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69. Faithfully reflecting how “space” and “time” tags are under-
stood in classical physics and relativity theory, definitions (D1)
(D8) in Point 38 answered the purpose of demonstrating that
Einstein’s special relativity has exactly the same claims about
space and time as classical physics and Lorentz’s theory. How-
ever, neither the classical nor the relativistic definitions are trou-
ble free. They are based on several pre-assumptions about con-
tingent facts of nature which cannot be known or even formulated
prior to the definitions of space and time tags.

Let us focus on what is common to both the classical and rel-
ativistic approaches, definitions (D1) (D4). The first difficulty
is caused by the usage of measuring rod for the definition of dis-
tance. The problem I mean is different from the one proposed by
Reichenbach (1958), namely that the length of the rod may be
altered by some universal forces when the rod is transported from
one place to the another. This—known, or unkwon—behavior of
the etalon is no problem from logical/operational point of view,
as long as the operational procedure provides an unambiguous
definition. (For example, we are completely aware of the Lorentz
contraction of the measuring rod. But this is no problem; pro-
cedure (D8) in Point 38 provides an unambiguous definition of
space tags ' (A).) In accordance with Reichenbach’s final con-
clusion, I believe that the Newtonian concept of “absolute length”
(see Point 73) of the rod, independent of operational definition
of “distance”, is meaningless or at least is outside of the scope
of physics. If space tags are defined according to (D2) then the
length of the measuring rod is—by definition—constant, no mat-
ter what is our metaphysical pre-assumption about the length of
the rod ansich.

There are, however, real circularities here that appear at the
very operational level. The operations described in (D2) and
(D4) rest on the concept of a measuring rod at rest relative to
a given reference frame. However, we encounter the following
difficulties:
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(a)

(b)

70.

We have seen in Point 24 that the concept of a rod “at
rest” relative to a reference frame is problematic in itself.

One might think that this is no problem if the measuring
rod is always in equilibrium state when we are measuring
with it. It must be clear however that the equilibrium state
of a rod cannot be ascertained prior to the definition of its
length, that is, prior to the definition of distance.

The concept of rest relative to a reference frame is prob-
lematic not only for the measuring rod as a whole but even
for one single particle of the rod. The reason is that we
are missing a prior definition of velocity relative to a given
reference frame.

Throughout definitions (D1) (D9) we nonchalantly used
the term “reference frame”. Of course, it is no problem
to give the usual meaning to this term after having de-
fined space and time tags of events; when we already have
the concepts of simultaneity, the distance of simultaneous
events, dimensions, straight lines, etc. But the term “ref-
erence frame” has no meaning prior to the space and time
tags. We encounter this wrong circularity in definitions
(D2) and (D4): we ought to superpose the measuring-rod
along a straight line, such that the rod is always at rest
relative to the reference frame.

We also used the term “inertial” frame of reference. This

is another term that has no meaning without a previous
definition of space and time tags.

Another source of circularities is the “slow transportation”

of the standard clock in definitions (D1) and (D3). The reason
why the transportation must be slow is that the clock may ac-
cumulate a loss of phase during its journey. From (56) we can
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Figure 13: Velocity may vary such that the clock’s journey takes
very long time, nevertheless the integral in (88) is less than t

express this phase shift:

AT:t—/Ot\/l—w(cz)QdT (88)

where w(t) is the clock’s velocity during its journey. Of course,
AT — 0 if w(t) tends to zero in some uniform sense, for instance
if mazx |w(t)] — 0. One might think that this condition can be
provided without any vicious circularity by moving the standard
clock from its original place to the locus of the event in ques-
tion over a very long period of time, according to the reading of
the clock itself. This is however not the case. If function w(t)
is something like as shown in Fig. 13 then the clock’s journey
takes very long time, nevertheless the loss of phase in (88) does
not vanish. Yet one might also think that this does not cause
a vicious circularity in the operational definition of time tags,
because we can include the loss of phase into the definition, just
like in the relativistic definition (D6). (In definition (D6), the
time tag is simply defined by the reading of the clock, disregard-
ing the loss of phase accumulated during its journey. This phase
shift calculated in Point 42 is, for example, the origin of the
difference between ¢-simultaneity and Z—simultaneity.) However,
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this operation could not provide an unambiguous definition of
time tags. The reason is that the phase shift (consequently, the
reading) of the clock depends on the concrete shape of function
w(t). To keep w(t) controlled either in order to avoid ambi-
guity, or in order to provide the condition maz |w(t)| — 0—we
must be able to ascertain the clock’s instantaneous velocity rel-
ative to reference frame K, throughout its journey. And this
leads to the same vicious circularities we mentioned in Point 69

(c) and (d).

