
ing it, or even if x∗(r) for each r near r0 is any critical point.

r

y

f ∗(r)

Kx̃ Kx0 Kx̂

r0

Figure 17.7.1 The curve y = f ∗(r) is the envelope of all the curves y = f (x, r)

Figure 17.7.1 illustrates Eq. (17.7.3) in the case where only one parameter r is allowed
to vary. For each fixed value of x there is a curve Kx in the ry-plane, given by the equation
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y = f (x, r). Figure 17.7.1 shows three of these curves together with the graph of f ∗(r). For
all x̃ and all r we have

f (x̃, r) ≤ max
x

f (x, r) = f ∗(r)

It follows that none of the Kx-curves can ever lie above the curve y = f ∗(r). On the other
hand, for each value of r there is at least one value x∗(r) such that f (x∗(r), r) = f ∗(r),
namely a choice of x that solves the maximization problem for the given value of r. For
instance, if we fix r = r0 and let x0 denote x∗(r0), then the curve Kx0

will touch the curve
y = f ∗(r) at the point (r0, f ∗(r0)), as in the figure. Moreover, because Kx0

can never go
above this graph, it must have exactly the same tangent as the graph of f ∗ at the point where
the curves touch. The slope of this common tangent, therefore, must be equal to not only
df ∗/dr, the slope of the tangent to the graph of f ∗ at (r0, f ∗(r0)), but also to ∂f (x0, r)/∂r, the
slope of the tangent to the curve Kx0

at the point (r0, f (x0, r0)). Equation (17.7.3) follows
because Kx0

is the graph of f (x0, r) when x0 is fixed.
As Fig. 17.7.1 suggests, the graph of y = f ∗(r) is the lowest curve with the property that

it lies on or above all the curves Kx. So its graph is like an envelope or some “cling film”
that is used to enclose or wrap up all these curves. Indeed, a point is on or below the graph
if and only if it lies on or below one of the curves Kx. For this reason we call the graph of
f ∗ the envelope of the family of Kx-curves.

E X A M P L E 17.7.3 In Example 17.1.3, we let Q = F(K, L) denote a production function with K as the
capital input and L as the labour input. The price per unit of the product was p, the price
per unit of capital was r, and the price per unit of labour was w. The profit obtained by
using K and L units of the inputs, then producing and selling F(K, L) units of the product,
is given by

π̂(K, L, p, r, w) = pF(K, L) − rK − wL

Here profit has been expressed as a new function π̂ of the parameters p, r, and w, as
well as of the choice variables K and L. We keep p, r, and w fixed and maximize π̂

w.r.t. K and L. The optimal values of K and L are functions of p, r, and w, which we
denote by K∗ = K∗(p, r, w) and L∗ = L∗(p, r, w). The value function for the problem is
π̂∗(p, r, w) = π̂(K∗, L∗, p, r, w). Most economists call π̂∗ the firm’s profit function, though
it would be more accurately described as the “maximum profit function”. It is found by
taking prices as given and choosing the optimal quantities of all inputs and outputs.

According to Theorem 17.7.1, one has

∂π̂∗

∂p
= F(K∗, L∗) = Q∗,

∂π̂∗

∂r
= −K∗,

∂π̂∗

∂w
= −L∗ (∗)

These three equalities are instances of what is known in production theory as Hotelling’s
lemma. An economic interpretation of the middle equality is this: How much profit is lost
if the price of capital increases by a small amount? At the optimum the firm uses K∗ units
of capital, so the answer is K∗ per unit increase in the price. See Exercise 4 for further
interesting relationships.
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Proving the Envelope Theorem
One way to prove Theorem 17.7.1 is to use the first-order conditions to eliminate other
terms, as in the argument we gave for Eq. (17.7.2). The following alternative proof that we
offer may be simpler. We construct a suitable “trick” function which, by design, must have
a local maximum at r0. Then we argue that the equations (17.7.3) are first-order necessary
conditions for r0 to be a local maximum point of this function.

Proof: To prove Theorem 17.7.1, fix the parameter m-vector r0 and the associated n-vector
x0 = x∗(r0) of choice variables that maximizes f (x, r0) w.r.t. x. Then, for all parameter
vectors r near r0, define the “trick” function

ϕ(r) = f (x0, r) − f ∗(r) (∗)

By definition of the value function f ∗(r) and of the maximum point x∗(r), for all r near r0

one has

f (x0, r) ≤ f (x∗(r), r) = f ∗(r)

This inequality implies that ϕ(r) ≤ 0. But at r = r0 one has

f (x0, r0) = f (x∗(r0), r0) = f ∗(r0)

This equality implies that ϕ(r0) = 0. We have therefore proved that, for all r near r0, one
has ϕ(r) ≤ ϕ(r0) = 0. So ϕ(r) has a local maximum point at r0.

Finally, the stated differentiability assumptions imply that the function ϕ(r) defined by
(∗) is differentiable at r0, with partial derivatives given by

ϕ′
j(r

0) = ∂f ∗(r)
∂rj

∣∣∣∣∣
r=r0

− ∂f (x∗(r), r)
∂rj

∣∣∣∣∣
r=r0

Since r0 is a local maximum of ϕ(r), it must be a critical point. Then for each
j = 1, 2, . . . , m, Eq. (17.7.3) is implied immediately by the necessary first-order condition
ϕ′

j(r
0) = 0.

E X E R C I S E S F O R S E C T I O N 1 7 . 7

1. A firm produces a single commodity and gets paid the price p for each unit sold. The cost of
producing x units is ax + bx2 and the tax per unit is t. Assume that the parameters are positive
with p > a + t. The firm wants to maximize its profit.

(a) Find the optimal production x∗ and the optimal profit π∗.

(b) Prove that ∂π∗/∂p = x∗, and give an economic interpretation.

2. A firm produces Q = √
L units of a commodity when labour input is L units. The price obtained

per unit of output is P, and the price per unit of labour is w, both positive.

(a) Write down the profit function π . What choice of labour input L = L∗ maximizes profits?
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(b) Consider L∗ as a function L∗(P, w) of the two prices, and define the value function

π∗(P, w) = π(L∗(P, w), P, w)

Verify that ∂π∗/∂P = π ′
P(L∗, P, w) and ∂π∗/∂w = π ′

w(L∗, P, w), thus confirming the enve-
lope theorem.

3.SM A firm uses capital K, labour L, and land T to produce Q units of a commodity, where

Q = K2/3 + L1/2 + T1/3

Suppose that the firm is paid a positive price p for each unit it produces, and that the positive prices
it pays per unit of capital, labour, and land are r, w, and q, respectively.

(a) Express the firm’s profits as a function π of (K, L, T). Then find the values of K, L, and T , as
functions of the four prices, that maximize the firm’s profit. (You may assume that a maximum
exists.)

(b) Let Q∗ denote the optimal number of units produced and K∗ the optimal capital stock. Show
that ∂Q∗/∂r = −∂K∗/∂p.

4. With reference to Example 17.7.3, assuming that F is a C2 function, prove the symmetry relations:

∂Q∗

∂r
= −∂K∗

∂p
,

∂Q∗

∂w
= −∂L∗

∂p
, and

∂L∗

∂r
= ∂K∗

∂w

(Hint: First establish that
∂Q∗

∂r
= ∂

∂r

(
∂π̂∗

∂p

)
= ∂

∂p

(
∂π̂∗

∂r

)
by combining the first result in

Example 17.7.3 with Young’s Theorem 14.6.1. Then use the other results in Example 17.7.3.)

5.SM With reference to Example 17.1.3, let us consider how the optimal demands for capital and labour,
the two input factors, respond to changes in any price.

(a) Take the differentials of the first-order conditions (∗) in Example 17.1.3 to verify that

F′
K(K∗, L∗) dp + pF′′

KK(K∗, L∗) dK + pF′′
KL(K

∗, L∗) dL = dr

F′
L(K

∗, L∗) dp + pF′′
LK(K∗, L∗) dK + pF′′

LL(K
∗, L∗) dL = dw

(b) Use equations derived in part (a) to find the partials of K∗ and L∗ w.r.t. p, r, and w. (Hint: It
may be easier first to find ∂K∗/∂p and ∂L∗/∂p by putting dr = dw = 0, etc. in (a).)

(c) Assume that the local second-order conditions in Theorem 17.3.1 for a strict local maximum
are satisfied. What does this assumption let you say about the signs of the six partial derivatives
you found in part (a)? In particular, show that the demand for each factor is decreasing as a
function of its own price. Finally, verify that ∂K∗/∂w = ∂L∗/∂r.

6.SM A profit-maximizing monopolist produces two commodities whose respective quantities are
denoted by x1 and x2. Good 1 is subsidized at the rate of σ per unit, whereas good 2 is taxed at τ

per unit. The monopolist’s profit function is therefore given by

π(x1, x2) = R(x1, x2) − C(x1, x2) + σx1 − τx2

where R and C are the firm’s revenue and cost functions, respectively. Assume that these functions
are both C2 for all positive x1 and x2, with partial derivatives that satisfy

R′
1 > 0, R′

2 > 0, R′′
11 < 0, R′′

12 = R′′
21 < 0, R′′

22 < 0

C′
1 > 0, C′

2 > 0, C′′
11 > 0, C′′

12 = C′′
21 > 0, C′′

22 > 0
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(a) Find the first-order conditions for maximum profit.

(b) Write down the local second-order conditions for maximum profit.

(c) Suppose that x∗
1 = x∗

1(σ , τ) and x∗
2 = x∗

2(σ , τ) solve the problem. Assuming that the local
second-order conditions are satisfied, find the signs of ∂x∗

1/∂σ , ∂x∗
1/∂τ , ∂x∗

2/∂σ , and ∂x∗
2/∂τ .

(d) Show that ∂x∗
1/∂τ = −∂x∗

2/∂σ .

R E V I E W E X E R C I S E S

1. The function f defined for all (x, y) by f (x, y) = −2x2 + 2xy − y2 + 18x − 14y + 4 has a maxi-
mum. Find the corresponding values of x and y. Use Theorem 17.2.2 to prove that it is a maxi-
mum point.

2.SM A firm produces two different kinds of a commodity, which are labelled A and B. The daily cost
of producing Q1 units of A and Q2 units of B is C(Q1, Q2) = 0.1(Q2

1 + Q1Q2 + Q2
2). Suppose

that the firm sells all its output at a price per unit of P1 = 120 for commodity A and P2 = 90 for
commodity B.

(a) Find the daily production levels that maximize profit.

(b) If P2 remains unchanged at 90, what new price P1 per unit of A would imply that the optimal
daily production level for A is 400 units?

3. Assume that a firm’s profit from producing and selling x and y units of two brands of a commodity
is given by P(x, y) = −0.1x2 − 0.2xy − 0.2y2 + 47x + 48y − 600.

(a) Find the production levels that maximize profit.

(b) A key raw material is rationed so that total production must be restricted to 200 units. Find
the production levels that now maximize profit.

4.SM Find the critical points for each of the following functions of (x, y):

(a) x3 − x2y + y2 (b) xye4x2−5xy+y2
(c) 4y3 + 12x2y − 24x2 − 24y2

5. Define f (x, y, a) = ax2 − 2x + y2 − 4ay, where a is a parameter. For each fixed a �= 0, find the
unique critical point (x∗(a), y∗(a)) of the function f w.r.t. (x, y). Find also the value function
f ∗(a) = f (x∗(a), y∗(a), a), and verify the envelope theorem in this case.

6.SM Suppose the production function in Exercise 17.7.3 is replaced by Q = Ka + Lb + Tc, for param-
eters a, b, c ∈ (0, 1).

(a) Assuming that a maximum exists, find the values of K, L, and T that maximize the firm’s
profit.

(b) Let π∗ denote the optimal profit as a function of the four prices p, q, r, and w. Compute the
partial derivative ∂π∗/∂r.

(c) Verify the envelope theorem in this case.
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7. Define f (x, y) for all (x, y) by f (x, y) = ex+y + ex−y − 3
2 x − 1

2 y.

(a) Find the first- and second-order partial derivatives of f , then show that f (x, y) is convex.

(b) Find the minimum point of f (x, y).

8.SM Consider the function f (x, y) = x2 − y2 − xy − x3.

(a) Find and classify its critical points.

(b) Find the domain S where f is concave, and find the largest value of f in S.

9.SM Given the parameter a, consider the function f defined for all (x, y) by

f (x, y) = 1
2 x2 − x + ay(x − 1) − 1

3 y3 + a2y2

(a) Prove that (x∗, y∗) = (1 − a3, a2) is a critical point of f .

(b) Verify the envelope theorem in this case.

(c) Where in the xy-plane is f convex?

10. In this problem we will generalize several of the economic examples and problems considered
so far. Consider a firm that produces output quantities x and y of two different goods that are
labelled A and B, whose prices are p and q respectively. Assuming that the total cost function is
C(x, y), the firm’s profit is

π(x, y) = px + qy − C(x, y) (i)

(a) Suppose first that the firm has a small share in the markets for both these goods, and so takes
p and q as given. Write down and interpret the first-order conditions for x∗ > 0 and y∗ > 0
to maximize profit.

(b) Suppose next that the firm has a monopoly in the sale of both goods. The prices are no longer
fixed, but are given as functions of x and y by the inverse demand functions

p = F(x, y) and q = G(x, y) (ii)

So profit as a function of x and y is

π(x, y) = xF(x, y) + yG(x, y) − C(x, y) (iii)

Write down and interpret the first-order conditions for x∗ > 0 and y∗ > 0 to maximize profit.

(c) Suppose p = a − bx − cy and q = α − βx − γ y, where b and γ are positive.9 If the
cost function is C(x, y) = Px + Qy + R, write down the first-order conditions for
maximum profit.

(d) Prove that the (global) second-order conditions are satisfied provided 4γ b ≥ (β + c)2.

9 An increase in the price of either good decreases the demand for that good, but may increase or
decrease the demand for the other good.
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18
E Q U A L I T Y
C O N S T R A I N T S

Mathematics is removed from this turmoil of human life, but its methods and the relations are a mirror,
an incredibly pure mirror, of the relations that link facts of our existence.
—Konrad Knopp (1928)

The previous chapter introduced unconstrained optimization problems with several variables.
In economics, however, the variables to be chosen must often satisfy one or more con-

straints. Accordingly, this chapter is the first of three that considers constrained optimization
problems. Specifically, here we consider equality constraints, whereas the following Chapters
19 and 20 consider inequality constraints.

The main topic of this chapter is the method of Lagrange multipliers. This method is intro-
duced in Section 18.1, for the case of two choice variables subject to one equality constraint. An
important issue discussed in Section 18.2 is how to interpret the Lagrange multiplier associated
with the equality constraint. The brief topic of Section 18.3 is how to treat multiple solution
candidates that emerge from the method of Lagrange multipliers because they all satisfy the
relevant first-order conditions. Section 18.4 offers an explanation of why the Lagrange multi-
plier method works. Sufficient conditions for a vector of choice variables to be a constrained
optimum are treated in Section 18.5. Thereafter, Section 18.6 extends our analysis beyond the
special case of two choice variables and one constraint. The final Section 18.7 presents some
comparative static results and an envelope theorem.

More general constrained optimization problems allowing inequality constraints are intro-
duced in Chapters 19 and 20. A much fuller treatment of constrained optimization generally
can be found in FMEA.

18.1 The Lagrange Multiplier Method
A typical economic example of a constrained optimization problem concerns a consumer
who must choose how much of the available income m to spend on the quantity x of a good
whose price is p, and how much income y to leave over for expenditure on other goods. Note
that with this notation the consumer then faces the budget constraint px + y = m. Suppose
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that preferences are represented by the utility function u(x, y). In mathematical terms the
consumer’s problem can be expressed as

max u(x, y) s.t. px + y = m

where “s.t.” stands for “subject to”. This is a typical constrained maximization problem. In
this case, because y = m − px, the same problem can be expressed as the unconstrained
maximization of the function h(x) = u(x, m − px) w.r.t. the single variable x. Indeed, in
Section 17.2 we used this method of converting a constrained optimization problem involv-
ing two variables and one constraint into an unconstrained one-variable problem.

When the constraint involves a complicated function, or when there are several equality
constraints to consider, this substitution method might be difficult or even impossible to
carry out in practice. In such cases, economists make much use of the Lagrange multiplier
method that we will now present.1

We start with the problem of maximizing a function f (x, y) of two variables x and y when
these are restricted to satisfy a single equality constraint g(x, y) = c. This problem can be
written as

max f (x, y) s.t. g(x, y) = c (18.1.1)

The first step of the method is to introduce a Lagrange multiplier, often denoted by λ,
which is “associated” with the constraint g(x, y) = c. To do this, we define the following
Lagrangian function

L(x, y) = f (x, y) − λ[g(x, y) − c] (18.1.2)

Here the expression g(x, y) − c, which the constraint says must be 0, has been multiplied
by λ. Then the product has been subtracted from the maximand f (x, y). For future reference,
note that L(x, y) = f (x, y) for all (x, y) satisfying the constraint g(x, y) = c.

We now derive appropriate first-order conditions for solving problem (18.1.1). To do so,
we treat the Lagrange multiplier λ as a constant, and consider the two partial derivatives of
L(x, y) w.r.t. x and y. These are

L′
1(x, y) = f ′

1(x, y) − λg′
1(x, y) and L′

2(x, y) = f ′
2(x, y) − λg′

2(x, y) (18.1.3)

As we will explain in Section 18.4, except in rare cases, a solution of problem (18.1.1) can
only be a pair (x, y) which, for a suitable value of the multiplier λ, is not only a critical point
of the Lagrangian L, but also satisfies the equality constraint g(x, y) = c. As in Chapters 9
and 17, we refer to a combination of the two Eqs (18.1.3) with the constraint as “first-order”
conditions.

1 Named after its discoverer, the Italian-born French mathematician J.-L. Lagrange (1736–1813).
The Danish economist Harald Westergaard seems to have been the first to use it in economics, in
1876. As a matter of practice, this method is often used even for problems that are quite easy to
express as unconstrained problems. One reason is that Lagrange multipliers have an important eco-
nomic interpretation. In addition, a similar method works for many more complicated optimization
problems, such as those where the constraints are expressed in terms of inequalities, as we will see
later in Chapters 19 and 20.
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Here is a simple economic application.

E X A M P L E 18.1.1 A consumer has the utility function u(x, y) = xy defined for all positive x, y, and
faces the budget constraint 2x + y = 100. Use the Lagrange multiplier method to find the
only solution candidate to the constrained utility maximization problem. Then confirm that
this solves the problem by considering the unconstrained maximization problem that results
from using the budget constraint to eliminate one of the variables.

Solution: The constrained maximization problem is

max xy s.t. 2x + y = 100

Following the recipe that led to (18.1.2), the associated Lagrangian is

L(x, y) = xy − λ(2x + y − 100)

Including the constraint, the first-order conditions for solving the problem are the three
simultaneous equations

L′
1(x, y) = y − 2λ = 0, L′

2(x, y) = x − λ = 0, and 2x + y = 100

The first two equations imply that y = 2λ and x = λ. So y = 2x. Inserting this into the
constraint yields 2x + 2x = 100. Hence x = 25 and y = 50, implying that λ = x = 25.

This solution can be confirmed by the substitution method. From 2x + y = 100 we get
y = 100 − 2x. Replacing y by 100 − 2x in the utility function reduces the original prob-
lem to that of maximizing the function h(x) = x(100 − 2x) = −2x2 + 100x defined on
the open interval (0, 50), without any constraint. The first-order condition for this uncon-
strained maximization problem is h′(x) = −4x + 100 = 0. The unique critical point occurs
at x = 25. Because h′′(x) = −4 < 0 for all x, the function h is concave on (0, 50), so the
critical point x = 25 is a maximum point. Inserting this into the budget constraint gives
y = 50, which is the unique solution of the original constrained maximization problem.

Perhaps surprisingly, for the alternative minimization problem

min f (x, y) s.t. g(x, y) = c (18.1.4)

the Lagrangian function L is defined in exactly the same way, by Eq. (18.1.2). Moreover,
the relevant first-order conditions are the same. Because of this, we often write

max (min) f (x, y) s.t. g(x, y) = c

when referring to both the maximization and minimization problems.2

Example 18.1.1 illustrates the following general method:

2 The reader may have seen expressions like max min f (x, y) in, for instance, game theory courses.
Those expressions mean something entirely different.
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To find the only possible solutions of problems (18.1.1) and (18.1.4), proceed
as follows:

(i) Write down the Lagrangian function, as in Eq. (18.1.2), where λ is a con-
stant.

(ii) Differentiate L w.r.t. x and y, and equate the partial derivatives to 0.

(iii) The two equations in (ii), together with the constraint, yield the following
three first-order conditions:

L′
1(x, y) = f ′

1(x, y) − λg′
1(x, y) = 0

L′
2(x, y) = f ′

2(x, y) − λg′
2(x, y) = 0

g(x, y) = c

(iv) Solve the three equations in (iii) simultaneously for the three unknowns
x, y, and λ. Any triple (x, y, λ) that solves these equations is a candidate
for solving the constrained maximization/minimization problem. At least
one of those candidates must solve that problem, if it has a solution.

Importantly, if g′
1(x, y) and g′

2(x, y) both vanish at the true solution, the method
might fail to give the right answer.

Some economists prefer to consider the Lagrangian as a function L̃(x, y, λ) of three vari-
ables. Then the third first-order condition L̃′

3(x, y, λ) = 0 immediately yields the constraint
g(x, y) = c of the problem. The advantage of this alternative view is that, written this way,
all three necessary conditions are obtained by equating the three partial derivatives of L̃ to
0. This allows the first-order conditions to be summarized as requiring us to find a critical
point (x, y, λ) of the Lagrangian L̃(x, y, λ).

It seems unnatural, however, to rely on differentiation in order to derive such an obvious
necessary condition as the equation that specifies the constraint. Moreover, this procedure
can easily lead to trouble when treating problems with inequality constraints. A third reason
for considering the Lagrangian as a function L(x, y) of only two variables is that this allows
us to derive some important results later in this chapter concerning the maximum/minimum
points of L w.r.t. (x, y). These are particularly useful because, as discussed in Section 18.5,
the function L(x, y) of two variables may well be concave or convex, whereas the function
L̃(x, y, λ) of three variables is very unlikely to be concave or convex. For these three reasons,
we prefer to consider the function L(x, y) of only two variables.

E X A M P L E 18.1.2 A single-product firm plans to produce 30 units of output as cheaply as possible.
By using K units of capital and L units of labour, both nonnegative, it can produce

√
K + L

units. Suppose the prices per unit of capital and labour are, respectively, $1 and $20. So the
firm’s problem is:

min K + 20L s.t.
√

K + L = 30
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(a) Find the optimal choices of K and L.

(b) What is the additional cost of producing 31 rather than 30 units?

Solution:

(a) The Lagrangian is
L = K + 20L − λ(

√
K + L − 30)

So the first-order conditions are:

L′
K = 1 − λ/2

√
K = 0, L′

L = 20 − λ = 0, and
√

K + L = 30

The second equation gives λ = 20. Now, inserting this into the first equation yields
1 = 20/2

√
K. It follows that

√
K = 10, and hence K = 100. Finally, inserting this into

the constraint gives
√

100 + L = 30, and so L = 20.
The cheapest way to produce 30 units of output is therefore to use 100 units of capital
and 20 units of labour. The associated cost is K + 20L = 500.3

(b) Solving the problem with the revised constraint
√

K + L = 31, we see that still one
has λ = 20 and K = 100, while L = 31 − 10 = 21. The associated minimum cost
becomes 100 + 20 · 21 = 520, so the extra cost is 520 − 500 = 20, which precisely
equals the Lagrange multiplier! Thus, in this case the Lagrange multiplier tells us by
how much costs rise if the output requirement increases by one unit from 30 to 31.4

E X A M P L E 18.1.3 A consumer has the Cobb–Douglas utility function u(x, y) = Axayb, defined for all
nonnegative x, y, and faces the budget constraint px + qy = m, where A, a, b, p, q, and m are
all positive constants. Find the only solution candidate to the consumer demand problem

max Axayb s.t. px + qy = m (∗)

Solution: The Lagrangian is L(x, y) = Axayb − λ(px + qy − m), so the three first-order
conditions are

L′
1(x, y) = aAxa−1yb − λp = 0, L′

2(x, y) = bAxayb−1 − λq = 0, and px + qy = m

We begin by solving both the first two equations for λ in terms of x, y and the parameters.
This yields the two equalities

λ = aAxa−1yb

p
= bAxayb−1

q

Cancelling the common factor Axa−1yb−1 from the last equality gives ay/p = bx/q. Solving
this equation for qy yields qy = (b/a)px. Then, inserting this into the budget constraint gives
px + (b/a)px = m. From this last equation we can find first x and then y. The results are
the following demand functions:

x = x(p, q, m) = a
a + b

m
p

and y = y(p, q, m) = b
a + b

m
q

(∗∗)

3 Theorem 18.5.1 will tell us that, because L is convex in (K, L), this is the constrained minimum.
4 Section 18.2 will tell us why this is not entirely coincidental.
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The solution we have found makes good economic sense. Indeed, it follows from (∗∗)

that for all t > 0 one has x(tp, tq, tm) = x(p, q, m) and y(tp, tq, tm) = y(p, q, m), implying
that both demand functions are homogeneous of degree 0. According to Example 15.7.4,
this as one should expect because, if the triple (p, q, m) is changed to (tp, tq, tm), then the
constraint in (∗) is unchanged, and so the optimal choices of x and y are unchanged.

Note that the relative sizes of the coefficients a and b in the utility function Axayb indicate
the relative importance of x and y in the individual’s preferences. For instance, in case a is
larger than b, the consumer values a 1% increase in x more than a 1% increase in y. Now, the
product px is the amount spent on the first good, so (∗∗) implies that the consumer should
spend the fraction a/(a + b) of income on this first good and the fraction b/(a + b) on the
second good.

Formula (∗∗) can be applied immediately to find the correct answer to thousands of
exam problems in mathematical economics courses given each year all over the world! But
note that, unless the utility function happens to be exactly of the Cobb–Douglas type Axayb,
or something equivalent, the demands given by (∗∗) are certain to be wrong.5

Another warning is in order here: we assumed in problem (∗) that x ≥ 0 and y ≥ 0.
Thus, we maximize a continuous function Axayb over the closed bounded set S = {(x, y) :
px + qy = m, x ≥ 0, y ≥ 0}. According to the extreme value Theorem 17.5.1, therefore, a
maximum must exist. Since utility is 0 when x = 0 or when y = 0, and positive at the point
given by (∗∗), this point indeed solves the problem. Without the nonnegativity conditions on
x and y, however, the problem might fail to have a maximum. Indeed, consider the problem
max x2y s.t. x + y = 1, which is a special case of problem (∗). For all real t, the pair
(x, y) = (−t, 1 + t) satisfies the constraint. Yet x2y = t2(1 + t) → ∞ as t → ∞, so there
is no maximum point.

E X A M P L E 18.1.4 Under the assumption that whenever x > 0 and y > 0, the utility function u(x, y)
is defined and has positive first-order partial derivatives u′

x and u′
y, analyse the following

general utility maximization problem with two goods:

max u(x, y) s.t. px + qy = m (18.1.5)

Solution: The Lagrangian is L(x, y) = u(x, y) − λ(px + qy − m). So the three first-order
conditions are

L′
x(x, y) = u′

x(x, y) − λp = 0 (i)

L′
y(x, y) = u′

y(x, y) − λq = 0 (ii)

px + qy = m (iii)

From equation (i) we get λ = u′
x(x, y)/p, and from (ii) we get λ = u′

y(x, y)/q. It follows that
u′

x(x, y)/p = u′
y(x, y)/q, which can be rewritten as

u′
x(x, y)

u′
y(x, y)

= p
q

(18.1.6)

5 When u(x, y) = xa + yb, for instance, the solution is not given by (∗∗). To check this, assuming
that 0 < a < 1, see: (i) Exercise 9, for the case when b = 1; and (ii) Exercise 18.5.4, for the case
when a = b.
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The left-hand side of Eq. (18.1.6) is the marginal rate of substitution, or MRS, which was
studied in Section 15.5. Utility maximization therefore requires equating the MRS to the
price ratio p/q.

A geometric interpretation of Eq. (18.1.6) is that the consumer should choose the point
on the budget line px + qy = m at which the slope of the level curve of the utility function,
which is −u′

x(x, y)/u′
y(x, y), equals the slope of the budget line, which is −p/q.6 Thus, at

the optimal point the budget line is tangent to a level curve of the utility function, as illus-
trated by point P in Fig. 18.1.1. The level curves of the utility function are the indifference
curves, along which the utility level is constant by definition. It follows that utility is max-
imized at a point where the budget line is tangent to an indifference curve. The fact that
λ = u′

x(x, y)/p = u′
y(x, y)/q at point P means that the marginal utility per dollar is the same

for both goods. At any other point (x, y) where u′
x(x, y)/p > u′

y(x, y)/q, for example, the
consumer can increase utility by shifting expenditure away from y toward x. Indeed, then
the increase in utility per extra dollar spent on x would equal u′

x(x, y)/p; this exceeds the
decrease in utility per dollar reduction in the amount spent on y, which equals u′

y(x, y)/q.
As in Example 18.1.3, the optimal choices of x and y can be expressed as demand func-

tions of (p, q, m), which must be homogeneous of degree zero in the three variables (p, q, m)

together.

u(x, y) 5 c1

u(x, y) 5 c2

u(x, y) 5 c3

px 1 qy 5 m

y

x

P

Figure 18.1.1 The solution to Example 18.1.4 is at point P.

Each exercise at the end of this section has only one solution candidate, which is the
optimum.

E X E R C I S E S F O R S E C T I O N 1 8 . 1

1. Consider the problem: max xy s.t. x + 3y = 24.

(a) Use the Lagrange multiplier method to find the only possible solution.

(b) Check the solution by using the results in Example 18.1.3.

2. Use the Lagrange multiplier method to solve the problem

min −40Q1 + Q2
1 − 2Q1Q2 − 20Q2 + Q2

2 s.t. Q1 + Q2 = 15

6 You may want to recall Section 15.3 where it shows how to compute these slopes.
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3. Use the results in Example 18.1.3 to solve the following problems:

(a) max 10x1/2y1/3 s.t. 2x + 4y = m

(b) max x1/2y1/2 s.t. 50 000x + 0.08y = 1 000 000

(c) max 12x
√

y s.t. 3x + 4y = 12

4.SM Solve the following problems:

(a) min f (x, y) = x2 + y2 s.t. g(x, y) = x + 2y = 4

(b) min f (x, y) = x2 + 2y2 s.t. g(x, y) = x + y = 12

(c) max f (x, y) = x2 + 3xy + y2 s.t. g(x, y) = x + y = 100

5. A person has the utility function u(x, y) = 100xy + x + 2y. Suppose that the price per unit of x
is $2, and that the price per unit of y is $4. The person receives $1 000 that all has to be spent on
the two commodities x and y. Solve the utility maximization problem.

6. An individual has a Cobb–Douglas utility function U(m, l) = Amalb, where m is income and
l is leisure, and A, a, and b are positive constants, with a + b ≤ 1. A total of T0 hours are to
be allocated between work W and leisure l, so that W + l = T0. If the hourly wage is w, then
m = wW, and the individual’s problem is

max Amalb s.t.
m
w

+ l = T0

Solve the problem by using (∗∗) in Example 18.1.3.

7. Use the Lagrange multiplier method to solve part (b) of Review Exercise 17.3.

8. A firm produces and sells two commodities. By selling x tons of the first commodity the firm
gets a price per ton given by p = 96 − 4x. By selling y tons of the other commodity the price per
ton is given by q = 84 − 2y. The total cost of producing and selling x tons of the first commodity
and y tons of the second is given by C(x, y) = 2x2 + 2xy + y2.

(a) Show that the firm’s profit function is P(x, y) = −6x2 − 3y2 − 2xy + 96x + 84y.

(b) Compute the first-order partial derivatives of P, and find its only critical point.

(c) Suppose that the firm’s production activity causes so much pollution that the authorities limit
its output to 11 tons in total. Solve the firm’s maximization problem in this case. Verify that
the limit on total output does reduce the maximum possible value of P(x, y).

9.SM Consider the utility maximization problem max xa + y s.t. px + y = m, where the three param-
eters p, q, and m are positive, and the constant a satisfies 0 < a < 1.

(a) Find the demand functions, x∗(p, m) and y∗(p, m).

(b) Find the first-order partial derivatives of the demand functions w.r.t. p and m, and check their
signs.

(c) How does the optimal expenditure on the x good vary with p? Then check the elasticity of
px∗(p, m) w.r.t. p.
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(d) Put a = 1/2. What are the demand functions in this case? Denote the maximal utility as a
function of p and m by U∗(p, m), the value function, also called the indirect utility function.
Verify that ∂U∗/∂p = −x∗(p, m).

10.SM [HARDER] Consider the problem max U(x, y) = 100 − e−x − e−y s.t. px + qy = m.

(a) Write down the first-order conditions for the problem and then solve them for x, y, and λ as
functions of the positive parameters p, q, and m.

(b) What assumptions are needed for x and y to be nonnegative?

(c) Verify that x and y are homogeneous of degree 0 as functions of p, q, and m.

18.2 Interpreting the Lagrange Multiplier
Consider again the problem

max(min) f (x, y) s.t. g(x, y) = c

Let x∗ and y∗ denote values of x and y that solve this problem. In general x∗ and y∗ both
depend on c, so we write x∗ = x∗(c) and y∗ = y∗(c). Now assume that these solutions are
differentiable functions of c. The associated maximum value of f (x, y) is then also a function
of c, which we call the (optimal) value function and denote by

f ∗(c) = f (x∗(c), y∗(c)) (18.2.1)

Of course, the associated value of the Lagrange multiplier λ also depends on c, in general,
so we write λ(c). Now, provided that certain regularity conditions are satisfied, we have the
remarkable result that

df ∗(c)
dc

= λ(c) (18.2.2)

Thus, the Lagrange multiplier λ = λ(c) is the rate at which the optimal value of the objec-
tive function changes with respect to changes in the constraint constant c.

In particular, if dc is a small change in c, then

f ∗(c + dc) − f ∗(c) ≈ λ(c) dc (18.2.3)

In economic applications, we often use c to denote the available stock of some resource,
whereas f (x, y) denotes utility or profit. Then λ(c) dc measures the approximate change
in utility or profit that can be obtained from being allowed to use dc units more, or −dc
units less in case dc < 0. Economists call λ a shadow price of the resource. Given our
definition of f ∗(c) as the maximum profit when the resource input is c, Eq. (18.2.3) says
that λ indicates the approximate increase in profit per unit increase in the resource.

Assuming that f ∗(c) is differentiable, we can prove Eq. (18.2.2) as follows:
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Conditional proof: Taking the differential of the value function defined by Eq. (18.2.1)
gives

df ∗(c) = df (x∗, y∗) = f ′
1(x

∗, y∗) dx∗ + f ′
2(x

∗, y∗) dy∗ (∗)

But the first-order conditions imply that f ′
1(x

∗, y∗) = λg′
1(x

∗, y∗) and f ′
2(x

∗, y∗) =
λg′

2(x
∗, y∗). So (∗) can be written as

df ∗(c) = λg′
1(x

∗, y∗) dx∗ + λg′
2(x

∗, y∗) dy∗

= λ[g′
1(x

∗, y∗) dx∗ + g′
2(x

∗, y∗) dy∗] (∗∗)

Moreover, the equality constraint implies the identity g(x∗(c), y∗(c)) = c. Taking the dif-
ferential of each side yields the equality

dg(x∗, y∗) = g′
1(x

∗, y∗) dx∗ + g′
2(x

∗, y∗) dy∗ = dc

Substituting this equality into (∗∗) implies that df ∗(c) = λ dc.

E X A M P L E 18.2.1 Consider the following generalization of Example 18.1.1:

max xy s.t. 2x + y = m

Once again, the first-order conditions imply that y = 2x with λ = x. Inserting y = 2x
into the constraint now gives 2x + 2x = m, so x = 1

4 m. In the notation introduced at the
beginning of this section, we can write the solution as x∗(m) = 1

4 m and y∗(m) = 1
2 m,

with λ(m) = 1
4 m. So the value function is f ∗(m) = ( 1

4 m)( 1
2 m) = 1

8 m2. It follows that
df ∗(m)/dm = 1

4 m = λ(m), which confirms (18.2.2).
Suppose in particular that m = 100, so that f ∗(100) = 1002/8. If m increases by 1 from

100, the new value is f ∗(101) = 1012/8. It follows that

f ∗(101) − f ∗(100) = 1012/8 − 1002/8 = 201/8 = 25.125

Note that Eq. (18.2.3) with dc = 1 gives f ∗(101) − f ∗(100) ≈ λ(100) · 1 = 25 · 1 = 25,
which is quite close to the exact value of 25.125.

E X A M P L E 18.2.2 Suppose that Q = F(K, L) denotes the output of a state-owned firm when its input
of capital is K and its input of labour is L. Suppose that the prices of capital and labour it
faces are r and w dollars per unit, respectively. Suppose too that the firm is given a total
budget of m dollars to spend on the two input factors. The firm wishes to find the choice of
inputs it can afford that maximizes output. So it faces the problem

max F(K, L) s.t. rK + wL = m

After solving this problem by using Lagrange’s method, the value of the Lagrange multiplier
will tell us the approximate increase in output if the budget m is increased by 1 dollar.

Consider, for example, the specific problem max 120KL s.t. 2K + 5L = m. Note that
this is, mathematically, a special case of the problem in Example 18.1.3. Indeed, only the
notation is different, along with the fact that the consumer who wants to maximize utility
has been replaced with a firm that wants to maximize output.
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From (∗∗) in Example 18.1.3, we find the solution K∗ = m/4 and L∗ = m/10, with
λ = 6m. The optimal output is

Q∗(m) = 120K∗L∗ = 120 · 1
4

m · 1
10

m = 3m2

It follows that dQ∗/dm = 6m = λ, so Eq. (18.2.2) is confirmed.

E X E R C I S E S F O R S E C T I O N 1 8 . 2

1. Verify that Eq. (18.2.2) holds for the problem max x3y s.t. 2x + 3y = m.

2. With reference to Example 18.1.2:

(a) Solve the problem min rK + wL s.t.
√

K + L = Q, assuming that Q > w/2r, where r, w,
and Q are positive constants.

(b) Verify Eq. (18.2.2).

3. Consider the problem min x2 + y2 s.t. x + 2y = a, where a is a constant.

(a) Solve the problem by transforming it into an unconstrained optimization problem with one
variable.

(b) Show that the Lagrange method leads to the same solution, and verify Eq. (18.2.2).

(c) Explain the solution by studying the level curves of f (x, y) = x2 + y2 and the graph of the
straight line x + 2y = a. Can you give a geometric interpretation of the problem? Does the
corresponding maximization problem have a solution?

4.SM Consider the utility maximization problem max U(x, y) = √
x + y s.t. x + 4y = 100.

(a) Using the Lagrange method, find the quantities demanded of the two goods.

(b) Suppose income increases from 100 to 101. What is the exact increase in the optimal value
of U(x, y)? Compare with the value found in (a) for the Lagrange multiplier.

(c) Suppose we change the budget constraint to px + qy = m, but keep the same utility function.
Derive the quantities demanded of the two goods in case m > q2/4p.

5.SM Consider the consumer demand problem

max U(x, y) = α ln(x − a) + β ln(y − b) s.t. px + qy = m (∗)

where α, β, a, b, p, q, and m are positive constants, with α + β = 1 and m > ap + bq.

(a) Show that if the pair (x∗, y∗) solves problem (∗), then expenditure on the two goods is given
by the two linear functions

px∗ = αm + pa − α(pa + qb) and qy∗ = βm + qb − β(pa + qb) (∗∗)

of the three variables (m, p, q).7

7 This is a special case of the linear expenditure system that the Nobel prize-winning British
economist Richard (J.R.N.) Stone fitted to UK data, as described in the Economic Journal, 1954.
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(b) Let U∗(p, q, m) = U(x∗, y∗) denote the indirect utility function. Show that ∂U∗/∂m > 0, then
verify the so-called Roy’s identities:

∂U∗

∂p
= −∂U∗

∂m
x∗ and

∂U∗

∂q
= −∂U∗

∂m
y∗

6.SM [HARDER] An oil producer starts extracting oil from a well at time t = 0, and ends extraction at a
time t = T that the producer chooses. Suppose that the output flow at any time t in the interval
[0, T] is x t (T − t) barrels per unit of time, where the extraction intensity x can also be chosen. It
follows that the total amount of oil extracted during the given time span is given by the function
g(x, T) = ∫ T

0 x t (T − t) dt of x and T .

Assume further that the sales price per barrel at time t is p = 1 + t, and that the cost per
barrel extracted is equal to αT2, where α is a positive constant. The profit per unit of time is
then (1 + t − αT2) x t (T − t), so that the total profit earned during the time interval [0, T] is a
function of x and T given by

f (x, T) =
∫ T

0
(1 + t − αT2) xt (T − t) dt

If the total amount of extractable oil in the field is M barrels, the producer can choose values of x
and T subject to g(x, T) = M. The producer’s problem is thus

max f (x, T) s.t. g(x, T) = M (∗)

Find explicit expressions for f (x, T) and g(x, T) by calculating the given integrals. Then solve
problem (∗) and verify Eq. (18.2.2).

18.3 Multiple Solution Candidates
In all the examples and exercises considered so far in this chapter, the recipe for solving
constrained optimization problems produced only one solution candidate. In this section
we consider a problem where there are several candidates. In such cases, we have to decide
which candidate actually solves the problem, assuming it has any solution at all.

E X A M P L E 18.3.1 Solve the problems

max(min) f (x, y) = x2 + y2 s.t. g(x, y) = x2 + xy + y2 = 3

Solution: For both the maximization and the minimization problems, the Lagrangian is

L(x, y) = x2 + y2 − λ(x2 + xy + y2 − 3)

So the three FOCs we need to consider are

L′
1(x, y) = 2x − λ(2x + y) = 0 (i)

L′
2(x, y) = 2y − λ(x + 2y) = 0 (ii)

x2 + xy + y2 − 3 = 0 (iii)
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To solve these, let us first eliminate λ from (i) and (ii). From (i) we get λ = 2x/(2x + y)
provided that y 
= −2x. Inserting this value of λ into (ii) gives

2y = 2x
2x + y

(x + 2y)

Multiplying each side of this equation by 2x + y and then simplifying reduces it to y2 = x2.
It follows that y = ±x. This leaves us with the following three possibilities:

1. Suppose, first, that y = x. Then (iii) yields x2 = 1, so x = 1 or x = −1. This gives the
two solution candidates (x, y) = (1, 1) and (−1, −1), with λ = 2/3.

2. Alternatively, suppose y = −x. Then (iii) yields x2 = 3, so x = √
3 or x = −√

3. This
gives the two solution candidates (x, y) = (

√
3, −√

3) and (−√
3,

√
3), with λ = 2.

3. It only remains to consider the case y = −2x. Then from (i) we would have x = 0 and
so y = 0. But this would contradict (iii), so this case cannot occur.

So we have found the only four points (x, y) that can solve the problem. Furthermore,

f (1, 1) = f (−1, −1) = 2 and f (
√

3, −√
3) = f (−√

3,
√

3) = 6

We conclude that if the problem has solutions, then (1, 1) and (−1, −1) solve the minimiza-
tion problem, whereas (

√
3, −√

3) and (−√
3,

√
3) solve the maximization problem.

y

x

(1, 1)

(21, 21)

(2Ï3, Ï3)

(Ï3, 2Ï3)

Figure 18.3.1 The constraint curve in Example 18.3.1

Geometrically, the equality constraint determines an ellipse. The problem is therefore
to find what points on the ellipse are either nearest to or furthest from the origin, as shown
in Fig. 18.3.1. It is “geometrically obvious” that the ellipse is a closed and bounded set.
Because distance is a continuous function of (x, y), the extreme value theorem ensures that
these nearest and furthest points must both exist.

E X E R C I S E S F O R S E C T I O N 1 8 . 3

1.SM Solve the problems:

(a) max(min) 3xy s.t. x2 + y2 = 8 (b) max(min) x + y s.t. x2 + 3xy + 3y2 = 3
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2.SM Solve the problems:8

(a) max x2+ y2− 2x + 1 s.t. x2+ 4y2= 16 (b) min ln(2 + x2) + y2 s.t. x2 + 2y = 2

3. Consider the problem max (min) f (x, y) = x + y s.t. g(x, y) = x2 + y = 1.

(a) Find the solutions to the necessary conditions for these problems.

(b) Explain the solution geometrically by drawing appropriate level curves for f (x, y) together
with the graph of the parabola x2 + y = 1. Does the associated minimization problem have a
solution?

(c) Replace the constraint by x2 + y = 1.1, and solve the revised problem in this new case. Find
the corresponding change in the optimal value of f (x, y) = x + y. Then check whether this
change is approximately equal to λ · 0.1, as Eq. (18.2.3) suggests it should be.

4.SM Consider the problem max f (x, y) = 24x − x2 + 16y − 2y2 s.t. g(x, y) = x2 + 2y2 = 44.

(a) Solve the problem.

(b) What is the approximate change in the optimal value of f (x, y) if 44 is changed to 45?

5.SM [HARDER] Consider the problem

max(min) Q = 2x2
1 + 14x1x2 + 2x2

2 subject to x2
1 + x2

2 = 1

(a) Show that Q can be written as the quadratic form Q = x′Ax, where x is a column 2-vector
and A is a symmetric 2 × 2 matrix.

(b) Use the Lagrange multiplier method to show that the first-order condition for the vector x to
solve either problem is that x is an eigenvector of A, with the eigenvalue as the associated
Lagrange multiplier.

(c) Prove that the largest (smallest) eigenvalue of A is the maximum (minimum) value of Q subject
to the constraint. (Hint: Multiply each side of Ax = λx from the left by the row vector x′.)

(d) Find the solutions to the constrained maximization and minimization problems.

18.4 Why Does the Lagrange Multiplier
Method Work?
So far we have merely offered the Lagrange multiplier method as a procedure for solving
a maximization problem with two variables subject to an equality constraint that can be set
out in the following standard form:

max f (x, y) s.t. g(x, y) = c (18.4.1)

Now it is time in this section to provide both a geometric and an analytical explanation of
why the Lagrange multiplier method works.

8 In (b) you should take it for granted that the minimum value exists.
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A Geometric Argument
Figure 18.4.1 represents geometrically in three dimensions the maximization problem in
(18.4.1). It shows the graph of f as something that looks like the surface of an inverted
bowl. On the other hand, the equation g(x, y) = c is represented by a dashed curve in the
xy-plane. Then the shaded curve K in Fig. 18.4.1 consists of those points in the surface of
the bowl that lie directly above the curve g(x, y) = c.

If we were to ignore the constraint, the maximum of f (x, y) would occur at the peak A in
Fig. 18.4.1. Imposing the constraint g(x, y) = c, however, allows us to choose only points
along the curve K. So the solution to problem (18.4.1) occurs at B, the highest point on K.
If we think of the graph of f as representing a mountain, and K as a mountain path, then we
must ascend to the highest point on the path, which is at B. Analytically, the problem is to
find the coordinates of B.

z 5 f (x, y)

 g (x, y) 5 c

A

B
K

z

y

x

Figure 18.4.1 Constrained optimization

 g (x, y) 5 c

y

x

P

A9

B9 Q

Figure 18.4.2 Geometry of the Lagrange
multiplier method

Figure 18.4.2 “projects” the information in the three-dimensional Fig. 18.4.1 onto the
two-dimensional xy-plane. Given the inverted bowl that is the graph of f , Figs. 18.4.1 and
18.4.2 both show some of its corresponding level curves. The curve g(x, y) = c, which
also appears in both figures, is merely copied from Fig. 18.4.1 to Fig. 18.4.2. Figure
18.4.2 includes, but also extends, the projection onto the xy-plane of the three-dimensional
curve K, which is the shaded part of the curve g(x, y) = c.

In ascending to the point A on the surface shown in Fig. 18.4.1, one is moving up to
higher and higher level curves until one runs out of curves that are higher. The correspond-
ing movement in Fig. 18.4.2 is to smaller and smaller level curves, until at point A′ the level
curve has shrunk to a single point at which f (x, y) reaches its unconstrained maximum. The
closer a level curve of f is to the summit at point A′, the higher is the constant value of f
along that level curve.

The maximization problem in (18.4.1) asks us to find that point on the constraint curve
g(x, y) = c where f attains its highest value. In Fig. 18.4.2, if we start at point P on the
constraint curve and move along that curve toward A′, then we ascend to points on level
curves with higher and higher values of f . Notice that any level curve of f separates points
in the plane where f is higher from points where f is lower. Now, at the point marked Q in
Fig. 18.4.2, our path along the constraint curve crosses the level curve of f which passes
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through Q. So walking in one direction away from Q will take us back down toward P,
whereas walking in the reverse direction away from Q will take us further up. For this
reason, the point marked Q in Fig. 18.4.2 is definitely not the point on g(x, y) = c at which
f has its highest value.

Once we have got as far as point B in Fig. 18.4.1, however, we cannot go any higher
along the curve K. Indeed, continuing along K beyond B starts taking us down to lower and
lower level curves of f . Together Figs. 18.4.1 and 18.4.2 should make it intuitively clear
that the highest point B along the path K corresponds to the point B′ in the plane. Moreover,
that point occurs precisely where the constraint curve g(x, y) = c just touches a level curve
for f , without crossing it. This key observation implies that, in Fig. 18.4.2, the slope of the
tangent to the curve g(x, y) = c at the optimal point B′ must equal the slope of the tangent
to the level curve of f at that same point.

Given any level curve F(x, y) = c of a function F, recall from Section 15.3 that
at any point (x, y) where F is differentiable, the slope of the level curve is given by
dy/dx = −F′

1(x, y)/F′
2(x, y). Disregard for now any point where any first-order partial

derivative is zero. Then the condition that the slopes of the respective tangents to the
constraint curve g(x, y) = c and to the level curve for f (x, y) should be equal where they
meet can be expressed analytically as:

−g′
1(x, y)

g′
2(x, y)

= − f ′
1(x, y)

f ′
2(x, y)

Because we are assuming that none of the partial derivatives are zero, this is evidently
equivalent to

f ′
1(x, y)

g′
1(x, y)

= f ′
2(x, y)

g′
2(x, y)

(18.4.2)

It follows that a necessary condition for (x, y) to solve problem (18.4.1) is that the left-
and right-hand sides of Eq. (18.4.2) be equal at (x, y). Let λ denote the common value of
these two fractions. This is the Lagrange multiplier we introduced in Section 18.1. With
this definition, one has

f ′
1(x, y) − λg′

1(x, y) = 0 and f ′
2(x, y) − λg′

2(x, y) = 0 (18.4.3)

Indeed, we see that (18.4.3) just tells us that the Lagrangian defined in Eq. (18.1.2) must
have a critical point at (x, y). An analogous argument for the problem of minimizing f (x, y)
subject to g(x, y) = c gives the same condition.

The geometric argument we have just given should be sufficiently convincing. Never-
theless, the analytic argument that follows is easier to extend to more than two variables.

An Analytical Argument
So far in this chapter we have studied the problem of finding the largest or smallest value
of f (x, y) subject only to the constraint g(x, y) = c. Sometimes economists need to consider
points that are a local maximum or minimum, in the same sense as in Section 17.3. That is,
we look for points (x0, y0) with g(x0, y0) = c where, for all pairs (x, y) satisfying g(x, y) = c
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f (x, y) 5 4
f (x, y) 5 3
f (x, y) 5 2
f (x, y) 5 1

 g (x, y) 5 c

y

x

P

Q

R

Figure 18.4.3 Q, R, and P all satisfy the first-order conditions

that lie sufficiently close to (x0, y0), one has: (i) either f (x, y) ≤ f (x0, y0) in case (x0, y0) is
a local maximum; (ii) or f (x, y) ≥ f (x0, y0) in case (x0, y0) is a local minimum.

Graphically, possible local extrema are illustrated in Fig. 18.4.3. Here R is a local min-
imum point for f (x, y) subject to g(x, y) = c, whereas both Q and P are local maximum
points. The global maximum of f (x, y) subject to g(x, y) = c is attained only at P. At each
of the three points P, Q, and R in Fig. 18.4.3 the constraint curve g(x, y) = c and the level
curve share a common tangent, so condition (18.4.2) is satisfied. That is, the first-order con-
ditions are exactly as before. Let us now derive these conditions in a way that does not rely
on geometric intuition.

As discussed in Section 15.3, except in some special cases, the equation g(x, y) = c
with c fixed defines y implicitly as a differentiable function y = h(x) of x near any point
(x, y) which satisfies the equation as well as the condition g′

2(x, y) 
= 0. Furthermore, pro-
vided this condition is satisfied, according to formula (15.3.2) one has

y′ = h′(x) = −g′
1(x, y)

g′
2(x, y)

(18.4.4)

Now, inserting y = h(x) into f (x, y) yields z = f (x, y) = f (x, h(x)), thus making the objec-
tive function depend on x alone. Then a necessary condition for a local extreme point is that
dz/dx = 0. But combining the chain rule with Eq. (18.4.4) gives

dz
dx

= f ′
1(x, y) + f ′

2(x, y)y′ = f ′
1(x, y) + f ′

2(x, y)h′(x) = f ′
1(x, y) − f ′

2(x, y)
g′

1(x, y)

g′
2(x, y)

So we have the following necessary condition for (x, y) to solve problem (18.4.1):

dz
dx

= f ′
1(x, y) − f ′

2(x, y)
g′

1(x, y)

g′
2(x, y)

= 0 (18.4.5)

Assuming that g′
2(x, y) 
= 0, we can define λ = f ′

2(x, y)/g′
2(x, y), implying that the two

equations f ′
1(x, y) − λg′

1(x, y) = 0 and f ′
2(x, y) − λg′

2(x, y) = 0 must both be satisfied, as
they were in (18.4.3). Once again, therefore, the Lagrangian defined in Eq. (18.1.2) must
have a critical point at (x, y). The same result holds, by an analogous argument, provided
g′

1(x, y) 
= 0. To summarize, one can prove the following precise result:

T H E O R E M 1 8 . 4 . 1 ( L A G R A N G E ’ S T H E O R E M )

Suppose that f (x, y) and g(x, y) have continuous partial derivatives in a domain
A of the xy-plane, and that (x0, y0) is both an interior point of A and a local
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extreme point for f (x, y) subject to the constraint g(x, y) = c. Suppose further
that g′

1(x
0, y0) and g′

2(x
0, y0) are not both 0. Then there exists a unique number

λ such that the Lagrangian has a critical point at (x0, y0).

Exercise 3 asks you to show how trouble can result from uncritical use of the Lagrange
multiplier method that disregards the assumptions in Theorem 18.4.1. Exercise 4 asks you
to show what can go wrong if g′

1(x
0, y0) and g′

2(x
0, y0) are both 0.

In constrained optimization problems in economics, it is often implicitly assumed that
the variables are nonnegative. This was certainly the case for the specific utility maximiza-
tion problem in Example 18.1.3. Because the optimal solutions were positive, nothing was
lost by disregarding the nonnegativity constraints. Here is an example showing that some-
times we must take greater care.

E X A M P L E 18.4.1 Consider the utility maximization problem

max xy + x + 2y s.t. 2x + y = m, x ≥ 0 and y ≥ 0

Here we require explicitly that the amount of each good is nonnegative. The Lagrangian is
L = xy + x + 2y − λ(2x + y − m). So the first-order conditions, disregarding the nonneg-
ativity constraints for now, are

L′
1 = y + 1 − 2λ = 0 and L′

2(x, y) = x + 2 − λ = 0

To eliminate λ, we find that y = 2λ − 1 = 2(x + 2) − 1 = 2x + 3. Inserting this into the
budget constraint gives 2x + 2x + 3 = m, so x = 1

4 (m − 3). It is easy to find the correspond-
ing value of y. The suggested solution that emerges is x∗ = 1

4 (m − 3), y∗ = 1
2 (m + 3).

Note that in case m < 3 we have x∗ < 0, implying that the suggested solution is not the
actual one. As we show below, the solution in this case is actually x∗ = 0, y∗ = m. So when
income is low, the consumer spends everything on just the second commodity.

Let us analyse the problem further by converting it into an unconstrained maximization
problem. To do this, note how the constraint implies that y = m − 2x. In order for both x
and y to be nonnegative, one must have 0 ≤ x ≤ m/2 and 0 ≤ y ≤ m. Substituting y = m −
2x into the utility function gives utility as the following function U(x) of x alone:

U(x) = x(m − 2x) + x + 2(m − 2x) = −2x2 + (m − 3)x + 2m, for all x ∈ [0, m/2]

In the interval [0, 1
2 m] this is a quadratic function with x = 1

4 (m − 3) as its only criti-
cal point. In case m > 3, this is an interior critical point of the concave function U, so
it is a maximum point. But in case m ≤ 3, one has U′(x) = −4x + (m − 3) < 0 for all
x > 0. Because x must belong to [0, 1

2 m], in this case x = 0 is the unique maximum point
of U(x).

When motivating the Lagrange multiplier method, a frequently occurring error in the
economics literature (including some leading textbooks) is the claim that it transforms a
constrained optimization problem into that of finding an unconstrained optimum of the
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Lagrangian. Exercise 1 shows that this is wrong. What the method does instead is to trans-
form a constrained optimization problem into that of finding the appropriate critical points
of the Lagrangian. Sometimes these happen to be maximum points, but often they are not.

To test your understanding of when the Lagrange procedure can be used, it is a good
exercise to explain why it certainly works, for instance, in Exercise 1, but not in either
Exercise 3 or Exercise 4.

E X E R C I S E S F O R S E C T I O N 1 8 . 4

1. Consider the problem max xy s.t. x + y = 2. Reduce it to the one-variable problem of maximiz-
ing x(2 − x), and show that (x, y) = (1, 1) is the only possible solution. Check that this satisfies
the first-order conditions for the constrained maximization problem, with Lagrange multiplier
λ = 1. Show that (1, 1) does not maximize the Lagrangian L(x, y) = xy − 1 · (x + y − 2). Does
this matter?

2. The following text, which attempts to justify the Lagrange method, is taken from a book on math-
ematics for management. It contains grave errors. Sort them out.

“Consider the general problem of finding the extreme points of z = f (x, y) subject to the constraint
g(x, y) = 0. Clearly the extreme points must satisfy the pair of equations f ′

x(x, y) = 0, f ′
y(x, y) = 0

in addition to the constraint g(x, y) = 0. Thus, there are three equations that must be satisfied by
the pair of unknowns x, y. Because there are more equations than unknowns, the system is said to
be overdetermined and, in general, is difficult to solve. In order to facilitate computation . . . ”

3. [HARDER] Consider the problem max f (x, y) = 2x + 3y s.t. g(x, y) = √
x + √

y = 5.

(a) Show that the Lagrange multiplier method suggests the solution (x, y) = (9, 4). Show that this
does not solve the constrained maximization problem because f (9, 4) = 30, yet f (25, 0) = 50.

(b) Find the true solution to the problem by studying the level curves of f (x, y) = 2x + 3y, along
with the graph of the constraint equation. (Hint: See Exercise 5.4.2.)

(c) Which assumption of Theorem 18.4.1 is violated?

4.SM [HARDER] Solve the problem

min f (x, y) = (x + 2)2 + y2 s.t. g(x, y) = y2 − x(x + 1)2 = 0

Show that the Lagrange multiplier method cannot locate this minimum. (Hint: Draw a graph of
g(x, y) = 0. Note in particular that g(−1, 0) = 0.)

18.5 Sufficient Conditions
Theorem 18.4.1 gives necessary conditions for the local solution of constrained optimiza-
tion problems. In order to confirm that we have really found the solution, however, a more
careful check is needed. The examples and exercises of Section 18.3 have geometric inter-
pretations which strongly suggest we have found the solution. Indeed, if the constraint set is
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closed and bounded, then the Extreme Value Theorem 17.5.1 guarantees that a continuous
function will attain both maximum and minimum values over this set.

Consider, for example, Example 18.3.1. Here the constraint set, which was graphed in
Fig. 18.3.1, is closed and bounded. The continuous function f (x, y) = x2 + y2 will therefore
attain both a maximum value and a minimum value over the constraint set. Since there are
four points satisfying the first-order conditions, it remains only to check which of them
gives f its highest and lowest values.

Concave/Convex Lagrangian
Consider the problem

max (min) f (x, y) s.t. g(x, y) = c (18.5.1)

with the Lagrangian
L(x, y) = f (x, y) − λ[g(x, y) − c] (18.5.2)

We already know that if (x0, y0) solves (18.5.1), then the Lagrangian (18.5.2) usually has
a critical point at (x0, y0). But Exercise 18.4.1 shows how L may not have a maximum
(minimum) at (x0, y0). Suppose, however, that L happens to reach an unconstrained global
maximum at (x0, y0), in the sense that L(x0, y0) ≥ L(x, y) for all (x, y) in the plane. Then,
for all (x, y), one has

L(x0, y0) = f (x0, y0) − λ[g(x0, y0) − c] ≥ L(x, y) = f (x, y) − λ[g(x, y) − c] (∗)

Now, provided that (x0, y0) also satisfies the constraint g(x0, y0) = c, then for all (x, y) such
that g(x, y) = c, both terms in (∗) that are within brackets become zero, so it reduces to

L(x0, y0) = f (x0, y0) ≥ L(x, y) = f (x, y)

It follows that f (x0, y0) ≥ f (x, y) for all (x, y) that satisfy the constraint g(x, y) = c. So
(x0, y0) really does solve the maximization problem in (18.5.1). A corresponding result
is obtained for the minimization problem in (18.5.1), provided that L reaches an uncon-
strained global minimum at (x0, y0).

Next, recall from Theorem 17.2.1 that a critical point (x0, y0) for a concave (convex)
function really does maximize (minimize) the function. To summarize, we have the follow-
ing key result:

T H E O R E M 1 8 . 5 . 1 ( C O N C A V E / C O N V E X L A G R A N G I A N )

Consider the problems in (18.5.1). Let (x0, y0) be any critical point for
the Lagrangian L defined in (18.5.2) that satisfies the equality constraint
g(x0, y0) = c. Now:

(a) if L is concave, or if (x0, y0) happens to maximize L anyway, then (x0, y0)

solves the constrained maximization problem;

(b) if L is convex, or if (x0, y0) happens to minimize L anyway, then (x0, y0)

solves the constrained minimization problem.
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Warning: When applying Theorem 18.5.1 to a specific problem, it is important to remem-
ber that the concavity or convexity of L often depends upon the sign of λ. Suppose, for
example, that f is concave and g is convex. Then the Lagrangian L = f − λg will be con-
cave if λ ≥ 0, but generally will not be concave if λ < 0. An interesting exception where
it is concave even when λ < 0 occurs if g is not only convex, but also concave because it
happens to be linear.

E X A M P L E 18.5.1 Consider a firm that uses positive inputs K and L of capital and labour, respec-
tively, to produce a single output Q according to the Cobb–Douglas production function
Q = F(K, L) = AKaLb, where A, a, and b are positive parameters satisfying a + b ≤ 1.
Suppose that the prices per unit of capital and labour are r > 0 and w > 0, respectively.
The cost-minimizing inputs of K and L must solve the problem

min rK + wL s.t. AKaLb = Q

Explain why the Lagrange multiplier λ is positive at any critical point of the Lagrangian.
Expain too why this implies that a critical point does minimize costs. (Hint: See
Exercise 17.2.8.)

Solution: The Lagrangian is L = rK + wL − λ(AKaLb − Q). The first-order conditions
for a critical point are r = λAaKa−1Lb and w = λAbKaLb−1, implying that λ > 0. From
Exercise 17.2.8, we see that −L is concave, so L is convex.

Local Second-Order Conditions
Sometimes economists are interested in conditions that are sufficient for (x0, y0) to be a
local extreme point of f (x, y) subject to g(x, y) = c. We start by looking at the expression
(18.4.5) for dz/dx. The condition dz/dx = 0 is necessary for local optimality. If d2z/dx2 <

0 in addition at the critical point of the Lagrangian, then that point must solve the local
maximization problem.

The second derivative d2z/dx2 is just the total derivative of dz/dx w.r.t. x. Assuming that
both f and g are C2 functions, and that g′

2(x
0, y0) 
= 0, we differentiate (18.4.5) once again,

while recalling that y is a function of x. The result is

d2z
dx2

= f ′′
11 + f ′′

12y′ − (
f ′′
21 + f ′′

22y′) g′
1

g′
2

− f ′
2

(
g′′

11 + g′′
12y′) g′

2 − (
g′′

21 + g′′
22y′) g′

1

(g′
2)

2

But f and g are both C2 functions, so f ′′
12 = f ′′

21 and g′′
12 = g′′

21. Moreover y′ = −g′
1/g′

2. Also
at any critical point of the Lagrangian, the first-order conditions imply that f ′

1 = λg′
1 and

f ′
2 = λg′

2. After using these relationships to eliminate y′ and f ′
2, followed by some elementary

algebra, we finally obtain

d2z
dx2

= 1
(g′

2)
2

[
(f ′′

11 − λg′′
11)(g

′
2)

2 − 2(f ′′
12 − λg′′

12)g
′
1g′

2 + (f ′′
22 − λg′′

22)(g
′
1)

2]
Next, let us define

D(x, y, λ) = (f ′′
11 − λg′′

11)(g
′
2)

2 − 2(f ′′
12 − λg′′

12)g
′
1g′

2 + (f ′′
22 − λg′′

22)(g
′
1)

2 (18.5.3)
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Evidently d2z/dx2 < 0 provided D(x, y, λ) < 0. Also d2z/dx2 > 0 provided D(x, y,
λ) > 0. So we have the following result, in which the condition on the sign of D(x0, y0, λ)

is called the local second-order condition:

T H E O R E M 1 8 . 5 . 2 ( L O C A L S E C O N D - O R D E R C O N D I T I O N )

For the problems in Eq. (18.5.1), suppose the triple (x0, y0, λ) satisfies the three
first-order conditions

f ′
1(x

0, y0) = λg′
1(x

0, y0), f ′
2(x

0, y0) = λg′
2(x

0, y0), and g(x0, y0) = c

Then, given the definition of D(x0, y0, λ) in (18.5.3):

(a) if D(x0, y0, λ) < 0, then (x0, y0) solves the maximization problem locally;

(b) if D(x0, y0, λ) > 0, then (x0, y0) solves the minimization problem locally.

E X A M P L E 18.5.2 Consider the problem

max(min) f (x, y) = x2 + y2 s.t. g(x, y) = x2 + xy + y2 = 3

In Example 18.3.1 we saw that the first-order conditions give as solution candidates the two
points (1, 1) and (−1, −1) with λ = 2/3, as well as both (

√
3, −√

3) and (−√
3,

√
3) with

λ = 2. Check the local second-order condition of Theorem 18.5.2 in this case.

Solution: We find that f ′′
11 = 2, f ′′

12 = 0, f ′′
22 = 2, g′′

11 = 2, g′′
12 = 1, and g′′

22 = 2. So defini-
tion (18.5.3) implies that

D(x, y, λ) = (2 − 2λ)(x + 2y)2 + 2λ(2x + y)(x + 2y) + (2 − 2λ)(2x + y)2

With some routine calculations, one can show that

D(1, 1, 2
3 ) = D(−1, −1, 2

3 ) = 24 and D(
√

3, −√
3, 2) = D(−√

3,
√

3, 2) = −24

The respective signs of D at these four solution candidates imply that (1, 1) and (−1, −1)

are local constrained minimum points, whereas (
√

3, −√
3) and (−√

3,
√

3) are local con-
strained maximum points.9

As with Eq. (15.3.5), the concept of 3 × 3 determinants that we saw in Section 13.2
allows formula (18.5.3) to be written in a symmetric form that is easier to remember, namely

D(x, y, λ) = −
∣∣∣∣∣∣

0 g′
1(x, y) g′

2(x, y)
g′

1(x, y) L′′
11(x, y) L′′

12(x, y)
g′

2(x, y) L′′
21(x, y) L′′

22(x, y)

∣∣∣∣∣∣ (18.5.4)

Note that according to definition (14.6.2), the 2 × 2 matrix at the bottom right of the deter-
minant is the Hessian of the Lagrangian. So the determinant in Eq. (18.5.4) is naturally

9 In Example 18.3.1 we proved that these points were actually global extrema.
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called a bordered Hessian; its borders in the first row and first column, apart from 0 at the
top left, are 2-vectors whose components are the two first-order partial derivatives of g.

E X E R C I S E S F O R S E C T I O N 1 8 . 5

1. Use Theorem 18.5.1 to check that the solution found in part (a) of Exercise 18.1.3 is optimal.

2. Consider the problem max ln x + ln y s.t. px + qy = m. Compute D(x, y, λ), as defined in
(18.5.3), then verify that the appropriate second-order condition in Theorem 18.5.2 is satisfied.10

3. Compute D(x, y, λ) in Theorem 18.5.1 for part (a) of Exercise 18.2.2. What can you conclude?

4.SM Prove that U(x, y) = xa + ya, where a ∈ (0, 1), is concave for all x > 0 and y > 0. Then, solve the
problem max U(x, y) s.t. px + qy = m, where p, q, and m are positive constants.

18.6 Additional Variables and Constraints
Many constrained optimization problems in economics involve more than just two vari-
ables. The typical problem with n variables and one constraint can be written in the form

max(min) f (x1, . . . , xn) s.t. g(x1, . . . , xn) = c (18.6.1)

The Lagrange multiplier method presented in the previous sections can be easily gen-
eralized. As before, associate a Lagrange multiplier λ with the constraint and form the
Lagrangian function

L(x1, . . . , xn) = f (x1, . . . , xn) − λ[g(x1, . . . , xn) − c] (18.6.2)

Next, find all the first-order partial derivatives of L and equate them to zero, so that

L′
1 = f ′

1(x1, . . . , xn) − λg′
1(x1, . . . , xn) = 0

... (18.6.3)

L′
n = f ′

n(x1, . . . , xn) − λg′
n(x1, . . . , xn) = 0

These n equations, together with the constraint, form n + 1 equations that should be solved
simultaneously to determine the n + 1 unknowns, which are x1, . . . , xn, and λ.

This method will fail, in general, to give correct necessary conditions if all the
first-order partial derivatives of g(x1, . . . , xn) happen to vanish at the critical point of the
Lagrangian. Otherwise, an easy generalization of the analytic argument in Section 18.4
can be used to prove the obvious extension to n variables of the first-order conditions

10 Note that for this problem the Lagrangian is concave as a function of (x, y), for all real λ, as is easily
checked. So the unique solution (x, y) = (m/2p, m/2q) to the first-order conditions is actually a
global constrained maximum.
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in Theorem 18.4.1. Indeed, suppose ∂g/∂xn 
= 0, say. Then near the critical point we
can “solve” g(x1, . . . , xn) = c for xn, and thus reduce the problem to an unconstrained
extremum problem in the remaining n − 1 variables x1, . . . , xn−1.

E X A M P L E 18.6.1 Solve the consumer’s demand problem

max U(x, y, z) = x2y3z s.t. x + y + z = 12

Solution: Define the Lagrangian L(x, y, z) = x2y3z − λ(x + y + z − 12). Then, in addition
to the constraint x + y + z = 12, the three first-order conditions are

L′
1 = 2xy3z − λ = 0, L′

2 = 3x2y2z − λ = 0, and L′
3 = x2y3 − λ = 0 (∗)

Now, if any of the variables x, y, and z is 0, then x2y3z = 0. This is definitely not the maxi-
mum value because choosing (x, y, z) = (4, 4, 4), for instance, makes U(x, y, z) positive. So
suppose that x, y, and z are all positive.

From the first two equations in (∗), we have λ = 2xy3z = 3x2y2z, so y = 3x/2. The
first and third equations in (∗) likewise imply that λ = 2xy3z = x2y3, so z = x/2. Inserting
y = 3x/2 and z = x/2 into the constraint yields x + 3x/2 + x/2 = 12, so x = 4. Then y =
3x/2 = 6 and z = x/2 = 2. Thus, the only possible solution is (x, y, z) = (4, 6, 2).

E X A M P L E 18.6.2 Solve the problem

min f (x, y, z) = (x − 4)2 + (y − 4)2 + (
z − 1

2

)2
s.t. x2 + y2 = z

Can you give a geometric interpretation of the problem?

Solution: The Lagrangian is

L(x, y, z) = (x − 4)2 + (y − 4)2 + (
z − 1

2

)2 − λ(x2 + y2 − z)

Including the constraint, the four first-order conditions are:

L′
1(x, y, z) = 2(x − 4) − 2λx = 0 (i)

L′
2(x, y, z) = 2(y − 4) − 2λy = 0 (ii)

L′
3(x, y, z) = 2

(
z − 1

2

) + λ = 0 (iii)

x2 + y2 = z (iv)

From (i) we see that x = 0 is impossible. Equation (i) thus gives λ = 1 − 4/x. Inserting this
into (ii) and (iii) gives y = x and z = 2/x. Using these results, Eq. (iv) reduces to 2x2 = 2/x,
that is, x3 = 1, so x = 1. It follows that (x, y, z) = (1, 1, 2), with λ = −3, is the only solution
candidate for the problem.

The expression (x − 4)2 + (y − 4)2 + (z − 1/2)2 measures the square of the distance
from the point (4, 4, 1/2) to the point (x, y, z). The set of points (x, y, z) that satisfy
z = x2 + y2 is a surface known as a paraboloid, part of which is shown in Fig. 18.6.1.
The minimization problem is therefore to find that point on the paraboloid which has
the smallest (square) distance from (4, 4, 1/2). It is “geometrically obvious” that this
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problem has a solution. On the other hand, the problem of finding the largest distance
from (4, 4, 1/2) to a point on the paraboloid does not have a solution, as the distance can
be made as large as we like.

z 5 x2 1 y2

4

4

z

y

x

Figure 18.6.1 An illustration of Example 18.6.2

E X A M P L E 18.6.3 The general consumer optimization problem with n goods is

max U(x1, . . . , xn) s.t. p1x1 + · · · + pnxn = m (18.6.4)

Here we assume that the utility function U is defined for all x1 ≥ 0, . . . , xn ≥ 0, and that
the prices p1, p2, · · · , pn are all positive parameters. Let x denote the n-vector (x1, . . . , xn).
Then the Lagrangian is

L(x) = U(x) − λ(p1x1 + · · · + pnxn − m)

In addition to the budget constraint, the other n first-order conditions are

L′
i(x) = U′

i(x) − λpi = 0 (i = 1, . . . , n)

These n equations imply that

U′
1(x)

p1
= U′

2(x)

p2
= · · · = U′

n(x)

pn
= λ (18.6.5)

We can use the last equation to determine the Lagrange multiplier λ After removing it, we
are left with n − 1 equations.11 In addition, the constraint must hold. This gives us a total
of n equations to determine the values of the n variables x1, . . . , xn.

From Eq. (18.6.5) it also follows that for every pair of goods j and k one has

U′
j(x)

U′
k(x)

= pj

pk
(18.6.6)

The left-hand side is the MRS of good k for good j, whereas the right-hand side is their price
ratio, or rate of exchange of good k for good j. So condition (18.6.6) requires that the MRS

for each pair of goods be equal to the corresponding price ratio.

11 For n = 2, there is one equation; for n = 3, there are two equations; and so on.
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Consider the n equations in (18.6.5), together with the budget constraint. Assume that
this system of n + 1 equations is solved for the n-vector x = (x1, . . . , xn) of demand quanti-
ties and for λ, all as functions of the price vector p = (p1, . . . , pn) and m. The first n variables
in this solution can be written as xi = Di(p, m), for i = 1, . . . , n, where Di(p, m) denotes
the amount of the ith commodity that the consumer demands when faced with prices p and
income m. For this reason the n functions xi = Di(p, m) are called the consumer’s demand
functions. By the same argument as in Examples 15.7.4 and 18.1.3, all these demand func-
tions are homogeneous of degree 0 as functions of p and m together. As one check that you
have correctly derived the demand functions, it is a good idea to verify that all the functions
you find are indeed homogeneous of degree 0, as well as satisfying the budget constraint.

In the special case when the consumer has a Cobb–Douglas utility function, the con-
strained maximization problem in (18.6.4) takes the form

max Axa1
1 · · · xan

n s.t. p1x1 + · · · + pnxn = m (18.6.7)

where we assume that each “taste” parameter ai > 0. As in part (a) of Exercise 8, the
demand functions can be found explicitly. Indeed, they are

Di(p, m) = ai

a1 + · · · + an

m
pi

(18.6.8)

We see how the pattern of the two-good case in Example 18.1.3 is repeated, with a con-
stant fraction of income m spent on each good, independent of all prices. Note also that
the demand for any good i is completely unaffected by changes in the price of any other
good. This is an argument against using Cobb–Douglas utility functions, because we expect
realistic consumer demand functions to depend on prices of other goods that are either
complements or substitutes.

More Constraints
Occasionally economists need to consider optimization problems with more than one equal-
ity constraint, although it is much more common to have many inequality constraints. The
obvious extension to m equality constraints of the problem set out in (18.6.1) is

max(min) f (x1, . . . , xn) s.t.

⎧⎨
⎩

g1(x1, . . . , xn) = c1

. . . . . . . . .
gm(x1, . . . , xn) = cm

(18.6.9)

That is, after letting x = (x1, . . . , xn) denote the n-vector of choice variables, the single
constraint g(x) = c becomes extended into the system of m constraints gj(x) = cj (for j =
1, 2, . . . , m). The Lagrange multiplier method can be extended to treat problem (18.6.9).
To do so, first we need to associate a separate Lagrange multiplier λj with each constraint
gj(x) = cj. Thereafter, we replace the single term λ[g(x) − c] in (18.6.1) by a sum of m
terms, one for each constraint, resulting in an expanded Lagrangian function of the form

L(x) = f (x) −
m∑

j=1

λj[gj(x) − cj] (18.6.10)
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Except in special cases, any optimal point, either local or global, must be a critical point of
this Lagrangian. That is, its partial derivative w.r.t. each variable xi must vanish. Hence, for
each i = 1, 2, . . . , n, one has

∂L
∂xi

= ∂f (x)

∂xi
−

m∑
j=1

λj

∂gj(x)

∂xi
= 0 (18.6.11)

Together with the m equality constraints is (18.6.9), these n equations form a total of n + m
equations in the combined list (x1, . . . , xn, λ1, . . . , λm) of n + m unknowns.

We now present a relatively simple example with three choice variables and two equality
constraints.

E X A M P L E 18.6.4 Solve the problem

min x2 + y2 + z2 s.t.

{
x + 2y + z = 30

2x − y − 3z = 10

Solution: The Lagrangian with two constraints and two corresponding Lagrange multipli-
ers is

L(x, y, z) = x2 + y2 + z2 − λ1(x + 2y + z − 30) − λ2(2x − y − 3z − 10)

The FOCs in (18.6.11) require that

∂L
∂x

= 2x − λ1 − 2λ2 = 0 (i)

∂L
∂y

= 2y − 2λ1 + λ2 = 0 (ii)

∂L
∂z

= 2z − λ1 + 3λ2 = 0 (iii)

in addition to the two constraints,

x + 2y + z = 30 (iv)

2x − y − 3z = 10 (v)

So there are five equations, labelled (i)–(v), which we should solve in order to determine
the five unknowns x, y, z, λ1, and λ2.

One way to solve these five equations starts by solving the pair of linear equations (i)
and (ii) simultaneously to find λ1 and λ2 in terms of x and y. This gives

λ1 = 2
5 x + 4

5 y and λ2 = 4
5 x − 2

5 y (vi)

Inserting these expressions for λ1 and λ2 into (iii), then simplifying, we obtain

x − y + z = 0 (vii)

This equation, together with (iv) and (v), constitutes a system of three linear equations in
the unknowns x, y, and z. Solving this system by elimination gives (x, y, z) = (10, 10, 0)
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as the only solution. By (vi), the corresponding values of the two Lagrange multipliers are
λ1 = 12 and λ2 = 4.

A geometric argument allows us to confirm that we have solved the minimization
problem. Each of the two constraints represents a plane in R

3, and the points satisfying
both constraints consequently lie on the straight line where the two planes intersect. Now
x2 + y2 + z2 measures (the square of) the distance from the origin to a point on this straight
line. The problem we face is to make this distance as small as possible by choosing the
point on the line that is nearest to the origin. No maximum distance can possibly exist, but
it is geometrically obvious that there is a minimum distance, which must be attained at
this nearest point.

There is an alternative method to solve this particular problem, which we admit is much
simpler. It is to reduce it to a one-variable optimization problem by using the two constraints
(iv) and (v) to solve simultaneously for y and z in terms of x, thus obtaining y = 20 − x and
z = x − 10. Indeed, these are the two equations of the straight line in 3-space where the two
planes intersect. Then the square of the distance from the origin is

x2 + y2 + z2 = x2 + (20 − x)2 + (x − 10)2 = 3(x − 10)2 + 200

This function is easily seen to have a minimum when x = 10, implying that y = 10 and
z = 0. See also Exercise 5.

E X E R C I S E S F O R S E C T I O N 1 8 . 6

1. Consider the problem min x2 + y2 + z2 s.t. x + y + z = 1.

(a) Write down the Lagrangian for this problem, and find the only point (x, y, z) that satisfies the
necessary conditions.

(b) Give a geometric argument for the existence of a solution. Does the corresponding maximiza-
tion problem have any solution?

2. Use Eq. (18.6.8) to solve the utility maximization problem

max 10x1/2y1/3z1/4 s.t. 4x + 3y + 6z = 390

3. A consumer’s demands x, y, z for three goods are chosen to maximize the utility function

U(x, y, z) = x + √
y − 1/z

which is defined for all x ≥ 0, y > 0 and z > 0. The budget constraint is px + qy + rz = m, where
p, q, r > 0 and m ≥ √

pr + p2/4q.

(a) Write out the first-order conditions for a constrained maximum.

(b) Find the utility-maximizing demands for all three goods as functions of the four parameters
(p, q, r, m).

(c) Show that the maximized utility is given by the indirect utility function

U∗(p, q, r, m) = m
p

+ p
4q

− 2
√

r
p

(d) Find ∂U∗/∂m and comment on your answer.
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4. Each week an individual consumes quantities x and y of two goods, and works for l hours. These
three quantities are chosen to maximize the utility function

U(x, y, l) = α ln x + β ln y + (1 − α − β) ln(L − l)

which is defined for 0 ≤ l < L and for x, y > 0. Here α and β are positive parameters satisfying
α + β < 1. The individual faces the budget constraint px + qy = wl, where w is the wage per
hour. Define γ = (α + β)/(1 − α − β). Find the individual’s demands x∗, y∗, and labour supply
l∗ as functions of p, q, and w.

5. Consider the problem in Example 18.6.4, and let (x, y, z) = (10 + h, 10 + k, l). Show
that if (x, y, z) satisfies both constraints, then k = −h and l = h. Then show that
x2 + y2 + z2 = 200 + 3h2. What do you conclude?

6. An important problem in statistics requires solving

min a2
1x2

1 + a2
2x2

2 + · · · + a2
nx2

n s.t. x1 + x2 + · · · + xn = 1

where the constants ai are all nonzero. Solve the problem, taking it for granted that the minimum
value exists. What is the solution in case there is at least one i for which ai = 0?

7.SM Solve the problem:

max(min) x + y s.t.

{
x2 + 2y2 + z2 = 1

x + y + z = 1

8.SM [HARDER] Consider the consumer optimization problem in Example 18.6.3. Find the demand func-
tions when:

(a) U(x1, . . . , xn) = Axa1
1 · · · xan

n , where A > 0, a1 > 0, . . . , an > 0.

(b) U(x1, . . . , xn) = xa
1 + · · · + xa

n, where 0 < a < 1.

18.7 Comparative Statics
Equation (18.2.2) offers an economic interpretation of the Lagrange multiplier for the case
of two variables and one constraint. This can be extended to the problem with n variables
and m constraints. Using vector notation, let us write that problem in the form

max(min) f (x) s.t. gj(x) = cj, for j = 1, . . . , m (18.7.1)

Let x∗ = (x∗
1, . . . , x∗

n) be the values of x that satisfy the necessary conditions for the solution
to (18.7.1). In general, x∗ depends on the values of the m-vector c = (c1, . . . , cm) of the
parameters that appear on the right-hand sides of the m equality constraints in (18.7.1). We
assume that, as the parameter vector c varies, each x∗

i = x∗
i (c) is a differentiable function.

We define the associated value function f ∗ of c so that:

f ∗(c) = f (x∗(c)) (18.7.2)
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The m Lagrange multipliers associated with x∗, namely λ1, . . . , λm, also depend on c.
Provided that certain regularity conditions are satisfied, for each j = 1, . . . , m we have

∂f ∗(c)
∂cj

= λj(c) (18.7.3)

Hence, the Lagrange multiplier λj = λj(c) for the jth constraint is the rate at which the
optimal value of the objective function changes w.r.t. changes in the parameter cj. For this
reason λj is generally referred to as the imputed shadow price (or marginal value) per unit
of resource j.

Suppose that we change the components of the vector c = (c1, . . . , cm) by the respective
amounts dc = (dc1, . . . , dcm). According to the linear approximation (15.8.5), provided that
the changes dc1, . . . , dcm are all small in absolute value, Eq. (18.7.3) implies that

f ∗(c + dc) − f ∗(c) ≈ λ1(c) dc1 + · · · + λm(c) dcm (18.7.4)

E X A M P L E 18.7.1 Consider Example 18.6.4, and suppose we change the first constraint to x + 2y +
z = 31 and the second constraint to 2x − y − 3z = 9. Estimate the corresponding change
in the value function by using (18.7.4). Find also the new exact value of the value function.

Solution: Using the notation introduced above and the results in Example 18.6.4, we have

c1 = 30, c2 = 10, dc1 = 1, dc2 = −1, λ1(30, 10) = 12, λ2(30, 10) = 4

Also, the solution we found was (x∗, y∗, z∗) = (10, 10, 0), implying that

f ∗(c1, c2) = f ∗(30, 10) = 102 + 102 + 02 = 200

Now, approximation (18.7.4) yields

f ∗(30 + 1, 10 − 1) − f ∗(30, 10)≈λ1(30, 10) dc1 + λ2(30, 10) dc2 =12 · 1 + 4 · (−1)=8

Thus, f ∗(31, 9) ≈ 200 + 8 = 208.
To find the exact value of f ∗(31, 9), observe that equations (i)–(iii), (vi) and (vii) in

the solution to Example 18.6.4 are all still valid. Thus, we have the three simultaneous
equations x + 2y + z = 31, 2x − y − 3z = 9, x − y + z = 0, whose solutions for x, y, and z
are 151/15, 31/3, and 4/15, respectively. After some computations with fractions, we find
that f ∗(31, 9) = 15 614/75 ≈ 208.19. The error in the approximation is 14/75 ≈ 0.19.

