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Smooth manifolds



Smooth manifold
Let M be a set.

• A m-dimensional chart on M is a pair (U, u) with

– U ⊆ M
– u : U → Rm injective and u (U) ⊆ Rm open

• An m-dimensional atlas on M is a set of m-dimensional charts A = {(Uα, uα)}
such that

– the charts cover M, that is
⋃
α

Uα = M

– each pair of charts is “compatible,” that is if Uα ∩ Uβ ̸= ∅ then uβ ◦ u−1
α :

uα

(
Uα ∩ Uβ

)
→ uβ

(
Uα ∩ Uβ

)
is smooth1

• An atlas on M is maximal if it is not extendible by a chart that is compatible with
each chart in the atlas.

• An m-dimensional smooth/differentiable manifold is pair (M,A) where A is an
m-dimensional maximal atlas on M.

1All its mixed partial derivatives to all orders exist and are continuous.



Motivating ideas

• A maximal atlas provides a “smooth/differentiable structure” to M (that is the
notion to discern which functions to and from M are smooth/differentiable).

• (M,A) is an “internal” characterization (one that isn’t dependent on M being
embedded in an ambient Euclidean space) of smooth surfaces.

• An m-dimensional atlas says that M “locally looks like Rm.”
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notion to discern which functions to and from M are smooth/differentiable).

• (M,A) is an “internal” characterization (one that isn’t dependent on M being
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Smooth maps

Let M be an m-dimensional smooth manifold. We say that a map f : M → R is
smooth/differentiable at a point x ∈ M if there is a chart (U, u) such that

• x ∈ U

• f ◦ u−1 : Rm ↣ R is smooth2

2All its mixed partial derivatives to all orders exist and are continuous.



Smooth maps

Let M be an m-dimensional smooth manifold. We say that a map f : M → R is
smooth/differentiable at a point x ∈ M if there is a chart (U, u) such that

• x ∈ U

• f ◦ u−1 : Rn ↣ R is smooth

Note that this definition doesn’t depend on the choice of chart: if (V, v) is another
chart such that x ∈ V, then, since any two charts are compatible,

f ◦ v−1 =
(

f ◦ u−1) ◦ (u ◦ v−1)
is guaranteed to be smooth too.3

3The composition of smooth functions are smooth.



Smooth maps

Let M be an m-dimensional smooth manifold. We say that a map f : M → R is
smooth/differentiable if it is smooth at every point of M. This is equivalent with the
fact that f ◦ u−1 : Rm ↣ R is smooth for every chart (U, u).

The set of smooth M → R maps will be denoted by C∞ (M).



Smooth maps

Let M be an m-dimensional, N be an n-dimensional smooth manifold. We say that a
map f : M → N is smooth/differentiable if

• for any chart (U, u) on M

• and any chart (V, v) on N

• with f (U) ∩ V ̸= ∅,

v ◦ f ◦ u−1 : Rm ↣ Rn is smooth.



Smooth maps

Let M be an m-dimensional, N be an n-dimensional smooth manifold. We say that a
map f : M → N is smooth/differentiable if

• for any chart (U, u) on M

• and any chart (V, v) on N

• with f (U) ∩ V ̸= ∅,

v ◦ f ◦ u−1 : Rm ↣ Rn is smooth.

We say that f : M → N is a diffeomorphism if it is a smooth bijection and its inverse
is smooth too.



Motivating ideas

• A maximal atlas provides a “smooth/differentiable structure” to M (that is the
notion to discern which functions to and from M are smooth/differentiable).

• (M,A) is an “internal” characterization (one that isn’t dependent on M being
embedded in an ambient Euclidean space) of smooth surfaces.

• An m-dimensional atlas says that M “locally looks like Rm.”



Smooth curve in Rn

C ⊆ Rn is a simple curve4 if there is

• an open interval I ⊆ R, and

• p : I → Rn injective, smooth function with continuous inverse (the
“parametrization” of C), such that

• p (I) = C

C is a curve if every point x of it has a neighborhood Bx ⊆ Rn such that Bx ∩ C is a
simple curve.

Facts

The parametrization of a given curve is far from unique: take any open
interval J ⊆ R and smooth bijection ϕ : J → I with smooth inverse, then
p ◦ ϕ : J → Rn is also a parametrization.

Assume that p : I → Rn and q : J → Rn are parametrizations of curve

4This basically means that a simple curve is something that can be obtained from a straight line segment by smoothly
distorting it, and without creating loops.



