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90 Absolute Theory of Spae and Time69. Faithfully re�eting how �spae� and �time� tags are under-stood in lassial physis and relativity theory, de�nitions (D1)�(D8) in Point 38 answered the purpose of demonstrating thatEinstein's speial relativity has exatly the same laims aboutspae and time as lassial physis and Lorentz's theory. How-ever, neither the lassial nor the relativisti de�nitions are trou-ble free. They are based on several pre-assumptions about on-tingent fats of nature whih annot be known or even formulatedprior to the de�nitions of spae and time tags.Let us fous on what is ommon to both the lassial and rel-ativisti approahes, de�nitions (D1)�(D4). The �rst di�ultyis aused by the usage of measuring rod for the de�nition of dis-tane. The problem I mean is di�erent from the one proposed byReihenbah (1958), namely that the length of the rod may bealtered by some universal fores when the rod is transported fromone plae to the another. This�known, or unkwon�behavior ofthe etalon is no problem from logial/operational point of view,as long as the operational proedure provides an unambiguousde�nition. (For example, we are ompletely aware of the Lorentzontration of the measuring rod. But this is no problem; pro-edure (D8) in Point 38 provides an unambiguous de�nition ofs̃pae tags x̃K ′

(A).) In aordane with Reihenbah's �nal on-lusion, I believe that the Newtonian onept of �absolute length�(see Point 73) of the rod, independent of operational de�nitionof �distane�, is meaningless or at least is outside of the sopeof physis. If spae tags are de�ned aording to (D2) then thelength of the measuring rod is�by de�nition�onstant, no mat-ter what is our metaphysial pre-assumption about the length ofthe rod ansih.There are, however, real irularities here that appear at thevery operational level. The operations desribed in (D2) and(D4) rest on the onept of a measuring rod at rest relative toa given referene frame. However, we enounter the followingdi�ulties:



Absolute Theory of Spae and Time 91(a) We have seen in Point 24 that the onept of a rod �atrest� relative to a referene frame is problemati in itself.(b) One might think that this is no problem if the measuringrod is always in equilibrium state when we are measuringwith it. It must be lear however that the equilibrium stateof a rod annot be asertained prior to the de�nition of itslength, that is, prior to the de�nition of distane.() The onept of rest relative to a referene frame is prob-lemati not only for the measuring rod as a whole but evenfor one single partile of the rod. The reason is that weare missing a prior de�nition of veloity relative to a givenreferene frame.(d) Throughout de�nitions (D1)�(D9) we nonhalantly usedthe term �referene frame�. Of ourse, it is no problemto give the usual meaning to this term after having de-�ned spae and time tags of events; when we already havethe onepts of simultaneity, the distane of simultaneousevents, dimensions, straight lines, et. But the term �ref-erene frame� has no meaning prior to the spae and timetags. We enounter this wrong irularity in de�nitions(D2) and (D4): we ought to superpose the measuring-rodalong a straight line, suh that the rod is always at restrelative to the referene frame.(e) We also used the term �inertial� frame of referene. Thisis another term that has no meaning without a previousde�nition of spae and time tags.70. Another soure of irularities is the �slow transportation�of the standard lok in de�nitions (D1) and (D3). The reasonwhy the transportation must be slow is that the lok may a-umulate a loss of phase during its journey. From (56) we an
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∆T → 0 if w(t) tends to zero in some uniform sense, for instaneif max |w(t)| → 0. One might think that this ondition an beprovided without any viious irularity by moving the standardlok from its original plae to the lous of the event in ques-tion over a very long period of time, aording to the reading ofthe lok itself. This is however not the ase. If funtion w(t)is something like as shown in Fig. 13 then the lok's journeytakes very long time, nevertheless the loss of phase in (88) doesnot vanish. Yet one might also think that this does not ausea viious irularity in the operational de�nition of time tags,beause we an inlude the loss of phase into the de�nition, justlike in the relativisti de�nition (D6). (In de�nition (D6), thetime tag is simply de�ned by the reading of the lok, disregard-ing the loss of phase aumulated during its journey. This phaseshift�alulated in Point 42�is, for example, the origin of thedi�erene between t̂-simultaneity and t̃-simultaneity.) However,



Absolute Theory of Spae and Time 93this operation ould not provide an unambiguous de�nition oftime tags. The reason is that the phase shift (onsequently, thereading) of the lok depends on the onrete shape of funtion
w(t). To keep w(t) ontrolled�either in order to avoid ambi-guity, or in order to provide the ondition max |w(t)| → 0�wemust be able to asertain the lok's instantaneous veloity rel-ative to referene frame K, throughout its journey. And thisleads to the same viious irularities we mentioned in Point 69() and (d).71. One has to reognize that some of the irularity problemsare independent of the relativisti e�ets and they are alreadythere in lassial physis. Let me illustrate this with one ex-ample. Assume, the time tags of events are somehow de�nedby transported loks. So we have the onept of �spae� St,that is the set of simultaneous events at a given time t. Theongruene of spae intervals in St is traditionally de�ned bymeans of transportation of rigid bodies. There has been a longdisussion about the onventionality of the onept of ongru-ene so obtained (Poinaré 1952; Einstein 1969b; Reihenbah1958; Grünbaum 1974; Friedman 1983). But nobody ontestedthat the operational de�nition in itself is meaningful and appli-able for the oordination of (lassial) spae-time. In fat, asa little re�etion reveals, this is not the ase; the de�nition ofongruene by means of transportation of rigid bodies ontainsan operational irularity. For, assume that a rigid body indeed�retains its size� during the transportation; its size before thetransportation, at t0, is equal to its size after the transportation,at time t1. (In some objetive sense or/and by onvention�itdoes not matter now.) This only means, however, that its size in
St0 is �ongruent� with its size in St1 (Fig. 14). So, in order toestablish, in this way, the onept of ongruene in spae St0 , weneed a previous de�nition of �rest�, that is, a previous oneptof identity of two louses of spae at two di�erent times. But,in this onstrution, there seems no way to de�ne the onept of
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St0Figure 14: The de�nition of spatial ongruene by means oftransportation of rigid bodies is based on a previous de�nitionof �rest�, that is, on a previous onept of identity of two lousesof spae at two di�erent times