The Envelope Theorem
Examples 18.7.2 and 18.7.3 below are just two illustrations of how economists make exten-
sive use of results that emerge from introducing a vector r = (r1, . . . , rk) of k parameters
into problem (18.7.1). Specifically, we allow both the objective function f and all the con-
straint functions gj to depend not only on the n-vector x of variables to be chosen, but also
on the parameter vector r. With this notation the problem becomes

max(min)x f (x, r) s.t. gj(x, r) = 0, for j = 1, . . . , m (18.7.5)
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Note that the right-hand side of each constraint gj(x) = cj in problem (18.7.1) has become
zero. This is because we could always introduce cj as an extra parameter in the function
gj(x, r) so that the it becomes g̃j(x, r, cj) = gj(x, r) − cj, thus transforming the constraint
gj(x, r) = cj into g̃j(x, r, cj) = 0.

As usual, for each j = 1, . . . , m, let us associate a Lagrange multiplier λj with the jth
constraint in problem (18.7.5). Then the Lagrangian can be written as

L(x, r) = f (x, r) −
m∑

j=1

λjgj(x, r) (18.7.6)

In addition to the m equality constraints in problem (18.7.5), the other n first-order condi-
tions for a solution take the form

0 = ∂

∂xi
L(x, r) = ∂

∂xi
f (x, r) −

m∑
j=1

λj
∂

∂xi
gj(x, r) (for i = 1, 2, . . . , n)

By analogy with Eq. (18.7.2), let x∗(r) denote the optimal choice of x when the parameter
vector is r. Under suitable regularity assumptions, for each r and each j = 1, . . . , m there
must exist a Lagrange multiplier function λj(r) of r such that x∗(r) satisfies the n + m
first-order conditions

∂f (x∗(r), r)
∂xi

−
m∑

j=1

λj

∂gj(x
∗(r), r)

∂xi
= 0 (all i); gj(x

∗(r), r) = 0 (all j) (18.7.7)

Now define the value function
f ∗(r) = f (x∗(r), r) (18.7.8)

Given the definitions in (18.7.6) and (18.7.8), the following result holds:

T H E O R E M 1 8 . 7 . 1 ( T H E E N V E L O P E T H E O R E M )

Let r0 be any parameter vector and x0 any vector of choice variables such that:

(a) for all n-vectors x near x0 and all parameter vectors r near r0, the functions
f (x, r) and gj(x, r) (j = 1, 2, . . . , m) are all differentiable as functions of
(x, r);

(b) for all parameter vectors r near r0, there exist an n-vector x∗(r) which
is differentiable as a function of r and satisfies x∗(r0) = x0, as well as
Lagrange multipliers λj(r) (j = 1, 2, . . . , m), which together satisfy the
n + m first-order conditions in (18.7.7).

Then both the value function f ∗(r) and the Lagrangian L(x∗(r), r) are differ-
entiable as functions of r at r = r0. Moreover, for each h = 1, . . . , k, one has

∂f ∗(r)
∂rh

∣∣∣∣
r=r0

= ∂L(x0, r)
∂rh

∣∣∣∣
r=r0

(18.7.9)



�

� �

�

762 C H A P T E R 1 8 / E Q U A L I T Y C O N S T R A I N T S

This is a very useful general result that should be studied carefully. When any parameter
is changed, then f ∗(r) changes for two reasons: first, a change in rh changes the vector r
and thus changes f (x∗(r), r) directly; and, second, a change in rh changes, in general, all the
functions x∗

1(r), . . . , x∗
n(r), which changes f (x∗(r), r) indirectly. Theorem 18.7.1 shows that

the total effect on the value function of a small change in any parameter rh at r = r0 is found
by computing the partial derivative of L(x, r) w.r.t. rh, and evaluating it at x0 = x∗(r0),
ignoring altogether the indirect effect of the dependence of x∗ on r. The reason is that,
because of the FOCs (18.7.7), any small change in x that preserves the equality constraints
of problem (18.7.5) will have a negligible effect on the value of f (x∗, r), so Eq. (18.7.9)
holds.

E X A M P L E 18.7.2 In Example 18.6.3, let U∗(p, m) denote the indirect utility function whose value
is the maximum utility obtainable by the consumer when prices are p = (p1, . . . , pn) and
income is m. Let λ denote the Lagrange multiplier associated with the budget constraint.
Using Eq. (18.7.3), we see that

λ = ∂U∗

∂m
(18.7.10)

Thus, λ is the rate of increase in maximum utility as income increases. For this reason, λ is
generally called the marginal utility of income.

Including the vector (p, m) of all n + 1 parameters, the Lagrangian takes the form

L(x, p, m) = U(x) − λ(p1x1 + · · · + pnxn − m)

Obviously, ∂L/∂m = λ and ∂L/∂pi = −λxi. Hence, from (18.7.9) we get

∂U∗(p, m)

∂m
= ∂L(x, p, m)

∂m
= λ

which repeats (18.7.10). Moreover,

∂U∗(p, m)

∂pi
= ∂L(x, p, m)

∂pi
= −λx∗

i

which is called Roy’s identity.12 This formula has a nice interpretation: the marginal disu-
tility of a price increase is the marginal utility of income, λ, multiplied by the quantity
demanded, x∗

i . Intuitively, this is because, for a small price change, the loss of real income
is approximately equal to the change in price multiplied by the quantity demanded.

As an illustration of Roy’s identity, consider the consumer optimization problem with
a Cobb–Douglas utility function, as in Eq. (18.6.7). Substituting the demands given by
Eq. (18.6.8) into the utility function, we obtain the indirect utility function

U∗(p, m) = A
(

a1m
ap1

)a1

· · ·
(

anm
apn

)an

= Bma

P(p1, . . . , pn)
(18.7.11)

Here we have used the notation a = a1 + a2 + · · · + an, whereas B denotes the constant
Aa1

a1 · · · an
an/aa, and P = P(p1, . . . , pn) denotes the function pa1

1 · · · pan
n . Indeed, P is also

a Cobb–Douglas function whose powers match those of the original utility function. Also,

12 Named after the French economist René Roy (1894–1977).
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because P is homogeneous of degree a, the function defined by P̃ = P1/a is homogeneous
of degree 1, and has the property that U∗(p, m) = B(m/P̃)a, which is an increasing function
of m/P̃. Indeed, m/P̃ is homogeneous of degree 0, and is the measure of real income one
gets after dividing income by a price index P̃ that is homogeneous of degree 1 as a function
of the price vector p = (p1, . . . , pn).

Formula (18.7.11) for the indirect utility function implies that ∂U∗/∂m = Bama−1/P,
and also that

∂U∗

∂pi
= −Bma

P2

∂P
∂pi

= −Bma

P2

aiP
pi

= −Bama−1

P
aim
api

= −∂U∗

∂m
Di(p, m)

This confirms Roy’s identity for the case of a Cobb–Douglas utility function.

E X A M P L E 18.7.3 A firm uses K units of capital and L units of labour to produce an output quan-
tity of Q = F(K, L) units of a commodity. The prices of capital and labour are r and w,
respectively. Given the output requirement Q, let C∗(r, w, Q) be the value function for the
following problem of finding K and L to minimize the cost of producing Q units of output:

min C(K, L) = rK + wL s.t. F(K, L) = Q

Find expressions for ∂C∗/∂r, ∂C∗/∂w, and ∂C∗/∂Q.

Solution: Including the output requirement Q and the price parameters r and w, the
Lagrangian can be written as

L(K, L, r, w, Q) = rK + wL − λ[F(K, L) − Q]

Its partial derivatives w.r.t. r, w and Q are

∂L/∂r = K, ∂L/∂w = L, and ∂L/∂Q = λ

According to Theorem 18.7.1, we therefore have

∂C∗

∂r
= K∗,

∂C∗

∂w
= L∗, and

∂C∗

∂Q
= λ (∗)

The first two equalities are instances of Shephard’s lemma.13 The last equation shows
that the Lagrange multiplier λ must equal marginal cost, the rate at which minimum cost
increases w.r.t. changes in output.

To conclude, we present a proof of Theorem 18.7.1:

Proof: In the ensuing argument, all the relevant partial derivatives should be evalu-
ated where r = r0 and x = x0 = x∗(r0), at which point the functions f (x, r), gj(x, r)
(j = 1, . . . , k), and x∗(r) are all assumed to be differentiable. It follows that the composite
function f∗(r) = f (x∗(r), r) defined by (18.7.8) is differentiable at r = r0. Moreover, one

13 Named after American mathematical economist Ronald Shephard (1912–1982).
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can differentiate the right-hand side of (18.7.8) partially w.r.t. rh, for each h = 1, 2, . . . , k,
using the chain rule to do so. The result is

∂f ∗(r)
∂rh

=
n∑

i=1

∂f (x∗(r), r)
∂xi

∂x∗
i (r)

∂rh
+ ∂f (x∗(r), r)

∂rh
(i)

But given the Lagrangian defined by (18.7.6), its corresponding partial derivative w.r.t. rh is

∂L(x∗(r), r)
∂rh

= ∂f (x∗(r), r)
∂rh

−
m∑

j=1

λj

∂gj(x
∗(r), r)

∂rh
(ii)

Subtracting each side of (ii) from the corresponding side of (i), we obtain

∂f ∗(r)
∂rh

− ∂L(x∗(r), r)
∂rh

=
n∑

i=1

∂f (x∗(r), r)
∂xi

∂x∗
i (r)

∂rh
+

m∑
j=1

λj

∂gj(x
∗(r), r)

∂rh
(iii)

Differentiating each constraint gj(x
∗(r), r) = 0 partially w.r.t. rh, however, yields

n∑
i=1

∂gj(x
∗(r), r)

∂xi

∂x∗
i (r)

∂rh
+ ∂gj(x

∗(r), r)

∂rh
= 0 (iv)

Using (iv) to substitute for each term ∂gj(x
∗(r), r)/∂rh in (iii) gives

∂f ∗(r)
∂rh

− ∂L(x∗(r), r)
∂rh

=
n∑

i=1

⎧⎨
⎩

⎡
⎣∂f (x∗(r), r)

∂xi
−

m∑
j=1

λj

∂gj(x
∗(r), r)

∂xi

⎤
⎦ ∂x∗

i (r)
∂rh

⎫⎬
⎭ (v)

For each i = 1, 2, . . . , n, however, the corresponding term in square brackets is equal to
the partial derivative ∂L/∂xi. But then the FOCs (18.6.11) require all these to be zero at the
optimum (x∗(r), r). Hence Eq. (v) reduces to

∂f ∗(r)
∂rh

− ∂L(x∗(r), r)
∂rh

= 0

This proves Eq. (18.7.9).

Note that this proof used only the first-order conditions (18.6.11) for the problem set out
in (18.7.5). Therefore, the results in Theorem 18.7.1 are equally valid if we minimize rather
than maximize f (x, r). Note also that we did not prove that f ∗ is differentiable. Sufficient
conditions for this are discussed in FMEA.

E X E R C I S E S F O R S E C T I O N 1 8 . 7

1. Consider the utility maximization problem max x + a ln y s.t. px + qy = m, assuming that 0 ≤
a < m/p.

(a) Find the solution (x∗, y∗).

(b) Find the indirect utility function U∗(p, q, m, a), and then compute its partial derivatives w.r.t. p,
q, m, and a.

(c) Verify the envelope theorem.
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2.SM Consider the problem min x + 4y + 3z s.t. x2 + 2y2 + 1
3 z2 = b, where b > 0. Suppose that the

problem has a solution, and find it. Then verify Eq. (18.7.3).

3. A firm has L units of labour available to produce three different output commodities. If its outputs
of these commodities are x, y, and z units, its labour requirements are αx2, βy2, and γ z2 units,
respectively.

(a) Solve the problem max ax + by + cz s.t. αx2 + βy2 + γ z2 = L, where a, b, c, α, β, and γ

are positive constants.

(b) Put a = 4, b = c = 1, α = 1, β = 1
4 , and γ = 1

5 . Show that in this case the problem in part (a)
has the solution x = 4

5

√
L, y = 4

5

√
L, and z = √

L.

(c) What happens to the maximum value of 4x + y + z when L increases from 100 to 101? Find
the exact increase or decrease, as well as the appropriate linear approximation based on the
interpretation of the Lagrange multiplier.

4.SM Consider the two problems:14

max(min) f (x, y, z) = x2 + y2 + z s.t. g(x, y, z) = x2 + 2y2 + 4z2 = 1

(a) Solve them both for the specified constraint.

(b) Suppose the constraint is changed to x2 + 2y2 + 4z2 = 1.02. What is the approximate change
in the maximum value of f (x, y, z)?

5.SM Solve the problem in Example 18.7.3 for the special case when F(K, L) = K1/2L1/4, finding
explicit expressions for K∗, L∗, C∗, and λ. Verify the equalities (∗) in this special case.

6. Assuming that the cost function C∗ in Example 18.7.3 is twice continuously differentiable, prove
the symmetry relation ∂K∗/∂w = ∂L∗/∂r.

7. Given the four positive parameters a, m, p, q that satisfy m > q2/4a2p, consider the utility maxi-
mization problem max

√
x + ay s.t. px + qy = m.

(a) Find the demand functions x∗(p, q, m, a) and y∗(p, q, m, a), as well as the indirect utility func-
tion U∗(p, q, m, a).

(b) Find all four first-order partial derivatives of U∗(p, q, m, a) = x∗ + a
√

y∗, then verify the enve-
lope theorem.

R E V I E W E X E R C I S E S

1. Consider the problem max f (x, y) = 3x + 4y s.t. g(x, y) = x2 + y2 = 225.

(a) Solve both it, and the corresponding minimization problem, using the Lagrange multiplier
method.

(b) Suppose the right-hand side of the constraint is changed from 225 to 224. What is the approx-
imate change in the maximum value of f ?

14 Note that the graph of the constraint is the surface of an ellipsoid in R3, which is a closed and
bounded set.
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2. Use the demand functions x(p, q, m) and y(p, q, m) specified in Eq. (∗∗) of Example 18.1.3 in
order to write down, for each of the following three functions f (x, y) defined for all x ≥ 0 and
y ≥ 0, the solution to the problem of maximizing f (x, y) subject to px + qy = m:

(a) f (x, y) = 25x2y3 (b) f (x, y) = x1/5y2/5 (c) f (x, y) = 10
√

x 3
√

y

3.SM By selling x tons of one commodity, the firm gets a price per ton given by p(x). By selling y tons
of another commodity, the price per ton is q(y). The cost of producing and selling x tons of the
first commodity and y tons of the second is given by the differentiable function C(x, y), defined
for all x ≥ 0 and y ≥ 0.

(a) Write down the firm’s profit function and find necessary conditions for x∗ > 0 and y∗ > 0 to
solve the problem. Give economic interpretations of the necessary conditions.

(b) Suppose that the firm’s production activity causes so much pollution that the authorities limit
its output to no more than m tons of total output. Write down the necessary conditions for
x̂ > 0 and ŷ > 0 to solve the new problem.

4. Suppose that U(x, y) denotes the utility experienced by a person who enjoys x hours of leisure per
day (of 24 hours) and consumes y units per day of other goods. Suppose that the person earns an
hourly wage of w and pays an average price of p per unit of the other goods so that, assuming that
the person spends all that is earned, x and y must satisfy the constraint

py = w(24 − x) (∗)

(a) Show that maximizing U(x, y) subject to the constraint (∗) leads to the equation

pU′
1(x, y) = wU′

2(x, y) (∗∗)

(b) Suppose that the two equations (∗) and (∗∗) determine x and y as differentiable functions
x(p, w), y(p, w) of p and w. Show that, under appropriate assumptions on U(x, y), one has

∂x
∂w

= (24 − x)(wU′′
22 − pU′′

12) + pU′
2

p2U′′
11 − 2pwU′′

12 + w2U′′
22

5.SM Consider the problems

max(min) x2 + y2 − 2x + 1 s.t. 1
4 x2 + y2 = b

where b is a constant satisfying b > 4
9 .15

(a) Solve both the maximization and minimization problems.

(b) If f ∗(b) denotes the value function for the maximization problem, verify that df ∗(b)/db equals
the corresponding Lagrange multiplier λ.

6. Consider the utility maximization problem in (18.1.5) in case the utility function u(x, y) takes the
“separable” form v(x) + w(y), where v′(x) > 0, w′(y) > 0, v′′(x) ≤ 0, and w′′(y) ≤ 0.

(a) State the first-order conditions for utility maximization.

(b) Why are these conditions sufficient for optimality?

15 The constraint has a graph that is an ellipse in the xy-plane, so it defines a closed and bounded set.
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7.SM Consider the problem

min x2 − 2x + 1 + y2 − 2y s.t. (x + y)
√

x + y + b = 2
√

a

where a and b are positive constants and x and y are positive.

(a) Suppose that (x, y) solves the problem. Show that x and y must then satisfy the equations

x = y and 2x3 + bx2 = a (∗)

(b) The equations in (∗) define the solution (x∗, y∗) as a function of (a, b). Find expressions for
∂x/∂a, ∂2x/∂a2, and ∂x/∂b, assuming that each partial derivative exists.
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L I N E A R P R O G R A M M I N G

If one would take statistics about which mathematical problem is using up most of the computer time in
the world, then (not counting database handling problems like sorting and searching) the answer would
probably be linear programming.
—László Lovász (1980)

Linear programming is the name used to describe constrained optimization problems in
which the objective is to maximize or minimize a linear function subject to linear inequality

constraints. Because of its extensive use in economic decision problems, all economists should
know something about the basic theory of linear programming.

In principle, any linear programming problem, often called an LP problem, can be solved
numerically, provided that a solution exists. This is because the simplex method, introduced
by American mathematician George B. Dantzig (1914–2005) in 1947, provides a very efficient
numerical algorithm that finds the solution in a finite number of steps. As the above quotation
from Lovász indicates, the simplex method has made linear programming a mathematical tech-
nique of immense practical importance.1 That said, the simplex method will not be discussed
in this book. After all, faced with a nontrivial LP problem, it is natural to use one of the great
number of available LP computer programs to find the solution. In any case, it is probably more
important for economists to understand the basic theory of linear programming rather than
the details of the simplex method.

Indeed, the importance of LP extends even beyond its practical applications. In particular,
the duality theory of linear programming is a basis for understanding key theoretical properties
of even nonlinear optimization problems of the kind we shall discuss in Chapter 20. These, of
course, have a significantly larger range of interesting economic applications.

This chapter begins, in Section 19.1, with some examples involving only two choice variables,
which can be solved graphically. Thereafter Section 19.2 introduces the dual of a linear program,
followed by Section 19.3 which focuses on the duality theorem. Section 19.4 focuses on how
the variables in a dual LP can be given an economic interpretation as shadow prices. The final

1 It is reported that when the Mobil Oil Company’s multimillion-dollar computer system was installed
in 1958, its use to solve LP problems allowed the huge investment to pay for itself within just two
weeks. See Joel Franklin (1983) “Mathematical methods of economics”, The American Mathemat-
ical Monthly Vol. 90, no. 4.
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Section 19.5 introduces the concept of complementary slackness, which will play a key role as
well in Chapter 20.

19.1 A Graphical Approach
A general LP problem with only two decision variables involves maximizing or minimizing
a linear objective function

z = c1x1 + c2x2

subject to m linear inequality constraints

a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2

. . . . . . . . . . . . . . . . . .

am1x1 + am2x2 ≤ bm

Usually, we also impose explicit nonnegativity constraints on x1 and x2:

x1 ≥ 0, x2 ≥ 0

Note that having a ≤ rather than a ≥ sign in each of the m inequality constraints is merely a
convention. This is because any inequality of the alternative form ax1 + bx2 ≥ c is equiva-
lent to the inequality −ax1 − bx2 ≤ −c.

Luckily, LP problems with only two decision variables can be solved by a simple graph-
ical method.

E X A M P L E 19.1.1 A commercial baker has supplies consisting of 150 kilograms of flour, 22 kilos of
sugar, and 27.5 kilos of butter with which to make biscuits and cakes. Suppose that making
one dozen biscuits requires three kilos of flour, one kilo of sugar, and one kilo of butter,
whereas making one dozen cakes requires six kilos of flour, half a kilo of sugar, and one
kilo of butter.2 Suppose that the profit from one dozen biscuits is 20, whereas from one
dozen cakes it is 30. How many dozen biscuits (x1) and how many dozen cakes (x2) should
the baker produce in order to maximize profit?

Solution: Producing an output of x1 dozen biscuits plus x2 dozen cakes needs a total of
3x1 + 6x2 kilos of flour. Because only 150 kilos of flour are available, the two quantities x1

and x2 must satisfy the inequality

3x1 + 6x2 ≤ 150 (flour constraint)

Similarly, for sugar, one must have

x1 + 0.5x2 ≤ 22 (sugar constraint)

2 These quantities are intended only to be illustrative. Anybody intending to bake real biscuits or real
cakes intended for real people to eat is urged to consult real recipes intended for real bakers.
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Finally, for butter, one must have

x1 + x2 ≤ 27.5 (butter constraint)

Of course, because biscuits and cakes cannot be “unbaked” back to their original ingre-
dients, one must have x1 ≥ 0 and x2 ≥ 0. The profit obtained from producing x1 dozen
biscuits and x2 dozen cakes is z = 20x1 + 30x2. So the baker’s LP problem is

max z = 20x1 + 30x2 s.t.

⎧⎪⎪⎨
⎪⎪⎩

3x1 + 6x2 ≤ 150

x1 + 0.5x2 ≤ 22

x1 + x2 ≤ 27.5

and x1 ≥ 0, x2 ≥ 0 (∗)

This problem can be solved graphically. The output pair (x1, x2) is called feasible (or
admissible) for problem (∗) if all five inequality constraints are satisfied. Now look at the
flour constraint, 3x1 + 6x2 ≤ 150. If we use all the flour, then 3x1 + 6x2 = 150, so we call
the corresponding straight line the flour border.

We can find two more similar “borders” for the other two inputs. Figure 19.1.1 shows
the three straight lines that represent the flour border, the sugar border, and the butter border.
In order for (x1, x2) to be feasible, it has to be on or below (to the “south-west” of) each
of the three borders simultaneously. Because constraints x1 ≥ 0 and x2 ≥ 0 restrict (x1, x2)

to the nonnegative quadrant, the set of admissible pairs for problem (∗) is the shaded set S
shown in Fig. 19.1.2.3

20

30

40

10

10 20 30 40 50

x2

x1

flour border  3x1 1 6x2 5 150

sugar border  x1 1 0.5x2 5 22

butter border  x1 1 x2 5 27.5

Figure 19.1.1 Borders for the baker’s
problem
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S
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30
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10 20 30 40 50

x2

x1
L1 L2

Figure 19.1.2 Feasible region for the baker

To find the point in the feasible region that maximizes profit, a mathematically unsophis-
ticated baker might think of calculating 20x1 + 30x2 at each point of S, and then picking
the highest value. In practice, this is impossible because there are infinitely many feasible
points.

3 This set S is a so-called convex polyhedron. Its five corner points O, A, B, C, and D are called the
extreme points of S.
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Instead, let us begin by asking whether the baker can obtain a profit of, say, 600. If
so, the straight line 20x1 + 30x2 = 600 must have points in common with S. This line is
represented in Fig. 19.1.2 by the dashed line that is labelled L1. The line does have points in
common with S. One of them, for instance, occurs at (x1, x2) = (0, 20), where L1 intersects
the x2-axis. The two numbers tells us that no biscuits at all are produced, whereas 20 dozen
cakes are. At (0, 20) the baker’s profit is 20 · 0 + 30 · 20 = 600.

Can the baker do better? Yes because, for instance, the straight line 20x1 + 30x2 = 601
along which the profit is 601 also has points in common with S. In fact, for each value of
the constant c, the straight line

20x1 + 30x2 = c

is parallel to L1, which has the equation 20x1 + 30x2 = 600. As c increases, the line shifts
out farther and farther toward the north-east. But if c becomes too large, the line will pass
entirely above and to the right of the feasible set S. In order to maximize profit, the baker
should find the straight line 20x1 + 30x2 = c with the highest value of c that allows the line
to have at least one point in common with S. Inspecting Fig. 19.1.2 shows that this is the
dashed line labelled L2, which touches the feasible set S at the single point labelled B.

Note that the point B occurs at the intersection of the flour border, which includes the line
segment AB, with the butter border, which includes the line segment BC. Its coordinates,
therefore, must satisfy the two equations 3x1 + 6x2 = 150 and x1 + x2 = 27.5, since these
represent the flour border and butter border, respectively. Solving these two simultaneous
linear equations yields x1 = 5 and x2 = 22.5. These two numbers tell us that the baker
maximizes profit by baking 5 dozen biscuits and 22.5 dozen cakes. These two quantities
use all the available flour and butter, by definition. But the amount of sugar used when
x1 = 5 and x2 = 22.5 is x1 + 0.5x2 = 5 + 0.5 · 22.5 = 16.25 kilos, so 22 − 16.25 = 5.75
kilos of sugar are left over. The profit earned is 20x1 + 30x2 = 775.

E X A M P L E 19.1.2 An electronics firm that produces phones and tablets has two factories that jointly
produce the two goods in the following quantities per hour:

Factory 1 Factory 2
Phones 10 20
Tablets 25 25

The firm receives an order for 300 phones and 500 tablets. The costs of operating the two
factories are $10 000 and $8 000 per hour, respectively. Formulate the linear programming
problem of minimizing the total cost of meeting this order.

Solution: Let u1 and u2 denote the number of hours for which the two factories operate in
order to produce the order. Then the above table tells us that a total of 10u1 + 20u2 phones is
produced, as well as 25u1 + 25u2 tablets. Because 300 phones and 500 tablets are required,
the pair (u1, u2) must satisfy

10u1 + 20u2 ≥ 300

25u1 + 25u2 ≥ 500
(i)
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In addition, of course, u1 ≥ 0 and u2 ≥ 0. The total cost of operating the two factories for
u1 and u2 hours, respectively, is 10 000 u1 + 8000 u2. The problem is, therefore,

min 10 000 u1 + 8000 u2 s.t.

{
10u1 + 20u2 ≥ 300

25u1 + 25u2 ≥ 500
and u1 ≥ 0, u2 ≥ 0

The feasible set S is shown in Fig. 19.1.3. Because the constraints in (i) are ≥ inequalities
whereas all the coefficients of u1 and u2 are positive, the feasible set extends outwards
toward the north-east, as shown by the shaded area of Fig. 19.1.3.

20

30

10

10 20 30

u2

u1

A

B

C

S

25u1 1 25u2 5 500

10u1 1 20u2 5 300
L1 L2 L3

Figure 19.1.3 Feasible set in Example 19.1.2

The firm’s cost is given by the linear function c = 10 000 u1 + 8000 u2. Figure 19.1.3
includes three parallel dashed lines, marked L1, L2, and L3, which correspond to the level
curves 10 000 u1 + 8000 u2 = c for the respective values 100 000, 160 000, and 240 000 of
the cost c. As c increases, the level curve moves farther and farther out to the north-east.

In order to minimize cost, the firm needs to choose a point on the lowest level curve
10 000 u1 + 8000 u2 = c that just touches the feasible set S. So the solution to the cost min-
imization problem occurs at point A, with coordinates (0, 20). Hence, the optimal solution
is to operate factory 2 for 20 hours and not to use factory 1 at all. The resulting minimum
cost is 160 000.

This graphical method of solving linear programming problems works well when there
are only two decision variables. In principle one could extend the method to the case with
three decision variables. Then the feasible set is a convex polyhedron in 3-space, and the
level surfaces of the objective function are planes in 3-space. Then, however, it is not easy
to visualize the solution in three dimensions. For more than three decision variables, no
graphical method is available.4

Both the previous examples had optimal solutions. If the feasible region is unbounded,
however, a finite optimal solution may not exist, as the example in Exercise 4 shows.

4 By using duality theory, however, in Section 19.5 we discuss how to solve LP problems graphically
when either the number of unknowns or the number of constraints does not exceed 2.



�

� �

�

774 C H A P T E R 1 9 / L I N E A R P R O G R A M M I N G

The General LP Problem
The general LP problem is that of maximizing (or minimizing) the objective function

z = c1x1 + · · · + cnxn (19.1.1)

Here the n coefficients c1, . . . , cn are all given constants. The objective is to maximize or
minimize z subject to m inequality constraints of the form

a11x1 + · · · + a1nxn ≤ b1

a21x1 + · · · + a2nxn ≤ b2

. . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + · · · + amnxn ≤ bm

(19.1.2)

Once again, all the elements aij and bk are given constants. Usually, we require explicitly
that

x1 ≥ 0, . . . , xn ≥ 0 (19.1.3)

These are referred to as nonnegativity constraints.5 Any n-vector (x1, . . . , xn) that satisfies
all the constraints in both (19.1.2) and (19.1.3) is called feasible or admissible.

O

P

R

Q

S

T

U

V

Figure 19.1.4 A convex polyhedron

The set of feasible points is a so-called convex polyhedron in the nonnegative orthant of
n-space. A typical example in 3-space is shown in Fig. 19.1.4. Here the eight points O, P, Q,
R, S, T , U, and V are called extreme points. The line segments OP, OT , OV , etc. joining two
extreme points that are marked in Fig. 19.1.4 are called edges. These include OT and RT ,
which are indicated with dashed lines because they are hidden behind the solid polyhedron.
The flat portions of the boundary which are triangles or quadrilaterals lying within three or
four of these edges are called faces. In n-space, any convex polyhedron has extreme points,
edges, and faces.

5 Recall that there is no essential difference between a minimization problem and a maximization
problem. This is because an optimal solution (x∗

1, . . . , x∗
n) that minimizes z (19.1.1) subject to

(19.1.2) and (19.1.3) also maximizes −z subject to the same constraints.
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If n and m are large, the number of extreme points of the convex polyhedron defined
by the m + n inequalities in (19.1.2) and (19.1.3) can be astronomical, like the number of
stars in the universe. In n-dimensional space, the typical extreme point has n of the m + n
inequality constraints holding with equality. Thus, there can be as many as (m + n)!/m!n!
extreme points. For example, if n = 50 and m = 60 (which are quite small by the standards
of the problems that can be solved numerically), then there can be as many as 110!/50!60!
or more than 6 · 1031 extreme points.

Nevertheless, the simplex method can solve such problems. It relies on the fact that if
an LP problem has any solution, there must be a solution at an extreme point. Accordingly
the method provides a procedure for moving repeatedly between adjacent extreme points of
the polyhedron, along its edges, in such a way that the value of the objective function never
decreases, and usually increases. The procedure terminates when it reaches an extreme
point where no move to an adjacent extreme point will increase the value of the objective
function. We have then reached the optimal solution.

E X E R C I S E S F O R S E C T I O N 1 9 . 1

1. Use the graphical method to solve both the following LP problems:

(a) max 3x1 + 4x2 s.t.

{
3x1 + 2x2 ≤ 6

x1 + 4x2 ≤ 4
x1 ≥ 0, x2 ≥ 0

(b) min 10u1 + 27u2 s.t.

{
u1 + 3u2 ≥ 11

2u1 + 5u2 ≥ 20
u1 ≥ 0, u2 ≥ 0

2. Use the graphical method to solve both the following LP problems:

(a) max 2x1 + 5x2 s.t.

⎧⎪⎪⎨
⎪⎪⎩

−2x1 + 3x2 ≤ 6

7x1 − 2x2 ≤ 14

x1 + x2 ≤ 5

x1 ≥ 0, x2 ≥ 0

(b) max 8x1 + 9x2 s.t.

⎧⎪⎪⎨
⎪⎪⎩

x1 + 2x2 ≤ 8

2x1 + 3x2 ≤ 13

x1 + x2 ≤ 6

x1 ≥ 0, x2 ≥ 0

(c) max −2x1 + x2 s.t. 0 ≤ x1 − 3x2 ≤ 3, x1 ≥ 2, x2 ≥ 0

3.SM The set A consists of all (x1, x2) satisfying

−2x1 + x2 ≤ 2, x1 + 2x2 ≤ 8, x1 ≥ 0, x2 ≥ 0

Solve each of the following six problems with A as the common feasible set:

(a) max x2 (b) max x1 (c) max 3x1 + 2x2

(d) min 2x1 − 2x2 (e) max 2x1 + 4x2 (f) min −3x1 − 2x2
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4. Consider the following problem:

max x1 + x2 s.t.

{−x1 + x2 ≤ −1

−x1 + 3x2 ≤ 3
x1 ≥ 0, x2 ≥ 0

(a) Is there a solution to this problem?

(b) Is there a solution if the objective function is z = −x1 − x2 instead?

5. Replace the objective function in Example 19.1.1 by 20x1 + tx2. For what values of t will the
maximum profit still be at x1 = 5 and x2 = 22.5?

6. A firm produces two types of television set: an inexpensive type A, and an expensive type B. The
firm earns a profit of $700 from each TV of type A, and $1 000 for each TV of type B. There are
three stages of the production process, each requiring its own specialized kind of labour. Stage I
requires three units of labour on each set of type A and five units of labour on each set of type B.
The total available quantity of labour for this stage is 3 900. Stage II requires one unit of labour
on each set of type A and three units on each set of type B. The total labour available for this stage
is 2 100 units. At stage III, two units of labour are needed for each type, and 2 200 units of labour
are available. How many TV sets of each type should the firm produce in order to maximize its
profit?

19.2 Introduction to Duality Theory
Confronted with an optimization problem involving scarce resources, an economist will
often ask: What happens to the optimal solution if the availability of the resources changes?
For linear programming problems, answers to questions like this are intimately related to
the so-called duality theory of LP. As a point of departure, let us again consider the baker’s
problem in Example 19.1.1.

E X A M P L E 19.2.1 Suppose the baker were to stumble across an extra kilo of flour that had been hidden
away in storage. How much would this extra kilo add to his maximum profit? How much
would an extra kilo of sugar contribute to profit? Or an extra kilo of butter?

Solution: If the baker finds an extra kilo of flour, the flour border becomes 3x1 + 6x2 = 151.
It is clear from Fig. 19.1.2 that the feasible set S will expand slightly and point B will move
slightly up along the butter border. The new optimal point B′ will be at the intersection of
the lines 3x1 + 6x2 = 151 and x1 + x2 = 27.5. Solving these equations gives x1 = 14/3 and
x2 = 137/6. The objective function attains the value 20(14/3) + 30(137/6) = 2335/3 =
775 + 10/3. So profit rises by 10/3.

If the baker finds an extra kilo of sugar, the feasible set will expand, but the optimal point
is still at B. Recall that at the optimum in the original problem, the baker had 5.75 kilos of
unused sugar. There is no extra profit.

An extra kilo of butter would give a new optimal point at the intersection of the lines
3x1 + 6x2 = 150 and x1 + x2 = 28.5. Solving these equations gives x1 = 7 and x2 = 21.5
with 20x1 + 30x2 = 775 + 10. Profit rises by 10.
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We introduce the notation u∗
1, u∗

2, and u∗
3 for these three amounts of extra profit. Then

the three results above can be summarized as follows:

(a) an extra kilo of flour would allow the maximum profit to increase by u∗
1 = 10/3;

(b) an extra kilo of sugar would allow the maximum profit to increase by u∗
2 = 0;

(c) an extra kilo of butter would allow the maximum profit to increase by u∗
3 = 10.

The three numbers (u∗
1, u∗

2, u∗
3) = (10/3, 0, 10) are the marginal profits from an extra kilo

of flour, sugar, and butter, respectively. These numbers have many interesting properties that
we shall now explore.

Suppose (x1, x2) is a feasible pair in the problem, so that the three constraints in
Example 19.1.1 are satisfied. Suppose we now multiply:

(a) the flour constraint by 10/3, the marginal profit of flour;
(b) the sugar constraint by 0, the marginal profit of sugar;
(c) the butter constraint by 10, the marginal profit of butter.

Because the multipliers are all ≥ 0, the inequalities are preserved. So we have

(10/3)(3x1 + 6x2) ≤ 10
3 · 150

0(x1 + 0.5x2) ≤ 0 · 22

10(x1 + x2) ≤ 10 · 27.5

Now we add all these inequalities, using the fact that if A ≤ B, C ≤ D, and E ≤ F, then
A + C + E ≤ B + D + F. The result is

10x1 + 20x2 + 10x1 + 10x2 ≤ 10
3 · 150 + 10 · 27.5

This reduces to 20x1 + 30x2 ≤ 775. Thus, by using the “magic” numbers u∗
1, u∗

2, and u∗
3

defined above, we have managed to prove that if (x1, x2) is any feasible pair, then the objec-
tive function cannot exceed 775. But x1 = 5 and x2 = 22.5 make z equal 775. This gives
an algebraic proof that (5, 22.5) is a maximum point!

The Dual Problem
The pattern revealed in Example 19.2.1 arises in all linear programming problems. In fact,
the numbers u∗

1, u∗
2, and u∗

3 we found are solutions to a new LP problem called the dual.
Recall the baker’s problem in Example 19.1.1. We will now call it the primal and denote

it by (P). It can be written as

max 20x1 + 30x2 s.t.

⎧⎪⎪⎨
⎪⎪⎩

3x1 + 6x2 ≤ 150

x1 + 0.5x2 ≤ 22

x1 + x2 ≤ 27.5

x1 ≥ 0, x2 ≥ 0 (P)

Suppose that the baker gets tired of running the business. An entrant agrees to take it over
and buy all the remaining ingredients. The incumbent baker intends to charge the entrant
a price of u1 for each kilo of flour, of u2 for each kilo of sugar, and of u3 for each kilo of
butter.
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Because one dozen biscuits requires three kilos of flour and one kilo each of sugar
and butter, the incumbent baker will charge a total of 3u1 + u2 + u3 for all the ingredi-
ents needed to produce a dozen biscuits. There was originally a profit of 20 for each dozen
biscuits, so it seems reasonable for the incumbent baker to expect to earn at least this much
from selling these ingredients. This leads the incumbent baker to insist that the price triple
(u1, u2, u3) must satisfy

3u1 + u2 + u3 ≥ 20

Otherwise, rather than selling these ingredients needed to produce a dozen biscuits, before
turning over the business to the entrant, the incumbent would find it more profitable to use
up those ingredients in order to produce a dozen biscuits for sale.

If in addition the baker also wants to earn at least as much as before for the ingredients
needed to produce a dozen cakes, the triple of prices (u1, u2, u3) must also satisfy

6u1 + 0.5u2 + u3 ≥ 30

Now the entrant presumably wants to buy the incumbent baker’s stocks of ingredients
as inexpensively as possible. The total cost of 150 kilos of flour, 22 kilos of sugar, and 27.5
kilos of butter is 150u1 + 22u2 + 27.5u3. In order to pay as little as possible while having
the baker accept the offer, the entrant should suggest a price triple (u1, u2, u3) that solves
the LP problem

min 150u1 + 22u2 + 27.5u3 s.t.

{
3u1 + u2 + u3 ≥ 20

6u1 + 0.5u2 + u3 ≥ 30
u1 ≥ 0, u2 ≥ 0, u3 ≥ 0

(D)

This is called the dual of the primal problem, and so we have given it the label (D).
Suppose the baker lets the entrant take over the business and buy the stocks of ingredients

at prices that solve (D). Will the baker earn as much as before? It turns out that the answer
is yes. The solution to problem (D) consists of the three prices u∗

1 = 10/3, u∗
2 = 0, and

u∗
3 = 10 that we found in Example 19.2.1. At these prices the total amount the baker gets

for selling the resources is 150u∗
1 + 22u∗

2 + 27.5u∗
3 = 775, which is precisely the maximum

value of the objective function in problem (P). The price per unit that the entrant pays for
each ingredient is exactly the marginal profit for that ingredient which was calculated in
Example 19.2.1. In particular, the price of sugar is zero, because the baker has more than
can be used optimally.

The primal problem (P) and dual problem (D) turn out to be closely related. Let us now
explain how to construct the dual of a general LP problem.

The General Case
Consider the general LP problem

max c1x1 + · · · + cnxn s.t.

⎧⎪⎪⎨
⎪⎪⎩

a11x1 + · · · + a1nxn ≤ b1

. . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + · · · + amnxn ≤ bm

(19.2.1)
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with nonnegativity constraints x1 ≥ 0, . . . , xn ≥ 0. We define its dual as the LP problem

min b1u1 + · · · + bmum s.t.

⎧⎪⎪⎨
⎪⎪⎩

a11u1 + · · · + am1um ≥ c1

. . . . . . . . . . . . . . . . . . . . . . .

a1nu1 + · · · + amnum ≥ cn

(19.2.2)

with nonnegativity constraints u1 ≥ 0, . . . , um ≥ 0. Note that problem (19.2.2) involves
exactly the same coefficients c1, . . . , cn, a11, . . . , amn, and b1, . . . , bm as occur
in (19.2.1).

In the primal problem (19.2.1), there are n variables x1, . . . , xn and m constraints,
disregarding the nonnegativity constraints. In the dual (19.2.2), there are m variables u1,
. . . , um and n constraints. Whereas the primal is a maximization problem, the dual is a
minimization problem. In both problems, all variables are nonnegative. There are m “less
than or equal to” constraints in the primal problem (19.2.1), but n “greater than or equal
to” constraints in the dual problem (19.2.2). The coefficients of the objective function in
either problem are the right-hand side elements of the constraints in the other problem.
Finally, the two matrices formed by the coefficients of the variables in the constraints
in the primal and dual problems are transposes of each other, because they take the
form

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

⎞
⎟⎟⎟⎠ and A′ =

⎛
⎜⎜⎜⎝

a11 a21 . . . am1

a12 a22 . . . am2
...

...
...

a1n a2n . . . amn

⎞
⎟⎟⎟⎠ (19.2.3)

You should now check carefully that problem (D) really is the dual of problem (P) in the
sense just explained. Moreover, one can apply the process of constructing the dual (19.2.2)
of the linear program (19.2.1) to the resulting dual. Because of the symmetry between the
two problems, this process takes us from (19.2.2) back to the original primal (19.2.1). For
this reason, each problem is the dual of the other, as will be shown formally in Theorem
19.2.1 below.

Matrix Formulation
We will now express the primal and dual problems in matrix notation. In order to do so,
in addition to the matrices A and A′ set out in (19.2.3), we introduce the following four
column vectors:

x =
⎛
⎜⎝

x1
...

xn

⎞
⎟⎠ , c =

⎛
⎜⎝

c1
...

cn

⎞
⎟⎠ , b =

⎛
⎜⎝

b1
...

bm

⎞
⎟⎠ , and u =

⎛
⎜⎝

u1
...

um

⎞
⎟⎠ (19.2.4)

Also, given any pair of vectors y and z of the same dimension, we introduce the notation y �
z to mean that each component of y is less than or equal to the corresponding component
of z, with y � z as the reverse inequality.
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With this notation, the primal in (19.2.1) can be written as follows:

max c′x s.t. Ax � b, x � 0 (19.2.5)

On the other hand, the dual in (19.2.2) can be written as

min b′u s.t. A′u � c, u � 0 (19.2.6)

Sometimes it is more convenient, however, to write the dual in a slightly different way.
Transposing the vector inequality A′u � c by using the transposition rules in Eqs (12.7.2)
to (12.7.5), we obtain u′A � c′. Moreover b′u = u′b. So the dual can also be written
as

min u′b s.t. u′A � c′, u′ � 0 (19.2.7)

One advantage of matrix notation is that it allows a relatively simple proof of the fol-
lowing result:

T H E O R E M 1 9 . 2 . 1 ( T H E D U A L O F T H E D U A L I S T H E P R I M A L )

Given the primal LP in (19.2.5) and the dual LP in (19.2.6), the dual of the dual
is the primal.

Proof. By changing the signs of A′, b and c, the dual LP in (19.2.6) can be rewritten as the
following primal LP with a � vector constraint:

max (−b′)u s.t. (−A′)u � −c, u � 0 (∗)

Now, let us follow the rules needed to pass from the primal in (19.2.5) to the dual in (19.2.6),
but apply them to the dual of the LP in (∗), regarded as a primal. Because the transpose of
−A′ is −A, we obtain

min (−c)′x s.t. (−A)x � −b, x � 0

After reversing the signs, this is evidently equivalent to the primal LP in (19.2.5).

E X E R C I S E S F O R S E C T I O N 1 9 . 2

1.SM Consider Exercise 19.1.1(a).

(a) Replace the constraint 3x1 + 2x2 ≤ 6 by 3x1 + 2x2 ≤ 7. Find the new optimal solution and
compute the increase u∗

1 in the objective function.

(b) Replace the constraint x1 + 4x2 ≤ 4 by x1 + 4x2 ≤ 5. Find the new optimal solution and com-
pute the increase u∗

2 in the objective function.

(c) By the same argument as in Example 19.2.1, prove that if (x1, x2) is feasible in the original
problem, then the objective function can never be larger than 36/5.

2. Write down the dual to part (b) of Exercise 19.1.2.
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3. Write down the dual to each LP in parts (a) and (b) of Exercise 19.1.1.

4. Consider the LP problem max x1 + x2 s.t.

{
x1 + 2x2 ≤ 14

2x1 + x2 ≤ 13
x1 ≥ 0, x2 ≥ 0

(a) Use the graphical method to find its solution.

(b) Write down the dual and find its solution.

19.3 The Duality Theorem
This section presents the main results that relate the solution of an LP problem to that of
its dual. We begin by considering yet again the baker’s problem that appeared initially as
Example 19.1.1.

E X A M P L E 19.3.1 Consider the primal and dual problems that were labelled as (P) and (D) respectively
in Section 19.2. Suppose that (x1, x2) is an arbitrary feasible pair in (P), in the sense that all
five inequalities in (P) are all satisfied. Let (u1, u2, u3) be an arbitrary feasible triple that sat-
isfies all five inequalities in (D). Ignoring the two nonnegativity constraints, let us multiply
the other three inequalities in (P) by the nonnegative numbers u1, u2, and u3, respectively.
Adding the resulting three inequalities leads to the following

(3x1 + 6x2)u1 + (x1 + 0.5x2)u2 + (x1 + x2)u3 ≤ 150u1 + 22u2 + 27.5u3

Rearranging the terms on the left-hand side yields

(3u1 + u2 + u3)x1 + (6u1 + 0.5u2 + u3)x2 ≤ 150u1 + 22u2 + 27.5u3 (i)

Similarly, ignoring the three nonnegativity constraints, we multiply the other two inequal-
ities in (D) by the nonnegative numbers x1 and x2, respectively, before adding the results.
After some rearrangement, this gives

(3u1 + u2 + u3)x1 + (6u1 + 0.5u2 + u3)x2 ≥ 20x1 + 30x2 (ii)

From (i) and (ii) together, we infer that for all feasible (x1, x2) in problem (P) and for all
feasible (u1, u2, u3) in problem (D), one has

150u1 + 22u2 + 27.5u3 ≥ 20x1 + 30x2 (iii)

It follows that, however we choose a pair (x1, x2) that is feasible in the primal problem (P)
together with a triple (u1, u2, u3) that is feasible in the dual problem (D), the value of the
objective function in the dual is always greater than or equal to the value of the objective
function in the primal.

Inequality (iii) is valid for the feasible pair (x1, x2) = (5, 22.5) in particular. For each
feasible triple (u1, u2, u3), we therefore obtain

150u1 + 22u2 + 27.5u3 ≥ 20 · 5 + 30 · 22.5 = 775



�

� �

�

782 C H A P T E R 1 9 / L I N E A R P R O G R A M M I N G

Suppose that we can find a feasible triple (u∗
1, u∗

2, u∗
3) for problem (D) such that

150u∗
1 + 22u∗

2 + 27.5u∗
3 = 775

Because no lower value of the objective function in problem (D) is obtainable, it follows
that (u∗

1, u∗
2, u∗

3) must solve (D). In our discussion of problem (D) in Section 19.2, we saw
that for (u∗

1, u∗
2, u∗

3) = (10/3, 0, 10) the objective function in the dual does have the value
775. So the triple (10/3, 0, 10) does solve the dual problem.

Our analysis of this example illustrates two significant general results in LP theory. Here
is the first:

T H E O R E M 1 9 . 3 . 1

If (x1, . . . , xn) is feasible in the primal problem (19.2.1) and (u1, . . . , um) is
feasible in the dual problem (19.2.2), then

b1u1 + · · · + bmum ≥ c1x1 + · · · + cnxn (19.3.1)

So the dual objective function has a value that is always at least as large as that
of the primal objective function.

The argument for this result is not difficult:

Proof: Multiply the m inequalities in (19.2.1) by the nonnegative numbers u1, . . . , um,
then add all the inequalities together. Also, multiply the n inequalities in (19.2.2) by the
nonnegative numbers x1, . . . , xn, then add all of these. These two operations yield the two
respective inequalities

(a11x1 + · · · + a1nxn)u1 + · · · + (am1x1 + · · · + amnxn)um ≤ b1u1 + · · · + bmum

(a11u1 + · · · + am1um)x1 + · · · + (a1nu1 + · · · + amnum)xn ≥ c1x1 + · · · + cnxn

By rearranging the terms on the left-hand side of each inequality, we see that each is equal
to the double sum

∑m
i=1

∑n
j=1 aijuixj. So (19.3.1) follows immediately.

From Theorem 19.3.1 we can derive a second significant result:

T H E O R E M 1 9 . 3 . 2

Suppose that (x∗
1, . . . , x∗

n) is feasible in the primal problem (19.2.1) and
(u∗

1, . . . , u∗
m) is feasible in the dual problem (19.2.2), with

c1x∗
1 + · · · + cnx∗

n = b1u∗
1 + · · · + bmu∗

m (19.3.2)

Then (x∗
1, . . . , x∗

n) solves the primal problem (19.2.1) and (u∗
1, . . . , u∗

m) solves
the dual problem (19.2.2).
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Again, we have all the necessary ingredients we need to prove this important result:

Proof: Let (x1, . . . , xn) be an arbitrary n-vector that is feasible for problem (19.2.1). Using
(19.3.1) with u1 = u∗

1, . . . , um = u∗
m, as well as (19.3.2), we obtain

c1x1 + · · · + cnxn ≤ b1u∗
1 + · · · + bmu∗

m = c1x∗
1 + · · · + cnx∗

n

This proves that (x∗
1, . . . , x∗

n) solves (19.2.1).
On the other hand, suppose that (u1, . . . , um) is feasible for problem (19.2.2). Then

(19.3.1) and (19.3.2) together imply that

b1u1 + · · · + bmum ≥ c1x∗
1 + · · · + cnx∗

n = b1u∗
1 + · · · + bmu∗

m

This proves that (u∗
1, . . . , u∗

m) solves (19.2.2).

Theorem 19.3.2 shows that if we are able to find respective feasible solutions for the two
problems (19.2.1) and (19.2.2) that give the same value to the relevant objective functions,
then these feasible solutions are, in fact, optimal solutions.

Infeasible and Unbounded LPs
So far all the LPs we have studied have had optimal solutions, which are maximum or min-
imum points subject to all the inequality constraints. The most important result in duality
theory is the duality theorem we shall present at the end of this section. In order to make it
more readily comprehensible, however, we should first explain why an LP such as that in
(19.2.1) may have no solution.

One obvious reason for (19.2.1) not to have any solution is that its m + n inequality con-
straints, including nonnegativity constraints, determine an empty feasible set of n-vectors
(x1, . . . , xn) that satisfy all of them. In this case the LP is said to be infeasible.

It is obvious that the m + n inequality constraints determine a closed set. Suppose this
feasible set is non-empty and also bounded. Because a linear function is evidently continu-
ous, then the extreme value theorem applies and tells us that a maximum point exists. This
must solve the LP.

Yet the feasible set need not be bounded. In this case the LP could have no solution
because there are n-vectors (x1, . . . , xn) in the feasible set which make the objective function
c1x1 + · · · + cnxn arbitrarily large. If this happens, the LP is said to be unbounded. Note
that, as shown by Example 19.1.2, an LP may be bounded even though its feasible set is
unbounded.

The various possibilities are explored in the following minimal example involving only
one choice variable x and one constraint ax ≤ b, in addition to x ≥ 0:

E X A M P L E 19.3.2 For any three real constants a, b, c, all nonzero, consider the following dual pair
of LPs:

Primal: max cx s.t. ax ≤ b, x ≥ 0 Dual: min bu s.t. au ≥ c, u ≥ 0

For each of the following four values of the parameter triple (a, b, c), find the solution to
both the primal and the dual, if these exist. Otherwise, explain why there are no solutions.
(a) (1, 1, 1); (b) (1, 1, −1); (c) (1, −1, 1); (d) (−1, 1, 1).
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Solution:

(a) With (a, b, c) = (1, 1, 1), the primal is max x s.t. x ≤ 1, x ≥ 0, whose solution is evi-
dently x = 1, with maximum value 1.
The dual is min u s.t. u ≥ 1, u ≥ 0, whose solution is u = 1, with minimum value 1.

(b) Here the primal is max −x s.t. x ≤ 1, x ≥ 0, whose solution is evidently x = 0, with
maximum value 0.
The dual is min u s.t. u ≥ −1, u ≥ 0, whose solution is u = 0, with minimum
value 0.

(c) The primal is max x s.t. x ≤ −1, x ≥ 0, which is infeasible.
The dual is min −u s.t. u ≥ 1, u ≥ 0, which is unbounded.

(d) The primal is max x s.t. − x ≤ −1, x ≥ 0, which is unbounded.
The dual is min u s.t. − u ≥ 1, u ≥ 0, which is infeasible.

The next example shows that it is also possible for both the primal and dual LPs to be
infeasible.

E X A M P L E 19.3.3 Consider the following primal LP:

max x1 + x2 s.t. − x1 ≤ −1, x2 ≤ −1, x1 ≥ 0, x2 ≥ 0

The two constraints x2 ≤ −1 and x2 ≥ 0 are evidently inconsistent, so the primal LP is
infeasible. Its dual is:

min −u1 − u2 s.t. − u1 ≥ 1, u2 ≥ 1, u1 ≥ 0, u2 ≥ 0

Here the constraint −u1 ≥ 1 implies that u1 ≤ −1, which is inconsistent with u1 ≥ 0. Thus,
the dual LP is also infeasible.

The results presented in Examples 19.3.2 and 19.3.3 accord with the following promised
main result:

T H E O R E M 1 9 . 3 . 3 ( T H E D U A L I T Y T H E O R E M )

Consider the primal problem (19.2.1) along with the dual problem (19.2.2).

(a) If the primal is both feasible and bounded, then so is the dual. Also, each
LP then has a solution, with the maximum value of the primal equal to the
minimum value of the dual.

(b) If the primal is unbounded, then the dual is infeasible.

(c) If the dual is unbounded, then the primal is infeasible.

The proofs of Theorems 19.3.1 and 19.3.2 were very simple. It is much more difficult
to prove part (a) of Theorem 19.3.3, and we shall not attempt to do so here.

Part (b) of Theorem 19.3.3, however, follows readily from inequality (19.3.1). For if
(u1, . . . , um) is any feasible solution to the dual problem, then b1u1 + · · · + bmum is a finite
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number greater than or equal to any number c1x1 + · · · + cnxn when (x1, . . . , xn) is feasible
in the primal. This puts an upper bound on the possible values of c1x1 + · · · + cnxn.

Finally, part (c) of Theorem 19.3.3 follows from treating the dual LP as a primal. Indeed,
part (b) implies that, if the dual is unbounded, then the dual of the dual is infeasible. But by
Theorem 19.2.1, the dual of the dual is the primal, so part (c) follows.

An instructive exercise is to formulate and prove Theorems 19.3.1 and 19.3.2 using
matrix algebra. Let us do so for Theorem 19.3.1. Suppose the n-vector x is feasible in
(19.2.5), and the m-vector u is feasible in (19.2.7). Then x � 0 and Ax � b in the primal,
whereas u � 0 and u′A � c′ in the dual. From these four inequalities, we infer that

u′b ≥ u′(Ax) = (u′A)x ≥ c′x

Note carefully how these inequalities correspond to those we established in the earlier proof
of Theorem 19.3.1.

E X E R C I S E S F O R S E C T I O N 1 9 . 3

1.SM Consider the LP problem max 2x + 7y s.t.

{
4x + 5y ≤ 20

3x + 7y ≤ 21
x ≥ 0 , y ≥ 0.

(a) Solve it by a graphical argument.

(b) Write down the dual and solve it by a graphical argument.

(c) Are the values of the objective functions equal?6

2. Write down the dual to the problem in Example 19.1.2 and solve it. Check that the optimal values
of the primal and dual objective functions are equal.

3.SM A firm produces both small and medium television sets. The profit is 400 for each small TV and
500 for each medium TV. Each TV set has to be processed on three different assembly lines. Each
small TV requires respectively two, one, and one hour on lines 1, 2, and 3. The corresponding
numbers for medium TVs are one, four, and two. Suppose lines 1 and 2 both have a capacity of
at most 16 hours per day, whereas line 3 has a capacity of at most 11 hours per day. Let x1 and x2
denote the number of small and medium television sets that are produced per day.

(a) Show that to maximize profits per day, the firm must solve the following problem:

max 400x1 + 500x2 s.t.

⎧⎪⎪⎨
⎪⎪⎩

2x1 + x2 ≤ 16

x1 + 4x2 ≤ 16

x1 + 2x2 ≤ 11

x1 ≥ 0, x2 ≥ 0

(b) Solve this problem graphically.

(c) Suppose the firm could increase its capacity by one hour a day on just one of its assembly
lines. Which line should have its capacity increased?

6 If not, then, according to Theorem 19.3.3, you have made a mistake.
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19.4 A General Economic Interpretation
This section gives an economic interpretation of the general LP problem (19.2.1) and its dual
(19.2.2). Think of a firm that, like the commercial baker in Example 19.1.1, produces one
or more different kinds of output using m different resources as inputs. Suppose there are
n different activities (or processes) involved in the production process. A typical activity
needs a certain amount of each resource to run it at unit level. Let aij denote the number
of units of resource i that are needed to run activity j at unit level. Then the m-vector with
components a1j, a2j, . . . , amj expresses the amounts of the m different resources required to
run activity j at unit level. If we run the n different activities at levels x1, . . . , xn, then the
total requirements for the m different resources can be expressed as the column m-vector

x1

⎛
⎜⎝

a11
...

am1

⎞
⎟⎠ + · · · + xn

⎛
⎜⎝

a1n
...

amn

⎞
⎟⎠

If the available amounts of the m resources are b1, . . . , bm, then the feasible activity levels
are those that satisfy the m constraints in (19.2.1). The nonnegativity constraints reflect the
fact that we cannot run the activities at negative levels.

For each j = 1, 2, . . . , n, running activity j at unit level earns a certain reward (or value)
that we denote by cj. The total reward from running the n activities at levels x1, . . . , xn is
then c1x1 + · · · + cnxn. So the firm faces the problem of solving the following LP problem:

Find those levels for the n different activities that maximize the total reward, subject to the
m given resource constraints.

In the baker’s problem of Example 19.1.1, the two activities were baking the two dif-
ferent types of pastry (biscuits and cakes), using as ingredients appropriate amounts of the
three different resources (flour, sugar and butter).

Let us turn next to the dual problem (19.2.2). In order to remain in business, the firm has
to use some resources. Each resource, therefore, has some value that a typical economist will
regard as a price. Let uj denote the price associated with each unit of resource j. Rather than
think of uj as a market price for resource j, we should think of it as measuring the relative
contribution that one unit of resource j makes to the total economic reward. Because these
are not real market prices, they are often called shadow prices.

Given the quantities a1j, a2j, . . . , amj of each of the m resources that are needed to run
activity j at unit level, the total shadow cost of running activity j at unit level equals the sum
a1ju1 + a2ju2 + · · · + amjum. Given that cj is the reward earned by running activity j at unit
level, we can regard the difference

cj − (a1ju1 + a2ju2 + · · · + amjum)

as the shadow profit from running activity j at unit level. Note that, for each j = 1, 2, . . . ,
m, the jth constraint in the dual problem (19.2.2) says that the shadow profit from running
activity j at unit level cannot be positive.

Equivalently, the part of the reward cj from running activity j that can be imputed to each
resource i is aijui. Then the jth constraint in the dual problem (19.2.2) says that the total
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which can be imputed to all the resources used by running activity j at unit level cannot be
less than the corresponding reward cj.

The objective function Z = b1u1 + · · · + bmum in the dual LP problem (19.2.2) measures
the shadow value of the initial stock of all the resources. The dual problem is, therefore:

Among all choices of nonnegative shadow prices u1, . . . , um such that the profit from run-
ning each activity at unit level is nonpositive, find those prices which together minimize the
shadow value of the initial resources.

The Optimal Dual Variables as Shadow Prices
Consider again the primal problem (19.2.1). What happens to the optimal value of the objec-
tive function if the numbers b1, . . . , bm change? If the changes �b1, . . . , �bm are positive,
then the feasible set increases and the new optimal value of the objective function cannot
be smaller; usually it increases. The following analysis also applies when some or all the
changes �b1, . . . , �bm are negative.

Suppose the two n-vectors x∗ = (x∗
1, . . . , x∗

n) and x∗ + �x = (x∗
1 + �x1, . . . , x∗

n + �xn)

are optimal solutions to the primal problem when the right-hand sides of the constraints
in (19.2.1) are respectively the two m-vectors (b1, . . . , bm) and (b1 + �b1, . . . , bm + �bm).
Note that the components of these two vectors b and b + �b are the coefficients bj and
bj + �bj of the choice variables uj in the corresponding dual problem given by (19.2.2).
Now, the inequality and nonnegativity constraints appearing in each of these dual problems
are exactly the same; only the coefficients in the objective functions are slightly different.
It follows that the set of all feasible points for both these dual problems will be exactly the
same convex polyhedron in m-dimensional space, as illustrated by Fig. 19.1.4. Finally, an
optimal solution of each dual problem will occur at a vertex of this polyhedron. Typically,
therefore, provided that |�b1|, . . . , |�bm| are all sufficiently small, the solution of both dual
problems will occur at exactly the same vertex of this common polyhedron. This implies
that both dual problems will have exactly the same optimal solution u∗

1, . . . , u∗
m. In this case,

according to Theorem 19.3.3, one has

c1x∗
1 + · · · + cnx∗

n = b1u∗
1 + · · · + bmu∗

m

and c1(x
∗
1 + �x1) + · · · + cn(x

∗
n + �xn) = (b1 + �b1)u

∗
1 + · · · + (bm + �bm)u∗

m

Hence, subtracting each side of the first equation from the second, one has

c1 �x1 + · · · + cn �xn = u∗
1 �b1 + · · · + u∗

m �bm

Here the left-hand side is the change we obtain in the maximum value of the objective
function in (19.2.1) when b1, . . . , bm are increased by �b1, . . . , �bm, respectively. Denoting
this change in z by �z∗, we obtain

�z∗ = u∗
1 �b1 + · · · + u∗

m �bm (19.4.1)

It is important to note that the assumption used to justify (19.4.1) is that the numbers
bj do not change enough to cause the optimal dual variables to change. In case (19.4.1)
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does hold, and if �bj = 1, while �bi = 0 for all i �= j, then one will have �z∗ = u∗
j , which

accords with the results in Example 19.2.1. For this reason, the real number u∗
j is also known

as the shadow price of the jth inequality constraint

aj1x1 + · · · + ajnxn ≤ bj

E X E R C I S E S F O R S E C T I O N 1 9 . 4

1. For the problem in Exercise 19.3.1, we found that its optimal solution was x∗ = 0 and y∗ = 3,
with z∗ = 2x∗ + 7y∗ = 21. The optimal solution of the dual was u∗

1 = 0 and u∗
2 = 1. Suppose we

change 20 to 20.1 and 21 to 20.8. What is the corresponding change in the maximized value of
the objective function?

2.SM A firm produces two goods labelled A and B. The firm earns a profit of 300 from each unit of
good A, and 200 from each unit of B. There are three stages of the production process. Good A
requires six hours in a machine shop, then four hours on an assembly line, and finally five hours of
packing. The corresponding numbers for B are three, six, and five, respectively. The total number
of hours available for the three stages are 54, 48, and 50, respectively.

(a) Formulate and solve the LP problem of maximizing profits subject to the given constraints.

(b) Write down and solve the dual problem.

(c) By how much would the optimal profit increase if the firm were allowed two hours more
preparation time and one hour more packing time?

19.5 Complementary Slackness
Consider again the baker’s problem (P) in Section 19.2, along with its dual (D). The solution
to (P) was x∗

1 = 5 and x∗
2 = 22.5, at which the first and the third inequalities both hold

with equality. The solution to the dual was u∗
1 = 10/3, u∗

2 = 0, and u∗
3 = 10, at which both

inequalities in the dual hold with equality. Thus, in this example

x∗
1 > 0, x∗

2 > 0 ⇒ the first and second inequalities in the dual hold with equality

u∗
1 > 0, u∗

3 > 0 ⇒ the first and third inequalities in the primal hold with equality

We interpret the second implication as telling us that, because the shadow prices of flour
and butter are both positive, the optimal solution requires all the available flour and butter
to be used. But because the optimal solution does not use all the available sugar, its shadow
price is zero; it is not a scarce resource.

Implications like this hold more generally. Indeed, consider the problem

max c1x1 + c2x2 s.t.

⎧⎪⎪⎨
⎪⎪⎩

a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2

a31x1 + a32x2 ≤ b3

x1 ≥ 0, x2 ≥ 0 (i)
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Its dual is

min b1u1 + b2u2 + b3u3 s.t.

{
a11u1 + a21u2 + a31u3 ≥ c1

a12u1 + a22u2 + a32u3 ≥ c2

u1 ≥ 0, u2 ≥ 0, u3 ≥ 0

(ii)
Suppose that (x∗

1, x∗
2) solves (i) and (u∗

1, u∗
2, u∗

3) solves (ii). Then

(iii)

⎧⎪⎪⎨
⎪⎪⎩

a11x∗
1 + a12x∗

2 ≤ b1

a21x∗
1 + a22x∗

2 ≤ b2

a31x∗
1 + a32x∗

2 ≤ b3

and (iv)

{
a11u∗

1 + a21u∗
2 + a31u∗

3 ≥ c1

a12u∗
1 + a22u∗

2 + a32u∗
3 ≥ c2

Now multiply the three inequalities in (iii) by the nonnegative numbers u∗
1, u∗

2, and u∗
3,

respectively. Then add the results. This yields the inequality

(a11x∗
1 + a12x∗

2)u
∗
1 + (a21x∗

1 + a22x∗
2)u

∗
2 + (a31x∗

1 + a32x∗
2)u

∗
3 ≤ b1u∗

1 + b2u∗
2 + b3u∗

3 (v)

Next, multiply the two inequalities in (iv) by x∗
1 and x∗

2, respectively, then add. Because x∗
1

and x∗
2 are also nonnegative, this gives

(a11u∗
1 + a21u∗

2 + a31u∗
3)x

∗
1 + (a12u∗

1 + a22u∗
2 + a32u∗

3)x
∗
2 ≥ c1x∗

1 + c2x∗
2 (vi)

But the left-hand sides of the inequalities (v) and (vi) are both expansions of the common
double sum

∑3
i=1

∑2
j=1 u∗

i aijx
∗
j , so must be rearrangements of each other. Moreover, by

the Duality Theorem 19.3.3, their right-hand sides are equal as the common value of both
primal and dual. It follows that

c1x∗
1 + c2x∗

2 =
3∑

i=1

2∑
j=1

u∗
i aijx

∗
j = b1u∗

1 + b2u∗
2 + b3u∗

3 (vii)

In particular, both the inequalities in (v) and (vi) can be replaced by equalities. So we can
rearrange the equality version of (v) to obtain

(a11x∗
1 + a12x∗

2 − b1)u
∗
1 + (a21x∗

1 + a22x∗
2 − b2)u

∗
2 + (a31x∗

1 + a32x∗
2 − b3)u

∗
3 = 0

Because (x∗
1, x∗

2) is feasible, the inequalities in (iii) imply that each of the three terms in
parentheses is ≤ 0. But each u∗

i ≥ 0, so the left-hand side is the sum of three ≤ 0 terms. If
any term is negative, so is their sum. Yet the whole sum is 0, so each term is 0. Hence

(ai1x∗
1 + ai2x∗

2 − bi)u
∗
i = 0 (i = 1, 2, 3)

We conclude that

ai1x∗
1 + ai2x∗

2 ≤ bi, with ai1x∗
1 + ai2x∗

2 = bi if u∗
i > 0 (i = 1, 2, 3) (∗)

Next, using (vii) once again, or equivalently, the fact that the inequality sign ≥ in (vi)
can be replaced by =, we have

(a11u∗
1 + a21u∗

2 + a31u∗
3 − c1)x

∗
1 + (a12u∗

1 + a22u∗
2 + a32u∗

3 − c2)x
∗
2 = 0
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Then, reasoning in exactly the same way as we did in deriving (∗), this gives

a1ju
∗
1 + a2ju

∗
2 + a3ju

∗
3 ≥ cj, with a1ju

∗
1 + a2ju

∗
2 + a3ju

∗
3 = cj if x∗

j > 0, (i = 1, 2)

(∗∗)

The two sets of inequalities (or equalities) in (∗) and (∗∗) are called complementary slack-
ness conditions. The arguments used to show their necessity extend in a straightforward
way to general LPs. Furthermore, the same complementary slackness conditions in (∗) and
(∗∗) are also sufficient for optimality. Here is a general statement and proof:

T H E O R E M 1 9 . 5 . 1 ( C O M P L E M E N T A R Y S L A C K N E S S )

Suppose that the primal maximization problem (19.2.1) has an optimal solu-
tion x∗ = (x∗

1, . . . , x∗
n), whereas the dual minimization problem (19.2.2) has an

optimal solution u∗ = (u∗
1, . . . , u∗

m). Then for i = 1, . . . , m, and j = 1, . . . , n,
one has the complementary slackness conditions

a1ju
∗
1 + · · · + amju

∗
m ≥ cj, with a1ju

∗
1 + · · · + amju

∗
m = cj if x∗

j > 0 (19.5.1)

and

ai1x∗
1 + · · · + ainx∗

n ≤ bi, with ai1x∗
1 + · · · + ainx∗

n = bi if u∗
i > 0 (19.5.2)

Conversely, suppose that x∗ and u∗ have all their components nonnegative
while satisfying both (19.5.1) and (19.5.2). Then x∗ solves the primal problem
(19.2.1) and u∗ solves the dual problem (19.2.2).

While longer than previous arguments, the following proof of this theorem should be
well within your grasp:

Proof: Suppose that the n-vector x∗ � 0 solves (19.2.1) and that the m-vector u∗ � 0 solves
(19.2.2). Using the matrix notation of (19.2.5) and (19.2.7), it follows that

Ax∗ � b and (u∗)′A � c′ (i)

Multiplying each side of the first inequality in (i) on the left by the row vector (u∗)′ � 0,
and each side of the second inequality on the right by the column vector x∗ � 0, we obtain

(u∗)′Ax∗ ≤ (u∗)′b and (u∗)′Ax∗ ≥ c′x∗ (ii)

According to Theorem 19.3.3, one has (u∗)′b = c′x∗. So both inequalities in (ii) must be
equalities. They can be written as

(u∗)′(Ax∗ − b) = 0 and [(u∗)′A − c′]x∗ = 0 (iii)
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But these two equations are equivalent to the two equalities

m∑
i=1

u∗
i (ai1x∗

1 + · · · + ainx∗
n − bi) = 0 (iv)

n∑
j=1

(a1ju
∗
1 + · · · + amju

∗
m − cj)x

∗
j = 0 (v)

For i = 1, . . . , m one has both u∗
i ≥ 0 and ai1x∗

1 + · · · + ainx∗
n − bi ≤ 0. So each term in the

sum (iv) is ≤ 0. If any term is negative, so is their sum; but the sum of all m terms is 0, so
each term in (iv) must be 0 as well. Therefore,

u∗
i (ai1x∗

1 + · · · + ainx∗
n − bi) = 0, i = 1, . . . , m (vi)

Now (19.5.2) follows immediately. Property (19.5.1) is proved in the same way by noting
how (v) implies that

(a1ju
∗
1 + · · · + amju

∗
m − cj)x

∗
j = 0, j = 1, . . . , n (vii)

Suppose conversely that x∗ and u∗ have all their components nonnegative and satisfy
(19.5.1) and (19.5.2) respectively. It follows immediately that (vi) and (vii) are satisfied. So
summing over i and j, respectively, we obtain (iv) and (v). These equations imply that

m∑
i=1

biu
∗
i =

m∑
i=1

n∑
j=1

u∗
i aijx

∗
j and also

n∑
j=1

cjx
∗
j =

n∑
j=1

m∑
i=1

u∗
i aijx

∗
j

Because the two double sums on the right-hand sides are equal, it follows that
∑m

i=1 biu
∗
i =∑n

j=1 cjx
∗
j . So according to Theorem 19.3.2, x∗ solves problem (19.2.1) and u∗ solves the

dual.

Using the economic interpretations we gave in Section 19.4, conditions (19.5.1) and
(19.5.2) can be interpreted as follows:

I N T E R P R E T A T I O N O F T H E C O M P L E M E N T A R Y S L A C K N E S S C O N D I T I O N S

(i) If the optimal solution of the primal problem implies that activity j is in
operation (x∗

j > 0), then the (shadow) profit from running that activity at
unit level is 0.

(ii) If the shadow price of resource i is positive (u∗
i > 0), then all the available

stock of resource i must be used in any optimum.
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How Complementary Slackness Can Help Solve LP Problems
If the solution to either the primal or the dual problem is known, then the complemen-
tary slackness conditions can help find the solution to the other problem. They do so by
determining which constraints are slack, and so which hold with equality. Let us look at an
example.

E X A M P L E 19.5.1 Write down the dual of the following LP problem, and use a graphical argument to
solve that dual.

max 3x1 + 4x2 + 6x3 s.t.

{
3x1 + x2 + x3 ≤ 2

x1 + 2x2 + 6x3 ≤ 1
, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 (i)

Then use complementary slackness to solve problem (i).

Solution: The dual problem is

min 2u1 + u2 s.t.

⎧⎪⎪⎨
⎪⎪⎩

3u1 + u2 ≥ 3

u1 + 2u2 ≥ 4

u1 + 6u2 ≥ 6

, u1 ≥ 0, u2 ≥ 0 (ii)

Using the same graphical technique as we used to solve Example 19.1.2, we find the solu-
tion u∗

1 = 2/5 and u∗
2 = 9/5. Inserting these values into the three constraints, we have

3u∗
1 + u∗

2 = 3, u∗
1 + 2u∗

2 = 4, and u∗
1 + 6u∗

2 = 56/5 > 6.
What does this solution to (ii) tell us about the solution (x∗

1, x∗
2, x∗

3) to (i)? According to
(19.5.2), because u∗

1 > 0 and u∗
2 > 0, both inequalities in (i) are satisfied with equality. So

3x∗
1 + x∗

2 + x∗
3 = 2 and x∗

1 + 2x∗
2 + 6x∗

3 = 1 (iii)

Next, because u∗
1 + 6u∗

2 > 6, the complementary slackness condition (19.5.1) implies that
x∗

3 = 0. Putting x∗
3 = 0 in (iii) and then solving for x∗

1 and x∗
2, we obtain

x∗
1 = 3/5, x∗

2 = 1/5, x∗
3 = 0

This is the solution to problem (i). Note that the optimal values of the objective functions in
the two problems are indeed equal because 2u∗

1 + u∗
2 = 13/5 and 3x∗

1 + 4x∗
2 + 6x∗

3 = 13/5.
This is just what the duality theorem says should happen.

Duality When Some Constraints are Equalities
Suppose that for the ith of the m constraints in the primal problem set out in (19.2.1), instead
of inequality we have the equality

ai1x1 + · · · + ainxn = bi (∗)

In order to put the problem into the standard form in (19.2.1), we can replace the single
equality (∗) by the double inequality

ai1x1 + · · · + ainxn ≤ bi and − ai1x1 − · · · − ainxn ≤ −bi (∗∗)
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Constraint (∗) thus gives rise to two dual variables u′
i and u′′

i associated with the two con-
straints in (∗∗). For each j = 1, . . . , n, the term aijui in the sum on the left-hand side of the
dual constraint

∑m
k=1 akjuk ≥ cj in (19.2.2) gets replaced by aiju

′
i − aiju

′′
i . This allows us to

replace the two variables u′
i and u′′

i by the single variable ui = u′
i − u′′

i , but then there is no
restriction on the sign of ui. We see that if the ith constraint in the primal is an equality,
then the ith dual variable has an unrestricted sign.

This is consistent with the economic interpretation we have given. If we are forced to
use all of resource i, then it is not surprising that the resource may have a negative shadow
price; it may be something that is harmful in excess. For instance, if the baker of Example
19.1.1 was forced to include all the stock of sugar in the cakes, the best point in Fig. 19.1.2
would be C, not B. Some profit would be lost.

From the symmetry between the primal and the dual, we realize now that if one of the
variables in the primal has an unrestricted sign, then the corresponding constraint in the
dual is an equality.

E X E R C I S E S F O R S E C T I O N 1 9 . 5

1. Consider Exercise 19.3.1. The solution of the primal was x∗ = 0 and y∗ = 3, with u∗
1 = 0 and

u∗
2 = 1 as the solution of the dual. Verify that all the complementary slackness conditions in

(19.5.1) and (19.5.2) are satisfied in this case.

2. Consider the following problem:

min y1 + 2y2 s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y1 + 6y2 ≥ 15

y1 + y2 ≥ 5

−y1 + y2 ≥ −5

y1 − 2y2 ≥ −20

y1 ≥ 0, y2 ≥ 0

(a) Solve this LP graphically.

(b) Write down the dual problem and solve it.

(c) If the first constraint y1 + 6y2 ≥ 15 is changed to y1 + 6y2 ≥ 15.1, what happens to the opti-
mal values of the dual variables?

3.SM A firm produces two commodities A and B. The firm has three factories that jointly produce both
commodities in the amounts per hour given in the following table:

Factory 1 Factory 2 Factory 3
Commodity A 10 20 20
Commodity B 20 10 20

The firm receives an order for 300 units of A and 500 units of B. The costs per hour of running
factories 1, 2, and 3 are respectively €10 000, €8 000, and €11 000.

(a) Let y1, y2, and y3, respectively, denote the number of hours for which the three factories are
used. Write down the linear programming problem of minimizing the costs of fulfilling the
order.
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(b) Write down the dual LP and solve it graphically. Then find the solution of the problem in
part (a).

(c) By how much will the minimum cost of production increase if the cost per hour in factory 1
increases by 100?

4. [HARDER] Consider the LP problem

max 3x1 + 2x2 s.t.

⎧⎪⎪⎨
⎪⎪⎩

x1 + x2 ≤ 3

2x1 + x2 − x3 ≤ 1

x1 + 2x2 − 2x3 ≤ 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

(a) Suppose x3 is a fixed number. Solve the problem in each of the two alternative cases when
x3 = 0 and x3 = 3.

(b) Formulate and solve the problem for any fixed value of x3 in [0, ∞). The maximal value of
3x1 + 2x2 becomes a function of x3. Find this function and maximize it.

(c) Do the results in part (b) say anything about the solution to the original problem, in which the
variable x3 can also be chosen?

R E V I E W E X E R C I S E S

1. Consider the LP problem max x + 2y s.t.

⎧⎪⎪⎨
⎪⎪⎩

x + y ≤ 4

−x + y ≤ 1

2x − y ≤ 3

x ≥ 0, y ≥ 0

(a) Find the solution. (b) Formulate and solve the dual problem.

2.SM Consider the LP problem

min 16y1 + 6y2 − 8y3 − 15y4 s.t.

{ −y1 + y2 − 2y3 − 4y4 ≥ −1

2y1 − 2y2 − y3 − 5y4 ≥ 1

where yi ≥ 0 for i = 1, 2, 3, 4.

(a) Write down the dual problem and solve it.

(b) Find the solution to the primal problem.

(c) If the first constraint in the primal is changed to −y1 + y2 − 2y3 − 4y4 ≥ k, for what values
of k will the solution of the dual occur at the same point as for k = −1?

3. Consider the LP problem

min 5x + y s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4x + y ≥ 4

2x + y ≥ 3

3x + 2y ≥ 2

−x + 2y ≥ −2

x ≥ 0, y ≥ 0

(a) Solve it. (b) Formulate the dual problem and solve it.
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4.SM A firm has two plants each of which jointly produces outputs of three different goods. Its total
labour force is fixed. When a fraction λ of its labour force is allocated to its first plant and a fraction
1 − λ to its second plant, with 0 ≤ λ ≤ 1, the total outputs of the three different goods are given
by the components of the vector

λ(8, 4, 4) + (1 − λ)(2, 6, 10) = (6λ + 2, −2λ + 6, −6λ + 10)

(a) Is it possible for the firm to produce either of the two output vectors a = (5, 5, 7) and b =
(7, 5, 5) if output cannot be thrown away?

(b) How do your answers to part (a) change if output can be thrown away?

(c) Let (p1, p2, p3) denote the vector of prices at which the firm can sell the three goods. How
will the revenue-maximizing choice of the fraction λ depend upon this price vector? What
condition must the vector satisfy if both plants are to remain in use?

5.SM The production of three goods requires using two machines. Machine 1 can be utilized for b1
hours, while machine 2 can be utilized for b2 hours. The time spent for the production of one unit
of each good is given by the following table:

Machine 1 Machine 2
Good 1 3 2
Good 2 1 2
Good 3 4 1

The profits per unit produced of the three goods are £6, £3, and £4, respectively.

(a) Write down the linear programming problem this leads to.

(b) Show that the dual is min b1y1 + b2y2 s.t.

⎧⎪⎪⎨
⎪⎪⎩

3y1 + 2y2 ≥ 6

y1 + 2y2 ≥ 3

4y1 + y2 ≥ 4

y1 ≥ 0, y2 ≥ 0.

Solve this problem graphically for b1 = b2 = 100.

(c) Solve the problem in (a) when b1 = b2 = 100.

(d) Suppose that the time for which machine 1 can be used increases to 101, while b2 = 100.
What is the new maximal profit?

(e) The maximum value of the profit in problem (a) is a function of b1 and b2, which we denote
by F(b1, b2). What is the degree of homogeneity of the function F?
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20
N O N L I N E A R
P R O G R A M M I N G

Chapter 18 considered how to maximize or minimize a function subject to equality con-
straints. Chapter 19 then allowed for inequality constraints, but concentrated on the special

case where both the objective function and all the functions defining those constraints are lin-
ear. In this last chapter of the book we study “nonlinear programming” problems in which both
the objective function and all the functions defining the inequality constraints may be nonlinear.
Some particularly simple inequality constraints are those requiring certain variables to be non-
negative. These often have to be imposed for the solution to make economic sense. In addition,
bounds on resource availability are often expressed as inequalities rather than equalities.

Section 20.1 discusses the simple case of two choice variables and one inequality constraint.
Next, Section 20.2 advances our discussion to problems with many choice variables and inequal-
ity constraints. The last Section 20.3 concludes by considering an important special case when
some of the inequality constraints require one or more choice variables to be nonnegative.

20.1 Two Variables and One Constraint
In this section we consider the simple nonlinear programming problems with just two vari-
ables and one inequality constraint. In the case of maximization problems, these take the
form

max f (x, y) s.t. g(x, y) ≤ c (20.1.1)

Thus, we seek the largest value attained by f (x, y) in the admissible or feasible set S of all
pairs (x, y) satisfying g(x, y) ≤ c. Problems where one wants to minimize f (x, y) subject to
(x, y) ∈ S can be handled by studying instead the problem of maximizing −f (x, y) subject
to (x, y) ∈ S.
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Problem (20.1.1) can be solved using the methods for unconstrained optimization that
were explained in Chapter 17. This involves examining not only the critical points of f in the
interior of the admissible set S, but also the behaviour of f on the boundary of S. Since the
1950s, however, economists have generally tackled such problems by using an extension
of the Lagrange multiplier method. This we will call the Karush–Kuhn–Tucker method, or
KKT method for short.1

To apply the KKT method, we begin by following a recipe that gives all the points
(x, y) in the xy-plane which, except in some bizarre special cases, can possibly solve
problem (20.1.1). Since the only difference from problem (18.1.1) is that the equality
constraint back there has become an inequality constraint here, it should be no surprise
that the recipe closely resembles the Lagrange multiplier method that we put forward in
Section 18.1.

T H E K K T M E T H O D , S I M P L E C A S E

To find the only possible solutions to problem (20.1.1), proceed as follows:

(i) Associate a constant Lagrange multiplier λ with the constraint g(x, y) ≤ c,
and define the Lagrangian

L(x, y) = f (x, y) − λ[g(x, y) − c]

(ii) Find the critical points of L(x, y), by equating its partial derivatives to
zero:

L′
1(x, y) = f ′

1(x, y) − λg′
1(x, y) = 0

and L′
2(x, y) = f ′

2(x, y) − λg′
2(x, y) = 0

(20.1.2)

(iii) Introduce the complementary slackness condition:

λ ≥ 0, with λ = 0 if g(x, y) < c (20.1.3)

(iv) Require (x, y) to satisfy the constraint

g(x, y) ≤ c (20.1.4)

(v) Find all the points (x, y) that, together with associated values of λ, satisfy
all the conditions (20.1.2) to (20.1.4). These are the solution candidates,
at least one of which solves the problem, if it has a solution.

If g = c and g′
1 = g′

2 = 0 at the maximum of the problem, this method may
fail.

1 Most economists continue to call this the Kuhn–Tucker method, after the American H.W. Kuhn
(1925–2014) and Canadian A.W. Tucker (1905–1975). Mathematicians, however, including Kuhn
in particular, long ago recognized the relevance and even priority of W. Karush’s (1939) Master’s
thesis.
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Note that the conditions (20.1.2) are exactly two of the same first-order conditions as
those used in the Lagrange multiplier method of Section 18.1. Furthermore, the constraint
in condition (20.1.4) obviously has to be satisfied.