71. One has to recognize that some of the circularity problems
are independent of the relativistic effects and they are already
there in classical physics. Let me illustrate this with one ex-
ample. Assume, the time tags of events are somehow defined
by transported clocks. So we have the concept of “space” S,
that is the set of simultaneous events at a given time ¢t. The
congruence of space intervals in S; is traditionally defined by
means of transportation of rigid bodies. There has been a long
discussion about the conventionality of the concept of congru-
ence so obtained (Poincaré 1952; Einstein 1969b; Reichenbach
1958; Griinbaum 1974; Friedman 1983). But nobody contested
that the operational definition in itself is meaningful and appli-
cable for the coordination of (classical) space-time. In fact, as
a little reflection reveals, this is not the case; the definition of
congruence by means of transportation of rigid bodies contains
an operational circularity. For, assume that a rigid body indeed
“retains its size” during the transportation; its size before the
transportation, at tg, is equal to its size after the transportation,
at time ¢;. (In some objective sense or/and by convention—it
does not matter now.) This only means, however, that its size in
St, 1s “congruent” with its size in Sy, (Fig. 14). So, in order to
establish, in this way, the concept of congruence in space Sy, we
need a previous definition of “rest”, that is, a previous concept
of identity of two locuses of space at two different times. But,
in this construction, there seems no way to define the concept of
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Figure 14: The definition of spatial congruence by means of
transportation of rigid bodies is based on a previous definition
of “rest”, that is, on a previous concept of identity of two locuses
of space at two different times
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“rest” without the concept of congruence of spatial intervals in
every St.

72. The upshot of these considerations is that, in order to avoid
the circularities mentioned above and to minimize the conven-
tional elements in the empirical foundation of our physical the-
ory of space and time, we must avoid using standard measuring
rod in the definition of distance and using slow transportation
of the standard clock in the definition of time tags. We must
also abstain from relying on the concept of rigid body, reference
frame, and inertial motion.

Instead, we will use one standard clock and light signals. A
light signal should not be understood as a “light ray” or a “light
beam”, that is, we should not assume in advance that the light
signal propagates along a “straight line”.

Empirical Definition of Space and Time Tags

73. First we chose an etalon clock. That is to say, we chose
a system (a sequence of phenomena) floating somewhere in the
universe. Without loss of generality we may stipulate that this
is an equipment having a pointer and the readings are real num-
bers. (For example, let the clock in the U.S. Naval Observatory,
used by the GPS.) There is no assumption that this is a clock
measuring “proper time”. There is no assumption that it “runs
uniformly”. And there is no assumption that it is “at rest” rela-
tive to anything, or that it is of “inertial motion”. The reason is
that none of these concepts is defined yet.

Consider the experimental arrangement in Fig. 15. The stan-
dard clock emits a radio signal at clock-reading ¢; (event A). The
signal is received by another equipment (marker) which imme-
diately emits another signal (event B). This “reflected” signal
is detected by the standard clock at to (event C'). Without loss
of generality we may assume that these signals are modulated
radio waves, containing some minimal information to identify
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standard clock

Figure 15: Operational definition of time tags. (This is just a
symbolic sketch, not a real “two dimensional space-time diagram”
or the like.)



EMPIRICAL DEFINITION OF SPACE AND TIME TAGS 97

them. We also assume, as an empirical fact, that the clock we
have chosen is such that a given reflected signal is received by
the standard clock only once, at reading ¢5, and

to >t (89)

by which we have chosen, conventionally, an “arrow of time” (not
the arrow of physical processes in time; see Price 1996, p. 16
and 58). (In fact, we made two choices here. One is the choice of
the direction of the parametrization of the clock’s pointer posi-
tions (89). There is however a more important one: by applying
the terms “sending” and “receiving” a signal, we previously de-
termined the causal order of events A and C. To what extent
this causal order is purely conventional? How can we—without
prior spatiotemporal conceptions—distinguish whether an event
is a “sending” or a “receiving” of a signal? How is this choice
of causal order related to the change of information content of
the signal? To what extent this choice is determined by our free
will and free action experience at the modulation of the radio
waves? Is this freedom an objective openness of future or merely
a subjective experience? These are delicate metaphysical ques-
tion; into the discussion of which it is not our present purpose to
enter.)

Definition (A1) The absolute time tag of event B is the fol-
lowing;:

7 (B) =t + % (ts — 1) (90)
The definition is about event B consisting in the “reflection” of
the radio signal emitted by the standard clock. That is to say, we
assigned an absolute time tag to a definite physical phenomenon
which we called “event”. It is far from obvious, however, what
must be regarded as an event in general prior to the concepts of
time and distance—, and how one can extend the definition for
the physical events of other kinds. (See Brown 2005, pp. 11-14.)
We do not dwell on this problem here. The reader can easily
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imagine various operational solutions of how to use the B-type
“reflection” events for marking other physical events/phenomena.
So we will assume that definition (A1) is extended for all physical
events.

74. At this point, one might think that we are ready to de-
fine the distance between simultaneous events in the usual way.
Surely, we can define the distance between the simultaneous
events D and B (Fig. 15) as 3 (t —t1) ¢, where the value of
c is taken as a convention. In this way, however, we can define
the distance only from the standard clock. But there is no way to
extend this definition for arbitrary pair of simultaneous events.
In order to define the distance between arbitrary simultaneous
evens we need further preparations.
Denote S; the set of simultaneous events with time tag 7.

Definition (A2) A one-parameter family of events v(7) is called
time sequence if y(7) € S; for all 7.

One has to recognize that a time sequence is a clock-like process.
For every event, one can define a time-like tag in the same way
as (Al): Event A (Fig. 16) is marked with the emission of a radio
signal at time 7(A). The signal is reflected at event B. Event
C' is the first detection of the reflected signal at time 7(C'). We
define the following time-like tag for event B:

1
(B) = 7(4) + 5 (r(C) — 7(4)
(If there is no detection of the reflected signal at all, then, say,

TY(B) := 00.)

It is an empirical fact that 77(B) # 7(B) in general. It is
another empirical observation however that for some particular
cases 7Y(B) = 7(B).

Definition (A3) A time sequence ¥(7) is a synchronized copy
of the standard clock if for every event B 77(B) = 7(B).

