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Relativistic phenomena



Speed of light is same in all directions and independent of its source: c



Processes in motion slow down: time dilation

Tmoving =
Trest√
1− v2

c2

c = 3 · 108 m
s

e.g. v = 10 m
s

Tmoving−Trest
Trest

≈ 10−15s



Bodies in motion shrink: length contraction

Lmoving = Lrest

√
1 − v2

c2



Contraction of the EM field of a point charge in motion



Clocks and measuring rods also suffer relativistic deformations

The connection of space and time coordinates of events as determined in a stationary
vs. moving reference frame gets messed up. How exactly?



Standard 2D setup of two inertial frames K and K′ in relative uniform motion



Time coordinate in K

A light signal is sent from the standard clock at clock reading t1 to the
locus of event A, such that the signal is reflected just at the moment of the
occurrence of A. Upon receiving the reflected signal, let the clock reading
be t2. The time coordinate t (A) is

t(A) := t1 +
1
2
(t2 − t1)



Space coordinate in K

The space coordinate x(A) of event A is the distance from the origin of
K of the locus of A along the x-axis (straight line is usually defined by a
light beam) measured by superposing the standard measuring rod, being
always at rest relative to K.



Time coordinate in K′

We take a copy of the standard clock at rest in K and accelerate it to frame
K′ (very gently so that it doesn’t break!). Then we repeat the same oper-
ation as in above: A light signal is sent from the clock at clock reading t1
to the locus of event A, such that the signal is reflected just at the moment
of the occurrence of A. Upon receiving the reflected signal, let the clock
reading be t2. The time coordinate t′ (A) is

t′(A) := t1 +
1
2
(t2 − t1)



Space coordinate in K′

The space coordinate x′(A) of event A is the distance from the origin of K′

of the locus of A along the x-axis measured by superposing the standard
measuring-rod, being always at rest relative to K′, just the same way as if
all were at rest.



We calculate x′(A) and t′(A) in terms of frame K



We calculate x′(A) and t′(A) in terms of frame K

We assume that the following hold in K:

1. Speed of light is the same in all directions and independent of its source

2. Time dilation and length contraction

3. Galilean kinematics (wrt. the space and time coordinates measured by rods and
clocks at rest in K)



We calculate x′(A) and t′(A) in terms of frame K

By definition,

t(A) =
t(D)

2



We calculate x′(A) and t′(A) in terms of frame K

We know that
vt(C) = x(A)− c (t(C)− t(A))

and x(A) = ct(A). Therefore,

t(C) =
2ct(A)

c + v



We calculate x′(A) and t′(A) in terms of frame K

Taking into account that the moving observer’s clock reading at C is

reading(C) = t(C)

√
1 − v2

c2

we have

t′(A) =
reading(C)

2
=

ct(A)

c + v

√
1 − v2

c2 =
ct(A)(c − v)
(c + v)(c − v)

√
1 − v2

c2 =
t(A)− v

c2 x(A)√
1 − v2

c2



We calculate x′(A) and t′(A) in terms of frame K

Taking into account1 that the length of the co-moving meter stick is only
√

1 − v2

c2 ,

x(A) = t(A)v + x′(A)

√
1 − v2

c2

and thus

x′(A) =
x(A)− v t(A)√

1 − v2

c2

1Note that in K′, event A is not simultaneous with the event that the standard clock reading is t(A). But distance, in any
frame, is defined between simultaneous events. We will return to this issue.



Lorentz transformations

t′(A) =
t(A)− v

c2 x(A)√
1 − v2

c2

x′(A) =
x(A)− v t(A)√

1 − v2

c2

When v/c ≪ 1 we get back the so-called Galilean transformations of classical physics:

t′(A) = t(A)

x′(A) = x(A)− v t(A)



Relativity of simultaneity

• In K: A is simultaneous with the event that the “rest” clock’s reading is t(D)/2

• In K′: A is simultaneous with the event that the “moving” clock’s reading is
t′(C)/2

• But these two “clock” events are simultaneous neither in K nor in K′



Relativity of simultaneity

Consider two events, A and B, such that t(A) = t(B). From the Lorentz transforma-
tions:

t′(A)− t′(B) =
t(A)− v

c2 x(A)√
1 − v2

c2

−
t(B)− v

c2 x(B)√
1 − v2

c2

=
− v

c2√
1 − v2

c2

(x(A)− x(B))

This isn’t 0 unless x(A) = x(B).



