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90 Absolute Theory of Spa
e and Time69. Faithfully re�e
ting how �spa
e� and �time� tags are under-stood in 
lassi
al physi
s and relativity theory, de�nitions (D1)�(D8) in Point 38 answered the purpose of demonstrating thatEinstein's spe
ial relativity has exa
tly the same 
laims aboutspa
e and time as 
lassi
al physi
s and Lorentz's theory. How-ever, neither the 
lassi
al nor the relativisti
 de�nitions are trou-ble free. They are based on several pre-assumptions about 
on-tingent fa
ts of nature whi
h 
annot be known or even formulatedprior to the de�nitions of spa
e and time tags.Let us fo
us on what is 
ommon to both the 
lassi
al and rel-ativisti
 approa
hes, de�nitions (D1)�(D4). The �rst di�
ultyis 
aused by the usage of measuring rod for the de�nition of dis-tan
e. The problem I mean is di�erent from the one proposed byRei
henba
h (1958), namely that the length of the rod may bealtered by some universal for
es when the rod is transported fromone pla
e to the another. This�known, or unkwon�behavior ofthe etalon is no problem from logi
al/operational point of view,as long as the operational pro
edure provides an unambiguousde�nition. (For example, we are 
ompletely aware of the Lorentz
ontra
tion of the measuring rod. But this is no problem; pro-
edure (D8) in Point 38 provides an unambiguous de�nition ofs̃pa
e tags x̃K ′

(A).) In a

ordan
e with Rei
henba
h's �nal 
on-
lusion, I believe that the Newtonian 
on
ept of �absolute length�(see Point 73) of the rod, independent of operational de�nitionof �distan
e�, is meaningless or at least is outside of the s
opeof physi
s. If spa
e tags are de�ned a

ording to (D2) then thelength of the measuring rod is�by de�nition�
onstant, no mat-ter what is our metaphysi
al pre-assumption about the length ofthe rod ansi
h.There are, however, real 
ir
ularities here that appear at thevery operational level. The operations des
ribed in (D2) and(D4) rest on the 
on
ept of a measuring rod at rest relative toa given referen
e frame. However, we en
ounter the followingdi�
ulties:



Absolute Theory of Spa
e and Time 91(a) We have seen in Point 24 that the 
on
ept of a rod �atrest� relative to a referen
e frame is problemati
 in itself.(b) One might think that this is no problem if the measuringrod is always in equilibrium state when we are measuringwith it. It must be 
lear however that the equilibrium stateof a rod 
annot be as
ertained prior to the de�nition of itslength, that is, prior to the de�nition of distan
e.(
) The 
on
ept of rest relative to a referen
e frame is prob-lemati
 not only for the measuring rod as a whole but evenfor one single parti
le of the rod. The reason is that weare missing a prior de�nition of velo
ity relative to a givenreferen
e frame.(d) Throughout de�nitions (D1)�(D9) we non
halantly usedthe term �referen
e frame�. Of 
ourse, it is no problemto give the usual meaning to this term after having de-�ned spa
e and time tags of events; when we already havethe 
on
epts of simultaneity, the distan
e of simultaneousevents, dimensions, straight lines, et
. But the term �ref-eren
e frame� has no meaning prior to the spa
e and timetags. We en
ounter this wrong 
ir
ularity in de�nitions(D2) and (D4): we ought to superpose the measuring-rodalong a straight line, su
h that the rod is always at restrelative to the referen
e frame.(e) We also used the term �inertial� frame of referen
e. Thisis another term that has no meaning without a previousde�nition of spa
e and time tags.70. Another sour
e of 
ir
ularities is the �slow transportation�of the standard 
lo
k in de�nitions (D1) and (D3). The reasonwhy the transportation must be slow is that the 
lo
k may a
-
umulate a loss of phase during its journey. From (56) we 
an
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tFigure 13: Velo
ity may vary su
h that the 
lo
k's journey takesvery long time, nevertheless the integral in (88) is less than texpress this phase shift:
∆T = t −

∫ t

0

√
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w(τ)2

c2
dτ (88)where w(t) is the 
lo
k's velo
ity during its journey. Of 
ourse,

∆T → 0 if w(t) tends to zero in some uniform sense, for instan
eif max |w(t)| → 0. One might think that this 
ondition 
an beprovided without any vi
ious 
ir
ularity by moving the standard
lo
k from its original pla
e to the lo
us of the event in ques-tion over a very long period of time, a

ording to the reading ofthe 
lo
k itself. This is however not the 
ase. If fun
tion w(t)is something like as shown in Fig. 13 then the 
lo
k's journeytakes very long time, nevertheless the loss of phase in (88) doesnot vanish. Yet one might also think that this does not 
ausea vi
ious 
ir
ularity in the operational de�nition of time tags,be
ause we 
an in
lude the loss of phase into the de�nition, justlike in the relativisti
 de�nition (D6). (In de�nition (D6), thetime tag is simply de�ned by the reading of the 
lo
k, disregard-ing the loss of phase a

umulated during its journey. This phaseshift�
al
ulated in Point 42�is, for example, the origin of thedi�eren
e between t̂-simultaneity and t̃-simultaneity.) However,



Absolute Theory of Spa
e and Time 93this operation 
ould not provide an unambiguous de�nition oftime tags. The reason is that the phase shift (
onsequently, thereading) of the 
lo
k depends on the 
on
rete shape of fun
tion
w(t). To keep w(t) 
ontrolled�either in order to avoid ambi-guity, or in order to provide the 
ondition max |w(t)| → 0�wemust be able to as
ertain the 
lo
k's instantaneous velo
ity rel-ative to referen
e frame K, throughout its journey. And thisleads to the same vi
ious 
ir
ularities we mentioned in Point 69(
) and (d).71. One has to re
ognize that some of the 
ir
ularity problemsare independent of the relativisti
 e�e
ts and they are alreadythere in 
lassi
al physi
s. Let me illustrate this with one ex-ample. Assume, the time tags of events are somehow de�nedby transported 
lo
ks. So we have the 
on
ept of �spa
e� St,that is the set of simultaneous events at a given time t. The
ongruen
e of spa
e intervals in St is traditionally de�ned bymeans of transportation of rigid bodies. There has been a longdis
ussion about the 
onventionality of the 
on
ept of 
ongru-en
e so obtained (Poin
aré 1952; Einstein 1969b; Rei
henba
h1958; Grünbaum 1974; Friedman 1983). But nobody 
ontestedthat the operational de�nition in itself is meaningful and appli-
able for the 
oordination of (
lassi
al) spa
e-time. In fa
t, asa little re�e
tion reveals, this is not the 
ase; the de�nition of
ongruen
e by means of transportation of rigid bodies 
ontainsan operational 
ir
ularity. For, assume that a rigid body indeed�retains its size� during the transportation; its size before thetransportation, at t0, is equal to its size after the transportation,at time t1. (In some obje
tive sense or/and by 
onvention�itdoes not matter now.) This only means, however, that its size in
St0 is �
ongruent� with its size in St1 (Fig. 14). So, in order toestablish, in this way, the 
on
ept of 
ongruen
e in spa
e St0 , weneed a previous de�nition of �rest�, that is, a previous 
on
eptof identity of two lo
uses of spa
e at two di�erent times. But,in this 
onstru
tion, there seems no way to de�ne the 
on
ept of
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St0Figure 14: The de�nition of spatial 
ongruen
e by means oftransportation of rigid bodies is based on a previous de�nitionof �rest�, that is, on a previous 
on
ept of identity of two lo
usesof spa
e at two di�erent times
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e and Time Tags 95�rest� without the 
on
ept of 
ongruen
e of spatial intervals inevery St.72. The upshot of these 
onsiderations is that, in order to avoidthe 
ir
ularities mentioned above and to minimize the 
onven-tional elements in the empiri
al foundation of our physi
al the-ory of spa
e and time, we must avoid using standard measuringrod in the de�nition of distan
e and using slow transportationof the standard 
lo
k in the de�nition of time tags. We mustalso abstain from relying on the 
on
ept of rigid body, referen
eframe, and inertial motion.Instead, we will use one standard 
lo
k and light signals. Alight signal should not be understood as a �light ray� or a �lightbeam�, that is, we should not assume�in advan
e�that the lightsignal propagates along a �straight line�.Empiri
al De�nition of Spa
e and Time Tags73. First we 
hose an etalon 
lo
k. That is to say, we 
hosea system (a sequen
e of phenomena) �oating somewhere in theuniverse. Without loss of generality we may stipulate that thisis an equipment having a pointer and the readings are real num-bers. (For example, let the 
lo
k in the U.S. Naval Observatory,used by the GPS.) There is no assumption that this is a 
lo
kmeasuring �proper time�. There is no assumption that it �runsuniformly�. And there is no assumption that it is �at rest� rela-tive to anything, or that it is of �inertial motion�. The reason isthat none of these 
on
epts is de�ned yet.Consider the experimental arrangement in Fig. 15. The stan-dard 
lo
k emits a radio signal at 
lo
k-reading t1 (event A). Thesignal is re
eived by another equipment (marker) whi
h imme-diately emits another signal (event B). This �re�e
ted� signalis dete
ted by the standard 
lo
k at t2 (event C). Without lossof generality we may assume that these signals are modulatedradio waves, 
ontaining some minimal information to identify
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Figure 15: Operational de�nition of time tags. (This is just asymboli
 sket
h, not a real �two dimensional spa
e-time diagram�or the like.)