Smooth curve in Rn

C ⊆ Rn is a simple curve if there is

• an open interval I ⊆ R, and

• p : I → Rn injective, smooth function with continuous inverse (the
“parametrization” of C), such that

• p (I) = C

C is a curve if every point x of it has a neighborhood Bx ⊆ Rn such that Bx ∩ C is a
simple curve.

Facts

• The parametrization of a given curve is far from unique: take any open interval
J ⊆ R and smooth bijection ϕ : J → I with smooth inverse, then p ◦ ϕ : J → Rn

is also a parametrization.

• Assume that p : I → Rn and q : J → Rn are parametrizations of curve C, such
that ṗ(s) ̸= 0 and q̇(t) ̸= 0 for all s ∈ I and t ∈ J. Then p−1 ◦ q : J → I and
q−1 ◦ p : I → J are smooth.



Smooth submanifold in Rn

M ⊆ Rn is an m-dimensional simple submanifold if there is

• an open set D ⊆ Rm, and

• p : D → Rn injective, smooth function with continuous inverse (the
“parametrization” of M), such that

• p (D) = M

M is an m-dimensional submanifold if every point x of it has a neighborhood Bx ⊆ Rn

such that Bx ∩ M is a simple submanifold.



Smooth submanifold in Rn

M ⊆ Rn is an m-dimensional simple submanifold if there is

• an open set D ⊆ Rm, and

• p : D → Rn injective, smooth function with continuous inverse (the
“parametrization” of M), such that

• p (D) = M

M is an m-dimensional submanifold if every point x of it has a neighborhood Bx ⊆ Rn

such that Bx ∩ M is a simple submanifold.

Terminology
For a non-simple submanifold, a parametrization is also called local parametrization.
The inverse of a local parametrization is a local coordinatization.



Motivating ideas

• A maximal atlas provides a “smooth/differentiable structure” to M (that is the
notion to discern which functions to and from M are smooth/differentiable).

• (M,A) is an “internal” characterization (one that isn’t dependent on M being
embedded in an ambient Euclidean space) of smooth surfaces.

• An m-dimensional atlas says that M “locally looks like Rm.”



Charts depict the Earth as subsets of the Euclidean plane



Charts depict the Earth as subsets of the Euclidean plane

This is a good picture to have in mind. It must be noted though that it doesn’t quite correspond with
the precise definition of a smooth manifold. The reason is that M without the atlas is just a bare set that
has no notion of

• a “local neighborhood of its point”

• “distance,” “area,” or “angle” that could be faithfully or distortedly depicted by a chart.5

5Given an atlas on M, a U ⊆ M can be regarded as a local neighborhood of a point x ∈ M, if x ∈ U and (U, u) is a chart



Charts depict the Earth as subsets of the Euclidean plane

A better notion of “M locally looking like Rm” is given by the so-called tangent space; which is what
we now turn to.

in the atlas. Distance, area, or angle are notions that don’t even make sense even in the presence of an atlas in general. For
this, we will need an extra structure on the manifold.



Tangent spaces



Elements of Rn in two roles

When we think of the elements of Rn, we think of them either as

• points in space, whose only property is location, expressed by the coordinates
(x1, ..., xn), or

• vectors, which are objects that have magnitude and direction, but whose location
is irrelevant.

One of the motivations to introduce the concept of an affine space is distinguishing
precisely these two roles. In an affine space (A, V,+), the points of the space are
elements of A, and the vectors that have magnitude and direction, but no location,
are elements of V. At each point of A, we have a separate copy of V.



Tangent vectors of a submanifold in Rn

We considered the unit circle as a curve (one-dimensional submanifold) in R2. To
emphasize the difference between points and vectors, we can consider an affine space
(A, R2,+) and a unit circle as a subset of A, with center at x ∈ A:6

S1
x = {y ∈ A | |y − x| = 1}

At each y ∈ S1
x, the unit circle has a line tangent to it. This is a one-dimensional linear

subspace of R2 consisting of those vectors that are tangent to the circle at y, in other
words, that are orthogonal to the radial unit vector through y. So the tangent line of
S1

x at an y ∈ S1
x is

TyS1
x =

{
v ∈ R2 | π (v, y − x) = 0

}
where π denotes the scalar product in R2. One can think of TyS1

x as a subspace of the
copy of R2 at y ∈ A.