Empirial Definition of Spae and Time Tags 95�rest� without the onept of ongruene of spatial intervals inevery St.72. The upshot of these onsiderations is that, in order to avoidthe irularities mentioned above and to minimize the onven-tional elements in the empirial foundation of our physial the-ory of spae and time, we must avoid using standard measuringrod in the de�nition of distane and using slow transportationof the standard lok in the de�nition of time tags. We mustalso abstain from relying on the onept of rigid body, refereneframe, and inertial motion.Instead, we will use one standard lok and light signals. Alight signal should not be understood as a �light ray� or a �lightbeam�, that is, we should not assume�in advane�that the lightsignal propagates along a �straight line�.Empirial De�nition of Spae and Time Tags73. First we hose an etalon lok. That is to say, we hosea system (a sequene of phenomena) �oating somewhere in theuniverse. Without loss of generality we may stipulate that thisis an equipment having a pointer and the readings are real num-bers. (For example, let the lok in the U.S. Naval Observatory,used by the GPS.) There is no assumption that this is a lokmeasuring �proper time�. There is no assumption that it �runsuniformly�. And there is no assumption that it is �at rest� rela-tive to anything, or that it is of �inertial motion�. The reason isthat none of these onepts is de�ned yet.Consider the experimental arrangement in Fig. 15. The stan-dard lok emits a radio signal at lok-reading t1 (event A). Thesignal is reeived by another equipment (marker) whih imme-diately emits another signal (event B). This �re�eted� signalis deteted by the standard lok at t2 (event C). Without lossof generality we may assume that these signals are modulatedradio waves, ontaining some minimal information to identify
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Figure 15: Operational de�nition of time tags. (This is just asymboli sketh, not a real �two dimensional spae-time diagram�or the like.)



Empirial Definition of Spae and Time Tags 97them. We also assume, as an empirial fat, that the lok wehave hosen is suh that a given re�eted signal is reeived bythe standard lok only one, at reading t2, and
t2 ≥ t1 (89)by whih we have hosen, onventionally, an �arrow of time� (notthe arrow of physial proesses in time; see Prie 1996, p. 16and 58). (In fat, we made two hoies here. One is the hoie ofthe diretion of the parametrization of the lok's pointer posi-tions (89). There is however a more important one: by applyingthe terms �sending� and �reeiving� a signal, we previously de-termined the ausal order of events A and C. To what extentthis ausal order is purely onventional? How an we�withoutprior spatiotemporal oneptions�distinguish whether an eventis a �sending� or a �reeiving� of a signal? How is this hoieof ausal order related to the hange of information ontent ofthe signal? To what extent this hoie is determined by our freewill and free ation experiene at the modulation of the radiowaves? Is this freedom an objetive openness of future or merelya subjetive experiene? These are deliate metaphysial ques-tion; into the disussion of whih it is not our present purpose toenter.)De�nition (A1) The absolute time tag of event B is the fol-lowing:

τ (B) := t1 +
1

2
(t2 − t1) (90)The de�nition is about event B onsisting in the �re�etion� ofthe radio signal emitted by the standard lok. That is to say, weassigned an absolute time tag to a de�nite physial phenomenonwhih we alled �event�. It is far from obvious, however, whatmust be regarded as an event in general�prior to the onepts oftime and distane�, and how one an extend the de�nition forthe physial events of other kinds. (See Brown 2005, pp. 11-14.)We do not dwell on this problem here. The reader an easily



98 Absolute Theory of Spae and Timeimagine various operational solutions of how to use the B-type�re�etion� events for marking other physial events/phenomena.So we will assume that de�nition (A1) is extended for all physialevents.74. At this point, one might think that we are ready to de-�ne the distane between simultaneous events in the usual way.Surely, we an de�ne the distane between the simultaneousevents D and B (Fig. 15) as 1
2 (t2 − t1) c, where the value of

c is taken as a onvention. In this way, however, we an de�nethe distane only from the standard lok. But there is no way toextend this de�nition for arbitrary pair of simultaneous events.In order to de�ne the distane between arbitrary simultaneousevens we need further preparations.Denote Sτ the set of simultaneous events with time tag τ .De�nition (A2) A one-parameter family of events γ(τ) is alledtime sequene if γ(τ) ∈ Sτ for all τ .One has to reognize that a time sequene is a lok-like proess.For every event, one an de�ne a time-like tag in the same wayas (A1): Event A (Fig. 16) is marked with the emission of a radiosignal at time τ(A). The signal is re�eted at event B. Event
C is the �rst detetion of the re�eted signal at time τ(C). Wede�ne the following time-like tag for event B:

τγ(B) := τ(A) +
1

2
(τ(C) − τ(A))(If there is no detetion of the re�eted signal at all, then, say,

τγ(B) := ∞.)It is an empirial fat that τγ(B) 6= τ(B) in general. It isanother empirial observation however that for some partiularases τγ(B) = τ(B).De�nition (A3) A time sequene γ(τ) is a synhronized opyof the standard lok if for every event B τγ(B) = τ(B).Whether or not there exist synhronized opies of the standardlok is an empirial question. We stipulate the following:
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Figure 16: Clok-like time sequeneEmpirial fat (E1) For any event A there exists a uniquesynhronized opy of the standard lok γ(τ) suh that
A = γ (τ(A))75. Now we are ready to de�ne the distane between simulta-neous events.De�nition (A4) The absolute distane between two simulta-neous evens A,B ∈ Sτ is operationally de�ned in the followingway. Take a synhronized opy of the standard lok γ suh that

A = γ(τ). (See Fig. 17) Let U = γ (τ(U)) is an event markedwith the emission of a radio signal at absolute time τ(U), suhthat the signal is reeived and re�eted at event B. The dete-tion of the re�eted signal marks the event V = γ (τ(V )) of time
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Figure 17: The distane between two simultaneous eventstag τ(V ). The absolute distane is
dτ (A,B) :=

1

2
(τ(V ) − τ(U)) c (91)where c = 299792458m

s
by onvention.76. We know from (89) that for all A,B ∈ Sτ

dτ (A,B) ≥ 0 (92)
dτ (A,A) = 0 (93)However, the following fat annot be known a priori :Empirial fat (E2) For all A,B,C ∈ Sτ

dτ (A,B) + dτ (B,C) ≥ dτ (A,C) (94)Some other propositions are however derivable from the de�ni-tions.