Principle of relativity

Tmoving =
Trest√
1− v2

c2

Lmoving = Lrest

√
1 − v2

c2



Constancy of speed of light across inertial frames

A light signal is emitted at event A, with t(A) = 0 and x(A) = 0. Then t′(A) = 0 and
x′(A) = 0. The signal is absorbed at event B, thus x(B) = ct(B). From the Lorentz
transformations:

t′(B) =
t(B)− vct(B)

c2√
1 − v2

c2

x′(B) =
ct(B)− v t(B)√

1 − v2

c2

The speed of the light signal in K′:

v′(light) =
x′(B)
t′(B)

=

ct(B)−v t(B)√
1− v2

c2

t(B)− vct(B)
c2√

1− v2
c2

= c



We calculate x′(A) and t′(A) in terms of frame K

We assume that the following hold in K:

1. Speed of light is the same in all directions and independent of its source

2. Time dilation and length contraction

3. Galilean kinematics (wrt. the space and time coordinates measured by rods and
clocks at rest in K)

What we see is that the three conditions are derivable for K′. Consequently, the initially
chosen inertial frame is not privileged and can be picked arbitrarily.



Minkowski geometry



Euclidean geometry in 3 dimensions

(
R3, d

)
Euclidean distance:

d (x1, x2) =

√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

x1 = (x1, y1, z1) , x2 = (x2, y2, z2) ∈ R3



Euclidean geometry in n dimensions

(Rn, d)

Euclidean distance:

d(u, v) =
√
(u1 − v1)

2 + (u2 − v2)
2 + . . . + (un − vn)

2

u = (u1, ..., un) , v = (v1, ..., vn) ∈ Rn



Scalar product in Euclidean geometry

In Euclidean geometry over R3 (x1 = (x1, y1, z1) , x2 = (x2, y2, z2) ∈ R3):

• distance: d (x1, x2) =
√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2

• scalar product: p (x1, x2) = x1x2 + y1y2 + z1z2

• length: l (x) =
√

p (x, x) =
√

x2 + y2 + z2

• their link: d (x1, x2) = l (x1 − x2) =
√

p (x1 − x2, x1 − x2)

• orthogonality: p (x1, x2) = 0

• angle: cosα = p(x1,x2)
l(x1)l(x2)



Euclidean geometry in 3 dimensions: version 2

(
R3, p

)
Euclidean scalar product:

p (x1, x2) = x1x2 + y1y2 + z1z2

x1 = (x1, y1, z1) , x2 = (x2, y2, z2) ∈ R3



Minkowski geometry

(
R4, s

)
Minkowski distance:

s (x1, x2) =

√
(t1 − t2)

2 −
(
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
)

x1 = (t1, x1, y1, z1) , x2 = (t2, x2, y2, z2) ∈ R4



Minkowski distance and Lorentz product

In Minkowski geometry over R4 (x1 = (t1, x1, y1, z1) , x2 = (t2, x2, y2, z2) ∈ R4):

• Minkowski distance: s (x1, x2) =
√
(t1 − t2)

2 − (x1 − x2)
2 − (y1 − y2)

2 − (z1 − z2)
2

• Lorentz product: η (x1, x2) = t1t2 − x1x2 − y1y2 − z1z2

• Minkowski length: λ (x) =
√

η (x, x) =
√

t2 − x2 − y2 − z2

• their link: s (x1, x2) = λ (x1 − x2) =
√

η (x1 − x2, x1 − x2)

• orthogonality: η (x1, x2) = 0



Minkowski geometry: version 2

(
R4, η

)

Lorentz product:

η (x1, x2) = t1t2 − x1x2 − y1y2 − z1z2

x1 = (t1, x1, y1, z1) , x2 = (t2, x2, y2, z2) ∈ R4



Minkowski spacetime

Events are represented by their space and time coordinates (wrt. a given
inertial frame) in a Minkowski geometry.2 In two dimensions:

η (A, B) = c2t(A)t(B)− x(A)x(B)

s2(A, B) = η (x(B)− x(A), x(B)− x(A)) = c2 (t(B)− t(A))
2 − (x(B)− x(A))

2

2One inserts c2 in the definition of η for dimensional reasons, as well as to get out the correct relativistic formulas from
it. Is is customary to choose convenient units in which c = 1.