So the only new feature is condition (20.1.3), which can be rather tricky. It may be help-
ful to recall the corresponding complementary slackness condition (19.5.2) for the typical
linear programming problem. For the nonlinear programming problem we are consider-
ing here, condition (20.1.3) requires that λ be nonnegative, and moreover that λ = 0 if
g(x, y) < c. Thus, if λ > 0, we must have g(x, y) = c. An alternative formulation of condi-
tion (20.1.3), then, is that

λ ≥ 0, with λ · [g(x, y) − c] = 0 (20.1.5)

Later we shall see that the Lagrange multiplier associated with an inequality constraint
can be interpreted as a “shadow price”, just as it was in Chapter 18 for an equality constraint,
and in the latter part of Section 19.4 for linear programming problems. That is, for small
changes in the right-hand side c of the “resource constraint” g(x, y) ≤ c, the multiplier λ

is approximately the gain in the maximized objective function per unit increase in c. With
this interpretation, the shadow price is nonnegative. When g(x, y) < c at the optimum, so
the resource constraint does not bind, then (20.1.3) implies that λ = 0, signifying that the
extra value associated with a small increase in c is 0.

The two inequalities λ ≥ 0 and g(x, y) ≤ c are complementary in the sense that at most
one can be “slack”, meaning that at most one can hold with strict inequality. Equivalently,
at least one must be an equality. Failing to observe that it is possible to have both λ = 0 and
g(x, y) = c in the complementary slackness condition is probably the most common error
when solving nonlinear programming problems.

Parts (ii)–(iv) of the KKT method set out above are together called the KKT conditions.
Note that these are (essentially) necessary conditions for the solution of Problem (20.1.1).
In general, though, they are far from sufficient: indeed, suppose that one can find a point
(x0, y0) where f is critical and g(x0, y0) < c; then the KKT conditions will automatically be
satisfied by (x0, y0) together with the Lagrange multiplier λ = 0, yet then (x0, y0) could be
a local or global minimum or maximum, or even a saddle point.

We say that these KKT conditions are only essentially necessary because there may
not always be a Lagrange multiplier for which the KKT conditions hold. The exceptions
are some rather rare constrained optimization problems that fail to satisfy a special technical
condition called the “constraint qualification”. For details, see FMEA.

With equality constraints, setting the partial derivative ∂L/∂λ equal to zero just recov-
ers the constraint g(x, y) = c. Yet with an inequality constraint, one can have ∂L/∂λ =
−g(x, y) + c > 0 if the constraint is slack or inactive at an optimum. This was one reason
why in Chapter 18 we advised against differentiating the Lagrangian w.r.t. the multiplier λ,
even though many other books advocate this procedure.

For the case of an equality constraint, we proved in Theorem 18.5.1 that if the
Lagrangian is concave, or if for some other reason a critical point of the Lagrangian
happens to be an unconstrained global maximum point of that function, then the first-order
conditions in problem (18.5.1) are sufficient for optimality. A very similar result is also
valid for the corresponding problem with an inequality constraint:
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T H E O R E M 2 0 . 1 . 1 ( S U F F I C I E N T C O N D I T I O N S )

For the problem set out in (20.1.1), suppose (x0, y0) satisfies all the condi-
tions (20.1.2) to (20.1.4) for the Lagrangian function

L(x, y) = f (x, y) − λ[g(x, y) − c]

If the Lagrangian is concave, or if (x0, y0) happens to maximizeL anyway, then
(x0, y0) solves the constrained maximization problem.

The proof of this result is actually quite instructive:

Proof: Any pair (x0, y0) that satisfies conditions (20.1.2) must be a critical point of the
Lagrangian. By Theorem 17.2.2, if the Lagrangian is concave, this (x0, y0) will give a global
maximum. So all pairs (x, y) must satisfy

L(x0, y0) = f (x0, y0) − λ[g(x0, y0) − c] ≥ L(x, y) = f (x, y) − λ[g(x, y) − c] (∗)

Now, whether or not L is not concave, suppose that (∗) holds anyway. Then rearranging
the terms of (∗) gives us

f (x0, y0) − f (x, y) ≥ λ[g(x0, y0) − g(x, y)] (∗∗)

By the complementary slackness condition in its alternative form (20.1.5), one has both λ ≥
0 and λ[g(x0, y0) − c] = 0. It follows that whenever the pair (x, y) satisfies the inequality
constraint g(x, y) ≤ c, then the right-hand side of (∗∗) satisfies

λ[g(x0, y0) − g(x, y)] = λ[c − g(x, y)] ≥ 0

The inequality (∗∗) therefore implies that f (x0, y0) ≥ f (x, y). It follows that (x0, y0) solves
the constrained maximization problem (20.1.1).

E X A M P L E 20.1.1 A firm has a total of L units of labour to allocate to the production of two different
goods, which can be sold at fixed positive prices a and b respectively. Producing x units of
the first good requires αx2 units of labour, whereas producing y units of the second good
requires βy2 units of labour, where α and β are positive constants. Find what output levels of
the two goods maximize the total revenue that the firm can earn by using this fixed amount
of labour.

Solution: The firm’s problem is max ax + by s.t. αx2 + βy2 ≤ L. The Lagrangian is

L(x, y) = ax + by − λ(αx2 + βy2 − L) (∗)

According to the recipe in (20.1.2)–(20.1.4), necessary conditions for (x∗, y∗) to solve the
problem are

L′
x = a − 2λαx∗ = 0 (i)

L′
y = b − 2λβy∗ = 0 (ii)
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together with the complementary slackness condition

λ ≥ 0, with λ = 0 if α(x∗)2 + β(y∗)2 < L (iii)

and the resource constraint αx2 + βy2 ≤ L. Because a and b are positive, equations (i) and
(ii) together imply that λ, x∗, and y∗ are all positive, with

x∗ = a
2αλ

and y∗ = b
2βλ

(∗∗)

Because λ > 0, condition (iii) implies that α(x∗)2 + β(y∗)2 = L. Inserting the expressions
for x∗ and y∗ into this equality yields

a2

4αλ2
+ b2

4βλ2
= L

This equation allows us to find λ, which is

λ = 1
2 L−1/2

√
a2

α
+ b2

β
(∗∗∗)

Our recipe has produced a unique solution candidate. It has x∗ and y∗ given by (∗∗) and λ

given by (∗∗∗). Because λ > 0, the Lagrangian L given by (∗) is obviously concave. By
Theorem 20.1.1, therefore, we have solved the constrained maximization problem.

E X A M P L E 20.1.2 Solve the problem

max f (x, y) = x2 + y2 + y − 1 s.t. g(x, y) = x2 + y2 ≤ 1

Solution: The Lagrangian is

L(x, y) = x2 + y2 + y − 1 − λ(x2 + y2 − 1)

Necessary first-order conditions for (x, y) to be a critical point of L are:

L′
1(x, y) = 2x − 2λx = 0 (i)

L′
2(x, y) = 2y + 1 − 2λy = 0 (ii)

The complementary slackness condition is

λ ≥ 0, with λ = 0 if x2 + y2 < 1 (iii)

We now set out to find all solution candidates in the form of triples (x, y, λ) that satisfy
conditions (i)–(iii).

Equations (i) and (ii) can be written as 2x(1 − λ) = 0 and 2y(1 − λ) = −1, respectively.
The second of these implies that λ �= 1, so the first implies that x = 0.

Consider the first case when x2 + y2 = 1. Because x = 0, we have y = ±1. Try y = 1
first. Then, (ii) implies λ = 3/2. Because λ > 0, condition (iii) is satisfied. It follows that
the triple (x, y, λ) = (0, 1, 3/2) is a first candidate for optimality that satisfies all three con-
ditions (i)–(iii). Next, try y = −1 instead. Then condition (ii) yields λ = 1/2 > 0, so once
again (iii) is satisfied. So (x, y, λ) = (0, −1, 1/2) is a second candidate for optimality.
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Consider, finally, the second case when x2 + y2 = y2 < 1. With x = 0 this implies that
y2 < 1 and so −1 < y < 1. In this case (iii) implies that λ = 0, and so equation (ii) yields
y = −1/2. It follows that the triple (0, −1/2, 0) is a third candidate for optimality.

We conclude that there are three candidates for optimality. The associated function val-
ues are

f (0, 1) = 1, f (0, −1) = −1, and f (0, −1/2) = − 5
4

Now, we are trying to maximize the continuous function x2 + y2 + y − 1 over the unit disk
of points (x, y) in the plane that satisfy x2 + y2 ≤ 1. Since that set is closed and bounded,
the extreme value theorem implies that there is a solution to the problem. Because the only
possible solutions are the three points already found, we conclude that (x, y) = (0, 1) solves
the maximization problem.2

Why Does the KKT Method Work?
Suppose that the point (x∗, y∗) in the xy-plane solves problem (20.1.1). Two cases are pos-
sible. Either g(x∗, y∗) < c, in which case the constraint g(x∗, y∗) ≤ c is said to be inactive
or slack at (x∗, y∗). Alternatively g(x∗, y∗) = c, in which case the same inequality constraint
is said to bind or be active or tight at (x∗, y∗).

The two different cases are illustrated in Figs 20.1.1 and 20.1.2 for two different values
of the parameter c. In addition, both figures display the same four level curves of the same
objective function f . This function is assumed to increase as the level curves shrink.

 f (x, y) 5 const.

 g (x, y) 5 c

 g (x, y) # c
y

x

P

Figure 20.1.1 P = (x∗, y∗) is an interior
point of the feasible set.

 f (x, y) 5 const.

y

x

 g (x, y) 5 c

 g (x, y) # c

P

Figure 20.1.2 Constraint g(x, y) ≤ c
binds at P = (x∗, y∗).

The case shown in Fig. 20.1.1 occurs when the solution (x∗, y∗) to problem (20.1.1) is at
an interior point P of the shaded feasible set because it satisfies g(x∗, y∗) < c. Then (x∗, y∗)
must be a local maximum point of the function f , so it must be a critical point at which
f ′
1(x

∗, y∗) = f ′
2(x

∗, y∗) = 0. In this case, if we set λ = 0, then the triple (x∗, y∗, 0) satisfies
all the conditions (20.1.2) to (20.1.4).

2 The point (0, −1/2) solves the corresponding minimization problem. In Example 17.5.1 we solved
both these problems using a different technique.
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The other case is shown in Fig. 20.1.2. This occurs when the solution (x∗, y∗) to prob-
lem (20.1.1) is on the boundary of the shaded feasible set because it satisfies g(x∗, y∗) = c.
Then the constraint g(x, y) ≤ c binds, and in fact the point (x∗, y∗) must solve the problem

max f (x, y) s.t. g(x, y) = c

with an equality constraint. Provided that the conditions of Theorem 18.4.1 are all satis-
fied, there will exist a unique Lagrange multiplier λ such that the Lagrangian satisfies the
first-order conditions (20.1.2) at (x∗, y∗). It remains to show that this Lagrange multiplier λ

satisfies λ ≥ 0, thus ensuring that (20.1.3) is also satisfied at (x∗, y∗).
To prove that λ ≥ 0, replace the constant c on the right-hand side of the constraint by

the variable parameter b, and then consider the following two problems

max f (x, y) s.t. g(x, y) ≤ b and max f (x, y) s.t. g(x, y) = b

Let v(b) denote the maximum value function for the first problem with the inequality con-
straint, and f ∗(b) the corresponding maximum value function for the second problem with
the equality constraint. Recall from (18.2.2) that in case the function f ∗(b) is differentiable
at b = c, the multiplier λ must equal the derivative df ∗(b)/db|b=c at that point. We will show
that f ∗(b) ≤ f ∗(c) whenever b < c. This implies that, at least when f ∗ is differentiable at
b = c, one has λ = df ∗(b)/db|b=c ≥ 0.

Now, an obvious general property of any constrained maximization problem is that
imposing a more stringent constraint never allows a higher maximum value. So, because
the equality constraint g(x, y) = b is more stringent than g(x, y) ≤ b, our definitions of the
functions v and f ∗ imply that f ∗(b) ≤ v(b) for all b. But also, in case b < c, the con-
straint g(x, y) ≤ b is more stringent than g(x, y) ≤ c, implying that v(b) ≤ v(c). Finally,
because we are discussing the case when the solution (x∗, y∗) to problem (20.1.1) satisfies
g(x∗, y∗) = c, we must have v(c) = f ∗(c). Thus, whenever b < c, one has the inequali-
ties

f ∗(b) ≤ v(b) ≤ v(c) = f ∗(c)

In particular f ∗(b) ≤ f ∗(c), as required.

E X E R C I S E S F O R S E C T I O N 2 0 . 1

1. Consider the problem max −x2 − y2 s.t. x − 3y ≤ −10.

(a) Find the pair (x∗, y∗) that solves the problem.

(b) The same pair (x∗, y∗) also solves the problem of minimizing x2 + y2 subject to the same
constraint x − 3y ≤ −10. Sketch the feasible set S and explain the solution geometrically.

2. Consider the consumer demand problem max
√

x + √
y s.t. px + qy ≤ m.

(a) Find the demand functions that determine the optimal demands x∗ and y∗ as functions of the
parameter triple (p, q, m).

(b) Are these demand functions homogeneous of degree 0?
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3. Consider the problem max 4 − 1
2 x2 − 4y s.t. 6x − 4y ≤ a.

(a) Write down the KKT conditions.

(b) Solve the problem.

(c) With V(a) denoting the maximum value function, verify that V ′(a) = λ, where λ is the
Lagrange multiplier in (b).

4. Consider the problem max x2 + 2y2 − x s.t. x2 + y2 ≤ 1.

(a) Write down the Lagrangian and the two first-order conditions (20.1.2).

(b) Find the five triples (x, y, λ) that satisfy all the necessary conditions.

(c) Find the solution to the problem.

5.SM Consider the problem max f (x, y) = 2 − (x − 1)2 − ey2
s.t. x2 + y2 ≤ a, where a is a positive

constant.

(a) Write down the KKT conditions for the solution of the problem, distinguishing between the
cases a ∈ (0, 1) and a ≥ 1. Then find the only solution candidate (x, y, λ).

(b) Use Theorem 20.1.1 to prove that this solution candidate is optimal.

(c) Let f ∗(a) be the value function for the problem. Verify that df ∗(a)/da = λ.

6. Suppose that, as functions of its output Q ≥ 0, a firm earns revenue R(Q) = aQ − bQ2 and incurs
cost C(Q) = αQ + βQ2, where a, b, α, and β are all positive parameters. The firm maximizes
profit π(Q) = R(Q) − C(Q) subject to the constraint Q ≥ 0. Solve this one-variable problem by
the KKT method, and find conditions for the constraint to bind at the optimum.

20.2 Many Variables and Inequality
Constraints
A fairly general nonlinear programming problem with n variables and m inequality con-
straints can be stated as follows:

max f (x1, . . . , xn) s.t.

⎧⎪⎪⎨
⎪⎪⎩

g1(x1, . . . , xn) ≤ c1

. . . . . . . . . . . . . . . . .

gm(x1, . . . , xn) ≤ cm

(20.2.1)

The set of n-vectors x = (x1, . . . , xn) that satisfy all the constraints is called the admissible
set or the feasible set.

Recall that minimizing f (x) is equivalent to maximizing −f (x). Also an inequality
constraint of the form gj(x) ≥ cj can be rewritten as −gj(x) ≤ −cj, whereas an equality
constraint gj(x) = cj is equivalent to the double inequality constraint gj(x) ≤ cj and
−gj(x) ≤ −cj. In this way, most constrained optimization problems can be expressed in
the form (20.2.1).
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In Section 18.6 the two equations (18.6.10) and (18.6.11) outlined how the Lagrange
multiplier method could be applied to the corresponding problem with m equality con-
straints. Here is a similar recipe for solving the problem set out in (20.2.1):

T H E K K T M E T H O D

To find the only possible solutions to problem (20.2.1), we proceed as follows:

(i) For each j = 1, . . . , m, associate a Lagrange multiplier λj with the jth con-
straint, and then write down the Lagrangian

L(x) = f (x) −
m∑

j=1

λj[gj(x) − cj] (20.2.2)

(ii) Given the m Lagrange multipliers λ1, . . . , λm, find the critical points of
L(x) by finding, for each i = 1, . . . , n, its partial derivative w.r.t. xi, and
then solving the n simultaneous equations

∂L(x)

∂xi
= ∂f (x)

∂xi
−

m∑
j=1

λj

∂gj(x)

∂xi
= 0

(iii) For each j = 1, . . . , m, impose the complementary slackness condition:

λj ≥ 0, with λj = 0 if gj(x) < cj

(iv) Require x to satisfy all the constraints gj(x) ≤ cj.

(v) Find all the vectors x that, together with associated values of λ1, . . . , λm,
satisfy conditions (ii), (iii), and (v). These combinations (x, λ1, . . . , λm)

are the solution candidates. At least one of these solves the problem, if it
has a solution.

In order for the conditions to be truly necessary, one needs a constraint qualification of
the kind discussed in FMEA.

Note that, as with Eq. (20.1.5), for each j = 1, . . . , m the conditions in parts (iii) and (iv)
of the KKT method regarding the jth constraint can be combined into the triple require-
ment that

λj ≥ 0, gj(x) ≤ cj, and λj[gj(x) − cj] = 0 (20.2.3)

Actually, some further amalgamation is possible. Evidently, if (20.2.3) does hold for each
j = 1, . . . , m, then summing the last equality over j gives

m∑
j=1

λj[gj(x) − cj] = 0 (20.2.4)

But a converse result is also true. Indeed, for each j = 1, . . . , m, the first two inequalities in
(20.2.3) evidently imply that λj[gj(x) − cj] ≤ 0, so each term of the sum on the left-hand
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side of (20.2.4) is nonpositive. Then, however, for that whole sum to be zero, it is necessary
for each term to be zero. It follows that all the m conditions (20.2.3) hold simultaneously if
and only if we have the single combined condition

λj ≥ 0, gj(x) ≤ cj (j = 1, . . . , m) and
m∑

j=1

λj[gj(x) − cj] = 0 (20.2.5)

Both the equivalent conditions (20.2.3) and (20.2.5) may be easier to remember and also
make some subsequent derivations rather easier.

Concave Programming
For the case of a maximization problem with one equality constraint, Theorem 18.5.1
showed the importance of the special case when the Lagrangian function L(x) is concave
in x. This is because any critical point of L(x) that satisfies the equality constraint must
solve the maximization problem. Indeed, even if the Lagrangian is not concave, a critical
point that maximizes it anyway while satisfying the constraint must solve the maximization
problem. With inequality constraints, we have not only similar results, but some useful suf-
ficient conditions for the Lagrangian function to be concave. The following result provides
those sufficient conditions:

C O N C A V E P R O G R A M M E

Consider the problem in (20.2.1) of maximizing the function f (x) of n vari-
ables subject to the m inequality constraints gj(x) ≤ cj (j = 1, 2, . . . , m). The
problem is said to be a concave programme in case the objective function f is
concave, and each constraint function gj (j = 1, 2, . . . , m) is convex.

For the problem in (20.2.1), as in (20.2.2) the Lagrangian is

L(x) = f (x) −
m∑

j=1

λj[gj(x) − cj]

Recall from Theorem 14.8.1 that the sum of any finite collection of concave functions is
concave, as is minus any nonnegative multiple of a convex function. When the problem
in (20.2.1) is a concave programme, therefore, and all the m Lagrange multipliers λj (j =
1, 2, . . . , m) are nonnegative, then each of the m + 1 terms of the Lagrangian sum is concave,
and so therefore is the Lagrangian L(x) itself.

T H E O R E M 2 0 . 2 . 1 ( S U F F I C I E N T C O N D I T I O N S F O R A C O N C A V E P R O G R A M M E )

Given the constrained maximization problem in (20.2.1), let x0 be any criti-
cal point of the Lagrangian function L(x) defined in (20.2.2) that satisfies the
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combined complementary slackness condition (20.2.5). IfL is concave, or if x0

happens to maximize L anyway, then x0 solves the constrained maximization
problem.

Proof: Suppose that for all x one has L(x0) ≥ L(x), and so

L(x0) = f (x0) −
m∑

j=1

λj[gj(x
0) − cj] ≥ L(x) = f (x) −

m∑
j=1

λj[gj(x) − cj] (∗)

Suppose too that the combined complementary slackness condition (20.2.5) is satisfied,
implying that

∑m
j=1 λj[gj(x

0) − cj] = 0. Then for all x that satisfy all the m constraints
gj(x) ≤ cj (j = 1, . . . , m), because each Lagrange multiplier satisfies λj ≥ 0, one has∑m

j=1 λj[gj(x
0) − cj] ≤ 0. So for any x satisfying all the m inequality constraints, it follows

from (∗) that

f (x0) −
m∑

j=1

λj[gj(x
0) − cj] = f (x0) ≥ f (x) −

m∑
j=1

λj[gj(x) − cj] ≥ f (x)

This proves that x0 is a maximum point subject to the constraints.

A minimization problem that corresponds to that in (20.2.1) takes the form

min f (x) s.t. gj(x) ≥ cj (j = 1, 2, . . . , m) (20.2.6)

Its Lagrangian function, of course, is still

L(x) = f (x) −
m∑

j=1

λj[gj(x) − cj]

The minimization problem in (20.2.6) is said to be a convex programme in case the objective
function f is convex, and each constraint function gj (j = 1, 2, . . . , m) is concave. These con-
ditions ensure that the Lagrangian function is convex. Then there is an obvious counterpart
of Theorem 20.2.1 for the convex programme, with “concave” replaced by “convex”, and
“maximize” replaced by “minimize”. Indeed, changing all the signs converts the problem
in (20.2.6) to the following concave programming problem:

max −f (x) s.t. − gj(x) ≤ −cj (j = 1, 2, . . . , m)

Then one can apply Theorem 20.2.1 to this problem.

Examples of Concave Programmes

E X A M P L E 20.2.1 Consider the nonlinear programming problem

max x + 3y − 4e−x−y s.t.

{
2 − x ≥ 2y

x − 1 ≤ −y
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(a) Verify that this is a concave programming problem.

(b) Write down the necessary KKT conditions for a point (x∗, y∗) to solve the problem. Are
these conditions sufficient for optimality?

(c) Solve the problem.

Solution:

(a) The first step is to write the problem in the same form as (20.2.1):

max x + 3y − 4e−x−y s.t.

{
x + 2y ≤ 2

x + y ≤ 1
(∗)

The left-hand side of each constraint is a function which is linear, so convex. The objec-
tive function f (x, y) = x + 3y − 4e−x−y has second-order partial derivatives satisfying
f ′′
11 = f ′′

22 = f ′′
12 = −4e−x−y. It follows that the Hessian matrix of f satisfies f ′′

11 = f ′′
22 < 0

and f ′′
11f ′′

22 − (f ′′
12)

2 = 0, implying that the objective function f is concave. So all the
conditions for (∗) to be a concave programming problem are met.

(b) The Lagrangian is

L(x, y) = x + 3y − 4e−x−y − λ1(x + 2y − 2) − λ2(x + y − 1)

Hence, the KKT conditions for (x∗, y∗) to solve the problem are:

L′
1 = 1 + 4e−x∗−y∗ − λ1 − λ2 = 0 (i)

L′
2 = 3 + 4e−x∗−y∗ − 2λ1 − λ2 = 0 (ii)

λ1 ≥ 0, with λ1 = 0 if x∗ + 2y∗ < 2 (iii)

λ2 ≥ 0, with λ2 = 0 if x∗ + y∗ < 1 (iv)

In part (a) we showed that (∗) is a concave programming problem, so these KKT con-
ditions are sufficient for optimality.

(c) Subtracting (ii) from (i) we get −2 + λ1 = 0 and so λ1 = 2. But then (iii) together with
x∗ + 2y∗ ≤ 2 yields x∗ + 2y∗ = 2.
Suppose we have λ2 = 0. Then (i) would imply that 4e−x∗−y∗ = 1, so −x∗ − y∗ =
ln(1/4). It follows that x∗ + y∗ = ln 4 > 1, which violates the constraint x + y ≤ 1.
So we must have λ2 > 0. Then from (iv) and x∗ + y∗ ≤ 1 we deduce x∗ + y∗ = 1. But
we showed that x∗ + 2y∗ = 2, so x∗ = 0 and y∗ = 1. Inserting λ1 = 2 and these values
for x∗ and y∗ into (i), we find that λ2 = 4e−1 − 1, which is positive because e < 4. We
conclude that the solution is x∗ = 0 and y∗ = 1, with λ1 = 2 and λ2 = 4e−1 − 1.

E X A M P L E 20.2.2 A worker chooses both consumption c and labour supply l in order to maximize the
utility function α ln c + (1 − α) ln(1 − l) over consumption c > 0 and leisure 1 − l > 0,
where 0 < α < 1. The worker’s budget constraint is c ≤ wl + m, where w > 0 is the wage
per unit of labour, and m ≥ 0 is unearned income. In addition, the worker must choose
l ≥ 0. Solve the worker’s constrained maximization problem.
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Solution: The worker’s problem is

max α ln c + (1 − α) ln(1 − l) s.t. c ≤ wl + m and l ≥ 0

Because ln x is concave in x when x > 0 while c > 0, l < 1, and 0 < α < 1, this is evidently
a concave programme. The Lagrangian is

L(c, l) = α ln c + (1 − α) ln(1 − l) − λ(c − wl − m) + μl

So the KKT conditions for (c∗, l∗) to solve the problem are

L′
c = α

c∗ − λ = 0 (i)

L′
l = −(1 − α)

1 − l∗
+ λw + μ = 0 (ii)

λ ≥ 0, with λ = 0 if c∗ < wl∗ + m (iii)

μ ≥ 0, with μ = 0 if l∗ > 0 (iv)

From (i) we have λ = α/c∗ > 0. Then combining (iii) with the first constraint yields

c∗ = wl∗ + m (v)

Our assumptions guarantee that c∗ > 0. Now we have two cases:

Case I: μ = 0. From (i) and (ii) we get c∗ = α/λ and l∗ = 1 − (1 − α)/λw. Insert-
ing these values into (v) implies that α/λ = w − (1 − α)/λ + m.
It follows that λ = 1/(w + m), so c∗ = α(w + m) and l∗ =
1 − (1 − α)(w + m)/w = α − (1 − α)m/w. The KKT conditions
are all satisfied provided that l∗ ≥ 0, which holds if and only if
m ≤ αw/(1 − α).

Case II: μ > 0. Then (iv) implies that l∗ = 0, so (v) implies that c∗ = m, and
then (i) implies that λ = α/c∗ = α/m. From (ii) it follows that
μ = 1 − α − αw/m. This case holds if and only if μ > 0, or if and only
if m > αw/(1 − α).

In the last two examples it was not too hard to find which constraints bind (that is, hold
with equality) at the optimum. But with more complicated nonlinear programming prob-
lems, including the concave programming problems we are considering here, this can be
harder. A general method for finding all candidates for optimality in a nonlinear program-
ming problem with two constraints can be formulated as follows: First, examine the case
where both constraints bind. Next, examine the two cases where only one constraint binds.
Finally, examine the fourth case where neither constraint binds. In each case, find all vec-
tors x, with associated nonnegative values of both Lagrange multipliers, that satisfy all the
relevant conditions (if any do). Then calculate the value of f (x) for these values of x, and
select those x for which f (x) is largest. Except for perverse problems, this procedure will
find the optimum. The next example illustrates how it works in practice.

E X A M P L E 20.2.3 Suppose your utility from consuming x1 units of good A and x2 units of good B is
U(x1, x2) = ln x1 + ln x2. Suppose too that the prices per unit of A and B are $10 and $5,
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respectively, and that you have $350 to spend on the two goods together. Finally, suppose
that it takes 0.1 hours to consume one unit of A and 0.2 hours to consume one unit of B,
and that you have eight hours in total to spend on consuming the two goods. How much of
each good should you buy in order to maximize your utility?

Solution: The problem is

max U(x1, x2) = ln x1 + ln x2 s.t.

{
10x1 + 5x2 ≤ 350

0.1x1 + 0.2x2 ≤ 8

The Lagrangian is

L = ln x1 + ln x2 − λ1(10x1 + 5x2 − 350) − λ2(0.1x1 + 0.2x2 − 8)

The necessary KKT conditions are that there exist numbers λ1 and λ2 such that

L′
1 = 1/x∗

1 − 10λ1 − 0.1λ2 = 0 (i)

L′
2 = 1/x∗

2 − 5λ1 − 0.2λ2 = 0 (ii)

λ1 ≥ 0, with λ1 = 0 if 10x∗
1 + 5x∗

2 < 350 (iiii)

λ2 ≥ 0, with λ2 = 0 if 0.1x∗
1 + 0.2x∗

2 < 8 (iv)

We start the systematic procedure:

Case 1: Both constraints bind. Here

10x∗
1 + 5x∗

2 = 350 (v)

and 0.1x∗
1 + 0.2x∗

2 = 8. The only solution to these two linear equations
is (x∗

1, x∗
2) = (20, 30). Inserting these values into (i) and (ii) yields

10λ1 + 0.1λ2 = 1/20 and 5λ1 + 0.2λ2 = 1/30, whose unique solution is
(λ1, λ2) = (1/225, 1/18). In particular, both λ1 and λ2 are nonnegative. So we
have found one candidate for optimality that satisfies all the KKT conditions.

Case 2: The first constraint binds, but the second does not. Here (v) holds and 0.1x∗
1 +

0.2x∗
2 < 8. From (iv) we obtain λ2 = 0. Now (i) and (ii) imply that x∗

2 = 2x∗
1.

Inserting this into (v), we get x∗
1 = 17.5 and then x∗

2 = 2x∗
1 = 35. But then 0.1x∗

1 +
0.2x∗

2 = 8.75, which violates the second constraint. So there is no candidate for
optimality in this case.

Case 3: The second constraint binds, but the first does not. Here 10x∗
1 + 5x∗

2 < 350
and 0.1x∗

1 + 0.2x∗
2 = 8. From (iii), λ1 = 0, and (i) and (ii) yield 0.1x∗

1 = 0.2x∗
2.

Inserted into 0.1x∗
1 + 0.2x∗

2 = 8 this yields x∗
2 = 20 and so x∗

1 = 40. But then
10x∗

1 + 5x∗
2 = 500, violating the first constraint. So there is no candidate for

optimality in this case either.

Case 4: Neither constraint binds. Here λ1 = λ2 = 0, in which case (i) and (ii) make no
sense.

So there is only one candidate for optimality, which is (x∗
1, x∗

2) = (20, 30). Since it is
easily seen that we have a concave programme, this must be the solution to the constrained
maximization problem.



�

� �

�

S E C T I O N 2 0 . 2 / M A N Y V A R I A B L E S A N D I N E Q U A L I T Y C O N S T R A I N T S 811

Properties of The Value Function
As in previous constrained maximization problems, the value function of problem (20.2.1)
is defined for each m-vector c = (c1, . . . , cm) by f ∗(c) = f (x∗(c)), where x∗(c) is a solution
to the problem. The following properties of f ∗ are very useful:

f ∗(c) is nondecreasing in each variable c1, . . . , cm (20.2.7)

for j = 1, . . . , m, if ∂f ∗(c)/∂cj exists, then it is equal to λj(c) (20.2.8)

Property (20.2.7) is immediate because if cj increases while all the other ck are fixed,
then the feasible set becomes no smaller, so f ∗(c) cannot decrease.

As for property (20.2.8), each λj(c) is a Lagrange multiplier coming from the KKT con-
ditions. However, there is a catch: the value function f ∗ need not be differentiable. Even if f
and g1, . . . , gm are all differentiable, the value function can have sudden changes of slope.
Such cases are studied in FMEA.

E X E R C I S E S F O R S E C T I O N 2 0 . 2

1. Consider the problem max 1
2 x − y s.t. x + e−x ≤ y and x ≥ 0.

(a) Write down the Lagrangian and the necessary KKT conditions.

(b) Find the solution to the problem.

2.SM Let p, q and m be positive parameters, and suppose that 0 < α < 1. Solve the following consumer
demand problem where, in addition to the budget constraint, there is an upper limit --x which rations
how much of the first good can be bought:

max α ln x + (1 − α) ln y s.t. px + qy ≤ m and x ≤ --x

3.SM Consider the problem max x + y − ex − ex+y s.t. x + y ≥ 4, x ≥ −1 and y ≥ 1.

(a) Sketch the feasible set S.

(b) Find all pairs (x, y) that satisfy all the necessary conditions.

(c) Find the solution to the problem.

4.SM Consider the problem max x + ay s.t. x2 + y2 ≤ 1 and x + y ≥ 0, where a is a constant.

(a) Sketch the feasible set and write down the necessary conditions.

(b) Find the solution for all values of the constant a.

5.SM Solve the following problem, assuming it has a solution:

max y − x2 s.t. y ≥ 0, y − x ≥ −2 and y2 ≤ x

6.SM Consider the problem max − (
x + 1

2

)2 − 1
2 y2 s.t. e−x − y ≤ 0 and y ≤ 2

3 .

(a) Sketch the feasible set.

(b) Write down the KKT conditions, and find the solution of the problem.
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7. Consider the problem max xz + yz s.t. x2 + y2 + z2 ≤ 1.

(a) Write down the KKT conditions.

(b) Solve the problem.

20.3 Nonnegativity Constraints
Consider once again the general nonlinear programming problem (20.2.1). Often, variables
involved in economic optimization problems must be nonnegative by their very nature.
It is not difficult to incorporate such constraints in the formulation of (20.2.1). If x1 ≥ 0,
for example, this can be represented by the extra constraint h1(x1, . . . , xn) = −x1 ≤ 0. Of
course, we must introduce an additional Lagrange multiplier to go with it. In order not to
have too many Lagrange multipliers, however, the necessary conditions for a solution to a
nonlinear programming problems with nonnegativity constraints are sometimes formulated
in a slightly different way.

Consider first the problem

max f (x, y) s.t. g(x, y) ≤ c, x ≥ 0, and y ≥ 0 (20.3.1)

Here we introduce the functions h1(x, y) = −x and h2(x, y) = −y, so that the three con-
straints in problem (20.3.1) can be expressed g(x, y) ≤ c, h1(x, y) ≤ 0, and h2(x, y) ≤ 0.
Applying the recipe for solving (20.2.1), we introduce two extra Lagrange multipliers
denoted by μ1 and μ2, and then form the Lagrangian

L(x, y) = f (x, y) − λ[g(x, y) − c] − μ1(−x) − μ2(−y)

The KKT conditions are

L′
1 = f ′

1(x, y) − λg′
1(x, y) + μ1 = 0 (i)

L′
2 = f ′

2(x, y) − λg′
2(x, y) + μ2 = 0 (ii)

λ ≥ 0, with λ = 0 if g(x, y) < c (iii)

μ1 ≥ 0, with μ1 = 0 if x > 0 (iv)

μ2 ≥ 0, with μ2 = 0 if y > 0 (v)

From (i), we have f ′
1(x, y) − λg′

1(x, y) = −μ1. From (iv), we have −μ1 ≤ 0 with −μ1 = 0
if x > 0. This shows that (i) and (iv) are together equivalent to

f ′
1(x, y) − λg′

1(x, y) ≤ 0, with equality if x > 0 (vi)

In the same way, (ii) and (v) are together equivalent to

f ′
2(x, y) − λg′

2(x, y) ≤ 0, with equality if y > 0 (vii)



�

� �

�

S E C T I O N 2 0 . 3 / N O N N E G A T I V I T Y C O N S T R A I N T S 813

So along with (iii), we have the two modified KKT conditions (vi) and (vii). Note that
after replacing (i) and (iv) by (vi), as well as (ii) and (v) by (vii), only the one multiplier λ

associated with the inequality constraint g(x, y) ≤ c remains.
The same idea can obviously be extended to the following general problem with n non-

negative variables and m inequality constraints:

max f (x) s.t.

⎧⎨
⎩

g1(x) ≤ c1

. . . . . . . . . x1 ≥ 0, . . . , xn ≥ 0
gm(x) ≤ cm

(20.3.2)

Briefly formulated, the necessary conditions for the solution of problem (20.3.2) are that,
for each i = 1, . . . , n, one has

∂f (x)

∂xi
−

m∑
j=1

λj

∂gj(x)

∂xi
≤ 0, with equality if xi > 0 (20.3.3)

In addition, for each j = 1, . . . , m, one has the complementary slackness condition

λj ≥ 0, with λj = 0 if gj(x) < cj (20.3.4)

As in Theorem 20.2.1, in the case of a concave programme where f is concave and each
function gj is convex, the conditions in (20.3.3) and (20.3.4) are sufficient in the follow-
ing sense: given any (x, λ1, . . . , λm) which satisfies them, the n-vector x is a solution of
maximization problem (20.3.2).

The KKT Theorem Applied to LP Problems
The general LP problem specified in (19.2.1) is a special case of the general nonlinear
optimization problem with inequality constraints specified in (20.3.2). Indeed, the objec-
tive function is f (x) = ∑n

j=1 cjxj, and for each i = 1, 2, . . . , m, the ith constraint is gi(x) =∑n
j=1 aijxj ≤ bi. Let us see what form the KKT conditions (20.3.3) and (20.3.4) take in this

special case. In fact, an LP problem is actually a concave programme, so the KKT conditions
are sufficient to determine a maximum point.

Using the notation of Chapter 19, for each i = 1, . . . , m, let u∗
i instead of λi denote the

nonnegative Lagrange multiplier associated with the ith constraint of the LP problem set out
in (19.2.1). Then for each j = 1, . . . , n, condition (20.3.3) takes the form

cj −
m∑

i=1

u∗
i aij ≤ 0, with equality if x∗

j > 0 (20.3.5)

On the other hand, for i = 1, . . . , m, the complementary slackness condition (20.3.4) takes
the form

u∗
i ≥ 0, with u∗

i = 0 if
n∑

j=1

aijx
∗
j < bi (20.3.6)

When combined with the requirement that the n-vector x∗ satisfy the inequality and non-
negativity constraints in the LP problem (19.2.1), these conditions are precisely the comple-
mentary slackness conditions set out in Theorem 19.5.1.
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Three Examples
We conclude the main text of this chapter, as well as of the book, with three economic
examples. Together they illustrate the power and wide applicability of the KKT method,
especially when applied to concave programmes.

E X A M P L E 20.3.1 (Importing Norwegian or Siberian natural gas). As in Exercise 17.5.3, let x and
y denote the quantities of natural gas that Western Europe imports from Norway and Siberia
respectively. The optimal choice of these import quantities was represented in that Exercise
by the following concave programme:

max f (x, y) = 9x + 8y − 6(x + y)2 s.t. 0 ≤ x ≤ 5, 0 ≤ y ≤ 3, x ≥ 2(y − 1)

Use conditions (20.3.3) and (20.3.4) to verify that (x, y) = ( 3
4 , 0) is the solution.

Solution: We write the last constraint as −x + 2y ≤ 2. The constrained maximization prob-
lem is evidently a concave programme, with Lagrangian

L(x, y) = 9x + 8y − 6(x + y)2 − λ1(x − 5) − λ2(y − 3) − λ3(−x + 2y − 2)

Conditions (20.3.3) take the form:

9 − 12(x + y) − λ1 + λ3 ≤ 0, and = 0 if x > 0;
8 − 12(x + y) − λ2 − 2λ3 ≤ 0, and = 0 if y > 0.

It is easy see that (x, y) = ( 3
4 , 0) with (λ1, λ2, λ3) = (0, 0, 0) satisfies these conditions, as

well as the complementary slackness conditions in Eq. (20.3.4). So ( 3
4 , 0) is a solution.

E X A M P L E 20.3.2 Consider the utility maximization problem

max x + ln(1 + y) s.t. px + y ≤ m, x ≥ 0 and y ≥ 0

where consumption of both commodities is explicitly required to be nonnegative.

(a) Write down the necessary KKT conditions for a point (x∗, y∗) to be a solution.

(b) Find the solution to the problem, for all positive values of p and m.

Solution:

(a) The Lagrangian is

L(x, y) = x + ln(1 + y) − λ(px + y − m)

The KKT conditions for (x∗, y∗) to be a solution are that there exists a λ such that

L′
1(x

∗, y∗) = 1 − pλ ≤ 0, with 1 − pλ = 0 if x∗ > 0 (i)

L′
2(x

∗, y∗) = 1
1 + y∗ − λ ≤ 0, with

1
1 + y∗ − λ = 0 if y∗ > 0 (ii)

λ ≥ 0, with λ = 0 if px∗ + y∗ < m (iii)

Also, x∗ ≥ 0, y∗ ≥ 0, and the budget constraint has to be satisfied, so px∗ + y∗ ≤ m.
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(b) Note that we have a concave programme, so any triple (x∗, y∗, λ) that satisfies the KKT
conditions will give a maximum point (x∗, y∗). It is clear from (i) that λ �= 0 and so
λ > 0. Then (iii) and px∗ + y∗ ≤ m imply that

px∗ + y∗ = m (iv)

Depending on which constraints x ≥ 0 and y ≥ 0 bind, there are four cases to consider:

Case 1: Suppose x∗ = 0, y∗ = 0. Since m > 0, this is impossible because of (iv).

Case 2: Suppose x∗ > 0, y∗ = 0. From (ii) and y∗ = 0 we get λ ≥ 1. Then (i) implies that
p = 1/λ ≤ 1. Equation (iv) gives x∗ = m/p, so we get one candidate for a maxi-
mum point:

(x∗, y∗) = (m/p, 0) and λ = 1/p, in case 0 < p ≤ 1

Case 3: Suppose x∗ = 0, y∗ > 0. By (iv) we have y∗ = m. Then (ii) yields λ = 1/(1 + y∗)
= 1/(1 + m). From (i) we get p ≥ 1/λ = m + 1. This gives one more candidate:

(x∗, y∗) = (0, m) and λ = 1/(1 + m), in case p ≥ m + 1

Case 4: Suppose x∗ > 0, y∗ > 0. Here there must be equality in both (i) and (ii), so λ =
1/p = 1/(1 + y∗). It follows that y∗ = p − 1, and then p > 1 because y∗ > 0.
Equation (iv) implies that px∗ = m − y∗ = m − p + 1, so x∗ = (m + 1 − p)/p.
Since x∗ > 0, we must have p < m + 1. Thus we get one last candidate:

(x∗, y∗) =
(

m + 1 − p
p

, p − 1
)

and λ = 1/p, in case 1 < p < m + 1

Putting all these cases together, we see that the solution of the problem is:

For 0 < p ≤ 1, Case 2 applies, and (x∗, y∗) = (m/p, 0) with λ = 1/p.

For 1 < p < m + 1, Case 4 applies, and (x∗, y∗) = ((m + 1 − p)/p, p − 1) with
λ = 1/p.

For p ≥ m + 1, Case 3 applies, and (x∗, y∗) = (0, m) with λ = 1/(m + 1).

Note that, except in the intermediate case when 1 < p < m + 1, it is optimal to
spend everything on only the cheaper of the two goods, which is either x in case 0 < p ≤ 1,
or y in case p ≥ m + 1.

E X A M P L E 20.3.3 (Peak load pricing). Consider a large power producer which generates electricity
at a large number of different power plants that obtain power from various sources such
as sun, wind, water, natural gas, coal, or nuclear fission. The demand for electricity varies
between peak periods, during which most of the generating capacity is used, and off-peak
periods when there is considerable spare capacity. We consider a certain time interval (say,
a year) which is divided into n periods of equal length. Suppose that the total amounts of
electrical power sold in these n periods are x1, x2, . . . , xn. Assume that a regulatory authority
fixes the n corresponding prices at levels equal to p1, p2, . . . , pn. Assume too that the total
operating cost over all n periods is given by the cost function C(x), where x = (x1, . . . , xn),
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and that the constant output capacity in each period is k. Let D(k) denote the cost of main-
taining output capacity at level k. The producer’s total profit is then

π(x, k) =
n∑

i=1

pixi − C(x) − D(k)

Because the producer cannot exceed capacity k in any period, it faces the constraints

x1 ≤ k, . . . , xn ≤ k

We consider the problem of finding x1 ≥ 0, . . . , xn ≥ 0 and k ≥ 0 such that profit is maxi-
mized subject to the above capacity constraints.

This is a nonlinear programming problem with n + 1 variables and n constraints, as well
as n nonnegativity constraints. The Lagrangian is

L(x, k) =
n∑

i=1

pixi − C(x) − D(k) −
n∑

i=1

λi(xi − k)

Following (20.3.3) and (20.3.4), the choice (x0, k0) ≥ 0 can solve the problem only if there
exist nonnegative Lagrange multipliers λ1, . . . , λn such that

∂L
∂xi

= pi − C′
i(x

0) − λi ≤ 0, with equality if x0
i > 0, for i = 1, . . . , n (i)

∂L
∂k

= −D′(k0) +
n∑

i=1

λi ≤ 0, with equality if k0 > 0 (ii)

λi ≥ 0, with λi = 0 if x0
i < k0, for i = 1, . . . , n (iii)

Suppose that period i is such that x0
i > 0. Then (i) implies that

pi = C′
i(x

0) + λi (iv)

If period i is an off-peak period, then x0
i < k0 and so λi = 0 by (iii). From (iv) it follows that

pi = C′
i(x

0
1, . . . , x0

n). Thus, we see that the profit-maximizing pattern of output x0 will bring
about equality between the regulator’s price in any off-peak period and the corresponding
marginal operating cost.

On the other hand, λi might be positive in a peak period when x0
i = k0. If k0 > 0, it fol-

lows from (ii) that
∑n

i=1 λi = D′(k0). We conclude that the optimal output pattern x0 will
be such that in peak periods the price set by the regulator will exceed the marginal oper-
ating cost by an additional amount λi, which is really the “shadow price” of the capacity
constraint x0

i ≤ k0. The sum of these shadow prices over all peak periods is equal to the
marginal capacity cost D′(k0).

E X E R C I S E S F O R S E C T I O N 2 0 . 3

1. Consider the utility maximization problem

max x + ln(1 + y) s.t. 16x + y ≤ 495, x ≥ 0, y ≥ 0
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(a) Write down the necessary KKT conditions, including nonnegativity constraints, for a point to
be a solution.

(b) Find the solution to the problem.

(c) Estimate by how much utility will increase if income goes up from 495 to 500.

2.SM Solve the following problem, assuming it has a solution:

max xey−x − 2ey s.t. y ≤ 1 + x/2, x ≥ 0, and y ≥ 0

3.SM Suppose that optimal capacity utilization by a firm requires that its output quantities x1 and x2,
along with its capacity level k, should be chosen to solve the problem

max x1 + 3x2 − x2
1 − x2

2 − k2 s.t. x1 ≤ k, x2 ≤ k, x1 ≥ 0, x2 ≥ 0, k ≥ 0

Show that k = 0 cannot be optimal, and then find the solution.

R E V I E W E X E R C I S E S

1.SM For all a > 0, solve the problem max 10 − (x − 2)2 − (y − 1)2 s.t. x2 + y2 ≤ a.

2.SM Consider the nonlinear programming problem

max xy s.t. x2 + ry2 ≤ m and x ≥ 1

Here r and m are positive constants, with m > 1.

(a) Write down the necessary KKT conditions for a point (x, y) to solve the problem.

(b) Solve the problem.

(c) Let V(r, m) denote the value function. Find ∂V(r, m)/∂m, and comment on its sign.

(d) Verify that ∂V(r, m)/∂r = ∂L/∂r, where L is the Lagrangian.

3.SM A firm produces x1 cars and x2 trucks per month, where x1 ≥ 0 and x2 ≥ 0. Suppose each car
requires 0.04% of the capacity per month in the body division, 0.025% of the capacity per month
in the motor division, and 0.05% of the capacity per month on the specialized car assembly line.
The corresponding numbers for trucks are 0.03% in the body division, 0.05% in the motor division,
and 0.08% on the specialized truck assembly line. The firm can therefore deliver x1 cars and x2
trucks per month provided the following inequalities are satisfied:

0.04x1 + 0.03x2 ≤ 100

0.025x1 + 0.05x2 ≤ 100

0.05x1 ≤ 100

0.08x2 ≤ 100

(∗)

with x1 ≥ 0, x2 ≥ 0. Suppose the profit per car is 500 − ax1, where a is a nonnegative constant,
while the profit per truck is 250. The firm thus seeks to solve the problem

max (500 − ax1)x1 + 250x2

subject to (∗), as well as x1 ≥ 0 and x2 ≥ 0.
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(a) For the case when a = 0, and so the maximization problem reduces to a linear programme,
solve it graphically.

(b) Write down conditions (20.3.3) and (20.3.4) for the problem when a ≥ 0.

(c) Use the conditions obtained in (b) to examine for which values of a ≥ 0 the solution is the
same as for a = 0.

4. Suppose the firm of Example 9.5.1 earns revenue R(Q) and incurs cost C(Q) as functions of output
Q ≥ 0, where R′(Q) > 0, C′(Q) > 0, R′′(Q) < 0, and C′′(Q) > 0 for all Q ≥ 0. The firm max-
imizes profit π(Q) = R(Q) − C(Q) subject to Q ≥ 0. Write down the first-order conditions for
the solution to this problem, and find sufficient conditions for the constraint Q ≥ 0 to bind at the
optimum.

5. A firm uses K and L units of two inputs to produce
√

KL units of a product, where K > 0, L > 0.
The input factor costs are r and w per unit, respectively. The firm wants to minimize the cost of
producing at least Q units.

(a) Formulate the nonlinear programming problem that emerges. Reformulate it as a maximiza-
tion problem, then write down the KKT conditions for the optimum. Solve these conditions
to determine K∗ and L∗ as functions of (r, w, Q).

(b) Define the minimum cost function as c∗(r, w, Q) = rK∗ + wL∗. Verify that ∂c∗/∂r = K∗ and
∂c∗/∂w = L∗, then give these results economic interpretations.
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Let no one ignorant of geometry enter this door.
—Entrance to Plato’s Academy

This appendix is to remind the reader about some simple formulas and results from geom-
etry that are occasionally useful for economists, and sometimes used in this book. At

the end there is also a listing of the Greek alphabet, followed by a list of references cited in
the text.

Geometry
Triangles

Area:  A 1
2 ghh h

g g

Circles

Area:  A π r2

Circumference:  C  2π r

r

r

x

Area:  A 1
2 xr
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Rectangular Box

Volume:  V abc

Surface Area: S  2ab  2ac  2bc
b

c
a

Sphere (Ball)

r

Surface Area: S  4π r2

Volume:  V 4
3 π r3

Cone

r

h
Surface Area: S π r2 π r h2 r2

Volume:  V 1
3 π r2h

Pyramid

a
a

h

Surface Area: S a2 a a2  4h2

Volume:  V 1
3 a2h
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Angles

u v

u v

Parallel

u

v

u v

Proportions

t1 s1 t2 s2

θ θ
s1

t1

t2

s2

Sum of Angles in a Triangle

u1 u2 u3  180

u1 u1u2

u3

u3

Pythagoras’s Theorem

A

b

B

a

C

c

C  90 ⇐⇒ a2 b2 c2
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The Greek Alphabet

A α alpha H η eta N ν nu T τ tau
B β beta � θ ϑ theta 
 ξ xi ϒ υ upsilon
� γ gamma I ι iota O o omicron � φ ϕ phi
� δ delta K κ κ kappa � π pi X χ chi
E ε ε epsilon � λ lambda P ρ � rho  ψ psi
Z ζ zeta M μ mu # σ sigma % ω omega
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Chapter 1

1.1
1. (a) 5 ∈ C, D ⊆ C, and B = C are true. The three others are false. (b) A ∩ B = {2}, A ∪ B = {2, 3, 4, 5, 6}, A \ B =

{3, 4}, B \ A = {5, 6}, (A ∪ B) \ (A ∩ B) = {3, 4, 5, 6}, A ∪ B ∪ C ∪ D = {2, 3, 4, 5, 6}, A ∩ B ∩ C = {2}, and A ∩ B ∩
C ∩ D = ∅.

2. (a) The set F ∩ B ∩ C consists of all female biology students in U who belong to the university choir; M ∩ F of all
female mathematics students in U; ((M ∩ B) \ C) \ T of all students in U who study both mathematics and biology
but neither play tennis nor belong to the university choir.

(b) (i) B ⊆ M (ii) F ∩ B ∩ C �= ∅ (iii) T ∩ B = ∅ (iv) (F \ T) \ C ⊆ B.

3. Note that 50 − 35 = 15 liked coffee but not tea, and 40 − 35 = 5 liked tea but not coffee.

Because 35 liked both and 10 liked neither, there were 15 + 5 + 35 + 10 = 65 who responded.

4. The 23 = 8 subsets of {a, b, c} are the set itself, and the empty set, together with the six subsets {a}, {b}, {c}, {a, b},
{a, c}, and {b, c}. The 24 = 16 subsets of {a, b, c, d} are the 8 preceding sets together with 8 more sets that include d
— namely {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, and {a, b, c, d}. Apart from {a, b, c, d} and the empty set,
there are 14 other subsets.

5. (b) is true because A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) ⊆ (A ∩ B) ∪ C; the other three are generally false. Indeed, A \
B �= B \ A whenever B ⊆ A with ∅ �= B �= A; (c) holds if and only if A ⊆ C; (d) is violated when A = {1, 2}, B = {1},
and C = {1, 3}.

6. For i = 1, 2, 3, let Si denote the set marked (i) in Fig. A1.1.6. Also, let S4 denote the set of all points outside the regions
marked (1), (2) or (3). Then:

(a) (A ∪ B)c = S4 whereas Ac = S3 ∪ S4 and Bc = S1 ∪ S4, so Ac ∩ Bc = S4.

(b) A ∩ B = S2 so (A ∩ B)c = S1 ∪ S3 ∪ S4, whereas Ac ∪ Bc = (S3 ∪ S4) ∪ (S1 ∪ S4) = S1 ∪ S3 ∪ S4.

7. (a) Look again at Fig. A1.1.6. Now, n(A ∪ B) is the sum of the numbers of elements in the pairwise disjoint sets
labelled (1), (2), and (3) respectively—that is, n(A \ B) + n(A ∩ B) + n(B \ A). But n(A) + n(B) is the number of
elements in (1) and (2) together, plus the number of elements in (2) and (3) together. Thus, the elements in (2) are
counted twice. Hence, you must subtract n(A ∩ B), the number of elements in (2), to have equality. (b) Look yet
again at Fig. A1.1.6. Now, n(A \ B) is the number of elements in set (1), whereas n(A) − n(A ∩ B) is the number of
elements in (1) and (2) together, minus the number of elements in (2) alone. Hence, it is the number of elements in (1).

8. (a) Consider Fig. A1.1.8, where the circles represent the readership of the three papers. Let nk denote the number
of people in the set marked Sk, for k = 1, 2, . . . , 8. Obviously n1 + n2 + · · · + n8 = 1000. The responses imply
that: n1 + n3 + n4 + n7 = 420; n1 + n2 + n5 + n7 = 316; n2 + n3 + n6 + n7 = 160; n1 + n7 = 116; n3 + n7 = 100;
n2 + n7 = 30; and n7 = 16.
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(1) (2) (3) BA

Figure A1.1.6

S4

S1

S7

S3

S2

S5

S6
S8

A B

C

Figure A1.1.8

From these equations we easily find n1 = 100, n2 = 14, n3 = 84, n4 = 220, n5 = 186, n6 = 46, n7 = 16, and
n8 = 334. So n3 + n4 = 304 had read A but not B. (b) n6 = 46. (c) n8 = 334.

(d) We find n(A \ B) = n3 + n4 = 304, n(C \ (A ∪ B)) = n6 = 46, and n(U \ (A ∪ B ∪ C)) = n8 = 334. The last
equality is a special case of n(U \ D) = n(U) − n(D). (The number of persons who are in U, but not in D, is the
number of persons in all of U minus the number of those who are in D.)

9. (Note: For the concept of set complement to make sense, it must be assumed that all the sets we consider are subsets
of some “universal” set U. Unfortunately, the collection of everything is not a set!)
Let {Ai : i ∈ I} denote the family of sets, with union A∪ =⋃i∈I Ai and intersection A∩ =⋂i∈I Ai. Then the two state-
ments in the problem are: (a) (A∪)c =⋂i∈I Ac

i , (b) (A∩)c =⋃i∈I Ac
i .

Proofs: (a) a ∈ (A∪)c if and only if a �∈ A∪, that is, if and only if a does not belong to any of the sets Ai, which holds
if and only if a ∈ Ac

i for all i ∈ I, and so if and only if a ∈⋂i∈I Ac
i .

(b) a ∈ (A∩)c if and only if a /∈ A∩, that is, if and only if there exists i ∈ I such that a /∈ Ai, which holds if and only if
there exists i ∈ I such that a ∈ Ac

i , and so if and only if a ∈⋃i∈I Ac
i . See SM.

1.2
1. (a) 2x − 4 = 2 ⇒ x = 3 (b) x = 3 ⇒ 2x − 4 = 2 (c) x = 1 ⇒ x2 − 2x + 1 = 0 (d) x2 > 4 ⇔ |x| > 2

2. (a), (b) and (e) are all true; indeed, (e) is a common definition of what it means for two sets to be equal. For (c),
suppose for example that A = {x}, B = {y}, and C = {z}, where x, y, z are all different. Then A ∩ B = A ∩ C = ∅,
yet B �= C. For (d), suppose for example that A = {x, y, z}, B = {y}, and C = {z}, where x, y, z are all different. Then
A ∪ B = A ∪ C = A, yet B �= C.

3. (a): ⇒ true, ⇐ true (b): ⇒ true, ⇐ false (c): ⇒ false, ⇐ true

(d): ⇒ true (actually both x and y are 0), ⇐ false (e): ⇒ true, ⇐ true

(f): ⇒ false (0 · 5 = 0 · 4, but 5 �= 4), ⇐ true

4. One has 2x + 5 ≥ 13 ⇐⇒ 2x ≥ 8 ⇐⇒ x ≥ 4, so: (a) x ≥ 0 is necessary, but not sufficient.

(b) x ≥ 50 is sufficient, but not necessary. (c) x ≥ 4 is both necessary and sufficient.

5. (a) x < 0 or y < 0 (b) There exists x such that x < a. (c) x < 5 or y < 5, or both.

(d) There exists an ε > 0 such that B is not satisfied for any δ > 0.

(e) There is someone who is able to resist liking cats. (f) There is someone who never loves anyone.

1.3
1. (b), (d), and (e) all express the same condition. (a) and (c) are different.

2. Logically the two statements are equivalent. The second statement may still be useful as an expressive poetic rein-
forcement.
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3. If x and y are not both odd, at least one of them must be even. If, for example, x = 2n, where n is an integer, then
xy = 2ny is also even. Similarly if y = 2m, where m is an integer.

1.4
1. For n = 1, both sides are 1. Suppose (∗) is true for n = k. Then 1 + 2 + 3 + · · · + k + (k + 1) = 1

2 k(k + 1) + (k +
1) = 1

2 (k + 1)(k + 2), which is (∗) for n = k + 1. Thus, by induction, (∗) is true for all natural numbers n.

2. For n = 1, both sides are 1
2 . Suppose (∗) is true for n = k. Then

1
1 · 2

+ · · · + 1
k(k + 1)

+ 1
(k + 1)(k + 2)

= k
k + 1

+ 1
(k + 1)(k + 2)

= k(k + 2) + 1
(k + 1)(k + 2)

But k(k + 2) + 1 = k2 + 2k + 1 = (k + 1)2, so the last fraction simplifies to (k + 1)/(k + 2). Hence (∗) is also true
for n = k + 1, and it follows by induction that (∗) is true for all natural numbers n.

3. For n = 1, the sum n3 + (n + 1)3 + (n + 2)3 = 36, which is divisible by 9. As the induction hypothesis for n = k,
suppose that k3 + (k + 1)3 + (k + 2)3 = 9mk for some natural number mk. Then

(k + 1)3 + (k + 2)3 + (k + 3)3 = −k3 + 9mk + (k + 3)3 = 9mk + 9k2 + 27k + 27 = 9(mk + k2 + 3k + 3)

Obviously, this is also divisible by 9, which confirms the induction hypothesis for n = k + 1.

4. The induction step breaks down for k = 1: Take two people A and B. Send A outside. B has the same income as
himself. Bring A back, and send B outside. A has the same income as himself. But this does not imply that the two
people have the same income! (The induction step is correct for all k > 1, because then the two people sent out have
the same income as the others.)

Review exercises for Chapter 1
1. A ∩ B = {1, 4}; A ∪ B = {1, 3, 4, 6}; A \ B = {3}; B \ A = {6}; (A ∪ B) \ (A ∩ B) = {3, 6};

A ∪ B ∪ C ∪ D = {1, 2, 3, 4, 5, 6}; A ∩ B ∩ C = {4}; and A ∩ B ∩ C ∩ D = ∅.

2. A ∩ B = ∅; A ∪ B = {1, 2, 4, 6, 11}; U \ B = {1, 3, 4, 5, 6, 7, 8, 9, 10}; Ac = U \ A = {2, 3, 5, 7, 8, 9, 10, 11}.
3. Let nE = 780, nF = 220, and nS = 52 denote the numbers studying respectively English, French and Spanish; then

let nEF = 110, nES = 32, and nFS = 15 denote the numbers studying two of the languages, and nEFS = 10 the number
studying all three.

(a) nEF − nEFS = 110 − 10 = 100 study English and French, but not Spanish.

(b) nE − nEF = 780 − 110 = 670 study English but not French.

(c) The number studying at least one language can be calculated as

nE +(nF − nEF)+ (nS − nES − nFS + nEFS) = 780 +(220 − 110)+ (52 − 32 − 15 + 10) = 780 + 110 + 15 = 905

so there are 95 of the 1000 students who study no language.

4. (a) ⇒ true, ⇐ false. (b) ⇒ false because (−4)2 = 16, ⇐ true. (c) ⇒ true, ⇐ false when x = 3.

(d) ⇒ and ⇐ both true.

5. (a) (1 + x)2 = 1 + 2x + x2 ≥ 1 + 2x for all x since x2 ≥ 0.

(b) One has (1 + x)3 = 1 + 3x + 3x2 + x3 = 1 + 3x + x2(3 + x). If x ≥ −3 then x2(3 + x) ≥ 0, implying that
(1 + x)3 ≥ 1 + 3x.

(c) We prove the result by induction on n with a fixed x ≥ −1. Evidently (1 + x)n ≥ 1 + nx holds with
equality when n = 1. As the induction hypothesis, suppose that (1 + x)k ≥ 1 + kx for some natural
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number k. Then, because 1 + x ≥ 0, we find that (1 + x)k+1 = (1 + x)k(1 + x) ≥ (1 + kx)(1 + x). But
(1 + kx)(1 + x) = 1 + (k + 1)x + kx2 ≥ 1 + (k + 1)x, implying that (1 + x)k+1 ≥ 1 + (k + 1)x. This completes the
proof by induction.

Chapter 2

2.1
1. (a) True. (b) False. −5 is less than −3, so on the number line it is to the left of −3.

(c) False because all natural numbers are positive.

(d) True. Every natural number is rational. For example 5 = 5/1. (e) False, since 3.1415 = 31415/10000, the quo-
tient of two integers. (Note that 3.1415 is only an approximation to the irrational number π .)

(f) False. Counterexample:
√

2 + (−√
2) = 0. (g) True. (h) True.

2. In the number 1.01001000100001000001 . . . , one extra zero is added between each successive pair of ones. So there
is obviously no finite sequence of digits that repeats itself indefinitely.

2.2
1. (a) 103 = 10 · 10 · 10 = 1000 (b) (−0.3)2 = 0.09 (c) 4−2 = 1/16 (d) (0.1)−1 = 1/0.1 = 10

2. (a) 4 = 22 (b) 1 = 20 (c) 64 = 26 (d) 1/16 = 2−4

3. (a) 153 (b)
(− 1

3

)3
(c) 10−1 (d) 10−7 (e) t6 (f) (a − b)3 (g) a2b4 (h) (−a)3

4. (a) 25 · 25 = 25+5 = 210 (b) 38 · 3−2 · 3−3 = 38−2−3 = 33 (c) (2x)3 = 23x3 = 8x3

(d) (−3xy2)3 = (−3)3x3(y2)3 = −27x3y6 (e)
p24p3

p4p
= p24+3−4−1 = p22

(f)
a4b−3

(a2b−3)2
= a4b−3

a4b−6
= a4−4b−3−(−6) = b3 (g)

34(32)6

(−3)1537
= 34312

−31537
= −3−6 (h)

pγ (pq)σ

p2γ+σ qσ−2
= p−γ q2

5. (a) 26 = 64 (b) 64/27 (c) 8/3 (d) x9 (e) y12 (f) 8x3y3 (g) 10−2 = 1/100 (h) k4 (i) (x + 1)2

6. (a) Because 4π(3r)2 = 4π32r2 = 9(4πr2), the surface area increases by the factor 9.

(b) When r increases by 16%, it increases by a factor of 1.16, and r2 increases by the factor (1.16)2 = 1.3456, so
the surface area increases by 34.56%.

7. (a) False. a0 = 1. (b) True. c−n = 1/cn for all c �= 0. (c) True. am · am = am+m = a2m.

(d) False (unless m = 0 or ab = 1). ambm = (ab)m.

(e) False (unless m = 1 or ab = 0). For example, (a + b)2 = a2 + 2ab + b2, which is not a2 + b2 unless
ab = 0.

(f) False (unless ambn = 1). For example, a2b3 is not equal to (ab)2+3 = (ab)5 = a5b5.

8. (a) x3y3 = (xy)3 = 33 = 27 (b) (ab)4 = (−2)4 = 16 (c) (a8)0 = 1 for all a �= 0. (d) (−1)2n = [(−1)2]n =
1n = 1

9. (a) 150 · 0.13 = 19.5 (b) 2400 · 0.06 = 144 (c) 200 · 0.055 = 11

10. (a) With an interest rate of 11% per year, then in 8 years, an initial investment of 50 dollars will be worth 50 ·
(1.11)8 ≈ 115.23 dollars. (b) Given a constant interest rate of 12% per year, then in 20 years, an initial invest-
ment of 10 000 euros will be worth 10 000 · (1.12)20 ≈ 96 462.93 euros. (c) 5000 · (1.07)−10 ≈ 2541.75 pounds
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is what you should have invested 10 years ago in order to have 5000 pounds today, given the constant interest rate
of 7%.

11. $1.50 cheaper, which is 15% of $10.

12. (a) 12 000 · (1.04)15 ≈ 21611.32 (b) 50 000 · (1.06)−5 ≈ 37362.91

13. p ≈ 95.3%, since (1.25)3 ≈ 1.953.

14. (a) The profit was higher in 2010. ((1 + 0.2)(1 − 0.17) = 1.2 · 0.83 = 0.996.)

(b) If the decrease in profits from 2011 to 2012 were p%, then profits in 2010 and 2012 would be equal provided
1.2 · (1 − p/100) = 1, or p = 100(1 − 1/1.2) = 100/6 ≈ 16.67.

2.3
1. (a) 1 (b) 6 (c) −18 (d) −18 (e) 3x + 12 (f) 45x − 27y (g) 3 (h) 0 (i) −1

2. (a) 3a2 − 5b (b) −2x2 + 3x + 4y (c) t (d) 2r3 − 6r2s + 2s3

3. (a) −3n2 + 6n − 9 (b) x5 + x2 (c) 4n2 − 11n + 6 (d) −18a3b3 + 30a3b2 (e) a3b − ab3

(f) x3 − 6x2y + 11xy2 − 6y3 (g) acx2 + (ad + bc)x + bd (h) 4 − t4

(i) [(u − v)(u + v)]2 = (u2 − v2)2 = u4 − 2u2v2 + v4

4. (a) 2t3 − 5t2 + 4t − 1 (b) 4 (c) x2 + y2 + z2 + 2xy + 2xz + 2yz (d) 4xy + 4xz

5. (a) x2 + 4xy + 4y2 (b) 1/x2 − 2 + x2 (c) 9u2 − 30uv + 25v2 (d) 4z2 − 25w2

6. (a) 2012 − 1992 = (201 + 199)(201 − 199) = 400 · 2 = 800

(b) If u2 − 4u + 4 = (u − 2)2 = 1 then u − 2 = ±1, so u = 1 or u = 3.

(c)
(a + 1)2 − (a − 1)2

(b + 1)2 − (b − 1)2
= a2 + 2a + 1 − (a2 − 2a + 1)

b2 + 2b + 1 − (b2 − 2b + 1)
= 4a

4b
= a

b

7. 10002/(2522 − 2482) = 10002/(252 + 248)(252 − 248) = 10002/(500 · 4) = 500

8. (a) (a + b)3 = (a + b)2(a + b) = (a2 + 2ab + b2)(a + b) = a3 + 3a2b + 3ab2 + b3

(b) (a − b)3 = (a − b)2(a − b) = (a2 − 2ab + b2)(a − b) = a3 − 3a2b + 3ab2 − b3

(c) and (d): Expand the right-hand sides.

9. (a) 3 · 7 · xxyyy (b) 3(x − 3y + 9z) (c) aa(a − b) (d) 2 · 2 · 2xy(xy − 2) (e) 2 · 2 · 7aabbb (f) 2 · 2(x + 2y − 6z)

(g) 2x(x − 3y) (h) 2aabb(3a + 2b) (i) 7x(x − 7y) (j) 5xyy(1 − 3x)(1 + 3x) (k) (4 + b)(4 − b)

(l) 3(x + 2)(x − 2)

10. (a) (a + 2b)(a + 2b) (b) KL(K − L) (c) K−5(K − L) (d) (3z − 4w)(3z + 4w) (e) − 1
5 (x − 5y)(x − 5y)

(f) (a2 − b2)(a2 + b2) = (a + b)(a − b)(a2 + b2)

11. (a) (x − 2)(x − 2) (b) 2 · 2ts(t − 2s) (c) 2 · 2(2a + b)(2a + b) (d) 5x(x + √
2y)(x − √

2y) (e) (5 + a)(x + y)

(f) u2 − v2 + 3(u + v) = (u + v)(u − v) + 3(u + v) = (u + v)(u − v + 3) (g) (P + Q)(P2 + Q2) (h) KK(K − L)

(i) KL(L2 + 1) (j) (L + K)(L − K) (k) (K − L)(K − L) (l) KL(K − 2L)(K − 2L)
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2.4
1. (a) 2/7 (b) 13/12 (c) 5/24 (d) 2/25 (e) 9/5 (Recall that the mixed numbers 3 3

5 and 1 4
5 are equal to 3 + 3

5 and
1 + 4

5 , respectively.) (f) 1/2 (g) 1/2 (h) 11/27

2. (a) 3x/2 (b) 3a/5 (c) 1/5 (d) 1
12 (−5x + 11) (e) −1/(6b) (f) 1/b

3. (a)
5 · 5 · 13

5 · 5 · 5 · 5
= 13

25
(b)

ab2

8c2
(c)

2
3
(a − b) (d)

P(P + Q)(P − Q)

(P + Q)2
= P(P − Q)

P + Q

4. (a) 1/2 (b) 6 (c) 5/7 (d) 9/2

5. (a)
4

x2 − 4
(b)

21
2(2x + 1)

(c)
a

a − 3b
(d)

1
4ab(a + 2)

(e)
−3t2

t + 2
(f) 4(1 − a)

6. (a)
2 − 3x2

x(x + 1)
(b)

−2t
4t2 − 1

(c)
7x2 + 1
x2 − 4

(d) x + y (e)
y2 − x2

y2 + x2
(f)

y − x
y + x

7.
−8x

x2 + 2xy − 3y2

8. (a) 400 (b)
−n

n − 1
(c) 1 (d)

1
(x − 1)2

(e)
−2x − h

x2(x + h)2
(f)

2x
x − 1

2.5
1. (a) 3 (b) 40 (c) 10 (d) 5 (e) 1/6 (f) 0.7 (g) 0.1 (h) 1/5

2. (a) =. (Both expressions are equal to 20.) (b) �=. In fact,
√

25 + 16 = √
41 �= 9 = √

25 + √
16.

(c) �=. (Put a = b = 1.) (d) =. In fact, (
√

a + b )−1 = [(a + b)1/2]−1 = (a + b)−1/2.

3. (a) 81 (b) 4 (c) 623 (d) 15 (e) −1 (f) 2x − 2x−1 = 2x−1(2 − 1) = 2x−1 = 4 for x = 3.

4. (a) 6
7

√
7 (b) 4 (c) 1

8

√
6 (d) 1 (e) 1

6

√
6 (f)

2
√

2y
y

(g)

√
2x
2

(h) x + √
x

5. (a) 1
2

(√
7 − √

5
)

(b) 4 − √
15 (c) −x

(√
3 + 2

)
(d)

(√
x − √

y
)2

x − y
(e)

√
x + h + √

x (f)
1
x

(
2
√

x + 1 − x − 2
)

6. (a) 3√125 = 5 because 53 = 125. (b) (243)1/5 = 3 because 35 = 243. (c) −2

(d) 3√0.008 = 0.2 because (0.2)3 = 0.008. (e) 9 (f) (64)−1/3 = (43)−1/3 = 4−1 = 1/4

(g) (16)−2.25 = (24)−9/4 = 2−9 = 1/512 (h)
(

1
3−2

)−2

= (32)−2 = 3−4 = 1/81

7. (a) 3√55 ≈ 3.80295 (b) (160)1/4 ≈ 3.55656 (c) (2.71828)1/5 ≈ 1.22140 (d) (1.0001)10000 ≈ 2.718146

8. 40(1 + p/100)12 = 60 gives (1 + p/100)12 = 1.5, and therefore 1 + p/100 = (1.5)1/12.

Solving this for p yields p = 100[(1.5)1/12 − 1] ≈ 3.44.

9. (a) 3xpy2qz4r (b) (x + 15)4/3−5/6 = (x + 15)1/2 = √
x + 15 (c)

8x2/3y1/4z−1/2

−2x1/3y5/2z1/2
= −4x1/3y−9/4z−1

10. (a) a
1
2

2
3

3
4

4
5 = a1/5 (b) a

1
2 + 2

3 + 3
4 + 4

5 = a163/60 (c) 9a7/2 (d) a1/4

11. V = (4/3)πr3 implies r3 = 3V/4π and so r = (3V/4π)1/3. Hence, S = 4πr2 = 4π
(
3V/4π

)2/3 = 3√36π V2/3.
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12. (a) (2x)2 = 22x, so (2x)2 = 2x2
iff 2x = x2 iff x = 0 or x = 2. (b) is valid (c) is valid

(d) If x �= 0, then
1
5x

= 5−x = 51/x iff −x2 = 1, which is false for all real x.

(e) If a > 0 then ax+y = ax · ay �= ax + ay when, for example, a = 1.

(f) If x > 0 and y > 0 then 2
√

x · 2
√

y = 2
√

xy iff
√

x + √
y = √

xy. This is false when, for example, x = y = 1.

13. x < 4. (If x > 0, then 32x3/2 > 4x3 if and only if 8x3/2 > x3 , which is equivalent to 8 > x3/2, and so x < 82/3 = 4.)

2.6
1. (a), (b), (d), (f), and (h) are all true; (c), (e), and (g) are all false.

2. (a) x ≥ −8 (b) x < −9 (c) All x. (d) x ≤ 25/2 (e) x ≤ 19/7 (f) x > −17/12

3. (a) −41/6 < x ≤ 2/3 (b) x < −1/5

4. (a) x(x + 3) < 0 for x in (−3, 0), so ⇒ (b) x2 < 9 for x in (−3, 3), so ⇒ (c) ⇐ (d) y2 ≥ 0, so ⇒
5. (a) Yes (b) No, put x = 1

2 , for example. (c) No, not for x ≤ 0.

(d) Yes, because the inequality is equivalent to x2 − 2xy + y2 ≥ 0, or (x − y)2 ≥ 0, which is satisfied for all x and y.

6. (a) 4 ≤ C ≤ 6 implies that 9
5 4 + 32 ≤ F ≤ 9

5 6 + 32 or 39.2 ≤ F ≤ 42.8, in degrees Fahrenheit.

(b) F = 9
5 C + 32 implies that C = 5

9 (F − 32), so 36 ≤ F ≤ 40 implies that 2.2 ≤ C ≤ 4.4, approximately.

7. For each k = 1, 2, . . ., let sk denote the sum a1 + a2 + · · · + ak, and pk the product a1 · a2 · . . . · ak. The result that
both s2 and p2 are positive follows directly from (2.6.1). As the induction hypothesis, suppose that sk and pk are both
positive. Because sk+1 = sk + ak+1 and pk+1 = pk · ak+1, it follows from (2.6.1) that sk+1 and pk+1 are both positive.
The result follows by induction.

8.
(√

a − √
b
)2 = a − 2

√
ab + b ≥ 0 yields a + b ≥ 2

√
ab; dividing by 2 gives mA ≥ mG. Because

(√
a − √

b
)2 = 0

is equivalent to a = b, one also has mA > mG unless a = b. The inequality mG ≥ mH follows easily from the
hint.

2.7
1. (a) |2 · 0 − 3| = 3, |2 · 1

2 − 3| = 2, |2 · 7
2 − 3| = 4 (b) |2x − 3| = 0 ⇔ 2x − 3 = 0, so x = 3/2.

(c) |2x − 3| = 2x − 3 for x ≥ 3/2, and 3 − 2x for x < 3/2.

2. (a) |5 − 3(−1)| = 8, |5 − 3 · 2| = 1, |5 − 3 · 4| = 7 (b) |5 − 3x| = 5 ⇐⇒ 5 − 3x = ±5, so x = 0 or 10/3.

(c) |5 − 3x| = 5 − 3x for x ≤ 5/3, and 3x − 5 for x > 5/3

3. (a) x = −1 and x = 4 (b) −2 ≤ x ≤ 2 (c) 1 ≤ x ≤ 3 (d) −1/4 ≤ x ≤ 1 (e) x >
√

2 or x < −√
2

(f) −1 ≤ x2 − 2 ≤ 1, so 1 ≤ x2 ≤ 3, implying that −√
3 ≤ x ≤ −1 or 1 ≤ x ≤ √

3

4. (a) 4.999 < x < 5.001 (b) |x − 5| < 0.001

2.8
1. (a) −7 < x < −2 (b) n ≥ 160 or n < 0 (c) 0 ≤ g ≤ 2 (d) p ≥ −1 and p �= 2

(e) −4 < n < −10/3 (f) −1 < x < 0 or 0 < x < 1. (Hint: x4 − x2 = x2(x + 1)(x − 1).)

2. (a) −2 < x < 1 (b) x < −4 or x > 3 (c) −5 ≤ a ≤ 5 (d) x < −4 or x > 1 (e) x > −4 and x �= 1 (f) 1 ≤ x ≤ 2
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(g) x < 1 and x �= 1/5 (h) 1/5 < x < 1 (i) x < 0 (j) −3 < x < −2 or x > 0 (k) x �= 2 (l) x ≤ 0

3. −1 < x < 0

2.9
1. (a) 1 + 2 + 3 + · · · + 10 = 55 (b) (5 · 30 − 2) + (5 · 31 − 3) + (5 · 32 − 4) + (5 · 33 − 5) + (5 · 34 − 6) = 585

(c) 1 + 3 + 5 + 7 + 9 + 11 = 36 (d) 220 + 221 + 222 = 21 + 22 + 24 = 22 (e) 10 · 2 = 20

(f) 2/1 + 3/2 + 4/3 + 5/4 = 73/12

2. (a) 2
√

0 + 2
√

1 + 2
√

2 + 2
√

3 + 2
√

4 = 2(3 + √
2 + √

3)

(b) (x + 0)2 + (x + 2)2 + (x + 4)2 + (x + 6)2 = 4(x2 + 6x + 14)

(c) a1ib
2 + a2ib

3 + a3ib
4 + · · · + anib

n+1 (d) f (x0)�x0 + f (x1)�x1 + f (x2)�x2 + · · · + f (xm)�xm

3. (a)
n∑

k=1

4k (b)
n∑

k=1

k3 (c)
n∑

k=0

(−1)k 1
2k + 1

(d)
n∑

k=1

aikbkj (e)
5∑

n=1

3nxn (f)
p∑

j=3

aj
ibi+j (g)

p∑
k=0

ak+3
i+k bi+k+3

(h)
3∑

k=0

(81 297 + 198k)

4.
2 · 3 + 3 · 5 + 4 · 7
1 · 3 + 2 · 5 + 3 · 7

· 100 = 6 + 15 + 28
3 + 10 + 21

· 100 = 49
34

· 100 ≈ 144.12

5. (a)
10∑

k=1

(k − 2)tk =
8∑

m=−1

mtm+2 (b)
N∑

n=0

2n+5 =
N+1∑
j=1

32 · 2j−1 (because 32 = 25)

6. (a) The total number of people moving from nation i within the EEA.

(b) The total number of people moving to nation j within the EEA.

7. (a), (c), (d), and (e) are always true; (b) and (f) are generally not true.

2.10
1. We prove only (2.10.6); the proof of (2.10.5) is very similar, but slightly easier. Note that the last equality in (2.10.6)

follows immediately from (2.10.4), so we will concentrate on proving the equality

13 + 23 + 33 + · · · + n3 = [ 1
2 n(n + 1)

]2
(∗)

For n = 1 the LHS and the RHS of (∗) are both equal to 1. As the induction hypothesis, suppose (∗) is true for n = k.
Then

∑k+1
i=1 i3 =∑k

i=1 i3 + (k + 1)3 = [ 1
2 k(k + 1)]2 + (k + 1)3 = (k + 1)2( 1

4 k2 + k + 1). But this last expression is
equal to 1

4 (k + 1)2(k2 + 4k + 4) = [ 1
2 (k + 1)(k + 2)]2, which proves that (∗) is true for n = k + 1. By induction, we

have proved (∗).

2.
∑n

k=1(k
2 + 3k + 2) =∑n

k=1 k2 + 3
∑n

k=1 k +∑n
k=1 2 = 1

6 n(n + 1)(2n + 1) + 3
[ 1

2 n(n + 1)
]+ 2n

= 1
3 n(n2 + 6n + 11).

3.
∑n−1

i=0 (a + id) =∑n−1
i=0 a + d

∑n−1
i=0 i = na + d 1

2 [1 + (n − 1)](n − 1) = na + 1
2 n(n − 1)d. Using this formula, the

sum that Gauss is alleged to have computed is: 100 · 81 297 + 1
2 100 · 99 · 198 = 9 109 800. (One does not have to

use summation signs. The sum is a + (a + d) + (a + 2d) + · · · + (a + (n − 1)d). There are n terms. The sum of all
the a’s is na. The rest is d(1 + 2 + · · · + (n − 1)). Then use formula (2.10.4).)

4. (a) Writing the sum as (a2 − a1) + (a3 − a2) + (a4 − a3) + · · · + (an − an−1) + (an+1 − an) we see that all the ai
cancel pairwise, except −a1 and an+1. Actually, this is more striking if we write the sum starting with the last term and
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working backwards to the first: (an+1 − an) + (an − an−1) + · · · + (a4 − a3) + (a3 − a2) + (a2 − a1) = an+1 − a1.
(b) (i) 1 − (1/51) = 50/51 (ii) 313 − 3 = 1 594 320 (iii) ar(rn − 1)

2.11
1. (a + b)6 = a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6. (The coefficients are those in the row number 6 of

Pascal’s triangle in the text, counting from the top row as number 0.)

2. (a)
(

8
3

)
= 56. Also,

(
8

8 − 3

)
=
(

8
5

)
= 56;

(
8
3

)
+
(

8
3 + 1

)
= 56 + 70 = 126 and

(
8 + 1
3 + 1

)
=
(

9
4

)
= 126.

(b)
(

m
k

)
= m!

(m − k)! k!
=
(

m
m − k

)
and

(
m
k

)
+
(

m
k + 1

)
= m!

(m − k)! k!
+ m!

(m − k − 1)! (k + 1)!

The last expression reduces to
m! (k + 1 + m − k)
(m − k)! (k + 1)!

= (m + 1)!
(m − k)! (k + 1)!

=
(

m + 1
k + 1

)
.

3.
∑m

k=0

(
m
k

)
=
∑m

k=0

(
m
k

)
1k1m−k = (1 + 1)m = 2m.

2.12

1. (a)
3∑

i=1

4∑
j=1

i · 3j =
3∑

i=1

(i · 3 + i · 9 + i · 27 + i · 81) =
3∑

i=1

120i = 720 (b) 5 + 3113
3600

(c) 1
6 mn(2n2 + 3n + 3m + 4)

(d) 1
3 m(m + 1)(m + 2)

2. (a) The total number of units of good i. (b) The total number of units of all goods owned by person j.

(c) The total number of units of goods owned by the group as a whole.

3. First,
∑i

j=1 aij is the sum of all the i numbers in the ith row, so in the first double sum we sum all these m row sums.
Second,

∑m
i=j aij is the sum of all the m − j + 1 numbers in the jth column, so in the second double sum we sum all

these m column sums.

4. The mean of the n column means is
1
n

n∑
j=1

--aj = 1
n

n∑
j=1

1
m

m∑
i=1

aij = --a. Also

m∑
r=1

m∑
s=1

(arj − --a)(asj − --a) =
m∑

r=1

(arj − --a)

m∑
s=1

(asj − --a) = [m(--aj − --a)][m(--aj − --a)] = m2(--aj − --a)2

See SM.

Review exercises for Chapter 2
1. (a) If the price is p before VAT, then after VAT it is p + 20p/100 = p(1 + 0.2) = 1.2p. Thus a = 1.2p, so p = a

1.2
.

(b) p1x1 + p2x2 + p3x3 (c) F + bx (d) (F + cx)/x = F/x + c

(e) After the p% raise, the employee’s salary is L + pL/100 = L(1 + p/100). A q% raise of this new salary gives the
final answer: L(1 + p/100)(1 + q/100).

2. (a) 53 = 5 · 5 · 5 = 125 (b) 10−3 = 1/103 = 1/1000 = 0.0001 (c) 1/3−3 = 33 = 27 (d) −1000 (e) 3

(f) (3−2)−3 = 36 = 729 (g) −1 (h)
(− 1

2

)−3 = 1
(− 1

2 )3 = 1
− 1

8
= −8

3. (a) 1 (b) Undefined. (c) 1 (d) 1

4. (a) 2−6 = 1/64 (b) 3
2 − 3

4 = 3
4 (c) −45/4 (d) 1
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5. (a) 16x4 (b) 4 (c) 6xyz (d) a27b9 (e) a3 (f) x−15

6. (a) x3y3 = (x−1y−1)−3 = 3−3 = 1/27 (b) (x−3)6(x2)2 = x−18x4 = x−14 = (x7)−2 = 2−2 = 1/4

(c) (z/xy)6 = (xy/z)−6 = [(xy/z)−2]3 = 33 = 27 (d) (abc)4 = (a−1b−1c−1)−4 = (1/4)−4 = 44 = 256

7. (a) Given an interest rate of 1% per year, then in 8 years, an investment of 100 million euros will grow to 100 ·
(1.01)8 ≈ 108.3 million euros. (b) Given an interest rate of 15% per year, then in 10 years, an initial investment of
50 000 pounds will be worth 50 000 · (1.15)10 ≈ 202 278 pounds. (c) 6000 · (1.03)−8 ≈ 4736 dollars is what you
should have deposited 8 years ago in order to have 6000 dollars today, given the constant interest rate of 3%.