Empiri
al Definition of Spa
e and Time Tags 97them. We also assume, as an empiri
al fa
t, that the 
lo
k wehave 
hosen is su
h that a given re�e
ted signal is re
eived bythe standard 
lo
k only on
e, at reading t2, and
t2 ≥ t1 (89)by whi
h we have 
hosen, 
onventionally, an �arrow of time� (notthe arrow of physi
al pro
esses in time; see Pri
e 1996, p. 16and 58). (In fa
t, we made two 
hoi
es here. One is the 
hoi
e ofthe dire
tion of the parametrization of the 
lo
k's pointer posi-tions (89). There is however a more important one: by applyingthe terms �sending� and �re
eiving� a signal, we previously de-termined the 
ausal order of events A and C. To what extentthis 
ausal order is purely 
onventional? How 
an we�withoutprior spatiotemporal 
on
eptions�distinguish whether an eventis a �sending� or a �re
eiving� of a signal? How is this 
hoi
eof 
ausal order related to the 
hange of information 
ontent ofthe signal? To what extent this 
hoi
e is determined by our freewill and free a
tion experien
e at the modulation of the radiowaves? Is this freedom an obje
tive openness of future or merelya subje
tive experien
e? These are deli
ate metaphysi
al ques-tion; into the dis
ussion of whi
h it is not our present purpose toenter.)De�nition (A1) The absolute time tag of event B is the fol-lowing:

τ (B) := t1 +
1

2
(t2 − t1) (90)The de�nition is about event B 
onsisting in the �re�e
tion� ofthe radio signal emitted by the standard 
lo
k. That is to say, weassigned an absolute time tag to a de�nite physi
al phenomenonwhi
h we 
alled �event�. It is far from obvious, however, whatmust be regarded as an event in general�prior to the 
on
epts oftime and distan
e�, and how one 
an extend the de�nition forthe physi
al events of other kinds. (See Brown 2005, pp. 11-14.)We do not dwell on this problem here. The reader 
an easily
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e and Timeimagine various operational solutions of how to use the B-type�re�e
tion� events for marking other physi
al events/phenomena.So we will assume that de�nition (A1) is extended for all physi
alevents.74. At this point, one might think that we are ready to de-�ne the distan
e between simultaneous events in the usual way.Surely, we 
an de�ne the distan
e between the simultaneousevents D and B (Fig. 15) as 1
2 (t2 − t1) c, where the value of

c is taken as a 
onvention. In this way, however, we 
an de�nethe distan
e only from the standard 
lo
k. But there is no way toextend this de�nition for arbitrary pair of simultaneous events.In order to de�ne the distan
e between arbitrary simultaneousevens we need further preparations.Denote Sτ the set of simultaneous events with time tag τ .De�nition (A2) A one-parameter family of events γ(τ) is 
alledtime sequen
e if γ(τ) ∈ Sτ for all τ .One has to re
ognize that a time sequen
e is a 
lo
k-like pro
ess.For every event, one 
an de�ne a time-like tag in the same wayas (A1): Event A (Fig. 16) is marked with the emission of a radiosignal at time τ(A). The signal is re�e
ted at event B. Event
C is the �rst dete
tion of the re�e
ted signal at time τ(C). Wede�ne the following time-like tag for event B:

τγ(B) := τ(A) +
1

2
(τ(C) − τ(A))(If there is no dete
tion of the re�e
ted signal at all, then, say,

τγ(B) := ∞.)It is an empiri
al fa
t that τγ(B) 6= τ(B) in general. It isanother empiri
al observation however that for some parti
ular
ases τγ(B) = τ(B).De�nition (A3) A time sequen
e γ(τ) is a syn
hronized 
opyof the standard 
lo
k if for every event B τγ(B) = τ(B).Whether or not there exist syn
hronized 
opies of the standard
lo
k is an empiri
al question. We stipulate the following:
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B
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τ (C)
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τ (A)

γ(τ )standard clock

Figure 16: Clo
k-like time sequen
eEmpiri
al fa
t (E1) For any event A there exists a uniquesyn
hronized 
opy of the standard 
lo
k γ(τ) su
h that
A = γ (τ(A))75. Now we are ready to de�ne the distan
e between simulta-neous events.De�nition (A4) The absolute distan
e between two simulta-neous evens A,B ∈ Sτ is operationally de�ned in the followingway. Take a syn
hronized 
opy of the standard 
lo
k γ su
h that

A = γ(τ). (See Fig. 17) Let U = γ (τ(U)) is an event markedwith the emission of a radio signal at absolute time τ(U), su
hthat the signal is re
eived and re�e
ted at event B. The dete
-tion of the re�e
ted signal marks the event V = γ (τ(V )) of time
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V

τ (V )

U

γ(τ )standard clock

Sτ

B

dτ(A
,B)

τ

A

τ (U)

Figure 17: The distan
e between two simultaneous eventstag τ(V ). The absolute distan
e is
dτ (A,B) :=

1

2
(τ(V ) − τ(U)) c (91)where c = 299792458m

s
by 
onvention.76. We know from (89) that for all A,B ∈ Sτ

dτ (A,B) ≥ 0 (92)
dτ (A,A) = 0 (93)However, the following fa
t 
annot be known a priori :Empiri
al fa
t (E2) For all A,B,C ∈ Sτ

dτ (A,B) + dτ (B,C) ≥ dτ (A,C) (94)Some other propositions are however derivable from the de�ni-tions.
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Figure 18: The distan
e between the simultaneous points of twosyn
hronized 
opies of the standard 
lo
k is a periodi
 fun
tionof the absolute time
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e and TimeLemma 1 Consider two syn
hronized 
opies of the standard
lo
k γ1 and γ2 (Fig. 18). For any moment of absolute time τ0

dτ0 (γ1(τ0), γ2(τ0)) = dτ0 (γ2(τ0), γ1(τ0)) (95)and
dτ0 (γ1(τ0), γ2(τ0)) = dτ0+T (γ1(τ0 + T ), γ2(τ0 + T )) (96)where