Minkowski spacetime

Events are represented by their space and time coordinates (wrt. a given
inertial frame) in a Minkowski geometry. In two dimensions:

η (A, B) = c2t(A)t(B)− x(A)x(B)

s2(A, B) = η (x(B)− x(A), x(B)− x(A)) = c2 (t(B)− t(A))
2 − (x(B)− x(A))

2

All of special relativistic physics can be expressed in terms of the Lorentz product
structure.



Spacetime diagram in classical physics



Spacetime coordinates in a moving inertial frame in classical physics



Spacetime coordinates in a moving inertial frame in relativity



Time and space axes of an inertial frame are Minkowski-orthogonal

• A vector that lies on the t′-axis of K′ is of the form x1 = (τ, vτ) for some τ ∈ R.

• A vector that lies on the x′-axis of K′ has 0 t′ coordinate. Hence, due to the
Lorentz transformation, its t and x coordinate must satisfy

0 =
t − v

c2 x√
1 − v2

c2

yielding t = v
c2 x. Thus, this vector must be of the from x2 =

( v
c2 ξ, ξ

)
for some

ξ ∈ R.

• Their Lorentz product:

η (x1, x2) = c2t1t2 − x1x2 = c2τ
v
c2 ξ − vτξ = 0



Path of light rays in spacetime

light signal
light signal



Path of massive bodies in spacetime

light signal

wordline of an accelerating rocket

wordline of a fly

light signal



Light-cone structure

light signal

wordline of an accelerating rocke

wordline of a fly

wordlines of massive bodies
that pass through event 
can only go in the
interior of the light cone

light signal



Light-cone structure

x ∈ R4 is

• time-like iff η (x, x) > 0

• light-like iff η (x, x) = 0

• space-like iff η (x, x) < 0

• (future-directed iff t > 0, past-directed iff t < 0)



Light-cone structure

x1, x2 ∈ R4 are

• time-like separated iff η (x1 − x2, x1 − x2) > 0 (s (x1, x2) > 0)

• light-like separated iff η (x1 − x2, x1 − x2) = 0 (s (x1, x2) = 0)

• space-like separated iff η (x1 − x2, x1 − x2) < 0 (s (x1, x2) is imaginary)

• (future light-cone, past light-cone)



Minkowski distance between time-like separated events is time measured by a
clock moving inertially between those events

light signal

square of the elapsed time
measured by observer K'
and multiplied by c2

light signal



Minkowski distance between time-like separated events is time measured by a
clock moving inertially between those events

light signal

square of the elapsed time
measured by observer K'
and multiplied by c2

light signal

s2(C, D) = c2∆t2 − v2∆t2 = c2∆t2
(

1 − v2

c2

)
= c2 × (time measured by the moving clock)2



Minkowski distance between space-like separated events is spatial distance mea-
sured with moving rods by an observer for whom those events are simultaneous

light signal
world tube of rod

simultaneity space of K

simultaneity space of K'



Minkowski distance between space-like separated events

Events A and B are the two ends of the rod for observer K′ at instant t′ = 0. A occurs
in the origin of the coordinate systems, so t (A) = x (A) = 0. Since t′ (B) = 0, from
the Lorentz transformation we have

0 =
t (B)− v

c2 x (B)√
1 − v2

c2

yielding t (B) = v
c2 x (B).



Minkowski distance between space-like separated events

x (B) = Lmoving + vt (B) = Lmoving + v
v
c2 x (B)

which yields

x (B) =
Lmoving

1 − v2

c2



Minkowski distance between space-like separated events

Finally, due to length contraction the connection between the length of the moving
rod as measured in K and K′ is the following:

Lmoving = L′
moving

√
1 − v2

c2



Minkowski distance between space-like separated events

Putting all this together, we have

s2(A, B) = c2t (B)2 − x (B)2 = c2
( v

c2 x (B)
)2

− x (B)2 = −x (B)2
(

1 − v2

c2

)
= −

L2
moving

1 − v2

c2

= −
(

L′
moving

)2
= − (distance measured by moving observer)2



Physical objects are 4 dimensional entities

the rod is a
4 dimensional
entity

• At the moment of their meeting, for the two observers the rod is a collection of
different events.

• Physical objects are 4 dimensional entities. Only things in 4 dimensions are real;
3 dimensional space and time are just perspectives of the 4 dimensional reality.