8. (a) 100 000(1.08)10 ≈ 215 892 (b) 25 000(1.08)−6 ≈ 15 754

9. (a) a2 − a (b) x2 + 4x − 21 (c) −3 + 3
√

2 (d) 3 − 2
√

2 (e) x3 − 3x2 + 3x − 1 (f) 1 − b4 (g) 1 − x4

(h) x4 + 4x3 + 6x2 + 4x + 1

10. (a) 5(5x − 1) (b) xx(3 − xy) (c) (
√

50 − x)(
√

50 + x) (d) a(a − 2b)2

11. (a) (5 + a)(x + 2y) (b) (a + b)(c − d) (c) (a + 2)(x + y) (d) (2x − y)(x + 5z) (e) (p − q)(p + q + 1)

(f) (u − v)(u − v)(u + v)

12. (a) 161/4 = 4√16 = 2 (b) 243−1/5 = (35)−1/5 = 3−1 = 1/3 (c) 51/7 · 56/7 = 51/7+6/7 = 51 = 5 (d) 4−3/2 = 1/8

(e) 641/3 + 3√125 = 4 + 5 = 9 (f) (−8/27)2/3 = ( 3√−8/27 )2 = (−2/3)2 = 4/9

(g) (−1/8)−2/3 + (1/27)−2/3 = ( 3√−1/8 )−2 + ( 3√1/27 )−2 = (−1/2)−2 + (1/3)−2 = 4 + 9 = 13

(h)
1000−2/3

3√5−3
= (

3√1000 )−2

5−1
= 10−2

5−1
= 1

20

13. (a) 8 = 23, so x = 3/2 (b) 1/81 = 3−4, so 3x + 1 = −4 or x = −5/3 (c) x2 − 2x + 2 = 2, so x = 0 or x = 2.

14. (a) 5 + x = 3, so x = −2. (b) 3x − 3x−2 = 3x−2(32 − 1) = 3x−2 · 8, so 3x−2 = 3, and thus x = 3.

(c) 3x · 3x−1 = 32x−1 = 81 = 34 provided x = 5/2. (d) 35 + 35 + 35 = 3 · 35 = 36, so x = 6.

(e) 4−6 + 4−6 + 4−6 + 4−6 = 4 · 4−6 = 4−5, so x = −5. (f)
226 − 223

226 + 223
= 223(23 − 1)

223(23 + 1)
= 7

9
, so x = 7.

15. (a)
2s

4s2 − 1
(b)

7
3 − x

(c)
1

x + y

16. (a) 1
5 a2b (b) x − y (c)

2a − 3b
2a + 3b

(d)
x(x + 2)

2 − x

17. (a) x < 13/2 (b) y ≥ −3 (c) Valid for all x. (d) x < 29/14 (e) −1 ≤ x ≤ 13/3

(f) −√
6 ≤ x ≤ −√

2 or
√

2 ≤ x ≤ √
6

18. (a) 30 + 0.16x (b) Smallest number of hours: 7.5. Largest number of hours: 10.

19. 2π(r + 1) − 2πr = 2π , where r is the radius of the Earth (as an approximate sphere). So the extended rope is only
about 6.28 m longer!

20. (a) Put p/100 = r. Then the given expression becomes a + ar − (a + ar)r = a(1 − r2), as required.

(b) $2000 · 1.05 · 0.95 = $1995. (c) The result is precisely the formula in (a).

(d) With the notation used in the answer to (a), we have a − ar + (a − ar)r = a(1 − r2), which is the same expression
as in (a).
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21. (a) No, for example, −1 > −2, but (−1)2 < (−2)2.

(b) Suppose a > b so that a − b > 0. If also a + b > 0, then a2 − b2 = (a + b)(a − b) > 0, so a2 > b2.

22. (a) 2 > 1 and 1/2 < 1/1. Also, −1 > −2 and 1/(−1) < −1/2. On the other hand, 2 > −1 and 1/2 > 1/(−1).

(b) If ab > 0 and a > b, then 1/b − 1/a = (a − b)/ab > 0, so 1/b > 1/a.

(Also, if ab < 0 and a > b, then 1/b − 1/a = (a − b)/ab < 0, so 1/b < 1/a.)

23. (i) For any number c, |c| = √
c2. Then |ab| = √(ab)2 = √

a2b2 = √
a2

√
b2 = |a| · |b|.

(ii) Either a = |a| or a = −|a|, so −|a| ≤ a ≤ |a|. Likewise, −|b| ≤ b ≤ |b|. Adding these inequalities yields
−|a| − |b| ≤ a + b ≤ |a| + |b|, and thus |a + b| ≤ |a| + |b|.

24. Let s denote the length of each side of the equilateral triangle. Then the total area A of the triangle is the sum
of the areas of three triangles with base s and heights h1, h2 and h3 respectively. Therefore A = 1

2 sh1 + 1
2 sh2 +

1
2 sh3. It follows that h1 + h2 + h3 = 2A/s, independent of P. See SM for a figure. (For the curious: A = 1

4

√
3s2, so

h1 + h2 + h3 = 1
2

√
3s.)

25. (a)
∑4

i=1
1

i(i + 2)
= 1

1 · 3
+ 1

2 · 4
+ 1

3 · 5
+ 1

4 · 6
= 1

3
+ 1

8
+ 1

15
+ 1

24
= 40 + 15 + 8 + 5

120
= 68

120
= 17

30

(b)
∑9

j=5(2j − 8)2 = 22 + 42 + 62 + 82 + 102 = 4 + 16 + 36 + 64 + 100 = 220

(c)
∑5

k=1
k − 1
k + 1

=
5∑

k=1

(
1 − 2

k + 1

)
= 5 − 2

2
− 2

3
− 2

4
− 2

5
− 2

6
= 21

10

(d)
∑5

n=2(n − 1)2(n + 2) = 12 · 4 + 22 · 5 + 32 · 6 + 42 · 7 = 4 + 20 + 54 + 112 = 190

(e)
∑5

k=1

(
1
k

− 1
k + 1

)
= 1

1
− 1

6
= 5

6

(f)
∑3

i=−2(i + 3)i = 1−2 + 2−1 + 30 + 41 + 52 + 63 = 1 + 1
2 + 1 + 4 + 25 + 216 = 247 1

2

26. (a) 3 + 5 + 7 + · · · + 199 + 201 =∑100
i=1(1 + 2i) (b)

2
1

+ 3
2

+ 4
3

+ · · · + 97
96

=
∑96

i=1

1 + i
i

(c) 4 · 6 + 5 · 7 + 6 · 8 + · · · + 38 · 40 =∑38
i=4 i(i + 2) (d)

1
x

+ 1
x2

+ · · · + 1
xn

=
∑n

i=1
x−i

(e) 1 + x2

3
+ x4

5
+ x6

7
+ · · · + x32

33
=
∑16

i=0

x2i

1 + 2i
(f) 1 − 1

2
+ 1

3
− 1

4
+ · · · − 1

80
+ 1

81
=
∑81

i=1
(−1)i−1 1

i

27. (a) and (c) are right. (b) is wrong unless the difference between the left and right hand sides, which is 2
∑n

i=1 aibi,
happens to be zero. (d) is also wrong.

28. 3 + 5 + 7 + · · · + 197 + 199 + 201 =∑100
i=1(1 + 2i) = 100 + 2

∑100
i=1 i = 100 + 100 · 101 = 10 200;

1 001 + 2 002 + 3 003 + · · · + 8 008 + 9 009 + 10 010 = 1 001
∑10

i=1 i = 1 001 · 1
2 · 10 · 11 = 55 055.

Chapter 3

3.1
1. (a) x = 3 (b) x = 6 (c) Any x is a solution. (d) x = 1 (e) x = −5. (Hint: x2 + 10x + 25 = (x + 5)2.)

(f) x = −1

2. (a) x = −28/11 (b) x = 5/11 (c) x = 1 (d) x = 121

3. (a) x = 0 (b) x = −6 (c) x = 5
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4. (a) With x as the smallest number, one has x + (x + 1) + (x + 2) = 10 + 2x, so x = 7. The numbers are 7, 8, and 9.

(b) If x is Jane’s regular hourly wage, then 38x + (48 − 38)2x = 812. Solution: x = 812/58 = 14.

(c) 1500 + 12x/100 = 2100, so 12x = 60000, implying that x = 5000.

(d) 2
3 x + 1

4 x + 100 000 = x. Solution: x = 1 200 000.

5. (a) y = 17/23 (b) x = −4 (c) z = 4 (d) p = 15/16

6. She spends y/3 euros on each kind of fruit, for y/9 kilos of apples, y/6 kilos of bananas, and y/18 kilos of cherries.

So the total weight in kilos is
(

1
9

+ 1
6

+ 1
18

)
y =

(
2 + 3 + 1

18

)
y = 6

18
y = 1

3
y. She pays 3 euros per kilo of fruit.

3.2
1. Inserting the second equation into the first gives Y = 750 + 0.9Y , whose solution is Y = 7500. Alternatively, formula

(∗∗) gives Y = a
1 − b

+ 1
1 − b

--I = 600
1 − 0.9

+ 150
1 − 0.9

= 750
1 − 0.9

= 7500.

2. (a) x = 1
2

(1
a

+ 1
b

)
(b) x = dA − b

a − cA
(c) x = p2

4w2
(d) x = − 1

1 + a
(e) x = ±b

a
(f) x = 0

3. (a) p = 20q/3 − 14/15 (b) P = (S − α)/β (c) g = 2A/h (d) r = (3V/4π)1/3 (e) L = (Y0A−1K−α)1/β

4. (a) x = (a − b)/(α − β) (b) p = (3q + 5)2/q (c) Y = 100 (d) K = (2wQ4/r)1/3 (e) L = rK/2w

(f) K = 1
32

p4r−3w−1 = p4/(32r3w)

5. (a) s = tT
T − t

(b) M = (B + αL)2

KL
(c) z = 4xy − x + 2y

x + 4y
(d) T = N

(
1 − V

C

)

3.3
1. (a) x(15 − x) = 0, so the solutions are x = 0 and x = 15 (b) p = ±4 (c) q = 3 and q = −4 (d) No solution.

(e) x = 0 and x = 3 (f) x = 2. (Note that x2 − 4x + 4 = (x − 2)2.)

2. (a) x2 − 5x + 6 = (x − 2)(x − 3) = 0 for x = 2 and for x = 3. (With x2 − 5x = −6, completing the square gives
x2 − 5x + (5/2)2 = (5/2)2 − 6 = 25/4 − 6 = 1/4, or (x − 5/2)2 = 1/4. Hence, x − 5/2 = ±1/2.)

(b) y2 − y − 12 = (y − 4)(y + 3) = 0 for y = 4 and for y = −3. (c) No solutions and no factorization.

(d) − 1
4 x2 + 1

2 x + 1
2 = − 1

4

[
x − (1 + √

3
)][

x − (1 − √
3
)] = 0 for x = 1 ± √

3

(e) m2 − 5m − 3 = [m − 1
2

(
5 + √

37
)][

m − 1
2

(
5 − √

37
)]= 0 for m = 1

2

(
5 ± √

37
)

(f) 0.1p2 + p − 2.4 = 0.1(p − 2)(p + 12) = 0 for p = 2 and for p = −12.

3. (a) r = −13, r = 2 (b) p = −16, p = 1 (c) K = 100, K = 200 (d) r = −√
3, r = √

2

(e) x = −0.5, x = 0.8 (f) p = −1/6, p = 1/4

4. (a) x = 1, x = 2 (b) t = 1
10

(
1 ± √

61
)

(c) x = 1
4

(
3 ± √

13
)

(d) x = 1
3

(−7 ± √
5
)

(e) x = −300, x = 100 (f) x = 1
6

(
5 ± √

13
)

5. (a) If the sides have length x and y, then the perimeter has length 2x + 2y = 40 and the area is xy = 75. From the Rules
for Quadratic Functions, it follows that x and y are the roots of the quadratic equation z2 − 20z + 75 = 0, so the sides
have lengths 5 and 15.
(b) If the two numbers are n and n + 1, then n2 + (n + 1)2 = 13, so 2n2 + 2n − 12 = 0. The roots of this equation
are n1 = 2, and n2 = −3. But n has to be positive, so the only possibility is n = 2, so the two numbers are 2 and 3.
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(Of course, with numbers this small it is even easier to use trial and error, starting with the smallest numbers. 12+22=5,
which is too little, but 22 + 32 = 13, which is just right, and further along the numbers get too big, so the answer is 2
and 3.)

(c) The length x of the shortest side satisfies x2 + (x + 14)2 = 342, or 2x2 + 28x = 1156 − 196 = 960, or x2 + 14x −
480 = 0. The lengths are 16 cm and 30 cm.

(d) If his usual speed is s, the usual time is 80/s hours, or 4800/s minutes. Driving at a speed s + 10, the time is
4800

s + 10
= 4800

s
− 16. Clearing fractions gives 4800s = (4800 − 16s)(s + 10) or 16s2 + 160s − 48000 = 0, imply-

ing that s2 + 10s − 3000 = 0. The only positive root of this equation is s = 50. Hence the usual speed is 50 km/h.

6. (a) x = −2, x = 0, x = 2. (x(x2 − 4) = 0 or x(x + 2)(x − 2) = 0)

(b) x = −2, x = −1, x = 1, x = 2. (Let x2 = u.) (c) z = −1/3, z = 1/5. (Let z−1 = u.)

3.4
1. (a) x = 0 and x = −3 (b) x = 0 and x = 1/2 (c) x = 1 and x = 3 (d) x = −5/2 (e) No solutions.

(f) x = 0 and x = −1

2. (a) No solutions. (b) x = −1 (c) x = −3/2 (d) x = 0 and x = 1/2

3. (a) z = 0 or z = a/(1 − a − b) for a + b �= 1. For a + b = 1 the only solution is z = 0.

(b) λ = −1 or μ = 0 or x = y (c) λ = 0 and μ �= ±1, or μ = 2 (d) a = 2 or b = 0 or λ = −1

3.5
1. x = −1, 0, and 1 make the equation meaningless. Multiplying each term by the common denominator x(x − 1)(x + 1),

we derive the only solution from the equivalences

(x + 1)2

x(x − 1)
+ (x − 1)2

x(x + 1)
− 2

3x + 1
x2 − 1

= 0 ⇐⇒ 2x(x2 − 3x + 2) = 0 with x /∈ {−1, 0, 1}

⇐⇒ 2x(x − 1)(x − 2) = 0 with x /∈ {−1, 0, 1} ⇐⇒ x = 2

2. (a) Squaring both sides and rearranging yields x + 2 = √
4x + 13 ⇒ (x + 2)2 = 4x + 13 ⇒ x2 = 9 ⇒ x = ±3.

But x + 2 = √
4x + 13 ⇒ x + 2 ≥ 0. So only x = 3 is a solution.

(b) Squaring both sides and rearranging yields x(x + 5) = 0. Both x = 0 and x = −5 are solutions.

(c) The equivalent equation |x|2 − 2|x| − 3 = 0 gives |x| = 3 or |x| = −1. Because |x| ≥ 0, only x = ±3 are solutions.

3. (a) No solutions. (b) x = 20

4. (a) x + √
x + 4 = 2 =⇒ √

x + 4 = 2 − x =⇒ x + 4 = 4 − 4x + x2 =⇒ x2 − 5x = 0
(i)=⇒ x − 5 = 0

(ii)⇐= x = 5.

Here implication (i) is incorrect (x2 − 5x = 0 =⇒ x − 5 = 0 or x = 0.)
Implication (ii) is correct, but it breaks the chain of implications.

(b) x = 0. (After correcting implication (i), we see that the given equation implies x = 5 or x = 0. But only x = 0 is
a solution; x = 5 solves the different equation x − √

x + 4 = 2.)

3.6
1. (a) x = 8, y = 3 (b) x = 1/2, y = 1/3 (c) x = 1.1, y = −0.3

2. (a) x = 1, y = −1 (b) x = −4, y = 7 (c) x = −7/2, y = 10/3
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3. (a) p = 2, q = 3 (b) r = 2.1, s = 0.1

4. (a) 39 and 13 (b) $120 for a table and $60 for a chair. (c) 450 of quality B and 300 of quality P.

(d) $2000 at 5% and $8000 at 7.2% interest.

Review exercises for Chapter 3
1. (a) x = 12 (b) x = 3 (c) x = −3/2 (d) x = −19 (e) x = 11/7 (f) x = 39

2. (a) x = 0 (b) x = −6 (c) x = 5 (d) x = −1

3. (a) x = 2
3 (y − 3) + y = 2

3 y − 2 + y = 5
3 y − 2, or 5

3 y = x + 2, so y = 3
5 (x + 2).

(b) ax − cx = b + d, or (a − c)x = b + d, so x = (b + d)/(a − c).

(c)
√

L = Y0/AK, so squaring each side yields L = (Y0/AK)2. (d) qy = m − px, so y = (m − px)/q.

(e) Put s = 1/(1 + r). Then s = (a + bc)/(1 − c), so r = (1/s) − 1 = [(1 − a) − c(1 + b)]/(a + bc).

(f) Multiplying by (Px + Q)1/3 yields Px + Px + Q = 0, and so x = −Q/2P.

4. (a) K = 225L2/3 (b) r = 100(21/t − 1) (c) x0 = (p/ab)1/(b−1) (d) b = λ1/ρ
(
c−ρ − (1 − λ)a−ρ

)−1/ρ

5. (a) z = 0 or z = 8 (b) x = −7 or x = 5 (c) p = −7 or p = 2 (d) p = 1/4 or p = 1/3 (e) y = 4 ± √
31

(f) x = −7 or x = 6

6. (a) x = ±2 or x = 5 (b) x = −4. (x4 + 1 is never 0.) (c) λ = 1 or x = y

7. If he invested $x at 15% interest and $y at 20%, then 0.15x + 0.20y = 275. Also, x + y = 1500. Solving this system
yields x = 500, y = 1000.

8. (a) From the second and third equations of the model, one has C = b(Y − tY) = b(1 − t)Y . Inserting this into the

first equation and solving for Y yields Y =
--I + G

1 − b(1 − t)
and then C = b(1 − t)(--I + G)

1 − b(1 − t)
.

(b) Note that 0 < b(1 − t) < 1. When t increases, both Y and 1 − t decrease, and so therefore does C = b(1 − t)Y .

9. 53x = 25y+2 = 52(y+2) so that 3x = 2(y + 2). With x − 2y = 8 this gives x = −2 and y = −5, so x − y = 3.

10. (a) Let u = 1/x and v = 1/y. Then the system reduces to 2u + 3v = 4, 3u − 2v = 19, with solution u = 5, v = −2,
and so x = 1/u = 1/5, y = 1/v = −1/2.

(b) Let u = √
x and v = √

y. Then 3u + 2v = 2, 2u − 3v = 1/4, with solution u = 1/2, v = 1/4, so x = 1/4,
y = 1/16.

(c) With u = x2 and v = y2, we get u + v = 13, 4u − 3v = 24, with solution u = 9, v = 4, and so x = ±3 and
y = ±2.

Chapter 4

4.2
1. (a) f (0) = 1, f (−1) = 2, f (1/2) = 5/4, and f (

√
2) = 3

(b) (i) For all x. (ii) When x = 1/2. (iii) When x = ±√
1/2 = ± 1

2

√
2.

2. F(0) = F(−3) = 10, F(a + h) − F(a) = 10 − 10 = 0

3. (a) f (0) = 0, f (a) = a2, f (−a) = a2 − (−a − a)2 = −3a2, and f (2a) = 0

(b) 3f (a) + f (−2a) = 3a2 + [a2 − (−2a − a)2] = 3a2 + a2 − 9a2 = −5a2
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4. (a) f (−1/10) = −10/101, f (0) = 0, f (1/
√

2) = √
2/3, f (

√
π) = √

π/(1 + π), f (2) = 2/5

(b) f (−x) = −x/(1 + (−x)2) = −x/(1 + x2) = −f (x)

and f (1/x) = (1/x)/[1 + (1/x)2] = (1/x) · x2/[1 + (1/x)2] · x2 = x/(1 + x2) = f (x).

5. F(0) = 2, F(−3) = √
19, F(t + 1) = √

t2 + 3

6. (a) C(0) = 1000, C(100) = 41 000, and C(101) − C(100) = 501.

(b) C(x + 1) − C(x) = 2x + 301 is the incremental cost of increasing production from x to x + 1.

7. (a) D(8) = 4, D(10) = 3.4, and D(10.22) = 3.334. (b) P = 10.9

8. (a) f (tx) = 100(tx)2 = 100t2x2 = t2f (x) (b) P(tx) = (tx)1/2 = t1/2x1/2 = t1/2P(x)

9. (a) b(0) = 0, b(50) = 100/11, b(100) = 200

(b) b(50 + h) − b(50) is the additional cost of removing h% more than 50% of the impurities.

10. (a) No: f (2 + 1) = f (3) = 18, whereas f (2) + f (1) = 8 + 2 = 10. (b) Yes: f (2 + 1) = f (2) + f (1) = −9.

(c) No: f (2 + 1) = f (3) = √
3 ≈ 1.73, whereas f (2) + f (1) = √

2 + 1 ≈ 2.41.

11. (a) f (a + b) = A(a + b) = Aa + Ab = f (a) + f (b) (b) f (a + b) = 10a+b = 10a · 10b = f (a) · f (b)

12. See Figs A4.2.12a and A4.2.12b.

x2

x · 1 1 · 1

1 · x

x 1

x

1

Figure A4.2.12a Area
(x + 1)2 = x2 + 2x + 1

x

1

x

1

Figure A4.2.12b Area
x2 + 1

y

1
x

1

(−3, 2)

(4, 0)

(0, 4)

(2, 3)

(−3/2, −2)

Figure A4.3.1

13. (a) x ≤ 5 (b) x �= 0 and x �= 1 (c) −3 < x ≤ 1 or x > 2

14. (a) Defined for x �= 2, i.e. Df = (−∞, 2) ∪ (2, ∞) (b) f (8) = 5

(c) f (x) = 3x + 6
x − 2

= 3 ⇐⇒ 3x + 6 = 3(x − 2) ⇐⇒ 6 = −6, which is impossible.

15. Since g obviously is defined for x ≥ −2, Dg = [−2, ∞). Note that g(−2) = 1, and g(x) ≤ 1 for all x ∈ Df .

As x increases from −2 to ∞, so g(x) decreases from 1 to −∞, implying that Rg = (−∞, 1].

4.3
1. See Fig. A4.3.1.

2. (a) f (−5) = 0, f (−3) = −3, f (−2) = 0, f (0) = 2, f (3) = 4, f (4) = 0 (b) Df = [−5, 4], Rf = [−3, 4]
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3. (a)
x 0 1 2 3 4
g(x) = −2x + 5 5 3 1 −1 −3

See Fig. A4.3.3.

(b)
x −2 −1 0 1 2 3 4
h(x) = x2 − 2x − 3 5 0 −3 −4 −3 0 5

See Fig. A4.3.4.

(c)
x −2 −1 0 1 2
F(x) = 3x 1

9
1
3 1 3 9

See Fig. A4.3.5.

(d)
x −2 −1 0 1 2 3
G(x) = 1 − 2−x −3 −1 0 1/2 3/4 7/8

See Fig. A4.3.6.

y

−4
−3
−2
−1

1
2
3
4
5

x1 2 3 4

Figure A4.3.3

y

−4
−3

1
2
3
4
5

x−2 1 2 3 4

Figure A4.3.4

�2 �1 1 2

1

2

3

�2

�1

y

x

Figure A4.3.5

�2 �1 1 2 3

1

2

3

4

�2

�3

�1

y

x

Figure A4.3.6

4.4
1. (a) Slope = (8 − 3)/(5 − 2) = 5/3 (b) −2/3 (c) 51/5

2. See Figs A4.4.2a, A4.4.2b, and A4.4.2c.

y

1

2

3

4

x1 2 3 4

Figure 4.4.2a

y

−5

−4

−3

−2

−1

1

x1 2 3 4 5 6 7 8 10

Figure 4.4.2b

y

−1

1

2

3

4

x1 2 3 4 5

Figure 4.4.2c

3. If D = a + bP, then a + 10b = 200, and a + 15b = 150. Solving for a and b yields a = 300 and b = −10, so D =
300 − 10P.

4. (a), (b), and (d) are all linear; (c) is not, because it is quadratic.

5. If P is the price of Q copies, then P − 1400 = 3000 − 1400
500 − 100

(Q − 100) by the point–point formula, so

P = 1000 + 4Q.

The price of printing 300 copies is therefore P = 1000 + 4 · 300 = 2200.
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6. �1: The slope is 1, and the point–slope formula with (x1, y1) = (0, 2) and a = 1 gives y = x + 2.

�2: By the point–point formula with (x1, y1) = (0, 3) and (x2, y2) = (5, 0), we have y − 3 = 0 − 3
5 − 0

x, or

y = − 3
5 x + 3.

�3 is y = 1, with slope 0. �4 is y = 3x − 14, with slope 3. �5 is y = 1
9 x + 2, with slope 1/9.

7. (a) �1: y − 3 = 2(x − 1) or y = 2x + 1 (b) �2: y − 2 = 3 − 2
3 − (−2)

[x − (−2)] or y = x/5 + 12/5

(c) �3: y = −x/2 (d) �4: x/a + y/b = 1, or y = −bx/a + b.

8. For (a), shown in Fig. A4.4.8a, the solution is x = 3, y = −2. For (b), shown in Fig. A4.4.8b, the solution is x = 2,
y = 0. For (c), shown in Fig. A4.4.8c, there are no solutions, because the two lines are parallel.

y

x

x + y = 1

x − y = 5

(3, −2)

1

1

Figure A4.4.8a

y

x
1

1

x − y = 2

x − 2y = 2

x + y = 2

(2, 0)

Figure A4.4.8b

y

x

1

1
6x + 8y = 6
3x + 4y = 1

Figure A4.4.8c

9. (a) See Figs A4.4.9a, A4.4.9b, and A4.4.9c.

y

x

1

1

Figure A4.4.9a

y

x−1 1

Figure A4.4.9b

y

x

1

1

Figure A4.4.9c

10. See Fig. A4.4.10. Each small arrow points toward the side of the line where the relevant inequality is satisfied. The
shaded triangle is the required set.

y

x

1

2

3

2 3 4

3x + 4y = 12
3x + y = 3

x − y = 1

Figure A4.4.10
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4.5
1. 0.78

2. (a) 75 − 3Pe = 2Pe, and hence Pe = 15. (b) Pe = 90

3. The point–point formula gives C − 200 = 275 − 200
150 − 100

(x − 100), or C = 3
2 x + 50.

4. C = 0.8y + 100. (With C = ay + b, we are told that 900 = 1000a + b and a = 80/100 = 0.8, so b = 100.)

5. (a) P(t) = 20 000 − 2000t (b) W(t) = 500 − 50t

4.6

1. (a)
x −1 0 1 2 3 4 5
f (x) = x2 − 4x 5 0 −3 −4 −3 0 5

See Fig. A4.6.1.

(b) Minimum at x = 2, with f (2) = −4. (c) x = 0 and x = 4.

y

−4
−3
−2
−1

1
2
3
4
5

x−1 1 2 3 4 5 6

f (x) = x2 − 4x

Figure A4.6.1

y

−4
−3
−2
−1

1
2
3

x−4−3−2−1 1 2 3

f (x) = − 1
2 x2 − x + 3

2

Figure A4.6.2

2. (a)
x −4 −3 −2 −1 0 1 2
f (x) = − 1

2 x2 − x + 3
2 −2.5 0 1.5 2 1.5 0 −2.5

See Fig. A4.6.2.

(b) Maximum at x = −1 with f (−1) = 2. (c) x = −3 and x = 1.

(d) f (x) > 0 in (−3, 1), f (x) < 0 for x < −3 and for x > 1.

3. (a) Minimum −4 for x = −2. (b) Minimum 9 for x = −3. (c) Maximum 45 for x = 5.

(d) Minimum −45 for x = 1/3. (e) Maximum 40 000 for x = −100. (f) Minimum −22 500 for x = −50.

4. (a) x(x + 4). Zeros 0 and −4. (b) No factoring is possible. No zeros.

(c) −3(x − x1)(x − x2), where the zeros are x1 = 5 + √
15 and x2 = 5 − √

15.

(d) 9(x − x1)(x − x2), where the zeros are x1 = 1/3 + √
5 and x2 = 1/3 − √

5.

(e) −(x + 300)(x − 100). Zeros −300 and 100. (f) (x + 200)(x − 100). Zeros −200 and 100.

5. (a) x = 2p and x = p (b) x = p and x = q (c) x = 1
2 p and x = −2q

6. Expanding gives U(x) = −(1 + r2)x2 + 8(r − 1)x + 40. By (4.6.4), U(x) has a maximum for x = 4(r − 1)/

(1 + r2).

7. (a) The areas when x = 100, 250, and 350 are 100 · 400 = 40 000, 250 · 250 = 62 500, and 350 · 150 = 52 500,
respectively. (b) The area is A = (250 + x)(250 − x) = 62 500 − x2, which obviously has its maximum for x = 0.
Then the rectangle is a square.
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8. (a) π(Q) = (PE − PG − γ )Q = − 1
2 Q2 + (α1 − α2 − γ )Q.

(b) Using (4.6.4), we see that Q∗ = α1 − α2 − γ maximizes profit if α1 − α2 − γ > 0. If α1 − α2 − γ ≤ 0, then
Q∗ = 0.

(c) π(Q) = − 1
2 Q2 + (α1 − α2 − γ − t)Q and Q∗ = α1 − α2 − γ − t if α1 − α2 − γ − t > 0.

(d) T = tQ∗ = t(α1 − α2 − γ − t). T is a quadratic function of t; it is 0 when t = 0 and when t = t1 = α1 − α2 − γ ,
and it is positive for t between 0 and t1. (e) Export tax revenue is maximized when t = 1

2 (α1 − α2 − γ ).

9. (a) 361 ≤ 377 (b) If B2 − 4AC > 0, then according to formula (2.3.4), the equation f (x) = Ax2 + Bx + C = 0
would have two distinct solutions, contradicting f (x) ≥ 0 for all x. Hence B2 − 4AC ≤ 0. (c) (4.6.8) is equivalent to
1
4 B2 ≤ AC.

4.7
1. (a) −2, −1, 1, 3 (b) 1, −6 (c) None. (d) 1, 2, −2

2. (a) 1 and −2 (b) 1, 5, and −5 (c) −1

3. (a) 2x2 + 2x + 4 + 3/(x − 1) (b) x2 + 1 (c) x3 − 4x2 + 3x + 1 − 4x/(x2 + x + 1)

(d) 3x5 + 6x3 − 3x2 + 12x − 12 + (28x2 − 36x + 13)/(x3 − 2x + 1)

4. (a) y = 1
2 (x + 1)(x − 3) (b) y = −2(x + 3)(x − 1)(x − 2) (c) y = 1

2 (x + 3)(x − 2)2

5. (a) x + 4 (b) x2 + x + 1 (c) −3x2 − 12x

6. c4 + 3c2 + 5 ≥ 5 �= 0 for every choice of c, so the division has to leave a remainder.

7. Expand the right-hand side. (Note that R(x) → a/c as x → ∞.)

8. E = α
(
x − (β + γ )

)+ αβ(β + γ )

x + β

4.8
1. See Fig. A4.8.1.

2. (a) 1.632 526 9 (b) 36.462 159 6

y

1

2

x1 2

y = x−1/3

y = x−1/2

y = x−1

y = x−3

Figure A4.8.1

3. (a) 23 = 8, so x = 3/2 (b) 1/81 = 3−4, so 3x + 1 = −4, and therefore x = −5/3

(c) x2 − 2x + 2 = 2, so x2 − 2x = 0, implying that x = 0 or x = 2.
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4. (a) 35t9t = 35t(32)t = 35t+2t = 37t and 27 = 33, so 7t = 3, and then t = 3/7.

(b) 9t = (32)t = 32t and (27)1/5/3 = (33)1/5/3 = 33/5/3 = 3−2/5, and then 2t = −2/5, so t = −1/5.

4.9
1. The amount of savings after t years is 100 (1 + 12/100)t = 100 · (1.12)t. We have the following table:

t 1 2 5 10 20 30 50
100 · (1.12)t 112 125.44 176.23 310.58 964.63 2995.99 28 900.21

y

2

4

6

8

x−3−2 −1 1 2 3

y = 2xy = 2−x

Figure A4.9.2

y

0.5

x−3 −2 −1 1 2 3

y =
1
√

2π
e−

1
2 x2

Figure A4.9.3

2. The graphs are drawn in Fig. A4.9.2. We have the following table:

x −3 −2 −1 0 1 2 3
2x 1/8 1/4 1/2 1 2 4 8
2−x 8 4 2 1 1/2 1/4 1/8

3. The graph is drawn in Fig. A4.9.3. Here is a table:

x −2 −1 0 1 2

y = 1√
2π

e− 1
2 x2

0.05 0.24 0.40 0.24 0.05

4. (b) and (d) do not define exponential functions. (In (f): y = (1/2)x.)

5. (a) 16(1.19)5 ≈ 38.18 (b) 4.40(1.19)10 ≈ 25.06 (c) 250 000(1.19)4 ≈ 501 335

6. Consider y = Abx, where b > 0. For Graph A, since it passes through the points (x, y) = (0, 2) and (x, y) = (2, 8), we
get 2 = Ab0, so A = 2, and 8 = 2b2, so b = 2. Hence, y = 2 · 2x.

For Graph B, we have 2
3 = Ab−1 and 6 = Ab. It follows that A = 2 and b = 3, and so y = 2 · 3x.

For Graph C, we have 4 = Ab0 and 1/4 = Ab4. It follows that A = 4 and b4 = 1/16, so b = 1/2. Thus,
y = 4(1/2)x.

4.10
1. (a) ln 9 = ln 32 = 2 ln 3 (b) 1

2 ln 3 (c) ln 5√32 = ln 32/5 = 2
5 ln 3 (d) ln(1/81) = ln 3−4 = −4 ln 3

2. (a) ln 3x = x ln 3 = ln 8, so x = ln 8/ ln 3. (b) x = e3 (c) x2 − 4x + 5 = 1 so (x − 2)2 = 0. Hence, x = 2.

(d) x(x − 2) = 1 or x2 − 2x − 1 = 0, so x = 1 ± √
2. (e) x = 0 or ln(x + 3) = 0, so x = 0 or x = −2.

(f)
√

x − 5 = 1 so x = 36.

3. (a) x = − ln 2/ ln 12 (b) x = e6/7 (c) x = ln(8/3)/ ln(4/3) (d) x = 4 (e) x = e (f) x = 1/27
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4. t = 1
r − s

ln
B
A

5. The answer to exercise 4 implies that t ≈ 22, so the date should have been 2012.

6. (a) False. (Let A = e.) (b) 2 ln
√

B = 2 ln B1/2 = 2(1/2) ln B = ln B.

(c) ln A10 − ln A4 = 10 ln A − 4 ln A = 6 ln A = 3 · 2 ln A = 3 ln A2. (d) Wrong. (Put A = B = C = 1.)

(e) Correct by rule (2)(b). (f) Correct. (Use (2)(b) twice.)

(g) Wrong. (If A = e and p = 2, then the equality becomes 0 = ln 2.) (h) Correct by (2)(c).

(i) Wrong. (Put A = 2, B = C = 1.)

7. (a) exp
[
ln(x)

]− ln
[
exp(x)

] = eln x − ln ex = x − x = 0 (b) ln
[
x4 exp(−x)

] = 4 ln x − x (c) x2/y2

8. The doubling time t∗ is determined by (1.0072)t∗ = 2. Using a calculator, we find t∗ = ln 2/ ln 1.0072
≈ 96.6.

9. P(t) = 1.22 · 1.034t. The doubling time t∗ is given by the equation (1.034)t∗ = 2, with solution t∗ ≈ 20.7
(years).

10. We find (1.035)t = 3.91 · 105/5.1 ≈ 76 666.67, and using a calculator we find t ≈ 327. So the year is 1969 + 327 =
2296. This is when every Zimbabwean would have only 1 m2 of land on average.

11. If the initial time is t, the doubling time t∗ is given by the equation Aat+t∗ = 2Aat, which implies Aatat∗ = 2Aat, so
at∗ = 2, independent of t.

Review exercises for Chapter 4
1. (a) f (0) = 3, f (−1) = 30, f (1/3) = 2, f ( 3√2) = 3 − 27(21/3)3 = 3 − 27 · 2 = −51

(b) f (x) + f (−x) = 3 − 27x3 + 3 − 27(−x)3 = 3 − 27x3 + 3 + 27x3 = 6

2. (a) F(0) = 1, F(−2) = 0, F(2) = 2, and F(3) = 25/13

(b) F(x) = 1 + 4
x + 4/x

tends to 1 as x becomes large positive or negative. (c) See Fig. A4.R.2.

y

1

2

x−4 −3 −2 −1 1 2 3 4

F(x) = 1 + 4x

x2+4

Figure A4.R.2

y

1

2

3

x−5 −4 −3 −2 −1 1 2

Figure A4.R.9

3. (i) f (x) ≤ g(x) when −2 ≤ x ≤ 3. (ii) f (x) ≤ 0 when −1 ≤ x ≤ 3. (iii) g(x) ≥ 0 when x ≤ 3.

4. (a) x2 ≥ 1, i.e. x ≥ 1 or x ≤ −1.

(b) The square root is defined if x ≥ 4, but x = 4 makes the denominator 0, so we must require x > 4.

(c) We must have (x − 3)(5 − x) ≥ 0, i.e. 3 ≤ x ≤ 5 (use a sign diagram).
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5. (a) C(0) = 100, C(100) = 24 100, and C(101) − C(100) = 24 542 − 24 100 = 442.

(b) C(x + 1) − C(x) = 4x + 42 is the additional cost of producing one more than x units.

6. (a) Slope −4 (b) Slope −3/4 (c) Solving for y gives y = b[1 − (x/a)] = b − (b/a)x, so the slope is −b/a.

7. (a) The point–slope formula gives y − 3 = −3(x + 2), or y = −3x − 3.

(b) The point–point formula gives y − 5 = 7 − 5
2 − (−3)

(x − (−3)), or y = 2x/5 + 31/5.

(c) The point–point formula gives y − b = 3b − b
2a − a

(x − a), or y = (2b/a)x − b.

8. f (2) = 3 and f (−1) = −3 give 2a + b = 3 and −a + b = −3, so a = 2, b = −1. Hence f (x) = 2x − 1 and f (−3) =
−7. (Or use the point–point formula.)

9.
x −5 −4 −3 −2 −1 0 1
y = x2ex 0.17 0.29 0.45 0.54 0.37 0 2.7

The graph is drawn in Fig. A4.R.9.

10. (1, −3) belongs to the graph if a + b + c = −3, (0, −6) belongs to the graph if c = −6, and (3, 15) belongs to the
graph if 9a + 3b + c = 15. It follows that a = 2, b = 1, and c = −6.

11. (a) π = (1000 − 1
3 Q
)
Q − (800 + 1

5 Q
)
Q − 100Q = 100Q − 8

15 Q2. Hence Q = 1500/16 = 93.75 maximizes π .

(b) π̂ = 100Q − 8
15 Q2 − 10Q = 90Q − 8

15 Q2. So Q̂ = 1350/16 = 84.375 maximizes π̂ .

12. The new profit is πt = 100Q − 5
2 Q2 − tQ, which is maximized at Qt = 1

5 (100 − t).

13. (a) The profit function is π(x) = 100x − 20x − 0.25x2 = 80x − 0.25x2, which has a maximum at x∗ = 160.

(b) The profit function is πt(x) = 80x − 0.25x2 − 10x, which has a maximum at x∗ = 140.

(c) The profit function is πt(x) = (p − τ − α)x − βx2, which has a maximum at x∗ = (p − α − τ)/2β.

14. (a) p(x) = x(x − 3)(x + 4) (b) q(x) = 2(x − 2)(x + 4)(x − 1/2)

15. (a) x3 − x − 1 is not 0 for x = 1, so the division leaves a remainder.

(b) 2x3 − x − 1 is 0 for x = 1, so the division leaves no remainder.

(c) x3 − ax2 + bx − ab is 0 for x = a, so the division leaves no remainder.

(d) x2n − 1 is 0 for x = −1, so the division leaves no remainder.

16. We use (4.7.5). (a) p(2) = 8 − 2k = 0 for k = 4. (b) p(−2) = 4k2 + 2k − 6 = 0 for k = −3/2 and k = 1.

(c) p(−2) = −26 + k = 0 for k = 26. (d) p(1) = k2 − 3k − 4 = 0 for k = −1 and k = 4.

17. p(x) = 1
4 (x − 2)(x + 3)(x − 5), so the other two roots are x = −3 and x = 5.

18. (1 + p/100)15 = 2 gives p = 100(21/15 − 1) ≈ 4.7 as the percentage rate.

19. (a) Assume F = aC + b. Then 32 = a · 0 + b and 212 = a · 100 + b. Therefore a = 180/100 = 9/5 and b = 32, so
F = 9C/5 + 32. (b) If X = 9X/5 + 32, then X = −40.

20. (a) ln x = ln eat+b = at + b, so t = (ln x − b)/a. (b) −at = ln(1/2) = ln 1 − ln 2 = − ln 2, so t = (ln 2)/a.

(c) e− 1
2 t2 = 21/2π1/22−3, so − 1

2 t2 = 1
2 ln 2 + 1

2 ln π − 3 ln 2 = − 5
2 ln 2 + 1

2 ln π , implying that t2 = 5 ln 2 − ln π =
ln(32/π), and finally, t = ±

√
ln
(
32/π

)
.

21. The vertical dashed line is x = −c, so c < 0. The graph shows that f (0) = b/c is positive, so b is also negative.
Because f (x) = (a + b/x)/(1 + c/x) gets closer and closer to a as x becomes very large, the horizontal dashed line
is y = a, showing that a > 0.
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22. Because f (x) > 0 when |x| is large, one has p > 0. Because f (0) < 0, one has r < 0. Because the sum of the two
roots of f (x) = 0 is evidently positive, one has q < 0.

23. (a): C (b): D (c): E (d): B (e): A (f): F: the function y = 2 − (1/2)x is suitable.

24. (a), (b) and (c) are all obviously implied by the Rules for the Natural Logarithmic Function provided that x, y and z
are all positive.

(d) When x > 0, note that

1
2 ln x − 3

2 ln(1/x) − ln(x + 1) = 1
2 ln x + 3

2 ln x − ln(x + 1) = 2 ln x − ln(x + 1) = ln x2 − ln(x + 1)

= ln[x2/(x + 1)]

Chapter 5

5.1
1. (a) y = x2 + 1 has the graph of y = x2 shifted up by 1. See Fig. A5.1.1a.

(b) y = (x + 3)2 has the graph of y = x2 moved 3 units to the left. See Fig. Fig: A5.1.1b.

(c) y = 3 − (x + 1)2 has the graph of y = x2 first turned upside down, then with (0, 0) shifted to (−1, 3). See
Fig. A5.1.1c.

y

x1

1

Figure A5.1.1a

y

x−1

1

Figure A5.1.1b

y

x−1

1

Figure A5.1.1c

2. (a) The graph of y = f (x) is moved 2 units to the right. See Fig. A5.1.2a.

(b) The graph of y = f (x) is moved downwards by 2 units. See Fig. A5.1.2b.

(c) The graph of y = f (x) is reflected about the y-axis. See Fig. A5.1.2c.

y

x

1

1

Figure A5.1.2a

y

x

1

1

Figure A5.1.2b

y

x

1

1

Figure A5.1.2c

3. The equilibrium condition is 106 − P= 10 + 2P, and thus P= 32. The corresponding quantity is Q = 106 − 32 = 74.
See Fig. A5.1.3.
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4. Move y = |x| two units to the left. Then reflect the graph about the x-axis, and then move the graph up 2 units. See
Fig. A5.1.4.

P

Q, D, D̃, S

32

74

P = 100 − D

P = 106 − D̃

P = 1
2 S − 5

Figure A5.1.3

y

x

1

−1

Figure A5.1.4

y

x

1

−2

Figure A5.1.5

5. Draw the graph of y = 1/x2. Move it two units to the left. Then reflect the graph about the x-axis, and finally move
the graph up 2 units to get Fig. A5.1.5.

6. f (y∗ − d) = f (y∗) − c gives A(y∗ − d) + B(y∗ − d)2 = Ay∗ + B(y∗)2 − c, which expands to Ay∗ − Ad + B(y∗)2 −
2Bdy∗ + Bd2 = Ay∗ + B(y∗)2 − c. It follows that y∗ = [Bd2 − Ad + c]/2Bd.

5.2
1. See Fig. A5.2.1.

2. See Figs A5.2.2a to A5.2.2c.

y

x

1
4 x2

1/x

Figure A5.2.1

y

x

Figure A5.2.2a

y

x

Figure A5.2.2.b

y

x

Figure A5.2.2.c
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3. (f + g)(x) = 3x, (f − g)(x) = 3x − 2x3, (fg)(x) = 3x4 − x6, (f /g)(x) = 3/x2 − 1, f (g(1)) = f (1) = 2, and
g(f (1)) = g(2) = 8.

4. If f (x) = 3x + 7, then f (f (x)) = f (3x + 7) = 3(3x + 7) + 7 = 9x + 28. The equality f (f (x∗)) = 100 requires 9x∗ +
28 = 100, and so x∗ = 8.

5. ln(ln e) = ln 1 = 0, while (ln e)2 = 12 = 1.

5.3
1. P = 1

3 (64 − 10D)

2. P = (157.8/D)10/3

3. (a) Domain and range are both R; inverse is x = −y/3. (b) Domain and range are both R \ {0); inverse is x = 1/y.

(c) Domain and range are bothR; inverse is x = y1/3. (d) Domain is [4, ∞); range is [0, ∞); inverse is x = (y2 + 2)2.

4. (a) The domain of f −1 is {−4, −2, 0, 2, 4, 6, 8}, and f −1(2) = −1. (b) f (x) = 2x + 4, with inverse f −1(x) = 1
2 x − 2.

5. f (x) = x2 is not one-to-one over (−∞, ∞), and therefore has no inverse. Over [0, ∞), the function f is strictly
increasing and therefore has the inverse f −1(x) = √

x.

6. (a) f (x) = x/2 and g(x) = 2x are inverse functions. (b) f (x) = 3x − 2 and g(x) = 1
3 (x + 2) are inverse functions.

(c) C = 5
9 (F − 32) and F = 9

5 C + 32 are inverse functions.

7. f −1(Q) determines the cost of Q kilograms of carrots.

8. (a) See Fig. A5.3.8a. (b) See Fig. A5.3.8b. Triangles OBA and OBC are congruent. The point half-way between
the two points A and C is B = ( 1

2 (a + b), 1
2 (a + b)).

y

x

(3, 1)

(5, 3)(1, 3)

(3, 5)

y = x

Figure A5.3.8a

y

x

C = (b, a)

A = (a, b)

B

y = x

D

EO

Figure A5.3.8b

9. (a) f −1(x) = (x3 + 1)1/3 (b) f −1(x) = 2x + 1
x − 1

(c) f −1(x) = (1 − (x − 2)5
)1/3

10. (a) x = ln y − 4, defined for y > 0. (b) x = ey+4, defined for y ∈ (−∞, ∞).

(c) x = 3 + ln(ey − 2), defined for y > ln 2.

11. We must solve x = 1
2 (ey − e−y) for y. Multiply the equation by ey to get 1

2 e2y − 1
2 = xey or e2y − 2xey − 1 = 0.

Letting ey = z yields z2 − 2xz − 1 = 0, with solution z = x ± √
x2 + 1. Choosing the minus sign would make z

negative, contradicting z = ey, so z = ey = x + √
x2 + 1. This gives y = ln

(
x + √

x2 + 1
)

as the inverse function.
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5.4
1. (a) Some solutions include

(
0, ±√

3
)
,
(±√

6, 0
)
, and

(±√
2, ±√

2
)
. See Fig. A5.4.1a.

(b) Some solutions include (0, ±1),
(±1, ±√

2
)
, and

(±3, ±√
10
)
. See Fig. A5.4.1b.

2. We see that we must have x ≥ 0 and y ≥ 0. If (a, b) lies on the graph, so does (b, a), so the graph is symmetric about
the line y = x. It also includes the particular points (25, 0), (0, 25), and (25/4, 25/4). An easy way to find points on
the graph is the following: Choose nonnegative numbers u and v such that u + v = 5, and let x = u2, y = v2. See
Fig. A5.4.2.

y

−2

−1

1

2

x−3 −2 −1 1 2 3

Figure A5.4.1a

y

−2

−1

1

2

x−3 −2 −1 1 2 3

Figure A5.4.1b

x

y

25

25

Figure A5.4.2

3. F(100 000) = 4070. The graph is the thick line sketched in Fig. A5.4.3.

Y

RN

4070

7500 100 000

Figure A5.4.3

y

x5

(2, 4)

2

2

Figure A5.5.2

5.5
1. (a)

√
(2 − 1)2 + (4 − 3)2 = √

2 (b)
√

5 (c) 1
2

√
205 (d)

√
x2 + 9 (e) 2|a| (f) 2

√
2

2. (5 − 2)2 + (y − 4)2 = 13, or y2 − 8y + 12 = 0, with solutions y = 2 and y = 6. A geometric explanation is that the
circle with centre at (2, 4) and radius

√
13 intersects the line x = 5 at two points. See Fig. A5.5.2.

3. (a) 5.362 (b)
√

(2π)2 + (2π − 1)2 = √
8π2 − 4π + 1 ≈ 8.209

4. (a) (x − 2)2 + (y − 3)2 = 16 (b) Since the circle has centre at (2, 5), its equation is (x − 2)2 + (y − 5)2 = r2. Since
(−1, 3) lies on the circle, (−1 − 2)2 + (3 − 5)2 = r2, so r2 = 13.

5. (a) Completing squares yields (x + 5)2 + (y − 3)2 = 4, so the circle has centre at (−5, 3) and radius 2.

(b) (x + 3)2 + (y − 4)2 = 12, which has centre at (−3, 4) and radius
√

12 = 2
√

3.
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6. The condition is that
√

(x + 2)2 + y2 = 2
√

(x − 4)2 + y2, which reduces to (x − 6)2 + y2 = 42.

7. We can write the formula as cxy − ax + dy − b = 0. Comparing this with (5), A = C = 0 and B = c, so 4AC < B2

reduces to 0 < c2, that is c �= 0, precisely the condition assumed in Example 4.7.7.

8. If A2 + B2 > 4C, then the graph of the equation is the circle with a centre at (− 1
2 A, − 1

4 B) and radius
√

C − 1
4 A2 − 1

4 B2.

If A2 + B2 = 4C, then the graph is the single point set {(− 1
2 A, − 1

2 B)}. If A2 + B2 < 4C, it is the empty set.

9. After completing the square when D = E = 0, Eq. (5.5.5) is A
(

x + By
2A

)2

+ 1
4A

(4AC − B2)y2 + F = 0 with A > 0.

(i) If 4AC − B2 > 0, then the graph is: an ellipse iff F < 0 (or a circle in case 4AC − B2 = 4A2); the single point
(−B/2A, 0) iff F = 0; the empty set iff F > 0. (ii) If 4AC − B2 = 0, then the graph is: the two parallel lines x =
−By/2A ± √−F/A iff F < 0; the single line x = −By/2A iff F = 0; the empty set iff F > 0. (A parabola cannot occur
when D = E = 0 in (5.5.5).) (iii) If 4AC − B2 < 0, then the graph is: a hyperbola iff F �= 0; the two intersecting lines
x = (−B ± √

B2 − 4AC)y/2A iff F = 0.

5.6
1. Only (c) does not define a function. (Rectangles with equal areas can have different perimeters.)

2. The function in (b) is one-to-one and has an inverse: the rule mapping each youngest child alive today to his/her
mother. (Though the youngest child of a mother with several children will have been different at different dates.)

The function in (d) is one-to-one and has an inverse: the rule mapping the surface area to the volume.

The function in (e) is one-to-one and has an inverse: the rule that maps (u, v) to (u − 3, v).

The function in (a) is many-to-one, in general, and so has no inverse.

Review exercises for Chapter 5
1. The shifts of y = |x| are the same as those of y = x2 in Exercise 5.1.1. See Figs A5.R.1a, A5.R.1b, and A5.R.1c.

y

x

y = |x| + 1

Figure A5.R.1a

y

x

y = |x + 3|

Figure A5.R.1b

y

x

y = 3 − |x + 1|

Figure A5.R.1c

2. (f + g)(x) = x2 − 2, (f − g)(x) = 2x3 − x2 − 2, (fg)(x) = x2(1 − x)(x3 − 2), (f /g)(x) = (x3 − 2)/x2(1 − x),

f (g(1)) = f (0) = −2, and g(f (1)) = g(−1) = 2.

3. (a) The equilibrium condition is 150 − 1
2 P∗ = 20 + 2P∗, which implies that P∗ = 52 and Q∗ = 20 + 2P∗ = 124.

(b) S = 20 + 2(̂P − 2) = 16 + 2P̂, so S = D when 5P̂/2 = 134. Hence P̂ = 53.6, Q̂ = 123.2.

(c) Before the tax, R∗ = P∗Q∗ = 6448. After the tax, R̂ = (̂P − 2)Q̂ = 51.6 · 123.2 = 6357.12.

4. P = (64 − 10D)/3

5. P = 24 − 1
5 D
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6. (a) x = 50 − 1
2 y (b) x = 5√y/2 (c) x = 1

3 [2 + ln(y/5)], defined for y > 0

7. (a) y = ln(2 + ex−3), defined for x ∈ R (b) y = − 1
λ

ln a − 1
λ

ln
(1

x
− 1
)

, defined for x ∈ (0, 1)

8. (a)
√

13 (b)
√

17 (c)
√

(2 − 3a)2 = |2 − 3a|. (Note that 2 − 3a is the correct answer only if 2 − 3a ≥ 0, i.e.
a ≤ 2/3. Check this by putting a = 3.)

9. (x − 2)2 + (y + 3)2 = 25 (b) (x + 2)2 + (y − 2)2 = 65

10. (x − 3)2 + (y − 2)2 = (x − 5)2 + (y + 4)2, which reduces to x − 3y = 7. See Fig. A5.R.10.

y

x

A = (3, 2)

B = (5, −4)

2

2

P

Figure A5.R.10

11. The function cannot be one-to-one, because at least two persons out of any five must have the same blood
group.

Chapter 6

6.1
1. f (3) = 2. The tangent passes through (0, 3), so has slope −1/3. Thus, f ′(3) = −1/3.

2. g(5) = 1, g′(5) = 1.

6.2
1. f (5 + h) − f (5) = 4(5 + h)2 − 4 · 52 = 4(25 + 10h + h2) − 100 = 40h + 4h2. So [f (5 + h) − f (5)]/h = 40 +

4h → 40 as h → 0. Hence, f ′(5) = 40. This accords with (6) when a = 4 and b = c = 0.

2. (a) f ′(x) = 6x + 2 (b) f ′(0) = 2, f ′(−2) = −10, f ′(3) = 20. The tangent equation is y = 2x − 1.

3. dD(P)/dP = −b

4. C′(x) = 2qx

5.
f (x + h) − f (x)

h
= 1/(x + h) − 1/x

h
= x − (x + h)

hx(x + h)
= −h

hx(x + h)
= − 1

x(x + h)
−→
h→0

− 1
x2

6. (a) f ′(0) = 3 (b) f ′(1) = 2 (c) f ′(3) = −1/3 (d) f ′(0) = −2 (e) f ′(−1) = 0 (f) f ′(1) = 4

7. (a) f (x + h) − f (x) = a(x + h)2 + b(x + h) + c − (ax2 + bx + c) = 2ahx + bh + ah2,

so [f (x + h) − f (x)]/h = 2ax + b + ah → 2ax + b as h → 0. Thus f ′(x) = 2ax + b.

(b) f ′(x) = 0 for x = −b/2a. The tangent is parallel to the x-axis at the minimum/maximum point.
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8. f ′(a) < 0, f ′(b) = 0, f ′(c) > 0, f ′(d) < 0

9. (a) Expand the left-hand side. (b) Rearrange the identity in (a).

(c) Letting h → 0, the formula follows. (Recall that
√

x = x1/2 and 1/
√

x = x−1/2.)

10. (a) f ′(x) = 3ax2 + 2bx + c. (b) Put a = 1 and b = c = d = 0 to get the result in Example 6.2.2. Then put a = 0
to get a quadratic expression as in Exercise 7(a).

11.
(x + h)1/3 − x1/3

h
= 1

(x + h)2/3 + (x + h)1/3x1/3 + x2/3
→ 1

3x2/3
as h → 0, and

1
3x2/3

= 1
3

x−2/3.

6.3
1. f ′(x) = 2x − 4, so f (x) is decreasing in (−∞, 2], increasing in [2, ∞).

2. f ′(x) = −3x2 + 8x − 1 = −3(x − x0)(x − x1), where x0 = 1
3 (4 − √

13) ≈ 0.13 and x1 = 1
3 (4 + √

13) ≈ 2.54.

Then f (x) is decreasing in (−∞, x0], increasing in [x0, x1], and decreasing in [x1, ∞).

3. The expression in the bracket is a sum of two squares, so it is never negative and it is 0 only if both x1 + 1
2 x2 and x2

are equal to 0. This happens only when x1 = x2 = 0. Thus the bracket is always positive if x1 �= x2, and then x3
2 − x3

1
will have the same sign as x2 − x1. It follows that f is strictly increasing.

6.4
1. C′(100) = 203 and C′(x) = 2x + 3.

2. Here c is the marginal cost, and also the (constant) incremental cost of producing each additional unit, whereas --C is
the fixed cost.

3. (a) S′(Y) = s (b) S′(Y) = 0.1 + 0.0004Y

4. T ′(y) = t, so the marginal tax rate is constant.

5. The interpretation of x′(0) = −3 is that at time t = 0, the rate of extraction is 3 barrels per minute.

6. (a) C′(x) = 3x2 − 180x + 7500 (b) By (4.6.3), the quadratic function C′(x) has a minimum at x = 180/6 = 30.

7. (a) π ′(Q) = 24 − 2Q, and Q∗ = 12. (b) R′(Q) = 500 − Q2 (c) C′(Q) = −3Q2 + 428.4Q − 7900

8. (a) C′(x) = 2a1x + b1 (b) C′(x) = 3a1x2

6.5
1. (a) 3 (b) −1/2 (c) 133 = 2197 (d) 40 (e) 1 (f) −3/4

2. (a) 0.6931 (b) 1.0986 (c) 0.4055 (Actually, using the result in Example 7.12.2, the precise values of these three
limits are ln 2, ln 3, and ln(3/2), respectively.)

3. (a) We have the following table (where ∗ denotes undefined):

x 0.9 0.99 0.999 1 1.001 1.01 1.1
x2 + 7x − 8

x − 1
8.9 8.99 8.999 ∗ 9.001 9.01 9.1

(b) x2 + 7x − 8 = (x − 1)(x + 8), so (x2 + 7x − 8)/(x − 1) = x + 8 → 9 as x → 1.

4. (a) 5 (b) 1/5 (c) 1 (d) −2 (e) 3x2 (f) h2
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5. (a) 1/6 (b) −∞ (the limit does not exist). (c) 2 (d)
√

3/6 (e) −2/3 (f) 1/4

6. (a) 4 (b) 5 (c) 6 (d) 2a + 2 (e) 2a + 2 (f) 4a + 4

7. (a) x3 − 8 = (x − 2)(x2 + 2x + 4), so the limit is 1/6. (b) limh→0[ 3√27 + h − 3]/h = limu→3(u − 3)/(u3 − 27),

and u3 − 27 = (u − 3)(u2 + 3u + 9), so the limit is limu→3 1/(u2 + 3u + 9) = 1/27.

(c) xn − 1 = (x − 1)(xn−1 + xn−2 + · · · + x + 1), so the limit is n.

6.6
1. (a) 0 (b) 4x3 (c) 90x9 (d) 0 (Remember that π is a constant!)

2. (a) 2g′(x) (b) − 1
6 g′(x) (c) 1

3 g′(x)

3. (a) 6x5 (b) 33x10 (c) 50x49 (d) 28x−8 (e) x11 (f) 4x−3 (g) −x−4/3 (h) 3x−5/2

4. (a) 8πr (b) A(b + 1)yb (c) (−5/2)A−7/2

5. In (6.2.1) (the definition of the derivative), choose h = x − a so that a + h is replaced by x, and h → 0 implies x → a.
For f (x) = x2 we get f ′(a) = 2a.

6. (a) F(x) = 1
3 x3 + C (b) F(x) = x2 + 3x + C (c) F(x) = xa+1/(a + 1) + C. (In all cases C is an arbitrary constant.)

7. (a) With f (x) = x2 and a = 5, one has lim
h→0

(5 + h)2 − 52

h
= lim

h→0

f (a + h) − f (a)

h
= f ′(a) = f ′(5).

On the other hand, f ′(x) = 2x, so f ′(5) = 10, and the limit is 10.

(b) Let f (x) = x5. Then f ′(x) = 5x4, and the limit is equal to f ′(1) = 5 · 14 = 5.

(c) Let f (x) = 5x2 + 10. Then f ′(x) = 10x, and this is the value of the limit.

6.7
1. (a) 1 (b) 1 + 2x (c) 15x4 + 8x3 (d) 32x3 + x−1/2 (e) 1

2 − 3x + 15x2 (f) −21x6

2. (a) 6
5 x − 14x6 − 1

2 x−1/2 (b) 4x(3x4 − x2 − 1) (c) 10x9 + 5x4 + 4x3 − x−2. (In (b) and (c), first expand and then
differentiate.)

3. (a) −6x−7 (b) 3
2 x1/2 − 1

2 x−3/2 (c) − 3
2 x−5/2 (d) −2/(x − 1)2 (e) −4x−5 − 5x−6 (f) 34/(2x + 8)2

(g) −33x−12 (h) (−3x2 + 2x + 4)/(x2 + x + 1)2

4. (a)
3

2
√

x(
√

x + 1)2
(b)

4x
(x2 + 1)2

(c)
−2x2 + 2

(x2 − x + 1)2

5. (a) f ′(L∗) < f (L∗)/L∗. See Fig. A6.7.5. The tangent at P has the slope f ′(L∗). We “see” that the tangent at P is less
steep than the straight line from the origin to P, which has the slope f (L∗)/L∗ = g(L∗). (The inequality follows
directly from the characterization of differentiable concave functions in Eq. (8.4.3).)

(b)
d

dL

(
f (L)

L

)
= 1

L

[
f ′(L) − f (L)

L

]
, as in Example 6.7.7.

6. (a) [2, ∞) (b)
[−√

3, 0
]

and
[√

3, ∞) (c)
[−√

2,
√

2
]

(d) (−∞, 1
2 (−1 − √

5)] and [0, 1
2 (−1 + √

5)].

7. (a) y = −3x + 4 (b) y = x − 1 (c) y = (17x − 19)/4 (d) y = −(x − 3)/9

8. Ṙ(t) = ṗ(t)x(t) + p(t)ẋ(t). Here, R(t) increases for two reasons. First, R(t) increases because of the price increase.
This increase is proportional to the amount of extraction x(t) and is equal to ṗ(t)x(t). But R(t) also rises because
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P

y

L

y = f (L)

f (L∗)

L∗

Figure A6.7.5

extraction increases. Its contribution to the rate of change of R(t) must be proportional to the price, and is equal to
p(t)ẋ(t). In the end Ṙ(t), the total rate of change of R(t), is the sum of these two parts.

9. (a) (ad − bc)/(ct + d)2 (b) a
(
n + 1

2

)
tn−1/2 + nbtn−1 (c) −(2at + b)/(at2 + bt + c)2

10. The product rule yields f ′(x) · f (x) + f (x) · f ′(x) = 1, so 2f ′(x) · f (x) = 1. Hence, f ′(x) = 1/2f (x) = 1/2
√

x.

11. If f (x) = 1/xn, the quotient rule yields f ′(x) = (0 · xn − 1 · nxn−1)/(xn)2 = −nx−n−1, which is the power rule.

6.8
1. (a) dy/dx = (dy/du)(du/dx) = 20u4−1 du/dx = 20(1 + x2)32x = 40x(1 + x2)3

(b) dy/dx = (1 − 6u5) (du/dx) = (−1/x2)
(
1 − 6(1 + 1/x)5

)
2. (a) dY/dt = (dY/dV)(dV/dt) = (−3)5(V + 1)4t2 = −15t2(t3/3 + 1)4

(b) dK/dt = (dK/dL)(dL/dt) = AaLa−1b = Aab(bt + c)a−1

3. (a) y′ = −5(x2 + x + 1)−6(2x + 1) (b) y′ = 1
2

[
x + (x + x1/2)1/2

]−1/2(
1 + 1

2 (x + x1/2)−1/2
(
1 + 1

2 x−1/2
))

(c) y′ = axa−1(px + q)b + xabp(px + q)b−1 = xa−1(px + q)b−1[(a + b)px + aq]

4. (dY/dt)t=t0
= (dY/dK)t=t0

· (dK/dt)t=t0
= Y ′(K(t0))K

′(t0)

5. dY/dt = F′(h(t)
) · h′(t)

6. x = b − √
ap − c = b − √

u, with u = ap − c. Then
dx
dp

= − 1

2
√

u
u′ = − a

2
√

ap − c
.

7. (i) h′(x) = f ′(x2)2x (ii) h′(x) = f ′(xng(x)
)(

nxn−1g(x) + xng′(x)
)

8. b(t) is the total fuel consumption after t hours. Then b′(t) = B′(s(t))s′(t), so the rate of fuel consumption per hour is
equal to the rate per kilometre multiplied by the speed in kph.

9. dC/dx = q
(
25 − 1

2 x
)−1/2

10. (a) y′ = 5(x4)4 · 4x3 = 20x19 (b) y′ = 3(1 − x)2(−1) = −3 + 6x − 3x2

11. (a) (i) g(5) is the amount accumulated if the interest rate is 5% per year, which is approximately €1629.

(ii) g′(5) is the increase in this value per unit increase in the interest rate, which is approximately €155.

(b) g(p) = 1000(1 + p/100)10, so g(5) = 1000 · 1.0510 = 1 628.89 to the nearest eurocent.

Moreover, g′(p) = 1000 · 10(1 + p/100)9 · 1/100, so g′(5) = 100 · 1.059 = 155.13 to the nearest eurocent.
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12. (a) 1 + f ′(x) (b) 2f (x)f ′(x) − 1 (c) 4
[
f (x)

]3
f ′(x) (d) 2xf (x) + x2f ′(x) + 3

[
f (x)

]2
f ′(x) (e) f (x) + xf ′(x)

(f) f ′(x)/
[
2
√

f (x)
]

(g) [2xf (x) − x2f ′(x)]/[f (x)]2 (h) [2xf (x)f ′(x) − 3(f (x))2]/x4

13. (a) Provided that x �= 0 and 0 < |h| < |x|, one has
1
h

[ϕ(x + h) − ϕ(x)] = 1
h

(
1

x + h
− 1

x

)
= −h

h(x + h)x
=

−1
(x + h)x

, which tends to −1/x2 as h → 0. In particular, ϕ(x) = 1/x is differentiable if x �= 0.

(b) For any x with g(x) �= 0, if f and g are differentiable at x, then:

(i) combining (a) with the chain rule implies that 1/g(x) = ϕ(g(x)) is differentiable at x;

(ii) the product rule implies that f (x)/g(x) = f (x) · [1/g(x)] is differentiable at x.

6.9
1. (a) y′′ = 20x3 − 36x2 (b) y′′ = (−1/4)x−3/2

(c) y′ = 20x(1 + x2)9, and then y′′ = 20(1 + x2)9 + 20x · 9 · 2x(1 + x2)8 = 20(1 + x2)8(1 + 19x2)

2. d2y/dx2 = (1 + x2)−1/2 − x2(1 + x2)−3/2 = (1 + x2)−3/2

3. (a) y′′ = 18x (b) Y ′′′ = 36 (c) d3z/dt3 = −2 (d) f (4)(1) = 84 000

4. g′(t) = 2t(t − 1) − t2

(t − 1)2
= t2 − 2t

(t − 1)2
, and g′′(t) = 2

(t − 1)3
, so g′′(2) = 2.

5. With simplified notation: y′ = f ′g + fg′, y′′ = f ′′g + f ′g′ + f ′g′ + fg′′ = f ′′g + 2f ′g′ + fg′′,

and y′′′ = f ′′′g + f ′′g′ + 2f ′′g′ + 2f ′g′′ + f ′g′′ + fg′′′ = f ′′′g + 3f ′′g′ + 3f ′g′′ + fg′′′.

6. L = (2t − 1)−1/2, so dL/dt = − 1
2 · 2(2t − 1)−3/2 = −(2t − 1)−3/2, and d2L/dt2 = 3(2t − 1)−5/2.

7. (a) R = 0 (b) R = 1/2 (c) R = 3 (d) R = ρ

8. Because g(u) is not concave.

9. The Secretary of Defense: P′ < 0. Representative Gray: P′ ≥ 0 and P′′ < 0.

10. d3L/dt3 > 0

6.10
1. (a) y′ = ex + 2x (b) y′ = 5ex − 9x2 (c) y′ = (1 · ex − xex)/e2x = (1 − x)e−x

(d) y′ = [(1 + 2x)(ex + 1) − (x + x2)ex]/(ex + 1)2 = [1 + 2x + ex(1 + x − x2)]/(ex + 1)2

(e) y′ = −1 − ex (f) y′ = x2ex(3 + x) (g) y′ = ex(x − 2)/x3 (h) y′ = 2(x + ex)(1 + ex)

2. (a) dx/dt = (b + 2ct)et + (a + bt + ct2)et = (a + b + (b + 2c)t + ct2)et

(b)
dx
dt

= 3qt2tet − (p + qt3)(1 + t)et

t2e2t
= −qt4 + 2qt3 − pt − p

t2et

(c)
dx
dt

= [2(at + bt2)(a + 2bt)et − (at + bt2)2et]/(et)2 = [t(a + bt)(−bt2 + (4b − a)t + 2a)]e−t

3. (a) y′ = −3e−3x and y′′ = 9e−3x (b) y′ = 6x2ex3
and y′′ = 6xex3

(3x3 + 2)

(c) y′ = −x−2e1/x and y′′ = x−4e1/x(2x + 1) (d) y′ = 5(4x − 3)e2x2−3x+1 and y′′ = 5e2x2−3x+1(16x2 − 24x + 13)
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4. (a) (−∞, ∞) (b) [0, 1/2] (c) (−∞, −1] and [0, 1]

5. (a) y′ = 2xe−2x(1 − x), so y is increasing in [0, 1]. (b) y′ = ex(1 − 3e2x), so y is increasing in (−∞, − 1
2 ln 3].

(c) y′ = (2x + 3)e2x/(x + 2)2, so y is increasing in [−3/2, ∞).

6. (a) eex
ex = eex+x (b) 1

2 (et/2 − e−t/2) (c) − et − e−t

(et + e−t)2
(d) z2ez3

(ez3 − 1)−2/3

7. (a) y′ = 5x ln 5 (b) y′ = 2x + x2x ln 2 = 2x(1 + x ln 2) (c) y′ = 2x2x2
(1 + x2 ln 2)

(d) y′ = ex10x + ex10x ln 10 = ex10x(1 + ln 10)

6.11
1. (a) y′ = 1/x + 3 and y′′ = −1/x2 (b) y′ = 2x − 2/x and y′′ = 2 + 2/x2

(c) y′ = 3x2 ln x + x2 and y′′ = x(6 ln x + 5) (d) y′ = (1 − ln x)/x2 and y′′ = (2 ln x − 3)/x3

2. (a) x2 ln x(3 ln x + 2) (b) x(2 ln x − 1)/(ln x)2 (c) 10(ln x)9/x (d) 2 ln x/x + 6 ln x + 18x + 6

3. (a) 1/(x ln x) (b) −x/(1 − x2) (c) ex (ln x + 1/x) (d) ex3(
3x2 ln x2 + 2/x

)
(e) ex/(ex + 1)

(f) (2x + 3)/(x2 + 3x − 1) (g) −2ex(ex − 1)−2 (h) (4x − 1)e2x2−x

4. (a) x > −1 (b) 1/3 < x < 1 (c) x �= 0

5. (a) |x| > 1 (b) x > 1 (c) x �= ee and x > 1

6. (a) y is defined only in (−2, 2), where y′ = −8x/(4 − x2) > 0 iff x < 0. Thus, y is increasing in (−2, 0].

(b) y is defined for x > 0, where y′ = x2(3 ln x + 1) > 0 iff ln x > −1/3. Thus, y is increasing in [e−1/3, ∞).

(c) y is defined for x > 0, where y′ = (1 − ln x)(ln x − 3)/2x2 > 0 iff 1 < ln x < 3. Thus, y is increasing in [e, e3].

7. (a) (i) y = x − 1 (ii) y = 2x − 1 − ln 2 (iii) y = x/e (b) (i) y = x (ii) y = 2ex − e (iii) y = −e−2x − 4e−2

8. (a) f ′(x)/f (x) = 2 ln x + 2 (b) f ′(x)/f (x) = 1/(2x − 4) + 2x/(x2 + 1) + 4x3/(x4 + 6)

(c) f ′(x)/f (x) = −2/[3(x2 − 1)]

9. (a) (2x)x(1 + ln 2 + ln x) (b) x
√

x− 1
2
( 1

2 ln x + 1
)

(c) 1
2

(√
x
)x

(ln x + 1)

10. ln y = v ln u, so y′/y = v′ ln u + vu′/u and therefore y′ = uv(v′ ln u + vu′/u).

(Alternatively, note that y = (eln u)v = ev ln u, and then use the chain rule.)

11. (a) Let f (x) = ex − (1 + x + 1
2 x2). Then f (0) = 0 and f ′(x) = ex − (1 + x) > 0 for all x > 0, as shown in the

exercise. Hence f (x) > 0 for all x > 0, and the inequality follows.

(b) Consider the two functions f1(x) = ln(1 + x) − 1
2 x and f2(x) = x − ln(1 + x). For more details, see SM.

(c) Consider the function g(x) = 2(
√

x − 1) − ln x. For more details, see SM.

Review exercises for Chapter 6
1. [f (x + h) − f (x)]/h = [(x + h)2 − (x + h) + 2 − x2 + x − 2]/h = [2xh + h2 − h]/h = 2x + h − 1.

Therefore [f (x + h) − f (x)]/h → 2x − 1 as h → 0, so f ′(x) = 2x − 1.

2. [f (x + h) − f (x)]/h = −6x2 + 2x − 6xh − 2h2 + h → −6x2 + 2x as h → 0, so f ′(x) = −6x2 + 2x.
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3. (a) y′ = 2, y′′ = 0 (b) y′ = 3x8, y′′ = 24x7 (c) y′ = −x9, y′′ = −9x8 (d) y′ = 21x6, y′′ = 126x5

(e) y′ = 1/10, y′′ = 0 (f) y′ = 5x4 + 5x−6, y′′ = 20x3 − 30x−7 (g) y′ = x3 + x2, y′′ = 3x2 + 2x

(h) y′ = −x−2 − 3x−4, y′′ = 2x−3 + 12x−5

4. Because C′(1000) ≈ C(1001) − C(1000), if C′(1000) = 25, the additional cost of producing slightly more than
1000 units is approximately 25 per unit. If the price per unit is fixed at 30, the extra profit from increasing output
slightly above 1000 units is approximately 30 − 25 = 5 per unit.

5. (a) y = −3 and y′ = −6x = −6 at x = 1, so y − (−3) = (−6)(x − 1), or y = −6x + 3.

(b) y = −14 and y′ = 1/2
√

x − 2x = −31/4 at x = 4, so y = −(31/4)x + 17.

(c) y = 0 and y′ = (−2x3 − 8x2 + 6x)/(x + 3)2 = −1/4 at x = 1, so y = (−1/4)(x − 1).

6. The additional cost of increasing the area by a small amount from 100 m2 is approximately $250 per m2.

7. (a) f (x) = x3 + x, so f ′(x) = 3x2 + 1. (b) g′(w) = −5w−6 (c) h(y) = y(y2 − 1) = y3 − y, so h′(y) = 3y2 − 1.

(d) G′(t) = (−2t2 − 2t + 6)/(t2 + 3)2 (e) ϕ′(ξ) = (4 − 2ξ 2)/(ξ 2 + 2)2 (f) F′(s) = −(s2 + 2)/(s2 + s − 2)2

8. (a) 2at (b) a2 − 2t (c) 2xϕ − 1/2
√

ϕ

9. (a) y′ = 20uu′ = 20(5 − x2)(−2x) = 40x3 − 200x (b) y′ = 1

2
√

u
· u′ = −1

2x2
√

1/x − 1

10. (a) dZ/dt = (dZ/du)(du/dt) = 3(u2 − 1)22u3t2 = 18t5(t6 − 1)2

(b) dK/dt = (dK/dL)(dL/dt) = (1/[2
√

L ])(−1/t2) = −1/[2t2√1 + 1/t ]

11. (a) ẋ/x = 2ȧ/a + ḃ/b (b) ẋ/x = αȧ/a + βḃ/b (c) ẋ/x = (α + β)(αaα−1ȧ + βbβ−1ḃ)/(aα + bβ)

12. dR/dt = (dR/dS)(dS/dK)(dK/dt) = αSα−1βγ Kγ−1Aptp−1 = Aαβγ ptp−1Sα−1Kγ−1

13. (a) h′(L) = apLa−1(La + b)p−1 (b) C′(Q) = a + 2bQ (c) P′(x) = ax1/q−1(ax1/q + b)q−1

14. (a) y′ = −7ex (b) y′ = −6xe−3x2
(c) y′ = xe−x(2 − x) (d) y′ = ex[ln(x2 + 2) + 2x/(x2 + 2)]

(e) y′ = 15x2e5x3
(f) y′ = x3e−x(x − 4) (g) y′ = 10(ex + 2x)(ex + x2)9 (h) y′ = 1/2

√
x(

√
x + 1)

15. (a) [1, ∞) (b) [0, ∞) (c) (−∞, 1] and [2, ∞)

16. (a)
dπ

dQ
= P(Q) + QP′(Q) − c (b)

dπ

dL
= PF′(L) − w

Chapter 7

7.1
1. Differentiating w.r.t. x yields 6x + 2y′ = 0, so y′ = −3x. Solving the given equation for y yields y = 5/2 − 3x2/2,

implying that y′ = −3x.

2. Implicit differentiation yields (∗) 2xy + x2(dy/dx) = 0, and so dy/dx = −2y/x. Differentiating (∗) implicitly w.r.t.
x gives 2y + 2x(dy/dx) + 2x(dy/dx) + x2(d2y/dx2) = 0. Inserting the result for dy/dx, and simplifying yields
d2y/dx2 = 6y/x2. These results follows more easily by differentiating y = x−2 twice.

3. (a) y′ = (1 + 3y)/(1 − 3x) = −5/(1 − 3x)2 and y′′ = 6y′/(1 − 3x) = −30/(1 − 3x)3.

(b) y′ = 6x5/5y4 = (6/5)x1/5 and y′′ = 6x4y−4 − (144/25)x10y−9 = (6/25)x−4/5.
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4. 2u + v + u(dv/du) − 3v2(dv/du) = 0, so dv/du = (2u + v)/(3v2 − u). Hence dv/du = 0 when v = −2u (pro-
vided 3v2 − u �= 0). Substituting for v in the original equation yields 8u3 − u2 = 0. So the only point on the curve
where dv/du = 0 and u �= 0 is (u, v) = (1/8, −1/4).

5. Differentiating w.r.t. x yields (∗) 4x + 6y + 6xy′ + 2yy′ = 0, so y′ = −(2x + 3y)/(3x + y) = −8/5 at (1, 2). Dif-
ferentiating (∗) w.r.t. x yields 4 + 6y′ + 6y′ + 6xy′′ + 2(y′)2 + 2yy′′ = 0. Substituting x = 1, y = 2, and y′ = −8/5
yields y′′ = 126/125.

6. (a) 2x + 2yy′ = 0, and solve for y′ to get y′ = −x/y. (b) 1/2
√

x + y′/2
√

y = 0, and solve for y′ to get y′ = −√
y/x.

(c) 4x3 − 4y3y′ = 2xy3 + x23y2y′, and solve for y′ to get y′ = 2x(2x2 − y3)/y2(3x2 + 4y).

(d) exy(y + xy′) − 2xy − x2y′ = 0, and solve for y′ to get y′ = y(2x − exy)/x(exy − x).

7. (a) Differentiating the equation w.r.t. x yields (∗) 2y + 2xy′ − 6yy′ = 0. Inserting x = 6 and y = 1 into (∗) yields
2 + 12y′ − 6y′ = 0, so y′ = −1/3. (b) Differentiating (∗) w.r.t. x yields (∗∗) 2y′ + 2y′ + 2xy′′ − 6y′y′ − 6yy′′ = 0.
Inserting x = 6, y = 1, and y′ = −1/3 into (∗∗) gives y′′ = 1/3.

8. (a) y′ = g′(x) − y
x − 3y2

(b) y′ = 2x − g′(x + y)
g′(x + y) − 2y

(c) y′ = 2y[xg′(x2y) − xy − 1]
x[2xy + 2 − xg′(x2y)]

9. Differentiating w.r.t. x yields 3x2F(xy) + x3F′(xy)(y + xy′) + exy(y + xy′) = 1. Putting x = 1 and y = 0 in this
equation yields 3F(0) + F′(0)y′ + y′ = 1. Because F(0) = 0, this implies that y′ = 1/[F′(0) + 1]. (Note that F is a
function of only one variable, with argument xy.)

10. (a) y′ = x[a2 − 2(x2 + y2)]
y[2(x2 + y2) + a2]

(b) (± 1
4 a

√
6, ± 1

4 a
√

2), with four possible sign combinations.

7.2
1. Implicit differentiation w.r.t. P, recognizing that Q is a function of P, yields (dQ/dP) · P1/2 + Q · 1

2 P−1/2 = 0. Thus
dQ/dP = − 1

2 QP−1 = −19/P3/2.

2. (a) 1 = C′′(Q∗)(dQ∗/dP), so dQ∗/dP = 1/C′′(Q∗) (b) dQ∗/dP > 0, which is reasonable because if the price
received by the producer increases, the optimal production should increase.

3. Taking the natural logarithm on both sides yields ln A − α ln P − β ln r = ln S. Differentiating with respect to r we
have −(α/P)(dP/dr) − β/r = 0. It follows that dP/dr = −(β/α)(P/r) < 0. So a rise in the interest rate depresses
demand, and the equilibrium price falls to compensate.

4. (a) Y = f (Y) + I + --X − g(Y) (b) dY/dI = 1/
[
1 − f ′(Y) + g′(Y)

]
> 0 because f ′(Y) < 1 and g′(Y) > 0.

(c) d2Y/dI2 = (f ′′ − g′′)/(1 − f ′ + g′)3

5. Differentiating (7.2.6) w.r.t. τ yields f ′′(P + τ)

(
dP
dτ

+ 1
)2

+ f ′(P + τ)
d2P
dτ 2

= g′′(P)

(
dP
dτ

)2

+ g′(P)
d2P
dτ 2

.

With simplified notation, this equation becomes f ′′(P′ + 1)2 + f ′P′′ = g′′(P′)2 + g′P′′. Substituting P′ = f ′/(g′ − f ′)
and then solving for P′′, we get P′′ = [f ′′(g′)2 − g′′(f ′)2]/(g′ − f ′)3.

6. (a) Differentiating (∗) w.r.t. τ yields f ′(P)(dP/dτ) = g′((1 − τ)P)[−P + (1 − τ)(dP/dτ)], and so

dP
dτ

= −Pg′((1 − τ)P)

f ′(P) − (1 − τ)g′((1 − τ)P)

(b) Both the numerator and denominator are negative, so dP/dτ is positive. Increasing the tax on producers increases
the equilibrium price.
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7.3
1. f (1) = 1 and f ′(x) = 2e2x−2 = 2 for x = 1. So according to (7.3.2), g′(1) = 1/f ′(1) = 1/2.

The inverse function is g(x) = 1 + 1
2 ln x, so g′(x) = 1/2x = 1/2 for x = 1.

y

−2

−1

1

2

x−2 −1 1 2

Figure A7.3.2

2. (a) f ′(x) = x2
√

4 − x2 + 1
3

x3 −2x

2
√

4 − x2
= 4x2(3 − x2)

3
√

4 − x2
. So f increases in [−√

3,
√

3 ], and decreases in [−2, −√
3 ]

and in [
√

3, 2]. See Fig. A7.3.2.

(b) f has an inverse in the interval [0,
√

3] because f is strictly increasing there. g′( 1
3

√
3 ) = 1/f ′(1) = 3

√
3/8.

3. (a) f ′(x) = ex−3/(ex−3 + 2) > 0 for all x, so f is strictly increasing. Also f (x) → ln 2 as x → −∞ and f (x) → ∞ as
x → ∞, so the range of f is (ln 2, ∞). (b) g(x) = 3 + ln(ex − 2), defined on (ln 2, ∞) (c) f ′(3) = 1/g′(f (3)) = 1/3

4. dD/dP = −0.3 · 157.8P−1.3 = −47.34P−1.3, so dP/dD = 1/(dD/dP) ≈ −0.021P1.3.

5. (a) dx/dy = −ex+5 = −1/y (b) dx/dy = −1 − 3ex (c) dx/dy = x(3y2 − x2)/(2 + 3x2y − y3)

7.4
1. If f (x) = √

1 + x, then f ′(x) = 1/(2
√

1 + x ), so f (0) = 1 and f ′(0) = 1/2. By (7.4.1),
√

1 + x ≈ 1 + 1
2 (x − 0) =

1 + 1
2 x. See Fig. A7.4.1.