Empirial Definition of Spae and Time Tags 101
γ2(τ )γ1(τ )

A2

A3

B3

E

C

D

F

A1

B1

B2

Figure 18: The distane between the simultaneous points of twosynhronized opies of the standard lok is a periodi funtionof the absolute time



102 Absolute Theory of Spae and TimeLemma 1 Consider two synhronized opies of the standardlok γ1 and γ2 (Fig. 18). For any moment of absolute time τ0

dτ0 (γ1(τ0), γ2(τ0)) = dτ0 (γ2(τ0), γ1(τ0)) (95)and
dτ0 (γ1(τ0), γ2(τ0)) = dτ0+T (γ1(τ0 + T ), γ2(τ0 + T )) (96)where

T =
dτ0 (γ1(τ0), γ2(τ0))

cProof Let γ1(τ0) be event A2. Consider the followingevents: a radio signal is emitted at A1, then re�eted at B1, thenit is re�eted again at A2 and re�eted again at B2, and so on.Let τ(E) = τ (B2) and τ(C) = τ (B1). Taking into aount thatboth γ1 and γ2 are synhronized opies of the standard lok, wehave the following equations:
τ (A2) =

τ (B2) + τ (B1)

2

τ (B2) =
τ (A3) + τ (A2)

2

τ (B1) =
τ (A2) + τ (A1)

2From the above three equations we have
τ (A3) − τ (A2) = τ (A2) − τ (A1) (97)and
τ (B2) − τ (B1) = τ (A2) − τ (A1) (98)Therefore,

τ (E) − τ (C) = τ (A2) − τ (A1) = τ (B2) − τ (B1)



Empirial Definition of Spae and Time Tags 103Imagine now a radio signal emitted from C, re�eted at D anddeteted at E. Again, taking into aount that both γ1 and γ2are synhronized opies of the standard lok, we have
τ (D) =

τ (E) + τ (C)

2
=

τ (B2) + τ (B1)

2
= τ (A2) = τ0Therefore,

dτ0 (γ1(τ0), γ2(τ0)) =
τ (E) − τ (C)

2
c

=
τ (B2) − τ (B1)

2
c

= dτ0 (γ2(τ0), γ1(τ0))Taking into aount this symmetry, (96) immediately followsfrom (97). �In other words, as it follows from (95), for any A,B ∈ Sτ

dτ (A,B) = dτ (B,A) (99)One has to reognize that a funtion Sτ×Sτ → R with properties(92)�(94) and (99) is what the mathematiian alls metri on Sτ .Thus, we an stipulate that (Sτ , dτ ) is a metri spae for everymoment of absolute time τ .77. Having metri de�ned on Sτ , we an de�ne the onept ofa straight line in Sτ (Fig. 19).De�nition (A5) A subset σ ⊂ Sτ is alled (straight) line ifsatis�es the following onditions:1. for any A,B,C ∈ σ exatly one of the following three rela-tions hold:
dτ (A,C) + dτ (C,B) = dτ (A,B)

dτ (A,B) + dτ (B,C) = dτ (A,C)

dτ (B,A) + dτ (A,C) = dτ (B,C)2. σ is maximal for property 1.
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Figure 19: Straight line
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Figure 20: Orthogonal linesEmpirial fat (E3) For every A,B ∈ Sτ there exists a uniqueline ontaining A and B.De�nition (A6) Let σ1 and σ2 two lines in Sτ suh that σ1 ∩
σ2 = {O} (see Fig. 20). σ2 is orthogonal to σ1 if for every Z ∈ σ2and for every X,Y ∈ σ1

dτ (X,O) = dτ (O,Y ) ⇔ dτ (X,Z) = dτ (Y,Z)Empirial fat (E4) If σ1 is orthogonal to σ2 then σ2 is or-thogonal to σ1.



Empirial Definition of Spae and Time Tags 105Empirial fat (E5) For every O ∈ Sτ there exist three lines
σ1,σ2 and σ3 suh that they are pairwise orthogonal and σ1 ∩
σ2 ∩ σ3 = {O}.Empirial fat (E6) Let O ∈ Sτ an arbitrary event and threelines σ1,σ2 and σ3 suh that they are pairwise orthogonal and
σ1 ∩ σ2 ∩ σ3 = {O}. There is no line σ ⊂ Sτ orthogonal to eahof σ1,σ2 and σ3, suh that σ1 ∩ σ2 ∩ σ3 ∩ σ = {O}.We usually express this fat by saying that spae is three dimen-sional.Empirial fat (E7) Let A ∈ Sτ be an arbitrary event and σ1 ⊂
Sτ an arbitrary line. There always exists a line σ2 orthogonal to
σ1, suh that A ∈ σ2.De�nition (A7) Using the notations in (E7), let σ1∩σ2 = {O}.Distane of dτ (A,O) is alled the distane of A from σ1.De�nition (A8) Let σ1 ⊂ Sτ be a line. A line σ2 is parallel to
σ1 if for all X ∈ σ2 the distane of X from σ1 is the same.Empirial fat (E8) Let σ1 ⊂ Sτ be a line and let C ∈ Sτan arbitrary event. There exists exatly one line σ2 suh that
C ∈ σ2 and σ2 is parallel to σ1.De�nition (A9) Let A,B ∈ σ two events on line σ. Linesegment between events A,B ∈ Sτ is the following subset of σ:

σ(A,B) := {X ∈ σ| dτ (A,X) + dτ (X,B) = dτ (A,B)} (100)78. Now, we have everything at hand to de�ne the usual Carte-sian oordinates in Sτ . First we need a 3-frame.
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SτFigure 21: Cartesian oordinates in SτDe�nition (A10) A 3-frame in Sτ onsists of three pairwiseorthogonal line segments, σ (Y1, Y2), σ (Z1, Z2), suh that
σ (X1,X2) ∩ σ (Y1, Y2) ∩ σ (Z1, Z2) = {O}where O is the origin of the frame (Fig. 21).The end points play marginal role, but we do not assume thatthese segments have �in�nite� length. The segments are supposedto be long enough for the purposes of the empirial oordinationof the physial events in question. The origin of the 3-frameis arbitrary, although it ould be a natural hoie to take the�τ -event� of the standard lok as origin.In the following de�nition we give the operational de�nitionof the three absolute spae tags of an event A ∈ Sτ .De�nition (A11) Take a line segment σ(B,C) ∋ A parallel to

σ (Z1, Z2). (See Fig. 21.) Take another line segment σ(A,D)orthogonal to σ (Z1, Z2) suh that D ∈ σ (Z1, Z2). Let σ(O,E)be a line segment parallel to σ(A,D) suh that E ∈ σ(B,C).Finally, take the line segments σ(E,F ) and σ(E,G) suh that
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σ(E,F ) is parallel to σ (X1,X2) and F ∈ σ (Y1, Y2), and σ(E,G)is parallel to σ (Y1, Y2) and G ∈ σ (X1,X2). Now, the spae tagsare de�ned as follows:

xτ (A) :=

{
dτ (G,O) if G ∈ σ (O,X2)

−dτ (G,O) if G ∈ σ (O,X1)

yτ (A) :=

{
dτ (F,O) if F ∈ σ (O,Y2)

−dτ (F,O) if F ∈ σ (O,Y1)

zτ (A) :=

{
dτ (D,O) if D ∈ σ (O,Z2)

−dτ (D,O) if D ∈ σ (O,Z1)79. It must be emphasized that with the above de�nitions weonly de�ned the spae tags in a given set of simultaneous events
Sτ . Yet, we have no onnetion whatsoever between two Sτ and
Sτ ′ if τ 6= τ ′. In priniple, there exist in�nitely many possiblebijetions between the di�erent Sτ 's, but without any naturalphysial meaning. This is true, even if we presribe that thebijetion must be an isomorphism preserving distanes.Aording to some vague intuition, a time sequene γ(τ) sat-isfying that

xτ (γ(τ)) = onst. (101)
yτ (γ(τ)) = onst. (102)
zτ (γ(τ)) = onst. (103)orresponds to a loalized physial objet being at rest. �Atrest��relative to what? The atual behavior desribed by theseequations very muh depends on how the di�erent 3-frames arehosen in the di�erent Sτ 's. One might think that an objet is atrest if equations (101)�(103) hold in one and the same 3-frame inall Sτ . But, what does it mean that �one and the same 3-framein all Sτ �? When an we say that a line segment σ (X ′

1,X
′
2) in
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Sτ ′ is the same 3-frame axis as σ (X1,X2) in Sτ? When an wesay that an event A′ is in the same plae in Sτ ′ as event A in Sτ?In asking these questions, it is neessary to be areful of a pos-sible misunderstanding. Although they are lose to eah other,the problem we are addressing here is di�erent from the prob-lem of persistene of physial objets (Butter�eld 2005). Whatwe would like to de�ne is the identity of two louses of spae attwo di�erent times, and not the genidentity of the physial ob-jets oupying them. One might think that some de�nition ofgenidentity of physial objets must be prior to our operationalde�nition of spae and time tags, at least in the ase of thestandard lok. This is, however, not neessarily the ase. Thestandard lok is just an ordered (ordered by the lok readings)sequene of physial events, but without the further metaphys-ial assumption that these events belong to the same physialobjet. (We de�nitely do not make suh assumption in the aseof a synhronized opy of the standard lok.)80. In order to establish onnetion between arbitrary two setsof simultaneous events we need some preparations.Lemma 2 Let γ1 and γ2 be arbitrary two synhronized opiesof the standard lok. For any two moments of absolute time τand τ ′

dτ (γ1 (τ) , γ2 (τ)) = dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

)) (104)Proof The proof will be based on (96). Let us assume that
τ < τ ′. Denote T the period in (96), that is

T =
dτ (γ1 (τ) , γ2 (τ))

cFirst we will prove that
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))Let n be the smallest integer suh that τ ′ < τ + nT =: τ1(Fig. 22). It follows from (96) that
dτ (γ1 (τ) , γ2 (τ)) = dτ1 (γ1 (τ1) , γ2 (τ1))
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Figure 22: Proof of Lemma 2Let τ2 := τ1+τ
2 . Consider the synhronized opy of the stan-dard lok Γ2 that goes through the middle point of line seg-ment σ (γ1 (τ) , γ2 (τ)). Taking into aount that τ2 = τ + m2

T
2for some integer m2 (namely, m2 = n), and also that T

2 c =
dτ (γ1(τ),γ2(τ))

2 , one an apply (96) for the synhronized opies ofthe standard lok γ1 and Γ2. Therefore,
dτ2 (γ1 (τ2) ,Γ2 (τ2)) = dτ (γ1 (τ) ,Γ2 (τ)) =

dτ (γ1 (τ) , γ2 (τ))

2The same argument an be repeated for γ2 and Γ2. Therefore,
dτ2 (Γ2 (τ2) , γ2 (τ2)) = dτ (Γ2 (τ) , γ2 (τ)) =

dτ (γ1 (τ) , γ2 (τ))

2It follows from (94) that
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ2 (γ1 (τ2) , γ2 (τ2))



110 Absolute Theory of Spae and TimeAssume that τ ′ > τ2. Therefore, take τ3 := τ2+τ1
2 . Again,onsider the synhronized opies of the standard lok Γ1

3, Γ2
3,

Γ3
3 dividing line segment σ (γ1 (τ) , γ2 (τ)) into 4 piees of equallength. Taking into aount that τ3 = τ + m3

T
4 for some integer

m3 and also that T
4 c = dτ (γ1(τ),γ2(τ))

4 , one an apply (96) for thesynhronized opies of the standard lok γ1 and Γ1
3. Therefore,

dτ3

(
γ1 (τ3) ,Γ1

3 (τ3)
)

= dτ

(
γ1 (τ) ,Γ1

3 (τ)
)

=
dτ (γ1 (τ) , γ2 (τ))