Whether or not there exist synchronized copies of the standard
clock is an empirical question. We stipulate the following:
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standard clock 7(‘7')
)

Figure 16: Clock-like time sequence

Empirical fact (E1) For any event A there exists a unique
synchronized copy of the standard clock v(7) such that

A=y(7(A))

75. Now we are ready to define the distance between simulta-
neous events.

Definition (A4) The absolute distance between two simulta-
neous evens A, B € S; is operationally defined in the following
way. Take a synchronized copy of the standard clock « such that
A = 7(7). (See Fig. 17) Let U = ~ (7(U)) is an event marked
with the emission of a radio signal at absolute time 7(U), such
that the signal is received and reflected at event B. The detec-
tion of the reflected signal marks the event V =~ (7(V)) of time
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standard clock v

Figure 17: The distance between two simultaneous events

tag 7(V'). The absolute distance is

d-(A,B) == (17(V)—7(U))c

DO | =

where ¢ = 299792458 by convention.

76. We know from (89) that for all A, B € S

d-(A,B) >

d-(A,A) = 0

However, the following fact cannot be known a priori:

Empirical fact (E2) For all A,B,C € S;

dT(A7B)+dT(B7C) > dT(A7C)

(94)

Some other propositions are however derivable from the defini-

tions.



EMPIRICAL DEFINITION OF SPACE AND TIME TAGS

101

n(r

Yo(7)

Figure 18: The distance between the simultaneous points of two
synchronized copies of the standard clock is a periodic function
of the absolute time
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Lemma 1 Consider two synchronized copies of the standard
clock 1 and 75 (Fig. 18). For any moment of absolute time 7

dry (71(70),72(70)) = dry (72(70),71(70)) (95)

and

dry (71(70),72(70)) = drgyr (V1 (70 + T),72(70 + T')) (96)

where
dr, (71(10), 72(70))
c

T =

Proof Let vi(7) be event Ay. Consider the following
events: a radio signal is emitted at Aq, then reflected at By, then
it is reflected again at Ao and reflected again at Bo, and so on.
Let 7(E) = 7 (Bg) and 7(C') = 7 (By). Taking into account that
both v and 79 are synchronized copies of the standard clock, we
have the following equations:

7 (B2) + 7 (B1)

T(A) = 5
. (32) _ T (A3) ;—T (AQ)
(B - T(A2)-;T(A1)

From the above three equations we have

T(A3) —7(A2) = 7(A2) —7(A) (97)
and

T(B2) =7 (B1) = 7(A2)—7(A) (98)
Therefore,

T(E) —7(C) =7(A2) — 7 (A1) = 7(B2) — 7 (B1)



EMPIRICAL DEFINITION OF SPACE AND TIME TAGS 103

Imagine now a radio signal emitted from C, reflected at D and
detected at E. Again, taking into account that both ~; and 79
are synchronized copies of the standard clock, we have

T(E)+7(C)  7(B)+7(B)

(D) = 5 = 5 =7(A) =19
Therefore,
dry (11(70),72(70)) = MC
_ 1(By) =7 (B1)
= 5 c

= dry (72(70),71(70))

Taking into account this symmetry, (96) immediately follows

from (97). n
In other words, as it follows from (95), for any A, B € S;

dT(A7 B) = dT(B7A) (99)

One has to recognize that a function S; x.S; — R with properties
(92)—(94) and (99) is what the mathematician calls metric on S;.
Thus, we can stipulate that (S;,d;) is a metric space for every
moment of absolute time 7.

77. Having metric defined on S;, we can define the concept of
a straight line in S; (Fig. 19).

Definition (A5) A subset ¢ C S, is called (straight) line if
satisfies the following conditions:

1. for any A, B,C' € o exactly one of the following three rela-
tions hold:
d-(A,C)+d.(C,B) = d;(A B)
T(A,B)—{—dT(B,C) = U7 A,C’)
d-(B,A)+d;(A,C) = d.(B,C)

S8
S8

—~

2. o is maximal for property 1.
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Figure 20: Orthogonal lines

Empirical fact (E3) For every A, B € S, there exists a unique
line containing A and B.

Definition (A6) Let o1 and oy two lines in S, such that o1 N

o9 = {O} (see Fig. 20). o9 is orthogonal to oy if for every Z € oy
and for every X,Y € oy

dT(X7 O) = dT(O’Y) g dT(X7 Z) = dT(K Z)

Empirical fact (E4) If o1 is orthogonal to o9 then o9 is or-
thogonal to o;.
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Empirical fact (E5) For every O € S; there exist three lines
01,092 and o3 such that they are pairwise orthogonal and o7 N

o9 MNog = {O}

Empirical fact (E6) Let O € S; an arbitrary event and three
lines 01,09 and o3 such that they are pairwise orthogonal and
o1 NogNog ={0}. There is no line o C S, orthogonal to each
of 01,09 and o3, such that oy NoyNogNo ={0}.

We usually express this fact by saying that space is three dimen-
sional.

Empirical fact (E7) Let A € S; be an arbitrary event and o7 C
S; an arbitrary line. There always exists a line o9 orthogonal to
o1, such that A € os.

Definition (A7) Using the notations in (ET7), let 01No2 = {O}.
Distance of d,(A, O) is called the distance of A from oy.

Definition (A8) Let o1 C S; be a line. A line o3 is parallel to
o1 if for all X € o9 the distance of X from oy is the same.