6Here |y − x| denotes the length of the vector in R2 that points from point x to y.
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subspace of R2 consisting of those vectors that are tangent to the circle at y, in other
words, that are orthogonal to the radial unit vector through y. So the tangent line of
S1

x at an y ∈ S1
x is

TyS1
x =

{
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where π denotes the scalar product in R2. One can think of TyS1

x as a subspace of the
copy of R2 at y ∈ A.

Notice that this definition of the tangent space is based on the fact there is an ambient
affine space around our manifold whose vector space component R2 has a Euclidean
structure.



Tangent vectors of a submanifold in Rn

We considered the unit circle as a curve (one-dimensional submanifold) in R2. To
emphasize the difference between points and vectors, we can consider an affine space
(A, R2,+) and a unit circle as a subset of A, with center at x ∈ A:

S1
x = {y ∈ A | |y − x| = 1}

At each y ∈ S1
x, the unit circle has a line tangent to it. This is a one-dimensional linear

subspace of R2 consisting of those vectors that are tangent to the circle at y, in other
words, that are orthogonal to the radial unit vector through y. So the tangent line of
S1

x at an y ∈ S1
x is

TyS1
x =

{
v ∈ R2 | π (v, y − x) = 0

}
where π denotes the scalar product in R2. One can think of TyS1

x as a subspace of the
copy of R2 at y ∈ A.

Notice that this definition of the tangent space is based on the fact there is an ambient
affine space around our manifold whose vector space component R2 has a Euclidean
structure. The following characterization of tangent vectors will lend itself to gener-
alization for an arbitrary manifold without ambient space.



Vectors as derivations

Main idea: a vector can be identified with the directional derivative along that vector,
as an operator on smooth functions.



Vectors as derivations

Let (A, Rn,+) be an affine space, and f : A → R be a smooth function.7 The direc-
tional derivative of f at an x ∈ A along a v ∈ Rn is

Dv f (x) =
d f (x + tv)

dt

∣∣∣∣
t=0

= lim
t→0

f (x + tv)− f (x)
t

One can consider the directional derivative as a map (operator) on functions:

Dx
v : C∞ (A) → R, f 7→ Dv f (x)

where C∞ (A) is the space of all A → R smooth functions.

The idea is that we can identify a vector v at a point x with this Dx
v operator.

7A function f : A → R is smooth if all its mixed partial derivatives to all orders exist and are continuous. For a function
whose domain is an affine space, its partial derivatives can be understood this way: ∂i f (x) = lim

t→0

f (x+tei)− f (x)
t , where ei is

the ith standard basis vector in Rn.



Vectors as derivations

To make this idea precise, we first observe that Dx
v as a C∞ (A) → R map has the

following two properties:8

• Dx
v (α f + βg) = αDx

v ( f ) + βDx
v (g) (linear)

• Dx
v ( f g) = f (x) Dx

v (g) + g (x) Dx
v ( f ) (product rule)

8If f , g ∈ C∞ (A) then α f + βg, f g ∈ C∞ (A).



Vectors as derivations

This motivates the following definition. Call any Dx : C∞ (A) → R map a derivation
at x, if it has those two properties:

• Dx (α f + βg) = αDx ( f ) + βDx (g) (linear)

• Dx ( f g) = f (x) Dx (g) + g (x) Dx ( f ) (product rule)



Vectors as derivations

This motivates the following definition. Call any Dx : C∞ (A) → R map a derivation
at x, if it has those two properties:

• Dx (α f + βg) = αDx ( f ) + βDx (g) (linear)

• Dx ( f g) = f (x) Dx (g) + g (x) Dx ( f ) (product rule)

We can now identify a vector as a derivation, based on the following:

Fact
The assignment

Rn → {derivations at x} , v 7→ Dx
v

is a bijection.



Tangent vectors in a smooth manifold

Let M be an m-dimensional smooth manifold, and x ∈ M. Consider C∞ (M), the
space of all M → R smooth functions.9 We call a Dx : C∞ (M) → R map a derivation
at x, if it has the following two properties:

• Dx (α f + βg) = αDx ( f ) + βDx (g) (linear)

• Dx ( f g) = f (x) Dx (g) + g (x) Dx ( f ) (product rule)

9If f , g ∈ C∞ (M) then α f + βg, f g ∈ C∞ (M).