2. Here f (0) = 1/9 and f ′(x) = −10(5x + 3)−3, so f ′(0) = −10/27. Hence (5x + 3)−2 ≈ 1/9 − 10x/27.

3. (a) (1 + x)−1 ≈ 1 − x (b) (1 + x)5 ≈ 1 + 5x (c) (1 − x)1/4 ≈ 1 − 1
4 x

4. F(1) = A and F′(K) = αAKα−1, so F′(1) = αA.

Then F(K) ≈ F(1) + F′(1)(K − 1) = A + αA(K − 1) = A(1 + α(K − 1)).

5. (a) 30x2 dx (b) 15x2 dx − 10x dx + 5 dx (c) −3x−4 dx (d) (1/x) dx (e) (pxp−1 + qxq−1) dx (f) (p + q)xp+q−1 dx

(g) rp(px + q)r−1 dx (h) (pepx + qeqx)dx

6. (a) If f (x) = (1 + x)m, then f (0) = 1 and f ′(0) = m, so 1 + mx is the linear approximation to f (x) about x = 0.

(b) (i) 3√1.1 = (1 + 1/10)1/3 ≈ 1 + (1/3)(1/10) ≈ 1.033 (ii) 5√33 = 2(1 + 1/32)1/5 ≈ 2(1 + 1/160) = 2.0125

(iii) 3√9 = 2(1 + 1/8)1/3 ≈ 2(1 + 1/24) ≈ 2.083 (iv) (0.98)25 = (1 − 0.02)25 = (1 − 1/50)25 ≈ 1 − 1/2 = 1/2

7. (a) (i) �y = 0.61, dy = 0.6 (ii) �y = 0.0601, dy = 0.06

(b) (i) �y = 0.011 494, dy = 0.011 111 (ii) �y = 0.001 115, dy = 0.001 111

(c) (i) �y = 0.012 461, dy = 0.0125 (ii) �y = 0.002 498, dy = 0.0025
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8. (a) y′ = −3/2 (b) y(x) ≈ − 3
2 x + 3

2

9. (a) A(r + dr) − A(r) is the shaded area in Fig. A7.4.9. It is approximately the circumference of the inner circle
2πr times dr. (b) V(r + dr) − V(r) is the volume of the shell between the sphere with radius r + dr and the
sphere with radius r. It is approximately the surface area 4πr2 of the inner sphere times the thickness dr of the
shell.

y

1

2

−1 1 2

y = 1+

y =

1
2
x

√
1+ x

x

Figure A7.4.1

r

r + dr

Figure A7.4.9

10. Taking logarithms, we get ln Kt = ln K + t ln(1 + p/100) ≈ ln K + tp/100. If Kt = 2K, then ln Kt = ln 2 + ln K,
and with t∗ as the doubling time, p must satisfy ln 2 ≈ t∗p/100, so p ≈ 100 ln 2/t∗. (Using the approximation
ln 2 ≈ 0.7, this result accords with the “Rule of 70” in Example 7.4.3.) The exact percentage p∗ satisfies
ln 2 = t∗ ln(1 + p∗/100), or p∗ = 100

(
21/t∗ − 1

)
.

11. g(0) = A − 1 and g′(μ) = (Aa/(1 + b)
)
(1 + μ)[a/(1+b)]−1, so g′(0) = Aa/(1 + b).

Hence, g(μ) ≈ g(0) + g′(0)μ = A − 1 + aAμ/(1 + b).

12. Because the derivative exists, limh→0
1
h [f (a + h) − f (a)] = f ′(a). But evidently limh→0

1
h

[
f ′(a)h

] = f ′(a). So, by
the rules for limits in Section 6.5, we have limh→0

1
h

[
f (a + h) − (f (a) + f ′(a)h)

] = f ′(a) − f ′(a) = 0.

7.5
1. (a) Here f ′(x) = 5(1 + x)4 and f ′′(x) = 20(1 + x)3. Hence f (0) = 1, f ′(0) = 5, and f ′′(0) = 20, implying the quadratic

approximation f (x) = (1 + x)5 ≈ 1 + 5x + 1
2 20x2 = 1 + 5x + 10x2.

(b) AKα ≈ A + αA(K − 1) + 1
2 α(α − 1)A(K − 1)2 (c) (1 + 3

2 ε + 1
2 ε2)1/2 ≈ 1 + 3

4 ε − 1
32 ε2

(d) Here H′(x) = (−1)(1 − x)−2(−1) = (1 − x)−2 = 1 at x = 0, and H′′(x) = 2(1 − x)−3 = 2 at x = 0. It follows
that (1 − x)−1 ≈ 1 + x + x2.

2. x − 1
2 x2 + 1

3 x3 − 1
4 x4 + 1

5 x5

3. −5 + 5
2 x − 15

8 x2

4. Use (7.5.2) with f = U, a = y, and x = y + M − s.

5. Implicit differentiation yields (∗) 3x2y + x3y′ + 1 = 1
2 y−1/2y′. Inserting x = 0 and y = 1 gives 1 = ( 1

2

)
1−1/2y′, so

y′ = 2. Differentiating (∗) once more w.r.t. x yields 6xy + 3x2y′ + 3x2y′ + x3y′′ = − 1
4 y−3/2(y′)2 + 1

2 y−1/2y′′. Inserting
x = 0, y = 1, and y′ = 2 gives y′′ = 2. Hence, y(x) ≈ 1 + 2x + x2.

6. We find ẋ(0) = 2[x(0)]2 = 2. Differentiating the expression for ẋ(t) yields ẍ(t) = x(t) + tẋ(t) + 4[x(t)]ẋ(t), and so
ẍ(0) = x(0) + 4[x(0)]ẋ(0) = 1 + 4 · 1 · 2 = 9. Hence, x(t) ≈ x(0) + ẋ(0)t + 1

2 ẍ(0)t2 = 1 + 2t + 9
2 t2.

7. Use (7.6.5) with x = σ
√

t/n, keeping only three terms on the right-hand side.
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8. Use (7.6.2) with f (x) = (1 + x)n and x = p/100. Then f ′(x) = n(1 + x)n−1 and f ′′(x) = n(n − 1)(1 + x)n−2. The
approximation follows.

9. h′(x) = (pxp−1 − qxq−1)(xp + xq) − (xp − xq)(pxp−1 + qxq−1)

(xp + xq)2
= 2(p − q)xp+q−1

(xp + xq)2
, so h′(1) = 1

2 (p − q). This gives

the approximation h(x) ≈ h(1) + h′(1)(x − 1) = 1
2 (p − q)(x − 1) because h(1) = 0.

7.6
1. Using the answer to Exercise 7.5.2, one has f (0) = 0, f ′(0) = 1, f ′′(0) = −1, and f ′′′(z) = 2(1 + z)−3. Then (7.6.3)

gives

f (x) = f (0) + 1
1!

f ′(0)x + 1
2!

f ′′(0)x + 1
3!

f ′′′(z)x3 = x − 1
2

x2 + 1
3
(1 + z)−3x3

2. (a) 3√25 = 3(1 − 2/27)1/3 ≈ 3
(

1 − 1
3

2
27

− 1
9

4
272

)
≈ 2.924

(b) 5√33 = 2(1 + 1/32)1/5 ≈ 2
(

1 + 1
5 · 32

− 2
25

1
322

)
≈ 2.0125

3. (1 + 1/8)1/3 = 1 + 1/24 − 1/576 + R3(1/8), where 0 < R3(1/8) < 5/(81 · 83). Thus, 3√9 = 2(1 + 1/8)1/3 ≈
2.080, correct to three decimal places.

4. (a) 1 + 1
3 x − 1

9 x2 (b) g′′′(z) = 10
27

(1 + z)−8/3, so (7.6.2) implies that R3(x) = 1
6

10
27

(1 + z)−8/3x3 for some z ∈ (0, x).

Hence |R3(x)| ≤ 5
81

x3. For more details, see SM.

(c) First note that 3√1003 = 10(1 + 3 · 10−3)1/3. Using the approximation in part (a) gives (1 + 3 · 10−3)1/3 ≈
1.000 999, and so 3√1003 ≈ 10.009 99. By part (b), the error in this approximation is 10R3(3 · 10−3), whose absolute

value satisfies 10|R3(3 · 10−3)| ≤ 50
81

· 27 · 10−9 = 50
3

10−9 < 2 · 10−8, implying that the answer is correct to 7
decimal places. For more details, see SM.

7.7
1. In each case we use the elasticity formula (7.7.3):

(a) −3 (b) 100 (c) 1/2, since
√

x = x1/2. (d) −3/2, since A/x
√

x = Ax−3/2.

2. ElK T = 1.06. A 1% increase in expenditure on road building leads to an increase in the traffic volume of approxi-
mately 1.06 %.

3. (a) A 10% increase in fares leads to a decrease in passenger demand of approximately 4%.

(b) One reason could be that for long-distance travel, more people fly when rail fares go up. Another reason could
be that many people may commute 60 km daily, whereas almost nobody commutes 300 km daily, and commuters’
demand is likely to be less elastic.

4. (a) Elx eax = (x/eax)aeax = ax (b) Elx ln x = (x/ ln x)(1/x) = 1/ ln x

(c) Elx(x
peax) = x

xpeax
(pxp−1eax + xpaeax) = p + ax (d) Elx(x

p ln x) = x
xp ln x

(
pxp−1 ln x + xp

x

)
= p + 1

ln x

5. Elx(f (x))
p = x

(f (x))p
p(f (x))p−1f ′(x) = p

x
f (x)

f ′(x) = p Elx f (x)

6. Using (7.7.3) gives Elr D = 1.23. A 1% increase in income leads to an increase in demand of approximately 1.23%.

7. ln m = −0.02 + 0.19 ln N. When N = 480 000, then m ≈ 11.77.
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8. (a) Elx (Af (x)) = x
Af (x)

Af ′(x) = x
f (x)

f ′(x) = Elx f (x)

(b) Elx (A + f (x)) = x
A + f (x)

f ′(x) = f (x)x f ′(x)/f (x)
A + f (x)

= f (x) Elx f (x)
A + f (x)

9. Here we prove only (d): Elx(f + g) = x(f ′ + g′)
f + g

= f (xf ′/f ) + g(xg′/g)

f + g
= f Elx f + g Elx g

f + g
.

For proofs of the other parts, see SM.

10. (a) −5 (b)
1 + 2x
1 + x

(c)
30x3

x3 + 1
(d) Elx 5x2 = 2, so Elx(Elx 5x2) = 0 (e)

2x2

1 + x2

(f) Elx

(
x − 1
x5 + 1

)
= Elx(x − 1) − Elx(x

5 + 1) = x Elx x
x − 1

− x5 Elx x5

x5 + 1
= x

x − 1
− 5x5

x5 + 1

7.8
1. Only the function in (a) is not continuous.

2. f is discontinuous at x = 0. g is continuous at x = 2. The graphs of f and g are shown in Figs A7.8.2a and A7.8.2b.
y

−3

−2

1

2

3

4

x−2 1 2 3

f

Figure A7.8.2a

y

−2

−1

1

2

3

4

x1 2 3 4 5

g

Figure A7.8.2b

3. (a) Continuous for all x. (b) Continuous for all x �= 1. (c) Continuous for all x < 2. (d) Continuous for all x.

(e) Continuous for all x where x �= √
3 − 1 and x �= −√

3 − 1. (f) Continuous for all x > 0.

4. See Fig. A7.8.4; y is discontinuous at x = a, where the plane is vertically above the top of the overhanging cliff.

5. a = 5. (The line y = ax − 1 and parabola y = 3x2 + 1 must meet when x = 1, which is true if and only if a = 5.)

6. See Fig. A7.8.6. (This example shows that the commonly seen statement: “if the inverse function exists, the original
and the inverse function must both be monotonic” is wrong. This claim is correct, however, for a function which is
continuous on an interval.)

y

xa

Figure A7.8.4

y

x

Figure A7.8.6
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7.9
1. (a) A (b) A (c) B (d) 0

2. (a) −4 (b) 0 (c) 2 (d) −∞ (e) ∞ (f) −∞

3. (a)
x − 3
x2 + 1

= 1/x − 3/x2

1 + 1/x2
→ 0 as x → ∞. (b)

√
2 + 3x
x − 1

=
√

3 + 2/x
1 − 1/x

→ √
3 as x → ∞. (c) a2

4. lim
x→∞ fi(x) = ∞ for i = 1, 2, 3; lim

x→∞ f4(x) = 0. Then: (a) ∞ (b) 0 (c) −∞ (d) 1 (e) 0 (f) ∞ (g) 1 (h) ∞
5. (a) y = x − 1 (with x = −1 as a vertical asymptote). (b) y = 2x − 3

(c) y = 3x + 5 (with x = 1 as a vertical asymptote). (d) y = 5x (with x = 1 as a vertical asymptote).

6. y = Ax + A(b − c) + d is an asymptote as x → ∞. (x = −c is not an asymptote because x ≥ 0.)

7. (a) Neither continuous nor differentiable at x = 1. (b) Continuous but not differentiable at x = 2.

(c) Neither continuous nor differentiable at x = 3. (d) Continuous but not differentiable at x = 4.

8. f ′(0+) = 1 and f ′(0−) = 0. See Fig. A7.9.8.

9. f ′(x) = 3(x − 1)(x + 1)

(−x2 + 4x − 1)2
. The denominator is 0 at x1 = 2 − √

3 and x2 = 2 + √
3. A sign diagram shows that f (x) is

increasing in (−∞, −1], in [1, x2), and in (x2, ∞). See Fig. A7.9.9, in which the dashed vertical lines are x = 2 ± √
3.

y

x

1

1

f (x)

Figure A7.9.8

y

x

y

−4

−2

2

4

6

x
−6 −4 −2 2 4 6 8

f (x) =
3x

−x2 + 4x − 1

Figure A7.9.9

7.10
1. (a) Let f (x) = x7 − 5x5 + x3 − 1. Then f is continuous, f (−1) = 2, and f (1) = −4, so according to Theorem 7.10.1,

the equation f (x) = 0 has a solution in (−1, 1).

(b) Here f (x) = x3 + 3x − 8 is continuous, with f (1) < 0 < f (3).

(c) Here f (x) = √
x2 + 1 − 3x is continuous, with f (0) > 0 > f (1).

(d) Here f (x) = ex−1 − 2x is continuous, with f (0) > 0 > f (1).

2. A person’s height is a continuous function of time (even if growth occurs in intermittent spurts, often overnight). The
intermediate value theorem (and common sense) give the conclusion.

3. Let f (x) = x3 − 17. Then f (x) = 0 for x = 3√17. Moreover, f ′(x) = 3x2. Put x0 = 2.5. Then f (x0) = −1.375 and
f ′(x0) = 18.75. Formula (7.10.1) with n = 0 yields x1 = x0 − f (x0)/f ′(x0) = 2.5 − (−1.375)/18.75 ≈ 2.573.
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4. An integer root is x = −3. Applying Newton’s method once to each of the three suggested starting values gives the
approximations −1.879, 0.347, and 1.534 to the three other roots.

5. An integer which is close to a solution is x = 2. Put f (x) = (2x)x − 15. Then f ′(x) = (2x)x[ln(2x) + 1]. For-
mula (7.10.1) with x0 = 2 and n = 0 yields x1 = x0 − f (x0)/f ′(x0) = 2 − f (2)/f ′(2) = 2 − 1/[16(ln 4 + 1)] ≈
1.9738.

6. If f (x0) and f ′(x0) have opposite signs, as they do in Fig. 7.10.1, then formula (7.10.1) evidently implies
that x1 > x0. But if they have the same sign, as they do in Fig. 7.10.2, then formula (7.10.1) implies that
x1 < x0.

7.11

1. (a) αn = (3/n) − 1
2 − (1/n)

→ −1
2

as n → ∞ (b) βn = 1 + (2/n) − (1/n2)

3 − (2/n2)
→ 1

3
as n → ∞

(c) 3(−1/2) + 4(1/3) = −1/6 (d) (−1/2) · (1/3) = −1/6 (e) (−1/2) ÷ (1/3) = −3/2

(f)
√

(1/3) − (−1/2) = √5/6 = √
30/6

2. (a) As n → ∞, so 2/n → 0 implying that 5 − 2/n → 5. (b) As n → ∞, so
n2 − 1

n
= n − 1/n → ∞.

(c) As n → ∞, so
3n√

2n2 − 1
= 3n

n
√

2 − 1/n2
= 3√

2 − 1/n2
→ 3√

2
= 3

√
2

2
.

3. For a fixed number x, put x/n = 1/m. Then n = mx, and as n → ∞, so m → ∞.

Hence (1 + x/n)n = (1 + 1/m)mx = [(1 + 1/m)m]x → ex as m → ∞.

7.12

1. (a) lim
x→3

3x2 − 27
x − 3

= “0/0” = lim
x→3

6x
1

= 18 (or use 3x2 − 27 = 3(x − 3)(x + 3)).

(b) lim
x→0

ex − 1 − x − 1
2 x2

3x3
= “0/0” = lim

x→0

ex − 1 − x
9x2

= “0/0” = lim
x→0

ex − 1
18x

= “0/0” = lim
x→0

ex

18
= 1

18

(c) lim
x→0

e−3x − e−2x + x
x2

= “0/0” = lim
x→0

−3e−3x + 2e−2x + 1
2x

= “0/0” = lim
x→0

9e−3x − 4e−2x

2
= 5

2

2. (a) lim
x→a

x2 − a2

x − a
= “0/0” = lim

x→a

2x
1

= 2a (or use x2 − a2 = (x + a)(x − a)).

(b) lim
x→0

2(1 + x)1/2 − 2 − x
2(1 + x + x2)1/2 − 2 − x

= “0/0” = lim
x→0

(1 + x)−1/2 − 1
(1 + 2x)(1 + x + x2)−1/2 − 1

= “0/0”

= lim
x→0

− 1
2 (1 + x)−3/2

2(1 + x + x2)−1/2 + (1 + 2x)2(− 1
2 )(1 + x + x2)−3/2

= − 1
2

2 − 1
2

= −1
3

3. (a) 1
2 (b) 3 (c) 2 (d) − 1

2 (e) 3
8 (f) −2

4. (a) lim
x→∞

ln x
x1/2

= “∞/∞” = lim
x→∞

1/x
(1/2)x−1/2

= lim
x→∞

2
x1/2

= 0

(b) 0. (Write x ln x = ln x
1/x

, and then use l’Hôpital’s rule.)

(c) +∞. (Write xe1/x − x = x(e1/x − 1) = (e1/x − 1)/(1/x), and then use l’Hôpital’s rule.)

5. The second fraction is not “0/0”. The correct limit is 5/2.
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6. L = lim
v→0+

1 − (1 + vβ)−γ

v
= “0/0” = lim

v→0+
γ (1 + vβ)−γ−1βvβ−1

1
. If β = 1, then L = γ . If β > 1, then L = 0, and

if β < 1, then L = ∞.

7. Because
d

dρ
c1−ρ = −c1−ρ ln c, one has lim

ρ→1

c1−ρ − 1
1 − ρ

= “0/0” = lim
ρ→1

−c1−ρ ln c
−1

= ln c.

8. lim
x→∞

f (x)
g(x)

= lim
t→0+

f (1/t)
g(1/t)

= “0/0” = lim
t→0+

f ′(1/t)(−1/t2)

g′(1/t)(−1/t2)
= lim

t→0+
f ′(1/t)
g′(1/t)

= lim
x→∞

f ′(x)
g′(x)

9. Note that L = limx→a
1/g(x)
1/f (x)

= “0/0” = lim
x→a

−1/(g(x))2

−1/(f (x))2
· g′(x)

f ′(x)
= L2 · lim

x→a

g′(x)
f ′(x)

. See SM for more details.

Review exercises for Chapter 7
1. (a) y′ = −5, y′′ = 0 (b) Differentiating w.r.t. x yields y3 + 3xy2y′ = 0, so y′ = −y/3x. Then differentiating y′ =

−y/3x w.r.t. x yields y′′ = −[y′3x − 3y]/9x2 = −[(−y/3x)3x − 3y]/9x2 = 4y/9x2. Because y = 5x−1/3, we get y′ =
−(5/3)x−4/3 and y′′ = (20/9)x−7/3. The answers from differentiating y = 5x−1/3 are the same.

(c) 2y′e2y = 3x2, so y′ = (3x2/2)e−2y. Then y′′ = 3xe−2y + 1
2 3x2e−2y(−2y′) = 3xe−2y − 1

2 9x4e−4y. From the given
equation we get 2y = ln x3 = 3 ln x, so y = 3

2 ln x, and then y′ = 3
2 x−1, y′′ = − 3

2 x−2. By noting that e−2y = e−3 ln x =
(eln x)−3 = x−3 and e−4y = (e−2y)2 = x−6, verify that the answers are the same.

2. 5y4y′ − y2 − 2xyy′ = 0, so y′ = y2

5y4 − 2xy
= y

5y3 − 2x
. Because y = 0 makes the given equation meaningless, y′

is never 0.

3. Differentiating w.r.t. x yields 3x2 + 3y2y′ = 3y + 3xy′. When x = y = 3/2, then y′ = −1. See Fig. 7.R.1.

4. (a) Implicit differentiation yields (∗) 2xy + x2y′ + 9y2y′ = 0. Inserting x = 2 and y = 1 yields y′ = −4/13.

(b) Differentiating (∗) w.r.t. x yields 2y + 2xy′ + 2xy′ + x2y′′ + 18yy′y′ + 9y2y′′ = 0. Inserting x = 2, y = 1, and
y′ = −4/13 gives the answer.

5. 1
3 K−2/3L1/3 + 1

3 K1/3L−2/3(dL/dK) = 0, so dL/dK = −L/K.

6. Differentiating w.r.t. x gives y′/y + y′ = −2/x − 0.4(ln x)/x. Solving for y′ gives y′ = −(2/x)(1 + 1
5 ln x)

1 + 1/y
which is

0 when 1 + 1
5 ln x = 0, implying that ln x = −5 and so x = e−5.

7. (a) Use (c) to substitute for T in (b), then use the resulting expression to substitute for C in (a).

(b) dY/dI = f ′((1 − β)Y − α)(1 − β)(dY/dI) + 1. Solving for dY/dI yields
dY
dI

= 1
1 − (1 − β)f ′((1 − β)Y− α)

.

(c) Since f ′ ∈ (0, 1) and β ∈ (0, 1), we get (1 − β)f ′((1 − β)Y − α) ∈ (0, 1), so dY/dI > 0.

8. (a) Differentiating w.r.t. x yields 2x − y − xy′ + 4yy′ = 0, so y′ = (y − 2x)/(4y − x).

(b) Horizontal tangent at (1, 2) and (−1, −2). (y′ = 0 when y = 2x. Insert this into the given equation.) Vertical
tangents at (2

√
2,

√
2/2) ≈ (2.8, 0.7) and at (−2

√
2, −√

2/2) ≈ (−2.8, −0.7). (There is a vertical tangent when the
denominator in the expression for y′ is 0, i.e. when x = 4y.) See Fig. 7.R.2.

9. (a) y′ = 2 − 2xy
x2 − 9y2

= −1
2

at (−1, 1). (b) Vertical tangent at (0, 0), (−3, −1), and (3, 1). (Vertical tangent requires

the denominator of y′ to be 0, i.e. x = ±3y. Inserting x = 3y into the given equation yields y3 = y, so y = 0, y = 1,
or y = −1. The corresponding values for x are 0, 3, and −3. Inserting y = −3x gives no new points.)

Horizontal tangent requires y′ = 0, i.e. xy = 1. But inserting y = 1/x into the given equation yields x4 = −3, which
has no solution. All these findings accord with Fig. 7.R.3.
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10. (a) Df = (−1, 1), Rf = (−∞, ∞). (b) The inverse is g(y) = (e2y − 1)/(e2y + 1), and then g′( 1
2 ln 3) = 3/4.

11. (a) f (e2) = 2 and f (x) = ln x(ln x − 1)2 = 0 for ln x = 0 and for ln x = 1, so x = 1 or x = e.

(b) f ′(x) = (3/x)(ln x − 1)(ln x − 1/3) > 0 for x > e, and so f is strictly increasing in [e, ∞). It therefore has an
inverse h. According to (7.3.2), because f (e2) = 2, we have h′(2) = 1/f ′(e2) = e2/5.

12. (a) f (x) ≈ ln 4 + 1
2 x − 1

8 x2 (b) g(x) ≈ 1 − 1
2 x + 3

8 x2 (c) h(x) ≈ x + 2x2

13. (a) x dx/
√

1 + x2 (b) 8πr dr (c) 400K3 dK (d) −3x2 dx/(1 − x3)

14. df (x) = f ′(x) dx = 3x2 dx/2
√

1 + x3. Moreover, �f (2) ≈ df (2) = 3 · 22(0.2)/2
√

1 + 23 = 0.4.

15. Let x = 1
2 and n = 5 and use formula (7.6.6).

√
e ≈ 1.649, correct to 3 decimals.

16. y′ + (1/y)y′ = 1, or (∗) yy′ + y′ = y. Then y′ = 1/2 at y = 1. Differentiating (∗) w.r.t. x gives (y′)2 + yy′′ + y′′ = y′.
With y = 1 and y′ = 1/2, we find y′′ = 1/8, so y(x) ≈ 1 + 1

2 x + 1
16 x2.

17. (a) Continuous for all x �= 0. (b) Continuous for all x > 0. (Note that x2 + 2x + 2 is never 0.)

(c) Continuous for all x in (−2, 2).

18. (a) 1 = f ′(y2)2yy′, so y′ = 1
2yf ′(y2)

(b) y2 + x2yy′ = f ′(x) − 3y2y′, and so y′ = f ′(x) − y2

y(2x + 3y)

(c) f ′(2x + y)(2 + y′) = 1 + 2yy′, so y′ = 1 − 2f ′(2x + y)
f ′(2x + y) − 2y

19. Elr(Dmarg) = −0.165 and Elr(Dmah) = 2.39. For each 1% increase in income, the demand for margarine decreased
by approximately 0.165%, while the demand for meals away from home increased by approximately 2.39%.

20. (a) 5 (using formula (7.7.3)). (b) 1/3 (using 3√x = x1/3 and (7.7.3)).

(c) Elx(x
3 + x5) = x

x3 + x5
(3x2 + 5x4) = (5x2 + 3)/(x2 + 1), or alternatively use part (d) of Exercise 7.7.9.

(d) 2x/(x2 − 1), using parts (c) and (d) of Exercise 7.7.9.

21. Put f (x) = x3 − x − 5. Then f ′(x) = 3x2 − 1. Taking x0 = 2, formula (7.10.1) with n = 1 gives x1 =
2 − f (2)/f ′(2) = 2 − 1/11 ≈ 1.909.

22. f is continuous, with f (1) = e − 3 < 0 and f (4) = e2 − 3 > 0. By Theorem 7.10.1(i), there is a zero for f in (1, 4).
Because f ′(x) > 0, the solution is unique. Formula (7.10.1) yields x1 = 1 − f (1)/f ′(1) = −1 + 6/e ≈ 1.21.

23. (a) 2 (b) Tends to +∞. (c) No limit exists. (d) −1/6 (e) 1/5 (f) 1/16 (g) 1 (h) −1/16 (i) 0

24. Does not exist if b �= d. If b = d, the limit is (a − c)/2
√

b.

25. lim
x→0

ax − bx

eax − ebx
= “0/0” = lim

x→0

ax ln a − bx ln b
aeax − bebx

= ln a − ln b
a − b

26. x1 = 0.9 − f (0.9)/f ′(0.9) ≈ 0.924 792 4, x2 = x1 − f (x1)/f ′(x1) ≈ 0.927 956 5, x3 = x2 − f (x2)/f ′(x2) ≈
0.928 033 8, and x4 = x3 − f (x3)/f ′(x3) ≈ 0.928 033 9. This suggests that the answer correct to 3 decimal places is
0.928.

Chapter 8

8.2
1. The graph of f shown in Fig. 8.2.9 consists of two line segments joined at the peak. If the two points a and b belong to

the same line segment, including the peak, then the two inequalities (8.2.1) and (8.2.2) are both satisfied with equality.
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If a and b belong to different line segments, however, then only (8.2.1) is satisfied. The function is concave, but not
strictly concave.

2. (a) When the function f is strictly concave, then the inequality (8.2.1) is satisfied strictly for all distinct a and b in I,
and all 0 < λ < 1. It is therefore satisfied weakly. It is also trivially satisfied as an equality if a = b or if λ = 0 or if
λ = 1.

(b) In case the graph of the function f is a line segment, then the inequalities (8.2.1) and (8.2.2) are both satisfied with
equality for all a and b in I, and all λ ∈ [0, 1]. So f is both concave and convex.

(c) The function defined by f (x) = 0 for all real x is an example of a function which is concave, but not strictly concave.
So is any linear function, or the function in Exercise 1.

(d) When a function is strictly concave, the inequality (8.2.1) is satisfied strictly for all distinct a and b in I, and all
0 < λ < 1. This strict inequality contradicts the inequality (8.2.2), so the function cannot be convex.

3. The function with the graph shown in Fig. 8.2.7 is strictly concave, whereas that with the graph shown in Fig. 8.2.8 is
strictly convex.

4. Given any output level Q > 0, suppose that the firm compares the total costs: (i) c(Q) of producing Q in the original
plant, with no new plant; (ii) 2c( 1

2 Q) of using two plants and splitting the output equally between the two. Because of
the assumption that c is strictly convex, we have c

( 1
2 Q
) = c

( 1
2 Q + 1

2 0
)

< 1
2 c(Q) + 1

2 c(0) = 1
2 c(Q), which implies

that 2c( 1
2 Q) < c(Q). So option (ii) is cheaper, and the firm should split its output.

5. Consider any two income levels y and z with z > y. We know from Example 5.4.4 and the graph of the tax function
in Fig. 5.4.9 that, as taxable income rises from y to z, not only does the tax payable increase from T(y) to T(z), but
the average rate [T(z) − T(y)]/(z − y) on the z − y dollars of extra income is increasing. But this average rate is the
slope s(y, z) of the tax function T . From part (iii) of Theorem 8.2.1 it follows that T is convex. But because the graph
of T has linear segments, it connot be strictly convex.

6. Suppose that f is increasing but not strictly increasing. Then there exist a, b in I such that a < b and f (a) = f (b) = f (x)
for all x in (a, b). It follows that f (a) = f (b) = f

( 1
2 (a + b)

) �> 1
2 [f (a) + f (b)], which violates strict concavity. So if f

is increasing and strictly concave, it must be strictly increasing.

7. (a) For all a and all x in (−∞, ∞) with x �= a, the slope of x2 satisfies s(a, x) = (x2 − a2)/(x − a) = x + a. This is
obviously strictly increasing in x. So x2 is strictly convex over (−∞, ∞).

(b) For all a and all x in [0, ∞) with x �= a, the slope of xn satisfies s(a, x) = (xn − an)/(x − a) =∑n
k=1 xn−kak−1.

Now, as x varies over the interval [0, ∞), each term of the sum is strictly increasing in x, and each except the constant
last term an−1 is strictly increasing in x. It follows that the whole sum s(a, x) is strictly increasing in x, so the power
function xn is strictly convex over [0, ∞).

(c) If n is even, then the slope of the function y = (−x)n satisfies s(−a, −x) = (−x)n − (−a)n

(−x) − (−a)
= xn − an

a − x
= −s(a, x).

We have proved that when a ≥ 0 and x ≥ 0, then s(a, x) is strictly increasing in x. It follows that s(−a, −x) is strictly
decreasing in x, so strictly increasing in −x. This shows that xn is strictly convex on (−∞, 0].

(d) If n is odd, then s(−a, −x) = (−x)n − (−a)n

(−x) − (−a)
= −xn + an

a − x
= s(a, x). In this case, if a ≥ 0 and x ≥ 0, then

s(−a, −x) is strictly increasing in x, so strictly decreasing in −x. This shows that xn is strictly concave on (−∞, 0].

8. (i) The function f (x) = ln x is increasing in x. Now the inequality of Exercise 2.6.8 implies that 1
2 a + 1

2 b ≥ √
ab, so

ln
( 1

2 a + 1
2 b
) ≥ ln

(√
ab
) = ln

(√
a
)+ ln

(√
b
) = 1

2 ln a + 1
2 ln b

This proves that ln x is mid-point concave, so concave.

(ii) By the inequality of Exercise 2.6.8, the two numbers ea and eb satisfy 1
2 ea + 1

2 eb ≥ √
eaeb = e

1
2 a+ 1

2 b. It follows
immediately that the function f (x) = ex is mid-point convex, so convex.
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9. The definition of concavity implies that the inequality holds when n = 2. As the induction hypothesis, suppose it also
holds when n = k, for k = 2, 3, . . .. Now, suppose that n = k + 1 and the k + 1 positive constants λi (i = 1, . . . , k + 1)
satisfy

∑k+1
i=1 λi = 1. Now define, for each i = 1, . . . , k, the new positive constant θi = λi/(1 − λk+1). Evidently, the

hypothesis that
∑k+1

i=1 λi = 1 implies that
∑k

i=1 θi = 1. Furthermore, let xk denote
∑k

i=1 θixi. Then
∑k+1

i=1 λixi = (1 −
λk+1)x

k + λk+1xk+1. Because f is concave and 0 < λk+1 = 1 −∑k
i=1 λi < 1, it follows that

f

(
k+1∑
i=1

λixi

)
≥ (1 − λk+1)f (x

k) + λk+1f (xk+1)

But the induction hypothesis implies that f (xk) ≥∑k
i=1 θif (xi). Because λk+1 < 1, the above definitions imply that

f

(
k+1∑
i=1

λixi

)
≥ (1 − λk+1)

k∑
i=1

θif (xi) + λk+1f (xk+1) =
k+1∑
i=1

λif (xi)

This completes the proof by induction.

8.3
1. The definitions imply that for all distinct a and b in I, and all 0 < λ < 1, we have

f (λa + (1 − λ)b) > λf (a) + (1 − λ)f (b) and g(λa + (1 − λ)b) ≥ λg(a) + (1 − λ)g(b)

Adding these two inequalities shows that the function h(x) = f (x) + g(x) satisfies

h(λa + (1 − λ)b) > λh(a) + (1 − λ)h(b)

Therefore, f + g is strictly concave.

2. The inverse of the increasing concave function g(x) = √
x, defined for all x ≥ 0, is the increasing convex function

h(x) = x2, defined for all x ≥ 0. Then, provided that a ≥ 0, the function f (x) = ax2 + b = ah(x) + b, defined for all
x ≥ 0, is an increasing function of the convex function h(x), so convex.

3. Use the function f (x) = c, where c is a constant, as an example of a concave function that is not strictly concave. And
use the function g(y) = c′, where c′ is a constant, as an example of a increasing concave function that is not strictly
increasing. In either case, the compound function h(x) = g(f (x)) will be a constant, so not strictly concave.

4. As the induction hypothesis, suppose that the function defined on the interval I by f k∗ (x) = min{fi(x) : i = 1, 2, . . . , k}
is concave whenever the k functions fi(x) (i = 1, 2, . . . , k) are all concave. This was shown in Section 8.3 for the
case when k = 2. Suppose it is true for some k ≥ 2. Then f k+1∗ (x) = min{f k∗ (x), fk+1(x)}, where f k∗ (x) is concave by
the induction hypothesis. Assuming that fk+1(x) is also concave, it follows then that f k+1∗ (x) is the minimum of two
concave functions, so concave. This completes the induction step.

5. (a) Arguing as in Example 8.3.2, the function f (x) = −|x − 1| = − max{x − 1, 1 − x} is concave, whereas the function
g(x) = |x + 1| = max{x + 1, −x − 1} must be convex.

(b) Note that f (x) + g(x) = |x + 1| − |x − 1| equals: −(x + 1) − (1 − x) = −2 on (−∞, −1); (x + 1) − (1 − x) =
2x on (−1, 1); (x + 1) − (x − 1) = 2 on (1, ∞). So on the interval (a, b) the function f + g is:

(i) convex unless (a, b) includes x = 1 where there is one kink;

(ii) concave unless (a, b) includes −1 where there is a second kink;

(iii) both concave and convex if (a, b) excludes both −1 and 1;

(iv) neither concave nor convex if (a, b) includes both −1 and 1.

See Fig. A8.3.5 for the graph of f + g.
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x

y

−3 −2 −1 1 2 3

−2

−1

1

2

Figure A8.3.5 y = −|x − 1| + |x + 1|

6. By part (a) of Exercise 8.2.7, the function f (x) = x2 is strictly convex on (−∞, ∞), with range [0, ∞). Furthermore,
the function g(y) = ym is both strictly convex and strictly increasing on [0, ∞). It follows that the composite function
g(f (x)) = (x2)m = xn is strictly convex over (−∞, ∞).

8.5
1. Given f (x) = ln x defined for all x > 0, one has f ′′(x) = −x−2 < 0, so ln x is stictly concave on (0, ∞). Given g(x) = ex

defined for all real x, one has g′′(x) = ex > 0, so ex is strictly convex over the whole real line.

x

y

11/3 2/3

−0.1

0.1

0.2

Figure A8.5.2 y = x3 − x2

2. The first two derivatives of h(x) = −x2 + x3 are h′(x) = −2x + 3x2 and h′′(x) = −2 + 6x. So h′′(x) < 0 ⇔ x < 1
3

and h′′(x) > 0 ⇔ x > 1
3 . Hence h is: (a) concave on (a, b) iff 0 ≤ a < b ≤ 1

3 ; (b) convex on (a, b) iff 1
3 ≤ a < b;

(c) neither concave nor convex on (a, b) iff a < 1
3 < b. See Fig. A8.5.2 for the graph of h(x).

3. Differentiating h(x) = f (g(x)) twice using the chain rule gives h′(x) = g′(f (x))f ′(x) and then, using the product rule as
well, h′′(x) = g′′(f (x))(f ′(x))2 + g′(f (x))f ′′(x). Because of the assumptions that f ′′ ≤ 0, g′ ≥ 0, and g′′ ≤ 0, it follows
that h′′(x) ≤ 0. So h(x) is concave.

4. Consider the function f (x) = −x4, defined for all real x. By Exercise 8.3.6, the even power function x4 is strictly
convex, so f is strictly concave. Yet f ′′(x) = −12x2 �< 0 at x = 0.

5. (a) Because f ′(x) �= 0 for all x in I, the inverse function Theorem 7.3.1 implies that the inverse g(y) = f −1(y) is well
defined and differentiable for all y in the range f (I), with g′(f (x)) = 1/f ′(x). Moreover, because f ′(x) �= 0, the function
g is twice differentiable with g′′(f (x)) = −f ′′(x)/[f ′(x)]3, as in Eq. (7.3.3).

(b) If f ′ < 0, then f ′′ and g′′ have the same sign. But if f ′ > 0, they have opposite signs.
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(c) When f ′(x) �= 0 and f ′′(x) �= 0 for all x in I, we have the following strengthenings of the results in Section 8.3:

(i) if f ′ > 0 throughout I and f is strictly concave, its inverse g satisfies g′ > 0 and is strictly convex;

(ii) if f ′ > 0 throughout I and f is strictly convex, its inverse g satisfies g′ > 0 and is strictly concave;

(iii) if f ′ < 0 throughout I and f is strictly concave, its inverse g satisfies g′ < 0 and is strictly concave;

(iv) if f ′ < 0 throughout I and f is strictly convex, its inverse g satisfies g′ < 0 and is strictly convex.

8.6
1. (a) f ′(x) = 3x2 + 3x − 6 = 3(x − 1)(x + 2), so f ′(x) = 0 at x = −2 and x = 1.

A sign diagram reveals that f increases in (−∞, −2] and in [1, ∞).

(b) f ′′(x) = 6x + 3 = 0 for x = −1/2. Because f ′′(x) changes sign at x = −1/2, this is an inflection point.

2. (a) f ′′(x) = 2x(x2 − 3)/(1 + x2)3. A sign diagram reveals that f is convex in [−√
3, 0] and in [

√
3, ∞). The inflection

points where f ′′ change sign are at x = −√
3, 0,

√
3.

(b) g′′(x) = 4(1 + x)−3 > 0 when x > −1, so g is (strictly) convex in (−1, ∞). No inflection point.

(c) h′′(x) = (2 + x)ex, so h is convex in [−2, ∞). An inflection point occurs at x = −2.

3. (a) x = 0 is an inflection point; the function is concave in (−∞, 0], convex in [0, ∞).

(b) x = 2 is an inflection point; the function is convex in (0, 2], concave in [2, ∞).

(c) Three inflection points: x1 = 0, x2 = 3 − √
3, and x3 = 3 + √

3, Concave in (−∞, x1], convex in [x1, x2], concave
in [x2, x3], convex in [x3, ∞).

(d) Inflection point x0 = e5/6 ≈ 2.30. Concave in (0, x0], convex in [x0, ∞).

(e) Inflection point x0 = − ln 2. Concave in (−∞, − ln 2], convex in [− ln 2, ∞).

(f) Inflection points: x1 = 1 − √
3 and x2 = 1 + √

3. Convex in (−∞, x1], concave in [x1, x2], convex in [x2, ∞).

4. Four inflection points: x = 0, x = 1, x = 3, and x = 5.

5. f (−1) = 1 implies that −a + b = 1. Moreover, f ′(x) = 3ax2 + 2bx and f ′′(x) = 6ax + 2b, so f ′′(1/2) = 0 yields 3a +
2b = 0. Solving the two simultaneous equations for a and b yields a = −2/5 and b = 3/5.

Review exercises for Chapter 8
1. The function f (x) = √

x is concave, whereas g(y) = y3 is convex. The composite function is h(x) = g(f (x)) =(√
x
)3 = x3/2, with h′(x) = 3

2 x1/2 and h′′(x) = 3
2 x−1/2 > 0. So h is strictly convex for x > 0. No contradiction is

possible because the results in Section 8.3 say nothing about a convex function of a concave function.

2. (a) Here g′(x) = 9x2 − x4 and g′′(x) = 18x − 4x3. (b) g is increasing in the interval (−3, 3) and concave on each
of the intervals (− 3

2

√
2, 0) and ( 3

2

√
2, ∞). (c) Figure A8.R.2 shows the graph of g and the inflection points corre-

sponding to x = 0 and x = ± 3
2

√
2 ≈ ±2.1213.

3. Here f ′(a) = f ′(c) = 0, f ′(b) < 0, f ′′(a) < 0, f ′′(b) = 0, and f ′′(c) > 0. So only combination (b) is correct.

4. (a) Here f ′′(x) = 12x − 24. So f is concave on (−∞, 2], and convex on [2, ∞).

(b) Here f ′′(x) = 8x−3 for x �= 0. So f is concave on (−∞, 0), and convex on (0, ∞).

(c) Here f ′′(x) = 2x3 − 96x
(x2 + 16)3

. So f is concave on (−∞, −4
√

3] and [0, 4
√

3], but convex on [−4
√

3, 0] and [4
√

3, ∞).
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x

y

1−4 −3 −2 −1 2 3 4

20

−20

Figure A8.R.2

5. Here f ′(x) = −x−2e1/x and so f ′′(x) = 2x−3e1/x + x−4e1/x = x−4e1/x(2x + 1). It follows that f is concave on
(−∞, − 1

2 ], but convex on [− 1
2 , 0) and on (0, ∞). (It is undefined at x = 0. Moreover e1/x → 0 as x → 0−, but

e1/x → ∞ as x → 0+. But the function tends to 1 as x → ∞ and as x → −∞.) See Fig. A8.R.5.

x

y

1

2

−2 −1 1 2 3−2

Figure A8.R.5 y = e1/x

y

x

y

x

f g

Figure A8.R.7

6. The second derivative is C′′(x) = 6ax + 2b. So C(x) is concave in [0, −b/3a], convex in [−b/3a, ∞). The unique
inflection point occurs at x = −b/3a.

7. See Fig. A8.R.7. In Section 8.3 it was shown that the minimum of any two concave functions is concave.

Chapter 9

9.1
1. (a) Because the denominator is never less than 4, we have f (x) ≤ 2 for all x. But f (0) = 2, so x = 0 maximizes f (x).

(b) g(x) ≥ −3 for all x and g(−2) = −3. So x = −2 minimizes g(x). Also g(x) → ∞ as x → ∞, so there is no
maximum.

(c) Because 1 + x4 ≥ 1, we have h(x) ≤ 1 for all x. But h(0) = 2, so x = 0 maximizes h. When x ∈ [−1, 1] we have
1 + x4 ≤ 2 so h(x) ≥ 1

2 . It follows that the points x = ±1 minimize h.

(d) For all x one has 2 + x2 ≥ 2 and so 2/(2 + x2) ≤ 1, implying that −2/(2 + x2) ≥ −1 = F(0). Hence there is a
minimum −1 at x = 0, but no maximum.

(e) Maximum 2 at x = 1. No minimum. (f) Minimum 99 at x = 0. No maximum. (As x → ±∞ , so H(x) → 100.)

9.2
1. Here y′ = 1.06 − 0.08x. Hence y′ ≥ 0 for x ≤ 13.25 and y′ ≤ 0 for x ≥ 13.25. So y has a maximum at

x = 13.25.
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2. Here h′(x) = 8(2 − √
3 x)(2 + √

3 x)
(3x2 + 4)2

. The function h has a maximum at x = 2
3

√
3 and a minimum at

x = − 2
3

√
3.

3. h′(t) = 1/2
√

t − 1
2 = (1 − √

t)/2
√

t. We see that h′(t) ≥ 0 in (0, 1] and h′(t) ≤ 0 in [1, ∞). According to Theorem
8.2.1(a), the point t = 1 maximizes h(t).

4. Here f ′(x) = 4x(x4 + 1) − 2x2 · 4x3

(x4 + 1)2
= 4x − 4x5

(x4 + 1)2
= 4x(1 + x2)(1 + x)(1 − x)

(x4 + 1)2
. For x restricted to [0, ∞), it follows

that f (x) increases in [0, 1], but decreases in [1, ∞). So f has a maximum f (1) = 1 at x = 1.

5. g′(x) = 3x2 ln x + x3/x = x2(3 ln x + 1). So g′(x) = 0 when ln x = − 1
3 , or x = e−1/3. We see that g′(x) ≤ 0 in

(0, e−1/3] and g′(x) ≥ 0 in [e−1/3, ∞), so x = e−1/3 minimizes g(x). Since g(x) → ∞ as x → ∞, there is no
maximum.

6. Here f ′(x) = 3ex(e2x − 2). Thus f ′(x) = 0 when e2x = 2, so x = 1
2 ln 2. If x < 1

2 ln 2 then f ′(x) < 0, and if x > 1
2 ln 2

then f ′(x) > 0, so x = 1
2 ln 2 is a minimum point. Evidently f (x) tends to +∞ as x → ∞, so f has no maximum.

7. y′ = xe−x(2 − x), so y′ > 0 in (0, 2) and y′ < 0 in (2, 4). Hence y has a maximum value of 4e−2 ≈ 0.54 at x = 2.

8. (a) x = 1
3 ln 2 is a minimum point. (b) x = 1

3 (a + 2b) is a maximum point. (c) x = 1
5 is a maximum point.

9. d′(x) = 2(x − a1) + 2(x − a2) + · · · + 2(x − an) = 2[nx − (a1 + a2 + · · · + an)]. So d′(x) = 0 for x = --x, where
--x = 1

n (a1 + a2 + · · · + an), the arithmetic mean of a1, a2, . . . , an. Since d′′(x) = 2n > 0, the point --x minimizes
d(x).

10. (a) x0 = (1/α) ln(Aα/k). (b) Substituting for A in the expression for x0 gives the optimal height of the dykes as a
function of p0, V , δ and k. See SM.

9.3

1. (a) π(L) = 320
√

L − 40L, so π ′(L) = 160√
L

− 40 = 40(4 − √
L)√

L
. We see that π ′(L) ≥ 0 for 0 ≤ L ≤ 16, π ′(16) = 0,

and π ′(L) ≤ 0 for L ≥ 16, so L = 16 maximizes profits.

(b) The profit function is π(L) = f (L) − wL, so the first-order condition is π ′(L∗) = f ′(L∗) − w = 0.

(c) The first-order condition in (b) defines L∗ as a function of w. Differentiating w.r.t. w gives f ′′(L∗)(dL∗/dw) − 1 =
0, or dL∗/dw = 1/f ′′(L∗) < 0. (If the price of labour increases, the optimal labour input decreases.)

2. (a) Q∗ = 1
2 (a − k), π(Q∗) = 1

4 (a − k)2 (b) dπ(Q∗)/dk = − 1
2 (a − k) = −Q∗ (c) s = a − k

18

18 x

x

Figure A9.3.3a

x

18 − 2x18 − 2x

Figure A9.3.3b

p

x

a + k

p(x) = a + k(1 − e−cx)

a

Figure A9.3.4

3. See Figs A9.3.3a and A9.3.3b. If x = 9, everything will be cut away, so one must have x ≤ 9. Differentiating the
formula for the volume V gives V ′(x) = 12x2 − 144x + 324 = 12(x − 3)(x − 9). So V ′(x) > 0 if x < 3, but V ′(x) < 0
if 3 < x < 9. Theorem 8.2.1 implies that the box has maximum volume when the square cut out from each corner has
sides of length 3 cm. Then the volume is 12 × 12 × 3 = 432 cm3.
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4. p′(x) = kce−cx > 0 and p′′(x) = −kc2e−cx < 0 for all x. There is no maximum, but p(x) → a + k as x → ∞. See
Fig. A9.3.4.

5. --T ′(W) = a
pb(bW + c)p−1W − (bW + c)p

W2
= a(bW + c)p−1 bW(p − 1) − c

W2
, which is 0 for W∗ = c/b(p − 1).

This must be the minimum point because --T ′
(W) is negative for W < W∗ and positive for W > W∗.

9.4
1. f ′(x) = 8x − 40 = 0 for x = 5. f (0) = 80, f (5) = −20, and f (8) = 16. Maximum 80 for x = 0. Minimum −20 for

x = 5. See Fig. A9.4.1.

f (x) = 4x2 − 40x + 80

−20

20

40

60

80

x
1 2 3 4 5 6 7 8

y

Figure A9.4.1

1000

2000

3000

4000

Q

R(Q) = 80Q

C(Q) = Q2 + 10Q + 900

10 Q0 30 Q∗ 40 50

Figure A9.5.2

2. (a) Maximum −1 at x = 0; minimum −7 at x = 3. (b) Maximum 10 at x = −1 and x = 2; minimum 6 at x = 1.

(c) Maximum 5/2 at x = 1/2 and x = 2; minimum 2 at x = 1.

(d) Maximum 4 at x = −1; minimum −6
√

3 at x = √
3. (e) Maximum 4.5 · 109 at x = 3000; minimum 0 at x = 0.

3. g′(x) = 2
5 xex2

(1 − e2−2x2
). Critical points: x = 0 and x = ±1. Here x = 2 is a maximum point, x = 1 and x = −1 are

minimum points. (Note that g(2) = 1
5 (e4 + e−2) > g(0) = 1

5 (1 + e2).)

4. (a) Total commission is, respectively, $4819, $4900, $4800, and C = 1
10 (60 + x)(800 − 10x) = 4800 + 20x − x2,

for x ∈ [0, 20]. (When there are 60 + x passengers, the charter company earns 800 − 10x from each, so they earn
$(60 + x)(800 − 10x). The sports club earns 1/10 of that amount.)

(b) The quadratic function C has its maximum for x = 10, so the maximum commission is with 70 travellers.

5. (a) f (x) = ln x(ln x − 1)2. f (e1/3) = 4/27, f (e2) = 2, f (e3) = 12. Zeros: x = 1 and x = e.

(b) f ′(x) = (3/x)(ln x − 1)(ln x − 1/3). Minimum 0 at x = 1 and at x = e. Maximum 12 at x = e3.

(c) f ′(x) > 0 in [e, e3], so f (x) has an inverse. g′(2) = 1/f ′(e2) = e2/5.

6. (a) x∗ = 3/2 (b) x∗ = √
2/2 (c) x∗ = √

12 (d) x∗ = √
3

7. There is at least one point where you must be heading in the direction of the straight line joining A to B (even if that
straight line hits the shore).

8. f is not continuous at x = −1 and x = 1. It has no maximum because f (x) is arbitrarily close to 1 for x sufficiently
close to 1. But there is no value of x for which f (x) = 1. Similarly, there is no minimum.

9. f has a maximum at x = 1 and a minimum at all x > 1. (Draw your own graph.) Yet the function is discontinuous at
x = 1, and its domain of definition is neither closed nor bounded.
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9.5
1. π(Q) = 10Q − 1

1000
Q2 − (5000 + 2Q) = 8Q − 1

1000
Q2 − 5000.

Since π ′(Q) = 8 − 1
500

Q = 0 for Q = 4000, and π ′′(Q) = − 1
500

< 0, output Q = 4000 maximizes profits.

2. (a) See Fig. A9.5.2. (b) (i) The requirement is π(Q) ≥ 0 and Q ∈ [0, 50], that is −Q2 + 70Q − 900 ≥ 0 and Q ∈
[0, 50]. The firm must produce at least Q0 = 35 − 5

√
13 ≈ 17 units. (ii) Profits are maximized at Q∗ = 35.

3. Profits are given by π(x) = −0.003x2 + 120x − 500 000, which is maximized at x = 20 000.

4. (i) Q∗ = 450 (ii) Q∗ = 550 (iii) Q∗ = 0

5. (a) π(Q) = QP(Q) − C(Q) = −0.01Q2 + 14Q − 4500, which is maximized at Q = 700.

(b) ElQ P(Q) = (Q/P(Q))P′(Q) = Q/(Q − 3000) = −1 for Q∗ = 1500.

(c) R(Q) = QP(Q) = 18Q − 0.006Q2, so R′(Q) = 18 − 0.012Q = 0 for Q∗ = 1500.

6. π ′(Q) = P − abQb−1 = 0 when Qb−1 = P/ab, i.e. Q = (P/ab)1/(b−1). Moreover, π ′′(Q) = −ab(b − 1)Qb−2 < 0 for
all Q > 0, so this is a maximum point.

9.6
1. f ′(x) = 3x2 − 12 = 0 at x = ±2. A sign diagram shows that x = 2 is a local minimum point and x = −2 is a local

maximum point. Since f ′′(x) = 6x, this is confirmed by Theorem 9.6.2.

2. (a) No local extreme points. (b) Local maximum 10 at x = −1. Local minimum 6 at x = 1.

(c) Local maximum −2 at x = −1. Local minimum 2 at x = 1.

(d) Local maximum 6
√

3 at x = −√
3. Local minimum −6

√
3 at x = √

3.

(e) No local maximum point. Local minimum 1/2 at x = 3.

(f) Local maximum 2 at x = −2. Local minimum −2 at x = 0.

3. (a) Df = [−6, 0) ∪ (0, ∞); f (x) > 0 in (−6, −2) ∪ (0, ∞).

(b) Local maximum 1
2

√
2 at x = −4. Local minima (8/3)

√
3 at x = 6, and 0 at x = −6 (where f ′(x) is undefined).

(c) f (x) → −∞ as x → 0−, f (x) → ∞ as x → 0+, f (x) → ∞ as x → ∞, and f ′(x) → 0 as x → ∞. So f attains
neither a maximum nor a minimum.

4. Look at the point a. Since the graph shows f ′(x), one has f ′(x) < 0 to the left of a, then f ′(a) = 0, and f ′(x) > 0 to the
right of a, so a is a local minimum point. At the points b and e, one has f ′(x) > 0 on both sides of each point, so they
cannot be extreme points. At c, f has a local maximum, and at d it has a local minimum point.

5. (a) f ′(x) = 3x2 + 2ax + b, f ′′(x) = 6x + 2a. f ′(0) = 0 requires b = 0. f ′′(0) ≥ 0 requires a ≥ 0. If a = 0 and b = 0,
then f (x) = x3 + c, which does not have a local minimum at x = 0. Hence, f has a local minimum at 0 if and only if
a > 0 and b = 0.

(b) f ′(1) = 0 and f ′(3) = 0 require 3 + 2a + b = 0 and 27 + 6a + b = 0, which means that a = −6 and b = 9.

6. (a) f ′(x) = x2ex(3 + x). Use a sign diagram to show that x = −3 is a local (and global) minimum point. No local
maximum points. (x = 0 is an inflection point).

(b) g′(x) = x2x(2 + x ln 2). x = 0 is a local minimum point and x = −2/ ln 2 is a local maximum point.

7. It is easy to see that f (x) → ∞ as x → ∞ and f (x) → −∞ if x → −∞, so by the intermediate value theorem f (x) = 0
for at least one x. If a ≥ 0, then f ′(x) > 0 for all x �= 0, so f is strictly increasing in all of its domain, and the equation
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f (x) = 0 cannot have more than one solution. If a < 0, then f ′(0) < 0 and the graph of f has roughly the same shape
as the graph in Fig. 4.7.4. Then f has one local maximum point and one local minimum point and it is easy to see that
the graph intersects the x-axis at three different points if and only if the local maximum is greater than zero and the
local minimum is less that zero. Find expressions for these two local extreme values, then find a criterion for them to
have different signs. See SM.

Review exercises for Chapter 9

1. (a) f ′(x) = 4x
(x2 + 2)2

. Thus f (x) decreases for x ≤ 0, and increases for x ≥ 0.

(b) f ′′(x) = 4(2 − 3x2)/(x2 + 2)3. There are inflection points at x = ± 1
3

√
6.

(c) f (x) → 1 as x → ±∞. See Fig. A9.R.1.

y

1

x−4 −2 2 4

Figure A9.R.1

y

−1

1

2

3

4

x
−1 1 2 3

Figure A9.R.7

2. (a) Q′(L) = 3L(8 − 1
20 L) = 0 for L = 160, and Q(L) is increasing in [0, 160], decreasing in [160, 200], so Q∗ = 160

is the maximum value of Q(L). (b) Output per worker is Q(L)/L = 12L − 1
20 L2, and this quadratic function has a

maximum at L∗ = 120. Q′(120) = Q(120)/120 = 720. In general (see Example 6.7.6) one has (d/dL)(Q(L)/L) =
(1/L)(Q′(L) − Q(L)/L). If L > 0 maximizes output per worker, one must have Q′(L) = Q(L)/L.

3. If the side parallel to the river is y and the other side is x, then 2x + y = 1000, so y = 1000 − 2x. The area of the
enclosure is xy = 1000x − 2x2. This quadratic function has a maximum at x = 250, when y = 500.

4. (a) π =−0.0016Q2 + 44Q − 0.0004Q2 − 8Q − 64 000 = −0.002Q2 + 36Q − 64 000, and Q = 9000 maxi-
mizes π .

(b) ElQ C(Q) = Q
C(Q)

C′(Q) = 0.0008Q2 + 8Q
0.0004Q2 + 8Q + 64 000

≈ 0.12 when Q = 1000.

This means that if Q increases from 1000 by 1%, then costs will increase by about 0.12%.

5. Profit as a function of Q is π(Q) = PQ − C = (a − bQ2)Q − α + βQ = −bQ3 + (a + β)Q − α.

Then π ′(Q) = −3bQ2 + a + β, which is 0 for Q2 = (a + β)/3b, and so Q = √
(a + β)/3b.

This value of Q maximizes profit because π ′′(Q) = −6bQ ≤ 0 for all Q ≥ 0.

6. (a) For x > 0 one has R = p
√

x, C = wx + F, and π(x) = p
√

x − wx − F.

(b) π ′(x) = 0 when w = p/2
√

x. (Marginal cost = price times marginal product.) Then x = p2/4w2. Moreover,
π ′′(x) = − 1

4 px−3/2 < 0 for all x > 0, so profit is maximized over (0, ∞). When x = p2/4w2, then π = p2/2w −
p2/4w − F = p2/4w − F. So this is a profit maximum if F ≤ p2/4w; otherwise, the firm does better not to start up
and to choose x = 0.

7. (a) g is defined for x > −1. (b) g′(x) = 1 − 2/(x + 1) = (x − 1)/(x + 1), g′′(x) = 2/(x + 1)2.

(c) Since g′(x) < 0 in (−1, 1), g′(1) = 0 and g′(x) > 0 in (1, ∞), x = 1 is a (global) minimum point.
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Since g′′(x) > 0 for all x > −1, the function g is convex and there are no inflection points.

When x → (−1)−, so g(x) → ∞ and when x → ∞, so g(x) → ∞. See Fig. A9.R.7.

8. (a) Df = (−1, ∞). (b) A sign diagram shows that f ′(x) ≥ 0 in (−1, 1] and f ′(x) ≤ 0 in [1, ∞). Hence x = 1 is

a maximum point. f has no minimum. f ′′(x) = −x(x2 + x − 1)

(x + 1)2
= 0 for x = 0 and for x = 1

2 (
√

5 − 1). (The point

x = 1
2 (−√

5 − 1) is outside the domain.) Since f ′′(x) changes sign around x = 0, this an inflection point. (c) f (x) →
−∞ as x → (−1)+. See Fig. A9.R.8.

9. (a) h is increasing in (−∞, 1
2 ln 2 ] and decreasing in [ 1

2 ln 2, ∞), so h has a maximum at x = 1
2 ln 2. It has no

minimum.

(b) h is strictly increasing in (−∞, 0] (with range (0, 1/3]), and therefore has an inverse. This inverse is h−1(y) =
ln(1 −√1 − 8y2 ) − ln(2y). See Fig. A9.R.9.

y

−0.2

−0.1

0.1

0.2

x−1 1 2

y

x

Figure A9.R.8

y

−1.5

−1.0

−0.5

0.5

x
−1.5 −1.0 −0.5 0.5

h

h−1

Figure A9.R.9

10. (a) f ′(x) = 4e4x + 8ex − 32e−2x, f ′′(x) = 16e4x + 8ex + 64e−2x (b) f ′(x) = 4e−2x(e3x + 4)(e3x − 2), so f (x) is
decreasing in (−∞, 1

3 ln 2], increasing in [ 1
3 ln 2, ∞). f ′′(x) > 0 for all x so f is strictly convex.

(c) 1
3 ln 2 is a (global) minimum. No maximum exists because f (x) → ∞ as x → ∞.

11. (a) Df is the set of all x �= ±√
a. f (x) is positive in (−√

a, 0) and in (
√

a, ∞). The graph is symmetric about the
origin because f (−x) = −f (x). See the end of Section 5.2.

(b) f (x) is increasing in (−∞, −√
3a ] and in [

√
3a, ∞), but decreasing in [−√

3a, −√
a ), in (−√

a,
√

a ), and in
(
√

a,
√

3a ]. Hence x = −√
3a is a local maximum point and x = √

3a is a local minimum point.

(c) There are inflection points at −3
√

a, 0, and 3
√

a.

12. x = √
3 is a maximum point, whereas x = −√

3 is a minimum point, and x = 0 is an inflection point. See
Fig. A9.R.12.

y

x

−2

−1

1

2

−5 −4 −3 −2 −1 1 2 3 4 5

f (x) = 6x3

x4 + x2 + 2

Figure A9.R.12



�

� �

�

876 S O L U T I O N S T O T H E E X E R C I S E S

Chapter 10

10.1
1. (a) 1

14 x14 + C (b) 2
5 x2√x + C. (Note: x

√
x = x · x1/2 = x3/2.) (c) 2

√
x + C. (Note: 1/

√
x = x−1/2.)

(d) 8
15 x15/8 + C. (Note:

√
x
√

x
√

x =
√

x
√

x3/2 = √
x · x3/4 = √

x7/4 = x7/8.) (e) −e−x + C (f) 4e
1
4 x + C

(g) − 3
2 e−2x + C (h) (1/ ln 2)2x + C

2. (a) C(x) = 3
2 x2 + 4x + 40. (Note: C(x) = ∫ (3x + 4) dx = 3

2 x2 + 4x + C. Then C(0) = 40 implies C = 40.)

(b) C(x) = 1
2 ax2 + bx + C0

3. (a) 1
4 x4 + x2 − 3x + C (b) 1

3 (x − 1)3 + C (c) 1
3 x3 + 1

2 x2 − 2x + C

(d) 1
4 (x + 2)4 + C (e) 1

3 e3x − 1
2 e2x + ex + C (f) 1

3 x3 − 3x + 4 ln |x| + C

4. (a) 2
5 y2√y − 8

3 y
√

y + 8
√

y + C

(b) 1
3 x3 − 1

2 x2 + x − ln |x + 1| + C (Note: x3/(x + 1) = x2 − x + 1 − 1/(x + 1).)

(c) 1
32 (1 + x2)16 + C

5. (a) and (b): Differentiate each right-hand side and check that you get the corresponding integrand.

(For part (a) see also Problem 10.5.5.)

6. (a) Figure 10.1.1 shows that the quadratic equation f ′(x) = 0 has roots at x = −1 and at x = 3. So one must have
f ′(x) = A(x + 1)(x − 3).

(b) Figure 10.1.1 also shows that f ′(1) = −1, implying that A = 1/4, so f ′(x) = 1
4 (x + 1)(x − 3) = 1

4 x2 − 1
2 x − 3

4 .
Integrating yields f (x) = 1

12 x3 − 1
4 x2 − 3

4 x + C. Since f (0) = 2, one has C = 2. (c) See Fig. A10.1.6.

y

−1

1

2

x−3 −2 −1 1 2 3 4

f

Figure A10.1.6

y

−1

1

2

x−4 −3 −2 −1 1 2

f

Figure A10.1.7

7. The graph of f ′(x) in the problem can be that of a cubic function, with roots at −3, −1, and 1, and with f ′(0) = −1. So
f ′(x) = 1

3 (x + 3)(x + 1)(x − 1) = 1
3 x3 + x2 − 1

3 x − 1. If f (0) = 0, integrating gives f (x) = 1
12 x4 + 13x3 − 1

6 x2 − x.
Figure A10.1.7 is the graph of this f .

8. Differentiate the right-hand side and check that you get the integrand.

9. Differentiate the right-hand side. (Once we have learned integration by substitution in Section 10.6, this integral will
become easy.)

10. (a) 1
10 (2x + 1)5 + C (b) 2

3 (x + 2)3/2 + C (c) −2
√

4 − x + C
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11. (a) F(x) = ∫ ( 1
2 ex − 2x

)
dx = 1

2 ex − x2 + C. Then F(0) = 1
2 implies C = 0.

(b) F(x) = ∫ (x − x3) dx = 1
2 x2 − 1

4 x4 + C. Then F(1) = 5
12 implies C = 1

6 .

12. The general form for f ′ is f ′(x) = 1
3 x3 + A, so that for f is f (x) = 1

12 x4 + Ax + B. If we require that f (0) = 1 and
f ′(0) = −1, then B = 1 and A = −1, so f (x) = 1

12 x4 − x + 1.

13. f (x) = − ln x + 1
20 x5 + x2 − x − 1

20

10.2

1. (a) A =
∫ 1

0
x3 dx =

1

0

1
4

x4 = 1
4

14 − 1
4

04 = 1
4

. (b) A =
∫ 1

0
x10 dx =

1

0

1
11

x11 = 1
11

2. (a)
∫ 2

0
3x2 dx =

2

0
x3 = 8 (b) 1/7 (c) e − 1/e. (See the shaded area in Fig. A10.2.2.) (d) 9/10

3. See Fig. A10.2.3. A = − ∫ −1
−2 x−3 dx = − −1

−2

(− 1
2

)
x−2 = − [− 1

2 − (− 1
8

)] = 3
8

y

x−1 1

f (x) = ex

Figure A10.2.2

y

-1

xA

y = 1/x3

−2 −1

Figure A10.2.3

4. A = 1
2

∫ 1

−1
(ex + e−x) dx = 1

2

1

−1
(ex − e−x) = e − e−1

5. (a)
∫ 1

0
x dx =

1

0

1
2

x2 = 1
2

(b) 16/3 (c) 5/12 (d) −12/5 (e) 41/2 (f) ln 2 + 5/2

6. (a) f ′(x) = 3x2 − 6x + 2 = 0 when x0 = 1 − 1
3

√
3 and x1 = 1 + 1

3

√
3. So f (x) increases in (−∞, x0) and in (x1, ∞).

(b) See Fig. A10.2.6. The shaded area is 1
4 .

7. (a) f ′(x) = −1 + 3 000 000/x2 = 0 for x = √
3 000 000 = 1000

√
3. (Recall x > 0.)

Profits are maximized at x = 1000
√

3. See Fig. A10.2.7.

(b) I = 1
2000

3000

1000

(
4000x − 1

2 x2 − 3 000 000 ln x
) = 2000 − 1500 ln 3 ≈ 352

8. (a) 6/5 (b) 26/3 (c) α(eβ − 1)/β (d) − ln 2
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y

−1

1

2

x−1 1 2

Figure A10.2.6

y

x

−2000

−1000

1000

2000

y = 4000 − x
f

Figure A10.2.7

10.3

1. (a)
5

0

(1
2

x2 + 1
3

x3) = 325/6 (b) 0 (c) ln 9 (d) e − 1 (e) −136 (f) 687/64

(g)
∫ 4

0

1
2

x1/2 dx =
4

0

1
2

· 2
3

x3/2 = 8
3

(h)
∫ 2

1

1 + x3

x2
dx =

∫ 2

1

( 1
x2

+ x
)

dx =
2

1

(
−1

x
+ 1

2
x2
)

= 2

2.
∫ b

c
f (x) dx =

∫ b

a
f (x) dx −

∫ c

a
f (x) dx = 8 − 4 = 4

3. Let A = ∫ 1
0 f (x) dx and B = ∫ 1

0 g(x) dx. Then the two equations imply that A − 2B = 6 and 2A + 2B = 9. Solving
these gives A = 5 and B = −1/2, so I = A − B = 11/2.

4. 1/(p + q + 1) + 1/(p + r + 1)

5. f (x) = 4x3 − 3x2 + 5

6. (a)
3

0

[
1
9

e3t−2 + ln(t + 2)

]
= 1

9
(e7 − e−2) + ln(5/2) (b) 83/15 (c) 2

√
2 − 3/2

(d) A {b − 1 + (b − c) ln[(b + c)/(1 + c)]} + d ln b

7. Formula (10.3.6) implies that F′(x) = x2 + 2. Combined with the chain rule, it implies that G′(x) = 2x[(x2)2 + 2] =
2x5 + 4x.

8. Formula (10.3.6), when combined with the chain rule, implies that H′(t) = 2tK(t2)e−ρt2 .

9. We use formula (10.3.8) to find the derivatives: (a) t2 (b) −e−t2 (c) 2/
√

t4 + 1

(d) [f (2) − g(2)] · 0 − [f (−λ) − g(−λ)] · (−1) = f (−λ) − g(−λ)

10. From y2 = 3x we get x = 1
3 y2. Inserting this into the other equation gives y + 1 = ( 1

3 y2 − 1)2, or y(y3 − 6y − 9) = 0.
Here y3 − 6y − 9 = (y − 3)(y2 + 3y + 3), where y2 + 3y + 3 is never 0. So (0, 0) and (3, 3) are the only points of
intersection. The area between the parabolas is A = ∫ 3

0 (
√

3x − x2 + 2x) dx = 6. See Fig. A10.3.10.

11. W(T) = (K/T)
T
0 (−1/ρ)e−ρt = K(1 − e−ρT )/ρT

12. (a) The inverse is found by solving x = 4 ln(
√

y + 4 − 2) for y, to obtain ex/4 = √
y + 4 − 2 and so y = (ex/4 +

2)2 − 4. Thus, y = g(x) = ex/2 + 4ex/4 defined on (−∞, ∞). (b) See Fig. A10.3.12.

(c) Because f and g are inverses, the shaded areas marked A and B in Fig. A10.3.12 are equal.

So
∫ 10

5 4 ln(
√

x + 4 − 2)dx = A = B = 10a − ∫ a
0

[
ex/2 + 4ex/4

]
dx = 10a − 2ea/2 − 16ex/4 + 18. See SM.
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y + 1 = (x − 1)2

y2 = 3x

y

−1

1

2

3

4

x−1 1 3 4 5 6

Figure A10.3.10

y

−5

5

10

x−5 5 10

B

A a

a

f

g

y = x

Figure A10.3.12

10.4

1. x(t) = K −
∫ t

0

--ue−as ds = K − --u(1 − e−at)/a. Note that x(t) → K − --u/a as t → ∞. If K ≥ --u/a, the well will never

be exhausted.

2. (a) m = 2b ln 2 (b) x(p) = nABpγ bδ−1(2δ−1 − 1)/(δ − 1)

3. We have S = T
0 (1/r)ert = (erT − 1)/r, implying that erT − 1 = rS. Solving for T gives T = 1

r
ln(1 + rS).

4. (a) K(5) − K(0) =
∫ 5

0
(3t2 + 2t + 5) dt = 175 (b) K(T) − K0 = (T3 − t3

0) + (T2 − t2
0) + 5(T − t0)

50

100

150

t
2 4 6 8 10

fg

Figure A10.4.5

5. (a) See Fig. A10.4.5. (b)
∫ t

0

(
g(τ ) − f (τ )

)
dτ = ∫ t

0

(
2τ 3 − 30τ 2 + 100τ) dτ = 1

2 t2(t − 10)2 ≥ 0 for all t.

(c)
∫ 10

0 p(t)f (t) dt = ∫ 10
0

(−t3 + 9t2 + 11t − 11 + 11/(t + 1)
)

dt = 940 + 11 ln 11 ≈ 966.38, whereas
∫ 10

0 p(t)g(t) dt =∫ 10
0

(
t3 − 19t2 + 79t + 121 − 121/(t + 1)

)
dt = 3980/3 − 121 ln 11 ≈ 1036.52. Profile g should be chosen.

6. The equilibrium quantity is Q∗ = 600, where P∗ = 80. Then CS = ∫ 600
0 (120 − 0.2Q) dQ = 36 000,

and PS = ∫ 600
0 (60 − 0.1Q) dQ = 18 000.

7. Equilibrium occurs when 6000/(Q∗ + 50) = Q∗ + 10. The only positive solution is Q∗ = 50, and then P∗ = 60.

Then CS =
∫ 50

0

[
6000

Q + 50
− 60

]
dQ =

50

0
[6000 ln(Q + 50) − 60Q] = 6000 ln 2 − 3000,

and PS = ∫ 50
0 (50 − Q) dQ = 1250.
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10.5
1. (a) Use (10.5.1) with f (x) = x and g′(x) = e−x:

∫
xe−x dx = x(−e−x) − ∫ 1 · (−e−x) dx = −xe−x − e−x + C.

(b) 3
4 xe4x − 3

16 e4x + C (c) −x2e−x − 2xe−x − 3e−x + C (d) 1
2 x2 ln x − 1

4 x2 + C

2. (a)
∫ 1

−1
x ln(x + 2) dx =

1

−1

1
2 x2 ln(x + 2) − ∫ 1

−1
1
2 x2 1

x+2 dx = 1
2 ln 3 − 1

2

∫ 1
−1

(
x − 2 + 4

x+2

)
dx = 2 − 3

2 ln 3

(b) 8/(ln 2) − 3/(ln 2)2 (c) e − 2 (d) 7
11
15

= 116
15

3. (a)
∫ 4

1

√
t ln t dt =

∫ 4

1
t1/2 ln t dt =

4

1

2
3 t3/2 ln t − 2

3

∫ 4

1
t3/2(1/t) dt = 16

3
ln 4 − 2

3

4

1

2
3 t3/2 = 16

3
ln 4 − 28

9

(b)
∫ 2

0
(x − 2)e−x/2 dx =

2

0
(x − 2)(−2)e−x/2 −

∫ 2

0
(−2)e−x/2 dt = −4 − 4

2

0
e−x/2 = −4 − 4(e−1 − 1) = −4e−1

(c)
∫ 3

0
(3 − x)3x dx =

3

0
(3 − x)(3x/ ln 3) −

∫ 3

0
(−1)(3x/ ln 3) dx = 26/(ln 3)2 − 3/ ln 3

4. The general formula follows from (10.5.1), and yields
∫

ln x dx = x ln x − x + C.

5. Use (10.5.1) with f (x) = ln x and g′(x) = xρ . (Alternatively, simply differentiate the right-hand side.)

6. (a) br−2
[
1 − (1 + rT)e−rT

]
(b) ar−1(1 − e−rT ) + br−2

[
1 − (1 + rT)e−rT

]
(c) ar−1

(
1 − e−rT

)− br−2
[
1 − (1 + rT)e−rT

]+ cr−3
[
2
(
1 − e−rT

)− 2rTe−rT − r2T2e−rT
]

10.6
1. (a)

1
9
(x2 + 1)9 + C. (Substitute u = x2 + 1, so du = 2x dx.) (b)

1
11

(x + 2)11 + C. (Substitute u = x + 2.)

(c) ln |x2 − x + 8| + C. (Substitute u = x2 − x + 8.)

2. (a)
1
24

(2x2 + 3)6 + C. (Substitute u = 2x2 + 3, so du = 4x dx.) (b) 1
3 ex3+2 + C. (Substitute u = ex3+2.)

(c) 1
4

(
ln(x + 2)

)2 + C. (Substitute u = ln(x + 2).) (d)
2
5
(1 + x)5/2 − 2

3
(1 + x)3/2 + C. (Substitute u = √

1 + x.)

(e)
−1

2(1 + x2)
+ 1

4(1 + x2)2
+ C (f)

2
15

(4 − x3)5/2 − 8
9
(4 − x3)3/2 + C

3. (a) With u = √
1 + x2, u2 = 1 + x2, so u du = x dx. If x = 0, then u = 1; if x = 1, then u = √

2.

Hence,
∫ 1

0
x
√

1 + x2 dx =
∫ √

2

1
u2 du =

√
2

1

1
3

u3 = 1
3
(2

√
2 − 1).

(b) 1/2. (Let u = ln y.) (c) 1
2 (e2 − e2/3). (Let u = 2/x.)

(d) Method 1:
∫ 8

5

x
x − 4

dx =
∫ 8

5

x − 4 + 4
x − 4

dx =
∫ 8

5

(
1 + 4

x − 4

)
dx =

8

5
[(x + 4 ln(x − 4)] = 3 + 4 ln 4.

Method 2: Introduce the new variable u = x − 4. Then du = dx and x = u + 4. When x = 5, u = 1, and when x = 8,

u = 4, so
∫ 8

5

x
x − 4

dx =
∫ 4

1

u + 4
u

du =
∫ 4

1

(
1 + 4

u

)
du =

4

1
(u + 4 ln u) = 3 + 4 ln 4.
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4.
∫ x

3

2t − 2
t2 − 2t

dt =
x

3
ln(t2 − 2t) = ln(x2 − 2x) − ln 3 = ln 1

3 (x2 − 2x). The equation to be solved becomes

ln 1
3 (x2 − 2x) = ln( 2

3 x − 1) = ln 1
3 (2x − 3), which implies x2 − 2x = 2x − 3. Hence, x2 − 4x + 3 = 0, with

solutions x = 1 and x = 3. But only x = 3 is in the specified domain x > 2. So the solution is x = 3.

5. Substitute z = x(t). Then dz = ẋ(t) dt, and the result follows using (10.6.2).

6. (a) 1/70. ((x4 − x9)(x5 − 1)12 = −x4(x5 − 1)13. ) (b) 2
√

x ln x − 4
√

x + C. (Let u = √
x.) (c) 8/3

7. (a) 2 ln(1 + e2) − 2 ln(1 + e) (b) ln 2 − ln(e−1/3 + 1) (c) 7 + 2 ln 2

8. Substitute u = x1/6. Then I = 6
∫

u8

1 − u2
du. Here u8 ÷ (−u2 + 1) = −u6 − u4 − u2 − 1 + 1/(−u2 + 1).

It follows that I = − 6
7 x7/6 − 6

5 x5/6 − 2x1/2 − 6x1/6 − 3 ln |1 − x1/6| + 3 ln |1 + x1/6| + C.

9. We find f (x) = 1
a − b

[
ac + d
x − a

− bc + d
x − b

]
.

(a)
∫

x dx
(x + 1)(x + 2)

=
∫ −1 dx

x + 1
+
∫

2 dx
x + 2

= − ln |x + 1| + 2 ln |x + 2| + C

(b)
∫

(1 − 2x) dx
(x + 3)(x − 5)

=
∫ [

−7
8

1
x + 3

− 9
8

1
x − 5

]
dx = −7

8
ln |x + 3| − 9

8
ln |x − 5| + C

10.7

1. (a)
∫ b

1
x−3 dx =

b

1

(
−1

2
x−2
)

= 1
2

− 1
2

b−2 → 1
2

as b → ∞. So
∫ ∞

1

1
x3

dx = 1
2

.

(b)
∫ b

1
x−1/2 dx =

b

1
2x1/2 = 2b1/2 − 2 → ∞ as b → ∞, so the integral diverges.

(c) 1 (d)
∫ a

0
(x/
√

a2 − x2 ) dx = −
a

0

√
a2 − x2 = a

2. (a)
∫ +∞

−∞
f (x) dx =

∫ b

a

1
b − a

dx = 1
b − a

b

a
x = 1

b − a
(b − a) = 1

(b)
∫ +∞

−∞
xf (x) dx = 1

b − a

∫ b

a
x dx = 1

2(b − a)

b

a
x2 = 1

2(b − a)
(b2 − a2) = 1

2
(a + b)

(c)
1

3(b − a)

b

a
x3 = 1

3
b3 − a3

b − a
= 1

3
(a2 + ab + b2)

3. Using a simplified notation and the result in Example 10.7.1, we have:

(a)
∫ ∞

0
xλe−λx dx = −

∞

0
xe−λx +

∫ ∞

0
e−λx dx = 1/λ (b) 1/λ2 (c) 2/λ3

4. The first integral diverges because
∫ b

0
[x/(1 + x2)] dx =

b

0

1
2 ln(1 + x2) = 1

2 ln(1 + b2) → ∞ as b → ∞.

On the other hand,
∫ b

−b
[x/(1 + x2)] dx =

b

−b

1
2

ln(1 + x2) = 0 for all b, so the limit as b → ∞ is 0.

5. (a) f has a maximum at (e1/3, 1/3e), but no minimum. (b)
∫ 1

0
x−3 ln x dx diverges.

∫ ∞

1
x−3 ln x dx = 1/4.

6.
1

1 + x2
≤ 1

x2
for x ≥ 1, and

∫ b

1

dx
x2

=
b

1
−1

x
= 1 − 1

b
−→
b→∞

1, so by Theorem 10.7.1 the integral converges.
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7. Put u = x + 2 and v = 3 − x. Then the integral becomes∫ 5

0
u−1/2 du −

0∫
5

v−1/2 dv = 2 lim
ε→0

5∫
ε

u−1/2 du = 4 lim
ε→0

5

ε

u1/2 = 4 lim
ε→0

(√
5 − √

ε
)

= 4
√

5.

8. (a) z =
∫ τ

0
(1/τ)e−rs ds = (1 − e−rτ )/rτ (b) z =

∫ τ

0
2(τ − s)τ−2e−rs ds = (2/rτ)

[
1 − (1/rτ)(1 − e−rτ )

]

9.
∫

x−2 dx = −x−1 + C. So evaluating
∫ 1

−1
x−2 dx as

1

−1
−x−1 gives the nonsensical answer −2.

The error arises because x−2 diverges to +∞ as x → 0. (In fact,
∫ 1

−1
x−2 dx diverges to +∞.)

10. Using the answer to Exercise 10.6.6(b), one has
∫ 1

h
(ln x/

√
x ) dx=

1

h
(2

√
x ln x − 4

√
x) = −4 − (2

√
h ln h − 4

√
h).

As h → 0+, l’Hôpital’s rule implies that
√

h ln h= ln h/h−1/2 =“∞/∞” → 0, so the given integral converges to −4.

11.
∫ A

1
[k/x − k2/(1 + kx)] dx = k ln[1/(1/A + k)] − k ln[1/(1 + k)] → k ln(1/k) − k ln[1/(1 + k)] = ln(1 + 1/k)k as

A → ∞. So Ik = ln(1 + 1/k)k, which tends to ln e = 1 as k → ∞.

12. The suggested substitution u = (x − μ)/
√

2σ gives du = dx/σ
√

2, and so dx = σ
√

2 du. Hence:

(a)
∫ +∞

−∞
f (x) dx = 1√

π

∫ +∞

−∞
e−u2

du = 1, by (10.7.9).

(b)
∫ +∞

−∞
xf (x) dx = 1√

π

∫ +∞

−∞
(μ + √

2σu)e−u2
du = μ, using part (a) and (10.7.5).

(c)
∫ +∞

−∞
(x − μ)2f (x) dx =

∫ +∞

−∞
2σ 2u2 1

σ
√

2π
e−u2

σ
√

2 du = σ 2 2√
π

∫ +∞

−∞
u2e−u2

du. Now integration by parts

yields
∫

u2e−u2
du = − 1

2 ue−u2 + ∫ 1
2 e−u2

du, so
∫ +∞

−∞
u2e−u2

du = 1
2

√
π . Hence the integral equals σ 2.

Review exercises for Chapter 10
1. (a) −16x + C (b) 55x + C (c) 3y − 1

2 y2 + C (d) 1
2 r2 − 16

5 r5/4 + C (e) 1
9 x9 + C

(f) 2
7 x7/2 + C. (x2√x = x2 · x1/2 = x5/2.) (g) − 1

4 p−4 + C (h) 1
4 x4 + 1

2 x2 + C

2. (a) e2x + C (b) 1
2 x2 − 25

2 e2x/5 + C (c) − 1
3 e−3x + 1

3 e3x + C (d) 2 ln |x + 5| + C

3. (a)
∫ 12

0
50 dx =

12

0
50x = 600 (b)

∫ 2

0
(x − 1

2 x2) dx = 2
0(

1
2 x2 − 1

6 x3) = 2
3

(c)
∫ 3

−3
(u + 1)2 du =

3

−3

1
3 (u + 1)3 = 24 (d)

∫ 5

1

2
z

dz =
5

1
2 ln z = 2 ln 5

(e)
∫ 12

2

3
t + 4

dt =
12

2
3 ln(t + 4) = 3(ln 16 − ln 6) = 3 ln(8/3)

(f) I =
∫ 4

0
v
√

v2 + 9 dv =
4

0

1
3 (v2 + 9)3/2 = 98/3.