Empirical fact (E8) Let o1 C S; be a line and let C' € S;
an arbitrary event. There exists exactly one line o9 such that
C € 09 and o9 is parallel to oy.

Definition (A9) Let A,B € o two events on line o. Line
segment between events A, B € S; is the following subset of o:

o(A,B) == {X € o|d.(A, X)+d.(X,B) = d,(A,B)} (100)

78. Now, we have everything at hand to define the usual Carte-
sian coordinates in S;. First we need a 3-frame.
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Ya

Xo

Figure 21: Cartesian coordinates in S

Definition (A10) A 3-frame in S; consists of three pairwise
orthogonal line segments, o (Y1,Y2), 0 (Z1, Z3), such that

O'(Xl,XQ) ﬂO’(Yi,Y&) ﬂO’(Zl,Zg) = {O}

where O is the origin of the frame (Fig. 21).

The end points play marginal role, but we do not assume that
these segments have “infinite” length. The segments are supposed
to be long enough for the purposes of the empirical coordination
of the physical events in question. The origin of the 3-frame
is arbitrary, although it could be a natural choice to take the
“r-event” of the standard clock as origin.

In the following definition we give the operational definition
of the three absolute space tags of an event A € S..

Definition (A11) Take a line segment o(B,C) > A parallel to
0 (Z1,Z3). (See Fig. 21.) Take another line segment o(A, D)
orthogonal to o (Z1, Z3) such that D € o (Z,Z3). Let 0(O, E)
be a line segment parallel to o(A, D) such that E € o(B,C).
Finally, take the line segments o(E, F) and o(E,G) such that
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o(E, F) is parallel to 0 (X1, X2) and F € 0 (Y1,Y>), and o(E, G)
is parallel to o (Y1,Ys) and G € o (X7, X2). Now, the space tags
are defined as follows:

B d,(G,0) if Ge€o(0,Xa)
zr(A) = { ~d,(G,0) if Gea(O,X?)
B d-(F,0) if Feo(0,Ys)
yr (4) = { —d.(F,0) if Fea(O,Y?)
B d,(D,0) if Dea(0,7Z)
z (4) = {—dT(D,O) if Dea(O,Z?)

79. It must be emphasized that with the above definitions we
only defined the space tags in a given set of simultaneous events
S-. Yet, we have no connection whatsoever between two S, and
S if 7 # 7/. In principle, there exist infinitely many possible
bijections between the different S;’s, but without any natural
physical meaning. This is true, even if we prescribe that the
bijection must be an isomorphism preserving distances.

According to some vague intuition, a time sequence (1) sat-
isfying that

7 (y(1)) = const. (101)
yr (7(1)) = const. (102)
zr (7(1)) = const. (103)

corresponds to a localized physical object being at rest. “At
rest” relative to what? The actual behavior described by these
equations very much depends on how the different 3-frames are
chosen in the different S;’s. One might think that an object is at
rest if equations (101)—(103) hold in one and the same 3-frame in
all S;. But, what does it mean that “one and the same 3-frame
in all S;”? When can we say that a line segment o (X7, X%) in
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Sy is the same 3-frame axis as o (X1, Xs) in S;? When can we
say that an event A’ is in the same place in S,/ as event A in S, 7

In asking these questions, it is necessary to be careful of a pos-
sible misunderstanding. Although they are close to each other,
the problem we are addressing here is different from the prob-
lem of persistence of physical objects (Butterfield 2005). What
we would like to define is the identity of two locuses of space at
two different times, and not the genidentity of the physical ob-
jects occupying them. One might think that some definition of
genidentity of physical objects must be prior to our operational
definition of space and time tags, at least in the case of the
standard clock. This is, however, not necessarily the case. The
standard clock is just an ordered (ordered by the clock readings)
sequence of physical events, but without the further metaphys-
ical assumption that these events belong to the same physical
object. (We definitely do not make such assumption in the case
of a synchronized copy of the standard clock.)

80. In order to establish connection between arbitrary two sets
of simultaneous events we need some preparations.

Lemma 2 Let v; and 72 be arbitrary two synchronized copies
of the standard clock. For any two moments of absolute time 7
and 7/

dr (71 (1), 72 (7)) = dp (01 (7') ;72 (7)) (104)

Proof The proof will be based on (96). Let us assume that
7 < 7. Denote T the period in (96), that is

dr (11 (7),72 (7))

T —

First we will prove that

dr (1 (7),72(7)) Z dor (11 (7') 72 (7))

Let n be the smallest integer such that 7/ < 7+ nT =: 7
(Fig. 22). Tt follows from (96) that

dr (1 (1) 72 (7)) = dry (71 (11) ;72 (11))
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Figure 22: Proof of Lemma 2

Let 7 := ZXT  Consider the synchronized copy of the stan-
5 Yy

dard clock I'y that goes through the middle point of line seg-
ment o (y1 (7),72 (7)). Taking into account that 7 = 7 + TTLQ%
for some integer mgy (namely, my = n), and also that %c =
w, one can apply (96) for the synchronized copies of

the standard clock vy and I's. Therefore,

dr (1 (1) ,72(7))
2

dry (71 (72) , T2 (72)) = dr (11 (1), T2 (7)) =
The same argument can be repeated for v, and I'y. Therefore,

dry (T (72) 172 (12)) = dy (Do (1), 72 (1)) = d; (m (T; ;Y2 (7))