T =
dτ0 (γ1(τ0), γ2(τ0))

cProof Let γ1(τ0) be event A2. Consider the followingevents: a radio signal is emitted at A1, then re�e
ted at B1, thenit is re�e
ted again at A2 and re�e
ted again at B2, and so on.Let τ(E) = τ (B2) and τ(C) = τ (B1). Taking into a

ount thatboth γ1 and γ2 are syn
hronized 
opies of the standard 
lo
k, wehave the following equations:
τ (A2) =

τ (B2) + τ (B1)

2

τ (B2) =
τ (A3) + τ (A2)

2

τ (B1) =
τ (A2) + τ (A1)

2From the above three equations we have
τ (A3) − τ (A2) = τ (A2) − τ (A1) (97)and
τ (B2) − τ (B1) = τ (A2) − τ (A1) (98)Therefore,

τ (E) − τ (C) = τ (A2) − τ (A1) = τ (B2) − τ (B1)
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e and Time Tags 103Imagine now a radio signal emitted from C, re�e
ted at D anddete
ted at E. Again, taking into a

ount that both γ1 and γ2are syn
hronized 
opies of the standard 
lo
k, we have
τ (D) =

τ (E) + τ (C)

2
=

τ (B2) + τ (B1)

2
= τ (A2) = τ0Therefore,

dτ0 (γ1(τ0), γ2(τ0)) =
τ (E) − τ (C)

2
c

=
τ (B2) − τ (B1)

2
c

= dτ0 (γ2(τ0), γ1(τ0))Taking into a

ount this symmetry, (96) immediately followsfrom (97). �In other words, as it follows from (95), for any A,B ∈ Sτ

dτ (A,B) = dτ (B,A) (99)One has to re
ognize that a fun
tion Sτ×Sτ → R with properties(92)�(94) and (99) is what the mathemati
ian 
alls metri
 on Sτ .Thus, we 
an stipulate that (Sτ , dτ ) is a metri
 spa
e for everymoment of absolute time τ .77. Having metri
 de�ned on Sτ , we 
an de�ne the 
on
ept ofa straight line in Sτ (Fig. 19).De�nition (A5) A subset σ ⊂ Sτ is 
alled (straight) line ifsatis�es the following 
onditions:1. for any A,B,C ∈ σ exa
tly one of the following three rela-tions hold:
dτ (A,C) + dτ (C,B) = dτ (A,B)

dτ (A,B) + dτ (B,C) = dτ (A,C)

dτ (B,A) + dτ (A,C) = dτ (B,C)2. σ is maximal for property 1.
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Figure 19: Straight line
Sτ
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Y
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Figure 20: Orthogonal linesEmpiri
al fa
t (E3) For every A,B ∈ Sτ there exists a uniqueline 
ontaining A and B.De�nition (A6) Let σ1 and σ2 two lines in Sτ su
h that σ1 ∩
σ2 = {O} (see Fig. 20). σ2 is orthogonal to σ1 if for every Z ∈ σ2and for every X,Y ∈ σ1

dτ (X,O) = dτ (O,Y ) ⇔ dτ (X,Z) = dτ (Y,Z)Empiri
al fa
t (E4) If σ1 is orthogonal to σ2 then σ2 is or-thogonal to σ1.
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e and Time Tags 105Empiri
al fa
t (E5) For every O ∈ Sτ there exist three lines
σ1,σ2 and σ3 su
h that they are pairwise orthogonal and σ1 ∩
σ2 ∩ σ3 = {O}.Empiri
al fa
t (E6) Let O ∈ Sτ an arbitrary event and threelines σ1,σ2 and σ3 su
h that they are pairwise orthogonal and
σ1 ∩ σ2 ∩ σ3 = {O}. There is no line σ ⊂ Sτ orthogonal to ea
hof σ1,σ2 and σ3, su
h that σ1 ∩ σ2 ∩ σ3 ∩ σ = {O}.We usually express this fa
t by saying that spa
e is three dimen-sional.Empiri
al fa
t (E7) Let A ∈ Sτ be an arbitrary event and σ1 ⊂
Sτ an arbitrary line. There always exists a line σ2 orthogonal to
σ1, su
h that A ∈ σ2.De�nition (A7) Using the notations in (E7), let σ1∩σ2 = {O}.Distan
e of dτ (A,O) is 
alled the distan
e of A from σ1.De�nition (A8) Let σ1 ⊂ Sτ be a line. A line σ2 is parallel to
σ1 if for all X ∈ σ2 the distan
e of X from σ1 is the same.Empiri
al fa
t (E8) Let σ1 ⊂ Sτ be a line and let C ∈ Sτan arbitrary event. There exists exa
tly one line σ2 su
h that
C ∈ σ2 and σ2 is parallel to σ1.De�nition (A9) Let A,B ∈ σ two events on line σ. Linesegment between events A,B ∈ Sτ is the following subset of σ:

σ(A,B) := {X ∈ σ| dτ (A,X) + dτ (X,B) = dτ (A,B)} (100)78. Now, we have everything at hand to de�ne the usual Carte-sian 
oordinates in Sτ . First we need a 3-frame.
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A
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Y1

Z2

Z1

τ

E

G

F

O

D

X2

Y2

C

X1

SτFigure 21: Cartesian 
oordinates in SτDe�nition (A10) A 3-frame in Sτ 
onsists of three pairwiseorthogonal line segments, σ (Y1, Y2), σ (Z1, Z2), su
h that
σ (X1,X2) ∩ σ (Y1, Y2) ∩ σ (Z1, Z2) = {O}where O is the origin of the frame (Fig. 21).The end points play marginal role, but we do not assume thatthese segments have �in�nite� length. The segments are supposedto be long enough for the purposes of the empiri
al 
oordinationof the physi
al events in question. The origin of the 3-frameis arbitrary, although it 
ould be a natural 
hoi
e to take the�τ -event� of the standard 
lo
k as origin.In the following de�nition we give the operational de�nitionof the three absolute spa
e tags of an event A ∈ Sτ .De�nition (A11) Take a line segment σ(B,C) ∋ A parallel to

σ (Z1, Z2). (See Fig. 21.) Take another line segment σ(A,D)orthogonal to σ (Z1, Z2) su
h that D ∈ σ (Z1, Z2). Let σ(O,E)be a line segment parallel to σ(A,D) su
h that E ∈ σ(B,C).Finally, take the line segments σ(E,F ) and σ(E,G) su
h that
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σ(E,F ) is parallel to σ (X1,X2) and F ∈ σ (Y1, Y2), and σ(E,G)is parallel to σ (Y1, Y2) and G ∈ σ (X1,X2). Now, the spa
e tagsare de�ned as follows:

xτ (A) :=

{
dτ (G,O) if G ∈ σ (O,X2)

−dτ (G,O) if G ∈ σ (O,X1)

yτ (A) :=

{
dτ (F,O) if F ∈ σ (O,Y2)

−dτ (F,O) if F ∈ σ (O,Y1)

zτ (A) :=

{
dτ (D,O) if D ∈ σ (O,Z2)

−dτ (D,O) if D ∈ σ (O,Z1)79. It must be emphasized that with the above de�nitions weonly de�ned the spa
e tags in a given set of simultaneous events
Sτ . Yet, we have no 
onne
tion whatsoever between two Sτ and
Sτ ′ if τ 6= τ ′. In prin
iple, there exist in�nitely many possiblebije
tions between the di�erent Sτ 's, but without any naturalphysi
al meaning. This is true, even if we pres
ribe that thebije
tion must be an isomorphism preserving distan
es.A

ording to some vague intuition, a time sequen
e γ(τ) sat-isfying that

xτ (γ(τ)) = 
onst. (101)
yτ (γ(τ)) = 
onst. (102)
zτ (γ(τ)) = 
onst. (103)
orresponds to a lo
alized physi
al obje
t being at rest. �Atrest��relative to what? The a
tual behavior des
ribed by theseequations very mu
h depends on how the di�erent 3-frames are
hosen in the di�erent Sτ 's. One might think that an obje
t is atrest if equations (101)�(103) hold in one and the same 3-frame inall Sτ . But, what does it mean that �one and the same 3-framein all Sτ �? When 
an we say that a line segment σ (X ′