(
Or let z = √

v2 + 9, when z2 = v2 + 9, so 2z dz = 2v dv, or

v dv = z dz. When v = 0, z = 3, and when v = 4, z = 5, so I =
∫ 5

3
z2 dz =

5

3

1
3

z3 = 98/3.
)

4. (a) 5/4 (b) 31/20 (c) −5 (d) e − 2 (e) 52/9 (f) 1
3 ln(6/5) (g) (1/256)(3e4 + 1) (h) 2e−1.
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5. (a) 10 − 18 ln(14/9). (Substitute z = 9 + √
x.) (b) 886/15. (Substitute z = √

t + 2.)

(c) 195/4. (Substitute z = 3√19x3 + 8.)

6. (a) F′(x) = 4(
√

x − 1). (Note that
∫ x

4 (u1/2 + xu−1/2) du = x
4(

2
3 u3/2 + 2xu1/2) = 8

3 x3/2 − 16
3 − 4x.)

(b) Using (10.3.8), F′(x) = ln x − (ln
√

x)(1/2
√

x) = ln x − ln x/4
√

x.

7. C(Y) = 0.69Y + 1000

8. Integrating the marginal cost function gives C(x) = C0 + ∫ x
0 (αeβu + γ ) du = C0 + x

0
α
β

eβu = α
β
(eβx − 1) +

γ x + C0.

9. Let
∫ 3
−1 f (x) dx = A and

∫ 3
−1 g(x) dx = B. Then A + B = 6 and 3A + 4B = 9, from which we find A = 15 and

B = −9. Then I = A + B = 6.

10. (a) P∗ = 70, Q∗ = 600. CS = 9000, PS = 18 000. See Fig. A10.R.10a.

(b) P∗ = Q∗ = 5, CS = 50 ln 2 − 25, PS = 1.25. See Fig. A10.R.10b.

p

q

100

p∗ = 70

10

q∗ = 600

p = f (q)

CS

PS

p = g(q)

Figure A10.R.10a

p

q

10

p∗ = 5
CS

p = f (q)

p = g(q)

PS

q∗ = 5

Figure A10.R.10b

11. (a) f ′(t) = 4 ln t(2 − ln t)/t2, f ′′(t) = 8[(ln t)2 − 3 ln t + 1]/t3.

(b) (e2, 16/e2) is a local maximum point, (1, 0) is a local (and global) minimum point. See Fig. A10.R.11.

(c) Area = 32/3. (Hint:
∫

f (t) dt = 4
3 (ln t)3 + C.)

y

1

2

3

4

5

x
5 10 15

y

x

Figure A10.R.11

12. (a)
∫ ∞

0
f (r) dr =

∫ ∞

0
(1/m)e−r/m dr = 1, as in Example 10.7.1, and

∫ ∞

0
rf (r) dr =

∫ ∞

0
r(1/m)e−r/m dr = m,

as in Exercise 10.7.3(a). So mean income is m.

(b) x(p) = n
∫ ∞

0
(ar − bp)f (r) dr = n

(
a
∫ ∞

0
rf (r) dr − bp

∫ ∞

0
f (r) dr

)
= n(am − bp), by the results in part (a).
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Chapter 11

11.1
1. (a) (i) 8000(1 + 0.05/12)5·12 ≈ 10 266.87 (ii) 8000(1 + 0.05/365)5·365 ≈ 10 272.03

(b) t = ln 2/ ln(1 + 0.05/12) ≈ 166.7. It takes approximately 166.7/12 ≈ 13.9 years.

2. (a) 5000(1 + 0.03)10 ≈ 6719.58 (b) 37.17 years. (5000(1.03)t = 3 · 5000, so t = ln 3/ ln 1.03 ≈ 37.17.)

3. We solve (1 + p/100)100 = 100 for p. Raising each side to the power 1/100, we get 1 + p/100 = 100√100,

so p = 100(
100√100 − 1) ≈ 100(1.047 − 1) = 4.7.

4. (a) (i) After 2 years: 2000(1.07)2 = 2289.80 (ii) After 10 years: 2000(1.07)10 ≈ 3934.30

(b) 2000(1.07)t = 6000 gives (1.07)t = 3, so t = ln 3/ ln 1.07 ≈ 16.2 years.

5. Use formula (11.1.2). (i) R = (1 + 0.17/2)2 − 1 = (1 + 0.085)2 − 1 = 0.177 225 or about 17.72%

(ii) 100[(1.0425)4 − 1] ≈ 18.11% (iii) 100[(1 + 0.17/12)12 − 1] ≈ 18.39%

6. The effective yearly rate for alternative (ii) is (1 + 0.2/4)4 − 1 = 1.054 − 1 ≈ 0.2155 > 0.215, so (i) is (slightly)
cheaper.

7. (a) 12 000 · (1.04)15 ≈ 21 611.32 (b) 50 000 · (1.05)−5 ≈ 39 176.31

8. 100[(1.02)12 − 1] ≈ 26.82%

9. Let the nominal yearly rate be r. By formula (11.1.2), 0.28 = (1 + r/4)4 − 1, so r = 4(
4√1.28 − 1) ≈ 0.25, or 25%.

11.2
1. (a) 8000e0.05·5 = 8000e0.25 ≈ 10 272.20

(b) 8000e0.05t = 16 000, which gives e0.05t = 2. Hence t = ln 2/0.05 ≈ 13.86 years.

2. (a) (i) 1000(1 + 0.05/12)120 ≈ 1647 (ii) 1000e0.05·10 ≈ 1649

(b) (i) 1000(1 + 0.05/12)600 ≈ 12 119 (ii) 1000e0.05·50 ≈ 12 182

3. (a) e0.1 − 1 ≈ 0.105, so the effective percentage rate is approximately 10.5. (b) Same answer.

4. If it loses 90% of its value, then e−0.1t∗ = 1/10, so −0.1t∗ = − ln 10, hence t∗ = (ln 10)/0.1 ≈ 23 years.

5. e−0.06t∗ = 1/2, so t∗ = ln 2/0.06 ≈ 11.55 years.

11.3
1. (a) The present value is 350 000 · 1.08−10 ≈ 162 117.72. (b) 350 000 · e−0.08·10 ≈ 157 265.14

2. (a) The present value is 50 000 · 1.0575−5 ≈ 37 806.64. (b) 50 000 · e−0.0575·5 ≈ 37 506.83

3. (a) We find f ′(t) = 0.05(t + 5)(35 − t)e−t. Obviously, f ′(t) > 0 for t < 35 and f ′(t) < 0 for t > 35, so t = 35 maxi-
mizes f (with f (35) ≈ 278). (b) f (t) → 0 as t → ∞. See the graph in Fig. A11.3.3.
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y

100

200

t
30 60 90

Figure A11.3.3

11.4

1. (a) sn = 3
2

[
1 − ( 1

3

)n]
(b) sn → 3

2 as n → ∞ (c)
∞∑

n=1

1
3n−1

= 3
2

2. We use formula (11.4.5). (a)
1/5

1 − 1/5
= 1/4 (b)

0.1
1 − 0.1

= 0.1
0.9

= 1
9

(c)
517

1 − 1/1.1
= 5687

(d)
a

1 − 1/(1 + a)
= 1 + a (e)

5
1 − 3/7

= 35
4

3. (a) This is a geometric series with quotient 1/8. Its sum is 8/(1 − 1
8 ) = 64/7.

(b) Geometric series with quotient −3. It diverges. (c) Geometric series with sum 21/3/(1 − 2−1/3).

(d) Not geometric. (In fact, one can show that the series converges with sum ln 2.)

4. (a) The quotient is k = 1/p. It converges to 1/(p − 1) if |p| > 1, but diverges if |p| ≤ 1.

(b) Quotient k = 1/
√

x. Converges to x
√

x/(
√

x − 1) for
√

x > 1, that is for x > 1, but diverges if 0 < x ≤ 1.

(c) Quotient k = x2. Converges to x2/(1 − x2) for |x| < 1, but diverges if x ≥ 1.

5. Geometric series with quotient (1 + p/100)−1. Its sum is b/[1 − (1 + p/100)−1] = b(1 + 100/p).

6. The resources will be exhausted partway through the year 2028.

7. 1824 · 1.02 + 1824 · 1.022 + · · · + 1824 · 1.02n =(1824/0.02)(1.02n+1 − 1.02) must equal 128 300. So n ≈ 43.77.

The resources will last until year 2037.

8. (a) f (t) = P(t)
ert − 1

(b) Use f ′(t∗) = 0. (c) P′(t∗)/P(t∗) → 1/t∗ as r → 0.

9. The general term does not approach 0 as n → ∞ in any of these three series, so they all diverge.

10. (a) This is a geometric series with quotient 100/101 that converges to 100. (b) Diverges according to (10.4.10).

(c) Converges according to (10.4.10). (d) Diverges because the nth term an = (1 + n)/(4n − 3) → 1/4 as n → ∞.

(e) Geometric series with quotient −1/2 that converges to −1/3.

(f) Geometric series with quotient 1/
√

3 converging to
√

3/(
√

3 − 1).

11. Using the hint, if p ≥ 0 then
∫ n+1

n x−pdx ∈ [(n + 1)−p, n−p]. So for m = 2, 3, . . .:

(i) if p > 1, then
∑m

n=2 n−p ≤ ∫ m
1 x−pdx ≤ 1

p − 1
; (ii) if p ≤ 1, then

∑m−1
n=1 n−p ≥ ∫ m

1 x−pdx ≥ ∫ m
1 x−1dx = ln m.

Also, for p < 0, each term n−p → ∞ as p → ∞. Hence
∑∞

n=1 n−p converges iff p > 1. See SM for more
details.
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11.5

1. Use formula (11.5.2) with n = 15, r = 0.12, and a = 3500. This gives P15 = 3500
0.12

(
1 − 1

(1.12)15

)
≈ 23 838.

2. 10 years ago the amount was: 100 000(1.04)−10 ≈ 67 556.42

3. 10 000(1.063 + 1.062 + 1.06 + 1) = 10 000(1.064 − 1)/(1.06 − 1)) ≈ 43 746.16

4. The future value after 10 years of (i) is obviously $13 000, whereas according to formula (11.5.3), the corresponding
value of (ii) is F10 = (1000/0.06)(1.0610 − 1) ≈ 13 180.80. So (ii) is worth more.

5. Offer (i) is better, because the present value of (ii) is 4600
1 − (1.06)−5

1 − (1.06)−1
≈ 20 539.

6. Using formula (11.5.4) gives
1500
0.08

= 18 750.

7. If the largest amount is a, then by formula (11.5.4) one has a/r = K, so a = rK.

8. This is a geometric series with first term a = D/(1 + r) and quotient k = (1 + g)/(1 + r). It converges if and only if

k < 1, i.e. if and only if g < r. The sum is
a

1 − k
= D/(1 + r)

1 − (1 + g)/(1 + r)
= D

r − g
.

9. PDV =
∫ 15

0
500e−0.06t dt = 500

15

0
(−1/0.06)e−0.06t = (500/0.06)

[
1 − e−0.9] ≈ 4945.25.

FDV = e0.06·15PDV = e0.9PDV ≈ 2.4596 · 4945.25 ≈ 12 163.3.

11.6
1. (a) Using formula (11.6.2), we find that the annual payment is a = 0.07 · 80 000/(1 − (1.07)−10) ≈ 11 390.20.

(b) Using (11.6.2), we get a = (0.07/12) · 80 000/[1 − (1 + 0.07/12)−120] ≈ 928.87.

2. Using formula (11.5.3) gives (8000/0.07)[1.076 − 1] ≈ 57 226.33.

Four years after the last deposit you have 57 226.33 · 1.074 ≈ 75 012.05.

3. With annual compounding, one has r = 31/20 − 1 ≈ 0.0565, so the rate of interest is about 5.65 %.

With continuous compounding, one has e20r = 3, so r = ln 3/20 ≈ 0.0549. The rate of interest is about 5.49 %.

4. Schedule (ii) has present value
120 000 · 1.115

0.115
[1 − (1.115)−8] ≈ 676 444.

Schedule (iii) has present value 220 000 + 70 000
0.115

[1 − (1.115)−12] ≈ 663 841. Thus schedule (iii) is cheapest.

When the interest rate becomes 12.5 %, schedules (ii) and (iii) have present values equal to 659 076 and 643 743,
respectively, so (iii) is cheapest in this case too.

11.7
1. r must satisfy −50 000 + 30 000/(1 + r) + 30 000/(1 + r)2 = 0. With s = 1/(1 + r), this yields s2 + s − 5/3 = 0,

with positive solution s = −1/2 + √
23/12 ≈ 0.884, so that r ≈ 0.13.

2. Equation (11.7.1) is here a/(1 + r) + a/(1 + r)2 + · · · = −a0. This reduces to a/r = −a0, so r = −a/a0.

3. By hypothesis, f (0) = a0 + a1 + · · · + an > 0. Also, f (r) → a0 < 0 as r → ∞.

Moreover, f ′(r) = −a1(1 + r)−2 − 2a2(1 + r)−3 − · · · − nan(1 + r)−n−1 < 0, so f (r) is strictly decreasing.

This guarantees that there is a unique internal rate of return, with r > 0.
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4. The maximum price is 400 000
(
1/1.175 + (1/1.175)2 + · · · + (1/1.175)7

) ≈ 1 546 522.94, or about $1.546
million.

5. With s = (1 + r)−1, Eq. (11.7.1) reduces to s21 − 11s + 10 = 0. See SM.

6. Applying Eq. (11.5.2) with a = 1000 and n = 5 gives the equation P5 = (1000/r)
[
1 − 1/(1 + r)5

] = 4340, which
is to be solved for r. For r = 0.05 or p = 5%, the present value is $4329.48; for r = 0.045 or p = 4.5%, the present
value is $4389.98. Because dP5/dr < 0, it follows that p is a little less than 5%.

11.8
1. (a) xt = x0(−2)t (b) xt = x0(5/6)t (c) xt = x0(−0.3)t

2. (a) xt = −4t. (b) xt = 2(1/2)t + 4 (c) xt = (13/8)(−3)t − 5/8 (d) xt = −2(−1)t + 4

3. The difference equation implies that αPt − β = γ − δPt+1, or Pt+1 = −(α/δ)Pt + (β + γ )/δ.

Using formula (11.8.4) gives Pt =
(
−α

δ

)t
(

P0 − β + γ

α + δ

)
+ β + γ

α + δ
.

11.9
1. The functions in (c) and (d) are the only ones that have a constant relative rate of increase. This accords with (11.9.3).

(Note that 2t = e(ln 2)t.)

2. (a) K(t) = (K0 − I/δ)e−δt + I/δ (b) (i) K(t) = 200 − 50e−0.05t and K(t) tends to 200 from below as t → ∞.

(ii) K(t) = 200 + 50e−0.05t, and K(t) tends to 200 from above as t → ∞.

3. N(t) = P(1 − e−kt). Then N(t) → P as t → ∞.

4. Ṅ(t) = 0.02N(t) + 4 · 104. The solution with N(0) = 2 · 106 is N(t) = 2 · 106(2e0.02t − 1).

5. P(10) = 705 gives 641e10k = 705, or e10k = 705/641. Taking the natural logarithm of both sides yields 10k =
ln(705/641), so k = 0.1 ln(705/641) ≈ 0.0095. P(15) ≈ 739 and P(40) ≈ 938.

6. The percentage surviving after t seconds satisfies p(t) = 100e−δt, where p(7) = 70.5 and so δ = − ln 0.705/7 ≈
0.05. Thus p(30) = 100e−30δ ≈ 22.3% are still alive after 30 seconds. Because 100e−δt = 5 when t ≈ ln 20/0.05 ≈
60, it takes about 60 seconds to kill 95%.

7. (a) x = Ae−0.5t (b) K = Ae0.02t (c) x = Ae−0.5t + 10 (d) K = Ae0.2t − 500 (e) x = 0.1/(3 − Ae0.1t) and x ≡ 0.

(f) K = 1/(2 − Aet) and K ≡ 0.

8. (a) y(t) = 250 + 230
1 + 8.2e−0.34t

. (b) y(t) → 480 as t → ∞. See Fig. A11.9.8.
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9. (a) Formula (11.9.11) implies N(t) = 1000/(1 + 999e−0.39t). After 20 days, N(20) ≈ 710 have developed influenza.

(b) 800 = 1000

1 + 999e−0.39t∗ ⇐⇒ 999e−0.39t∗ = 1
4

, so e−0.39t∗ = 1/3996, and so 0.39t∗ = ln 3996. t∗ ≈ 21 days.

(c) After about 35 days, 999 will have or have had influenza. N(t) → 1000 as t → ∞.

10. (a) If f �= r, the solution is x(t) = (1 − f /r)K

1 + (1 − f /r)K − x0

x0
e−(r−f )t

. If f = r, then the solution is x = 1
rt/K + 1/x0

.

(b) If f > r, then x(t) → 0 as t → ∞. See SM for details.

11. At about 11:26. (Measuring time in hours, with t = 0 being 12 noon, one has Ṫ = k(20 − T) with T(0) = 35 and
T(1) = 32. So the body temperature at time t is T(t) = 20 + 15e−kt with k = ln(5/4). Assuming that the temperature
was the normal 37 degrees at the time of death t∗, then t∗ = − ln(17/15)/ ln(5/4) ≈ −0.56 hours, or about 34
minutes before 12:00.)

11.10
1. The equation is separable. The recipe gives

∫
x4 dx = ∫ (1 − t) dt, so 1

5 x5 = t − 1
2 t2 + C1, and x5 = 5t − 5

2 t2 + 5C1.

This implies that x = 5
√

5t − 5
2 t2 + 5C1 = 5

√
5t − 5

2 t2 + C, with C = 5C1. Finally, x(1) = 1 yields C = −3/2.

2. (a) x = 3
√

3
2 e2t + C (b) x = − ln(e−t + C) (c) x = Ce3t − 6 (d) x = 7

√
(1 + t)7 + C (e) x = Ce2t + 1

2 t + 1
4

(f) x = Ce−3t + 1
2 et2−3t

3. The equation is separable, with dk/k = sαeβt dt, so ln k = sα
β

eβt + C1, or k = e(sα/β)eβt
eC1 = Ce(sα/β)eβt

.

With k(0) = k0, we have k0 = Cesα/β , and thus k = k0e(sα/β)(eβt−1).

4. (a) Ẏ = α(a − 1)Y + α(b + --I) (b) Y =
(

Y0 − b + --I
1 − a

)
e−α(1−a)t + b + --I

1 − a
→ b + --I

1 − a
as t → ∞.

5. (a) From (iii), L = L0eβt. Inserting this into (ii), and then inserting the result into (i), one has the separable equation

K̇ = γ KαL0eβt, or
∫

K−αdK = γ L0

∫
eβtdt. The solution is K =

[
(1 − α)γ

β
L0(e

βt − 1) + K1−α
0

]1/(1−α)

.

6.
t
x

dx
dt

= a is separable, with
∫

dx
x

= a
∫

dt
t

. Integrating yields ln x = a ln t + C1, so x = ea ln t+C1 = (eln t)aeC1 =
Cta, with C = eC1 . This shows that the only type of function which has constant elasticity is x = Cta.

Review exercises for Chapter 11
1. (a) 5000 · 1.0310 ≈ 6719.58 (b) 5000(1.03)t∗ = 10 000, so (1.03)t∗ = 2, or t∗ = ln 2/ ln 1.03 ≈ 23.45.

2. (a) 8000 · 1.053 = 9261 (b) 8000 · 1.0513 ≈ 15 085.19 (c) (1.05)t∗ = 4, so t∗ = ln 4/1.05 ≈ 28.5

3. If you borrow $a at the annual interest rate of 11% with interest paid yearly, then the debt after 1 year is equal to
a(1 + 11/100) = a(1.11); if you borrow at annual interest rate 10% with interest paid monthly, your debt after 1
year will be a(1 + 10/(12 · 100))12 ≈ 1.1047a, so schedule (ii) is preferable.

4. 15 000e0.07·12 ≈ 34 745.50

5. (a) 8000e0.06·3 ≈ 9577.74 (b) t∗ = ln 2/0.06 ≈ 11.6

6. We use formula (11.4.5) as follows: (a) The first term is 44 and the quotient is 0.56, so the sum is
44

1 − 0.56
= 100.



�

� �

�

C H A P T E R 1 2 889

(b) The first term is 20 and the quotient is 1/1.2, so the sum is
20

1 − 1/1.2
= 120. (c)

3
1 − 2/5

= 5

(d) The first term is (1/20)−2 = 400 and the quotient is 1/20, so the sum is
400

1 − 1/20
= 8000/19.

7. (a)
∫ T

0
ae−rt dt = (a/r)(1 − e−rT ) (b) a/r, the same as (11.5.4).

8. 5000(1.04)4 = 5849.29

9. 21 232.32

10. K ≈ 5990.49

11. (a) According to formula (11.6.2), the annual payment is: 500 000 · 0.07(1.07)10/(1.0710 − 1) ≈ 71 188.80.

The total amount is 10 · 71 188.80 = 711 888. (b) If the person has to pay twice a year, the biannual payment

is 500 000 · 0.035(1.035)20/(1.03520 − 1) ≈ 35 180.50. The total amount is then 20 · 35 180.50 = 703 610.80.

12. (a) The present value is (3200/0.08)[1 − (1.08)−10] = 21 472.26.

(b) The present value is 7000 + (3000/0.08)[1 − 1.08−5] = 18 978.13.

(c) Four years ahead the present value is (4000/0.08)[1 − (1.08)−10] = 26 840.33. The present value when Lucy
makes her choice is 26 840.33 · 1.08−4 = 19 728.44. So she should choose option (a).

13. (a) t∗ = 1/16r2 = 25 for r = 0.05. (b) t∗ = 1/
√

r = 5 for r = 0.04.

14. (a) The total revenue is F(10)=F(10) − F(0) =
∫ 10

0
(1 + 0.4t) dt =

10

0
(t + 0.2t2) = 30. (b) See Example 10.5.3.

15. (a) xt = (−0.1)t (b) xt = −2t + 4 (c) xt = 4
( 3

2

)t − 2

16. (a) x = Ae−3t (b) x = Ae−4t + 3 (c) x = 1/(Ae−3t − 4) and x ≡ 0. (d) x = Ae− 1
5 t (e) x = Ae−2t + 5/3

(f) x = 1/(Ae− 1
2 t − 2) and x ≡ 0.

17. (a) x = 1/(C − 1
2 t2) and x(t) ≡ 0. (b) x = Ce−3t/2 − 5 (c) x = Ce3t − 10 (d) x = Ce−5t + 2t − 2

5

(e) x = Ce−t/2 + 2
3 et (f) x = Ce−3t + 1

3 t2 − 2
9 t + 2

27

18. (a) V(x) = (V0 + b/a)e−ax − b/a (b) V(x∗) = 0 yields x∗ = (1/a) ln(1 + aV0/b).

(c) 0 = V(x̂) = (Vm + b/a)e−ax̂ − b/a yields Vm = (b/a)(eax̂ − 1).

(d) x∗ = (1/0.001) ln(1 + 0.001 · 12 000/8) ≈ 916, and Vm = (8/0.001)(e0.001·1200 − 1) = 8000(e1.2 − 1) ≈
18 561.

Chapter 12

12.1
1. (a) 2 × 2 (b) 2 × 3 (c) m × n

2. A =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

3. u = 3 and v = −2. (Equating the elements in row 1 and column 3 gives u = 3.

Then, equating those in row 2 and column 3 gives u − v = 5 and so v = −2.

The other elements then need to be checked, but this is obvious.)
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12.2
1. Equations (a), (c), (d), and (f) are linear in x, y, z, and w, whereas (b) and (e) are nonlinear in these variables.

2. Yes: with x1, y1, x2, and y2 all constants, the system is linear in a, b, c, and d.

3. The three rows are 2x1 + 4x2 + 6x3 + 8x4 = 2, 5x1 + 7x2 + 9x3 + 11x4 = 4, and 4x1 + 6x2 + 8x3 + 10x4 = 8.

4. The system is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x2 + x3 + x4 = b1

x1 + x3 + x4 = b2

x1 + x2 + x4 = b3

x1 + x2 + x3 = b4

with solution

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 = − 2
3 b1 + 1

3 (b2 + b3 + b4)

x2 = − 2
3 b2 + 1

3 (b1 + b3 + b4)

x3 = − 2
3 b3 + 1

3 (b1 + b2 + b4)

x4 = − 2
3 b4 + 1

3 (b1 + b2 + b3)

(Adding the 4 equations, then dividing by 3, gives x1 + x2 + x3 + x4 = 1
3 (b1 + b2 + b3 + b4).

Subtracting each of the original equations in turn from this new equation gives the solution for x1, . . . , x4.

An alternative solution method is to eliminate the variables systematically, starting with (say) x4.)

5. (a) The commodity bundle owned by individual j. (b) ai1 + ai2 + · · · + ain is the total amount of commodity i owned
by all individuals. The first case is when i = 1. (c) p1a1j + p2a2j + · · · + pmamj

6. After dropping terms with zero coefficients, the equations are

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 0.712Y + C = 95.05

X − Y − S + C = 0.00

0.158X − S + 0.158C = 34.30

X = 93.53

The solution is X = 93.53, Y ≈ 482.11, S ≈ 49.73, and C ≈ 438.31.

12.3

1. A + B =
(

1 0
7 5

)
, 3A =

(
0 3
6 9

)

2. A + B =
(

1 0 4
2 4 16

)
, A − B =

(−1 2 −6
2 2 −2

)
, and 5A − 3B =

(−3 8 −20
10 12 8

)

12.4

1. a + b =
(

5
3

)
, a − b =

(−1
−5

)
, 2a + 3b =

(
13
10

)
, and −5a + 2b =

(−4
13

)
2. a + b + c = (−1, 6, −4), a − 2b + 2c = (−3, 10, 2), 3a + 2b − 3c = (9, −6, 9)

3. By definition of vector addition and scalar multiplication, the left-hand side of the equation is the vector 3(x, y, z) +
5(−1, 2, 3) = (3x − 5, 3y + 10, 3z + 15). For this to equal the vector (4, 1, 3), all three components must be equal.
So the vector equation is equivalent to the equation system 3x − 5 = 4, 3y + 10 = 1, and 3z + 15 = 3, with the
obvious solution x = 3, y = −3, z = −4.

4. Here x = 0, so for all i, the ith component satisfies xi = 0.

5. Nothing, because 0 · x = 0 for all x.

6. We need to find numbers t and s such that t(2, −1) + s(1, 4) = (4, −11). This vector equation is equivalent to (2t +
s, −t + 4s) = (4, −11). Equating the two components gives the system (i) 2t + s = 4; (ii) −t + 4s = −11.

This system has the solution t = 3, s = −2, so (4, −11) = 3(2, −1) − 2(1, 4).
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7. 4x − 2x = 7a + 8b − a, so 2x = 6a + 8b, and x = 3a + 4b.

8. a · a = 5, a · b = 2, and a · (a + b) = 7. We see that a · a + a · b = a · (a + b).

9. The inner product of the two vectors is x2 + (x − 1)x + 3 · 3x = x2 + x2 − x + 9x = 2x2 + 8x = 2x(x + 4), which
is 0 for x = 0 and for x = −4.

10. (a) x = (5, 7, 12) (b) u = (20, 18, 25) (c) u · x = 526

11. (a) The firm’s revenue is p · z. Its costs are p · x. (b) Profit = revenue − costs.

This equals p · z − p · x = p · (z − x) = p · y. If p · y < 0, then the firm makes a loss equal to −p · y.

12. (a) Input vector =
(

0
1

)
(b) Output vector =

(
2
0

)
(c) Cost = (1, 3)

(
0
1

)
= 3 (d) Revenue = (1, 3)

(
2
0

)
= 2

(e) Value of net output = (1, 3)

(
2

−1

)
= 2 − 3 = −1. (f) Loss = cost − revenue = 3 − 2 = 1, so profit = −1.

12.5

1. (a) AB =
(

0 −2
3 1

)(−1 4
1 5

)
=
(

0 · (−1) + (−2) · 1 0 · 4 + (−2) · 5
3 · (−1) + 1 · 1 3 · 4 + 1 · 5

)
=
(−2 −10

−2 17

)
and BA =

(
12 6
15 3

)
.

(b) AB =
(

26 3
6 −22

)
and BA =

⎛
⎝14 6 −12

35 12 4
3 3 −22

⎞
⎠ (c) AB is not defined, whereas BA =

⎛
⎝−1 4

3 4
4 8

⎞
⎠

(d) AB =
⎛
⎝0 0 0

0 4 −6
0 −8 12

⎞
⎠ and BA = (16), a 1 × 1 matrix.

2. (i) 3A + 2B − 2C + D =
(−1 15

−6 −13

)
(ii) AB =

(
0 0
0 0

)
(iii) From (ii) it follows that C(AB) =

(
0 0
0 0

)
.

3. A + B =
⎛
⎝4 1 −1

9 2 7
3 −1 4

⎞
⎠, A − B =

⎛
⎝−2 3 −5

1 −2 −3
−1 −1 −2

⎞
⎠, AB =

⎛
⎝ 5 3 3

19 −5 16
1 −3 0

⎞
⎠,

BA =
⎛
⎝ 0 4 −9

19 3 −3
5 1 −3

⎞
⎠, (AB)C = A(BC) =

⎛
⎝23 8 25

92 −28 76
4 −8 −4

⎞
⎠

4. (a)
(

1 1
3 5

)(
x1
x2

)
=
(

3
5

)
(b)

⎛
⎝1 2 1

1 −1 1
2 3 −1

⎞
⎠
⎛
⎝x1

x2
x3

⎞
⎠ =

⎛
⎝4

5
1

⎞
⎠ (c)

(
2 −3 1
1 1 −1

)⎛⎝x1
x2
x3

⎞
⎠ =

(
0
0

)

5. (a) A − 2I =
(

0 2
1 3

)
. The matrix C must be 2 × 2.

With C =
(

c11 c12
c21 c22

)
, we need

(
0 2
1 3

)(
c11 c12
c21 c22

)
=
(

1 0
0 1

)
, or
(

2c21 2c22
c11 + 3c21 c12 + 3c22

)
=
(

1 0
0 1

)
.

The last matrix equation has the unique solution c11 = −3/2, c12 = 1, c21 = 1/2, and c22 = 0.

(b) B − 2I =
(

0 0
3 0

)
, so the first row of any product matrix (B − 2I)D must be (0, 0).

So no matrix D can possibly satisfy (B − 2I)D = I.
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6. The product AB is defined only if B has n rows. And BA is defined only if B has m columns. So B must be an n × m
matrix.

7. B =
(

w − y y
y w

)
, for arbitrary y, w.

8. T(Ts) =
⎛
⎝0.85 0.10 0.10

0.05 0.55 0.05
0.10 0.35 0.85

⎞
⎠
⎛
⎝0.25

0.35
0.40

⎞
⎠ =

⎛
⎝0.2875

0.2250
0.4875

⎞
⎠

12.6

1. A(B + C) = AB + AC =
(

3 2 6 2
7 4 14 6

)

2. The 1 × 1 matrix (ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz)

3. It is straightforward to show that (AB)C and A(BC) are both equal to the 2 × 2 matrix D = (dij)2×2, whose four
elements are dij = ai1b11c1j + ai1b12c2j + ai2b21c1j + ai2b22c2j for i = 1, 2 and j = 1, 2.

4. (a)

⎛
⎝5 3 1

2 0 9
1 3 3

⎞
⎠ (b) (1, 2, −3)

5. (a) (i) Note that (A + B)(A − B) = A2 − AB + BA − B2 �= A2 − B2 unless AB = BA.

(ii) Similarly (A − B)(A − B) = A2 − AB − BA + B2 �= A2 − 2AB + B2 unless AB = BA.

(b) Equality occurs in both (i) and (ii) if and only if AB = BA.

6. (a) Verify directly by matrix multiplication. (b) AA = (AB)A = A(BA) = AB = A, so A is idempotent.

Then just interchange A and B to show that B is idempotent.

(c) As the induction hypothesis, suppose that Ak = A, which is true for k = 1.
Then Ak+1 = AkA = AA = A, which completes the proof by induction.

7. If P3Q = PQ, then P5Q = P2(P3Q) = P2(PQ) = P3Q = PQ.

8. (a) Verify directly by matrix multiplication. (b) Given A =
(

a b
c d

)
, it is enough to have a + d = ad − bc = 0 with

a, b, c, d not all 0. One example is A =
(

1 1
−1 −1

)
. (c) See SM.

12.7

1. A′ =

⎛
⎜⎜⎝

3 −1
5 2
8 6
3 2

⎞
⎟⎟⎠, B′ = (0, 1, −1, 2), C′ =

⎛
⎜⎜⎝

1
5
0

−1

⎞
⎟⎟⎠

2. A′ =
(

3 −1
2 5

)
, B′ =

(
0 2
2 2

)
, (A + B)′ =

(
3 1
4 7

)
, (αA)′ =

(−6 2
−4 −10

)
, AB =

(
4 10

10 8

)
,

(AB)′ =
(

4 10
10 8

)
= B′A′, and A′B′ =

(−2 4
10 14

)
.

Verifying the rules for transposition specified in Eqs (12.7.2)–(12.7.5) is now very easy.

3. Direct verification shows that for each of the two matrices the element in position ij equals the element in position ji,
for i = 1, 2, 3 and j = 1, 2, 3.
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4. Symmetry requires a2 − 1 = a + 1 and a2 + 4 = 4a. The second equation has the unique root a = 2, which also
satisfies the first equation.

5. No! For example:
(

0 0
0 1

)(
1 1
1 1

)
=
(

0 0
1 1

)
.

6. (A1A2A3)
′ = (A1(A2A3))

′ = (A2A3)
′A′

1 = (A′
3A′

2)A
′
1 = A′

3A′
2A′

1. To prove the general case, use induction.

7. (a) Verify by direct multiplication. (b)
(

p q
−q p

)(
p −q
q p

)
=
(

p2 + q2 0
0 p2 + q2

)
=
(

1 0
0 1

)
⇔ p2 + q2 = 1.

(c) If P′P = Q′Q = In, then (PQ)′(PQ) = (Q′P′)(PQ) = Q′(P′P)Q = Q′InQ = Q′Q = In.

8. (a) TS =
⎛
⎝ p3 + p2q 2p2q + 2pq2 pq2 + q3

1
2 p3 + 1

2 p2 + 1
2 p2q p2q + pq + pq2 1

2 pq2 + 1
2 q2 + 1

2 q3

p3 + p2q 2p2q + 2pq2 pq2 + q3

⎞
⎠ = S because p + q = 1. A similar argument

shows that T2 = 1
2 T + 1

2 S. To derive the formula for T3, multiply each side of the last equation on the left by T.

(b) The appropriate formula is Tn = 21−nT + (1 − 21−n)S.

12.8
1. (a) The solution x1 = 5, x2 = −2 can be found by using Gaussian elimination to obtain(

1 1 3
3 5 5

) −3
← ∼

(
1 1 3
0 2 −4

)
1/2

∼
(

1 1 3
0 1 −2

) ←
−1

∼
(

1 0 5
0 1 −2

)
(b) Gaussian elimination yields⎛

⎝1 2 1 4
1 −1 1 5
2 3 −1 1

⎞
⎠ −1 −2

←
←

∼
⎛
⎝1 2 1 4

0 −3 0 1
0 −1 −3 −7

⎞
⎠ −1/3 ∼

⎛
⎝1 2 1 4

0 1 0 −1/3
0 −1 −3 −7

⎞
⎠ ←

1 −2
←

∼
⎛
⎝1 0 1 14/3

0 1 0 −1/3
0 0 −3 −22/3

⎞
⎠

−1/3
∼
⎛
⎝1 0 1 14/3

0 1 0 −1/3
0 0 1 22/9

⎞
⎠ ←

−1
∼
⎛
⎝1 0 0 20/9

0 1 0 −1/3
0 0 1 22/9

⎞
⎠

The solution is therefore: x1 = 20/9, x2 = −1/3, x3 = 22/9.

(c) The general solution is x1 = (2/5)s, x2 = (3/5)s, x3 = s, where s is an arbitrary real number.

2. Using Gaussian elimination to eliminate x from the second and third equations, and then y from the third equation, we

arrive at the augmented matrix

⎛
⎝1 1 −1 1

0 1 −3/2 −1/2
0 0 a + 5/2 b − 1/2

⎞
⎠.

For any z, the first two equations imply that y = − 1
2 + 3

2 z and x = 1 − y + z = 3
2 − 1

2 z.

From the last equation we see that for a �= − 5
2 , there is a unique solution with z = (b − 1

2 )
/
(a + 5

2 ).

For a = − 5
2 , there are no solutions if b �= 1

2 , but there is one degree of freedom if b = 1
2 (with z arbitrary).

3. For c = 1 and for c = −2/5 the solution is x = 2c2 − 1 + t, y = s, z = t, w = 1 − c2 − 2s − 2t, for arbitrary s and t.

For other values of c there are no solutions.

4. Move the first row down to row number three and use Gaussian elimination. There is a unique solution if and only if
a �= 3/4.

5. If b1 �= 1
4 b3, there is no solution. If b1 = 1

4 b3, there is an infinite set of solutions that take the form x = −2b2 + b3 − 5t,
y = 3

2 b2 − 1
2 b3 + 2t, z = t, with t ∈ R.
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12.9
1. a + b = (3, 3) and − 1

2 a = (−2.5, 0.5). See Fig. A12.9.1.

2. (a) (i) λ = 0 gives x = (−1, 2) = b; (ii) λ = 1/4 gives x = (0, 7/4); (iii) λ = 1/2 gives x = (1, 3/2);

(iv) λ = 3/4 gives x = (2, 5/4); (v) λ = 1 gives x = (3, 1) = a. See Fig. A12.9.2.

(b) As λ runs through [0, 1], the vector x traces out the line segment joining b to a in Fig. A12.9.2. (c) See SM.

y

x

1

1

(−2, 4)

b
a + b

a
(5, −1)

− 1
2 a(−2.5, 0.5)

(3, 3)

Figure A12.9.1

y

x

1

−1 1 2 3

b
a

λ = 0
λ = 1/4

λ = 1/2
λ = 3/4

λ = 1

Figure A12.9.2

3. See Fig. A12.9.3.

P R

Q

S � (3,�2 , 4)

y

x

z

Figure A12.9.3

4. (a) A straight line through (0, 2, 3) parallel to the x-axis.

(b) A plane parallel to the z-axis whose intersection with the xy-plane is the line y = x.

5. ‖a‖ = 3, ‖b‖ = 3, ‖c‖ = √
29. Also, |a · b| = 6 ≤ ‖a‖ · ‖b‖ = 9.

6. (a) x1(1, 2, 1) + x2(−3, 0, −2) = (x1 − 3x2, 2x1, x1 − 2x2) = (5, 4, 4) when x1 = 2 and x2 = −1.

(b) x1 and x2 would have to satisfy x1(1, 2, 1) + x2(−3, 0, −2) = (−3, 6, 1). Then x1 − 3x2 = −3, 2x1 = 6, and x1 −
2x2 = 1. The first two equations imply that x1 = 3 and x2 = 2, which violate the last equation.

7. The pairs of vectors in (a) and (c) are orthogonal; the pair in (b) is not.

8. The vectors are orthogonal if and only if their inner product is 0. This is true if and only if

x2 − x − 8 − 2x + x = x2 − 2x − 8 = 0, which is the case for x = −2 and x = 4.
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9. If P is orthogonal and ci and cj are two different columns of P, then c′
icj is the element in row i and column j of

P′P = I, so c′
icj = 0. If ri and rj are two different rows of P, then rir

′
j is the element in row i and column j of PP′ = I,

so again rir
′
j = 0.

10. (‖a‖ + ‖b‖)2 = ‖a‖2 + 2‖a‖ · ‖b‖ + ‖b‖2, whereas ‖a + b‖2 = (a + b) · (a + b) = ‖a‖2 + 2a · b + ‖b‖2.

Then (‖a‖ + ‖b‖)2 − ‖a + b‖2 = 2(‖a‖ · ‖b‖ − a · b) ≥ 0 by the Cauchy–Schwarz inequality (12.9.7).

12.10
1. (a) x1 = 3t + 10(1 − t) = 10 − 7t, x2 = (−2)t + 2(1 − t) = 2 − 4t, and x3 = 2t + (1 − t) = 1 + t

(b) x1 = 1, x2 = 3 − t, and x3 = 2 + t

2. (a) To show that a lies on L, put t = 0. (b) The direction of L is given by (−1, 2, 1),

and the equation of P is (−1)(x1 − 2) + 2(x2 − (−1)) + 1 · (x3 − 3) = 0, or −x1 + 2x2 + x3 = −1.

(c) We must have 3(−t + 2) + 5(2t − 1) − (t + 3) = 6, and so t = 4/3. Thus P = (2/3, 5/3, 13/3).

3. x1 − 3x2 − 2x3 = −3

4. 2x + 3y + 5z ≤ m, with m ≥ 75.

5. (a) This can be verified directly. (b) (x1, x2, x3) = (−2, 1, −1) + t(−1, 2, 3) = (−2 − t, 1 + 2t, −1 + 3t)

Review exercises for Chapter 12

1. (a) A =
(

2 3 4
3 4 5

)
(b) A =

(
1 −1 1

−1 1 −1

)

2. (a) A − B =
(

3 −2
−2 2

)
(b) A + B − 2C =

(−3 −4
−2 −8

)
(c) AB =

(−2 4
2 −3

)
(d) C(AB) =

(
2 −1
6 −8

)

(e) AD =
(

2 2 2
0 2 3

)
(f) DC is not defined. (g) 2A − 3B =

(
7 −6

−5 5

)
(h) (A − B)′ =

(
3 −2

−2 2

)

(i) and (j): (C′A′)B′ = C′(A′B′) =
(−6 5

−4 5

)
(k) D′D′ is not defined. (l) D′D =

⎛
⎝2 4 5

4 10 13
5 13 17

⎞
⎠.

3. (a)
(

2 −5
5 8

)(
x1
x2

)
=
(

3
5

)
(b)

⎛
⎜⎜⎝

1 1 1 1
1 3 2 4
1 4 8 0
2 0 1 −1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x
y
z
t

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ (c)

⎛
⎝a − 1 3 −2

a 2 −1
1 −2 3

⎞
⎠
⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝5

2
1

⎞
⎠

4. A + B =
⎛
⎝ 0 −4 1

8 6 4
−10 9 15

⎞
⎠, A − B =

⎛
⎝ 0 6 −5

−2 2 6
−2 5 15

⎞
⎠, AB =

⎛
⎝ 13 −2 −1

0 3 5
−25 74 −25

⎞
⎠,

BA =
⎛
⎝−33 1 20

12 6 −15
6 4 18

⎞
⎠, (AB)C = A(BC) =

⎛
⎝ 74 −31 −48

6 25 38
−2 −75 −26

⎞
⎠

5. The two matrix products on the left-hand side of the equation are
(

2a + b a + b
2x x

)
and

(
a b

2a + x 2b

)
. Equating

their difference
(

a + b a
x − 2a x − 2b

)
to the matrix

(
2 1
4 4

)
on the right-hand side yields the following four equalities:

a + b = 2, a = 1, x − 2a = 4, and x − 2b = 4. It follows that a = b = 1, x = 6.
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6. (a) A2 =
⎛
⎝a2 − b2 2ab b2

−2ab a2 − 2b2 2ab
b2 −2ab a2 − b2

⎞
⎠

(b) (C′BC)′ = C′B′(C′)′ = C′(−B)C = −C′BC. So A is skew-symmetric if and only if a = 0.

(c) A′
1 = 1

2 (A′ + A′′) = 1
2 (A′ + A) = A1, so A1 is symmetric. It is equally easy to prove that A2 is skew-symmetric,

as well as that any square matrix A is therefore the sum A1 + A2 of a symmetric matrix A1 and a skew-symmetric
matrix A2.

7. (a)
(

1 4 1
2 2 8

) −2
← ∼

(
1 4 1
0 −6 6

)
−1/6

∼
(

1 4 1
0 1 −1

) ←
−4

∼
(

1 0 5
0 1 −1

)
The solution is x1 = 5, x2 = −1. (b) The solution is x1 = 3/7, x2 = −5/7, x3 = −18/7.

(c) The solution is x1 = (1/14)x3, x2 = −(19/14)x3, where x3 is arbitrary. (One degree of freedom.)

8. We use the method of Gaussian elimination:⎛
⎝ 1 a 2 0

−2 −a 1 4
2a 3a2 9 4

⎞
⎠ 2 −2a

←
←

∼
⎛
⎝1 a 2 0

0 a 5 4
0 a2 9 − 4a 4

⎞
⎠ −a

←
∼
⎛
⎝1 a 2 0

0 a 5 4
0 0 9 − 9a 4 − 4a

⎞
⎠

For a = 1, the last equation is superfluous; the solution is x = 3t − 4, y = −5t + 4, z = t, with t arbitrary. If a �= 1,
we have (9 − 9a)z = 4 − 4a, so z = 4/9. The two other equations then become x + ay = −8/9 and ay = 16/9. If
a = 0, there is no solution. If a �= 0, the solution is x = −8/3, y = 16/9a, and z = 4/9.

9. Here ‖a‖ = √
35, ‖b‖ = √

11, and ‖c‖ = √
69. Moreover |a · b| = |(−1) · 1 + 5 · 1 + 3 · (−3)| = | − 5| = 5. Then

‖a‖‖b‖ = √
35

√
11 = √

385 is obviously greater than |a · b| = 5, so the Cauchy–Schwarz inequality is satisfied.

10. Because PQ = QP + P, multiplying on the left by P gives P2Q = (PQ)P + P2 = (QP + P)P + P2 = QP2 + 2P2.

See SM for details of how to repeat this argument in order to prove by induction the result for higher powers
of P.

Chapter 13

13.1
1. (a) 3 · 6 − 2 · 0 = 18 (b) ab − ba = 0 (c) (2 − x)(−x) − 1 · 8 = x2 − 2x + 8 (d) (a + b)2 − (a − b)2 = 4ab

(e) 3t2t−1 − 3t−12t = 3t−12t−1(3 − 2) = 6t−1

2. See Fig. A13.1.2. The shaded parallelogram has area 3 · 6 = 18 =
∣∣∣∣ 3 0
2 6

∣∣∣∣.

(3, 0)

(2, 6)

Figure A13.1.2
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3. (a) Cramer’s rule gives x =

∣∣∣∣ 8 −1
5 −2

∣∣∣∣∣∣∣∣ 3 −1
1 −2

∣∣∣∣
= −16 + 5

−6 + 1
= 11

5
and y =

∣∣∣∣ 3 8
1 5

∣∣∣∣∣∣∣∣ 3 −1
1 −2

∣∣∣∣
= 15 − 8

−6 + 1
= 7

−5
= −7

5
.

(b) x = 4 and y = −1 (c) x = a + 2b
a2 + b2

and y = 2a − b
a2 + b2

, provided that a2 + b2 �= 0.

4. The numbers a and b must satisfy a + 1 = 0 and a − 3b = −10, so a = −1 and b = 3.

5. Expanding the determinant gives (2 − x)(−x) − 8 = 0 or x2 − 2x − 8 = 0, so x = −2 or x = 4.

6. The matrix product is AB =
(

a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
, implying that |AB| = (a11b11 + a12b21)(a21b12 +

a22b22) − (a11b12 + a12b22)(a21b11 + a22b21). On the other hand, |A||B|=(a11a22−a12a21)(b11b22 − b12b21).
A tedious process of expanding each expression, then cancelling four terms in the expression for |AB|, reveals that
the two expressions are equal.

7. If A = B =
(

1 0
0 1

)
, then |A + B| = 4, whereas |A| + |B| = 2.

(This illustrates how |A + B| �= |A| + |B| for almost any choice of the matrices A and B.)

8. Begin by writing the system as

{
Y − C = I0 + G0

−bY + C = a
. Then Cramer’s rule yields

Y =

∣∣∣∣ I0 + G0 −1
a 1

∣∣∣∣∣∣∣∣ 1 −1
−b 1

∣∣∣∣
= a + I0 + G0

1 − b
, C =

∣∣∣∣ 1 I0 + G0
−b a

∣∣∣∣∣∣∣∣ 1 −1
−b 1

∣∣∣∣
= a + b(I0 + G0)

1 − b

Instead of using Cramer’s rule, the expression for Y is most easily found by:

(i) solving the second equation to obtain C = a + bY; (ii) substituting this expression for C into the first equation;

(iii) solving the resulting equation for Y; (iv) finally, using C = a + bY again to find C.

9. (a) The equation X1 = M2 says that nation 1’s exports equal nation 2’s imports. Similarly, X2 = M1.

(b) Substituting for X1, X2, M1, M2, C1, and C2 gives the two equations:

(1 − c1 + m1)Y1 − m2Y2 = A1 and (1 − c2 + m2)Y2 − m1Y1 = A2

Using Cramer’s rule with D = (1 − c1 + m1)(1 − c2 + m2) − m1m2 yields

Y1 = [A2m2 + A1(1 − c2 + m2)]/D and Y2 = [A1m1 + A2(1 − c1 + m1)]/D

(c) Y2 increases when A1 increases.

13.2
1. (a) −2 (b) −2 (c) adf (d) e(ad − bc)

2. AB =
⎛
⎝−1 −1 −1

7 13 13
5 9 10

⎞
⎠, |A| = −2, |B| = 3, |AB| = |A| · |B| = −6

3. (a) x1 = 1, x2 = 2, and x3 = 3 (b) x1 = x2 = x3 = 0 (c) x = 1, y = 2, and z = 3
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4. By Sarrus’s rule the determinant is (1 + a)(1 + b)(1 + c) + 1 + 1 − (1 + b) − (1 + a) − (1 + c), which simplifies to
the given expression.

5. tr(A) = a + b − 1 = 0 and thus b = 1 − a. Also, |A| = −2ab = 12, and so −2a(1 − a) = 12, or a2 − a − 6 = 0.
The roots of this equation are a = 3 and a = −2. Thus the solutions are (a, b) = (3, −2) and (a, b) = (−2, 3).

6. By Sarrus’s rule, the determinant is p(x)=(1 − x)3 + 8 + 8 − 4(1 − x) − 4(1 − x) − 4(1 − x)=−x3+3x2 + 9x + 5.

The equation we want to solve is therefore the cubic equation −x3 + 3x2 + 9x + 5 = 0. We have no simple general
formula available for solving such equations, but since this is a polynomial equation with integer coefficients, it follows
from Eq. (4.7.7) that every integer root of the equation (if there are any) must divide the constant term 5. The only
candidates for integer roots are therefore ±5 and ±1. It is easily seen that p(5) = 0 and p(−1) = 0, and so both x − 5
and x + 1 must be factors in p(x). Thus p(x) = (x − 5)(x + 1)q(x), and polynomial division yields q(x) = x + 1. So
x = −1 is a repeated root, and the determinant is 0 if and only if x = −1 or x = 5.

7. (a) |At| = 2t2 − 2t + 1 = t2 + (t − 1)2 > 0 for all t. (Or show that the quadratic polynomial has no real zeros.)

(b) A3
t =

⎛
⎝ 1 2t − 2t2 t − t2

4t − 4 5t − 4 −t2 + 4t − 3
2 − 2t t2 − 4t + 3 t3 − 2t + 2

⎞
⎠. We find that A3

t = I3 for t = 1.

8. With k = 1/[1 − b(1 − t)], in equilibrium we must have Y = k(a − bd + A0), C = k[a − bd + A0b(1 − t)], and
T = k [t(a + A0) + (1 − b)d].

13.3
1. (a) 1 · 2 · 3 · 4 = 24 (b) d − a (Only two terms are nonzero.)

(c) 1 · 1 · 1 · 11 − 1 · 1 · 4 · 4 − 1 · (−3) · 1 · 3 − 2 · 1 · 1 · 2 = 0

2. With A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...

0 0 . . . ann

⎞
⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎝

b11 b12 . . . b1n
0 b22 . . . b2n
...

...
. . .

...

0 0 . . . bnn

⎞
⎟⎟⎟⎠, the product AB is easily seen to be upper triangular,

with the elements a11b11, a22b22, . . . , annbnn on the main diagonal. The determinant |AB| is, according to (3), the
product of the n numbers aiibii. On the other hand, |A| = a11a22 · · · ann, and |B| = b11b22 · · · bnn, so the equality
|AB| = |A||B| follows immediately.

3. +a12a23a35a41a54. (Four lines between pairs of boxed elements rise as one goes to the right.)

4. −a15a24a32a43a51. (There are nine lines that rise to the right.)

5. Carefully examining how formula (13.3.2) applies to this 4 × 4 determinant reveals that its only nonzero term is the
product of its diagonal elements. So the equation is (2 − x)4 = 0, whose only solution is x = 2.

13.4

1. (a) AB =
(

13 16
29 36

)
, BA =

(
15 22
23 34

)
, A′B′ =

(
15 23
22 34

)
, B′A′ =

(
13 29
16 36

)
.

(b) |A| = |A′| = −2 and |B| = |B′| = −2. So |AB| = 4 = |A| · |B|.
(c) |A′B′| = 4 and |A′| · |B′| = (−2) · (−2) = 4.

2. A′ =
⎛
⎝2 1 1

1 0 2
3 1 5

⎞
⎠ and |A| = |A′| = −2.
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3. (a) 0 (one column has only zeros). (b) 0 (rows 1 and 4 are proportional).

(c) (a1 − x)(−x)3 = x4 − a1x3. (Use the definition of a determinant and observe that at most one term is nonzero.)

4. |AB| = |A||B| = −12, 3|A| = 9, |−2B| = (−2)3(−4) = 32, |4A| = 43|A| = 43 · 3 = 192, and |A| + |B| = −1,

whereas |A + B| is not determined.

5. A2 =
⎛
⎝ a2 + 6 a + 1 a2 + 4a − 12

a2 + 2a + 2 3 8 − 2a2

a − 3 1 13

⎞
⎠ and |A| = a2 − 3a + 2.

6. (a) The first and the second columns are proportional, so by part (v) of Theorem 13.4.1, the determinant is 0.

(b) Add the second column to the third. This makes the first and third columns of the new determinant proportional.

(c) The first row is x − y times the second row, so the first two rows are proportional.

7. X′X =
⎛
⎝4 3 2

3 5 1
2 1 2

⎞
⎠ and |X′X| = 10.

8. By Sarrus’s rule, for example, |Aa| = a(a2 + 1) + 4 + 4 − 4(a2 + 1) − a − 4 = a2(a − 4). Putting a = 1 gives
|A1| = −3 and so |A6

1| = |A1|6 = (−3)6 = 729. (Now how much easier this is than first finding A6
1 and only then

evaluating its determinant.)

9. Because P′P = In, it follows from rule (13.4.1) that |P′||P| = |In| = 1. But |P′| = |P| by part (ii) of Theorem 13.4.1,
so |P|2 = 1. Hence, |P| = ±1.

10. (a) Because A2 = In, it follows from rule (13.4.1) that |A|2 = |A2| = |In| = 1, and so |A| = ±1.

(b) Direct verification by matrix multiplication.

(c) We have (In − A)(In + A) = In · In − AIn + InA − AA = In − A + A − A2 = In − A2, which equals 0 iff
A2 = In.

11. (a) The first equality is true, the second is false. (The second becomes true if the outside factor 2 is replaced by 4.)

(b) Generally false. (Both determinants on the right are 0, even if ad − bc �= 0.) (c) Both equalities are true.

(d) True. (The second determinant is the result of subtracting 2 times row 1 of the first determinant from its row 2.)

12. We must show that B(PQ) = (PQ)B. Repeatedly using the associative law for matrix multiplication, as well as the
equalities BP = PB and BQ = QB, we get

B(PQ) = (BP)Q = (PB)Q = P(BQ) = P(QB) = (PQ)B

13. Let A =
⎛
⎝0 c b

c 0 a
b a 0

⎞
⎠. Then compute A2 and recall rule (13.4.1).

14. First add each of the last n − 1 rows to the first row. Each element in the first row then becomes na + b. Factor this
out of the determinant. Next, add the first row multiplied by −a to all the other n − 1 rows. The result is an upper
triangular matrix whose diagonal elements are 1, b, b, . . . , b, with product equal to bn−1. The conclusion follows.

13.5
1. (a) 2. (Subtract row 1 from both row 2 and row 3 to get a determinant whose first column has elements 1, 0, 0. Then

expand by the first column.) (b) 30. (One can apply two elementary row operations so that all elements of the first
column below the first are zero. Then again for the reduced 3 × 3 determinant. See SM for details.)

(c) 0. (Columns 2 and 4 are proportional.)
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2. In each of these cases we keep expanding by the last (remaining) column. With appropriate signs, the answers are:

(a) a(−bc) = −abc; (b) (−a)b(−cd) = abcd; (c) 1 · (−5) · 3 · −(4 · 6) = 360.

13.6

1. (a) Using (13.6.4) one has
(

3 0
2 −1

)
·
(

1/3 0
2/3 −1

)
=
(

1 0
0 1

)
. (b) Use (13.6.4).

2. By direct calculation, one has AB =
⎛
⎝ 1 0 0

a + b 2a + 1/4 + 3b 4a + 3/2 + 2b
0 0 1

⎞
⎠. So one has AB = I if and only if

a + b = 4a + 3/2 + 2b = 0 and 2a + 1/4 + 3b = 1, which is true if and only if a = −3/4 and b = 3/4.

3. (a)
(

x
y

)
=
(

2 −3
3 −4

)−1(
3
5

)
=
(−4 3

−3 2

)(
3
5

)
=
(

3
1

)

(b)
(

x
y

)
=
(−4 3

−3 2

)(
8
11

)
=
(

1
−2

)
(c)
(

x
y

)
=
(−4 3

−3 2

)(
0
0

)
=
(

0
0

)

4. From A3 = I, it follows that A2A = I, so A−1 = A2 = 1
2

( −1
√

3
−√

3 −1

)
.

5. (a) |A| = 1, A2 =
⎛
⎝0 1 1

1 1 2
1 1 1

⎞
⎠, A3 =

⎛
⎝1 1 2

2 2 3
1 2 2

⎞
⎠, and so A3 − 2A2 + A − I3 = 0.

(b) The last equality in (a) is equivalent to A(A2 − 2A + I3) = A(A − I3)
2 = I3, so A−1 = (A − I3)

2.

(c) Part (b) suggests the choice P = (A − I3)
−1 so that A = [(A − I3)

2]−1 = P2. The matrix −P also works.

Hence P = ±(A − I3)
−1 = ±

⎛
⎝−1 1 0

0 0 1
1 0 0

⎞
⎠−1

= ±
⎛
⎝0 0 1

1 0 1
0 1 0

⎞
⎠.

6. (a) AA′ =
(

21 11
11 10

)
, |AA′| = 89, and (AA′)−1 = 1

89

(
10 −11

−11 21

)
.

(b) No, because by Example 12.7.4, the matrix AA′ must be symmetric. Then its inverse (AA′)−1 must also be
symmetric, because of the note that follows Theorem 13.6.1.

7. B2 + B = I, B3 − 2B + I = 0, and B−1 = B + I =
(

1/2 5
1/4 1/2

)
.

8. Let B = X(X′X)−1X′. Then A2 = (Im − B)(Im − B) = Im − B − B + B2. Here

B2 = [X(X′X)−1X′][X(X′X)−1X′] = X(X′X)−1(X′X)(X′X)−1X′ = X(X′X)−1X′ = B

Thus, A2 = Im − B − B + B = Im − B = A.

9. AB =
(−7 0

−2 10

)
, so CX = D − AB =

(−2 3
−6 7

)
. But C−1 =

(−2 1
3/2 −1/2

)
, so X =

(−2 1
0 1

)
.
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10. (a) If C2 + C = I, then C(C + I) = I, and so C−1 = C + I = I + C.

(b) Because C2 = I − C, it follows that C3 = C2C = (I − C)C = C − C2 = C − (I − C) = −I + 2C.

Moreover, C4 = C3C = (−I + 2C)C = −C + 2C2 = −C + 2(I − C) = 2I − 3C.

13.7

1. (a)
(−5/2 3/2

2 −1

)
(b)

1
9

⎛
⎝1 4 2

2 −1 4
4 −2 −1

⎞
⎠ (c) The matrix has a zero determinant, so no inverse.

2. The inverse is
1

|A|

⎛
⎝C11 C21 C31

C12 C22 C32
C13 C23 C33

⎞
⎠ = 1

72

⎛
⎝−3 5 9

18 −6 18
6 14 −18

⎞
⎠.

3. (I − A)−1 = 5
62

⎛
⎝18 16 10

2 19 8
4 7 16

⎞
⎠

4. When k = r, the solution to the system is x1 = b∗
1r, x2 = b∗

2r, . . . , xn = b∗
nr.

5. (a) A−1 =
(−2 1

3/2 −1/2

)
(b) B−1 =

⎛
⎝ 1 −3 2

−3 3 −1
2 −1 0

⎞
⎠ (c) |C| = 0, so there is no inverse.

13.8
1. (a) x = 1, y = −2, and z = 2 (b) x = −3, y = 6, z = 5, and u = −5

2. The determinant of the system is equal to −10, so the solution is unique. The determinants in (13.8.2) are

D1 =
∣∣∣∣∣∣
b1 1 0
b2 −1 2
b3 3 −1

∣∣∣∣∣∣ , D2 =
∣∣∣∣∣∣
3 b1 0
1 b2 2
2 b3 −1

∣∣∣∣∣∣ , D3 =
∣∣∣∣∣∣
3 1 b1
1 −1 b2
2 3 b3

∣∣∣∣∣∣
Expanding each of these determinants by the column (b1, b2, b3), we find that:

D1 = −5b1 + b2 + 2b3, D2 = 5b1 − 3b2 − 6b3, D3 = 5b1 − 7b2 − 4b3

Dividing these by −10 gives x1 = 1
2 b1 − 1

10 b2 − 1
5 b3, x2 = − 1

2 b1 + 3
10 b2 + 3

5 b3, and x3 = − 1
2 b1 + 7

10 b2 + 2
5 b3.

3. Show that the coefficient matrix has determinant equal to −(a3 + b3 + c3 − 3abc), then use Theorem 13.8.2.

13.9
1. x1 = 1

4 x2 + 100, x2 = 2x3 + 80, x3 = 1
2 x1. The solution is x1 = 160, x2 = 240, x3 = 80, as (∗∗) implies.

2. (a) Let x and y denote total production in industries A and I, respectively. These must satisfy x = 1
6 x + 1

4 y + 60 and
y = 1

4 x + 1
4 y + 60. So 5

6 x − 1
4 y = 60 and − 1

4 x + 3
4 y = 60. (b) The solution is x = 320/3 and y = 1040/9.

3. (a) No sector delivers to itself. (b) The total amount of good i needed to produce one unit of each good.

(c) This column vector gives the number of units of each good needed to produce one unit of good j.

(d) No meaningful economic interpretation. (The goods are usually measured in different units, so it is meaningless
to add them together. As the saying goes: “You can’t add apples and oranges!”)

4. 0.8x1 − 0.3x2 = 120 and −0.4x1 + 0.9x2 = 90, with solution x1 = 225 and x2 = 200.
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5. The Leontief system for this three-sector model is

⎧⎪⎪⎨
⎪⎪⎩

0.9x1 − 0.2x2 − 0.1x3 = 85

−0.3x1 + 0.8x2 − 0.2x3 = 95

−0.2x1 − 0.2x2 + 0.9x3 = 20

⎫⎪⎪⎬
⎪⎪⎭, which has the claimed solution.

6. The input matrix is A =
⎛
⎝0 β 0

0 0 γ

α 0 0

⎞
⎠. The sums of the elements in each column are less than 1 provided that α < 1,

β < 1, and γ < 1, respectively. Then, in particular, the product αβγ < 1.

7. The quantity vector x0 must satisfy (∗) (In − A)x0 = b, and the price vector p′
0 must satisfy (∗∗) p′

0(In − A) = v′.
Multiplying (∗∗) from the right by x0 and using (∗) yields v′x0 = [p′

0(In − A)]x0 = p′
0[(In − A)x0] = p′

0b.

13.10

1. (a) −1, −5;
(

7
3

)
,
(

1
1

)
(b) 5, −5;

(
1
1

)
,
(−2

3

)
(c) 2, 3, 4;

⎛
⎝1

0
0

⎞
⎠,

⎛
⎝0

1
0

⎞
⎠,

⎛
⎝0

0
1

⎞
⎠

2. First, Av1 = 3v1 yields a − c = 3, b − e = 0, and c − f = −3. Second, Av2 = v2 yields a + 2b + c = 1, b + 2d +
e = 2, and c + 2e + f = 1. Finally, Av3 = 4v3 yields a − b + c = 4, b − d + e = −4, and c − e + f = 4.

Subtracting the equation a − b + c = 4 from a + 2b + c = 1 yields b = −1 and a + c = 3. Subtracting a + c = 3
from a − c = 3 yields c = 0 and so a = 3. Using a similar approach for the other rows of A yields the solution

A =
⎛
⎝ 3 −1 0

−1 2 −1
0 −1 3

⎞
⎠

13.11

1. (a) The eigenvalues are 1 and 3, with corresponding eigenvectors
(

1
−1

)
and

(
1
1

)
. The matrix whose columns are the

normalized eigenvectors is P =
(

1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
. Then P−1AP = diag(1, 3).

(b) P =
⎛
⎝ 1/

√
2 1/

√
2 0

−1/
√

2 1/
√

2 0
0 0 1

⎞
⎠ (c) P =

⎛
⎝ 0

√
2/2 −√

2/2

−4/5 3
√

2/10 3
√

2/10

3/5 2
√

2/5 2
√

2/5

⎞
⎠

2. (a) The characteristic equation can be reduced to (1 − λ)[λ2 + λ − 3(1 + k)] = 0.

Because the polynomial λ2 + λ − 3(1 + k) is not a multiple of (1 − λ)2, at least one root must be �= 1.

(b) All roots are real iff λ2 + λ − 3(1 + k) = 0 has two real roots, which is true iff k ≥ −13/12.

If k = 3, the eigenvalues are −4, 1, and 3. (c) P′A3P =
⎛
⎝1 0 0

0 −4 0
0 0 3

⎞
⎠, as promised by Theorem 13.11.2.

3. (a) A2 = (PDP−1)(PDP−1) = PD(P−1P)DP−1 = PDIDP−1 = PD2P−1

(b) The formula is valid for m = 1. Suppose it is also valid for m = k. Then

Ak+1 = AAk = PDP−1(PDkP−1) = PD(P−1P)DkP−1 = PDIDkP−1 = PDDkP−1 = PDk+1P−1

So the formula holds for m = k + 1 as well. By induction, it holds for all positive integers m.

4. According to (13.11.1), the two matrices AB and A−1(AB)A = BA have the same eigenvalues.
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13.12
1. (a) Here a11 = −1, a12 = 1 (not 2!), and a22 = −6. Hence a11 < 0 and a11a22 − a2

12 = 6 − 1 = 5 > 0, so according
to (13.12.7), Q(x1, x2) is negative definite.

(b) Here a11 = 4, a12 = 1, and a22 = 25. Hence a11 > 0 and a11a22 − a2
12 = 100 − 1 = 99 > 0, so according to

(13.12.5), Q(x1, x2) is positive definite.

2. a11x2
1 + 2a12x1x2 + 2a13x1x3 + a22x2

2 + 2a23x2x3 + a33x2
3

3. (a)
(

1 1
1 1

)
(b)

(
a 1

2 b
1
2 b c

)
(c)

⎛
⎝ 3 −1 3/2

−1 1 0
3/2 0 3

⎞
⎠

4. A =

⎛
⎜⎜⎝

3 −1 2 4
−1 1 3/2 0

2 3/2 1 −1
4 0 −1 1

⎞
⎟⎟⎠

5. (a) Positive definite (b) Positive definite (c) Negative semidefinite (d) Negative definite.

6. Since A is symmetric, by part (a) of Theorem 13.11.4, all the eigenvalues are real. By part (b) of Theorem 13.12.1
they are all nonnegative iff A is positive semidefinite. Since |A| = 0 iff 0 is an eigenvalue, all the eigenvalues must
be positive. The conclusion follows from part (a) of Theorem 13.12.1.

7. The associated symmetric matrix A is
(

3 − 1
2 (5 + c)

− 1
2 (5 + c) 2c

)
whose determinant is |A| = 6c − 1

4 (5 + c)2. This

can be factored as |A| = − 1
4 (c − c1)(c − c2) where c1 = 7 − 2

√
6 ≈ 2.1 and c2 = 7 + 2

√
6 ≈ 11.9. Applying the

tests in (13.12.5)–(13.12.8) shows that Q is positive definite iff c1 < c < c2, positive semidefinite iff c1 ≤ c ≤ c2,
and indefinite iff c < c1 or c > c2.

8. For any n-vector x one has x′Ax = x′(B′B)x = (Bx)′(Bx) = ‖Bx‖2 ≥ 0, so A is positive semidefinite. It is positive
definite iff Bx �= 0 for all x �= 0, which is true iff |B| �= 0.

9. (a) Because Q is positive definite, one has Q(0, . . . , xi, . . . , 0) = aiix
2
i > 0 for all xi �= 0. It follows that aii > 0.

(b) Again, because Q is positive definite, for all i, j with i < j one has R(xi, xj) = Q(0, . . . , xi, . . . , xj, . . . , 0) > 0
unless xi = xj = 0. But R(xi, xj) is a quadratic form in the two variables xi and xj with associated symmetric matrix

B =
(

aii aij
aji ajj

)
. Since Q is positive definite, so is R. By part (a) of Theorem 13.12.2, it follows that |B| > 0.

10. By part (a) of Theorem 13.11.4, all eigenvalues are real. If A is negative definite, then by (c) of Theorem 13.12.1, all
the n eigenvalues λ1, . . . , λn are negative. But then the function defined by ψ(λ) = (−1)nϕ(λ) must satisfy

ψ(λ) = (λ − λ1)(λ − λ2) · · · (λ − λn) = (λ + r1)(λ + r2) · · · (λ + rn)

where each ri = −λi is positive. Expanding this product obviously produces a polynomial whose coefficients are all
positive. On the other hand, if every coefficient ai in ψ(λ) is positive, then ψ(λ) ≥ a0 > 0 for all λ ≥ 0. So only a
negative number can be an eigenvalue.

Review exercises for Chapter 13
1. (a) 5(−2) − (−2)3 = −4 (b) 1 − a2 (c) 6a2b + 2b3 (d) λ2 − 5λ

2. (a) −4 (b) 1. (Subtract row 1 from rows 2 and 3. Then subtract twice row 2 from row 3. The resulting determinant
has only one nonzero term in its third row.) (c) 1. (Use exactly the same row operations as in (b).)
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3. Here A−1 = 2I2 − 2
(

1 1
1 0

)
=
(

2 0
0 2

)
−
(

2 2
2 0

)
=
(

0 −2
−2 2

)
.

Using formula (13.6.3), it follows that A =
(

0 −2
−2 2

)−1

= −1
4

(
2 2
2 0

)
=
(−1/2 −1/2

−1/2 0

)
.

4. (a) Expanding by cofactors along any row or column containing a zero yields |At| = t + 1. So At has an inverse if
and only if t �= −1. (b) Multiplying the given equation from the right by A1 yields BA1 + X = I3.

Hence X = I3 − BA1 =
⎛
⎝ 0 0 −1

0 0 −1
−2 −1 0

⎞
⎠.

5. (a) Routine calculation shows that |A| = (p + 1)(q − 2). Also A + E =
⎛
⎝q + 1 0 q − 1

2 1 − p 3 − p
3 0 1

⎞
⎠, whose determinant

is |A + E| = (1 − p)[q + 1 − 3(q − 1)] = 2(p − 1)(q − 2). (b) A + E has an inverse for p �= 1 and q �= 2.

(c) Obviously, |E| = 0. Then |BE| = |B||E| = 0, so BE has no inverse.

6. The determinant of the coefficient matrix is

∣∣∣∣∣∣
−2 4 −t
−3 1 t

t − 2 −7 4

∣∣∣∣∣∣ = 5t2 − 45t + 40 = 5(t − 1)(t − 8).

So by Cramer’s rule, there is a unique solution if and only if t �= 1 and t �= 8.

7. (I − A)(I + A + A2 + A3) = I + A + A2 + A3 − A − A2 − A3 − A4 = I − A4 = I. Then use (13.6.4).

8. (a) (In + aU)(In + bU) = I2
n + bU + aU + abU2.

Because U2 = nU, as is easily verified, the last expression simplifies to In + (a + b + nab)U.

(b) A = I3 + 3U, so a and b in part (a) must satisfy a = 3 and a + b + 3ab = 0, so that (In + aU)(In + bU) = In.

It follows that b = −3/(1 + 3a) = −3/10, and so A−1 = 1
10

⎛
⎝ 7 −3 −3

−3 7 −3
−3 −3 7

⎞
⎠.

9. From the first equation, Y = B − AX. Inserting this into the second equation gives X + 2A−1(B − AX) = C.

Solving for X, one obtains X = 2A−1B − C and then Y = AC − B.

10. (a) For a �= 1 and a �= 2, there is a unique solution. If a = 1, there is no solution.

If a = 2, there are infinitely many solutions.

(b) When a = 1 and b1 − b2 + b3 = 0, or when a = 2 and b1 = b2, there are infinitely many solutions.

11. (a) |A| = −2. Also A2 − 2I2 =
(

11 −6
18 −10

)
= A, so A2 + cA = 2I2 if c = −1. It follows that A( 1

2 A − 1
2 I2) = I2,

so A−1 = 1
2 (A − I2) =

(
5 −3
9 −11/2

)
. (b) If B2 = A, then |B|2 = |A| = −2, which is impossible.

12. Note first that if A′A = In, then rule (13.6.5) implies that A−1 = A′, so AA′ = In.

But then (A′B−1A)(A′BA) = A′B−1(AA′)BA = A′B−1InBA = A′(B−1B)A = A′InA = A′A = In.

By rule (13.6.5) again, it follows that (A′BA)−1 = A′B−1A.

13. For once we use “unsystematic elimination”. Solve the first equation to get y = 3 − ax, the second to get
z = 2 − x, and the fourth to get u = 1 − y. Inserting all these in the third equation gives 3 − ax + a(2 − x) +
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b(1 − 3 + ax) = 6 or a(b − 2)x = −2a + 2b + 3. There is a unique solution provided that a(b − 2) �= 0. This unique
solution is:

x = 2b − 2a + 3
a(b − 2)

, y = 2a + b − 9
b − 2

, z = 2ab − 2a − 2b − 3
a(b − 2)

, u = 7 − 2a
b − 2

14. The determinant on the left is (a + x)d − c(b + y) = (ad − bc) + (dx − cy), which equals the sum of the determi-
nants on the right.

15. |B3| = |B|3. Because B is a 3 × 3-matrix, we have |−B| = (−1)3|B| = −|B|. Since B3 = −B, it follows that |B|3 =
−|B|, and so |B|(|B|2 + 1) = 0. The last equation implies |B| = 0, and thus B can have no inverse.

16. For simplicity look at the case r = 1. See SM.

17. After elementary row and column operations discussed in the SM, it can be shown that the determinant on the
left-hand side equals (a − b)2[4x2 − (a + b)2]. So for a �= b the solutions are x = ± 1

2 (a + b). But if a = b, the
determinant is 0 for all values of x.

18. By rule (12.7.3) and part (ii) of Theorem 13.4.1, for any λ we have |A − λI| = |(A − λI)′| = |A′ − λI|. It follows
that |A − λI| = 0 ⇔ |A′ − λI| = 0, so A and A′ do have the same eigenvalues.

19. The definition of eigenvalue implies that λ = 0 ⇔ A is singular ⇔ |A| = 0. So if λ �= 0, then A has an inverse. Then,
given this λ �= 0 and any x �= 0 satisfying Ax = λx, one has x = λA−1x, or A−1x = (1/λ)x. It follows that 1/λ is
an eigenvalue of A−1.

20. |A − I| =

∣∣∣∣∣∣∣∣∣

a11 − 1 a12 . . . a1n
a21 a22 − 1 . . . a2n
...

...
. . .

...

an1 an2 . . . ann − 1

∣∣∣∣∣∣∣∣∣
. Now we can add all the other n − 1 rows to the first row without chang-

ing the determinant. For each j, the jth entry in the first row of this new determinant will be
∑n

i=1 aij − 1. By
hypothesis, all the column sums in A are 1, so this first row must be 0. It follows that |A − I| = 0, so 1 is an eigenvalue
of A.

21. (a) −1 with

⎛
⎝ 1

−1
2

⎞
⎠; 0 with

⎛
⎝ 1

−1
1

⎞
⎠; 2 with

⎛
⎝2

1
1

⎞
⎠ (b) 0 with

⎛
⎝1

1
1

⎞
⎠; 1 with

⎛
⎝−1

0
1

⎞
⎠; 3 with

⎛
⎝ 1

−2
1

⎞
⎠.

Chapter 14

14.1
1. f (0, 1) = 1 · 0 + 2 · 1 = 2, f (2, −1) = 0, f (a, a) = 3a, and f (a + h, b) − f (a, b) = h

2. f (0, 1) = 0, f (−1, 2) = −4, f (104, 10−2) = 1, f (a, a) = a3, f (a + h, b) = (a + h)b2 = ab2 + hb2,

and f (a, b + k) − f (a, b) = 2abk + ak2.

3. f (1, 1) = 2, f (−2, 3) = 51, f (1/x, 1/y) = 3/x2 − 2/xy + 1/y3, p = 6x + 3h − 2y, q = −2x + 3y2 + 3yk + k2

4. (a) f (−1, 2) = 1, f (a, a) = 4a2, f (a + h, b) − f (a, b) = 2(a + b)h + h2

(b) f (tx, ty) = (tx)2 + 2(tx)(ty) + (ty)2 = t2(x2 + 2xy + y2) = t2f (x, y) for all t, including t = 2.

5. F(1, 1) = 10, F(4, 27) = 60, F(9, 1/27) = 10, F(3,
√

2 ) = 10
√

3 · 6√2, F(100, 1000) = 1000,

and F(2K, 2L) = 10 · 25/6K1/2L1/3 = 25/6F(K, L)

6. (a) The denominator must be different from 0, so the function is defined for those (x, y) where y �= x − 2.

(b) Only nonnegative numbers have a square root, so we must require 2 − (x2 + y2) ≥ 0, i.e. x2 + y2 ≤ 2.
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(c) Put a = x2 + y2. We must have (4 − a)(a − 1) ≥ 0, i.e. 1 ≤ a ≤ 4. (Use a sign diagram.)

The domains in (b) and (c) are the shaded sets shown in Figs A14.1.6b and A14.1.6c.

y

x

x2 + y2 ≤ (√2
)2

Figure A14.1.6b

y

x1 2

Figure A14.1.6c

7. (a) ex+y �= 3, that is x + y �= ln 3

(b) In order to take the ln of positive numbers, it suffices to have x �= a and y �= b so that (x − a)2 > 0 and (y − b)2 > 0.

(c) x > a and y > b.

14.2
1. (a) ∂z/∂x = 2, ∂z/∂y = 3 (b) ∂z/∂x = 2x, ∂z/∂y = 3y2 (c) ∂z/∂x = 3x2y4, ∂z/∂y = 4x3y3

(d) ∂z/∂x = ∂z/∂y = 2(x + y)

2. (a) ∂z/∂x = 2x, ∂z/∂y = 6y (b) ∂z/∂x = y, ∂z/∂y = x (c) ∂z/∂x = 20x3y2 − 2y5, ∂z/∂y = 10x4y − 10xy4

(d) ∂z/∂x = ∂z/∂y = ex+y (e) ∂z/∂x = yexy, ∂z/∂y = xexy (f) ∂z/∂x = ex/y, ∂z/∂y = −ex/y2

(g) ∂z/∂x = ∂z/∂y = 1/(x + y) (h) ∂z/∂x = 1/x, ∂z/∂y = 1/y

3. (a) f ′
1(x, y) = 7x6, f ′

2(x, y) = −7y6, f ′
12(x, y) = 0 (b) f ′

1(x, y) = 5x4 ln y, f ′
2(x, y) = x5/y, f ′′

12(x, y) = 5x4/y

(c) f (x, y) = (x2 − 2y2)5 = u5, where u = x2 − 2y2. Then f ′
1(x, y) = 5u4u′

1 = 5(x2 − 2y2)42x = 10x(x2 − 2y2)4.

In the same way, f ′
2(x, y) = 5u4u′

2 = 5(x2 − 2y2)4(−4y) = −20y(x2 − 2y2)4.

Finally, f ′′
12(x, y) = (∂/∂y)(10x(x2 − 2y2)4) = 10x4(x2 − 2y2)3(−4y) = −160xy(x2 − 2y2)3.

4. (a) z′
x = 3, z′

y = 4, and z′′
xx = z′′

xy = z′′
yx = z′′

yy = 0

(b) z′
x = 3x2y2, z′

y = 2x3y, z′′
xx = 6xy2, z′′

yy = 2x3, and z′′
xy = 6x2y

(c) z′
x = 5x4 − 6xy, z′

y = −3x2 + 6y5, z′′
xx = 20x3 − 6y, z′′

yy = 30y4, and z′′
xy = −6x

(d) z′
x = 1/y, z′

y = −x/y2, z′′
xx = 0, z′′

yy = 2x/y3, and z′′
xy = −1/y2

(e) z′
x = 2y(x + y)−2, z′

y = −2x(x + y)−2, z′′
xx = −4y(x + y)−3, z′′

yy = 4x(x + y)−3, and z′′
xy = 2(x − y)(x + y)−3

(f) z′
x = x(x2 + y2)−1/2, z′

y = y(x2 + y2)−1/2,

then z′′
xx = y2(x2 + y2)−3/2, z′′

yy = x2(x2 + y2)−3/2, and z′′
xy = −xy(x2 + y2)−3/2

5. (a) z′
x = 2x, z′

y = 2e2y, z′′
xx = 2, z′′

yy = 4e2y, z′′
xy = 0 (b) z′

x = y/x, z′
y = ln x, z′′

xx = −y/x2, z′′
yy = 0, z′′

xy = 1/x

(c) z′
x = y2 − yexy, z′

y = 2xy − xexy, z′′
xx = −y2exy, z′′

yy = 2x − x2exy, z′′
xy = 2y − exy − xyexy

(d) z′
x = yxy−1, z′

y = xy ln x, z′′
xx = y(y − 1)xy−2, z′′

yy = xy(ln x)2, z′′
xy = xy−1 + yxy−1 ln x
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6. (a) F′
S = 2.26 · 0.44S−0.56E0.48 = 0.9944S−0.56E0.48, F′

E = 2.26 · 0.48S0.44E−0.52 = 1.0848S0.44E−0.52

(b) SF′
S + EF′

E = S · 2.26 · 0.44S−0.56E0.48 + E · 2.26 · 0.48S0.44E−0.52 = 0.44 F + 0.48 F = 0.92 F, so k = 0.92.

7. xz′
x + yz′

y = x[2a(ax + by)] + y[2b(ax + by)] = (ax + by)2(ax + by) = 2(ax + by)2 = 2z

8. ∂z/∂x = x/(x2 + y2), ∂z/∂y = y/(x2 + y2), ∂2z/∂x2 = (y2 − x2)/(x2 + y2)2, and ∂2z/∂y2 = (x2 − y2)/(x2 + y2)2.

Thus, ∂2z/∂x2 + ∂2z/∂y2 = 0.

9. (a) s′
x(x, y) = 2/x, so s′

x(20, 30) = 2/20 = 1/10. (b) s′
y(x, y) = 4/y, so s′

y(20, 30) = 4/30 = 2/15.

14.3
1. If x2 + y2 = 6, then f (x, y) = √

6 − 4, so x2 + y2 = 6 is a level curve of f at height c = √
6 − 4.

2. f (x, y) = ex2−y2 + (x2 − y2)2 = ec + c2 when x2 − y2 = c, so the last equation represents a level curve of f having
height ec + c2.

3. At the point of intersection f would have two different values, which is impossible when f is a function.

4. Generally, the graph of g(x, y) = f (x) in 3-space consists of a surface traced out by moving the graph of z = f (x)
parallel to the y-axis in both directions. The graph of g(x, y) = x is the plane through the y-axis at a 45◦ angle with the
xy-plane. The graph of g(x, y) = −x3 is shown in Fig. A14.3.4. (Only a portion of the unbounded graph is indicated,
of course.)

z

y

x

Figure A14.3.4

x
y

z

z = 3 − x − y

(0, 0, 3)

(3, 0, 0)

(0, 3, 0)

Figure A14.3.5a1

y

x
3 − x − y = c

c = 5
c = 3

c = 1

Figure A14.3.5a2

5. See Figs A14.3.5a and A14.3.5b, which are both in two parts. (Note that only a portion of the graph is shown in part
(a).)

x y

z

√
3

z = √3 − x2 − y2

Figure A14.3.5b1

y

x
c = √

2
c = 1
c = 0

√
3 − x2 − y2 = c

Figure A14.3.5b2
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6. (a) The point (2, 3) lies on the level curve z = 8, so f (2, 3) = 8. The points (x, 3) are those on the line y = 3 parallel
to the x-axis. This line intersects the level curve z = 8 when x = 2 and x = 5.

(b) As y varies with x = 2 fixed, the minimum of f (2, y) is 8 when y = 3.

(c) At A, any move in the direction of increasing x with y held fixed reaches higher level curves, so f ′
1(x, y) > 0.

Similarly, any move in the direction of increasing y with x held fixed reaches higher level curves, so f ′
2(x, y) > 0. At

B: f ′
1(x, y) < 0, f ′

2(x, y) < 0. At C: f ′
1(x, y) = 0, f ′

2(x, y) = 0. Finally, to increase z by 2 units when moving away from
A, the required increases in x and y are approximately 1 and 0.6 respectively. Hence, f ′

1 ≈ 2/1 = 2 and f ′
2 ≈ 2/0.6 =

10/3.

7. (a) f ′
x > 0 and f ′

y < 0 at P, whereas f ′
x < 0 and f ′

y > 0 at Q.

(b) (i) No solutions among points shown in the figure. (ii) x ≈ 2 and x ≈ 6

(c) The highest level curve that meets the line is z = 3, so 3 is the largest value.

8. F(1, 0) − F(0, 0), F(2, 0) − F(1, 0), and F(1, 1) − F(0, 1) are all ≥ 2; F(0, 1) − F(0, 0) and F(1, 1) − F(1, 0) are both
≤ 1. See SM for more details.