Tangent vectors in a smooth manifold

Let M be an m-dimensional smooth manifold, and x ∈ M. Consider C∞ (M), the
space of all M → R smooth functions. We call a Dx : C∞ (M) → R map a derivation
at x, if it has the following two properties:

• Dx (α f + βg) = αDx ( f ) + βDx (g) (linear)

• Dx ( f g) = f (x) Dx (g) + g (x) Dx ( f ) (product rule)

This definition makes sense, as many important features of differentiation can be
proved merely on the basis of these two properties. For example:

• If f : M → R is a constant function, then Dx ( f ) = 0 for any derivation Dx at
any x ∈ M.

• A derivation is only sensitive to the local behavior of functions, in the sense
that if f , g ∈ C∞ (M) are identical in a local neighborhood of x ∈ M,10 then
Dx ( f ) = Dx (g).

10This means that there is chart (U, u) with x ∈ U, such that f (y) = g (y) for all y ∈ U.



Proof of the previous two facts

• Let f : M → R, f (x) = α ( ̸= 0) for all x ∈ M. Due to linearity, Dx (α f ) =
αDx ( f ). By the product rule, Dx ( f f ) = f (x) Dx ( f ) + f (x) Dx ( f ) = 2αDx ( f ).
Since α f = f f , we have αDx ( f ) = 2αDx ( f ) which implies Dx ( f ) = 0.

• Let x ∈ M, and f , g ∈ C∞ (M) such that f (y) = g (y) for all y ∈ U, where U
is the domain of a chart around x. Take a b ∈ C∞ (M) such that b (y) = 0 for
y /∈ U, and b (x) ̸= 0 (there exists such a b ∈ C∞ (M)). By the product rule, we
have

Dx (b f ) = b (x) Dx ( f ) + f (x) Dx (b)
Dx (bg) = b (x) Dx (g) + g (x) Dx (b) = b (x) Dx (g) + f (x) Dx (b)

Observe that b f = bg, therefore Dx (b f ) = Dx (bg), which implies Dx ( f ) =
Dx (g).



Tangent vectors in a smooth manifold

Let M be an m-dimensional smooth manifold, and x ∈ M. Consider C∞ (M), the
space of all M → R smooth functions. We call a Dx : C∞ (M) → R map a derivation
at x, if it has the following two properties:

• Dx (α f + βg) = αDx ( f ) + βDx (g) (linear)

• Dx ( f g) = f (x) Dx (g) + g (x) Dx ( f ) (product rule)

Motivated by the identification of vectors and derivations in an affine space, we call a
derivation at x a tangent vector of M at x. The set of all derivations at x is the tangent
space of M at x, which will be denoted by Tx M.



Examples of tangent vectors

• Let I ⊆ R be open interval. We say that γ : I → M is a smooth curve on M if
u ◦ γ : I → Rm is smooth for every chart (U, u) with U ∩ γ (I) ̸= ∅. Suppose for
simplicity that 0 ∈ I and γ (0) = x. The tangent vector of γ at x is11

γ̇x : C∞ (M) → R, f 7→ ( f ◦ γ) ˙ (0)

• Let (U, u) be a chart on M, and x ∈ U. The derivation wrt. the kth coordinate in
coordinates u at x is12

∂

∂uk

∣∣∣∣
x

: C∞ (M) → R, f 7→ ∂k
(

f ◦ u−1) (u (x))

11Note that in an affine space, the directional derivative along a vector v is a special case of γ̇x when the curve is a straight
line pointing in the v direction: γ (t) = x + tv.

12Note that ∂
∂uk

∣∣∣
x

is the tangent vector of the curve γ : (ε, ε) → M, t 7→ u−1 (u (x) + tek) (the pre-image of the kth

coordinate curve through u (x) in coordinates u) in the previous sense, where ε is a small number and ek is the kth standard
basis vector in Rm .



Tangent space as a vector space

Tx M is a vector space under the operations

(Dx
1 + Dx

2) ( f ) = Dx
1 ( f ) + Dx

2 ( f )
(αDx) ( f ) = α · Dx ( f )

Moreover, if M is an m-dimensional manifold, then the dimension of Tx M is m. In
particular, if (U, u) is a chart around x, then

∂

∂u1

∣∣∣∣
x

, ...,
∂

∂um

∣∣∣∣
x

forms a basis of Tx M.