1,X
′
2) in
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Sτ ′ is the same 3-frame axis as σ (X1,X2) in Sτ? When 
an wesay that an event A′ is in the same pla
e in Sτ ′ as event A in Sτ?In asking these questions, it is ne
essary to be 
areful of a pos-sible misunderstanding. Although they are 
lose to ea
h other,the problem we are addressing here is di�erent from the prob-lem of persisten
e of physi
al obje
ts (Butter�eld 2005). Whatwe would like to de�ne is the identity of two lo
uses of spa
e attwo di�erent times, and not the genidentity of the physi
al ob-je
ts o

upying them. One might think that some de�nition ofgenidentity of physi
al obje
ts must be prior to our operationalde�nition of spa
e and time tags, at least in the 
ase of thestandard 
lo
k. This is, however, not ne
essarily the 
ase. Thestandard 
lo
k is just an ordered (ordered by the 
lo
k readings)sequen
e of physi
al events, but without the further metaphys-i
al assumption that these events belong to the same physi
alobje
t. (We de�nitely do not make su
h assumption in the 
aseof a syn
hronized 
opy of the standard 
lo
k.)80. In order to establish 
onne
tion between arbitrary two setsof simultaneous events we need some preparations.Lemma 2 Let γ1 and γ2 be arbitrary two syn
hronized 
opiesof the standard 
lo
k. For any two moments of absolute time τand τ ′

dτ (γ1 (τ) , γ2 (τ)) = dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

)) (104)Proof The proof will be based on (96). Let us assume that
τ < τ ′. Denote T the period in (96), that is

T =
dτ (γ1 (τ) , γ2 (τ))

cFirst we will prove that
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))Let n be the smallest integer su
h that τ ′ < τ + nT =: τ1(Fig. 22). It follows from (96) that
dτ (γ1 (τ) , γ2 (τ)) = dτ1 (γ1 (τ1) , γ2 (τ1))
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4 Γ4
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Figure 22: Proof of Lemma 2Let τ2 := τ1+τ
2 . Consider the syn
hronized 
opy of the stan-dard 
lo
k Γ2 that goes through the middle point of line seg-ment σ (γ1 (τ) , γ2 (τ)). Taking into a

ount that τ2 = τ + m2

T
2for some integer m2 (namely, m2 = n), and also that T

2 c =
dτ (γ1(τ),γ2(τ))

2 , one 
an apply (96) for the syn
hronized 
opies ofthe standard 
lo
k γ1 and Γ2. Therefore,
dτ2 (γ1 (τ2) ,Γ2 (τ2)) = dτ (γ1 (τ) ,Γ2 (τ)) =

dτ (γ1 (τ) , γ2 (τ))

2The same argument 
an be repeated for γ2 and Γ2. Therefore,
dτ2 (Γ2 (τ2) , γ2 (τ2)) = dτ (Γ2 (τ) , γ2 (τ)) =

dτ (γ1 (τ) , γ2 (τ))

2It follows from (94) that
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ2 (γ1 (τ2) , γ2 (τ2))
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e and TimeAssume that τ ′ > τ2. Therefore, take τ3 := τ2+τ1
2 . Again,
onsider the syn
hronized 
opies of the standard 
lo
k Γ1

3, Γ2
3,

Γ3
3 dividing line segment σ (γ1 (τ) , γ2 (τ)) into 4 pie
es of equallength. Taking into a

ount that τ3 = τ + m3

T
4 for some integer

m3 and also that T
4 c = dτ (γ1(τ),γ2(τ))

4 , one 
an apply (96) for thesyn
hronized 
opies of the standard 
lo
k γ1 and Γ1
3. Therefore,

dτ3

(
γ1 (τ3) ,Γ1

3 (τ3)
)

= dτ

(
γ1 (τ) ,Γ1

3 (τ)
)

=
dτ (γ1 (τ) , γ2 (τ))

4Similarly,
dτ3

(
Γ1

3 (τ3) ,Γ2
3 (τ3)

)
=

dτ (γ1 (τ) , γ2 (τ))

4

dτ3

(
Γ2

3 (τ3) ,Γ3
3 (τ3)

)
=

dτ (γ1 (τ) , γ2 (τ))

4

dτ3

(
Γ3

3 (τ3) , γ2 (τ3)
)

=
dτ (γ1 (τ) , γ2 (τ))

4Consequently, from (94),
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ3 (γ1 (τ3) , γ2 (τ3))Assume τ ′ < τ3. Therefore, take τ4 := τ3+τ2

2 . Again, 
onsiderthe syn
hronized 
opies of the standard 
lo
k Γ1
4,Γ

2
4,Γ

3
4, . . . Γ

7
4 di-viding line segment σ (γ1 (τ) , γ2 (τ)) into 8 pie
es of equal length.Taking into a

ount that τ4 = τ + m4

T
8 for some integer m4 andalso that T

8 c = dτ (γ1(τ),γ2(τ))
8 , one 
an apply (96) for the syn
hro-nized 
opies of the standard 
lo
k γ1 and Γ1

4. Therefore,
dτ4

(
γ1 (τ4) ,Γ1

4 (τ4)
)

= dτ

(
γ1 (τ) ,Γ1

4 (τ)
)

=
dτ (γ1 (τ) , γ2 (τ))

8Similarly,
dτ4

(
Γ1

4 (τ4) ,Γ2
4 (τ4)

)
=

dτ (γ1 (τ) , γ2 (τ))

8

dτ4

(
Γ2

4 (τ4) ,Γ3
4 (τ4)

)
=

dτ (γ1 (τ) , γ2 (τ))

8
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dτ4

(
Γ7

4 (τ4) , γ2 (τ4)
)

=
dτ (γ1 (τ) , γ2 (τ))

8Consequently, from (94),
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ4 (γ1 (τ4) , γ2 (τ4))And so on and so forth,
dτ (γ1 (τ) , γ2 (τ)) ≥ dτi

(γ1 (τi) , γ2 (τi))On the other hand,
lim
i→∞

τi = τ ′therefore
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))Exa
tly in the same way one 
an prove that
dτ (γ1 (τ) , γ2 (τ)) ≤ dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))One simply has to 
hange the roles of τ and τ ′. Denote T ′, thistime, the period
T ′ =

dτ ′ (γ1 (τ ′) , γ2 (τ ′))

cLet n′ be the smallest integer su
h that τ > τ ′−n′T ′ =: τ ′
1 Then,it follows from (96) that

dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))
= dτ ′

1

(
γ1

(
τ ′
1

)
, γ2

(
τ ′
1

))Let τ ′
2 :=

τ ′

1
+τ ′

2 . Consider the syn
hronized 
opy of the stan-dard 
lo
k Γ′
2 that goes through the middle point of line segment

σ (γ1 (τ ′) , γ2 (τ ′)). Taking into a

ount that τ ′
2 = τ ′ − m′

2
T
2 forsome integer m2, and also that T

2 c =
d

τ ′
(γ1(τ ′),γ2(τ ′))

2 , one 
an
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e and Timeapply (96) for the syn
hronized 
opies of the standard 
lo
k γ1and Γ′
2. Therefore,

dτ ′

2

(
γ1

(
τ ′
2

)
,Γ′

2

(
τ ′
2

))
= dτ ′

(
γ1

(
τ ′

)
,Γ′

2

(
τ ′

))

=
dτ ′ (γ1 (τ ′) , γ2 (τ ′))

2Similarly,
dτ ′

2

(
Γ′

2

(
τ ′
2

)
, γ2

(
τ ′
2

))
=

dτ ′ (γ1 (τ ′) , γ2 (τ ′))