Lorentz transformation preserves the Lorentz product

Lorentz product in 2D:

η (x1, x2) = c2t1t2 − x1x2 x1 = (t1, x1) , x2 = (t2, x2) ∈ R2

Lorentz product of a Lorentz transformed pair of vectors:

η (x′
1, x′

2) = c2t′1t′2 − x′
1x′

2 = c2 t1 − v
c2 x1√

1 − v2

c2

t2 − v
c2 x2√

1 − v2

c2

− x1 − vt1√
1 − v2

c2

x2 − vt2√
1 − v2

c2

=
1

1 − v2

c2

(
c2t1t2 − vt1x2 − vx1t2 +

v2

c2 x1x2 − x1x2 + vx1t2 + vt1x2 − v2t1t2

)
= c2t1t2 − x1x2 = η (x1, x2)



Minkowski spacetime

Events are represented by their space and time coordinates (wrt. a given
inertial frame) in a Minkowski geometry. In two dimensions:

η (A, B) = c2t(A)t(B)− x(A)x(B)

s2(A, B) = η (x(B)− x(A), x(B)− x(A)) = c2 (t(B)− t(A))
2 − (x(B)− x(A))

2

All of special relativistic physics can be expressed in terms of the Lorentz product
structure.



Minkowski spacetime

Events are represented by their space and time coordinates (wrt. ANY
given inertial frame) in a Minkowski geometry. In two dimensions:

η (A, B) = c2t(A)t(B)− x(A)x(B)

s2(A, B) = η (x(B)− x(A), x(B)− x(A)) = c2 (t(B)− t(A))
2 − (x(B)− x(A))

2

All of special relativistic physics can be expressed in terms of the Lorentz product
structure.



Euclidean geometry in 3 dimensions: version 2

(
R3, p

)
Euclidean scalar product:

p (x1, x2) = x1x2 + y1y2 + z1z2

x1 = (x1, y1, z1) , x2 = (x2, y2, z2) ∈ R3



Euclidean geometry in 3 dimensions: version 3

(V, p)

where V is a 3 dimensional vector space and p is a Euclidean scalar product on it, that
is:

1. For all u, v ∈ V, p (u, v) = p (v, u)

2. For all u, v, w ∈ V, p (u, v + w) = p (u, v) + p (u, w)

3. For all α ∈ R and all u, v ∈ V, p (u, αv) = αp (u, v)

4. For all non-zero u ∈ V, there is a v ∈ V such that p (u, v) ̸= 0

5. The signature of p is (3, 0)



Orthonormal basis

Let vectors v1, ..., vn ∈ V form a basis of V. That is,

1) v1, ..., vn are linearly independent,

2) any other vector v ∈ V is expressible as a linear combination of v1, ..., vn.

We say that v1, ..., vn is an orthonormal basis of V if, for all vi, vk

• if vi ̸= vk then p (vi, vk) = 0

• p (vi, vi)
2 = 1



Signature

The signature of p is a pair of non-negative integers (n+, n−) where

n+ = number of vectors vi in an orthonormal basis with p (vi, vi) = 1
n− = number of vectors vi in an orthonormal basis with p (vi, vi) = −1

This definition makes sense as one can prove that numbers n+ and n− are the same
for any orthonormal basis.



Signature

The signature of p is a pair of non-negative integers (n+, n−) where

n+ = number of vectors vi in an orthonormal basis with p (vi, vi) = 1
n− = number of vectors vi in an orthonormal basis with p (vi, vi) = −1

This definition makes sense as one can prove that numbers n+ and n− are the same
for any orthonormal basis.

If all vectors of an orthonormal basis are of positive square length, then p a is Eu-
clidean scalar product.



Euclidean geometry in 3 dimensions: version 3

(V, p)

where V is a 3 dimensional vector space and p is a Euclidean scalar product on it, that
is:

1. For all u, v ∈ V, p (u, v) = p (v, u)

2. For all u, v, w ∈ V, p (u, v + w) = p (u, v) + p (u, w)

3. For all α ∈ R and all u, v ∈ V, p (u, αv) = αp (u, v)

4. For all non-zero u ∈ V, there is a v ∈ V such that p (u, v) ̸= 0

5. The signature of p is (3, 0)



Euclidean geometry in 3 dimensions: version 3

(V, p)

where V is a 3 dimensional vector space and p is a Euclidean scalar product on it, that
is:

1. For all u, v ∈ V, p (u, v) = p (v, u)

2. For all u, v, w ∈ V, p (u, v + w) = p (u, v) + p (u, w)

3. For all α ∈ R and all u, v ∈ V, p (u, αv) = αp (u, v)

4. For all non-zero u ∈ V, there is a v ∈ V such that p (u, v) ̸= 0

5. The signature of p is (3, 0)

This abstract characterization makes sense as every 3 dimensional Euclidean space
(V, p) is isomorphic3 to

(
R3, pR3

)
, the Euclidean space à la version 2.

