Conceptual introduction to spacetime geometry

15 February 2024

Today

Vectors

Vector space

A real vector space is a set *V* whose elements can be added and multiplied by real numbers in harmony with to the usual rules of addition and multiplication.

Linear combination

$$\sum_{i=1}^n lpha_i \mathbf{v}_i \qquad lpha_i \in \mathbb{R}, \mathbf{v}_i \in V$$

Linear independence

Vectors $\mathbf{v}_1, ..., \mathbf{v}_n \in V$ are linearly independent if non of them is expressible as a linear combination of the others. That is, for any k = 1, ..., n there are no $\alpha_i \in \mathbb{R}, i = 1, ..., n, i \neq k$ such that

$$\mathbf{v}_k = \sum_{\substack{i=1\\i\neq k}}^n \alpha_i \mathbf{v}_i$$

Vectors $\mathbf{v}_1, ..., \mathbf{v}_n \in V$ form a basis of *V* iff

- 1) $\mathbf{v}_1, ..., \mathbf{v}_n$ are linearly independent,
- 2) any other vector $\mathbf{v} \in V$ is expressible as a linear combination of $\mathbf{v}_1, ..., \mathbf{v}_n$.

Dimension

All basis has the same number of basis vectors in it and this number is called the dimension of *V*.

Linear transformations

Let *U* and *V* be vector spaces. A map $A : U \to V$ is linear iff for all $\mathbf{u}_1, ..., \mathbf{u}_n \in V, \alpha_1, ..., \alpha_n \in \mathbb{R}$

$$A\left(\sum_{i=1}^{n}\alpha_{i}\mathbf{u}_{i}\right)=\sum_{i=1}^{n}\alpha_{i}A\left(\mathbf{u}_{i}\right)$$

The set of all linear maps from *U* to *V* forms a vector space.

Coordinatization

A basis $\mathbf{v}_1, ..., \mathbf{v}_n \in V$ induces a linear bijection between V and \mathbb{R}^n which is called a coordinatization. In other words, relative to a given basis $\mathbf{v}_1, ..., \mathbf{v}_n \in V$, vectors of V can be represented by vectors of \mathbb{R}^n .

Matrix representation

 $\mathbb{R}^m \to \mathbb{R}^n$ linear maps can be represented as matrix products.

Therefore, relative to given bases in *U* and *V*, linear maps $U \rightarrow V$ can also be represented as matrix products.

Dual space

The set of linear maps from *V* to \mathbb{R} is called the dual space of *V*, and denoted by *V*^{*}. The elements of *V*^{*} are called covectors (or 1-forms).

 V^* is a vector space.

Dual basis

Let $\mathbf{v}_1, ..., \mathbf{v}_n \in V$ be a basis of *V*. Then covectors $\mathbf{p}^1, ..., \mathbf{p}^n \in V^*$ defined by

$$\mathbf{p}^{i}\left(\mathbf{v}_{j}
ight) = egin{cases} 1 & ext{if } i=j \ 0 & ext{if } i\neq j \end{cases}$$

form a basis of V^* .

Hence, the dimension of V^* is equal to the dimension of V.

Tensors

A map

$$T: V^{r} \times (V^{*})^{s} \to \mathbb{R}, (\mathbf{v}_{1}, ..., \mathbf{v}_{r}, \mathbf{p}^{1}, ..., \mathbf{p}^{s}) \mapsto T(\mathbf{v}_{1}, ..., \mathbf{v}_{r}, \mathbf{p}^{1}, ..., \mathbf{p}^{s}) \in \mathbb{R}$$

that is linear in all of its arguments is called a tensor of type (r, s).

The set of tensors of of type (r, s) forms a vector space.

Tensor product

Let $\mathbf{p}, \mathbf{q} \in V^*$. $\mathbf{p} \otimes \mathbf{q} : V \times V \to \mathbb{R}, (\mathbf{p} \otimes \mathbf{q}) (\mathbf{u}, \mathbf{v}) \mapsto \mathbf{p} (\mathbf{u}) \mathbf{q} (\mathbf{v})$ is a (2,0)-type tensor, which is called the tensor product of \mathbf{p} and \mathbf{q} .

Scalar product

A map $s : V \times V \rightarrow \mathbb{R}$ is called a scalar product iff *s* is

- linear in both arguments
- symmetric, that is $s(\mathbf{v}_1, \mathbf{v}_2) = s(\mathbf{v}_2, \mathbf{v}_1)$
- $s(\mathbf{v}, \mathbf{v}) \ge 0$ and $s(\mathbf{v}, \mathbf{v}) = 0 \Leftrightarrow \mathbf{v} = 0$

Pseudo scalar product

A map $s : V \times V \rightarrow \mathbb{R}$ is called a pseudo scalar product iff *s* is

- linear in both arguments
- symmetric, that is $s(\mathbf{v}_1, \mathbf{v}_2) = s(\mathbf{v}_2, \mathbf{v}_1)$
- nondegenerate, that is, if $s(\mathbf{u}, \mathbf{v}) = 0$ for all $\mathbf{u} \in V$ then $\mathbf{v} = 0$.