2Therefore,
dτ ′

2

(
γ1

(
τ ′
2

)
, γ2

(
τ ′
2

))
≤ dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))And so on and so forth,
dτ ′

i

(
γ1

(
τ ′
i

)
, γ2

(
τ ′
i

))
≤ dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))At the same time,
lim
i→∞

τ ′
i = τConsequently,

dτ (γ1 (τ) , γ2 (τ)) ≤ dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))

�81. The following isomorphism 
an be regarded as a naturalone.De�nition (A12)
Tτ ′

τ : Sτ → Sτ ′

A 7→ Tτ ′

τ (A) = γ(τ ′)where γ is a syn
hronized 
opy of the standard 
lo
k su
h that
A = γ(τ). Let us 
all Tτ ′

τ the time shift between Sτ and Sτ ′ .It follows from (E1) and Lemma 2 that this de�nition is soundand Tτ ′

τ is a distan
e preserving bije
tion.
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e and Time Tags 11382. Now we have everything at hand to de�ne the spa
e tagsof events.De�nition (A13) Let A be an arbitrary event. The absolutespa
e tags of A are de�ned as follows:
ξ1(A) := x0

(
T0

τ(A) (A)
)

ξ2(A) := y0

(
T0

τ(A) (A)
)

ξ3(A) := z0

(
T0

τ(A) (A)
)Thus we have de�ned four absolute spa
e-time tags for everyevent: τ(A), ξ1(A), ξ2(A), ξ3(A).83. For example, the absolute velo
ity of a time sequen
e γ (τ)is obviously de�ned as

v (τ) :=




dξ1(γ(τ))
dτ

dξ2(γ(τ))
dτ

dξ3(γ(τ))
dτ


I omit the further (but straightforward) de�nitions.84. I 
all τ(A) �absolute time� not in the sense of what Newton
alled �absolute, true and mathemati
al time�, that is indepen-dent of any empiri
al de�nition (see S
holium II in 
hapter �De�-nitions� of the Prin
ipia.), but in the sense of what the 20th 
en-tury physi
s 
alls absolute time; it is �independent of the positionand the 
ondition of motion of the system of 
o-ordinates� (Ein-stein 1920, p. 51). The spa
e-time tags τ(A), ξ1(A), ξ2(A), ξ3(A)are absolute in the sense that they are not relative to a referen
eframe but prior to any referen
e frame (a
tually the 
on
ept of�referen
e frame� is still not de�ned).Our 
on
epts of absolute time and spa
e tags are, of 
ourse,�relative� to the trivial semanti
al 
onvention by whi
h we de�nethe meaning of the terms. Namely, they are �relative� to the
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e and Timeetalon 
lo
k-like pro
ess we have 
hosen in the universe. Thiskind of �relativism� is however 
ommon to all physi
al quanti-ties having empiri
al meaning. (Beyond the 
hoi
e of the etalon
lo
k, the spa
e tags ξ1(A), ξ2(A), ξ3(A) have some additional
onventional element; they also are relative to the 
hosen 3-framein S0. This additional 
onventionality is, however, of marginalimportan
e; it is nothing more than what we would 
all in ourusual language �the 
hoi
e of a 3-
oordinate basis in a given ref-eren
e frame�.)85. As it was already mentioned in Point 38, there has beena long dis
ussion in the literature about the 
onventionality ofsimultaneity. (See, for example, Rei
henba
h 1956; Bridgeman1965; Grünbaum 1974; Salmon 1977; Malament 1977; Friedman1983; Ben-Yami 2006.) Without entering in the details of thevarious arguments, the following fa
ts must be pointed out here.As it is obvious from (90), we 
hose the standard �ε = 1
2 -syn
hronization�. (Of 
ourse, it 
ould be a 
ontingent fa
t ofnature that t2 = t1 in Fig. 15. In that 
ase the 
hoi
e of thevalue of ε would not matter.) This 
hoi
e was entirely 
onven-tional; it was a part of the trivial semanti
al 
onvention de�ningthe term �absolute time tag�. This 
hoi
e is prior to any 
laimsabout the one-way or even round-trip speed of ele
tromagneti
signals, be
ause there is no su
h a 
on
ept as �speed� prior tothe de�nition of time and spa
e tags; it is, of 
ourse, prior to�the metri
 of Minkowski spa
e-time�, in parti
ular to the �light-
one stru
ture of the Minkowski spa
e-time�, be
ause we have nowords to tell this stru
ture prior to the spa
e-time tags; and itis prior to the 
ausal order of physi
al events, be
ause�even ifwe 
ould know this 
ausal order prior to temporality�we 
an-not know in advan
e how 
ausal order is related with temporalorder (whi
h we have de�ned here). It is a
tually prior to anydis
ourse about two lo
uses in spa
e, be
ause there is no �spa
e�prior to de�nition (A1) and there is no 
on
ept of a �persistentspa
e lo
us� prior to de�nition (A12).



Inertial motion 115Inertial motion86. A remark is in order on the empiri
al fa
ts (E1)�(E8) towhi
h we refer in 
onstru
ting the spa
e-time tags. In 
laimingthese statements as empiri
al fa
ts I mean that they ought to betrue a

ording to our ordinary physi
al theories. The ordinaryphysi
al theories are however based on the ordinary, problem-ati
, spa
e-time 
on
eptions, relaying on �referen
e frames real-ized by rigid bodies� and the likes, without proper, non-
ir
ular,empiri
al de�nitions. Thus, espe
ially in the 
ontext of de�n-ing the two most fundamental physi
al quantities, distan
e andtime, we must not regard our ordinary physi
al theories as em-piri
ally meaningful and empiri
ally 
on�rmed 
laims about theworld. Whether these statements are true or not is, therefore,an empiri
al question, and it is far from obvious whether theywould be 
ompletely 
on�rmed if the 
orresponding experimentswere performed with higher pre
ision, similar to the re
ent GPSmeasurements, espe
ially for larger distan
es. Strangely enough,a

ording to my knowledge, these very fundamental fa
ts havenever been tested experimentally; no textbook or monographon spa
e-time physi
s refers to su
h experimental results; a
tu-ally, with a very few ex
eptions (for example, Milne 1935 PartI; Bridgman 1965), it is not even attempted to provide a 
lear,non-
ir
ular empiri
al de�nition of �time� and �distan
e� in onesingle (inertial) frame, as if it would be a problem only in the
ase of an a

elerated observer (
f. Märzke and Wheeler 1964;Pauri and Vallisneri 2000).So, the best we 
an do is to believe that our physi
al theoriesbased on the usual sloppy formulation of spa
e-time 
on
eptsare true (in some sense) and to 
onsider the predi
tions of thesetheories as empiri
al fa
ts. However, as the following analysisreveals, it is far from obvious whether the predi
tions of thebelieved theories really imply (E1)�(E8).
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e and Time87. Throughout the de�nition of spa
e-time tags, we avoidedthe term �inertial�, and be
ause of a good reason. First of all,if �inertial� is regarded as a kinemati
al notion based on the
on
ept of straight line and 
onstan
y of velo
ity, then it 
an-not be ante
edent to the 
on
ept of spa
e-time tags. If, on theother hand, it is understood as a manner of existen
e of a phys-i
al obje
t in the universe, when the obje
t is undergoing a free�oating, in other words, when it is �free from for
es�, then the
on
ept is even more problemati
. The reason is that �for
e� is a
on
ept de�ned through the deviation from the traje
tory of in-ertial motion (�rst 
ir
ularity), and neither the inertial traje
torynor the measure of deviation from it 
an be expressed withoutspatiotemporal 
on
epts, that is, they 
annot be ante
edent tothe de�nition of spa
e-time tags (se
ond 
ir
ularity). So there isno pre
ise, non-
ir
ular de�nition of inertial motion. (And thisis�in my view�the major di�
ulty with Märzke and Wheeler's(1964) �geodesi
 