3This means that there exists a bijection i : V → R3 that preserves all the operations. E.g. we have p (u, v) =
pR3 (i(u), i (v)) for all u, v ∈ V.



Minkowski geometry: version 2

(
R4, η

)

Lorentz product:

η (x1, x2) = t1t2 − x1x2 − y1y2 − z1z2

x1 = (t1, x1, y1, z1) , x2 = (t2, x2, y2, z2) ∈ R4



Minkowski geometry: version 3

(V, η)

where V is a 4 dimensional vector space and η is a Minkowskian scalar product (or
Lorentz product) on it, that is:

1. For all u, v ∈ V, η (u, v) = η (v, u)

2. For all u, v, w ∈ V, η (u, v + w) = η (u, v) + η (u, w)

3. For all α ∈ R and all u, v ∈ V, η (u, αv) = αη (u, v)

4. For all non-zero u ∈ V, there is a v ∈ V such that η (u, v) ̸= 0

5. The signature of η is (1, 3)



Minkowski geometry: version 3

(V, η)

where V is a 4 dimensional vector space and η is a Minkowskian scalar product (or
Lorentz product) on it, that is:

1. For all u, v ∈ V, η (u, v) = η (v, u)

2. For all u, v, w ∈ V, η (u, v + w) = η (u, v) + η (u, w)

3. For all α ∈ R and all u, v ∈ V, η (u, αv) = αη (u, v)

4. For all non-zero u ∈ V, there is a v ∈ V such that η (u, v) ̸= 0

5. The signature of η is (1, 3)

This abstract characterization makes sense as every Minkowski space (V, η) is isomor-
phic4 to

(
R4, ηR4

)
, the Minkowski space à la version 2.

4This means that there exists a bijection i : V → R4 that preserves all the operations. E.g. we have η (u, v) =
ηR4 (i(u), i (v)) for all u, v ∈ V.



Spacetime is locally Minkowski-like



Affine space

Vector spaces have a distinguished 0 element. Thus they are not appropriate for rep-
resenting homogeneous spacetime structure. An “affine space” can be thought of as
a vector space with the 0 element washed out. More precisely, we have the following
definition.

An affine space is a structure

(A, V,+)

where

• A is a non-empty set

• V is a vector space

• + : A × V → A is a map satisfying the following conditions:

1. For all p, q ∈ A, there is a unique u ∈ V such that q = p + u
2. For all p ∈ A, and all u, v ∈ V, (p + u) + v = p + (u + v)



Euclidean geometry in 3 dimensions: version 4

(A, V,+, p)

where

• V is a 3 dimensional vector space

• (A, V,+) is an affine space

• p is a Euclidean scalar product on V



Minkowski geometry: version 4

(A, V,+, η)

where

• V is a 4 dimensional vector space

• (A, V,+) is an affine space

• η is a Minkowskian scalar product on V



Flat geometries



Note on methodology

The geometric approach of special relativity starts from the abstract definition of
Minkowski space, and add interpretative principles to it that connect geometry with
physics. Such principles are the following:

• Time-like curves represent the spacetime trajectories of massive point particles,
i.e., point particles with non-zero mass.

• Time-like lines represent the spacetime trajectories of free massive point parti-
cles, i.e., massive point particles that are not subject to any force.

• Light-like lines represent the spacetime trajectories of light rays.

• Minkowski distance between time-like separated events is time measured by a
clock moving inertially between those events.

• Minkowski distance between space-like separated events is spatial distance
measured with moving rods by an observer for whom those events are simulta-
neous.



Note on methodology

One can then derive the paradigmatic special relativistic effects from the geometry plus
these interpretative principles.

By contrast, in our approach (sometimes termed as the dynamical approach), these
principles were consequences of the definition of the Lorentz product in the coordinates
of any given inertial frame, in conjunction with the special relativistic phenomena we
started out with.