It follows from (94) that

dr (71 (7),72 (7)) = dr, (71 (12) 172 (72))
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Assume that 7/ > 75. Therefore, take 73 := 23T, Again,
consider the synchronized copies of the standard clock I‘%, I‘%,
I's dividing line segment o (1 (7),72 (7)) into 4 pieces of equal
length. Taking into account that 73 =7+ mg% for some integer
mg and also that %c = w, one can apply (96) for the
synchronized copies of the standard clock 7 and T'}. Therefore,

dr (71 (1) ;72 (7))
4

d‘rg ('71 (Tg) ,Fé (Tg)) = d'r (71 (T) 7P%> (T)) =

Similarly,

dry (T3 (73), T3 (13)) =

4
d7-3 (Fg (’7'3) ,Fg (7'3)) — dr (71 (Ti , V2 (T))
dry (Fg (73) ;72 (7'3)) = dr (11 (Ti ;72 (7))

Consequently, from (94),

dr (71 (1) ,72 (7)) 2> dry (71 (73) ;72 (73))

Assume 7/ < 73. Therefore, take 74 := B3 Again, consider
the synchronized copies of the standard clock lep F?p I‘i, e FZ di-
viding line segment o (71 (1) ,72 (7)) into 8 pieces of equal length.
Taking into account that 7y, =7+ m4% for some integer my4 and
also that %c = M, one can apply (96) for the synchro-
nized copies of the standard clock +; and T'}. Therefore,

dr (71 (1) 72 (7))
8

dry (71 (1), T4 (10)) = dy (71 (1), T4 (7)) =

Similarly,

dr, (T4 (1a) T3 (14)) =

dr, (T3 (14), T (14)) =
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dr (11 (1) ,72 (7))

dry (U5 (74) ;72 (12)) = 8

Consequently, from (94)

Y

dr (71 (7),72 (7)) = dry (71 (14) ;72 (72))

And so on and so forth,

dr (11 (1) 72 (7)) 2 dr; (71 (73) 72 (73))
On the other hand,

. /
lim 7 =71
1—00

therefore

dr (71 (1), 792 (7)) 2 dpr (1 (7') s 92 (7))

Exactly in the same way one can prove that

dr (71.(7) 72 (7)) < dpr (1 (7') 72 (7))

111

One simply has to change the roles of 7 and 7/. Denote T”, this

time, the period

e (), 2()

Let n/ be the smallest integer such that 7 > 7/ —n/T” =: 7{ Then,

it follows from (96) that

de (1 (') 72 (') = dog (O (1) 72 (7))

! !
T +T

Let 75 := -3

Consider the synchronized copy of the stan-

dard clock T, that goes through the middle point of line segment
o (71 (") ,72 (7). Taking into account that 75 = 7/ — mj% for

some integer mo, and also that %c =

drr (71 () 2(7"))
2

, one can
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apply (96) for the synchronized copies of the standard clock
and Ty, Therefore,

dry (71 (12) T2 (m2)) = o (01 (7). T2 (7))

Similarly,

g (T () 2 () = S 0D
Therefore,

o (1 (1) 72 (13)) < dor (1 () 22 (7))

And so on and so forth,

ey (11 (7)) 72 (7)) < do (1 (7) 22 (7))

At the same time,

. /
lim 7, =71
1—00

Consequently,

dr (1 (7),72 (7)) < dor (11 (7) 72 (7))
[ |

81. The following isomorphism can be regarded as a natural
one.

Definition (A12)

/

T2 :S; — So
A o TT(A) = A7)
where 7 is a synchronized copy of the standard clock such that
A = (7). Let us call T the time shift between S, and S.

It follows from (E1) and Lemma 2 that this definition is sound
and ']I‘f is a distance preserving bijection.
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82. Now we have everything at hand to define the space tags
of events.

Definition (A13) Let A be an arbitrary event. The absolute
space tags of A are defined as follows:

&(4) = o (T4 (4))
&(A) = w (TQ(A) (A))
&(A) = 2 <T2(A) (A)>

Thus we have defined four absolute space-time tags for every
event: 7(A),£1(A),€2(A),&3(A).

83. For example, the absolute velocity of a time sequence vy (7)
is obviously defined as

( (1)
v (1) = dSz( ( )
d€3( ( )

I omit the further (but straightforward) definitions.

84. I call 7(A) “absolute time” not in the sense of what Newton
called “absolute, true and mathematical time”, that is indepen-
dent of any empirical definition (see Scholium IT in chapter “Defi-
nitions” of the Principia.), but in the sense of what the 20th cen-
tury physics calls absolute time; it is “independent of the position
and the condition of motion of the system of co-ordinates” (Ein-
stein 1920, p. 51). The space-time tags 7(A),&1(A4), &2(A), E3(A)
are absolute in the sense that they are not relative to a reference
frame but prior to any reference frame (actually the concept of
“reference frame” is still not defined).

Our concepts of absolute time and space tags are, of course,
“relative” to the trivial semantical convention by which we define
the meaning of the terms. Namely, they are “relative” to the
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etalon clock-like process we have chosen in the universe. This
kind of “relativism” is however common to all physical quanti-
ties having empirical meaning. (Beyond the choice of the etalon
clock, the space tags &1(A),&(A),&3(A) have some additional
conventional element; they also are relative to the chosen 3-frame
in Sp. This additional conventionality is, however, of marginal
importance; it is nothing more than what we would call in our
usual language “the choice of a 3-coordinate basis in a given ref-
erence frame”.)