lo
k� approa
h, too.) It is to be emphasizedthat this operational/logi
al 
ir
ularity is a problem even in aspe
ial relativisti
/�at/lo
al spa
e-time.)88. A

ording to our believed spe
ial relativisti
 physi
al the-ory, spa
e-time is a 4-dimensional Minkowski spa
e and inertialtraje
tory is a time-like straight line in the Minkowski spa
e.Sin
e we are prior to the empiri
al de�nitions of the basi
 spa-tiotemporal quantities, we 
annot regard this 
laim as an empiri-
ally 
on�rmed physi
al theory. Nevertheless, let us assume for amoment that our spe
ial relativisti
 theory is the true des
riptionof the world �from God's point of view�. It is straightforward to
he
k that all the fa
ts (E1)�(E8) are true if 1) the standard 
lo
kmoves along an inertial world line in the Minkowski spa
e-timeand 2) it reads the proper time, that is, it measures the lengthof its own word line, a

ording to the Minkowski metri
. How-ever, we human beings 
an know neither whether the standard
lo
k (
hosen by us) is of inertial motion in God's Minkowskianspa
e-time nor whether it reads the proper time. What if these
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onditions fail? What does spe
ial relativisti
 kinemati
s sayabout (E1)�(E8) if the standard 
lo
k is a

elerated and/or itdoes not read the proper time?In order to answer this question, we have to follow up the op-erational de�nitions (A1), (A2),. . . and 
al
ulate whether state-ments (E1), (E2),. . . are true or not if the standard 
lo
k movesalong a given world line γ and the �time� it reads is, say, a givenfun
tion of the Minkowskian 
oordinate time, χ(t). Although thetask is straightforward, the 
al
ulation is too 
omplex to give ageneral answer by analyti
 means. But the problem 
an be ef-�
iently solved by 
omputer. One �nds the following�perhapssurprising�results.For the sake of the 
ontrast, let me �rst mention that oneobtains a very misguiding result if, for the sake of simpli
ity, the
al
ulation is made in a 2-dimensional Minkowski spa
e-time:No matter if the standard 
lo
k moves along a non-inertial worldline γ, no matter if it reads a time χ(t) whi
h is an arbitrarymonotoni
 fun
tion of the Minkowskian 
oordinate time, di�erentfrom the proper time along its world line, fa
ts (E1)�(E8) arealways true.If this 2-dimensional result were the �nal truth, one would 
on-
lude that no spatiotemporal measurement 
an as
ertain whetherthe standard 
lo
k moves inertially or not; the very 
on
ept of�inertial� motion would remain a purely 
onventional one; fa
ts(E1)�(E8) would always be true, independently of the �obje
-tive� fa
t of how the standard 
lo
k moves in God's Minkowskispa
e-time.In 
ontrast, the real 4-dimensional 
al
ulation leads to thefollowing results:(A) Fa
ts (E1)�(E8) are always true if the standard 
lo
kmoves along an inertial world line, no matter if the 
lo
k readsa time χ(t) whi
h is an arbitrary monotoni
 fun
tion of theMinkowskian 
oordinate time, di�erent from the proper timealong its world line.
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e and Time(B) If the standard 
lo
k moves along a non-inertial world line
γ, fa
ts (E1)�(E8) are never true, no matter if the 
lo
k readsthe proper time or not.The whole thing hinges on (E1); there are no syn
hronized 
opiesof the standard 
lo
k if the standard 
lo
k moves non-inertially.89. There are remarkable 
onsequen
es of the above results:1. Result (A) implies that no obje
tive meaning 
an be as-signed to the 
on
ept of �proper� time. �Time� is what theetalon 
lo
k reads, by de�nition.2. Contrary to the misguiding 2-dimensional result, (B) showsthat the notion of �inertial motion� is not entirely 
onven-tional. In a

ord with our intuition based on the believedphysi
al theories, we 
an give an obje
tive meaning to �in-ertial motion� by means of 
orre
t�neither logi
ally noroperationally 
ir
ular�experiments: the standard 
lo
k isof inertial motion if statements (E1)�(E8) are true. As-suming that the standard 
lo
k is inertial, one 
an extendthe 
on
ept for an arbitrary time sequen
e γ(τ) of events:

γ(τ) 
orresponds to an inertial motion if the absolute spa
etags ξ1 (γ (τ)) , ξ2 (γ (τ)) , ξ3 (γ (τ)) are linear fun
tions ofthe absolute time tag τ .3. On the basis of our believed physi
al theories, one 
annot,however, predi
t whether (E1)�(E8) are true or false. It isstill an open empiri
al question.4. Imagine that (E1)�(E8) are not satis�ed. It not only meansthat the standard 
lo
k we have 
hosen is non-inertial butit also means that the 
hosen 
lo
k is inappropriate for thede�nition of spa
e-time tags. More exa
tly, one has to stopat de�nition (A1). One 
an de�ne the time tags but 
an-not de�ne the spatial notions, in parti
ular the distan
esbetween simultaneous evens.
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A

Y

X

St

♦X
A

Standard clock

∨A

Figure 23: The test of inertiality5. Consequently, it is meaningless to talk about �non-inertial referen
e frame�, �spa
e-time 
oordinates (tags) de-�ned/measured by an a

elerated observer�, and the likes.90. In the light of these 
onsequen
es, it is an intriguing ques-tion whether the standard 
lo
k 
ontemporary physi
al labora-tories use for 
oordination of physi
al events satis�es 
onditions(E1)�(E8), in parti
ular (E1). It is quite implausible that itdoes�taking into a

ount the Earth's rotation, the Earth's mo-tion around the Sun, the Solar System's motion in our Galaxy,et
.Consider �rst what in fa
t has to be tested (Fig. 23). (E1)would require the existen
e of a unique syn
hronized 
opy of thestandard 
lo
k through every event. Let therefore A be an arbi-trary event with absolute time tag τ(A). Introdu
e the following
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e and Timenotations:
∨A :=

{
X

∣∣∣∣
Radio signal from Ais re
eived at X.

}

∧A :=

{
X

∣∣∣∣
Radio signal from Xis re
eived at A.

}

♦B
A := ∨A ∩ ∧BConsider the following quantity:

N := max
t,A





min
X∈∨A∩St

max
Y ∈♦X

A

∣∣∣τ(Y ) − τ(A)+τ(X)
2

∣∣∣ t > τ(A)min
X∈∧A∩St

max
Y ∈♦A

X

∣∣∣τ(Y ) − τ(A)+τ(X)
2

∣∣∣ t < τ(A)

N = 0 is a ne
essary 
ondition of inertiality of the standard 
lo
k.In this 
ase, for every event A there exists a unique syn
hronized
opy of the standard 
lo
k. That is, for every time t > τ(A)there is a unique event X ∈ ∨A ∩St su
h that τ(Y ) = τ(A)+τ(X)
2for all Y ∈ ♦X

A and for every time t < τ(A) there is a uniqueevent X ∈ ∧A ∩ St su
h that τ(Y ) = τ(A)+τ(X)
2 for all Y ∈ ♦A