4Similarly,
dτ3

(
Γ1

3 (τ3) ,Γ2
3 (τ3)

)
=

dτ (γ1 (τ) , γ2 (τ))

4

dτ3

(
Γ2

3 (τ3) ,Γ3
3 (τ3)

)
=

dτ (γ1 (τ) , γ2 (τ))

4

dτ3

(
Γ3

3 (τ3) , γ2 (τ3)
)

=
dτ (γ1 (τ) , γ2 (τ))

4Consequently, from (94),
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ3 (γ1 (τ3) , γ2 (τ3))Assume τ ′ < τ3. Therefore, take τ4 := τ3+τ2

2 . Again, onsiderthe synhronized opies of the standard lok Γ1
4,Γ

2
4,Γ

3
4, . . . Γ

7
4 di-viding line segment σ (γ1 (τ) , γ2 (τ)) into 8 piees of equal length.Taking into aount that τ4 = τ + m4

T
8 for some integer m4 andalso that T

8 c = dτ (γ1(τ),γ2(τ))
8 , one an apply (96) for the synhro-nized opies of the standard lok γ1 and Γ1

4. Therefore,
dτ4

(
γ1 (τ4) ,Γ1

4 (τ4)
)

= dτ

(
γ1 (τ) ,Γ1

4 (τ)
)

=
dτ (γ1 (τ) , γ2 (τ))

8Similarly,
dτ4

(
Γ1

4 (τ4) ,Γ2
4 (τ4)

)
=

dτ (γ1 (τ) , γ2 (τ))

8

dτ4

(
Γ2

4 (τ4) ,Γ3
4 (τ4)

)
=

dτ (γ1 (τ) , γ2 (τ))

8
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dτ4

(
Γ7

4 (τ4) , γ2 (τ4)
)

=
dτ (γ1 (τ) , γ2 (τ))

8Consequently, from (94),
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ4 (γ1 (τ4) , γ2 (τ4))And so on and so forth,
dτ (γ1 (τ) , γ2 (τ)) ≥ dτi

(γ1 (τi) , γ2 (τi))On the other hand,
lim
i→∞

τi = τ ′therefore
dτ (γ1 (τ) , γ2 (τ)) ≥ dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))Exatly in the same way one an prove that
dτ (γ1 (τ) , γ2 (τ)) ≤ dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))One simply has to hange the roles of τ and τ ′. Denote T ′, thistime, the period
T ′ =

dτ ′ (γ1 (τ ′) , γ2 (τ ′))

cLet n′ be the smallest integer suh that τ > τ ′−n′T ′ =: τ ′
1 Then,it follows from (96) that

dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))
= dτ ′

1

(
γ1

(
τ ′
1

)
, γ2

(
τ ′
1

))Let τ ′
2 :=

τ ′

1
+τ ′

2 . Consider the synhronized opy of the stan-dard lok Γ′
2 that goes through the middle point of line segment

σ (γ1 (τ ′) , γ2 (τ ′)). Taking into aount that τ ′
2 = τ ′ − m′

2
T
2 forsome integer m2, and also that T

2 c =
d

τ ′
(γ1(τ ′),γ2(τ ′))

2 , one an



112 Absolute Theory of Spae and Timeapply (96) for the synhronized opies of the standard lok γ1and Γ′
2. Therefore,

dτ ′

2

(
γ1

(
τ ′
2

)
,Γ′

2

(
τ ′
2

))
= dτ ′

(
γ1

(
τ ′

)
,Γ′

2

(
τ ′

))

=
dτ ′ (γ1 (τ ′) , γ2 (τ ′))

2Similarly,
dτ ′

2

(
Γ′

2

(
τ ′
2

)
, γ2

(
τ ′
2

))
=

dτ ′ (γ1 (τ ′) , γ2 (τ ′))

2Therefore,
dτ ′

2

(
γ1

(
τ ′
2

)
, γ2

(
τ ′
2

))
≤ dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))And so on and so forth,
dτ ′

i

(
γ1

(
τ ′
i

)
, γ2

(
τ ′
i

))
≤ dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))At the same time,
lim
i→∞

τ ′
i = τConsequently,

dτ (γ1 (τ) , γ2 (τ)) ≤ dτ ′

(
γ1

(
τ ′

)
, γ2

(
τ ′

))

�81. The following isomorphism an be regarded as a naturalone.De�nition (A12)
Tτ ′

τ : Sτ → Sτ ′

A 7→ Tτ ′

τ (A) = γ(τ ′)where γ is a synhronized opy of the standard lok suh that
A = γ(τ). Let us all Tτ ′

τ the time shift between Sτ and Sτ ′ .It follows from (E1) and Lemma 2 that this de�nition is soundand Tτ ′

τ is a distane preserving bijetion.



Empirial Definition of Spae and Time Tags 11382. Now we have everything at hand to de�ne the spae tagsof events.De�nition (A13) Let A be an arbitrary event. The absolutespae tags of A are de�ned as follows:
ξ1(A) := x0

(
T0

τ(A) (A)
)

ξ2(A) := y0

(
T0

τ(A) (A)
)

ξ3(A) := z0

(
T0

τ(A) (A)
)Thus we have de�ned four absolute spae-time tags for everyevent: τ(A), ξ1(A), ξ2(A), ξ3(A).83. For example, the absolute veloity of a time sequene γ (τ)is obviously de�ned as

v (τ) :=




dξ1(γ(τ))
dτ

dξ2(γ(τ))
dτ

dξ3(γ(τ))
dτ


I omit the further (but straightforward) de�nitions.84. I all τ(A) �absolute time� not in the sense of what Newtonalled �absolute, true and mathematial time�, that is indepen-dent of any empirial de�nition (see Sholium II in hapter �De�-nitions� of the Prinipia.), but in the sense of what the 20th en-tury physis alls absolute time; it is �independent of the positionand the ondition of motion of the system of o-ordinates� (Ein-stein 1920, p. 51). The spae-time tags τ(A), ξ1(A), ξ2(A), ξ3(A)are absolute in the sense that they are not relative to a refereneframe but prior to any referene frame (atually the onept of�referene frame� is still not de�ned).Our onepts of absolute time and spae tags are, of ourse,�relative� to the trivial semantial onvention by whih we de�nethe meaning of the terms. Namely, they are �relative� to the