85. As it was already mentioned in Point 38, there has been
a long discussion in the literature about the conventionality of
simultaneity. (See, for example, Reichenbach 1956; Bridgeman
1965; Griinbaum 1974; Salmon 1977; Malament 1977; Friedman
1983; Ben-Yami 2006.) Without entering in the details of the
various arguments, the following facts must be pointed out here.

As it is obvious from (90), we chose the standard “c = %—
synchronization”. (Of course, it could be a contingent fact of
nature that to = ¢; in Fig. 15. In that case the choice of the
value of ¢ would not matter.) This choice was entirely conven-
tional; it was a part of the trivial semantical convention defining
the term “absolute time tag”. This choice is prior to any claims
about the one-way or even round-trip speed of electromagnetic
signals, because there is no such a concept as “speed” prior to
the definition of time and space tags; it is, of course, prior to
“the metric of Minkowski space-time”, in particular to the “light-
cone structure of the Minkowski space-time”, because we have no
words to tell this structure prior to the space-time tags; and it
is prior to the causal order of physical events, because—even if
we could know this causal order prior to temporality we can-
not know in advance how causal order is related with temporal
order (which we have defined here). It is actually prior to any
discourse about two locuses in space, because there is no “space”
prior to definition (A1) and there is no concept of a “persistent
space locus” prior to definition (A12).



INERTIAL MOTION 115

Inertial motion

86. A remark is in order on the empirical facts (E1) (E8) to
which we refer in constructing the space-time tags. In claiming
these statements as empirical facts I mean that they ought to be
true according to our ordinary physical theories. The ordinary
physical theories are however based on the ordinary, problem-
atic, space-time conceptions, relaying on ‘reference frames real-
ized by rigid bodies” and the likes, without proper, non-circular,
empirical definitions. Thus, especially in the context of defin-
ing the two most fundamental physical quantities, distance and
time, we must not regard our ordinary physical theories as em-
pirically meaningful and empirically confirmed claims about the
world. Whether these statements are true or not is, therefore,
an empirical question, and it is far from obvious whether they
would be completely confirmed if the corresponding experiments
were performed with higher precision, similar to the recent GPS
measurements, especially for larger distances. Strangely enough,
according to my knowledge, these very fundamental facts have
never been tested experimentally; no textbook or monograph
on space-time physics refers to such experimental results; actu-
ally, with a very few exceptions (for example, Milne 1935 Part
I; Bridgman 1965), it is not even attempted to provide a clear,
non-circular empirical definition of “time” and “distance” in one
single (inertial) frame, as if it would be a problem only in the
case of an accelerated observer (cf. Mérzke and Wheeler 1964;
Pauri and Vallisneri 2000).

So, the best we can do is to believe that our physical theories
based on the usual sloppy formulation of space-time concepts
are true (in some sense) and to consider the predictions of these
theories as empirical facts. However, as the following analysis
reveals, it is far from obvious whether the predictions of the
believed theories really imply (E1)—(ES8).
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87. Throughout the definition of space-time tags, we avoided
the term “inertial”, and because of a good reason. First of all,
if “inertial” is regarded as a kinematical notion based on the
concept of straight line and constancy of velocity, then it can-
not be antecedent to the concept of space-time tags. If, on the
other hand, it is understood as a manner of existence of a phys-
ical object in the universe, when the object is undergoing a free
floating, in other words, when it is “free from forces”, then the
concept is even more problematic. The reason is that “force” is a
concept defined through the deviation from the trajectory of in-
ertial motion (first circularity), and neither the inertial trajectory
nor the measure of deviation from it can be expressed without
spatiotemporal concepts, that is, they cannot be antecedent to
the definition of space-time tags (second circularity). So there is
no precise, non-circular definition of inertial motion. (And this
is—in my view—the major difficulty with Méarzke and Wheeler’s
(1964) “geodesic clock” approach, too.) It is to be emphasized
that this operational/logical circularity is a problem even in a
special relativistic/flat /local space-time.)

88. According to our believed special relativistic physical the-
ory, space-time is a 4-dimensional Minkowski space and inertial
trajectory is a time-like straight line in the Minkowski space.
Since we are prior to the empirical definitions of the basic spa-
tiotemporal quantities, we cannot regard this claim as an empiri-
cally confirmed physical theory. Nevertheless, let us assume for a
moment that our special relativistic theory is the true description
of the world “from God’s point of view”. It is straightforward to
check that all the facts (E1)—(ES8) are true if 1) the standard clock
moves along an inertial world line in the Minkowski space-time
and 2) it reads the proper time, that is, it measures the length
of its own word line, according to the Minkowski metric. How-
ever, we human beings can know neither whether the standard
clock (chosen by us) is of inertial motion in God’s Minkowskian
space-time nor whether it reads the proper time. What if these
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conditions fail? What does special relativistic kinematics say
about (E1) (E8) if the standard clock is accelerated and/or it
does not read the proper time?

In order to answer this question, we have to follow up the op-
erational definitions (A1), (A2),... and calculate whether state-
ments (E1), (E2),... are true or not if the standard clock moves
along a given world line v and the “time” it reads is, say, a given
function of the Minkowskian coordinate time, x(¢). Although the
task is straightforward, the calculation is too complex to give a
general answer by analytic means. But the problem can be ef-
ficiently solved by computer. One finds the following perhaps
surprising—results.