Sketch of proof that the ∂
∂ui

∣∣∣
x
-s form a basis

To see that they are linearly independent, we have to show that
m
∑

i=1
αi

∂
∂ui

∣∣∣
x
= 0 implies αk = 0 for all

k.
m
∑

i=1
αi

∂
∂ui

∣∣∣
x
= 0 means that

m
∑

i=1
αi

∂
∂ui

∣∣∣
x
( f ) = 0 for all f ∈ C∞ (M). Let uk denote prk ◦ u, where

prk : Rm → R, (x1, ..., xk, ...xm) 7→ xk, the projection onto the kth coordinate. We will plug uk in the
place of f .13 But first observe that

∂

∂ui

∣∣∣∣
x
(uk) = ∂i

(
uk ◦ u−1

)
(u (x)) = ∂i

(
prk ◦ u ◦ u−1

)
(u (x)) = ∂iprk (u (x)) =

{
1 if i = k
0 if i ̸= k

(1)

Now, applying this, we have
m
∑

i=1
αi

∂
∂ui

∣∣∣
x
(uk) = αk, which indeed means that αk = 0 must hold for all k,

if
m
∑

i=1
αi

∂
∂ui

∣∣∣
x
( f ) = 0 for all f ∈ C∞ (M).

To see that any Dx ∈ Tx M can be expressed as a linear combination of the ∂
∂ui

∣∣∣
x
-s, one can show that

Dx =
m

∑
i=1

Dx (ui)
∂

∂ui

∣∣∣∣
x

13Note that strictly speaking uk /∈ C∞ (M) since the domain of uk is not the whole M, but only U. But we have seen that
derivations Dx are only sensitive to the local behavior of functions around x, so we can plug into Dx any function that is
defined in a neighborhood of x. And uk is such a function.



Tangent space as a vector space

Tx M is a vector space under the operations

(Dx
1 + Dx

2) ( f ) = Dx
1 ( f ) + Dx

2 ( f )
(αDx) ( f ) = α · Dx ( f )

Moreover, if M is an m-dimensional manifold, then the dimension of Tx M is m. In
particular, if (U, u) is a chart around x, then

∂

∂u1

∣∣∣∣
x

, ...,
∂

∂um

∣∣∣∣
x

forms a basis of Tx M.

Note that in an affine space (A, V,+), at every point x of A we have a copy of V. In
a manifold M, at every point x of M we have the vector space Tx M, but for different
points x and y, Tx M and TyM have nothing to do to each other.



Vector fields

• TM :=
⋃

x∈M
Tx M is called the tangent bundle of M

• A vector field is a map X : M → TM such that for all x ∈ M, Xx ∈ Tx M

• A vector field is smooth if for all f ∈ C∞ (M) the map

X ( f ) : M → R, x 7→ Xx ( f )

is smooth



Riemannian and Lorentzian manifolds



Riemannian manifold: motivating ideas

• A smooth manifold locally looks like its tangent space

• We want to say that a manifold locally looks like a Euclidean space (on a smooth
surface, like the surface of the Earth, we can measure distances, areas, angles,
etc.)

• We have seen that a Euclidean space can be described as a vector space that has
a Euclidean scalar product on it



Recall: Euclidean geometry in m dimensions

(V, p)

where

• V is an m dimensional vector space

• p is a Euclidean scalar product on it

that is:

1. For all u, v ∈ V, p (u, v) = p (v, u)

2. For all u, v, w ∈ V, p (u, v + w) = p (u, v) + p (u, w)

3. For all α ∈ R and all u, v ∈ V, p (u, αv) = αp (u, v)

4. For all non-zero u ∈ V, there is a v ∈ V such that p (u, v) ̸= 0

5. The signature of p is (m, 0) (i.e. all vectors of an orthonormal basis are of positive
square length)



Riemannian manifold: motivating ideas

• A smooth manifold locally looks like its tangent space

• We want to say that a manifold locally looks like a Euclidean space (on a smooth
surface, like the surface of the Earth, we can measure distances, areas, angles,
etc.)