X .91. Let us outline how the experimental test 
ould be realized.Our standard 
lo
k is transmitting, say in every few nanose
onds,a radio signal en
oding the a
tual 
lo
k reading (Fig. 24). Weneed a huge number of little devi
es e1, e2, . . . ei, . . . with thefollowing fun
tions:1. They 
ontinuously re
eive the regular time signals from thestandard 
lo
k.2. They 
an transmit radio signals 
ontaining the followinginformation: a) an ID 
ode of the devi
e and informationabout the standard 
lo
k reading, so from the signal theysend it always 
an be known whi
h devi
e was the trans-mitter and what was the standard 
lo
k reading re
eived
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Standard clock

e1 e2 e3
ei

A

ej

Bi

C2j

ek

t1

Cki = Ckj

t2

Bj

C1i

t1i

t′1i

St

St′

Figure 24: The sket
h of a realisti
 measurement to de
idewhether the standard 
lo
k is inertial or not
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e and Timeby the transmitter at the moment of the emission of the sig-nal, b) information about the type of event on the o

asionof whi
h the signal was transmitted.3. They 
an re
eive the signals transmitted by the others.We install these devi
es everywhere in a 
ertain region of theuniverse. Now, the following events will happen.1. Assume that e3 is programed su
h that it transmits a radiosignal (event A) when re
eives the time signal of t1 fromthe standard 
lo
k. Let us 
all it A-signal. The A-signalwill arrive ba
k to the standard 
lo
k at time t2.2. The A-signal sweeps through the whole region and triggersthe other devi
es to transmit a B-signal. For example,event Bi 
onsists in that ei re
eives the A-signal from e3and emits its own Bi-signal with the needed information.
Bj is a similar event for ej , et
.3. The B-signals will be re
eived by some other devi
es. Forexample, C1i is the event when e1 re
eives the Bi-signaltransmitted by ei and sends out his own signal (C1i-signal)with the 
orresponding information. This information ar-rives ba
k to the standard 
lo
k at time t1i.In this way, a huge amount of data is re
orded, from whi
h we
an as
ertain the absolute time tags of all events in question. We
an determine ♦Clm

A for every Clm. For example, say, it turns outthat Cki = Ckj and, therefore, Bi, Bj ∈ ♦Cki

A , et
. One also 
andetermine the sets of simultaneous events. Now, the standard
lo
k is inertial only if in every St there is a unique Clm ∈ Stsu
h that for every event Bi ∈ ♦Clm

A

τ (Bi) =
τ (A) + τ (Clm)

2
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e and time 12392. Assume, for example, that the 
enter of Earth is at rest inthe Minkowski spa
e-time, and the standard 
lo
k is lo
ated atthe equator, that is, it is orbiting together with the given point ofthe surfa
e of the spinning Earth. Computer simulation shows,that this non-inertial motion of the standard 
lo
k 
auses a dis-
repan
y of N ≈ 0.1ns (10−10 se
ond) from inertiality within aregion of size 1 light-minute around the Earth, whi
h is, in prin-
iple, an observable e�e
t within the Solar System. Of 
ourse,the dis
repan
y in
reases with the distan
es. (The relevant valueis about 3 · 10−4 se
ond within a region of size 1 light-day.)93. One must re
all, however, that the above 
al
ulation ismerely a kind of �metaphysi
al� spe
ulation without any empir-i
ally 
on�rmed basis. It is based on the assumption that ourworld is a Minkowski spa
e-time in whi
h the standard 
lo
kmoves in a 
ertain way; but there is no empiri
al eviden
e forthis assumption. Not be
ause of the possible gravitational e�e
ts(Minkowski spa
e-time is only an approximation�a

ording toour believed theories), but be
ause of the logi
al/operational 
ir-
ularity: in order to 
on�rm or falsify that Minkowskian geome-try (or some general relativisti
 spa
e-time geometry) is the truetheory des
ribing all relationships between the spa
e and timetags of all physi
al events, we need to know, �rst, how to as
er-tain, empiri
ally, the spa
e and time tags.Again, whether or not the standard 
lo
k used in 
ontempo-rary physi
s satis�es 
onditions (E1)�(E8) is still an open empir-i
al question.The life in absolute spa
e and time94. Nevertheless, assume that the empiri
al fa
ts (E1)�(E8)hold. Let us also assume the following:Empiri
al fa
t (E9) The empiri
ally 
on�rmed laws of physi
s(expressed, of 
ourse, in terms of absolute spa
e and time) areexa
tly the same as the ordinary laws of (spe
ial) relativisti
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e and Timephysi
s, expressed in one single spa
e-time 
oordinates, namelyin the ones we 
alled absolute spa
e and time tags (i. e., �in theframe of referen
e of the standard 
lo
k�, in our usual relativisti
terms).If so, then, as it 
an be easily seen, the whole relativisti
physi
s 
an be re
onstru
ted within the framework of absolutespa
e and time. As an example, 
onsider how a moving ob-server des
ribes the �spa
e� and �time� 
oordinates of an eventin his/her own �frame of referen
e�. (I use the term �referen
eframe� only symboli
ally. The 
on
ept of referen
e frame as arigid system of material points�rigid body of a spa
e
raft, threeorthogonal rigid rods 
o-moving with the observer, et
.�is avague and very problemati
 notion whi
h ought to be expelledfrom the 
on
eptual vo
abulary of physi
s.) We will assume thatthe observer moves along a time sequen
e the absolute velo
ity ofwhi
h is smaller than the speed of light. Now, imagine that theobserver has a 
lo
k-like devi
e and, naively, performs exa
tlythe same operational pro
edure as (A1)�(A13). If (s)he 
an gothrough all the steps, then�a

ording to assumption (E9) andPoint 88�(s)he is an inertial observer. (Otherwise it would bemeaningless to talk about the �spa
e� and �time� 
oordinates inhis/her �frame of referen
e�.) What 
an we say about the �spa
e�and �time� tags so obtained?Of 
ourse, we 
an say nothing in the general 
ase when theobserver's devi
e has nothing to do with the standard 
lo
k. As-sume, however, that the observer's 
lo
k-like devi
e is an iden-ti
al 
opy of the standard 
lo
k, whi
h was gently a

eleratedup to the velo
ity of the observer; therefore, it is almost like a
lo
k, ex
ept that it runs slower by the fa
tor √
1 − v2

c2
, due toassumption (E9). In this 
ase, the observer obtains the sameresult as one would obtain from the Lorentz transformation. Letme illustrate this with a simple two-dimensional 
al
ulation.Imagine that a radio signal is emitted (event B) when theobserver meets the standard 
lo
k (Fig. 25). Let τ(B) = 0.
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B
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A
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observerstandard clock

Figure 25: When the observer meets the standard 
lo
k, a radiosignal is emitted (event B). Event A is marked with the re�e
tionof the signal. The re�e
ted signal �rst arrives at the observer(event C) and then at the standard 
lo
k (event D)Event A is marked with the re�e
tion of the signal at time τ(A).The re�e
ted signal �rst arrives at the observer (event C) andthen at the standard 
lo
k (event D). By de�nition, τ(A) = τ(D)
2 .We know that

vτ(C) = ξ(A) − c (τ(C) − τ(A))where, by de�nition, ξ(A) = cτ(A). Therefore,
τ(C) =

2cτ(A)

c + vTaking into a

ount assumption (E9), the observer's �
lo
k�-reading at C is
t(C) = τ(C)

√
1 −

v2

c2Therefore, the �time� and �spa
e� 
oordinates (s)he obtains is
t(A) =

t(C)

2
=

cτ(A)

c + v

√
1 −

v2

c2
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=

τ(A) − v
c2

ξ(A)√
1 − v2

c2and
x(A) =

ξ(A) − vτ(A)√
1 − v2

c2The �time� and �spa
e� 
oordinates de�ned in this way arenothing but the t̃ime and s̃pa
e 
oordinates (
t̃K

′

(A), x̃K ′

(A)
) inPoint 38. (Note that the above derivation�without referen
e tothe behavior of a rigid measuring-rod�
ould repla
e the similar
al
ulation in Point 42.)95. How 
an a moving observer as
ertain the absolute timeand spa
e tags of an arbitrary event A (in order, for example, toassign to A the ŝpa
e and t̂ime tags (

t̂K
′

(A), x̂K ′

(A)
) de�ned inPoint 38)? This is a
tually very easy. For that we only need toequip the standard 
lo
k and the marking devi
es with fun
tionssimilar to the ones des
ribed in Point 91. In addition, let thestandard 
lo
k be 
ontinuously writing and broad
asting a �log�le�, 
ontaining all the relevant information: when a signal wastransmitted and when it was re
eived ba
k from whi
h marker,et
. By reading o� this �log �le�, the remote moving observer
an re
onstru
t the absolute time and spa
e tags of all events.