114 Absolute Theory of Spae and Timeetalon lok-like proess we have hosen in the universe. Thiskind of �relativism� is however ommon to all physial quanti-ties having empirial meaning. (Beyond the hoie of the etalonlok, the spae tags ξ1(A), ξ2(A), ξ3(A) have some additionalonventional element; they also are relative to the hosen 3-framein S0. This additional onventionality is, however, of marginalimportane; it is nothing more than what we would all in ourusual language �the hoie of a 3-oordinate basis in a given ref-erene frame�.)85. As it was already mentioned in Point 38, there has beena long disussion in the literature about the onventionality ofsimultaneity. (See, for example, Reihenbah 1956; Bridgeman1965; Grünbaum 1974; Salmon 1977; Malament 1977; Friedman1983; Ben-Yami 2006.) Without entering in the details of thevarious arguments, the following fats must be pointed out here.As it is obvious from (90), we hose the standard �ε = 1
2 -synhronization�. (Of ourse, it ould be a ontingent fat ofnature that t2 = t1 in Fig. 15. In that ase the hoie of thevalue of ε would not matter.) This hoie was entirely onven-tional; it was a part of the trivial semantial onvention de�ningthe term �absolute time tag�. This hoie is prior to any laimsabout the one-way or even round-trip speed of eletromagnetisignals, beause there is no suh a onept as �speed� prior tothe de�nition of time and spae tags; it is, of ourse, prior to�the metri of Minkowski spae-time�, in partiular to the �light-one struture of the Minkowski spae-time�, beause we have nowords to tell this struture prior to the spae-time tags; and itis prior to the ausal order of physial events, beause�even ifwe ould know this ausal order prior to temporality�we an-not know in advane how ausal order is related with temporalorder (whih we have de�ned here). It is atually prior to anydisourse about two louses in spae, beause there is no �spae�prior to de�nition (A1) and there is no onept of a �persistentspae lous� prior to de�nition (A12).



Inertial motion 115Inertial motion86. A remark is in order on the empirial fats (E1)�(E8) towhih we refer in onstruting the spae-time tags. In laimingthese statements as empirial fats I mean that they ought to betrue aording to our ordinary physial theories. The ordinaryphysial theories are however based on the ordinary, problem-ati, spae-time oneptions, relaying on �referene frames real-ized by rigid bodies� and the likes, without proper, non-irular,empirial de�nitions. Thus, espeially in the ontext of de�n-ing the two most fundamental physial quantities, distane andtime, we must not regard our ordinary physial theories as em-pirially meaningful and empirially on�rmed laims about theworld. Whether these statements are true or not is, therefore,an empirial question, and it is far from obvious whether theywould be ompletely on�rmed if the orresponding experimentswere performed with higher preision, similar to the reent GPSmeasurements, espeially for larger distanes. Strangely enough,aording to my knowledge, these very fundamental fats havenever been tested experimentally; no textbook or monographon spae-time physis refers to suh experimental results; atu-ally, with a very few exeptions (for example, Milne 1935 PartI; Bridgman 1965), it is not even attempted to provide a lear,non-irular empirial de�nition of �time� and �distane� in onesingle (inertial) frame, as if it would be a problem only in thease of an aelerated observer (f. Märzke and Wheeler 1964;Pauri and Vallisneri 2000).So, the best we an do is to believe that our physial theoriesbased on the usual sloppy formulation of spae-time oneptsare true (in some sense) and to onsider the preditions of thesetheories as empirial fats. However, as the following analysisreveals, it is far from obvious whether the preditions of thebelieved theories really imply (E1)�(E8).



116 Absolute Theory of Spae and Time87. Throughout the de�nition of spae-time tags, we avoidedthe term �inertial�, and beause of a good reason. First of all,if �inertial� is regarded as a kinematial notion based on theonept of straight line and onstany of veloity, then it an-not be anteedent to the onept of spae-time tags. If, on theother hand, it is understood as a manner of existene of a phys-ial objet in the universe, when the objet is undergoing a free�oating, in other words, when it is �free from fores�, then theonept is even more problemati. The reason is that �fore� is aonept de�ned through the deviation from the trajetory of in-ertial motion (�rst irularity), and neither the inertial trajetorynor the measure of deviation from it an be expressed withoutspatiotemporal onepts, that is, they annot be anteedent tothe de�nition of spae-time tags (seond irularity). So there isno preise, non-irular de�nition of inertial motion. (And thisis�in my view�the major di�ulty with Märzke and Wheeler's(1964) �geodesi lok� approah, too.) It is to be emphasizedthat this operational/logial irularity is a problem even in aspeial relativisti/�at/loal spae-time.)88. Aording to our believed speial relativisti physial the-ory, spae-time is a 4-dimensional Minkowski spae and inertialtrajetory is a time-like straight line in the Minkowski spae.Sine we are prior to the empirial de�nitions of the basi spa-tiotemporal quantities, we annot regard this laim as an empiri-ally on�rmed physial theory. Nevertheless, let us assume for amoment that our speial relativisti theory is the true desriptionof the world �from God's point of view�. It is straightforward tohek that all the fats (E1)�(E8) are true if 1) the standard lokmoves along an inertial world line in the Minkowski spae-timeand 2) it reads the proper time, that is, it measures the lengthof its own word line, aording to the Minkowski metri. How-ever, we human beings an know neither whether the standardlok (hosen by us) is of inertial motion in God's Minkowskianspae-time nor whether it reads the proper time. What if these