• We have seen that a Euclidean space can be described as a vector space that has
a Euclidean scalar product on it

• So, we put a Euclidean scalar product on each tangent space of the manifold



Riemannian manifold

(M, g)

where

• M is an m dimensional smooth manifold

• g (called “metric” or “metric field”) is a map that assigns a Euclidean scalar
product to each tangent space of M

That is, if gx denotes the Euclidean scalar product on Tx M, then

1. For all x, y ∈ Tx M, gx (x, y) = gx (y, x)

2. For all x, y, z ∈ Tx M, gx (x, y + z) = gx (x, y) + gx (x, z)

3. For all α ∈ R and all x, y ∈ Tx M, gx (x, αy) = αgx (x, y)

4. For all non-zero x ∈ Tx M, there is a y ∈ Tx M such that gx (x, y) ̸= 0

5. The signature of gx is (m, 0) (i.e. all vectors of an orthonormal basis are of posi-
tive square length)



Riemannian manifold

(M, g)

where

• M is an m dimensional smooth manifold

• g (called “metric” or “metric field”) is a map that assigns a Euclidean scalar
product to each tangent space of M

We require g be smooth, in the sense that for any smooth vector fields X and Y on M,
the function

g (X, Y) : M → R, x 7→ gx (Xx, Yx)

be smooth.



Length

• The length of a vector x ∈ Tx M is

|x| =
√

gx (x, x)

• The length of a smooth curve14 γ : [t1, t2] → M is

|γ| =
t2∫
t1

√
gγ(t)

(
γ̇γ(t), γ̇γ(t)

)
dt

Length is invariant under reparametrization.15

14Officially, we have taken a smooth curve γ : I → M to be defined on an open interval I. We can extend this definition
for a closed I: we say that γ : [t1, t2] → M is smooth if it has an extension to a smooth curve on an open domain, defined in
a neighborhood of each endpoint t1, t2.

15One can think of the parametrization of a curve as a point moving on the curve through time, such that at time t ∈ [t1, t2]

it is at point γ (t). Then γ̇γ(t) is the velocity,
√

gγ(t)

(
γ̇γ(t), γ̇γ(t)

)
is the speed of the point at time t.

√
gγ(t)

(
γ̇γ(t), γ̇γ(t)

)
dt

is the distance covered by the point during a small time interval dt around time t. The fact that length is invariant under
reparametrization means that the length of the curve doesn’t depend on how (fast) the point moves on it.



Length

• A curve γ : [t1, t2] → M is parametrized by arc length if for all t ∈ [t1, t2],√
gγ(t)

(
γ̇γ(t), γ̇γ(t)

)
= 1. In this case

|γ| =
t2∫
t1

1dt = t2 − t1

Any smooth curve can be reparametrized by arc length.



Distance

• A curve from x to y is a curve γ : [t1, t2] → M with γ (t1) = x, γ (t2) = y. The
distance between x, y ∈ M is

d (x, y) = greatest lower bound {|γ| | γ is a smooth curve from x to y}

• A curve γ : I → M is minimal or “locally shortest” if there is an ε > 0 such that
for all τ1, τ2 ∈ I, |τ2 − τ1| < ε, the length of the segment of γ between τ1 and τ2 is
equal with d (γ (τ1) , γ (τ2))—that is, in case the segment of γ between τ1 and τ2
is the “shortest path” between γ (τ1) and γ (τ2).

Example: Consider two points on the “equator” of a two dimensional sphere
that are not antipodal to one another. An equatorial curve running from one
to the other the “long way” qualifies as a minimal curve. It is not the shortest
curve between the two points (the shortest one is the equatorial curve running
between them the “short way”), but any local modification of that curve will
yield a longer curve.



Lorentzian manifold: motivating ideas

• A smooth manifold locally looks like its tangent space

• We want to say that spacetime locally looks like Minkowski space

• We have seen that Minkowski space can be described as a vector space that has
a Lorentz product on it



Spacetime is locally Minkowski-like



Spacetime is locally Minkowski-like

Note that what this means is in not completely obvious. Cf:
S.C. Fletcher and J. O. Weatherall: The local validity of special relativity, part 1: Geometry. Philosophy
of Physics, 1(7), 2023.



Lorentzian manifold: motivating ideas

• A smooth manifold locally looks like its tangent space

• We want to say that spacetime locally looks like Minkowski space

• We have seen that Minkowski space can be described as a vector space that has
a Lorentz product on it



Recall: Minkowski geometry

(V, η)

where

• V is a 4 dimensional vector space

• η is a Lorentz product on it

that is:

1. For all u, v ∈ V, η (u, v) = η (v, u)

2. For all u, v, w ∈ V, η (u, v + w) = η (u, v) + η (u, w)

3. For all α ∈ R and all u, v ∈ V, η (u, αv) = αη (u, v)

4. For all non-zero u ∈ V, there is a v ∈ V such that η (u, v) ̸= 0

5. The signature of η is (1, 3)



Lorentzian manifold: motivating ideas

• A smooth manifold locally looks like its tangent space

• We want to say that spacetime locally looks like Minkowski space

• We have seen that Minkowski space can be described as a vector space that has
a Lorentz product on it