For the sake of the contrast, let me first mention that one
obtains a very misguiding result if, for the sake of simplicity, the
calculation is made in a 2-dimensional Minkowski space-time:

No matter if the standard clock moves along a non-inertial world
line ~y, no matter if it reads a time x(t) which is an arbitrary
monotonic function of the Minkowskian coordinate time, different
from the proper time along its world line, facts (E1) (E8) are
always true.

If this 2-dimensional result were the final truth, one would con-
clude that no spatiotemporal measurement can ascertain whether
the standard clock moves inertially or not; the very concept of
“inertial” motion would remain a purely conventional one; facts
(E1) (E8) would always be true, independently of the “objec-
tive” fact of how the standard clock moves in God’s Minkowski
space-time.

In contrast, the real /-dimensional calculation leads to the
following results:

(A) Facts (E1)-(E8) are always true if the standard clock
moves along an inertial world line, no matter if the clock reads
a time x(t) which is an arbitrary monotonic function of the
Minkowskian coordinate time, different from the proper time
along its world line.
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(B) If the standard clock moves along a non-inertial world line
v, facts (E1) (E8) are never true, no matter if the clock reads
the proper time or not.

The whole thing hinges on (E1); there are no synchronized copies
of the standard clock if the standard clock moves non-inertially.

89. There are remarkable consequences of the above results:

1. Result (A) implies that no objective meaning can be as-
signed to the concept of “proper” time. “Time” is what the
etalon clock reads, by definition.

2. Contrary to the misguiding 2-dimensional result, (B) shows
that the notion of “inertial motion” is not entirely conven-
tional. In accord with our intuition based on the believed
physical theories, we can give an objective meaning to “in-
ertial motion” by means of correct—mneither logically nor
operationally circular experiments: the standard clock s
of inertial motion if statements (E1)-(E8) are true. As-
suming that the standard clock is inertial, one can extend
the concept for an arbitrary time sequence y(7) of events:
7(7) corresponds to an inertial motion if the absolute space

tags &1 (v (7)), & (v (7)) ,& (v (7)) are linear functions of
the absolute time tag 7.

3. On the basis of our believed physical theories, one cannot,
however, predict whether (E1) (E8) are true or false. It is
still an open empirical question.

4. Imagine that (E1)—(ES8) are not satisfied. It not only means
that the standard clock we have chosen is non-inertial but
it also means that the chosen clock is inappropriate for the
definition of space-time tags. More exactly, one has to stop
at definition (A1). One can define the time tags but can-
not define the spatial notions, in particular the distances
between simultaneous evens.
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Standard clock

Figure 23: The test of inertiality

5. Consequently, it is meaningless to talk about “non-

inertial reference frame”, “space-time coordinates (tags) de-
fined /measured by an accelerated observer”, and the likes.

90. In the light of these consequences, it is an intriguing ques-
tion whether the standard clock contemporary physical labora-
tories use for coordination of physical events satisfies conditions
(E1)—(ES8), in particular (E1). It is quite implausible that it
does taking into account the Earth’s rotation, the Earth’s mo-
tion around the Sun, the Solar System’s motion in our Galaxy,
etc.

Consider first what in fact has to be tested (Fig. 23). (E1)
would require the existence of a unique synchronized copy of the
standard clock through every event. Let therefore A be an arbi-
trary event with absolute time tag 7(A). Introduce the following
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notations:
L Radio signal from A
Vais {X ‘ is received at X. }
A Radio signal from X
M= {X ‘ is received at A.

OB = vanaB

Consider the following quantity:

min max ‘T(Y) — M‘ t>71(A)
XevansS, vedx
N := max
t,A min max ‘T(Y) - M‘ t<T7(A)

XeA NS, YedsR

N = 0is a necessary condition of inertiality of the standard clock.
In this case, for every event A there exists a unique synchronized
copy of the standard clock. That is, for every time t > 7(A)
there is a unique event X € V4N S; such that 7(Y') = M
for all Y € &% and for every time t < 7(A) there is a unique

event X € AN .S such that 7(Y) = M for all Y € O%.

91. Let us outline how the experimental test could be realized.
Our standard clock is transmitting, say in every few nanoseconds,
a radio signal encoding the actual clock reading (Fig. 24). We
need a huge number of little devices e1,es,...¢e;,... with the
following functions:

1. They continuously receive the regular time signals from the
standard clock.

2. They can transmit radio signals containing the following
information: a) an ID code of the device and information
about the standard clock reading, so from the signal they
send it always can be known which device was the trans-
mitter and what was the standard clock reading received
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Standard clock

Figure 24: The sketch of a realistic measurement to decide
whether the standard clock is inertial or not
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by the transmitter at the moment of the emission of the sig-
nal, b) information about the type of event on the occasion
of which the signal was transmitted.

3. They can receive the signals transmitted by the others.

We install these devices everywhere in a certain region of the
universe. Now, the following events will happen.

1. Assume that es is programed such that it transmits a radio
signal (event A) when receives the time signal of ¢; from
the standard clock. Let us call it A-signal. The A-signal
will arrive back to the standard clock at time tg.

2. The A-signal sweeps through the whole region and triggers
the other devices to transmit a B-signal. For example,
event B; consists in that e; receives the A-signal from eg
and emits its own Bj;-signal with the needed information.
Bj is a similar event for e;, etc.

3. The B-signals will be received by some other devices. For
example, Cy; is the event when e receives the B;-signal
transmitted by e; and sends out his own signal (C1;-signal)
with the corresponding information. This information ar-
rives back to the standard clock at time ¢q;.