Bibliography

127



128 BibliographyBell, J. S. (1987): How to tea
h spe
ial relativity, in Speakable andunspeakable in quantum me
hani
s, Cambridge University Press,Cambridge.Bell, J. S. (1992): George Fran
is FitzGerald, Physi
s World 5, pp.31-35.Ben-Yami, H. (2006): Causality and temporal order in spe
ial rela-tivity, The British Journal for the Philosophy of S
ien
e 57 pp.459-479.Bridgman, P. (1927): The Logi
 of Modern Physi
s, Ma
Millan,New York.Bridgman, P. (1965): A Sophisti
ate's Primer of Relativity, Harper& Row, New York and Evanston.Brown, H. R. and Pooley, O. (2001): The origin of spa
e-time met-ri
: Bell's 'Lorentzian pedagogy' and its signi�
an
e in generalrelativity, in Physi
s meets philosophy at the Plan
k s
ale. Con-temporary theories in quantum gravity, C. Calleander and N.Huggett (eds.), Cambridge University Press, Cambridge.Brown, H. R (2001): The origins of length 
ontra
tion: I. TheFitzGerald-Lorentz deformation, Ameri
an Journal of Physi
s69, 1044.Brown, H. R. (2003): Mi
helson, FitzGerald and Lorentz:the origins of relativity revisited, http://phils
i-ar
hive.pitt.edu/ar
hive/00000987.Brown, H. R. (2005): Physi
al Relativity. Spa
e-time stru
ture froma dynami
al perspe
tive, Clarendon Press, Oxford.Brush, S. G. (1999): Why was Relativity A

epted?, Physi
s inPerspe
tive 1, pp. 184�214.Butter�eld, J. (2005): On the Persisten
e of Parti
les, Foundationsof Physi
s 35, pp. 233-269.



Bibliography 129Dewan, E. and M. Beran (1959): Note on Stress E�e
ts due toRelativisti
 Contra
tion, Ameri
an Journal of Physi
s 27, 517.Dewan, E. (1963): Stress E�e
ts due to Lorentz Contra
tion, Amer-i
an Journal of Physi
s 31, 383.Einstein, A (1905): Zur Elektrodynamik bewegter Körper, Annalender Physik 17, p. 891.Einstein, A. (1920): Relativity: The Spe
ial and General Theory, H.Holt and Company, New York.Einstein, A. (1961): Relativity, the spe
ial and the general theory: apopular exposition, Crown Publishers, New York.Einstein, A. (1969a): Autobiographi
al Notes, in Albert Einstein:Philosopher-S
ientist, P. A. S
hilpp (ed.), Open Court, Illionis.Einstein, A. (1969b): Remarks Con
erning the Essays Broughttogether in this Co-operative Volume, in Albert Einstein:Philosopher-S
ientist, P. A. S
hilpp (ed.), Open Court, Illionis.Einstein, A. (1982): Ideas and Opinions, Crown Publishers, NewYork.Einstein, A. (1983): Sidelights on relativity, Dover, New York.Evett, A. A. and R. K. Wangsness (1960): Note on the Separationof Relativisti
 Moving Ro
kets, Ameri
an Journal of Physi
s 28,566.Evett, A. A. (1972): A Relativisti
 Ro
ket Dis
ussion Problem,Ameri
an Journal of Physi
s 40, 1170.Feyerabend, P. K. (1970): Consolation for the Spe
ialist, in Criti-
ism and the Growth of Knowledge, I. Lakatos and A. Musgrave(eds.), Cambridge University Press, Cambridge, pp. 197�230.Feynman, R. P., Leighton, R. B. and Sands, M. (1963): The Feyn-man le
tures on physi
s, Addison-Wesley Pub. Co., Reading,Mass.



130 BibliographyField, J. H. (2004): On the Real and Apparent Positions of Mov-ing Obje
ts in Spe
ial Relativity: The Ro
kets-and-String andPole-and-Barn Paradoxes Revisited and a New Paradox, preprinthttp://arxiv.org/abs/physi
s/0403094.Friedman, M. (1983): Foundations of Spa
e-Time Theories � Rela-tivisti
 Physi
s and Philosophy of S
ien
e, Prin
eton UniversityPress, Prin
eton.Galilei, G. (1953): Dialogue 
on
erning the two 
hief world systems,Ptolemai
 & Coperni
an, University of California Press, Berke-ley.Grünbaum, A. (1974): Philosophi
al Problems of Spa
e and Time,Boston Studies in the Philosophy of S
ien
e, Vol. XII. (R. S.Cohen and M. W. Wartofsky, eds.) D. Reidel, Dordre
ht.Jánossy, L. (1971): Theory of relativity based on physi
al reality,Akadémiai Kiadó, Budapest.Janssen, M. (2002): Re
onsidering a S
ienti�
 Revolution: The Caseof Einstein versus Lorentz, Physi
s in Perspe
tive 4, pp. 421�446Kostele
ký, V. A. and S. Samuel (1989): Spontaneous breaking ofLorentz symmetry in string theory, Physi
al Review D39, 683.Kuhn, T. S. (1970): The Stru
ture of S
ienti�
 Revolution, Univer-sity of Chi
ago Press, Chi
ago.Lorentz, H. A. (1904): Ele
tromagneti
 phenomena in a systemmoving with any velo
ity less than that of light, Pro
. R. A
ad.Amsterdam 6, p. 809.Malament, D. (1977): Causal Theories of Time and the Convention-ality of Simultaneity, Noûs 11, p. 293.Märzke, R. F. and Wheeler, J. A. (1964): Gravitation as geometryI: the geometry of spa
etime and the geometrodynami
al stan-dard meter, in Gravitation and relativity, H. Y. Chiu and W. F.Ho�mann (eds.), W. A. Benjamin, New York�Amsterdam.



Bibliography 131Milne, E. A. (1935): Relativity, Gravitation, and World-Stru
ture,Oxford University Press, Oxford.Nikoli
, H. (1999): Relativisti
 
ontra
tion of an a

elerated rod,Am. J. Phys. 67, p. 1007.Pauri, M. and Vallisneri, M. (2000): Märzke�Wheeler 
oordinatesfor a

elerated observers in spe
ial relativity, Foundations ofPhysi
s Letters 13, p. 401.Poin
aré, H. (1952): S
ien
e and Hypothesis, Dover Publi
ations,New York.Pri
e, H. (1996): Time's arrow and Ar
himedes' point: new dire
-tions for the physi
s of time, Oxford Universoty Press, New York,Oxford.Rei
henba
h, H. (1956): The Dire
tion of Time, University of Cali-fornia Press, Berkeley.Rei
henba
h, H. (1958): The philosophy of spa
e and time, DoverPubli
ations, New York.Reignier, J. (2000): The birth of spe
ial relativity. �One more essayon the subje
t�, arXiv:physi
s/0008229.Salmon, W. C. (1977): The Philosophi
al Signi�
an
e of the One-Way Speed of Light, Noûs 11, p. 253.Szabó, L. E. (2004): On the meaning of Lorentz 
ovarian
e, Foun-dations of Physi
s Letters 17, p. 479.Tonnelat, M. A. (1971): Histoire du prin
ipe de relativité, Flam-marion, Paris.Zahar, E. (1973): Why did Einstein's Programme SupersedeLorentz's?, British Journal for the Philosophy of S
ien
e, 24 pp.95�123, 223�262.