• So, we put a Lorentz product on each tangent space of the manifold



Lorentzian manifold

(M, g)

where

• M is an m dimensional smooth manifold

• g (called “metric” or “metric field”) is a map that assigns a Lorentz product to
each tangent space of M

That is, if gx denotes the Lorentz product on Tx M, then

1. For all x, y ∈ Tx M, gx (x, y) = gx (y, x)

2. For all x, y, z ∈ Tx M, gx (x, y + z) = gx (x, y) + gx (x, z)

3. For all α ∈ R and all x, y ∈ Tx M, gx (x, αy) = αgx (x, y)

4. For all non-zero x ∈ Tx M, there is a y ∈ Tx M such that gx (x, y) ̸= 0

5. The signature of gx is (1, m − 1)



Lorentzian manifold

(M, g)

where

• M is an m dimensional smooth manifold

• g (called “metric” or “metric field”) is a map that assigns a Lorentz product to
each tangent space of M

We require g be smooth, in the sense that for any smooth vector fields X and Y on M,
the function

g (X, Y) : M → R, x 7→ gx (Xx, Yx)

be smooth.



Lorentzian manifold

(M, g)

where

• M is an m dimensional smooth manifold

• g (called “metric” or “metric field”) is a map that assigns a Lorentz product to
each tangent space of M

Spacetime is a 4 dimensional Lorentzian manifold.



Causal structure

At any x ∈ M, gx provides a light cone structure on Tx M. In particular, x ∈ Tx M is

• time-like iff gx (x, x) > 0

• light-like iff gx (x, x) = 0

• causal iff gx (x, x) ≥ 0

• space-like iff gx (x, x) < 0



Causal structure

The classification extends naturally to curves. A smooth curve γ : I → M is

• time-like iff gγ(t)
(
γ̇γ(t), γ̇γ(t)

)
> 0, for all t ∈ I

• light-like iff gγ(t)
(
γ̇γ(t), γ̇γ(t)

)
= 0, for all t ∈ I

• causal iff gγ(t)
(
γ̇γ(t), γ̇γ(t)

)
≥ 0, for all t ∈ I

• space-like iff gγ(t)
(
γ̇γ(t), γ̇γ(t)

)
< 0, for all t ∈ I

These properties are preserved under reparametrization. So the classification also
extends to images of smooth curves.



Interpretative principles

Recall that special relativity can be understood as Minkowski space endowed with
the following interpretative principles:

• Time-like curves represent the spacetime trajectories of massive point particles,
i.e., point particles with non-zero mass.

• Time-like lines represent the spacetime trajectories of free massive point parti-
cles, i.e., massive point particles that are not subject to any force.

• Light-like lines represent the spacetime trajectories of light rays.

• Minkowski distance between time-like separated events is time measured by a
clock moving inertially between those events.

• Minkowski distance between space-like separated events is spatial distance
measured with moving rods by an observer for whom those events are simulta-
neous.



Interpretative principles

Recall that special relativity can be understood as Minkowski space endowed with
the following interpretative principles:

• Time-like curves (or more precisely, their images) represent the spacetime trajec-
tories of massive point particles, i.e., point particles with non-zero mass.

• Time-like lines represent the spacetime trajectories of free massive point parti-
cles, i.e., massive point particles that are not subject to any force.

• Light-like lines represent the spacetime trajectories of light rays.

• Minkowski distance between time-like separated events is time measured by a
clock moving inertially between those events.

• Minkowski distance between space-like separated events is spatial distance
measured with moving rods by an observer for whom those events are simulta-
neous.

The first one is also a fundamental principle of general relativity, which we are now
in position to formulate.



Affine connection



The problem of change and identity



Tangent spaces at different points are (almost) disjoint

• The C∞ (M) → R, f 7→ 0 map is an element of all tangent spaces, because it’s
trivially linear and satisfies the product rule for all x ∈ M. It is the 0 element of
all tangent spaces as vector spaces.

• But there’s no other shared element of the tangent spaces. That is, if

X ∈ Tx M ∩ TyM

for x ̸= y, then X = 0.