14.4
1. See Figs A14.4.1a–A14.4.1c.

y

z

x
(a, 0, 0)

x = a

Figure A14.4.1a

x

y

z

(0, b, 0)

y = b

Figure A14.4.1b

x y

z

x y

z = c
(0, 0, c)

Figure A14.4.1c

2. (a) d = √(4 − (−1))2 + (−2 − 2)2 + (0 − 3)2 = √
25 + 16 + 9 = √

50 = 5
√

2

(b) d = √(a + 1 − a)2 + (b + 1 − b)2 + (c + 1 − c)2 = √
3

3. (x − 2)2 + (y − 1)2 + (z − 1)2 = 25

4. The sphere with centre at (−3, 3, 4) and radius 5.

5. (x − 4)2 + (y − 4)2 + (z − 1
2 )2 is the square of the distance from the point (4, 4, 1

2 ) to (x, y, z) on the paraboloid.

14.5
1. (a) f (−1, 2, 3) = 1 and f (a + 1, b + 1, c + 1) − f (a, b, c) = 2a + 2b + 2c + 3.

(b) f (tx, ty, tz) = (tx)(ty) + (tx)(tz) + (ty)(tz) = t2(xy + xz + yz) = t2f (x, y, z)

2. (a) Because 1.053 is the sum of exponents, y would become 21.053 ≈ 2.07 times as large.

(b) ln y = ln 2.9 + 0.015 ln x1 + 0.25 ln x2 + 0.35 ln x3 + 0.408 ln x4 + 0.03 ln x5
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3. (a) In successive weeks it buys 120/50 = 2.4, then 120/60 = 2, 120/45 ≈ 2.667, 120/40 = 3, 120/75 = 1.6, and
finally 120/80 = 1.5 million shares, so about 13.167 million in total.

(b) The average price per share is about $720/13.167 ≈ 54.68. This is the harmonic mean price, which is almost $4
a share lower than the arithmetic mean $350/6 ≈ 58.67.

4. (a) In each week w bank A will have bought 100/pw million euros, for a total of e =∑n
w=1 100/pw million euros.

(b) Bank A will have paid 100n million dollars, so the price p per euro that bank A will have paid, on average,
is p = 100n/e. It follows that 1/p = e/100n = (1/n)

∑n
w=1 1/pw dollars per euro, implying that p is the harmonic

mean of p1, . . . , pn. Since this is lower than the arithmetic mean (except in the case when pw is the same every week),
this is a supposed advantage of dollar cost averaging.

5. (a) Each machine would produce 60 units per day, so 480/60 = 8 minutes per unit.

(b) Total output is
∑n

i=1(T/ti) = T
∑n

i=1(1/ti). If all n machines were equally efficient, the time needed for each unit
would be nT/T

∑n
i=1(1/ti) = n/

∑n
i=1(1/ti), the harmonic mean of t1, . . . , tn.

14.6
1. F′

1(x, y, z) = 2xexz + x2zexz + y4exy, so F′
1(1, 1, 1) = 4e; F′

2(x, y, z) = 3y2exy + xy3exy, so F′
2(1, 1, 1) = 4e;

F′
3(x, y, z) = x3exz, so F′

3(1, 1, 1) = e.

2. (a) f ′
1 = 2x, f ′

2 = 3y2, and f ′
3 = 4z3 (b) f ′

1 = 10x, f ′
2 = −9y2, and f ′

3 = 12z3

(c) f ′
1 = yz, f ′

2 = xz, and f ′
3 = xy (d) f ′

1 = 4x3/yz, f ′
2 = −x4/y2z, and f ′

3 = −x4/yz2

(e) f ′
1 = 12x(x2 + y3 + z4)5, f ′

2 = 18y2(x2 + y3 + z4)5, and f ′
3 = 24z3(x2 + y3 + z4)5

(f) f ′
1 = yzexyz, f ′

2 = xzexyz, and f ′
3 = xyexyz

3. ∂T/∂x = ky/dn and ∂T/∂y = kx/dn are both positive, so that the number of travellers increases if the size of either
city increases, which is reasonable. ∂T/∂d = −nkxy/dn+1 is negative, so that the number of travellers decreases if
the distance between the cities increases, which is also reasonable.

4. (a) g(2, 1, 1) = −2, g(3, −4, 2) = 352, and g(1, 1, a + h) − g(1, 1, a) = 2ah + h2 − h.

(b) g′
1 = 4x − 4y − 4, g′

2 = −4x + 20y − 28, g′
3 = 2z − 1. The second-order partials are: g′′

11 = 4, g′′
12 = −4,

g′′
13 = 0, g′′

21 = −4, g′′
22 = 20, g′′

23 = 0, g′′
31 = 0, g′′

32 = 0, and g′′
33 = 2.

5. ∂π/∂p = 1
2 p(1/r + 1/w), ∂π/∂r = − 1

4 p2/r2, ∂π/∂w = − 1
4 p2/w2

6. First-order partials are: w′
1 = 3yz + 2xy − z3, w′

2 = 3xz + x2, w′
3 = 3xy − 3xz2. Second-order partials are: w′′

11 =
2y, w′′

12 = w′′
21 = 3z + 2x, w′′

13 = w′′
31 = 3y − 3z2, w′′

22 = 0, w′′
23 = w′′

32 = 3x, w′′
33 = −6xz.

7. f ′
1 = p′(x), f ′

2 = q′(y), f ′
3 = r′(z)

8. (a)

⎛
⎝2a 0 0

0 2b 0
0 0 2c

⎞
⎠ (b) With g denoting Axaybzc, the Hessian is

⎛
⎝a(a − 1)g/x2 abg/xy acg/xz

abg/xy b(b − 1)g/y2 bcg/yz
acg/xz bcg/yz c(c − 1)g/z2

⎞
⎠.

9. Put w = uh, where u = (x − y + z)/(x + y − z).

Then ∂w/∂x = huh−1∂u/∂x, ∂w/∂y = huh−1∂u/∂y, and ∂w/∂z = huh−1∂u/∂z.

With v = x + y − z, we get ∂u/∂x = (2y − 2z)/v2, ∂u/∂y = −2x/v2, and ∂u/∂z = 2x/v2.

Hence x ∂w/∂x + y ∂w/∂y + z ∂w/∂z = huh−1v−2[x(2y − 2z) + y(−2x) + z2x] = 0.

(In the terminology of Section 15.7, the function w of 3 variables is homogeneous of degree 0. Euler’s Theorem
15.7.1 yields the result immediately.)
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10. f ′
x = yzxyz−1, f ′

y = zyz−1(ln x)xyz
, f ′

z = yz(ln x)(ln y)xyz

11. For all y �= 0, one has f ′
1(0, y) = −y and f ′′

12(0, y) = f ′′
21(0, y) = −1.

For all x �= 0, one has f ′
2(x, 0) = x and f ′′

21(x, 0) = f ′′
12(x, 0) = 1. See SM for more details.

14.7
1. See Figs A14.7.1a–A14.7.1f

−3 −2 −1 1 2 3
x

−3

−2

−1

1

2

3

y

Figure A14.7.1a x2 + y2 < 2

x

y

Figure A14.7.1b x ≥ 0, y ≥ 0

−4 −3 −2 −1 1 2 3
x

−4

−3

−2

−1

1

2

3

y

Figure A14.7.1c x2 + y2 > 8

−1 1 2 3
x

−1

1

2

3

y

Figure A14.7.1d x ≥ 0, y ≥ 0, xy ≥ 1

−3 −2 −1

1 2
x

−1

−1

−1

1

2

y

Figure A14.7.1e xy ≥ 1

1 2 3 4
x

1

2

3

4

y

Figure A14.7.1f
√

x + √
y ≤ 2

2. (a) Suppose that (s1, t1) and (s2, t2) both belong to S × T , with s1, s2 ∈ S and t1, t2 ∈ T . Given any λ ∈ [0, 1], define
s0 = λs1 + (1 − λ)s2 and t0 = λt1 + (1 − λ)t2. Then (s0, t0) = λ(s1, t1) + (1 − λ)(s2, t2). Furthermore, because S and
T are both convex, one has s0 ∈ S and t0 ∈ T . It follows that (s0, t0) belongs to S × T , so S × T is a convex set.

(b) It is. The algebraic argument in part (a) works for general convex sets S ⊆ Rm and T ⊆ Rn and points (s1, t1) and
(s2, t2) in S × T .

14.8
1. The function with the graph on the left is strictly convex. The one in the middle is neither convex nor concave (it seems

to be convex on the left, but concave on the right). The one on the right is concave, but not strictly concave.

2. f ′′
11 = −12 < 0, f ′′

12 = 2a + 4, f ′′
22 = −2 < 0. Because f ′′

11 < 0, the function is never convex. It is concave iff f ′′
11f ′′

22 −
(f ′′

12)
2 = 24 − (2a + 4)2 ≥ 0, which is true iff (a + 2)2 ≤ 6, that is, iff −2 − √

6 ≤ a ≤ −2 + √
6. It is neither concave

nor convex if a < −2 − √
6 or a > −2 + √

6.

3. For parts (a) and (b), we use the results in Theorem 14.8.1.

(a) z is strictly concave, as the sum of four concave functions x, y, −ex, and −ex+y, of which two are strictly concave.

(b) z is strictly convex, as the sum of three convex functions ex+y, ex−y, and − 1
2 y, of which two are strictly convex.

(c) Using the hint, we see that the quadratic form w is positive semi-definite. So w is convex, but not strictly convex.
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4. (a) Follows from (14.8.7). (b) Following the hint, note that because f (0, 0) = 0, the definition of g implies that

g(λ; x, y) = f (λx, λy)/λ = f (λx, λy) − f (0, 0)

λ − 0
= s(0, λ) (∗)

where s(0, λ) is the slope of f (λx, λy), viewed as a function of λ defined for all λ ≥ 0. Now, if f is concave, then for
all μ ∈ [0, 1] and all λ, λ′ > 0 one has

f
(
μ(λx, λy) + (1 − μ)(λ′x, λ′y)

) ≥ μf (λx, λy) + (1 − μ)f (λ′x, λ′y) (∗∗)

which implies that f (λx, λy) is concave as a function of λ. Then Theorem 8.2.1 implies that g(λ; x, y) = s(0, λ) is
decreasing as a function of λ.

(c) Suppose that f were strictly concave. By an obvious modification of (∗∗), the function f (λx, λy) of λ would be
strictly concave. Then Theorem 8.2.1 would imply that g(λ; x, y) = s(0, λ) is strictly decreasing as a function of λ.
This contradicts the hypothesis that g(λ; x, y) is independent of λ.

14.9
1. ∂M/∂Y = 0.14 and ∂M/∂r = −0.84 · 76.03(r − 2)−1.84 = −63.8652(r − 2)−1.84.

So ∂M/∂Y is positive and ∂M/∂r is negative. Both signs accord with standard economic intuition.

2. (a) KY ′
K + LY ′

L = aY (b) KY ′
K + LY ′

L = (a + b)Y (c) KY ′
K + LY ′

L = Y

3. D′
p(p, q) = −bq−α and D′

q(p, q) = bpαq−α−1. So D′
p(p, q) < 0, showing that demand decreases as price increases.

Also D′
q(p, q) > 0, showing that demand increases as the price of a competing product increases.

4. F′
K = aF/K, F′

L = bF/L, and F′
M = cF/M, so KF′

K + LF′
L + MF′

M = (a + b + c)F.

5. ∂D/∂p and ∂E/∂q are normally negative, because the demand for a commodity goes down when its price increases.

If the commodities are substitutes, this means that demand increases when the price of the other good increases.

So the usual signs are ∂D/∂q > 0 and ∂E/∂p > 0.

6. ∂U/∂xi = e−xi , for i = 1, . . . , n

7. KY ′
K + LY ′

L = μY

14.10
1. (a) Elx z = 1 and Ely z = 1 (b) Elx z = 2 and Ely z = 5 (c) Elx z = n + x and Ely z = n + y

(d) Elx z = x/(x + y) and Ely z = y/(x + y)

2. Let z = ug with u = axd
1 + bxd

2 + cxd
3. Then El1 z = Elu ug El1 u = g(x1/u)adxd−1

1 = adgxd
1/u .

Similarly, El2 z = bdgxd
2/u and El3 z = cdgxd

3/u, so El1 z + El2 z + El3 z = dg(axd
1 + bxd

2 + cxd
3)/u = dg.

(This result follows easily from the fact that z is homogeneous of degree dg and from the elasticity form (15.7.3) of
the Euler equation.)

3. Eli z = p + aixi for i = 1, . . . , n.

4. We differentiate ln(pD/m) = ln p + ln D − ln m w.r.t. ln m to obtain
d

d(ln m)
ln(pD/m) = Elm D − 1. So evidently

pD/m increases with m iff Elm D > 1. See SM for more details.
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Review exercises for Chapter 14
1. f (0, 1) = −5, f (2, −1) = 11, f (a, a) = −2a, and f (a + h, b) − f (a, b) = 3h

2. f (−1, 2) = −10, f (2a, 2a) = −4a2, f (a, b + k) − f (a, b) = −6bk − 3k2, f (tx, ty) − t2f (x, y) = 0

3. f (3, 4, 0) = 5, f (−2, 1, 3) = √
14, and f (tx, ty, tz) = √t2x2 + t2y2 + t2z2 = tf (x, y, z)

4. (a) F(0, 0) = 0, F(1, 1) = 15, and F(32, 243) = 15 · 2 · 9 = 270.

(b) F(K + 1, L) − F(K, L) = 15(K + 1)1/5L2/5 − 15K1/5L2/5 = 15L2/5[(K + 1)1/5 − K1/5] is the extra output from
one more unit of capital, approximately equal to the marginal productivity of capital.

(c) F(32 + 1, 243) − F(32, 243) ≈ 1.667. Moreover, F′
K(K, L) = 3K−4/5L2/5, so F′

K(32, 243) = 3 · 32−4/52432/5 =
3 · 2−4 · 32 = 27/16 ≈ 1.6875. As expected, F(32 + 1, 243) − F(32, 243) is close to F′

K(32, 243).

(d) F is homogeneous of degree 3/5.

5. (a) ∂Y/∂K ≈ 0.083K0.356S0.562 and ∂Y/∂S ≈ 0.035K1.356S−0.438.

(b) The catch becomes 21.356+0.562 = 21.918 ≈ 3.779 times as large.

6. (a) For all (x, y) (b) For xy ≤ 1 (c) For x2 + y2 < 2

7. (a) x + y > 1 (b) x2 ≥ y2 and x2 + y2 ≥ 1. So x2 + y2 ≥ 1 and |x| ≥ |y|.
(c) y ≥ x2, x ≥ 0, and

√
x ≥ y. So 0 ≤ x ≤ 1 and

√
x ≥ y ≥ x2.

8. (a) ∂z/∂x = 10xy4(x2y4 + 2)4 (b)
√

K(∂F/∂K) = 2
√

K(
√

K + √
L )(1/2

√
K ) = √

K + √
L

(c) KF′
K + LF′

L = K(1/a)aKa−1(Ka + La)1/a−1 + L(1/a)aLa−1(Ka + La)1/a−1 = (Ka + La)(Ka + La)1/a−1 = F

(d) ∂g/∂t = 3/w + 2wt, so ∂2g/∂w∂t = −3/w2 + 2t

(e) g′
3 = t3(t

2
1 + t2

2 + t2
3)

−1/2 (f) f ′
1 = 4xyz + 2xz2, f ′′

13 = 4xy + 4xz

9. (a) f (0, 0) = 36, f (−2, −3) = 0, f (a + 2, b − 3) = a2b2 (b) f ′
x = 2(x − 2)(y + 3)2, f ′

y = 2(x − 2)2(y + 3)

10. Because g(−1, 5) = g(1, 1) = 30, the two points are on the same level curve.

11. If x − y = c �= 0, then F(x, y) = ln(x − y)2 + e2(x−y) = ln c2 + e2c, a constant.

12. (a) f ′
1(x, y) = 4x3 − 8xy, f ′

2(x, y) = 4y − 4x2 + 4 (b) These critical points are (0, −1), (
√

2, 1), and (−√
2, 1).

13. (a) Along the x-axis, the graph in the xz-plane has the shape of a bowl, like that of a strictly convex function. But
along the y-axis, the graph in the xz-plane has the shape of a dome, like that of a strictly concave function. The
function is therefore neither concave nor convex.

(b) The Hessian matrix is f′′ =
(

2 0
0 −2

)
, with determinant |f′′| = −4 < 0. This inequality implies that all of the

four conditions in Eqs (14.8.7) to (14.8.10) are violated. So f is neither concave nor convex.

14. (a) (i) f ′′
11 = −2 ≤ 0, f ′′

22 = 0 ≤ 0, and f ′′
11f ′′

22 − (f ′′
12)

2 = 0 ≥ 0. So by (14.8.3) (or (14.8.7)) f is concave.

(ii) f (x) = (x − y) + (−x2) is a sum of concave functions, hence concave.

(b) Note that −e−f (x,y) = F(f (x, y)) where F(u) = −e−u. But F′(u) = e−u > 0 and F′′(u) = −e−u < 0, where F is
(strictly) increasing and concave. By part (iii) of Theorem 14.8.1, it follows that z = −e−f (x,y) is concave.

15. (a) f ′′
11 = 2a, f ′′

12 = 2b, f ′′
22 = 2c, and f ′′

11f ′′
22 − (f ′′

12)
2 = 2a2c − (2b)2 = 4(ac − b2). The result follows from (14.8.5)

and (14.8.6). (b) Using (14.8.3), f is concave iff a ≤ 0, c ≤ 0, and ac − b2 ≥ 0. Using (14.8.4), f is convex iff
a ≥ 0, c ≥ 0, and ac − b2 ≥ 0.

16. (a) Elx z = 3, Ely z = −4 (b) Elx z = 2x2/(x2 + y2) ln(x2 + y2), Ely z = 2y2/(x2 + y2) ln(x2 + y2)

(c) Elx z = Elx(e
xey) = Elx ex = x, Ely z = y (d) Elx z = x2/(x2 + y2), Ely z = y2/(x2 + y2)
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17. (a) ∂F/∂y = e2x2(1 − y)(−1) = −2e2x(1 − y). (b) F′
L = (ln K)(ln M)/L, F′

LK = (ln M)/KL

(c) Putting w = xxyxzx gives ln w = x ln x + x ln y + x ln z. Differentiating each side w.r.t. x

gives w′
x/w = 1 · ln x + x(1/x) + ln y + ln z, implying that w′

x = w(ln x + 1 + ln y + ln z) = xxyxzx[ln(xyz) + 1].

18. (a) Begin by differentiating w.r.t. x to obtain ∂pz/∂xp = ex ln(1 + y) for any natural number p. Differentiating this
repeatedly w.r.t. y yields first ∂p+1/∂y∂xp = ex(1 + y)−1, then ∂p+2/∂y2∂xp = ex(−1)(1 + y)−2, and so on.

By induction on q, one has ∂p+q/∂yq∂xp = ex(−1)q−1(q − 1)!(1 + y)−q, which is (−1)q−1(q − 1)! at (x, y) = (0, 0).

(b) Write z = z1 + z2 − z3 where z1 = xex · yey, z2 = ex · yey, and z3 = ex · ey. For n = 1, 2, . . . ,, one can easily prove
by induction that (d/du)nueu = eu(u + n). Then ∂p+qz1/∂xp∂yq = (d/dx)pexx · (d/dy)qeyy = ex(x + p) · ey(y + q),
whereas ∂p+qz2/∂xp∂yq = (d/dx)pex · (d/dy)qeyy = ex · ey(y + q), and ∂p+qz3/∂xp∂yq = ex · ey. Gathering terms, it
follows that ∂p+qz/∂xp∂yq = ex+y[(x + p + 1)(y + q) − 1]. At (x, y) = (0, 0) this reduces to (p + 1)q − 1.

19. u′
x = au/x and u′

y = bu/y, so u′′
xy = au′

y/x = abu/xy. Hence, u′′
xy/u′

xu′
y = 1/u (provided u �= 0). Then

1
u′

x

∂

∂x

(
u′′

xy

u′
xu′

y

)
= 1

u′
x

· −u′
x

u2
= − 1

u2
= 1

u′
y

∂

∂y

(
u′′

xy

u′
xu′

y

)

Chapter 15

15.1
1. (a) dz/dt = F′

1(x, y) dx/dt + F′
2(x, y) dy/dt = 1 · 2t + 2y · 3t2 = 2t + 6t5, the derivative of z = t2 + (t3)2 = t2 + t6.

(b) dz/dt = pxp−1yqa + qxpyq−1b = xp−1yq−1(apy + bqx) = apbq(p + q)tp+q−1, the derivative of z = (at)p · (bt)q.

2. (a) dz/dt = (ln y + y/x) · 1 + (x/y + ln x)(1/t) = ln(ln t) + ln t/(t + 1) + (t + 1)/t ln t + ln(t + 1)/t

(b) dz/dt = Aaeat/x + Bbebt/y = a + b

3. dz/dt = F′
1(t, y) + F′

2(t, y)g′(t). If F(t, y) = t2 + yey and g(t) = t2, then F′
1(t, y) = 2t, F′

2(t, y) = ey + yey,

and g′(t) = 2t. Hence dz/dt = 2t(1 + et2 + t2et2).

4. dY/dL = F′
K(K, L)g′(L) + F′

L(K, L)

5. dY/dt = (10L − 1
2 K−1/2

)
0.2 + (10K − 1

2 L−1/2
)

0.5e0.1t = 35 − 7
√

5/100 when t = 0 and so K = L = 5.

6. You should get the usual rules in Sections 6.7 and 6.8 for differentiating:

(a) a sum; (b) a difference; (c) a product; (d) a quotient; (e) a composite function of one variable.

7. x∗ = 4√3b/a

8. Differentiating Eq. (15.1.1) w.r.t. t yields d2z/dt2 = (d/dt)[F′
1(x, y)dx/dt] + (d/dt)[F′

2(x, y)dy/dt]. Next, apply the
chain rule (15.1.1) again to evaluate the two derivatives on the right-hand side. The conclusion follows from summing
while assuming that F′′

12 = F′′
21. See SM for more details.

9. (a) Using the Newton quotients, we have

f ′
1(0, 0) = lim

h→0

1
h

[f (h, 0) − f (0, 0)] = lim
h→0

1
h

0 = 0 and f ′
2(0, 0) = lim

k→0

1
k

[f (0, k) − f (0, 0)] = lim
k→0

1
k

· k3

k2
= 1

(b) For t �= 0 we have z(t) = b3t3

a2t2 + b2t2
. So z(t) = b3t

a2 + b2
for all t, implying that z′(0) = b3

a2 + b2
.
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(c) From part (a), we have f ′
1(x(0), y(0))

dx
dt

+ f ′
2(x(0), y(0))

dy
dt

= b. From part (b), because a �= 0 and b �= 0, this

differs from z′(0).

(d) There is no contradiction because f is not C1 at (0, 0). Indeed, one has f ′
2(x, y) = 3y2(x2 + y2) − y3(2y)

(x2 + y2)2
for all

(x, y) �= (0, 0). So for all x �= 0 one has f ′
2(x, 0) = 0, whereas f ′

2(0, 0) = 1.

15.2
1. (a) ∂z/∂t = F′

1(x, y) ∂x/∂t + F′
2(x, y) ∂y/∂t = 1 · 1 + 2ys = 1 + 2ts2,

and ∂z/∂s = (∂z/∂x)(∂x/∂s) + (∂z/∂y)(∂y/∂s) = 1 · (−1) + 2yt = −1 + 2t2s

(b) ∂z/∂t = 4x2t + 9y2 = 8tx + 9y2 = 8t3 − 8ts + 9t2 + 36ts3 + 36s6

and ∂z/∂s = 4x(−1) + 9y26s2 = −4x + 54s2y2 = −4t2 + 4s + 54t2s2 + 216ts5 + 216s8

2. (a) ∂z/∂t = y2 + 2xy2ts = 5t4s2 + 4t3s4 and ∂z/∂s = y22s + 2xyt2 = 2t5s + 4t4s3

(b)
∂z
∂t

= 2(1 − s)ets+t+s

(et+s + ets)2
and

∂z
∂s

= 2(1 − t)ets+t+s

(et+s + ets)2

3. ∂z/∂r = 2r ∂F/∂u + (1/r) ∂F/∂w, and ∂z/∂s = −4s ∂F/∂v + (1/s) ∂F/∂w

4. ∂z/∂t1 = F′(x)f ′
1(t1, t2), and ∂z/∂t2 = F′(x)f ′

2(t1, t2)

5. ∂x/∂s = F′
1 + F′

2f ′(s) + F′
3g′

1(s, t), and ∂x/∂t = F′
3g′

2(s, t)

6. ∂z/∂x = F′
1f ′

1(x, y) + F′
22xh(y) and ∂z/∂y = F′

1f ′
2(x, y) + F′

2x2h′(y) + F′
3(−1/y2)

7. (a)
∂w

∂t
= ∂w

∂x
∂x
∂t

+ ∂w

∂y
∂y
∂t

+ ∂w

∂z
∂z
∂t

= y2z3 · 2t + 2xyz3 · 0 + 3xy2z2 · 1 = 5s2t4

(b)
∂w

∂t
= 2x

∂x
∂t

+ 2y
∂y
∂t

+ 2z
∂z
∂t

= x√
t + s

+ 2syets = 1 + 2se2ts

8. (a) We can write z = F(u1, u2, u3), with u1 = t, u2 = t2 and u3 = t3.

Then
dz
dt

= F′
1

du1

dt
+ F′

2
du2

dt
+ F′

3
du3

dt
= F′

1(t, t2, t3) + F′
2(t, t2, t3)2t + F′

3(t, t2, t3)3t2.

(b) z = F(t, f (t), g(t2)) =⇒ dz
dt

= F′
1(t, f (t), g(t2)) + F′

2(t, f (t), g(t2))f ′(t) + F′
3(t, t2, t3)g′(t2)2t

9. ∂Z/∂G = 1 + 2Y∂Y/∂G + 2r∂r/∂G

10. ∂Z/∂G = 1 + I′
1(Y , r)∂Y/∂G + I′

2(Y , r)∂r/∂G

11.
∂C
∂p1

= a
∂Q1

∂p1
+ b

∂Q2

∂p1
+ 2cQ1

∂Q1

∂p1
= −α1A(a + 2cAp−α1

1 pβ1
2 )p−α1−1

1 pβ1
2 + α2bBpα2−1

1 p−β2
2

∂C
∂p2

= β1A(a + 2cAp−α1
1 pβ1

2 )p−α1
1 pβ1−1

2 − β2bBpα2
1 p−β2−1

2

12. ∂u/∂x = 3(x2 − yz)/(x3 + y3 + z3 − 3xyz), etc. See SM.

13. Here
∂z
∂x

= f ′(x2y)
∂

∂x
(x2y) = f ′(x2y)2xy and similarly

∂z
∂y

= f ′(x2y)x2. The rest follows from elementary

algebra.

14.
∂u
∂r

= ∂f
∂x

∂x
∂r

+ ∂f
∂y

∂y
∂r

+ ∂f
∂z

∂z
∂r

+ ∂f
∂w

∂w

∂r

15.
∂u
∂r

= yzw + xzw + xyws + xyz(1/s) = 28
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15.3
1. Formula (15.3.2) gives y′ = −F′

1/F′
2 = −(4x + 6y)/(6x + 2y) = −(2x + 3y)/(3x + y).

2. (a) Put F(x, y) = x2y. Then F′
1 = 2xy, F′

2 = x2, F′′
11 = 2y, F′′

12 = 2x, F′′
22 = 0,

so y′ = −F′
1/F′

2 = −2xy/x2 = −2y/x. Moreover, using equation (15.3.5),

one has y′′ = −(1/(F′
2)

3)
[
F′′

11(F
′
2)

2 − 2F′′
12F′

1F′
2 + F′′

22(F
′
1)

2
] = −(1/x6)[2yx4 − 2(2x)(2xy)x2] = 6y/x2.

(See also Exercise 7.1.2.) For (b) and (c), see the answers to Exercise 7.1.3.

3. (a) y′ = −4 and y′′ = −14 at (2, 0). The tangent has the equation y = −4x + 8.

(b) There is a horizontal tangent at (a, −4a) and (−a, 4a), where a = 2
√

7/7.

4. With F(x, y) = 3x2 − 3xy2 + y3 + 3y2, we have F′
1(x, y) = 6x − 3y2 and F′

2(x, y) = −6xy + 3y2 + 6y.

Then formula (15.3.2) implies that h′(x) = y′ = −(6x − 3y2)/(−6xy + 3y2 + 6y).

For x near 1 and so (x, y) near (1, 1), we have h′(1) = −(6 − 3)/(−6 + 3 + 6) = −1.

5. D′
P < 0 and D′

r < 0. Differentiating the equation w.r.t. r yields D′
P(dP/dr) + D′

r = 0, and so dP/dr = −D′
r/DP < 0.

So a rise in the interest rate depresses demand, and the price falls to compensate.

6. dP/dR = f ′
R(R, P)/(g′(P) − f ′

P(R, P)). It is plausible that f ′
R(R, P) > 0 (demand increases as advesrtising expenditure

increases), and g′(P) > 0, f ′
P(R, P) < 0, so dP/dR > 0.

7. Differentiating the equation w.r.t. x and y gives: (i) 1 − az′
x = f ′(y − bz)(−bz′

x); (ii) −az′
y = f ′(y − bz)(1 − bz′

y).

If bz′
x �= 0, then solving (i) for f ′ and inserting it into (ii) yields az′

x + bz′
y = 1.

If bz′
x = 0, then (i) implies az′

x = 1. But then z′
x �= 0, so b = 0 and then again az′

x + bz′
y = 1.

15.4
1. (a) With F(x, y) = 3x + y − z, the given equation is F(x, y, z) = 0, and ∂z/∂x = −F′

1/F′
3 = −3/(−1) = 3.

(b) ∂z/∂x = −(yz + z3 − y2z5)/(xy + 3xz2 − 5xy2z4)

(c) With F(x, y, z) = exyz − 3xyz, the given equation is F(x, y, z) = 0.

Now, F′
x(x, y, z) = yzexyz − 3yz and F′

z(x, y, z) = xyexyz − 3xy, so (15.4.2) gives

z′
x = −F′

x/F′
z = −(yzexyz − 3yz)/(xyexyz − 3xy) = −yz(exyz − 3)/xy(exyz − 3) = −z/x

(Actually, the equation ec = 3c has two solutions. From xyz = c (c a constant) we find z′
x much more easily.)

2. Differentiating partially w.r.t. x yields (∗) 3x2 + 3z2z′
x − 3z′

x = 0, so z′
x = x2/(1 − z2). By symmetry, z′

y = y2/(1 − z2).
To find z′′

xy, differentiate (∗) w.r.t. y to obtain 6zz′
yz′

x + 3z2z′′
xy − 3z′′

xy = 0, so z′′
xy = 2zx2y2/(1 − z2)3.

(Alternatively, differentiate z′
x = x2/(1 − z2) w.r.t. y, treating z as a function of y and using the expression for z′

y.)

3. (a) L∗ = P2/4w2, ∂L∗/∂P = P/2w2 > 0 and ∂L∗/∂w = −P2/2w3 < 0.

(b) The first-order condition is Pf ′(L∗) − C′
L(L

∗, w) = 0.

Then ∂L∗/∂P = −f ′(L∗)/[Pf ′′(L∗) − C′′
LL(L

∗, w)] and ∂L∗/∂w = C′′
Lw(L∗, w)/[Pf ′′(L∗) − C′′

LL(L
∗, w)].

4. Use formula (15.4.2) to obtain z′
x = − yxy−1 + zx ln z

yz ln y + xzx−1
and z′

y = −xy ln x + zyz−1

yz ln y + xzx−1
.

5. Implicit differentiation gives f ′
P(R, P)P′

w = g′
w(w, P) + g′

P(w, P)P′
w .

It follows that P′
w = −g′

w(w, P)/[g′
P(w, P) − f ′

P(R, P)], which is < 0 because g′
w > 0, g′

P > 0, and f ′
P < 0.
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6. (a) F(1, 3) = 4. The equation for the tangent is y − 3 = −(F′
x(1, 3)/F′

y(1, 3))(x − 1).

Because F′
x(1, 3) = 10 and F′

y(1, 3) = 5, this reduces to y = −2x + 5.

7. ∂y/∂K = αy/K(1 + 2c ln y), ∂y/∂L = βy/L(1 + 2c ln y)

15.5
1. The marginal rate of substitution is Ryx = 20x/30y, so y/x = (2/3)(Ryx)

−1, whose elasticity is σyx = −1.

2. (a) Ryx = (x/y)a−1 = (y/x)1−a (b) σyx = ElRyx
(y/x) = ElRyx

(Ryx)
1/(1−a) = 1/(1 − a)

3. Find the relevant partial derivatives, insert them into (15.5.1), then simplify. See SM for details.

15.6
1. f (tx, ty) = (tx)4 + (tx)2(ty)2 = t4x4 + t2x2t2y2 = t4(x4 + x2y2) = t4f (x, y), so f is homogeneous of degree 4.

2. Here x(tp, tr) = A(tp)−1.5(tr)2.08 = At−1.5p−1.5 t2.08 r2.08 = t−1.5 t2.08Ap−1.5r2.08 = t0.58x(p, r), so the function is
homogeneous of degree 0.58. (Alternatively, use the result in Example 14.1.4.)

3. f (tx, ty) = (tx)(ty)2 + (tx)3 = t3(xy2 + x3) = t3f (x, y). So f is homogeneous of degree 3. For the rest, see SM.

4. f (tx, ty) = (tx)(ty)/[(tx)2 + (ty)2] = t2xy/t2[x2 + y2] = f (x, y) = t0f (x, y), so f is homogeneous of degree 0.

Using the formulas for the partial derivatives of this function in part (b) of Example 14.2.1,

we get x
∂f
∂x

+ y
∂f
∂y

= xy3 − x3y + x3y − xy3

(x2 + y2)2
= 0 = 0 · f , as claimed by Euler’s theorem.

5. F(tK, tL) = A(a(tK)−ρ + b(tL)−ρ)−1/ρ = A(t−ρaK−ρ + t−ρbL−ρ)−1/ρ = (t−ρ)−1/ρA(aK−ρ + bL−ρ)−1/ρ , which
reduces to tF(K, L). Using the idea of Example 15.6.3, we get F(K, L)/L = F(K/L, 1) = A[a(K/L)−ρ + b]−1/ρ .

6. Equation (15.6.1) requires that for some number k one has t3x3 + t2xy = tk(x3 + xy) for all t > 0 and all (x, y). In
particular, for x = y = 1, we must have t3 + t2 = 2tk for all t > 0. For t = 2, we get 12 = 2 · 2k, or 2k = 6. For t = 4,
we get 80 = 2 · 4k, or 4k = 40. But 2k = 6 implies 4k = 36. So the two values of k must actually be different, implying
that f is not homogeneous of any degree.

7. From (15.6.6) and (15.6.7) with k = 1, we get f ′′
11 = (−y/x)f ′′

12 and f ′′
22 = (−x/y)f ′′

21.

It follows that f ′′
11f ′′

22 − (f ′′
12)

2 = (−y/x)f ′′
12 · (−x/y)f ′′

21 − (f ′′
12)

2 = 0 because f ′′
12 = f ′′

21.

8. By (15.6.3), f ′
2(x, y) is homogeneous of degree 1, so 12 = f ′

2(4, 6) = f ′
2(2 · 2, 2 · 3) = 2f ′

2(2, 3), implying that f ′
2(2, 3) =

6. By Euler’s Theorem (15.6.2), one has 2f (2, 3) = 2f ′
1(2, 3) + 3f ′

2(2, 3) = 2 · 4 + 3 · 6 = 26, and so f (2, 3) = 13.
Finally using definition (15.6.1) yields f (6, 9) = f (3 · 2, 3 · 3) = 32f (2, 3) = 9 · 13 = 117.

9. Follow the hint. See SM for details.

15.7
1. (a) Homogeneous of degree 1. (b) Not homogeneous. (c) Homogeneous of degree −1/2.

(d) Homogeneous of degree 1. (e) Not homogeneous. (f) Homogeneous of degree n.

2. (a) Homogeneous of degree 1. (b) Homogeneous of degree μ.

3. All are homogeneous of degree 1, as is easily checked by using definition (15.7.1) directly.
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4. Let s denote x1 + · · · + xn. Then v′
i = u′

i − a/s, so
∑n

i=1 xiv
′
i =∑n

i=1 xiu
′
i −∑n

i=1 axi/s = a − a = 0.

By Euler’s Theorem (15.7.2), it follows that v is homogeneous of degree 0.

5. (a) Homothetic. (b) Homothetic. (c) Not homothetic. (d) Homothetic. See SM for details.

6. (a) Here h(tx) = f ((tx1)
m, . . . , (txn)

m) = f (tmxm
1 , . . . , tmxm

n ) = (tm)rf (xm
1 , . . . , xm

n ) = tmrh(x), so h is homogeneous of
degree mr. (b) Homogeneous of degree sp. (c) Homogeneous of degree r if r = s, not homogeneous if r �= s.

(d) Homogeneous of degree r + s. (e) Homogeneous of degree r − s.

7. Routine application of the definitions. See SM for details.

15.8
1. In each case we use the approximation f (x, y) ≈ f (0, 0) + f ′

1(0, 0)x + f ′
2(0, 0)y. (a) f ′

1(x, y) = 5(x + 1)4(y + 1)6 and
f ′
2(x, y) = 6(x + 1)5(y + 1)5, so f ′

1(0, 0) = 5 and f ′
2(0, 0) = 6. But f (0, 0) = 1, so f (x, y) ≈ 1 + 5x + 6y.

(b) f ′
1(x, y) = f ′

2(x, y) = 1
2 (1 + x + y)−1/2, so f ′

1(0, 0) = f ′
2(0, 0) = 1/2. But f (0, 0) = 1, so f (x, y) ≈ 1 + 1

2 x + 1
2 .

(c) f ′
1(x, y) = ex ln(1 + y), f ′

2(x, y) = ex/(1 + y), so f ′
1(0, 0) = 0 and f ′

2(0, 0) = 1. But f (0, 0) = 0, so f (x, y) ≈ y.

2. f (x, y) ≈ Axa
0yb

0 + aAxa−1
0 yb

0(x − x0) + bAxa
0yb−1

0 (y − y0) = Axa
0yb

0[1 + a(x − x0)/x0 + b(y − y0)/y0]

3. Write the function in the form g∗(μ, ε) = (1 + μ)a(1 + ε)αa − 1, where a = 1/(1 − β).

Then ∂g∗(μ, ε)/∂μ = a(1 + μ)a−1(1 + ε)αa and ∂g∗(μ, ε)/∂ε = (1 + μ)aαa(1 + ε)αa−1.

Hence, g∗(0, 0) = 0, ∂g∗(0, 0)/∂μ = a, ∂g∗(0, 0)/∂ε = αa, and g∗(μ, ε)≈aμ + αaε = (μ + αε)/(1 − β).

4. f (0.98, −1.01) ≈ −5 − 6(−0.02) + 9(−0.01) = −4.97. The exact value is −4.970614, so the error is 0.000614.

5. (a) f (1.02, 1.99) = 1.1909 (b) f (1.02, 1.99) ≈ f (1, 2) + 0.02 · 8 − 0.01 · (−3) = 1.19. The error is 0.0009.

6. v(1.01, 0.02) ≈ v(1, 0) + v′
1(1, 0) · 0.01 + v′

2(1, 0) · 0.02 = −1 − 1/150

7. (a) z = 2x + 4y − 5 (b) z = −10x + 3y + 3

8. Extend the argument used to establish (15.8.4) from 2 to n variables. See SM for details.

9. The tangent plane (15.8.10) passes through (x, y, z) = (0, 0, 0) iff −f (x0, y0) = f ′
1(x0, y0)(−x0) + f ′

2(x0, y0)(−y0).

Changing the sign on each side of this equation and replacing (x0, y0) by (x, y) gives Euler’s characterization (15.6.1)
of a function f (x, y) that is homogeneous of degree 1.

10. (a) Along the curve x = αy2, for all y �= 0 the point (αy2, y) is on the level curve f (x, y) = α/(1 + α2).

(b) When α = 1, for instance, one has f (y2, y) = 1
2 for all y �= 0, yet when y = 0 one has f (y2, y) = f (0, 0) = 0.

So f is discontinuous at (0, 0). (c) For all (x, y) �= (0, 0), the partial derivatives f ′
1(x, y) and f ′

2(x, y) obviously both
exist and are continuous. Moreover one has f ′

1(0, 0) = limh→0[f (h, 0) − f (0, 0)]/h = 0, and similarly f ′
2(0, 0) = 0.

(d) Because f is continuously differentiable at every point (x, y) �= (0, 0), for all directions (h, k) �= (0, 0), the direc-
tional derivative is given by ∇(h,k)f (x, y) = f ′

1(x, y) h + f ′
2(x, y) k. At (x, y) = (0, 0), if (h, k) �= (0, 0) is a direction

with h �= 0, then ∇(h,k)f (0, 0) = limθ→0
1
θ

[f (θh, θk) − f (0, 0)] = lim
θ→0

1
θ

θ3hk2

θ2h2 + θ4k4
= k2

h
.

But if (0, k) is a direction with k �= 0, then ∇(0,k)f (0, 0) = limθ→0
1
θ

[f (0, θk) − f (0, 0)] = 0.

(e) Because f is discontinuous at (0, 0), it cannot be differentiable at (0, 0).
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15.9
1. Both (a) and (b) give: dz = (y2 + 3x2) dx + 2xy dy.

2. We can either use definition (15.9.1) of the differential or, as we do here, the rules for differentials.

(a) dz = d(x3) + d(y3) = 3x2 dx + 3y2 dy

(b) dz = (dx)ey2 + x(dey2
). Here d(ey2

) = ey2
dy2 = ey2

2y dy, so dz = ey2
dx + 2xyey2

dy = ey2
(dx + 2xy dy).

(c) dz = d ln u, where u = x2 − y2. Then dz = 1
u

du = 2x dx − 2y dy
x2 − y2

.

3. (a) dz = 2xu dx + x2(u′
x dx + u′

y dy) (b) dz = 2u(u′
x dx + u′

y dy) (c) dz = 1
xy + yu

[
(y + yu′

x) dx + (x + u + yu′
y) dy

]
4. T ≈ 7.015714. See SM for details.

5. Taking the differential of each side of the equation gives first d(UeU) = d(x
√

y), and then eU dU + UeU dU =√
y dx + (x/2

√
y) dy. Solving for dU yields dU = √

y dx/(eU + UeU) + x dy/2
√

y(eU + UeU).

6. dX = AβNβ−1eρt dN + ANβρeρt dt

7. dX1 = BEXE−1N1−E dX + B(1 − E)XEN−E dN

8. (a) dU = 2a1u1 du1 + · · · + 2anun dun (b) dU = A(δ1u−ρ
1 + · · · + δnu−ρ

n )−1−1/ρ(δ1u−ρ−1
1 du1 + · · · + δnu−ρ−1

n dun)

9. d(ln z) = a1 d(ln x1) + · · · + an d(ln xn), so dz/z = a1 dx1/x1 + a2 dx2/x2 + · · · + an dxn/xn.

10. (a) d2z = 2 dx dy + 2(dy)2 (b) dz/dt = 3t2 + 4t3 and then (d2z/dt2)(dt)2 = (6t + 12t2)(dt)2.

On the other hand, the expression for d2z derived from (a) is equal to 2 dt · 2t dt + 2(2t dt)2 = (4t + 8t2)(dt)2.

15.10
1. (a) Two equations in (u, v, x, y), so degrees of freedom = 4 − 2 = 2 (b) 5 − 2 = 3 (c) 4 − 3 = 1

2. There are 6 variables Y , C, I, G, T , and r, and 3 equations. So there are 6 − 3 = 3 degrees of freedom.

3. Let m denote the number of equations and n the number of unknowns. (a) m = 3, n = 2; infinitely many solutions.
(b) m = n = 2; no solutions. (c) m = n = 2; infinitely many solutions.

4. (a) m = 1, n = 100; infinitely many solutions. (b) m = 1, n = 100; no solutions. We see that the counting rule
fails dramatically.

15.11
1. Differentiating yields the two equations a du + b dv = c dx + d dy and e du + f dv = g dx + h dy. Solving these

for du and dv yields du = [(cf − bg) dx + (df − bh) dy]/D and dv = [(ag − ce) dx + (ah − de) dy]/D, where
D = af − be. The required partial derivatives are then easily read off.

2. (a) Differentiating yields u3 dx + x3u2 du + dv = 2y dy and 3v du + 3u dv − dx = 0. Solving for du and dv with
D = 9xu3 − 3v yields du = (−3u4 − 1) dx/D + 6yu dy/D and dv = (3xu2 + 3u3v) dx/D − 6yv dy/D.

(b) u′
x = (−3u4 − 1)/D, v′

x = (3xu2 + 3u3v)/D (c) u′
x = 283/81 and v′

x = −64/27

3. ∂y1/∂x1 = (3 − 27x2
1y2

2)/J and ∂y2/∂x1 = (3x2
1 + 18y2

1)/J with J = 1 + 54y2
1y2

2.

4. ∂Y/∂M = I′(r)/(aI′(r) + L′(r)S′(Y)) and ∂r/∂M = S′(Y)/(aI′(r) + L′(r)S′(Y)).
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5. Differentiating w.r.t. x yields y + u′
xv + uv′

x = 0 and u + xu′
x + yv′

x = 0. Solving for u′
x and v′

x, we get

u′
x = u2 − y2

yv − xu
= u2 − y2

2yv
, v′

x = xy − uv

yv − xu
= 2xy − 1

2yv

where we substituted xu = −yv and uv = 1 − xy. Differentiating u′
x w.r.t. x finally yields

u′′
xx = ∂2u

∂x2
= ∂

∂x
u′

x = 2uu′
x2yv − (u2 − y2)2yv′

x

4y2v2
= (u2 − y2)(4uv − 1)

4y2v3

(The answer to this problem can be expressed in many different ways.)

6. (a) Differentiating yields the equations: dY = dC + dI + dG, dC = F′
Y dY + F′

T dT + F′
r dr, and dI = f ′

Y dY + f ′
r dr.

Hence, dY = (F′
T dT + dG + (F′

r + f ′
r ) dr

)
/(1 − F′

Y − f ′
Y).

(b) ∂Y/∂T = F′
T/(1 − F′

Y − f ′
Y) < 0, so Y decreases as T increases. But if dT = dG with dr = 0, then dY = (1 +

F′
T

)
dT/(1 − F′

Y − f ′
Y ), which is positive provided that F′

T > −1.

7. (a) 6 − 3 = 3 (b) Differentiating, then gathering all terms in dY , dr, and dI on the left-hand side, we obtain

(i) (C′
Y − 1) dY + C′

r dr + dI = −dα (ii) F′
Y dY + F′

r dr − dI = −dβ (iii) L′
Y dY + L′

r dr = dM.
With dβ = dM = 0 we get dY = −(L′

r/D) dα, dr = (L′
Y/D) dα, and dI = [(F′

rL
′
Y − F′

Y L′
r)/D] dα, where

D = L′
r(C

′
Y + F′

Y − 1) − L′
Y(C′

r + F′
r).

8. (a) There are 3 variables and 2 equations, so there is (in general) one degree of freedom.

(b) Differentiation gives 0 = αP dy + L′(r) dr and S′
y dy + S′

r dr + S′
g dg = I′

y dy + I′
r dr. We find dy/dg =

−L′(r)S′
g/D and dr/dg = αPS′

g/D, where D = L′(r)(S′
y − I′

y) − αP(S′
r − I′

r).

9. (a) Differentiating yields 2uv du + u2 dv − du = 3x2 dx + 6y2 dy and eux(u dx + x du) = v dy + y dv. At the
point P these equations become 3 du + 4 dv = 6 dy and dv = 2 dx − dy. Hence du = 2 dy − (4/3) dv =
−(8/3) dx + (10/3) dy. So ∂u/∂y = 10/3 and ∂v/∂x = 2.

(b) �u ≈ du = −(8/3)0.1 + (10/3)(−0.2) = −14/15 ≈ −0.93, �v ≈ dv = 2(0.1) + (−1)(−0.2) = 0.4

10. Taking differentials and putting dp2 = dm = 0 gives:

(i) U′′
11 dx1 + U′′

12 dx2 = p1 dλ + λ dp1; (ii) U′′
21 dx1 + U′′

22 dx2 = p2 dλ; (iii) p1 dx1 + dp1 x1 + p2 dx2 = 0.

After solving these three linear equations in (dx1, dx2, dλ) for dx1 in particular, we obtain

∂x1/∂p1 = [λp2
2 + x1(p2U′′

12 − p1U′′
22)]/(p

2
1U′′

22 − 2p1p2U′′
12 + p2

2U′′
11).

Review exercises for Chapter 15
1. (a) dz/dt = 6 · 4t + 3y29t2 = 24t + 27t2y2 = 24t + 243t8 (b) dz/dt = pxp−1a + pyp−1b = ptp−1(ap + bp)

(c) In part (a), z = 6(2t2) + (3t3)3 = 12t2 + 27t9, so dz/dt = 24t + 243t8.

In part (b), z = (at)p + (bt)p = aptp + bptp, so dz/dt = (ap + bp)ptp−1.

2. ∂z/∂t = G′
1(u, v)φ′

1(t, s) and ∂z/∂s = G′
1(u, v)φ′

2(t, s) + G′
2(u, v)ψ ′(s)

3. ∂w/∂t = 2x · 1 + 3y2 · 1 + 4z3s = 2x + 3y2 + 4sz3 = 4s4t3 + 3s2 + 3t2 − 6ts + 2s + 2t,

∂w/∂s = 2x − 3y2 + 4tz3 = 4s3t4 − 3s2 − 3t2 + 6ts + 2s + 2t

4. dX/dN = g(u) + g′(u)(ϕ′(N) − u), where u = ϕ(N)/N, and d2X/dN2 = (1/N)g′′(u)(ϕ′(N) − u)2 + g′(u)ϕ′′(N).

5. (a) Take the natural logarithm, ln E = ln A − a ln p + b ln m, and then differentiate to get Ė/E = −a(ṗ/p) + b(ṁ/m).

(b) ln p = ln p0 + t ln(1.06), so ṗ/p = ln 1.06. Likewise, ṁ/m = ln 1.08. Then Ė/E = −a ln 1.06 + b ln 1.08 =
ln(1.08b/1.06a) = ln Q.
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6. Differentiating each side w.r.t. x while holding y constant gives 3x2 ln x + x2 = (6z2 ln z + 2z2)z′
1. When x = y = z =

e, this gives z′
1 = 1/2. Differentiating a second time gives 6x ln x + 5x = (12z ln z + 10z)(z′

1)
2 + (6z2 ln z + 2z2)z′′

11.

When x = y = z = e and z′
1 = 1/2, this gives z′′

11 = 11/16e.

7. Ryx = F′
x/F′

y = −x/10y. Hence y/x = −(1/10)R−1
yx , and so σyx = ElRyx

(y/x) = −1.

8. (a) MRS = Ryx = U′
x/U′

y = 2y/3x (b) MRS = Ryx = y/(x + 1) (c) MRS = Ryx = (y/x)3

9. (a) −1 (b) 2ac (c) 4. (d) Not homogeneous. (If F were homogeneous, then by Euler’s theorem, for some con-
stant k, we would have x1ex1+x2+x3 + x2ex1+x2+x3 + x3ex1+x2+x3 = kex1+x2+x3 for all positive x1, x2, x3, and so
x1 + x2 + x3 = k. This is evidently impossible for general (x1, x2, x3).)

10. Since y/x = (Ryx)
1/3, we have σyx = ElRyx

(y/x) = 1/3.

11. Using the hint, taking ln of each side gives 2 ln y + x + (1/y) = ln 3 or 2v + eu + e−v = ln 3. Differentiating each
side of the last equation w.r.t. u yields 2v′

u + eu − e−vv′
u = 0, so Elx y = v′

u = eu/(e−v − 2) = x/((1/y) − 2) =
xy/(1 − 2y).

12. (a) For all t > 0 one has f (tx, ty) = (tx)g(tx/ty) = txg(x/y) = tf (x, y), so f is homogeneous of degree 1.

(b) Using a similar argument to part (a) shows that F is homogeneous of degree k.

(c) Using the answer for the general Cobb–Douglas function in Example 15.7.3 shows that the function G is homo-
geneous of degree (a − b) + (b − c) + (c − d) + (d − a) = 0.

13. Since F is homogeneous of degree 1, according to (15.6.6) or (15.6.7), we have KF′′
KK + LF′′

KL = 0.

Because F′′
KK < 0 and K > 0, L > 0, this implies that F′′

KL = −(K/L)F′′
KK > 0.

14. Differentiate f (tx1, . . . , txn) = g(t)f (x1, . . . , xn) w.r.t. t and put t = 1, as in the proof of Euler’s Theorem 15.7.1.
This yields

∑n
i=1 xif

′
i (x1, . . . , xn) = g′(1)f (x1, . . . , xn). Thus, by Euler’s theorem, the function f must actually be

homogeneous of degree k = g′(1).

15. du + ey dx + xey dy + dv = 0 and dx + eu+v2
du + eu+v2

2v dv − dy = 0. At the given point, these equations reduce
to du + dv = −e dx − e dy and du = −e dx + e dy, implying that u′

x = −e, u′
y = e, v′

x = 0, and v′
y = −2e.

16. (a) ∂p/∂w = L/F(L), ∂p/∂B = 1/F(L), ∂L/∂w = (F(L) − LF′(L))/pF(L)F′′(L), and ∂L/∂B = −F′(L)/

pF(L)F′′(L)

(b) See SM.

17. (a) αuα−1 du + βvβ−1 dv = 2βdx + 3y2 dy and αuα−1vβ du + uαβvβ−1 dv − βvβ−1 dv = dx − dy.

At P we find ∂u/∂x = 2−β/α , ∂u/∂y = −2−β/α , ∂v/∂x = (2β − 2−β)/β2β−1, ∂v/∂y = (2−β + 3)/β2β−1.

(b) u(0.99, 1.01) ≈ u(1, 1) + ∂u(1, 1)/∂x · (−0.01) + ∂u(1, 1)/∂y · 0.01 = 1 − 2−β/100α − 2−β/100α, which
reduces to 1 − 2−β/50α.

18. (a) S =
∫ T

0
e−rx(egT−gx − 1) dx = egT

∫ T

0
e−(r+g)x dx −

∫ T

0
e−rx dx = egT − e−rT

r + g
+ e−rT − 1

r
,

and therefore r(r + g)S = regT + ge−rT − (r + g). (b) Implicit differentiation w.r.t. g yields

rS = regT(T + g∂T/∂g) + e−rT + ge−rT (−r∂T/∂g) − 1, so ∂T/∂g = [rS + 1 − rTegT − e−rT ]/rg(egT − e−rT ).

19. (a) The first-order condition is P′(t∗) = V ′(t∗)e−rt∗ − rV(t∗)e−rt∗ − me−rt∗ = 0. Multiplying by ert∗ gives
V ′(t∗) = rV(t∗) + m. An economic interpretation is that there must be approximate equality between:

(i) the benefit of waiting a fraction dt of a year longer, which is approximately V ′(t∗) dt;

(ii) the loss of waiting dt longer, which is forgone interest r V(t∗) dt plus the fraction m dt of the yearly
cost m.
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(b) The second-order condition P′(t∗) < 0 for a strict local maximum at t∗ holds iff V ′(t∗) − rV(t∗) < 0. See SM
for more details.

(c) Taking the differential of V ′(t∗) = rV(t∗) + m gives V ′′(t∗)dt∗ = V(t∗)dr + rV ′(t∗)dt∗ + dm. This equation can
be used to find the partial derivatives and, provided that the second-order condition is satisfied, determine their
signs. See SM for more details.

Chapter 16

16.1

1. (a)
∫ 2

0

[∫ 1

0
(2x + 3y + 4) dx

]
dy =

∫ 2

0

[ x=1

x=0
(x2 + 3xy + 4x)

]
dy =

∫ 2

0
(5 + 3y) dy =

2

0
(5y + 3

2
y2) = 16

(b)
∫ a

0

[∫ b
0 (x − a)(x − b)dx

]
dy = ∫ a

0

[
x=b
x=0

( 1
3 x3 − 1

2 (a + b)x2 + abx
)]

dy

= ∫ a
0

( 1
3 b3 − 1

2 (a + b)b2 + ab2
)

dy = a( 1
3 b3 + 1

2 ab2 − 1
2 b3) = 1

6 ab2(3a − b)

(c) 16 ln 2 − 3 ln 3 − 5 ln 5. See SM for details.

2. 1
b (eb − eb/a) + 1

a − 1. See SM for details.

3. ka = 2 + 4/(a2 + 3a) > 2 for all a > 0. See SM for details.

4. The inner integral is
∫ 1
−2[x2y3 − (y + 1)2] dy = y=1

y=−2[ 1
4 x2y4 − 1

3 (y + 1)3] = 1
4 x2 − 8

3 − 4x2 − 1
3 = − 15

4 x2 − 3.

The double integral is therefore I = − ∫ 2
0

( 15
4 x2 + 3

)
dx = − x=2

x=0

( 5
4 x3 + 3x

) = −(10 + 6) = −16.

16.3
1. The shaded area is the difference between the areas of: (i) the unit square; (ii) the triangle with corners at (z − 1, 1),

(1, z − 1), and (1, 1). This difference is 1 − 1
2 (2 − z)2.

16.4
1. For i = 1, 2, 3, one has

∫∫∫
C x2

i dx1 dx2 dx3 = ∫ 1
0 x2 dx = 1

3 , so
∫∫∫

C(x2
1 + x2

2 + x2
3) dx1 dx2 dx3 = 3

∫ 1
0 x2 dx = 1.

Chapter 17

17.1
1. The first-order conditions f ′

1(x, y) = −4x + 4 = 0 and f ′
2(x, y) = −2y + 4 = 0 are both satisfied when x = 1 and y = 2.

2. (a) f ′
1(x, y) = 2x − 6 and f ′

2(x, y) = 2y + 8, which are both zero at the only critical point (x, y) = (3, −4).

(b) f (x, y) = x2 − 6x + 32 + y2 + 8y + 42 + 35 − 32 − 42 = (x − 3)2 + (y + 4)2 + 10 ≥ 10 for all (x, y), whereas
f (3, −4) = 10, so (3, −4) minimizes f .

3. F′
K = −2(K − 3) − (L − 6) and F′

L = −4(L − 6) − (K − 3). The first-order conditions are −2(K − 3) − (L − 6) =
0.65 and −4(L − 6) − (K − 3) = 1.2. The only solution of these two simultaneous equations is (K, L) = (2.8, 5.75).

4. (a) P(10, 8) = P(12, 10) = 98 (b) The first-order conditions are P′
x = −2x + 22 = 0 and P′

y = −2y + 18 = 0.

It follows that x = 11 and y = 9, where profit is P(11, 9) = 100.
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17.2
1. We check that the conditions in part (a) of Theorem 17.2.2 are satisfied in all three cases:

(a) For all (x, y) one has
∂2π

∂x2
= −0.08 ≤ 0,

∂2π

∂y2
= −0.02 ≤ 0, and

∂2π

∂x2

∂2π

∂y2
−
(

∂2π

∂x∂y

)2

= 0.0015 ≥ 0.

(b) For all (x, y) one has f ′′
11 = −4 ≤ 0, f ′′

12 = 0, and f ′′
22 = −2 ≤ 0, so f ′′

11f ′′
22 − (f ′′

12)
2 = 8 ≥ 0.

(c) With π = F(K, L) − 0.65K − 1.2L, we have π ′′
KK = −2, π ′′

KL = −1, and π ′′
LL = −4, so π ′′

KKπ ′′
LL − (π ′′

KL)
2 = 7.

2. (a) Profit is π(x, y) = 24x + 12y − C(x, y) = −2x2 − 4y2 + 4xy + 64x + 32y − 514. Critical point at x = 40, y = 24,
with π(40, 24) = 1150. Since π ′′

11 = −4 ≤ 0, π ′′
22 = −8 ≤ 0, and π ′′

11π
′′
22 − (π ′′

12)
2 = 16 ≥ 0, this is the maximum.

(b) With y = 54 − x, profit is π̂ = −2x2 − 4(54 − x)2 + 4x(54 − x) + 64x + 32(54 − x) − 514 = −10x2 + 680x −
10 450. This has a maximum where π̂ ′(x) = 0, which is at x = 34. Then y = 54 − 34 = 20. The maximum point is at
x = 34, y = 20, where the maximum value is 1110.

3. Using x = 108 − 3y − 4z gives the modified utility function Û(y, z) = (108 − 3y − 4z)yz.

Maximizing this w.r.t. y and z gives first-order conditions whose solution is y = 12, z = 9.

Then x = 36 and maximum profit is 3888. See SM for details.

4. (a) π(x, y) = px + qy − C(x, y) = (25 − x)x + (24 − 2y)y − (3x2 + 3xy + y2) = −4x2 − 3xy − 3y2 + 25x + 24y.

(b) π ′
1 = −8x − 3y + 25 = 0 and π ′

2 = −3x − 6y + 24 = 0 when (x, y) = (2, 3). Moreover, then π ′′
11 = −8 ≤ 0,

π ′′
22 = −6 ≤ 0, and π ′′

11π
′′
22 − (π ′′

12)
2 = (−8)(−6) − (−3)2 = 39 ≥ 0. So (x, y) = (2, 3) maximizes profits.

5. Profit is π(x, y) = px + qy − x2 − xy − y2 − x − y − 14. It has a critical point (x∗, y∗) where x∗ = 1
3 (2p − q − 1) and

y∗ = 1
3 (−p + 2q − 1). Provided that q < 2p − 1 and q > 1

2 (p + 1), the interior point (x∗, y∗) with x∗ > 0 and y∗ > 0
satisfies the sufficient conditions in Theorem 17.2.2 for a profit maximum.

6. (a) x∗ = p/2α, y∗ = q/2β, and the second-order conditions are satisfied.

(b) π∗(p, q) = px∗ + qy∗ − α(x∗)2 − β(y∗)2 = p2/4α + q2/2β. Hence ∂π∗(p, q)/∂p = p/2α = x∗. So increasing
the price p by one unit increases the optimal profit by approximately x∗, the output of the first good. Furthermore
∂π∗(p, q)/∂q = y∗, which has a similar interpretation.

7. The constraint implies that z = 4x + 2y − 5. After using this expression to substitute for z, we choose (x, y) to mini-
mize P(x, y) = x2 + y2 + (4x + 2y − 5)2 w.r.t. x and y. The two first-order conditions are P′

1 = 34x + 16y − 40 = 0
and P′

2 = 16x + 10y − 20 = 0, with solution x = 20/21, y = 10/21. Since P′′
11 = 34, P′′

12 = 16, and P′′
22 = 10, the

second-order conditions for a minimum are satisfied. The minimum value is 525/441.

8. To check the sufficient conditions in part (a) of Theorem 17.2.2, we calculate f ′′
11 = a(a − 1)Axa−2yb, then f ′′

12 =
f ′′
21 = abAxa−1yb−1, and f ′′

22 = b(b − 1)Axayb−2. Thus, f ′′
11f ′′

22 − (f ′′
12)

2 = abA2x2a−2y2b−2 [1 − (a + b)]. Suppose that
a + b ≤ 1. Then a ≤ 1 and b ≤ 1 as well. If x > 0 and y > 0, then f ′′

11 ≤ 0 and f ′′
22 ≤ 0, and f ′′

11f ′′
22 − (f ′′

12)
2 ≥ 0. We

conclude that f is concave for x > 0, y > 0.

17.3
1. (a) f ′

1 = −2x + 6, f ′
2 = −4y + 8, f ′′

11 = −2, f ′′
12 = 0, and f ′′

22 = −4.

(b) By Theorem 17.3.1, because A = −2 < 0 and AC − B2 = 8 > 0, the point (3, 2) is a local maximum.

Part (a) of Theorem 17.2.2 implies that (3, 2) is actually a (global) maximum point.

2. (a) f ′
1 = 2x + 2y2, f ′

2 = 4xy + 4y, f ′′
11 = 2, f ′′

12 = 4y, f ′′
22 = 4x + 4

(b) f ′
2 = 0 ⇐⇒ 4y(x + 1) = 0 ⇐⇒ x = −1 or y = 0. If x = −1, then f ′

1 = 0 for y = ±1.
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If y = 0, then f ′
1 = 0 for x = 0. Thus we get three critical points that are classified in the following table:

(x, y) A B C AC − B2 Type of critical point

(0, 0) 2 0 4 8 Local minimum point

(−1, 1) 2 4 0 −16 Saddle point

(−1, −1) 2 −4 0 −16 Saddle point

3. (a) (0, 0) is a saddle point and (−a, −2) is a local minimum point. (b) df ∗(a)/da = −2ae−2

4. In all three cases (0, 0) is a critical point where z = 0 and A = B = C = 0, so AC − B2 = 0.

In case (a), z ≤ 0 for all (x, y), so the origin is a maximum point.

In case (b), z ≥ 0 for all (x, y), so the origin is a minimum point.

In case (c), z takes both positive and negative values at points arbitrarily close to (0, 0), so it is a saddle point.

5. (a) f is defined for all (x, y) satisfying 1 + x2y > 0, or equivalently x2y > −1. So it is defined for all (x, y) satisfying
either (i) x = 0, or (ii) x �= 0 and y > −1/x2.

(b) f ′
1(x, y) = 2xy/(1 + x2y) and f ′

2(x, y) = x2/(1 + x2y). Here f ′
1 = f ′

2 = 0 at (0, b) for all b ∈ R.

(c) Because AC − B2 = 0 when (x, y) = (0, b), the second-derivative test fails.

(d) Note that f (0, b) = 0 at any critical point (0, b). By considering the sign of f (x, y) = ln(1 + x2y) in the neighbour-
hood of any critical point, one sees that f has: a local maximum point if b < 0; a saddle point if b = 0; and a local
minimum point if b > 0. See Fig. A17.3.5.

x

y

z

x

y

z

z = ln(1 + x2y)

Figure A17.3.5

y

1

2

x−1 1

y = 2x2

y = x2

y = (k/h)x

Figure A17.3.6

6. (a) f (x, y) = 0 along each of the two parabolas y = x2 and y = 2x2.

(b) See Fig. A17.3.6. The domain {(x, y) ∈ R2 : x2 < y < 2x2} where f (x, y) is negative is shaded.

(c) f ′
1(x, y) = 8x3 − 6xy and f ′

2(x, y) = 2y − 3x2. So the origin is the only critical point, where f (0, 0) = 0. As the figure
shows, f (x, y) takes positive and negative values for points arbitrary close to (0, 0), so it is a saddle point.

(d) g(t) = f (th, tk) = (tk − t2h2)(tk − 2t2h2) = 2h4t4 − 3h2kt3 + k2t2, implying that g′(t) = 8h4t3 − 9h2kt2 + 2k2t
and g′′(t) = 24h4t2 − 18h2kt + 2k2. So g′(0) = 0 and g′′(0) = 2k2. For k �= 0, therefore, the point t = 0 is a strict
local minimum. It is also when k = 0 and so g(t) = 2t4h4.

17.4
1. (a) π = P1Q1 + P2Q2 − C(Q1, Q2) = −2Q2

1 − 4Q2
2 + 180Q1 + 160Q2, which has a maximum at Q∗

1 = 45, Q∗
2 = 20,

with P∗
1 = 110, P∗

2 = 100, and π∗ = 5650.
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(b) Let P = P1 = P2. Then Q1 = 100 − 1
2 P, Q2 = 45 − 1

4 P, so profit as a function of P is π̂ = (P − 20)(Q1 + Q2) =
(P − 20)(145 − 3

4 P) = − 3
4 P2 + 160P − 2900, which is maximized when P = 320/3. The corresponding profit is

16 900/3. The loss of profit is 5650 − 16 900/3 = 50/3.

(c) The new profit is π̃ = −2Q2
1 − 4Q2

2 + 175Q1 + 160Q2, with a maximum at Q1 = 43.75, Q2 = 20, with prices
P1 = 112.50 and P2 = 100. The maximized profit is 5428.125. The number of units sold in market 1 goes down, the
price goes up and profits are lower. In market 2 the number of units sold and the price are unchanged.

2. (a) π = −bp2 − dq2 + (a + βb)p + (c + βd)q − α − β(a + c), p∗ = (a + βb)/2b, q∗ = (c + βd)/2d.

The second-order conditions are obviously satisfied because π ′′
11 = −2b, π ′′

12 = 0, and π ′′
22 = −2d.

(b) p̂ = (a + c + β(b + d))/2(b + d). (c) The loss of profit is (ad − bc)2/4bd(b + d). See SM for details.

3. As in part (c) of Example 17.4.2, imposing a tax of t per unit sold in market area 1 implies that the new profit function
is π̂ (Q1, Q2) = π(Q1, Q2) − tQ1. The optimal choice of production in market area 1 is then Q̂1 = (a1 − α − t)/2b1,
and the tax revenue is T(t) = t(a1 − α − t)/2b1 = [t(a1 − α) − t2]/2b1. This quadratic function has a maximum when
T ′(t) = 0, so t = 1

2 (a1 − α).

4. (a) â = 0.105 and b̂ = 11.29. (b) ĉ = 0.23 and d̂ = 5.575. (c) Late in the year 1978. See SM for details.

5. (a) p = 9, q = 8, x = 16, y = 4. Firm A’s profit is 123, whereas B’s is 21.

(b) Firm A’s profit is maximized at p = pA(q) = 1
5 (2q + 17). Firm B’s profit is maximized at q = qB(p) = 1

3 (p + 7).

(c) Equilibrium occurs where the two equations of part (b) hold, which is at p = 5, q = 4, x = 20, y = 12. Firm A gets
75, B gets 21. (d) The two prices p and q change in alternate periods, and (p, q) converges to the equilibrium. See
SM for a diagram and further details.

17.5
1. (a) f ′

1(x, y) = 4 − 4x and f ′
2(x, y) = −4y. The only critical point is (1, 0), with f (1, 0) = 2.

(b) f (x, y) has a maximum value of 2 at (1, 0) and a minimum value of −70 at (−5, 0). (A maximum and a minimum
exist, by the extreme value theorem. Along the circular boundary, the function value is 4x − 50, with x ∈ [−5, 5]. So
its maximum along the boundary is −30 at x = 5 and its minimum is −70 at x = −5.)

2. (a) Maximum 91 at (0, 4) and at (4, 0). Minimum 0 at (3, 3). See SM for details.

(b) Maximum 9/4 at (−1/2,
√

3/2) and at (−1/2, −√
3/2). Minimum −1/4 at (1/2, 0). See SM for details.

3. See Fig. A17.5.3. There are no critical points in the interior. The maximum value of f is 27/8 at (3/4, 0). See SM for
details.

y

3

x
5

S

(4, 3) (5, 3)

0

IV

III

II

I

V

Figure A17.5.3
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4. (a) The first-order conditions 2axy + by + 2y2 = 0 and ax2 + bx + 4xy = 0 must have (x, y) = (2/3, 1/3) as a
solution.

So a = 1 and b = −2. Also c = 1/27, so that f (2/3, 1/3) = −1/9. Because A = f ′′
11(2/3, 1/3) = 2/3,

B = f ′′
12(2/3, 1/3) = 2/3, and C = f ′′

22(2/3, 1/3) = 8/3, Theorem 13.3.1 shows that this is a local mini-
mum.

(b) Maximum 193/27 at (2/3, 8/3). Minimum −1/9 at (2/3, 1/3).

5. (a) (1, 2) is a local minimum; (0, 0) and (0, 4) are saddle points.

(b) Note that f (x, 1) = −3xe−x → ∞ as x → −∞, and f (−1, y) = −e(y2 − 4y) → −∞ as y → ∞.

(c) f has a minimum value of −4/e at (1, 2), and a maximum value of 0 at all (x, 0) and (x, 4) satisfying x ∈ [0, 5], as
well as at all (0, y) satisfying y ∈ [0, 4]. (d) y′ = 0 when x = 1 and y = 4 − e.

6. (a) Closed and bounded, so compact. (b) Open and unbounded. (c) Closed and bounded, so compact.

(d) Closed and unbounded. (e) Closed and unbounded. (f) Open and unbounded.

7. Let g(x) = 1 in (−∞, 1), and g(x) = 2 in [1, ∞). Then g is discontinuous at x = 1, and the set {x : g(x) ≤ 1} =
(−∞, 1) is not closed. (It is instructive to draw the graph of g, which has a “step” at x = 1.)

17.6
1. (a) The three first-order conditions f ′

x(x, y, z) = 2 − 2x = 0, f ′
y(x, y, z) = 10 − 2y = 0, and f ′

z (x, y, z) = −2z = 0 have
a unique solution (x, y, z) = (1, 5, 0), which must then be the maximum point.

(b) The three first-order conditions are f ′
x(x, y, z) = −2x − 2y − 2z = 0, f ′

y(x, y, z) = −4y − 2x = 0, and f ′
z (x, y, z) =

−6z − 2x = 0. From the last two equations we get y = − 1
2 x and z = − 1

3 x. Inserting these values into the first equation
gives −2x + x + 2

3 x = 0, so x = 0, implying that y = z = 0. So (x, y, z) = (0, 0, 0) is the maximum point.

2. (a) f (x) = e−x2
and g(x) = F(f (x)) = ln(e−x2

) = −x2 both have a unique maximum at x = 0.

(b) Only x = 0 maximizes f (x). But g(x) = 5 is maximized at every point x because it is a constant.

3. By the chain rule, g′
i(x) = F′(f (x))f ′

i (x) for i = 1, 2, . . . , n. Because F′ �= 0 everywhere, the assertion follows.

4. f ′
x = −6x2 + 30x − 36, f ′

y = 2 − ey2
, f ′

z = −3 + ez2
. There are 8 critical points given by (x, y, z) = (3, ±√

ln 2,
±√

ln 3 ), and (x, y, z) = (2, ±√
ln 2, ±√

ln 3 ), where all possible sign combinations are allowed.

5. (a) F(u) = 1
2 (eu − e−u) is strictly increasing, so the problem is equivalent to: max x2 + y2 − 2x subject to (x, y) ∈ S.

(b) ln u is strictly increasing for u > 0. So the problem is equivalent to: max ln A + a1 ln x1 + · · · + an ln xn subject to
x1 + · · · + xn = 1.

17.7
1. (a) The profit is π = px − ax − bx2 − tx, which has a maximum at x∗ = (p − a − t)/2b, with π∗ = (p − a − t)2/4b.

(b) ∂π∗/∂p = 2(p − a − t)/4b = x∗. If we increase p by dp dollars, where |dp| is small, then the approximate increase
in optimal profit is x∗ dp dollars. (For each of the x∗ units sold the revenue increases by dp dollars.)

2. (a) The profit function is π = π(L, P, w) = P
√

L − wL. The value of L that maximizes profit must satisfy
π ′

L(L, P, w) = P/2
√

L − w = 0, which yields L = (aP/w)2. Now π ′′
LL = −P/4L3/2 < 0 for all L. Hence profit is

maximized at L = L∗(P, w) = (P/2w)2.

(b) The value function is π∗(P, w) = π(L∗, P, w) = P
√

L∗ − wL∗ = P(P/2w) − w(P/2w)2 = P2/4w. It follows
that ∂π∗/∂P = P/2w = √

L∗ = π ′
P(L∗, P, w, a), and also that ∂π∗/∂w = −P2/4w2 = −L∗ = π ′

w(L∗, P, w). Thus,
the envelope theorem is confirmed for this example.
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3. (a) π = p(K2/3 + L1/2 + T1/3) − rK − wL − q, and K∗ = 8
27

p3r−3, L∗ = 1
4

p2w−2, T∗ = 1

3
√

3
p3/2q−3/2

(b) Q∗ = 4
9

p2r−2 + 1
2

pw−1 + 1√
3

p1/2q−1/2, so
∂Q∗

∂r
= −8

9
p2r−3 = −∂K∗

∂p
.

4. ∂Q∗/∂r = (∂/∂r) (∂π̂∗/∂p) = (∂/∂p) (∂π̂∗/∂r) = (∂/∂p)(−K∗) = −∂K∗/∂p.

The other equalities are proved in a similar way.

5. (a) This is a routine application of the rules for differentials in formulas (15.9.4) and (15.9.5).

(b) Suppressing the notation used to indicate that the partials are all evaluated at (K∗, L∗), we get

∂K∗

∂p
= −F′

KF′′
LL + F′

LF′′
KL

p[F′′
KKF′′

LL − (F′′
KL)

2)]
∂K∗

∂r
= F′′

LL

p[F′′
KKF′′

LL − (F′′
KL)

2)]
∂K∗

∂w
= −F′′

KL

p[F′′
KKF′′

LL − (F′′
KL)

2)]

∂L∗

∂p
= −F′

LF′′
KK + F′

KF′′
LK

p[F′′
KKF′′

LL − (F′′
KL)

2)]
∂L∗

∂r
= −F′′

LK

p[F′′
KKF′′

LL − (F′′
KL)

2)]
∂L∗

∂w
= F′′

KK

p[F′′
KKF′′

LL − (F′′
KL)

2)]

The second-order conditions that are sufficient for a strict local maximum imply that F′′
KK < 0, F′′

LL < 0, and F′′
KKF′′

LL −
(F′′

KL)
2) > 0. It follows that ∂K∗/∂r and ∂L∗/∂w are both negative. Lacking information about the sign of F′′

KL, the
signs of the other partials remain undetermined. Because F′′

KL = F′′
LK , we observe that ∂K∗/∂w = ∂L∗/∂r.

6. (a) The first-order conditions are: (i) R′
1 − C′

1 + s = 0; (ii) R′
2 − C′

2 − t = 0.

(b) π ′′
11 = R′′

11 − C′′
11 < 0 and D = π ′′

11π
′′
22 − (π ′′

12)
2 = (R′′

11 − C′′
11)(R

′′
22 − C′′

22) − (R′′
12 − C′′

12)
2 > 0.

(c) As in Exercise 5, take the total differential of the first-order conditions for a maximum. From the signs found in
part (b), one can then show that ∂x∗

1/∂σ and ∂x∗
1/∂τ are positive, whereas ∂x∗

2/∂σ and ∂x∗
2/∂τ are negative. See SM

for details. (d) Because R′′
12 = R′′

21 and C′′
12 = C′′

21, this follows from the answers to (c).

Review exercises for Chapter 17
1. The first-order conditions f ′

1(x, y) = −4x + 2y + 18 = 0 and f ′
2(x, y) = 2x − 2y − 14 = 0 hold at (x, y) = (2, −5).

Moreover f ′′
11 = −4, f ′′

12 = 2, and f ′′
22 = −2, so f ′′

11f ′′
22 − (f ′′

12)
2 = 4. So the conditions in part (a) of Theorem 13.2.1

are satisfied.

2. (a) Looking ahead to part (b) of the exercise, we keep P1 as a variable, and write profit as π = P1Q1 + 90Q2 −
0.1(Q2

1 + Q1Q2 + Q2
2). When P1 = 120, first-order conditions for a maximum give (Q1, Q2) = (500, 200). See SM

for details. (b) In order for the first-order conditions derived in part (a) to have a solution with Q1 = 400, one needs
P1 = 105. See SM for details.

3. (a) Critical points occur where P′
1(x, y) = −0.2x − 0.2y + 47 = 0 and P′

2(x, y) = −0.2x − 0.4y + 48 = 0. These
imply that x = 230 and y = 5, where P′′

11 = −0.2 ≤ 0, P′′
12 = −0.2, and P′′

22 = −0.4 ≤ 0. Since P′′
11P′′

22 − (P′′
12)

2 =
0.04 ≥ 0, the pair (230, 5) maximizes profit.

(b) With total production x + y = 200, and so y = 200 − x, the modified profit function is π̂(x) = f (x, 200 − x) =
−0.1x2 + 39x + 1000. This function is easily seen to have a maximum at x = 195, where y = 200 − 195 = 5.

4. (a) The critical points are at (0, 0) and (3, 9/2). (b) (0, 0), ( 1
2

√
2,

√
2), (− 1

2

√
2, −√

2)

(c) (0, 0), (0, 4), (2, 2), and (−2, 2). See SM for details.

5. Critical points are where f ′
x(x, y, a) = 2ax − 2 = 0 and f ′

y(x, y, a) = 2y − 4a = 0. These imply that x = x∗(a) = 1/a
and y = y∗(a) = 2a. The value function is f ∗(a) = a(1/a)2 − 2(1/a) + (2a)2 − 4a(2a) = −(1/a) − 4a2. Thus
(d/da)f ∗(a) = (1/a2) − 8a. On the other hand (∂/∂a)f (x, y, a) = x2 − 4y = (1/a2) − 8a at (x∗(a), y∗(a)) =
(1/a, 2a). This verifies the envelope theorem.
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6. (a) Profit is π(K, L, T) = p(Ka + Lb + Tc) − rK − wL − qT , which is concave when K, L and T are all nonnegative.
So profits are maximized at its critical point, which occurs when K∗ = (ap/r)1/(1−a), L∗ = (bp/w)1/(1−b), and T∗ =
(cp/q)1/(1−c).

(b) Focus on the terms that depend on r to show that ∂π∗/∂r = −(ap/r)1/(1−a). For details see SM.

(c) From part (b) one has ∂π∗/∂r = −K∗. A similar technique to part (b) can be used to verify the other three
equations of the envelope theorem, which are ∂π∗/∂p = Q∗, ∂π∗/∂w = −L∗, and ∂π∗/∂q = −T∗.

7. (a) f ′
1 = ex+y + ex−y − 3

2 , f ′
2 = ex+y − ex−y − 1

2 , f ′′
11 = ex+y + ex−y, f ′′

12 = ex+y − ex−y, f ′′
22 = ex+y + ex−y.

It follows that f ′′
11 ≥ 0, f ′′

22 ≥ 0, and f ′′
11f ′′

22 − (f ′′
12)

2 = (ex+y + ex−y)2 − (ex+y − ex−y)2 = 4ex+yex−y = 4e2x ≥ 0.

So f is convex.

(b) At any critical point, one has ex+y = 1 and ex−y = 1
2 , so x + y = 0 and x − y = − ln 2. The only critical point is

therefore (x, y) = (− 1
2 ln 2, 1

2 ln 2), where f (x, y) = 1
2 (3 + ln 2). Because f is convex, this is the minimum.

8. (a) The two critical points are (0, 0), which is a saddle point, and (5/6, −5/12), which is a local maximum point.

(b) f ′′
11 = 2 − 6x ≤ 0 ⇐⇒ x ≥ 1/3, while f ′′

22 = −2 ≤ 0, and f ′′
11f ′′

22 − (f ′′
12)

2 = 12x − 5 ≥ 0 ⇐⇒ x ≥ 5/12. We
conclude that f is concave in S = {(x, y) : x ≥ 5/12}. The largest value of f in S occurs at (5/6, −5/12), where the
value is 125/432. See SM for details.

9. (a) f ′
1(x, y) = x − 1 + ay, f ′

2(x, y) = a(x − 1) − y2 + 2a2y, which are both 0 at (x, y) = (1 − a3, a2).

(b) At the critical point one has f ∗(a) = − 1
2 + 1

6 a6, with derivative a5. The partial derivative of f w.r.t. a is y(x −
1) + 2ay2, which equals a5 at the critical point (x, y) = (1 − a3, a2). See SM for details.

(c) Calculating the second-order partial derivatives of f shows that it is convex where y ≤ 1
2 a2. See SM for details.

10. (a) p = C′
x(x

∗, y∗) and q = C′
y(x

∗, y∗), which state that the price of each good should equal its marginal cost.

(b) With simplified notation, at the optimum one has π̂ ′
x = F + xF′

x + yG′
x − C′

x = 0 and π̂ ′
y = xF′

y + G + yG′
y −

C′
y = 0. The interpretation is that marginal revenue = marginal cost, as usual, with the twist that a change in output

of either good affects marginal revenue in the other market as well.

(c) The profit function is π = x(a − bx − cy) + y(α − βx − γ y) − Px − Qy − R, so the first-order conditions are
∂π/∂x = a − 2bx − cy − βy − P = 0, and ∂π/∂y = −cx + α − βx − 2γ y − Q = 0.

(d) ∂2π/∂x2 = −2b, ∂2π/∂y2 = −2γ , ∂2π/∂x∂y = −(β + c). The direct partials of order 2 are negative and the
cross partials satisfy � = (∂2π/∂x2)(∂2π/∂y2) − (∂2π/∂x∂y)2 = 4γ b − (β + c)2, so the conclusion follows.

Chapter 18

18.1
1. (a) L(x, y) = xy − λ(x + 3y − 24). The first-order conditions L′

1 = y − λ = 0, L′
2 = x − 3λ = 0 imply that x = 3y.

Inserted into the constraint, this yields 3y + 3y = 24, so y = 4, and then x = 12.

(b) By (∗∗) in Example 18.1.3 with a = b = p = 1, q = 3, m = 24, we have x = 1
2 (24/1) = 12, y = 1

2 (24/3) = 4.

2. With L = −40Q1 + Q2
1 − 2Q1Q2 − 20Q2 + Q2

2 − λ(Q1 + Q2 − 15),

the first-order conditions are L′
1 = −40 + 2Q1 − 2Q2 − λ = 0 and L′

2 = −2Q1 − 20 + 2Q2 − λ = 0.

It follows that −40 + 2Q1 − 2Q2 = −2Q1 − 20 + 2Q2, and so Q1 − Q2 = 5.

This equation and the constraint together give the solution Q1 = 10, Q2 = 5, with λ = −30.

3. (a) By (∗∗) in Example 18.1.3, one has x = 3
10

m and y = 1
10

m. (b) x = 10, y = 6 250 000 (c) x = 8/3, y = 1
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4. (a) With L(x, y) = x2 + y2 − λ(x + 2y − 4), the first-order conditions L′
1 = 2x − λ = 0, L′

2 = 2y − 2λ = 0 imply
that 2x = y. Inserting this into the constraint leads to the solution (x, y) = (4/5, 8/5) with λ = 8/5.

(b) (x, y) = (8, 4) with λ = 16. See SM. (c) (x, y) = (50, 50) with λ = 250. See SM.

5. The budget constraint is 2x + 4y = 1000, so with L(x, y) = 100xy + x + 2y − λ(2x + 4y − 1000), the first-order
conditions are L′

1 = 100y + 1 − 2λ = 0 and L′
2 = 100x + 2 − 4λ = 0. Eliminating λ from these equations gives

x = 2y. Inserting this into the constraint gives 2x + 2x = 1000. So the solution is x = 250 and y = 125.