In this way, a huge amount of data is recorded, from which we
can ascertain the absolute time tags of all events in question. We
can determine Og“" for every C},,. For example, say, it turns out
that Cj; = Cy; and, therefore, B;, B; € Qi’” etc. One also can
determine the sets of simultaneous events. Now, the standard
clock is inertial only if in every S; there is a unique Cy,, € St

such that for every event B; € Og“"

7 (A) + 7 (Cin)

T(B;) = 5
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92. Assume, for example, that the center of Earth is at rest in
the Minkowski space-time, and the standard clock is located at
the equator, that is, it is orbiting together with the given point of
the surface of the spinning Earth. Computer simulation shows,
that this non-inertial motion of the standard clock causes a dis-
crepancy of N ~ 0.1ns (107'% second) from inertiality within a
region of size 1 light-minute around the Earth, which is, in prin-
ciple, an observable effect within the Solar System. Of course,
the discrepancy increases with the distances. (The relevant value
is about 3 - 10~% second within a region of size 1 light-day.)

93. One must recall, however, that the above calculation is
merely a kind of “metaphysical” speculation without any empir-
ically confirmed basis. It is based on the assumption that our
world is a Minkowski space-time in which the standard clock
moves in a certain way; but there is no empirical evidence for
this assumption. Not because of the possible gravitational effects
(Minkowski space-time is only an approximation according to
our believed theories), but because of the logical/operational cir-
cularity: in order to confirm or falsify that Minkowskian geome-
try (or some general relativistic space-time geometry) is the true
theory describing all relationships between the space and time
tags of all physical events, we need to know, first, how to ascer-
tain, empirically, the space and time tags.

Again, whether or not the standard clock used in contempo-
rary physics satisfies conditions (E1) (E8) is still an open empir-
ical question.

The life in absolute space and time

94. Nevertheless, assume that the empirical facts (E1)-(ES8)
hold. Let us also assume the following:

Empirical fact (E9) The empirically confirmed laws of physics
(expressed, of course, in terms of absolute space and time) are
exactly the same as the ordinary laws of (special) relativistic
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physics, expressed in one single space-time coordinates, namely
in the ones we called absolute space and time tags (i. e., “in the
frame of reference of the standard clock”, in our usual relativistic
terms).

If so, then, as it can be easily seen, the whole relativistic
physics can be reconstructed within the framework of absolute
space and time. As an example, consider how a moving ob-
server describes the “space” and “time” coordinates of an event
in his/her own “frame of reference”. (I use the term “reference
frame” only symbolically. The concept of reference frame as a
rigid system of material points rigid body of a spacecraft, three
orthogonal rigid rods co-moving with the observer, etc.—is a
vague and very problematic notion which ought to be expelled
from the conceptual vocabulary of physics.) We will assume that
the observer moves along a time sequence the absolute velocity of
which is smaller than the speed of light. Now, imagine that the
observer has a clock-like device and, naively, performs exactly
the same operational procedure as (A1) (A13). If (s)he can go
through all the steps, then—according to assumption (E9) and
Point 88 (s)he is an inertial observer. (Otherwise it would be
meaningless to talk about the “space” and “time” coordinates in
his/her “frame of reference”.) What can we say about the “space”
and “time” tags so obtained?

Of course, we can say nothing in the general case when the
observer’s device has nothing to do with the standard clock. As-
sume, however, that the observer’s clock-like device is an iden-
tical copy of the standard clock, which was gently accelerated
up to the velocity of the observer; therefore, it is almost like a

clock, except that it runs slower by the factor /1 — %;, due to

assumption (E9). In this case, the observer obtains the same
result as one would obtain from the Lorentz transformation. Let
me illustrate this with a simple two-dimensional calculation.
Imagine that a radio signal is emitted (event B) when the
observer meets the standard clock (Fig. 25). Let 7(B) = 0.
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standard clock

Dl’,

Figure 25: When the observer meets the standard clock, a radio
signal is emitted (event B). Event A is marked with the reflection
of the signal. The reflected signal first arrives at the observer
(event C') and then at the standard clock (event D)

Event A is marked with the reflection of the signal at time 7(A).

The reflected signal first arrives at the observer (event C) and

then at the standard clock (event D). By definition, 7(A) = D),

2
We know that
vt (C) = §(A) —c(7(C) = 7(4))
where, by definition, £(A) = ¢7(A). Therefore,

- 2210

Taking into account assumption (E9), the observer’s “clock”™
reading at C' is

Therefore, the “time” and “space” coordinates (s)he obtains is
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and

The “time” and “space” coordinates defined in this way are
nothing but the time and space coordinates (fK'(A), :%K’(A)) in
Point 38. (Note that the above derivation—without reference to

the behavior of a rigid measuring-rod could replace the similar
calculation in Point 42.)

95. How can a moving observer ascertain the absolute time
and space tags of an arbitrary event A (in order, for example, to
assign to A the space and time tags <tAK’(A), aEK'(A)> defined in
Point 38)7 This is actually very easy. For that we only need to
equip the standard clock and the marking devices with functions
similar to the ones described in Point 91. In addition, let the
standard clock be continuously writing and broadcasting a “log
file”, containing all the relevant information: when a signal was
transmitted and when it was received back from which marker,
etc. By reading off this “log file”, the remote moving observer
can reconstruct the absolute time and space tags of all events.
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