Proof of X ∈ Tx M ∩ TyM for x ̸= y implies X = 0

To see this, first take

• a neighborhood U around x, and V around y, such that U ∩ V = ∅ (this is possible if the mani-
fold is so-called Hausdorff, where every pair of distinct points have non-overlapping neighbor-
hoods)

• functions f , g ∈ C∞ (M) such that f is zero outside U and g is zero outside V, and f (x) ̸= 0 and
g (y) ̸= 0 (there exists such functions)

f g is zero everywhere, so X ( f g) = 0, due to the fact that to a constant function any derivation assigns
0. Now apply the product rule for X ( f g) at point x:

0 = X ( f g) = f (x)X (g) + g (x)X ( f ) = f (x)X (g) + 0 · X ( f ) = f (x)X (g)

Since f (x) ̸= 0, X (g) = 0.
Next take an arbitrary h ∈ C∞ (M), and apply the product rule for X (gh) at points x and y:

X (gh) = g (x)X (h) + h (x)X (g) = 0 · X (h) + h (x) · 0 = 0
= g (y)X (h) + h (y)X (g) = g (y)X (h) + h (y) · 0 = g (y)X (h)

Since g (y) ̸= 0, X (h) = 0. h was arbitrarily chosen, so X = 0.



Can we identify tangent spaces via charts?

Let (U, u) be a chart on M.

• For all x ∈ U,
∂

∂u1

∣∣∣∣
x

, ...,
∂

∂um

∣∣∣∣
x

forms a basis of Tx M

• Relative this basis, each vector X ∈ Tx M, for all x ∈ U, will have some coordi-
nates (X1, ..., Xm) ∈ Rm, defined by the expansion of X in that basis:

X =
m

∑
i=1

Xi
∂

∂ui

∣∣∣∣
x

• One might want to identify an X ∈ Tx M and an Y ∈ TyM (x, y ∈ U, x ̸= y) iff
they have the same coordinates:

(X1, ..., Xm) = (Y1, ..., Ym)

The problem with this identification is that it is chart-dependent.
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nates (X1, ..., Xm) ∈ Rm, defined by the expansion of X in that basis:
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• One might want to identify an X ∈ Tx M and an Y ∈ TyM (x, y ∈ U, x ̸= y) iff
they have the same coordinates:

(X1, ..., Xm) = (Y1, ..., Ym)

The problem with this identification is that it is chart-dependent.



Transformation of coordinates of vectors

Let (U, u) and (U′, u′) be charts such that U ∩ U′ ̸= ∅. Then for any x ∈ U ∩ U′ , both ∂
∂u1

∣∣∣
x

, ..., ∂
∂um

∣∣∣
x

and ∂
∂u′

1

∣∣∣
x

, ..., ∂
∂′um

∣∣∣
x

form a basis of Tx M. What is the transformation between the coordinates X1, ..., Xm

and X′
1, ..., X′

m of a vector X ∈ Tx M in these two bases?

We have X =
m
∑

i=1
Xi

∂
∂ui

∣∣∣
x
=

m
∑

j=1
X′

j
∂

∂u′
j

∣∣∣∣
x
meaning that for all f ∈ C∞ (M)

X ( f ) =
m

∑
i=1

Xi
∂

∂ui

∣∣∣∣
x
( f ) =

m

∑
j=1

X′
j

∂

∂u′
j

∣∣∣∣∣
x

( f )

Plugging f = u′
k = prk ◦ u′, and using (1), yields

m

∑
i=1

Xi
∂

∂ui

∣∣∣∣
x

(
u′

k
)
=

m

∑
j=1

X′
j

∂

∂u′
j

∣∣∣∣∣
x

(
u′

k
)
= X′

k

That is, applying the definition of ∂
∂ui

∣∣∣
x
, the coordinate transformation is

X′
k =

m

∑
i=1

Xi∂i

(
u′

k ◦ u−1
)
(u (x))

which one often writes as

X′
k =

m

∑
i=1

Xi
∂u′

k
∂ui

(u (x))



Transformation of coordinates of vectors

X′
k =

m

∑
i=1

Xi
∂u′

k

∂ui
(u (x))

or, equivalently,
X′ = J (u (x))X

where J (u (x)) is the Jacobian matrix of u′ ◦ u−1 : Rm ↣ Rm at u (x) .

The point is that this transformation depends on x, so

(X1, ..., Xm) = (Y1, ..., Ym) ⇏ (X′
1, ..., X′

m) = (Y′
1, ..., Y′

m)



Transformation of coordinates of vectors