6. Formula (∗∗) in Example 18.1.3 with x, y, p, q, m replaced by m, l, 1/w, 1, T0 respectively yields m = awT0/(a + b)

and l = bT0/(a + b).

7. The problem is max −0.1x2 − 0.2xy − 0.2y2 + 47x + 48y − 600 subject to x + y = 200.

With L(x, y) = −0.1x2 − 0.2xy − 0.2y2 + 47x + 48y − 600 − λ(x + y − 200),

the first-order conditions are L′
1 = −0.2x − 0.2y + 47 − λ = 0 and L′

2 = −0.2x − 0.4y + 48 − λ = 0.

Eliminating x and λ yields y = 5, and then the budget constraint gives x = 195, with λ = 7.

8. (a) P(x, y) = (96 − 4x)x + (84 − 2y)y − 2x2 − 2xy − y2 = −6x2 − 3y2 − 2xy + 96x + 84y

(b) P′
x(x, y) = −12x − 2y + 96, P′

y(x, y) = −6y − 2x + 84. The only critical point is (x, y) = (6, 12).

(c) The Lagrangian is L(x, y) = −6x2 − 3y2 − 2xy + 96x + 84y − λ(x + y − 11). The first-order conditions
are L′

1 = −12x − 2y + 96 − λ = 0, L′
2 = −6y − 2x + 84 − λ = 0. Eliminating λ yields 10x − 4y = 12.

The constraint is x + y = 11. Solving these two equations simultaneously gives x = 4, y = 7. Since
P(4, 7) = 673 < P(6, 12) = 792, the limit on total output reduces profit by 119.

9. (a) x∗(p, m) = aγ p−γ where γ = 1/(1 − a), and y∗(p, m) = m − aγ p1−γ .

(b) ∂x∗/∂p = −x∗/(1 − a)p < 0, ∂x∗/∂m = 0, ∂y∗/∂p = ax∗/(1 − a) > 0, ∂y∗/∂m = 1.

(c) Elp px∗(p, m) = −a/(1 − a) < 0. See SM. (d) U∗(p, m) = m + 1/4p. See SM for details.

10. (a) x(p, q, m) = [m + q ln(q/p)]/(p + q) and y(p, q, m) = [m + p ln(p/q)]/(p + q).

(b) Both are nonnegative if and only if: either (i) p ≥ q and m ≥ q ln(p/q); or (ii) p ≤ q and m ≥ p ln(q/p).

(c) Direct verification.

18.2
1. According to (∗∗) in Example 18.1.3, the solution is x∗ = 3m/8, y∗ = m/12, with λ = 9m3/512.

The value function is f ∗(m) = (x∗)3y∗ = 9m4/2048, so we see that df ∗(m)/dm = 9m3/512 = λ.

2. (a) With L = rK + wL − λ(
√

K + L − Q), the first-order conditions are L′
K = r − λ/2

√
K∗ = 0 and L′

L = w − λ =
0. Inserting λ from the last equation into the first yields

√
K∗ = w/2r. Then K∗ = w2/4r2 and from the constraint

L∗ = Q − w/2r. (b) The value function is C∗(Q) = rK∗ + wL∗ = wQ − w2/4r, and so dC∗(Q)/dQ = w = λ.

3. (a) x + 2y = a yields y = 1
2 a − 1

2 x, and then x2 + y2 = x2 + ( 1
2 a − 1

2 x)2 = 5
4 x2 − 1

2 ax + 1
4 a2.

This quadratic function has a minimum at x = a/5, and then y = 2a/5.

(b) L(x, y) = x2 + y2 − λ(x + 2y − a). The necessary conditions are L′
1 = 2x − λ = 0, L′

2 = 2y − 2λ = 0, implying
that 2x = y. From the constraint one has x = a/5, and then y = 2a/5, with λ = 2a/5.

(c) See Fig. A18.2.3. The problem is to find the point on the straight line x + 2y = a that is nearest to the origin.

No point on the line is furthest from the origin, so the corresponding maximization problem has no solution.
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y

x

(a/5, 2a/5)

a

a/2

Figure A18.2.3

4. (a) x∗ = 4, y∗ = 24, λ = 1/4. (b) ŷ = 97/4, x̂ = 4. The increase is �U = 105/4 − 104/4 = 1/4. This equals the
value of the Lagrange multiplier in part (a). (The exact equality is because U is linear in one of the variables.)

(c) x∗ = q2/4p2, y∗ = m/q − q/4p. (Note that y∗ > 0 if and only if m > q2/4p.)

5. (a) First-order conditions: (i) α/(x∗ − a) = λp; (ii) β/(y∗ − b) = λq. Hence px∗ = pa + α/λ and qy∗ = qb + β/λ.
Use the budget constraint to eliminate λ. The expressions for px∗ and qy∗ follow.

(b) U∗ = α[ln α + ln(m − (ap + bq)) − ln p] + β[ln β + ln(m − (ap + bq)) − ln q]. The results follow.

6. f (x, T) = − 1
6 αxT5 + 1

12 xT4 + 1
6 xT3, g(x, T) = 1

6 .xT3. The solution of (∗) is x = 384α3M, T = 1/4α, and f ∗(M) =
M + M/16α, with λ = 1 + 1/16α. Clearly, ∂f ∗(M)/∂M = λ, which confirms Eq. (18.2.2).

18.3
1. (a) (2, 2) and (−2, −2) are the only possible solutions of the maximization problem,

whereas (−2, 2) and (2, −2) are the only possible solutions of the minimization problem. See SM for details.

(b) (3, −1) solves the maximization problem, whereas (−3, 1) solves the minimization problem. See SM.

2. (a) Maximum at (x, y, λ) = (−4, 0, 5/4), minimum at (x, y, λ) = (4/3, ±4
√

2/3, 1/4). See SM for details.

(b) Minimum points: (
4√2, 1 − 1

2

√
2) and (− 4√2, 1 − 1

2

√
2). See SM for details.

y

x−1 1

y = 1 − x2
( 1

2 , 3
4 )

x + y = 1
2

x + y = 5
4

Figure A18.3.3

3. (a) L = x + y − λ(x2 + y − 1). The equations L′
1 = 1 − 2λx = 0, L′

2 = 1 − λ = 0, and x2 + y = 1 have the solution
x = 1

2 , y = 3
4 , with λ = 1.

(b) See Fig. A18.3.3, which shows the maximum at (x, y) = ( 1
2 , 3

4 ). The minimization problem has no solution
because f (x, 1 − x2) = x + 1 − x2 → −∞ as x → ∞.
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(c) The solution to the revised problem is x = 0.5 and y = 0.85. The change in the value function is f ∗(1.1) − f ∗(1) =
(0.5 + 0.85) − (0.5 + 0.75) = 0.1. Because λ = 1, one has λ · dc = 1 · 0.1 = 0.1. So, in this case, Eq. (18.2.3) is
satisfied with equality. (This is because of the special form of the functions f and g.)

4. (a) x = 6, y = 2 (b) The approximate change is 1. See SM for details.

5. (a) Q = x′Ax where x′ is the row vector (x1, x2) and A is the matrix
(

2 7
7 2

)
.

(b) With L = 2x2
1 + 14x1x2 + 2x2

2 − λ(x2
1 + x2

2 − 1), the first-order conditions are L′
1 = 4x1 + 14x2 − 2λx1 = 0 and

L′
2 = 14x1 + 4x2 − 2λx2 = 0. Dividing each equation by 2, we see that these two equations can be written as Ax = λx.

So any nonzero vector satisfying the first-order conditions is an eigenvector for A, and the Lagrange multiplier is the
associated eigenvalue.

(c) Because Q(x) = x′Ax is a continuous function, it achieves both a maximum and minimum over the unit circle
x′x = x2

1 + x2
2 = 1, which is a closed and bounded set. So both a maximum point x+ and a minimum point x− must

satisfy x′x = 1 as well as the first-order condition Ax = λx, which implies that x′Ax = λ. It follows that the larger
eigenvalue is the maximum, and the smaller eigenvalue is the minimum.

(d) The characteristic equation is 0 =
∣∣∣∣ 2 − λ 7

7 2 − λ

∣∣∣∣ = (2 − λ)2 − 49 = λ2 − 4λ − 45 = (λ − 2)2 − 49. Its roots

are the two eigenvalues λ+ = 9 and λ− = −5. Associated with these are the respective eigenvectors x+ and x− that

satisfy
(−7 7

7 −7

)
x+ = 0 and

(
7 7
7 7

)
x− = 0. Normalizing them to satisfy x′x = 1, they are the orthogonal vec-

tors x+ = ± 1
2

√
2 (1, 1)′ and x− = ± 1

2

√
2 (1, −1)′, respectively. The vectors ± 1

2

√
2 (1, 1)′ are the two constrained

maximum points of Q, whereas ± 1
2

√
2 (1, −1)′ are the two constrained minimum points. See SM for details.

18.4
1. Setting y = 2 − x reduces the problem to that of maximizing x(2 − x) = 2x − x2, which has the solution x = 1, and

so the optimal value of y becomes 2 − x = 1. Using the Lagrange method, with the Lagrangian L(x, y) = xy − λ(x +
y − 2), the first-order conditions for the constrained problem are y − λ = 0, x − λ = 0, with the unique solution x =
y = λ = 1 satisfying the constraint x + y = 2. Then, when λ = 1, one has L(2, 2) = 2 > L(1, 1) = 1, so (1, 1) is not
a maximum point for L. (In fact, L(x, y) has a saddle point at (1, 1).)

2. The problem with systems of three equations and two unknowns is not that they are merely difficult to solve but that
they are usually inconsistent, meaning that it is impossible to solve them. The equations f ′

x(x, y) = f ′
y(x, y) = 0 are not

valid at the optimal point.

y

x

√
x + √

y = 5

2x + 3y = 75

2x + 3y = 50

P
(25, 0)

2x + 3y = 30

(0, 25)

Figure A18.4.3

3. (a) With L = 2x + 3y − λ(
√

x + √
y − 5), the equations L′

1(x, y) = 2 − λ/2
√

x = 0 and L′
2(x, y) = 3 − λ/2

√
y = 0

must be satisfied. They imply that λ = 4
√

x = 6
√

y, so y = 4x/9. Hence x = 9 and y = 4 with λ = 12.
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(b) See Fig. A18.4.3. Move the line 2x + 3y = c as far north-east as possible. So the solution is at (x, y) = (0, 25).

(c) g(x, y) is continuously differentiable only on the set A of (x, y) such that x > 0 and y > 0, so the theorem does not
apply at the point (x, y) = (0, 25).

4. The Lagrange multiplier method produces a unique solution candidate (x, y) = (0, 0) with λ = −4, corresponding to
a local minimum. The global minimum is at (x, y) = (−1, 0), however, an isolated point of g(x, y) = 0. See SM for
details.

18.5
1. The Lagrangian L = 10x1/2y1/3 − λ(2x + 4y − m) is concave in (x, y). So Theorem 18.5.1 implies that the solution

to part (a) Exercise 18.1.3 is a maximum.

2. With L = ln x + ln y − λ(px + qy − m), L′
x = 1/x − pλ, L′

y = 1/y − qλ, L′′
xx = −1/x2, L′′

xy = 0, and L′′
yy = −1/y2.

Moreover, g′
x = p and g′

y = q. Hence D(x, y, λ) = −q2/x2 − p2/y2 < 0. So condition (a) in Theorem 18.5.2 holds.

3. D(x, y, λ) = 10, so Theorem 18.5.2 implies that (a/5, 2a/5) is a local minimum.

4. U′′
11(x, y) = a(a − 1)xa−2 ≤ 0, U′′

22(x, y) = a(a − 1)ya−2 ≤ 0, and U′′
12(x, y) = 0, so U is concave.

The solution is x = mp1/(a−1)/R, and y = mq1/(a−1)/R, where R = pa/(a−1) + qa/(a−1).

18.6
1. (a) L(x, y, z) = x2 + y2 + z2 − λ(x + y + z − 1), so L′

x = 2x − λ = 0, L′
y = 2y − λ = 0, and L′

z = 2z − λ = 0.

It follows that x = y = z = 1
2 λ. The only solution of the necessary conditions is (1/3, 1/3, 1/3) with λ = 2/3.

(b) The problem is to find the shortest distance from the origin to a point in the plane x + y + z = 1. The corresponding
maximization problem has no solution.

2. x = 1/2
1/2 + 1/3 + 1/4

390
4

= 45, y = 1/3
1/2 + 1/3 + 1/4

390
3

= 40, z = 1/4
1/2 + 1/3 + 1/4

390
6

= 15

3. (a) With the Lagrangian L(x, y, z) = x + √
y − 1/z − λ(px + qy + rz − m), the first-order conditions (in addition to

the constraint) are: (i) L′
1 = 1 − λp = 0; (ii) L′

2 = 1
2 y−1/2 − λq = 0; (iii) L′

3 = z−2 − λr = 0.

(b) From the equations in (a) we get λ = 1/p, then 1
2 y−1/2 = q/p, so y = p2/4q2, and finally z = √

p/r.

Inserting these values of y and z in the budget constraint and solving for x gives x = m/p − p/4q − √
r/p.

(c) Straightforward substitution. (d) ∂U∗/∂m = 1/p = λ, as expected from Section 18.2.

4. The Lagrangian L(x, y, z) = α ln x + β ln y + (1 − α − β) ln(L − l) − λ(px + qy − wl) has a critical point at
(x∗, y∗, z∗) where: (i) L′

1 = α/x∗ − λp = 0; (ii) L′
2 = β/y∗ − λq = 0; (iii) L′

3 = −(1 − α − β)/(L − l∗) + λw = 0.

From (i) and (ii), qy∗ = (β/α)px∗, while (i) and (iii) yield l∗ = L − [(1 − α − β)/wα]px∗.

Using the budget constraint, then solving for x∗, yields x∗ = αwL/p, y∗ = βwL/q, and l∗ = (α + β)L.

5. The constraints reduce to h + 2k + l = 0 and 2h − k − 3l = 0, so k = −h and l = h.

But then x2 + y2 + z2 = 200 + 3h2 ≥ 200 for all h, so f is maximized for h = 0.

Then k = l = 0 also, and we conclude that (x, y, z) = (10, 10, 0) solves the minimization problem.

6. Here L = a2
1x2

1 + · · · + a2
nx2

n − λ(x1 + · · · + xn − 1). Necessary conditions are that L′
j = 2a2

j xj − λ = 0, and so xj =
λ/2a2

j , for each j = 1, . . . , n. Inserting these into the constraint implies that 1 = 1
2 λ(1/a2

1 + · · · + 1/a2
n). Thus, for
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j = 1, . . . , n, we have xj = (1/a2
j )
/

(1/a2
1 + · · · + 1/a2

n) = (1/a2
j )
/∑n

i=1(1/a2
i ). If at least one ai is 0, the minimum

value is 0, which is attained by letting a corresponding xi be 1, with the other xj all equal to 0.

7. The point (x, y, z) = (0, 0, 1) with λ = −1/2 and μ = 1 yields the minimum, whereas (x, y, z) = (4/5, 2/5, −1/5)

with λ = 1/2 and μ = 1/5 yields the maximum.

8. (a) xj = ajm/pj(a1 + · · · + an) for k = 1, . . . , n. (b) xj = mp−1/(1−a)

j

/∑n
i=1 p−a/(1−a)

i for j = 1, 2, . . . , n.

18.7
1. (a) With L = x + a ln y − λ(px + qy − m), one has L′

1 = 1 − λp = 0, L′
2 = a/y∗ − λq = 0. Thus λ = 1/p.

Inserting this into the second equality yields y∗ = ap/q. From the budget constraint we get x∗ = m/p − a.

The Lagrangian is concave, so this is the solution.

(b) U∗ = x∗ + a ln y∗ = m/p − a + a ln a + a ln p − a ln q. Then ∂U∗/∂p = −m/p2 + a/p, ∂U∗/∂q = −a/q,
∂U∗/∂m = 1/p, and ∂U∗/∂a = ln a + ln p − ln q.

(c) ∂L/∂p = −λx, ∂L/∂q = −λy, ∂L/∂m = λ, and ∂L/∂a = ln y. When we evaluate these four partials at (x∗, y∗),
we see that the envelope theorem is confirmed.

2. The minimum point is (x∗, y∗, z∗) = (a, 2a, 9a), where a = −√
b/6, with λ = −3/

√
b.

The value of the objective function is f ∗(b) = x∗ + 4y∗ + 3z∗ = −6
√

b, and df ∗(b)/db = −3/
√

b = λ.

3. (a) x = aM/α, y = bM/β, z = cM/γ , λ = 1/2M, where M = √
L/
√

a2/α + b2/β + c2/γ . (The first-order
conditions give x = a/2λα, y = b/2λβ, z = c/2λγ . Substituting in the constraint and solving for λ gives the
solution.)

(b) We find that M = √
L/5, and the given values of x, y, and z follow.

(c) For L = 100 one has M = 2 and λ = 1/4. As L increases from 100 to 101, the approximate increase in the
maximal value is λ · 1 = 0.25. The exact increase is 5

(√
101 − √

100
)

, or about 0.249 378.

4. (a)
( 1

4

√
15, 0, 1

8

)
and

(− 1
4

√
15, 0, 1

8

)
(with λ = 1) both solve the maximization problem, while

(
0, 0, − 1

2

)
solves the

minimization problem. (b) �f ∗ ≈ λ�c = 1 · 0.02 = 0.02

5. K∗ = 21/3r−1/3w1/3Q4/3, L∗ = 2−2/3r2/3w−2/3Q4/3, C∗ = 3 · 2−2/3r2/3w1/3Q4/3, λ = 24/3r2/3w1/3Q1/3.

The equalities (∗) are easily verified.

6.
∂K∗

∂w
= ∂

∂w

(
∂C∗

∂r

)
= ∂

∂r

(
∂C∗

∂w

)
= ∂L∗

∂r
, using the first and second equalities in (∗) of Example 18.7.3.

7. (a) With L = √
x + ay − λ(px + qy − m), conditions for (x∗, y∗) to solve the problem are px∗ + qy∗ = m and:

(i) L′
1 = 1/2

√
x∗ − λp = 0; (ii) L′

2 = a − λq = 0. Thus λ = a/q, and x∗ = q2/4a2p2, y∗ = m/q − q/4a2p.

Because L is concave in (x, y), this is the solution. Indirect utility is U∗(p, q, m, a) = √
x∗ + ay∗ = q/4ap + am/q.

(b) The partial derivatives of U∗ w.r.t. the four parameters p, q, m, a are:

∂U∗/∂p = −q/4ap2, ∂U∗/∂q = 1/4ap − am/q2, ∂U∗/∂m = a/q, and ∂U∗/∂a = −q/4a2p + m/q.

On the other hand, with L(x, y, p, q, m, a) = √
x + ay − λ(px + qy − m), when evaluated at (x∗, y∗), the

four first-order partial derivatives of L are: ∂L∗/∂p = −λx∗ = −(a/q)(q2/4a2p2) = −q/4ap2, then
∂L∗/∂q = −λy∗ = −(a/q)(m/q − q/4a2p) = 1/4ap − am/q2, ∂L∗/∂m = λ, and ∂L∗/∂a = y∗ = m/q − q/4a2p.

The envelope theorem is confirmed in all cases.
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Review exercises for Chapter 18
1. (a) Given the Lagrangian L(x, y) = 3x + 4y − λ(x2 + y2 − 225), the first-order conditions imply that 3 − 2λx = 0

and 4 − 2λy = 0, so 3y = 4x = 6λ. Inserting these into the constraint yields x2 = 81, so x = ±9. The two solu-
tions to all the first-order conditions are (x, y, λ) = ±(9, 12, 1/6). Now L(x, y) is concave or convex according as
λ ≥ 0 or λ ≤ 0. So, by Theorem 18.5.1, (x, y) = (9, 12) is a maximum point and (x, y) = (−9, −12) is a minimum
point.

(b) Using (18.2.3), f ∗(225 − 1) − f ∗(225) ≈ λ(−1) = −1/6.

2. (a) x = 2m/5p, y = 3m/5q (b) x = m/3p, y = 2m/3q (c) x = 3m/5p, y = 2m/5q

3. (a) π = xp(x) + yq(y) − C(x, y). The first-order conditions imply that marginal revenue equals marginal cost:

(i) p(x∗) + x∗p′(x∗) = C′
1(x

∗, y∗); (ii) q(y∗) + y∗q′(y∗) = C′
2(x

∗, y∗). See SM for further discussion.

(b) With L = xp(x) + yq(y) − C(x, y) − λ(x + y − m), the first-order conditions for (x̂, ŷ) to solve the problem

imply that L′
1 = p(x̂) + x̂p′(x̂) − C′

1(x̂, ŷ) − λ = 0 and L′
2 = q(ŷ) + ŷq′(ŷ) − C′

2(x̂, ŷ) − λ = 0.

4. (a) The Lagrangian is L(x, y) = U(x, y) − λ[py − w(24 − x)].

The first-order conditions imply that pU′
1 = wU′

2 = λwp, which immediately yields (∗∗).

(b) Differentiating (∗) and (∗∗) w.r.t. w gives py′
w = 24 − x − wx′

w and p(U′′
11x′

w + U′′
12y′

w) = U′
2 + w(U′′

21x′
w +

U′′
22y′

w). Solving these linear equations in the two unknowns x′
w and y′

w yields the given formula for x′
w = ∂x/∂w.

5. (a) x = −2
√

b and y = 0, with λ = 4 + 2/
√

b, solve the max problem;

x = 4/3, y = ±√
b − 4/9, with λ = 1, solve the min problem. See SM for details.

(b) For (x, y, λ) = (−2
√

b, 0, 4 + 2/
√

b), one has f ∗(b) = 4b + 4
√

b + 1. So the suggested equality is easily
verified.

6. (a) With L(x, y) = v(x) + w(y) − λ(px + qy − m), the first-order conditions imply v′(x) = λp and w′(y) = λq.

Thus v′(x)/w′(y) = p/q. (b) Since L′′
xx = v′′(x), L′′

yy = w′′(y), and L′′
xy = 0, we see that the Lagrangian is

concave.

7. (a) The first-order conditions imply that 2x − 2 = 2y − 2, so x = y. Inserting this into the constraint equation and
squaring, then simplifying, one obtains the second equation in (∗).

(b) ∂x/∂a = 1/2x(3x + b), ∂2x/∂a2 = − 1
4 (6x + b)[x(3x + b)]−3, and ∂x/∂b = −x/2(3x + b). See SM.

Chapter 19

19.1
1. (a) From Fig. A19.1.1a we see that the solution is at the intersection of the two lines 3x1 + 2x2 = 6 and x1 + 4x2 = 4.

Solution: max = 36/5 for (x1, x2) = (8/5, 3/5).

(b) From Fig. A19.1.1b we see that the solution is at the intersection of the two lines u1 + 3u2 = 11 and 2u1 + 5u2 =
20. Solution: min = 104 for (u1, u2) = (5, 2).

2. (a) A graph shows that the solution is at the intersection of the lines −2x1 + 3x2 = 6 and x1 + x2 = 5.

Hence max = 98/5 for (x1, x2) = (9/5, 16/5).

(b) The solution satisfies 2x1 + 3x2 = 13 and x1 + x2 = 6. Hence max = 49 for (x1, x2) = (5, 1).

(c) The solution satisfies x1 − 3x2 = 0 and x1 = 2. Hence max = −10/3 for (x1, x2) = (2, 2/3).
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x2

1

2

3

x1
1 2 3 4

P

3x1 + 4x2 = c

Figure A19.1.1a

u2

u1

5

5 10

10u1 + 27u2 = c

P

Figure A19.1.1b

3. (a) max = 18/5 for (x1, x2) = (4/5, 18/5). (b) max = 8 for (x1, x2) = (8, 0). (c) max = 24 for (x1, x2) = (8, 0).

(d) min = −28/5 for (x1, x2) = (4/5, 18/5). (e) max = 16 for all (x1, x2) = (ξ , 4 − 1
2 ξ) where ξ ∈ [4/5, 8].

(f) The answer to (c) implies that min = −24 for (x1, x2) = (8, 0).

4. (a) No maximum exists. Too see this, consider Fig. A19.1.4. As c becomes arbitrarily large, so the dashed level curve
x1 + x2 = c moves to the north-east and still has the point (c, 0) in common with the shaded feasible set.

(b) Maximum at P = (1, 0). The level curves are as in (a), but the direction of increase is reversed.

x2

−1

1

2

3

4

x1−1 1 2 3 4 5 6

−x1 + 3x2 = 3

−x1 + x2 = −1

x1 + x2 = c

Figure A19.1.4

5. The slope of the line 20x1 + tx2 = c must lie between −1/2 (the slope of the flour border) and −1 (the slope of the
butter border). For t = 0, the line is vertical and the solution is the point D in Fig. 19.1.2. For t �= 0, the slope of the
line is −20/t. Thus, −1 ≤ −20/t ≤ −1/2, which implies that t ∈ [20, 40].

6. The LP problem is: max 700x + 1000y subject to

⎧⎪⎪⎨
⎪⎪⎩

3x + 5y ≤ 3900

x + 3y ≤ 2100

2x + 2y ≤ 2200

, x ≥ 0 , y ≥ 0.

A figure showing the admissible set and an appropriate level line for the objective function will demon-
strate that the solution is at the intersection of the two lines 3x + 5y = 3900 and 2x + 2y = 2200. Solving
these two equations yields x = 800 and y = 300. The firm should produce 800 sets of type A and 300 of
type B.
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19.2
1. (a) (x1, x2) = (2, 1/2) and u∗

1 = 4/5. (b) (x1, x2) = (7/5, 9/10) and u∗
2 = 3/5.

(c) Multiplying the two ≤ constraints by 4/5 and 3/5, respectively, then adding,

we obtain (4/5)(3x1 + 2x2) + (3/5)(x1 + 4x2) ≤ 6 · (4/5) + 4 · (3/5), which reduces to 3x1 + 4x2 ≤ 36/5.

2. min 8u1 + 13u2 + 6u3 subject to

{
u1 + 2u2 + u3 ≥ 8

2u1 + 3u2 + u3 ≥ 9
, u1 ≥ 0, u2 ≥ 0, u3 ≥ 0

3. (a) min 6u1 + 4u2 subject to

{
3u1 + u2 ≥ 3

2u1 + 4u2 ≥ 4
, u1 ≥ 0, u2 ≥ 0

(b) max 11x1 + 20x2 subject to

{
x1 + 2x2 ≤ 10

3x1 + 5x2 ≤ 2
, u1 ≥ 0, u2 ≥ 0

4. (a) A graph shows that the solution is at the intersection of the lines x1 + 2x2 = 14 and 2x1 + x2 = 13.

Hence max = 9 for (x∗
1, x∗

2) = (4, 5).

(b) The dual is min 14u1 + 13u2 subject to

{
u1 + 2u2 ≥ 1

2u1 + u2 ≥ 1
, u1 ≥ 0, u2 ≥ 0.

A graph shows that the solution is at the intersection of the lines u1 + 2u2 = 1 and 2u1 + u2 = 1.

Hence min = 9 for (u∗
1, u∗

2) = (1/3, 1/3).

19.3
1. (a) x = 0 and y = 3 gives max = 21. See Fig. A19.3.1a, where the optimum is at P.

(b) The dual problem is min 20u1 + 21u2 subject to

{
4u1 + 3u2 ≥ 2

5u1 + 7u2 ≥ 7
, u1 ≥ 0, u2 ≥ 0.

The solution is u1 = 0 and u2 = 1, which gives min = 21. See Fig. A19.3.1b. (c) Yes. Both values are 21.

y

x

P

2x + 7y = c

1

1

Figure A19.3.1a

u2

u1
1

P 20u1 + 21u2 = c

Figure A19.3.1b

2. max 300x1 + 500x2 subject to

{
10x1 + 25x2 ≤ 10 000

20x1 + 25x2 ≤ 8 000
, x1 ≥ 0, x2 ≥ 0.

The solution can be found graphically. It is x∗
1 = 0, x∗

2 = 320, and the maximum value of the objective function is
160 000, which is the same as that found in Example 19.1.2 for the primal problem.
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3. (a) The profit from selling x1 small and x2 medium television sets is 400x1 + 500x2.

The first constraint, 2x1 + x2 ≤ 16, says that we cannot use more hours on assembly line 1 than its capacity allows.

The other constraints have similar interpretations.

(b) max = 3800 for x1 = 7 and x2 = 2. (c) Assembly line 1 should have its capacity increased. See SM for
details.

19.4
1. According to formula (19.4.1), one has �z∗ = u∗

1 �b1 + u∗
2 �b2 = 0 · 0.1 + 1 · (−0.2) = −0.2.

2. (a) max 300x1 + 200x2 subject to

⎧⎪⎪⎨
⎪⎪⎩

6x1 + 3x2 ≤ 54

4x1 + 6x2 ≤ 48

5x1 + 5x2 ≤ 50

, x1 ≥ 0, x2 ≥ 0

where x1 and x2 are the number of units produced of A and B, respectively. Solution: (x1, x2) = (8, 2). See SM.
(b) Dual solution: (u1, u2, u3) = (100/3, 0, 20). (c) Increase in optimal profit: �π∗ = u∗

1 · 2 + u∗
3 · 1 = 260/3.

19.5
1. 4u∗

1 + 3u∗
2 = 3 > 2 and x∗ = 0; 5u∗

1 + 7u∗
2 = 7 and y∗ = 3 > 0.

Also 4x∗ + 5y∗ = 15 < 20 and u∗
1 = 0; 3x∗ + 7y∗ = 21 and u∗

2 = 1 > 0. So (19.5.1) and (19.5.2) are both satisfied.

y2

5

10

y1
5 10 15

(3)

y1 + 2y2 = Z0

(1)
(3, 2)

(2)

(4)

Figure A19.5.2

2. (a) See Fig. A19.5.2. The minimum is attained at (y∗
1, y∗

2) = (3, 2).

(b) The dual is max 15x1 + 5x2 − 5x3 − 20x4 s.t.

{
x1 + x2 − x3 + x4 ≤ 1

6x1 + x2 + x3 − 2x4 ≤ 2
, xj ≥ 0 (j = 1, . . . , 4).

The maximum is at (x∗
1, x∗

2, x∗
3, x∗

4) = (1/5, 4/5, 0, 0).

(c) If the first constraint is changed to y1 + 6y2 ≥ 15.1, then the solution of the primal is still at the intersection of the
lines marked (1) and (2) in Fig. A19.5.2, but with line (1) shifted up slightly. The solution of the dual is completely
unchanged. In both problems the optimal value increases by (15.1 − 15) · x∗

1 = 0.02.

3. (a) min 10 000 y1 + 8 000 y2 + 11 000 y3 s.t.

{
10y1 + 20y2 + 20y3 ≥ 300

20y1 + 10y2 + 20y3 ≥ 500
, y1 ≥ 0, y2 ≥ 0, y3 ≥ 0

(b) The dual is: max 300x1 + 500x2 subject to

⎧⎪⎪⎨
⎪⎪⎩

10x1 + 20x2 ≤ 10 000

20x1 + 10x2 ≤ 8 000

20x1 + 20x2 ≤ 11 000

, x1 ≥ 0, x2 ≥ 0
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Solution: max = 255 000 for x1 = 100 and x2 = 450.
Solution of the primal: min = 255 000 for (y1, y2, y3) = (20, 0, 5). (c) The minimum cost will increase by 2000.

4. (a) For x3 = 0, the solution is x1 = x2 = 1/3. For x3 = 3, the solution is x1 = 1 and x2 = 2.

(b) Let zmax denote the maximum value of the objective function.

If 0 ≤ x3 ≤ 7/3, then zmax(x3) = 2x3 + 5/3 for x1 = 1/3 and x2 = x3 + 1/3.

If 7/3 < x3 ≤ 5, then zmax(x3) = x3 + 4 for x1 = x3 − 2 and x2 = 5 − x3.

If x3 > 5, then zmax(x3) = 9 for x1 = 3 and x2 = 0. Because zmax(x3) is increasing, the maximum is 9 for x3 ≥ 5.

(c) The solution to the original problem is x1 = 3 and x2 = 0, with x3 an arbitrary number ≥ 5.

Review exercises for Chapter 19
1. (a) x∗ = 3/2, y∗ = 5/2. (A diagram shows that the solution is at the intersection of x + y = 4 and −x + y = 1.)

(b) The dual is min 4u1 + u2 + 3u3 subject to

{
u1 − u2 + 2u3 ≥ 1

u1 + u2 − u3 ≥ 2
, u1 ≥ 0, u2 ≥ 0, u3 ≥ 0.

Using complementary slackness, the solution of the dual is: u∗
1 = 3/2, u∗

2 = 1/2, and u∗
3 = 0.

2. (a) max −x1 + x2 subject to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−x1 + 2x2 ≤ 16

x1 − 2x2 ≤ 6

−2x1 − x2 ≤ −8

−4x1 − 5x2 ≤ −15

, x1 ≥ 0, x2 ≥ 0. Solution: (x1, x2) = (0, 8).

(b) (y1, y2, y3, y4) = ( 1
2 (b + 1), 0, b, 0) for any b satisfying 0 ≤ b ≤ 1/5.

(c) The maximand for the dual becomes kx1 + x2. The solution is unchanged provided that k ≤ −1/2.

3. (a) x∗ = 0, y∗ = 4. (A diagram shows that the solution is at the intersection of x = 0 and 4x + y = 4.)

(b) The dual problem is

max 4u1 + 3u2 + 2u3 − 2u4 subject to

{
4u1 + 2u2 + 3u3 − u4 ≤ 5

u1 + u2 + 2u3 + 2u4 ≤ 1
, u1, u2, u3, u4 ≥ 0

By complementary slackness, its solution is: u∗
1 = 1, u∗

2 = u∗
3 = u∗

4 = 0.

4. (a) To produce a = (5, 5, 7), put λ = 1/2. To produce b = (7, 5, 5) would require 6λ + 2 = 7, −2λ + 6 = 5, and
−6λ + 10 = 5, but these equations have no solution.

(b) In part (a) we saw that a can be produced even without throwing away outputs. For b to be possible if the
firm is allowed to throw away output, there must exist a scalar λ in [0, 1] such that 6λ + 2 ≥ 7, −2λ + 6 ≥ 5, and
−6λ + 10 ≥ 5. These inequalities reduce to λ ≥ 5/6, λ ≤ 1/2, λ ≤ 5/6, which are incompatible.

(c) Revenue is R(λ) = p1x1 + p2x2 + p3x3 = (6p1 − 2p2 − 6p3)λ + 2p1 + 6p2 + 10p3, with R′(λ) equal to the con-
stant s = 6p1 − 2p2 − 6p3. If s > 0, then R(λ) is maximized at λ = 1; if s < 0, then it is maximized at λ = 0. Only
in the special case where s = 0 can the two plants both remain in use.

5. (a) If the numbers of units produced of the three goods are x1, x2, and x3, the profit is 6x1 + 3x2 + 4x3, and the times
spent on the two machines are 3x1 + x2 + 4x3 and 2x1 + 2x2 + x3, respectively. The LP problem is therefore

max 6x1 + 3x2 + 4x3 subject to

{
3x1 + x2 + 4x3 ≤ b1

2x1 + 2x2 + x3 ≤ b2

, x1, x2, x3 ≥ 0
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(b) The dual problem is obviously as given. Optimum at P = (y∗
1, y∗

2) = (3/2, 3/4). See SM for details.

(c) Using the solution to part (b) and complementary slackness imply that x∗
3 = 0 and x∗

1 = x∗
2 = 25. See SM.

(d) The solution to the dual does not change, so its value increases by y∗
1db1 = 3/2 to 226.5, which must equal the

increase in the value of the primal. See SM for details.

(e) By Theorem 19.3.3, for all b1, b2 ≥ 0 the value F(b1, b2) of the primal in part (a) equals the value of the dual in
part (b). So F(b1, b2) = min(y1,y2)∈S b1y1 + b2y2 = b1y∗

1 + b2y∗
2, the minimum value when (y1, y2) are chosen from

the set S of pairs that satisfy the five constraints specified in part (b). If b1 and b2 are both multiplied by α > 0,
the transformed objective of the dual is α(b1y1 + b2y2). A simple application of Theorem 17.6.6 implies that this
transformation leaves the minimum point (y∗

1, y∗
2) unchanged. Hence F(αb1, αb2) = α(b1y∗

1 + b2y∗
2) = αF(b1, b2).

This proves that F is homogeneous of degree 1.

Chapter 20

20.1
1. (a) With L = −x2 − y2 − λ(x − 3y + 10), Eqs (20.1.2) and (20.1.3) yield

(i) L′
x = −2x − λ = 0; (ii) L′

y = −2y + 3λ = 0; (iii) λ ≥ 0 with λ = 0 if x − 3y < −10.

Suppose λ = 0. Then (i) and (ii) imply x = y = 0, contradicting x − 3y ≤ −10.

Thus λ > 0 and from (iii), x − 3y = −10. Furthermore, (i) and (ii) imply λ = −2x = 2
3 y, so y = −3x.

Inserting this into x − 3y = −10 yields x = −1, and then y = 3.

Since the Lagrangian is easily seen to be concave, (x, y) = (−1, 3) is the solution.

(b) See Fig. A20.1.1. The solution is the point on the line x − 3y = −10 that is closest to the origin.

y

x-10 -5 -1

3
2
1

x - 3y � -10

Figure A20.1.1

2. (a) The KKT conditions yield: (i) 1/(2
√

x ) − λp = 0, (ii) 1/(2
√

y ) − λq = 0, (iii) λ ≥ 0, and λ = 0 if px + qy < m.
Clearing fractions in (i) and (ii) gives 1 = 2λp

√
x = 2λq

√
y, from which we infer that x, y, λ are all positive, and

also that y = p2x/q2. Because λ > 0, the budget equation px + qy = m holds, implying that x = mq/(pq + p2). The
corresponding value for y is easily found, and the demand functions are

x = x(p, q, m) = mq
p(p + q)

, y = y(p, q, m) = mp
q(p + q)

These demand functions solve the problem because L(x, y) is easily seen to be concave.

(b) It is easy to see that the demand functions are homogeneous of degree 0, as expected.

3. (a) With L = 4 − 1
2 x2 − 4y − λ(6x − 4y − a), the KKT conditions are:

(i) ∂L/∂x = −x − 6λ = 0; (ii) ∂L/∂y = −4 + 4λ = 0; (iii) λ ≥ 0 (with λ = 0 if 6x − 4y < a).

(b) From (ii), λ = 1, so (i) gives x = −6. From (iii) and the given constraint, y = −9 − 1
4 a.

The Lagrangian is concave, so we have found the solution. (c) V(a) = a + 22, so V ′(a) = 1 = λ.
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4. (a) L(x, y) = x2 + 2y2 − x − λ(x2 + y2 − 1). The KKT conditions are:

(i) 2x − 1 − 2λx = 0; (ii) 4y − 2λy = 0; (iii) λ ≥ 0, with λ = 0 if x2 + y2 < 1.

(b) From (ii), y(2 − λ) = 0, so either (I) y = 0 or (II) λ = 2.

(I) y = 0. First, if λ = 0, then from (i), x = 1/2 and (x, y) = (1/2, 0) is a candidate for an optimum (since it satisfies
all the KKT conditions).

Second, if y = 0 and λ > 0 then from (iii) and x2 + y2 ≤ 1, one has x2 + y2 = 1. But then x = ±1, so (x, y) = (±1, 0)

are candidates, with λ = 1/2 and 3/2, respectively.

(II) λ = 2. Then from (i) x = −1/2, and (iii) gives y2 = 3/4, so y = ±√
3/2. Hence (−1/2, ±√

3/2) are the two
remaining candidates with λ = 2.

(c) Since f is continuous and the feasible set is closed and bounded, the extreme value theorem guarantees a maximum.
The maximum point or points must be among the five points that satisfy the necessary conditions. Evaluating x2 +
2y2 − x at each of those points shows that the maximum value is 9/4, attained at (−1/2, ±√

3/2).

5. (a) For 0 < a < 1, the solution is x = √
a, y = 0, and λ = a−1/2 − 1; for a ≥ 1, it is x = 1, y = 0, and λ = 0.

(b) Because λ ≥ 0 and so the Lagrangian is concave, these give the respective maxima.

(c) If a ∈ (0, 1), then f ∗(a) = 2
√

a − a, and so df ∗(a)/da = λ. If a ≥ 1, then f ∗(a) = 1, so df ∗(a)/da = 0 = λ.

6. With L = aQ − bQ2 − αQ − βQ2 + λQ, the KKT conditions for Q∗ to solve the problem are:

(i) dL/dQ = a − α − 2(b + β)Q∗ + λ = 0; (ii) λ ≥ 0, with λ = 0 if Q∗ > 0. By Theorem 20.1.1, because the
Lagrangian is concave, these conditions are also sufficient. We find that Q∗ = (a − α)/2(b + β) and λ = 0 if a > α,
whereas Q∗ = 0 and λ = α − a if a ≤ α. (See also Example 4.6.3.)

20.2
1. (a) Write the constraints as g1(x, y) = x + e−x − y ≤ 0 and g2(x, y) = −x ≤ 0.

Then the Lagrangian is L = 1
2 x − y − λ1(x + e−x − y) − λ2(−x).

So the KKT conditions are: (i) 1
2 − λ1(1 − e−x) + λ2 = 0; (ii) −1 + λ1 = 0;

(iii) λ1 ≥ 0, with λ1 = 0 if x + e−x < y; (iv) λ2 ≥ 0, with λ2 = 0 if x > 0.

(b) From (ii), λ1 = 1, so from (iii), x + e−x = y. Either x = 0 or x > 0.

If x > 0, then (iv) implies that λ2 = 0. Then (i) implies 1
2 − (1 − e−x) = 0, or e−x = 1

2 .

Hence x = ln 2, and so y = x + e−x = ln 2 + 1
2 .

If x = 0, then (i) implies λ2 = − 1
2 , which contradicts λ2 ≥ 0.

We conclude that (x, y) = (ln 2, ln 2 + 1
2 ) is the only point satisfying the KKT conditions, with (λ1, λ2) = (1, 0).

(By sketching the feasible set and studying the level curves 1
2 x − y = c, it is easy to see that the point we have found

does solve the maximization problem.)

2. If m ≤ p--x/α, then x∗ = mα/p and y∗ = (1 − α)m/q, with λ = 1/m and μ = 0.

If m > p--x/α, then x∗ = --x and y∗ = (m − p--x)/q, with λ = (1 − α)/(m − p--x) and μ = (αm − p--x)/--x(m − p--x).

3. (a) The feasible set is the shaded region in Fig. A20.2.3. (b) The only solution candidate is (x, y) = (−1, 5), with
suitable nonnegative values of the three Lagrange multipliers. See SM for details.

(c) Because the Lagrangian is concave when the Lagrange multipliers are nonnegative, the point (x, y) = (−1, 5) must
solve the maximation problem. See SM for details.
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Figure A20.2.3

y

x

x + ay = c

1

x + y = 0

1

x2 + y2 = 1

Figure A20.2.4

4. (a) The feasible set and one of the level curves for x + ay are shown in Fig. A20.2.4. The requested necessary condi-
tions, with L = x + ay − λ(x2 + y2 − 1) + μ(x + y), are:

(i) L′
x = 1 − 2λx + μ = 0; (ii) L′

y = a − 2λy + μ = 0; (iii) λ ≥ 0, with λ = 0 if x2 + y2 < 1;

(iv) μ ≥ 0, with μ = 0 if x + y > 0; (v) x2 + y2 ≤ 1; (vi) x + y ≥ 0.

(b) The solution is (x∗, y∗) = ( 1
2

√
2, − 1

2

√
2) in case a ≤ −1, but (x∗, y∗) = (1/

√
1 + a2, a/

√
1 + a2) in case a > −1.

5. (x, y) = (4−2/3, 4−1/3), with shadow prices λ = 0, μ = 0, and ν = 1/2y = 4−1/6. See SM.

y

1

2

x1 2

y = 2/3

y = e−x

(x∗, y∗)

Figure A20.2.6

6. (a) See Fig. A20.2.6. (b) With L = −(x + 1
2 )2 − 1

2 y2 − λ(e−x − y) − μ(y − 2
3 ), the KKT conditions are:

(i) L′
x = −2(x + 1

2 ) + λe−x = 0; (ii) L′
y = −y + λ − μ = 0; (iii) λ ≥ 0, with λ = 0 if e−x − y < 0;

(iv) μ ≥ 0, with μ = 0 if y < 2
3 ; (v) e−x − y ≤ 0; (vi) y ≤ 2

3 .

The solution is (x∗, y∗) = (ln(3/2), 2/3), with λ = 3[ln(3/2) + 1/2] and μ = 3 ln(3/2) + 5/6. See SM.

7. (a) With L = xz + yz − λ(x2 + y2 + z2 − 1), the KKT conditions are:

(i) z − 2λx = 0; (ii) z − 2λy = 0; (iii) x + y − 2λz = 0; (iv) λ ≥ 0, with λ = 0 if x2 + y2 + z2 < 1.

(b) If λ = 0, every point (x, y, 0) with x + y = 0 satisfies the KKT conditions, but the value of xz + yz at these points
is 0, and this is obviously not the maximum value.

Alternatively, in case λ > 0 and so x2 + y2 + z2 = 1, then (i) and (ii) imply that x = y = z/2λ.
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It follows that (z2/4λ2) + (z2/4λ2) + z2 = 1, so z2 = 4λ2/(4λ2 + 2). But then (iii) implies that z/λ = 2λz and so,
because z �= 0, that 2λ2 = 1. Therefore z2 = 1

2 . The points satisfying the KKT conditions are at ±( 1
2 , 1

2 , 1
2

√
2), with

λ = 1
2

√
2 and xz + yz = 1

2

√
2. The extreme value theorem guarantees the existence of a maximum point, which is

either of these two.

20.3
1. (a) With L(x, y) = x + ln(1 + y) − λ(16x + y − 495), the KKT conditions for (x∗, y∗) to be a solution are:

(i) L′
1(x

∗, y∗) = 1 − 16λ ≤ 0 (= 0 if x∗ > 0) (ii) L′
2(x

∗, y∗) = 1
1 + y∗ − λ ≤ 0 (= 0 if y∗ > 0)

(iii) λ ≥ 0 , with λ = 0 if 16x∗ + y∗ < 495 (iv) x∗ ≥ 0, y∗ ≥ 0 (v) 16x∗ + y∗ ≤ 495.

(b) Note that the Lagrangian is concave, so a point that satisfies the KKT conditions will be a maximum point. From
(i), λ ≥ 1/16 > 0, so (iii) and (v) imply (vi) 16x∗ + y∗ = 495.

Suppose x∗ = 0. Then (v) gives y∗ = 495, and from (ii), λ = 1/496, contradicting λ ≥ 1/16. Hence, x∗ > 0, and so
by (i), λ = 1/16.

Suppose y∗ = 0. Then (ii) implies λ ≥ 1, contradicting λ = 1/16. Thus y∗ > 0, and so from (ii), y∗ = 15 and then (v)
yields x∗ = 30.

So the only solution to the KKT conditions is (x∗, y∗) = (30, 15), with λ = 1/16.

(c) Utility will increase by approximately λ · 5 = 5/16. (Actually, the new solution is (30 5
16 , 15), and the increase in

utility is exactly 5/16. This is because the utility function has a special “quasi-linear” form.)

2. (x, y) = (1, 0) is the only point satisfying all the conditions, with Lagrange multiplier λ = 0.

3. The only possible solution is (x∗
1, x∗

2, k∗) = (1/2, 3/4, 3/4), with Lagrange multipliers λ = 0 and μ = 3/2.

Review exercises for Chapter 20
1. For a ≥ 5, the solution is (x, y) = (2, 1), with λ = 0. For a < 5, it is (x, y) = (2

√
a/5,

√
a/5), with λ = √5/a − 1.

2. (a) With L = xy − λ1(x
2 + ry2 − m) − λ2(−x + 1), the KKT conditions for (x∗, y∗) to solve the problem are:

(i) L′
1 = y∗ − 2λ1x∗ + λ2 = 0; (ii) L′

2 = x∗ − 2rλ1y∗ = 0; (iii) λ1 ≥ 0, with λ1 = 0 if (x∗)2 + r(y∗)2 < m;

(iv) λ2 ≥ 0, with λ2 = 0 if x∗ > 1; (v) (x∗)2 + r(y∗)2 ≤ m; (vi) x∗ ≥ 1.

(b) For m ≥ 2 the solution is x∗ = √
m/2 and y∗ = √

m/2r, with λ1 = 1/2
√

r and λ2 = 0.

For 1 < m < 2 it is x∗ = 1, y∗ = √
(m − 1)/r, with λ1 = 1/2

√
r(m − 1) and λ2 = (2 − m)/

√
r(m − 1).

(c) For m ≥ 2 one has V(r, m) = m/2
√

r, and for 1 < m < 2 it is
√

(m − 1)/r. It is easy to verify that V ′
m = λ1 > 0,

as one expects. See SM for details. (d) Routine verification. See SM for details.

3. (a) See Fig. A20.R.3. The solution is at P, where (x1, x2) = (2000, 2000/3).

(b) There are six pairs of complementarily slack inequalities. See SM for details.

(c) The challenge is to find Lagrange multipliers λi (i = 1 to 4) such that the KKT conditions are still satisfied at
(x1, x2) = (2000, 2000/3). This is possible iff a ≤ 1/24. See SM for details.

4. With the Lagrangian L = R(Q) − C(Q) − λ(−Q), the KKT conditions for Q∗ to be a solution are:

(i) R′(Q∗) − C′(Q∗) + λ = 0; (ii) λ ≥ 0, with λ = 0 if Q∗ > 0. These conditions are also sufficient for optimality
because the Lagrangian is concave in Q. A sufficient (and necessary) condition for Q∗ = 0 to be optimal is that π ′(0) ≤
0, or equivalently, R′(0) ≤ C′(0). (Draw a figure.)
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Figure A20.R.3

5. (a) The maximization problem is: max(−rK − wL) subject to −√
KL ≤ −Q.

With the Lagrangian L = −rK − wL − λ(−√
KL + Q), the KKT conditions for (K∗, L∗) to solve the problem are:

(i) L′
K = −r + λ(

√
L∗/2

√
K∗) = 0; (ii) L′

L = −w + λ(
√

K∗/2
√

L∗) = 0; (iii) λ ≥ 0 (λ = 0 if
√

K∗L∗ > Q).

Obviously λ = 0 would contradict (i) and (ii), so λ > 0 and (iv)
√

K∗L∗ = Q. Eliminating λ from (i) and (ii), we find
L∗ = rK∗/w. Then (iv) yields K∗ = Q

√
w/r and L∗ = Q

√
r/w.

(b) c∗(r, w, Q) = rK∗ + wL∗ = 2Q
√

rw, so ∂c∗/∂r = Q
√

w/r = K∗. If the price of capital r increases by dr, then the
minimum cost will increase by about K∗dr, or the optimal choice of capital input per unit increase in r. The equation
∂c∗/∂w = Q

√
r/w = L∗ has a similar interpretation.
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∅ – empty set, 4
∈ – element of, 5
∩ – intersection of sets, 5
∪- – union of sets, 5
\ – set difference, 5
⊆ – subset, 5
⇔ – equivalence arrow, 12
⇒, ⇐ – implication arrows, 12
∞ – infinity, 52–53
f : A → B – function from A to B,

175
→ – “is mapped to,” 176
�x – a (small) change in x, 193
f ′(x)– derivative of f at x, 182
f ′′(x) – second derivative, 218
f (4)(x) – fourth derivative, 219
f ′′′(x) – third derivative, 219
limx→af (x),f (x, 184, 196, 276
limx→a–f (x) – limit from below, 271
limx→a+f (x) – limit from above, 271
d – differential, 654–659
f

′
i – partial derivative, 568
∂ – partial differentiation symbol,

569∫
– integral sign, 356∫ ∫

– double integral, 676∫ ∫ ∫
– triple integral, 685∫

. . .
∫

multiple integral, 684
Rn – Euclidean n-space, 482–483
∇ – “nabla,” gradient operator, 576

A

absolute risk aversion, 220
absolute value, 53–55
active constraint, 802
addition of matrices, 453–454
adjugate matrix, 524
admissible point, 771, 774
admissible set, 797, 804
affine function, 581
algebra rules, 33–38
alien cofactor, 516
angle between vectors, 485
angles, 821
annuity

due, 419
future value, 416
ordinary, 421
present value, 414

antiderivative, 356
approximation

higher-order, 254–255
linear, 248–252, 646–654
polynomial, 253–255
quadratic, 253–254
Taylor, 255

area, 361–368
area under a curve, 366–367
argument of a function, 101

two variables, 562

arithmetic mean, 52, 63, 582
arithmetic series, 66
associative law of matrix

multiplication, 463
asymptote, 278

horizontal, 273
vertical, 271

asymptotes, 172
asymptotic stability (difference

equations), 427
augmented coefficient matrix, 477
autonomous consumption, 81
average cost, 157
average elasticity, 260
average rate of change, 192
axis of symmetry, 121

B

base (of a power), 26
base 10 system, 24
Bernoulli, J., 21
Bernoulli’s inequality, 21
binding constraint, 802
binomial coefficient, 66, 67
binomial formula, 66
bi-variate uniform distribution, 679
bordered Hessian, 753
boundary point, 599, 717
bounded interval, 52, 273
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bounded set, 713, 718
budget constraint, 4, 642
budget equation, 579
budget hyperplane, 491
budget set, 4, 591

C

C1 function, 589
Cantor, G., 8, 9
cardinality of a set, 9
Cartesian coordinate system,

106–107
Cartesian product, 595
Cauchy–Schwarz inequality, 127,

484–485
centre of circle, 171
CES function, 633, 634, 639
chain rule, 212, 213, 613–614,

615–616, 617–618, 657
change of variables in integrals, 385
characteristic equation, 540
characteristic polynomial, 540
characterization of concave/convex

functions, 311
circle, 171–172

area, circumference, 819
centre, 171
equation, 172
radius, 171

Ck function, 589
closed interval, 52
closed set, 599, 717
Cobb–Douglas function, 290, 437,

563, 582, 606, 621, 633, 634,
641, 751, 756

codomain of a function, 175
coefficient, 35
coefficient matrix, 451–452

augmented, 477
cofactor, 500, 514–517

alien, 516
cofactor expansion, 516, 517
column (of a matrix), 447
column vector, 448
common factors, 39
commutative inner product, 457
compact set, 713, 717
comparative statics, 759–762
comparison test for convergence of

integrals, 393–394
complement of a set, 6
complementary inequalities, 799

complementary inputs, 606
complementary slackness, 770,

788–792, 798, 799, 805, 807
conditions, interpreting, 791
interpretation, 791
theorem, 790

completing the square, 85
components of a vector, 448
composite function, 158–159,

614, 616
compound interest, 29–30
concave function, 595–605

extrema of, 326, 694, 695–696
inverse of, 307
n variables, 603
one variable, 297, 301
two variables, 595–597

concave Lagangean, 750–751
concave programme, 806
concave programming, 806

sufficient conditions, 806–807
concave/convex functions,

first-derivative characterization,
311

concavity/convexity
necessary conditions, 309
slope characterization, 301–302
sufficient conditions, 310–311,

653
concavity/convexity conditions for

max/min, 694–695
with equity constraints, 750
with inequality constraints,

799–800, 807
conclusions, 16
cone, 629, 630, 820
consistent system of equations, 451
constant returns to scale, 641
constant terms of an equation, 451
constraint

active, 802
binding, 802
inactive, 802
slack, 802
tight, 802

consumer surplus, 377
consumption function, 117–118
consumption smoothing, 301
continuity, 264–270
continuous compounding, 403–404
continuous depreciation, 138
continuous function, 264, 265, 267,

275, 584

composites, 266
from the left, 273
n variables, 583, 584
properties, 266
from the right, 273

continuously differentiable, 589, 649
contour, 572
contrapositive (indirect) proof, 16
contrapositive principle, 13
convergence

general series, 412
geometric series, 410
improper integral, 390, 391

comparison test, 394
sequence, 284

convex combination, 593
convex function, 595–605

extrema of, 326, 694, 695–696
inverse of, 307
n variables, 603
one variable, 297, 301
two variables, 595–597

convex Lagangean, 750–751
convex polyhedron, 774, 775
convex programme, 807
convex sets, 590–595

intersection, 594
coordinate axes, 106, 481
coordinate plane, 482
coordinate system, 481, 482

Cartesian, 106–107
rectangular, 106

coordinates of a point, 107
coordinates of a vector, 448
correlation

negative, 486
positive, 486

correlation coefficient, 486, 681
counting rule, 660
covariance, 330, 709
Cramer, G., 497
Cramer’s rule, 520, 527–531

three unknowns, 501
two unknowns, 497

critical point
n variables, 717
one variable, 323
two variables, 690

cross partials, 587, 606
cube root, 44
cubic function, 127–128
cumulative distribution function, 374
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D

Dantzig, G., 769
De Morgan’s laws, 10
deadweight loss, 707
decimal fraction

finite, 25
infinite, 25
periodic, 25
recurring, 25

decimal system, 24
decline, exponential, 31
decreasing function, 105, 189–190
decreasing returns to scale, 641
Dedekind, R., 9
deductive reasoning, 17
definite integral, 365, 366

properties, 368–371
degree of equation, 130
degree of homogeneity, 634
degree of polynomial, 128
degrees of freedom, 477, 607, 659,

660, 661
demand and supply, 118–120, 154,

242, 625–626
demand function, 737, 756
denominator, 38
dependent (endogenous) variable,

101, 562
depreciation

continuous, 138
straight line, 119

derivative, 182, 184
computation, 186
of a constant, 201
of a difference, 205
dot notation, 192
first, 218
fourth, 219
functions of n variables, 648
left, 276
partial, 565–566, 568
of a product, 206–207
of a quotient, 209, 210
right, 276
second, 218, 237
of a sum, 205
third, 219

Descartes’s folium, 292
determinant

of 2 × 2 matrix, 496
of a 3 × 3 matrix, 500
expansion by cofactors, 500

geometric interpretation,
497–498, 502

of an n × n matrix, 504–508
rules for calculation, 501

deviation from the mean, 63
diagonalizable matrix, 544
difference between functions, 156
difference between vectors, 455
difference equation, 425–428

globally asymptotically
stable, 427

linear, 426–427
unstable, 427

difference of sets, 5
difference-of-squares formula, 34
differentiability, n variables, 647
differentiable function, 201

one variable, 275
several variables, 647

differentiable implies continuous,
275, 649

differential equation, 428–435
for bounded exponential growth,

431
linear, 438
for logistic growth, 432–433
for natural growth, 430
separable , 436, 438

differential notation, 187
differential of a function, 654

invariance of, 657–658
n variables, 658
one variable, 249–251
rules for, 250–251, 656–657

differentiation
chain rule, 215
implicit, 233–234, 245
logarithmic, 227–228
power rule, 203
rules, 201–205

dimension of a matrix, 448
dimension of a vector, 448
direct proof, 16
direct second-order partials, 587
direction, 647–648
directional derivative, 648
discontinuity

irremovable, 265
removable, 265

discontinuous function, 265
discount factor, 406
discount rate, 406
discounted value, 406

disjoint sets, 6
distance, 170–174, 483

between numbers, 54
in R2, 170
in Rn, 717

distribution
Gaussian, 394–395
normal, 394

distributive laws
inner product of vectors, 457
matrix multiplication, 463

divergence
general series, 412
geometric series, 410
improper integral, 391

divergent sequence, 284
divisible polynomial, 129
dollar cost averaging, 585
domain of a function, 103, 104,

163–164, 175, 562, 563–564
dot product, 456
double integral, 676
doubling time, 145–146
dual problem, 781, 786
duality in linear programming, 726
duality theorem (LP), 781–785
duopoly, 711

E

e(=2.71828.), 139, 220, 223,
228, 285

economic growth, 436–437,
439–440

edges, 774
effective interest rate, 401, 404
eigenvalue, 536, 538, 539
eigenvector, 536, 538
elastic function, 262
elasticity, 259–262

average, 260
demand, 260
Engel, 263
general definition, 261
logarithmic derivative, 262, 608
n variables, 607
price, 260
rules for, 262
of substitution, 632–634
two variables, 608

element of a matrix, 448
element of a set, 3, 5
elementary row operations, 475, 477
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ellipse, 172–173
ellipsoid, 579
endogenous variable, 101, 562, 667
Engel elasticity, 263
entry of a matrix, 448
envelope theorems, 724, 726, 761
equal sets, 5
equal vectors, 455
equality constraints, 731, 792–793
equation

degree n, 130
difference, 428
differential, 438
equivalent, 78
integer roots, 130–131
linear, 80
nonlinear, 82
quadratic, 83–88
solution of, 11, 79
system of equations, 93–94,

659–662
equilibrium

demand theory, 118
difference equations, 428
differential equations, 438
equation system, 667

equilibrium point, 154, 377, 665, 666
equilibrium price, 118
equilibrium quantity, 118
equivalence arrow (⇔), 12
equivalent equation, 78
Euclid, 24
Euclidean n-space, 482–483
Euler’s number, e, 228
Euler’s theorem for homogeneous

functions
n variables, 630
two variables, 635–636

even function, 159
even number, 23
exhaustion method, 362
exogenous variable, 101, 562, 667
exp – natural exponential

function, 221
expansion by cofactors, 516, 517
expectation, 121–122
expected value, 122, 679
exponent, 26
exponential decline, 31
exponential decrease, 136–137
exponential distribution, 390
exponential function, 139

derivative, 220–221

natural, 220–221
properties, 139, 222

exponential growth, 30, 429–430
bounded, 431

exponential increase, 136–137
exterior function, 158, 215
exterior point, 599
extrema

first-derivative test, 325
second-order conditions, 325, 348,

695–696, 719, 720, 751–752
extrema of quadratic functions, 121
extreme points (LP), 771, 775
extreme point/value, 322

local, 346, 699–705
extreme value theorem

n variables, 718
one variable, 334
two variables, 713

F

faces, 774
factor of a polynomial, 129
factorial notation, 68
factoring

algebraic expressions, 35–36
polynomial, 129

factorization, 85
of a quadratic polynomial, 87

family of sets, 6
feasible point, 771, 774
feasible set, 797, 804
first-derivative test

(global) extrema, 325
local extrema, 347

first-order conditions, 733, 734
with equality constraints, 733,

734, 753–754, 758
with inequality constraints, 799,

805, 812
n variables, 717–718
one variable, 323
two variables, 690

flour border, 771
FOC see first-order conditions
fractional powers, 43–48
fractions

improper, 38
proper, 38

Franklin, J., 769
function

affine, 581

argument, 562
from A to B, 175
C1, 589
Ck, 589
Cobb–Douglas, 563
codomain, 175
composite, 158–159, 215
concave, 297, 301, 595–605
consumption, 118
continuously differentiable, 589
continuous, 265, 584
convex, 297, 301, 595–605
cubic, 127–128
decreasing, 105, 189–190
defined implicitly, 233
differentiable, 201, 275
discontinuous, 265
domain, 103, 104, 163–164,

175, 562
even, 159
exponential, 139
general concept, 174–176
graph, 107, 571–572, 584
homogeneous, 630, 634–636
homothetic, 642–643
increasing, 105, 189–190
inverse, 162–163, 176, 224
linear, 110–116, 582
logarithmic, 141–143, 224–225
logistic, 432
log-linear, 582
many-to-one, 176
n variables, 581
natural exponential, 139–141
non-decreasing, 105
odd, 159–160
one variable, 100
one-to-many, 176
one-to-one, 161, 176, 244–245
piecewise defined, 169–170
polynomial, 127–134
power, 135–136
quadratic, 120–127
range, 101, 176, 562
rational, 133
strictly concave, 301
strictly convex, 301
strictly increasing/decreasing,

105, 189–190
symmetric about a point, 159–160
target, 175
two variables, 561, 562
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fundamental theorem of algebra, 130
future discounted value, 418
future value of an annuity, 416

G

Gauss, C., 64
Gaussian distribution, 394–395
Gaussian elimination, 475
Gauss–Jordan method, 475
generalized power rule, 213
geometric mean, 52, 582
geometric series, 408–414

infinite, 410
quotient, 408
sum, 410

geometric vector, 480
Giffen goods, 118
global extreme point/value, 346, 347
globally asymptotically stable

difference equation, 427
gradient, 576–577
gradient vector, 576, 577
graph

of an equation, 166–170
of a function, 107

n variables, 584–585
two variables, 571–572
greater than, 48
Greek alphabet, 822
growth factor, 30
growth towards a limit, 431

H

Haavelmo, T., 118
Hadamard, J. S., 613
Hadamard product of matrices, 458
half-open interval, 52
half-space, 482
harmonic mean, 52, 582
Hessian matrix, 587, 719, 720, 808

bordered, 753
Hilbert, D., 673
homogeneity, degree of, 639
homogeneous function, 634–636,

637–639, 640
homogeneous system of linear

equations, 529–530
homothetic function, 642–643
horizontal asymptote, 273
horizontal axis, 106
Hotelling’s lemma, 725

hyperbola, 133, 172–173
hyperplane, 584

budget, 491
hypersurface, 584

I

idempotent matrix, 469
identity matrix, 466
if (if and only if), 12
image of an element by a function,

176
implication, 12
implication arrows (⇒, ⇐), 12,

91–92
implicit differentiation, 233–234,

245, 623–628
second derivative, 237

implicit function, 233–234
improper integral, 390

convergence, 390, 391, 394
divergence, 390, 391

improper rational function, 133
In – natural logarithm, 142
inactive constraint, 802
income density function, 374
income distribution, 374–375
inconsistent system of equations, 451
increasing function, 105, 189–190
increasing returns to scale, 641
increment of a function, 654
incremental cost, 193, 194
indefinite integral, 355–361
indefinite quadratic form or matrix,

548, 551
independent (exogenous) variable,

101, 562
indeterminate form, 287
indifference curve, 238, 239, 737
indifference surface, 584
indirect proof, 16
indirect utility function, 762
indivisible commodity, 591
induction hypothesis, 18, 19
induction proof, 18
induction reasoning, 17
induction step, 18, 19
inelastic function, 262
inequality

double, 49–50
strict, 48
weak, 48

inequality constraints, 770, 774

infinite sequence, 281, 282, 283–286
infinity (∞), 52–53, 271
inflection point, 316–317

test for, 317
inner function, 215
inner product of vectors, 456

rules, 457
input–output model of Leontief, 535
instantaneous rate of change, 192
integer

negative, 24
positive, 23, 24

integer roots of a polynomial
equation, 130–131

integral
definite, 365, 366
double, 676
improper, 390
indefinite, 355–361
infinite limits, 390
multiple, 684
Newton–Leibniz (N–L), 371
Riemann, 371
unbounded integrand, 392–393

integral curve, 436
integral of an arbitrary exponential,

358
integral of the exponential function,

358
integral sign (

∫
), 356

integrand, 357
integrating factor, 439, 440
integration

basic rules, 357
constant of, 356
by parts, 380–383
of rational functions, 387–388
by substitution, 384
variable, 357

intercept, 110
interest, continuous compounding,

404
interest period, 399
interest rate

annual, 29, 31, 399
effective, 401, 404
nominal, 399
periodic, 400

interior function, 158
interior of a set, 599, 717
interior of an interval, 53
interior point, 53, 599, 717
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intermediate value theorem,
279–282

proof, 285–286
internal rate of return, 423–424
intersection of sets, 5
interval

bounded, 52
closed, 52
half-open, 52
open, 52, 53

invariance of the differential,
657–658

inverse function, 160–166, 176, 224
derivative, 245

inverse function theorem, 244–247
inverse matrix, 517–518, 520

by elementary operations,
525–526

general formula, 524–525
properties, 521, 588

inverse of 2 × 2 matrix, 519, 520
invertible matrix, 518
investment multiplier, 82
investment projects, 423
involutive matrix, 513
irrational numbers, 24, 25, 286
irremovable discontinuity, 265
IS–LM model, 668
isoquant, 584

J

Jevons, S., 194
joint density function, 679
joint probability distribution, 679

K

Kahn, R.F., 117
Karush, W., 798
Karush–Kuhn–Tucker method, 798

see also KKT method
Keynes, J.M., 117
kinks, 269

in a graph, 276
KKT conditions, 799
KKT method, 798

with multiple inequality
constraints, 805

necessary conditions, 799, 805
why it works, 802–803

KKT theorem applied to LP,
813–814

Kuhn, H.W., 798
Kuhn–Tucker method see KKT

method

L

Laffer curve, 100
Lagrange, J.-L., 256–257, 732
Lagrange multiplier, 731–734,

739–740, 753, 756, 759
Lagrange multiplier method

economic interpretations, 739, 760
NLP, 798, 805
one constraint, 732
several constraints, 756–757
sufficient conditions, 749–753
why it works, 744–749

Lagrange’s remainder formula,
256–257

proof, 339
Lagrange’s theorem, 747–748
Lagangean, 750–751, 753, 756, 798,

805, 806
Lagangean function, 732
Laspeyres price index, 61
law for natural growth, 430
LCD, 40
leading entries in systems of

equations, 474
leading principal minor, 552
least common denominator (LCD),

40
left continuous, 272–273
left derivative, 276
left distributive law, 463
left limit, 271
Leibniz, G., 181, 187, 218, 655
Leibniz notation, 187
lemniscate, 240
length of a vector, 484, 717
Leontief matrix, 534
Leontief model, 495, 531–535
level curve, 572, 573, 624, 637, 638

slope of, 624
l’Hôpital’s rule, 287

extension of, 289
limit, 195–196

from above, 271
from below, 271
definition, 274, 276
equality, 199
at infinity, 273–274
left, 271

one-sided, 271–272
right, 271
rules, 197–198
ε–δ definition, 277

limit of a function, 265, 267, 276,
583

n variables, 583
limit of a sequence, 286
line segment

directed, 480
in Rn, 593

linear algebra, 447
linear approximation

n variables, 647
one variable, 248–252
two variables, 646

linear combination, 456
linear difference equation, first-order,

with constant coefficient,
426–427

linear differential equation, 438
linear equation, 80
linear expenditure system, 582, 741
linear function

n variables, 582
one variable, 110–116

linear inequality, 114–115
geometric representation, 114

linear models, 116–120
with quadratic objectives,

705–712
linear programming, 769

duality theory, 726
economic interpretation, 786–788
general problem, 774–776

linear regression, 328, 709
linear system of equations

in matrix form, 461–462
n variables, 450
two variables, 80, 81, 92

local extrema, 346
first-derivative test, 347
second-derivative test, 348
second-order conditions, 350

local maximum/minimum, strict, 347
logarithm

to base a, 145
natural, 141

logarithmic differentiation, 227–228
logarithmic function, 141–143,

224–225
logical equivalence, 12
logistic function, 432
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logistic growth, 432–433
log-linear function, 582
log-linear relation, 262
lower limit of integration, 365
lower triangular matrix, 507
lowest common denominator, 40
LP see linear programming

M

main diagonal of a matrix, 448–449
Malthus’s law, 430
many-to-one, 176
map/mapping, 176
marginal cost, 188, 693, 763
marginal product, 194

of capital, 606
of labour, 606
of land, 606

marginal productivity, 692
marginal propensity to consume, 81,

117, 194, 240
marginal propensity to save, 195
marginal rate of substitution, 626,

737, 755
marginal revenue, 693
marginal tax rate, 170
marginal utility of income, 762
market share vector, 461
mathematical induction, 18–20
matrix, 447–448

addition, 453–454
adjugate, 524
bordered Hessian, 753
diagonalizable, 544
dimension, 448
element, 448
entry, 448
equality, 449
Hadamard product, 458
Hessian, 587, 719, 720, 808
idempotent, 469
identity, 466
inverse, 517–518, 520
invertible, 518
involutive, 513
lower triangular, 507
multiplication, 458–463
multiplication by a scalar, 454
nonsingular, 519
order, 448
orthogonal, 545
powers of, 465
product, 459

singular, 519
skew-symmetric, 493
square, 448
symmetric, 472
trace, 538
transpose, 470
transposition rules, 471
upper triangular, 474, 507
zero, 454

matrix inverse, general formula,
524–525

matrix multiplication, associative
law, 463

maximization/minimization, 733
constrained, 732
unconstrained, 732

maximizer, 322
maximum point/value, 321–322,

690, 691, 717
local, 347, 699–700

mean, 63, 582
arithmetic, 52, 63
geometric, 52
harmonic, 52

mean income, 376
mean square deviation, 64
mean square error, 486
mean value theorem, 335
member (element) of a set, 3
Menger, C., 194
minimizer, 322
minimum point/value, 321–322,

690, 691, 717
local, 346, 699–700

minor, 514
mixed number, 38
mixed partials, 587, 606
monopolist, discriminating, 707
monopoly, 693, 706, 707
monopoly problem, 122
monopsonist, discriminating, 708
monopsony, 708
mortgage repayment, 419–423
MRS, 626, 737, 755
multiple integral, 684
multiplication of matrices, 458–463
multiplier–accelerator model, 426

N

natural exponential function,
139–141, 220–221

natural growth law, 430

natural logarithm, 141
basic properties, 142
rules, 142

natural logarithm function, 226–227
derivative, 224–225

natural numbers, 23
n-dimensional cuboid, 684
n-dimensional rectangle, 684
necessary condition, 13–14
necessity, 13
negative definite/semidefinite

quadratic form or matrix,
548, 551

negative integers, 24
Nerlove–Ringstad production

function, 632
net investment, 379
net return, 423
Newton, I., 181, 233, 280
Newton quotient, 184, 186, 192
Newton–Leibniz (N–L) integral, 371
Newton’s binomial formula, 66
Newton’s method for approximating

roots, 280–281
convergence, 282

non-decreasing function, 105
nonlinear equations, 82
nonlinear programming (NLP)

multiple inequality constraints,
805

nonnegativity constraints,
812–813

problem, 797–798
nonnegative octant, 482
nonnegative orthant, 643, 774
nonnegativity constraints

in LP, 770, 774
in NLP, 812–813

nonsingular matrix, 519
non-trivial solution, 433, 530
norm, 717
norm of a vector, 484
normal density function, 140, 680
normal distribution, 394, 680–681
normal to a plane, 489
n-space, 482–483, 484
nth power, 26
nth root, 44
number

even, 23
irrational, 24, 25, 286
mixed, 38
natural, 23
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number (continued)
odd, 23
rational, 24
real, 23, 25

number line, 24
numerator, 38
n-vector, 448

O

objective function, 721, 770, 774
octant, nonnegative, 482
odd function, 159–160
odd number, 23
one-sided continuity, 272–273
one-sided limit, 271–272
one-to-many, 176
one-to-one, 161, 176, 244–245
open ball, 717
open interval, 52, 53
open set, 599, 717
optimal point/value, 322
order of a matrix, 448
ordered pair, 107
ordinary least squares, 330
ordinate set, 673
origin, 106
orthogonal matrix, 545
orthogonal vectors, 485
orthogonality in econometrics, 486

P

Paasche price index, 61
Pacioli, L., 249
parabola, 120
paraboloid, 573
parallelogram law of addition, 482
parameter, 81
Pareto distribution, 204, 375
partial derivatives, 589

approximations, 568
cross, 569, 587
first-order, 569
geometric interpretation, 574–576
higher order, 569
mixed, 569, 587
n variables, 586
second-order, 569
two variables, 565–566, 568

partial elasticity, 608–609
partial fraction expansion, 387
Pascal, B., 66

Pascal’s triangle, 66
PDV, 406
peak load pricing, 815
per capita growth rate, 430
percentage, 29–30
perfect correlation, 486
perfectly competitive firm, 123–124
perfectly elastic/inelastic function,

262
periodic decimal fraction, 25
periodic rate of interest, 400
piecewise functions, 169–170
plane

in R3, 489, 490
in Rn (hyperplane), 490

point–point formula, 113
point–slope formula, 112
pollution and welfare, 606–607, 615
polynomial

degree n, 128
divisible, 129

polynomial division, 131–133
polynomial division with remainder,

132–133
polynomial factor, 129
polynomial factoring, 129
polynomial function, 127–134
population growth, 137
positive definite/semidefinite

quadratic form or matrix,
548, 551

positive integers, 23, 24
postmultiplication, 461
power

fractional, 43–48
rational exponent, 46
rules, 27

power function, 135–136, 229
power rule, 203, 211, 213
powers of matrices, 465
premises, 16
premultiplication, 461
present discounted value, 406

continuous income stream,
417–418

present value, 406, 416
annuity, 414

price elasticity of demand, 260
price index, 61

Laspeyres, 61
Paasche, 61

primal problem (LP), 781
principal diagonal of a matrix, 448

principal minor, 552
leading, 552

producer surplus, 378–379
product

dot, 456
inner, 456
scalar, 456

product of functions, 158
production functions, 290, 313, 318,

437, 563, 571, 574, 606, 607,
621, 626, 632, 636–637, 641,
655

productivity, 194
productivity of capital, average, 440
profit function, 158, 725
profit maximization, 320, 350, 692,

702, 725
proof

by contradiction, 16
direct, 16
indirect, 16
by induction, 18

proper fractions, 38
proper rational function, 133
proportional rates of change, 193
proportions, 821
proposition, 11
pyramid, 820
Pythagoras’s theorem, 483, 821

Q

quadrant, 106–107
quadratic approximation, 253–254
quadratic equation, 83–88

solution, 85
quadratic form, 547–548, 551

associated symmetric matrix, 551
quadratic formula, 86
quadratic function, 87, 120–127

extrema, 121
quadratic identities, 34, 36
quartic function, 128
quotient of a geometric series, 408
quotient of functions, 158

R

radius of circle, 171
range of a function, 101, 161,

176, 562
rate of change

average, 192
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instantaneous, 192
relative, 193

rate of extraction, 373
rate of interest, 29–30
rate of investment, 192
rational function

improper, 133
proper, 133

rational numbers, 24
real line, 25
real numbers, 23, 25
real wage rate, 210
rectangular box, 820
rectangular distribution, 395
recurring decimal fraction, 25
reduced form, 667
reduced form (of a system of

equations), 82
reductio ad absurdum, 16
relative rate of change, 193
relative risk aversion, 220
remainder, 132–133

polynomial division, 129
remainder in Taylor’s formula,

256–257
remainder theorem, 129
removable discontinuity, 265
Riemann integral, 371
right continuous, 273
right derivative, 276
right distributive law, 463
right limit, 271
right-hand sides of a system of

equations, 451
risk aversion, 220
roots

of polynomial equations, 130
of quadratic equations, 86

row (of a matrix), 447
row operations (elementary), 475,

477
row vector, 448
Roy’s identity, 762, 763
rule of 70, 249

S

saddle point, 690, 700
second-order conditions, 701

Sarrus’s rule, 503
savings rate, 440
scalar, 481

scalar product, 456
SDLT (UK), 267
search model, 630–631
secant, 183
second-derivative test

see second-order conditions
second-order conditions

with equality constraints,
751–752

global, 325, 695–696, 719
local, 348, 350, 701, 720,

751–752
second-derivative test, 312–313

second-order partials
cross, 587
direct, 587
mixed, 587

separable differential equation, 436
series

general, 411–412
harmonic, 412
infinite geometric, 410

sets, 3
cardinality, 9
complement, 6
difference, 5
disjoint, 6
element of, 5
equal, 5
family of, 6
intersection, 5
union, 5
universal, 6

shadow price, 739, 769, 786, 787,
799

Shephard, R., 763
Shephard’s lemma, 763
shifting graphs, 151–156
sign diagram, 56–58
sign rule, 505
simplex method, 769, 775
singular matrix, 519
skew-symmetric matrix, 493
slack constraint, 802
slope

of a curve, 181–183
of a level curve, 624
of a straight line, 110

smaller than, 48
Smith, A., 194
SOC see second-order conditions
Solow, R., 436

Solow–Swan growth, 436
solution of a system of equations,

451
solution set, 56, 57, 166
spectral theorem, 546
sphere

equation, 580
surface area, volume, 820

square matrix, 448
square root, 10, 11

properties, 43
stability

difference equations, 428
differential equations, 438

stamp duty, 267
stationary point see critical point
stationary state

difference equation, 427
differential equation, 438

steady state
difference equation, 427
differential equation, 438

Stewart, I., 77
Stone, R., 741
straight line

in R2

point–point formula, 113
point–slope formula, 112

in R3, 487
in Rn, 488
slope, 110

straight line depreciation, 119
strict maximum/minimum point, 322

local, 346
strictly concave/convex function,

301, 327, 598–601, 603
extrema of, 327

strictly greater than, 48
strictly increasing/decreasing

function, 105
structural equations, 667
structural form (of a system of

equations), 82
subgradient, 309, 311
subgradient vector, 651, 652
subset, 5
subsidies, 124, 125
substitutes in consumption, 607
substitution in integration, 384
sufficiency, 13
sufficient conditions, 13–14
sum of functions, 156
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sum of series
finite geometric, 408, 409
infinite geometric, 409–410

summation
additivity, 62
double, 70
homogeneity, 62
rules, 62

summation formulas
binomial, 66
finite geometric series, 408, 409
infinite geometric series, 409–410
other sums, 63

summation index, 59
summation notation, 59
summation symbol, 59
supergradient, 309, 311
supergradient vector, 651, 652
supply and demand, 118–120, 154,

242, 625–626
supply curve, 124
surface, 584
Sylvester’s criterion, 553
symmetric matrix, 472
symmetry of a function, 159–160
system of equations, 93–94

coefficient matrix, 451–452
linear, 450–453
vector of constants, 451–452

T

tangent line, 182, 183, 185
tangent plane, 650–651
target set of a function, 175
Taylor approximation, 255, 257
Taylor polynomial, 255
Taylor’s formula, 257

remainder, 257
Temple, G.F.J., 64, 117
term

of an algebraic expression, 35
coefficient of, 35

tight constraint, 802
Tinbergen rule, 660
total derivative, 614
trace of a matrix, 538
transformation, 176

transition matrix, 461
translog cost function, 645
transpose matrix, 470, 521, 588
triangle, 819

sum of angles, 821
triangle inequality, 74
trivial solution, 433, 436, 529, 530
Tucker, A.W., 798
2 × 2 linear system, 93–95

U

uncorrelated variables, 486
uniform distribution, 395
union of sets, 5
unit elastic function, 262
universal set, 6
unstable difference equation, 427
upper limit of integration, 365
upper triangular matrix, 474, 507
utility function, 582–583

indirect, 762
utility maximization, 737

V

value function
equality constraints, 739, 759
inequality constraints, 811
unconstrained, 723

variable, 77
change of (in integrals), 385
endogenous, 562
exogenous, 562

variance, 330, 709
vector

addition, 455
component, 448
coordinate, 448
geometric, 480
geometric addition, 481
length, 484
norm, 484
subtraction, 455

vector of constants, 451–452
vectors

angle between, 485
column, 448

difference, 455
equality, 455
geometric interpretation, 479–487
inner product, 456
linear combination, 455
market share, 461
operations, 480–481
orthogonal, 485
row, 448
sum, 455
3-space, 481–482

Venn, J., 7
Venn diagrams, 7, 8
vertex (of a parabola), 120
vertical asymptote, 271
vertical axis, 106
vertical-line test, 167–168

W

Walras, L., 194
weighted average, 591
Westergaard, H., 732
Whitehead, A.N., 151
Wicksell, K., 563
Wicksell’s law, 670
w.r.t. (with respect to), 188

X

x-axis, 106, 481
xy-plane, 106–107

Y

y-axis, 106, 481, 482
y-intercept, 110
Young’s theorem, 588, 606

Z

z-axis, 481, 482
zero matrix, 454
zero of a function, 130
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A C K N O W L E D G E M E N T S

3 Macmillan and Company: William Stanley Jevons The Theory of Political Economy
(published 1871); 23 Leopold Kronecker: Quoted by Leopold Kronecker Attributed; circa
1886; 26 Steven Wright: Quoted by Steven Wright; 77 Penguin Random House: From
Ian Stewart Concepts of Modern Mathematics (1975), Penguin; 99 George F.J. Temple:
Quoted by George F.J. Temple (1981); 153 Alfred North Whitehead: Quoted by Alfred
North Whitehead (1925); 183 Jacob Bronowski: Quoted by Jacob Bronowski (1973); 233
Bertrand Russell: Quoted by Bertrand Russell; 270 The National Archives: SDLT rates
tables, http://webarchive.nationalarchives.gov.uk/20141124143249/; 270 Government
Digital Service: Stamp Duty Land Tax, http:/www.hmrc.gov.uk/sdlt/rates-tables.htm#3;
270 The VATT Institute for Economic Research: This bar chart is adapted, with the
authors’ kind permission, from the paper by Teemu Lyytikäinen and Christian Hilber
entitled “Housing transfer taxes and household mobility: Distortion on the housing or
labour market?” available at http://econpapers.repec.org/paper/ferwpaper/47.htm.; 297
Alan Turing: Quoted by Alan Turing (1950); 323 Robert Dorfman: Quoted by Robert
Dorfman (1964); 357 Johann Wolfgang von Goethe: Mephistopheles to Faust, In Johann
Wolfgang von Goethe’s Faust; 401 Issac Newton: Isaac Newton Attributed. It is claimed
that he said this in 1720 soon after losing a significant part of his financial wealth during
the bursting of what was later known as the South Sea bubble; 449 Jacques H. Drèze:
Quoted by Jacques H. Drèze (1984); 497 Maxwell Rosenlicht: Quoted by Maxwell A.
(Max) Rosenlicht (1949); 563 William S. Anglin: Quoted by William S. Anglin (1992)
615 Jacques S. Hadamard: Quoted by Jacques S. Hadamard (1945); 675 David Hilbert:
David Hilbert (1900). Part of the famous address by Hilbert (Germany, 1862–1943)
to the Second International Congress of Mathematicians held in Paris 1900, where he
presented what he then considered to be the greatest open problems in mathematics; 691
Patrick Rivett: Quoted by Patrick (B.H.P.) Rivett (1978); 733 Konrad Knopp: Quoted
by Konrad Knopp (1928); 771 László Lovász: Quoted by László Lovász (1980); 821
Plato Academy: Entrance to Plato’s Academy.

http://webarchive.nationalarchives.gov.uk/20141124143249/
http://www.hmrc.gov.uk/sdlt/rates-tables.htm#3
http://econpapers.repec.org/paper/ferwpaper/47.htm
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