Inertial motion 117onditions fail? What does speial relativisti kinematis sayabout (E1)�(E8) if the standard lok is aelerated and/or itdoes not read the proper time?In order to answer this question, we have to follow up the op-erational de�nitions (A1), (A2),. . . and alulate whether state-ments (E1), (E2),. . . are true or not if the standard lok movesalong a given world line γ and the �time� it reads is, say, a givenfuntion of the Minkowskian oordinate time, χ(t). Although thetask is straightforward, the alulation is too omplex to give ageneral answer by analyti means. But the problem an be ef-�iently solved by omputer. One �nds the following�perhapssurprising�results.For the sake of the ontrast, let me �rst mention that oneobtains a very misguiding result if, for the sake of simpliity, thealulation is made in a 2-dimensional Minkowski spae-time:No matter if the standard lok moves along a non-inertial worldline γ, no matter if it reads a time χ(t) whih is an arbitrarymonotoni funtion of the Minkowskian oordinate time, di�erentfrom the proper time along its world line, fats (E1)�(E8) arealways true.If this 2-dimensional result were the �nal truth, one would on-lude that no spatiotemporal measurement an asertain whetherthe standard lok moves inertially or not; the very onept of�inertial� motion would remain a purely onventional one; fats(E1)�(E8) would always be true, independently of the �obje-tive� fat of how the standard lok moves in God's Minkowskispae-time.In ontrast, the real 4-dimensional alulation leads to thefollowing results:(A) Fats (E1)�(E8) are always true if the standard lokmoves along an inertial world line, no matter if the lok readsa time χ(t) whih is an arbitrary monotoni funtion of theMinkowskian oordinate time, di�erent from the proper timealong its world line.



118 Absolute Theory of Spae and Time(B) If the standard lok moves along a non-inertial world line
γ, fats (E1)�(E8) are never true, no matter if the lok readsthe proper time or not.The whole thing hinges on (E1); there are no synhronized opiesof the standard lok if the standard lok moves non-inertially.89. There are remarkable onsequenes of the above results:1. Result (A) implies that no objetive meaning an be as-signed to the onept of �proper� time. �Time� is what theetalon lok reads, by de�nition.2. Contrary to the misguiding 2-dimensional result, (B) showsthat the notion of �inertial motion� is not entirely onven-tional. In aord with our intuition based on the believedphysial theories, we an give an objetive meaning to �in-ertial motion� by means of orret�neither logially noroperationally irular�experiments: the standard lok isof inertial motion if statements (E1)�(E8) are true. As-suming that the standard lok is inertial, one an extendthe onept for an arbitrary time sequene γ(τ) of events:

γ(τ) orresponds to an inertial motion if the absolute spaetags ξ1 (γ (τ)) , ξ2 (γ (τ)) , ξ3 (γ (τ)) are linear funtions ofthe absolute time tag τ .3. On the basis of our believed physial theories, one annot,however, predit whether (E1)�(E8) are true or false. It isstill an open empirial question.4. Imagine that (E1)�(E8) are not satis�ed. It not only meansthat the standard lok we have hosen is non-inertial butit also means that the hosen lok is inappropriate for thede�nition of spae-time tags. More exatly, one has to stopat de�nition (A1). One an de�ne the time tags but an-not de�ne the spatial notions, in partiular the distanesbetween simultaneous evens.
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A
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♦X
A

Standard clock

∨A

Figure 23: The test of inertiality5. Consequently, it is meaningless to talk about �non-inertial referene frame�, �spae-time oordinates (tags) de-�ned/measured by an aelerated observer�, and the likes.90. In the light of these onsequenes, it is an intriguing ques-tion whether the standard lok ontemporary physial labora-tories use for oordination of physial events satis�es onditions(E1)�(E8), in partiular (E1). It is quite implausible that itdoes�taking into aount the Earth's rotation, the Earth's mo-tion around the Sun, the Solar System's motion in our Galaxy,et.Consider �rst what in fat has to be tested (Fig. 23). (E1)would require the existene of a unique synhronized opy of thestandard lok through every event. Let therefore A be an arbi-trary event with absolute time tag τ(A). Introdue the following
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∨A :=

{
X

∣∣∣∣
Radio signal from Ais reeived at X.

}

∧A :=

{
X

∣∣∣∣
Radio signal from Xis reeived at A.

}

♦B
A := ∨A ∩ ∧BConsider the following quantity:

N := max
t,A





min
X∈∨A∩St

max
Y ∈♦X

A

∣∣∣τ(Y ) − τ(A)+τ(X)
2

∣∣∣ t > τ(A)min
X∈∧A∩St

max
Y ∈♦A

X

∣∣∣τ(Y ) − τ(A)+τ(X)
2

∣∣∣ t < τ(A)

N = 0 is a neessary ondition of inertiality of the standard lok.In this ase, for every event A there exists a unique synhronizedopy of the standard lok. That is, for every time t > τ(A)there is a unique event X ∈ ∨A ∩St suh that τ(Y ) = τ(A)+τ(X)
2for all Y ∈ ♦X

A and for every time t < τ(A) there is a uniqueevent X ∈ ∧A ∩ St suh that τ(Y ) = τ(A)+τ(X)
2 for all Y ∈ ♦A

X .91. Let us outline how the experimental test ould be realized.Our standard lok is transmitting, say in every few nanoseonds,a radio signal enoding the atual lok reading (Fig. 24). Weneed a huge number of little devies e1, e2, . . . ei, . . . with thefollowing funtions:1. They ontinuously reeive the regular time signals from thestandard lok.2. They an transmit radio signals ontaining the followinginformation: a) an ID ode of the devie and informationabout the standard lok reading, so from the signal theysend it always an be known whih devie was the trans-mitter and what was the standard lok reading reeived
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Figure 24: The sketh of a realisti measurement to deidewhether the standard lok is inertial or not



122 Absolute Theory of Spae and Timeby the transmitter at the moment of the emission of the sig-nal, b) information about the type of event on the oasionof whih the signal was transmitted.3. They an reeive the signals transmitted by the others.We install these devies everywhere in a ertain region of theuniverse. Now, the following events will happen.1. Assume that e3 is programed suh that it transmits a radiosignal (event A) when reeives the time signal of t1 fromthe standard lok. Let us all it A-signal. The A-signalwill arrive bak to the standard lok at time t2.2. The A-signal sweeps through the whole region and triggersthe other devies to transmit a B-signal. For example,event Bi onsists in that ei reeives the A-signal from e3and emits its own Bi-signal with the needed information.
Bj is a similar event for ej , et.3. The B-signals will be reeived by some other devies. Forexample, C1i is the event when e1 reeives the Bi-signaltransmitted by ei and sends out his own signal (C1i-signal)with the orresponding information. This information ar-rives bak to the standard lok at time t1i.In this way, a huge amount of data is reorded, from whih wean asertain the absolute time tags of all events in question. Wean determine ♦Clm

A for every Clm. For example, say, it turns outthat Cki = Ckj and, therefore, Bi, Bj ∈ ♦Cki

A , et. One also andetermine the sets of simultaneous events. Now, the standardlok is inertial only if in every St there is a unique Clm ∈ Stsuh that for every event Bi ∈ ♦Clm

A

τ (Bi) =
τ (A) + τ (Clm)

2



The life in absolute spae and time 12392. Assume, for example, that the enter of Earth is at rest inthe Minkowski spae-time, and the standard lok is loated atthe equator, that is, it is orbiting together with the given point ofthe surfae of the spinning Earth. Computer simulation shows,that this non-inertial motion of the standard lok auses a dis-repany of N ≈ 0.1ns (10−10 seond) from inertiality within aregion of size 1 light-minute around the Earth, whih is, in prin-iple, an observable e�et within the Solar System. Of ourse,the disrepany inreases with the distanes. (The relevant valueis about 3 · 10−4 seond within a region of size 1 light-day.)93. One must reall, however, that the above alulation ismerely a kind of �metaphysial� speulation without any empir-ially on�rmed basis. It is based on the assumption that ourworld is a Minkowski spae-time in whih the standard lokmoves in a ertain way; but there is no empirial evidene forthis assumption. Not beause of the possible gravitational e�ets(Minkowski spae-time is only an approximation�aording toour believed theories), but beause of the logial/operational ir-ularity: in order to on�rm or falsify that Minkowskian geome-try (or some general relativisti spae-time geometry) is the truetheory desribing all relationships between the spae and timetags of all physial events, we need to know, �rst, how to aser-tain, empirially, the spae and time tags.Again, whether or not the standard lok used in ontempo-rary physis satis�es onditions (E1)�(E8) is still an open empir-ial question.The life in absolute spae and time94. Nevertheless, assume that the empirial fats (E1)�(E8)hold. Let us also assume the following:Empirial fat (E9) The empirially on�rmed laws of physis(expressed, of ourse, in terms of absolute spae and time) areexatly the same as the ordinary laws of (speial) relativisti



124 Absolute Theory of Spae and Timephysis, expressed in one single spae-time oordinates, namelyin the ones we alled absolute spae and time tags (i. e., �in theframe of referene of the standard lok�, in our usual relativistiterms).If so, then, as it an be easily seen, the whole relativistiphysis an be reonstruted within the framework of absolutespae and time. As an example, onsider how a moving ob-server desribes the �spae� and �time� oordinates of an eventin his/her own �frame of referene�. (I use the term �refereneframe� only symbolially. The onept of referene frame as arigid system of material points�rigid body of a spaeraft, threeorthogonal rigid rods o-moving with the observer, et.�is avague and very problemati notion whih ought to be expelledfrom the oneptual voabulary of physis.) We will assume thatthe observer moves along a time sequene the absolute veloity ofwhih is smaller than the speed of light. Now, imagine that theobserver has a lok-like devie and, naively, performs exatlythe same operational proedure as (A1)�(A13). If (s)he an gothrough all the steps, then�aording to assumption (E9) andPoint 88�(s)he is an inertial observer. (Otherwise it would bemeaningless to talk about the �spae� and �time� oordinates inhis/her �frame of referene�.) What an we say about the �spae�and �time� tags so obtained?Of ourse, we an say nothing in the general ase when theobserver's devie has nothing to do with the standard lok. As-sume, however, that the observer's lok-like devie is an iden-tial opy of the standard lok, whih was gently aeleratedup to the veloity of the observer; therefore, it is almost like alok, exept that it runs slower by the fator √
1 − v2

c2
, due toassumption (E9). In this ase, the observer obtains the sameresult as one would obtain from the Lorentz transformation. Letme illustrate this with a simple two-dimensional alulation.Imagine that a radio signal is emitted (event B) when theobserver meets the standard lok (Fig. 25). Let τ(B) = 0.
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B
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observerstandard clock

Figure 25: When the observer meets the standard lok, a radiosignal is emitted (event B). Event A is marked with the re�etionof the signal. The re�eted signal �rst arrives at the observer(event C) and then at the standard lok (event D)Event A is marked with the re�etion of the signal at time τ(A).The re�eted signal �rst arrives at the observer (event C) andthen at the standard lok (event D). By de�nition, τ(A) = τ(D)
2 .We know that

vτ(C) = ξ(A) − c (τ(C) − τ(A))where, by de�nition, ξ(A) = cτ(A). Therefore,
τ(C) =

2cτ(A)

c + vTaking into aount assumption (E9), the observer's �lok�-reading at C is
t(C) = τ(C)

√
1 −

v2

c2Therefore, the �time� and �spae� oordinates (s)he obtains is
t(A) =

t(C)

2
=

cτ(A)

c + v

√
1 −

v2

c2
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=

τ(A) − v
c2

ξ(A)√
1 − v2

c2and
x(A) =

ξ(A) − vτ(A)√
1 − v2

c2The �time� and �spae� oordinates de�ned in this way arenothing but the t̃ime and s̃pae oordinates (
t̃K

′

(A), x̃K ′

(A)
) inPoint 38. (Note that the above derivation�without referene tothe behavior of a rigid measuring-rod�ould replae the similaralulation in Point 42.)95. How an a moving observer asertain the absolute timeand spae tags of an arbitrary event A (in order, for example, toassign to A the ŝpae and t̂ime tags (

t̂K
′

(A), x̂K ′

(A)
) de�ned inPoint 38)? This is atually very easy. For that we only need toequip the standard lok and the marking devies with funtionssimilar to the ones desribed in Point 91. In addition, let thestandard lok be ontinuously writing and broadasting a �log�le�, ontaining all the relevant information: when a signal wastransmitted and when it was reeived bak from whih marker,et. By reading o� this �log �le�, the remote moving observeran reonstrut the absolute time and spae tags of all events.
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